]> Git Repo - linux.git/blob - drivers/char/hpet.c
crypto: akcipher - Drop sign/verify operations
[linux.git] / drivers / char / hpet.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel & MS High Precision Event Timer Implementation.
4  *
5  * Copyright (C) 2003 Intel Corporation
6  *      Venki Pallipadi
7  * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
8  *      Bob Picco <[email protected]>
9  */
10
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/miscdevice.h>
15 #include <linux/major.h>
16 #include <linux/ioport.h>
17 #include <linux/fcntl.h>
18 #include <linux/init.h>
19 #include <linux/io-64-nonatomic-lo-hi.h>
20 #include <linux/poll.h>
21 #include <linux/mm.h>
22 #include <linux/proc_fs.h>
23 #include <linux/spinlock.h>
24 #include <linux/sysctl.h>
25 #include <linux/wait.h>
26 #include <linux/sched/signal.h>
27 #include <linux/bcd.h>
28 #include <linux/seq_file.h>
29 #include <linux/bitops.h>
30 #include <linux/compat.h>
31 #include <linux/clocksource.h>
32 #include <linux/uaccess.h>
33 #include <linux/slab.h>
34 #include <linux/io.h>
35 #include <linux/acpi.h>
36 #include <linux/hpet.h>
37 #include <asm/current.h>
38 #include <asm/irq.h>
39 #include <asm/div64.h>
40
41 /*
42  * The High Precision Event Timer driver.
43  * This driver is closely modelled after the rtc.c driver.
44  * See HPET spec revision 1.
45  */
46 #define HPET_USER_FREQ  (64)
47 #define HPET_DRIFT      (500)
48
49 #define HPET_RANGE_SIZE         1024    /* from HPET spec */
50
51
52 /* WARNING -- don't get confused.  These macros are never used
53  * to write the (single) counter, and rarely to read it.
54  * They're badly named; to fix, someday.
55  */
56 #if BITS_PER_LONG == 64
57 #define write_counter(V, MC)    writeq(V, MC)
58 #define read_counter(MC)        readq(MC)
59 #else
60 #define write_counter(V, MC)    writel(V, MC)
61 #define read_counter(MC)        readl(MC)
62 #endif
63
64 static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
65 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
66
67 /* A lock for concurrent access by app and isr hpet activity. */
68 static DEFINE_SPINLOCK(hpet_lock);
69
70 #define HPET_DEV_NAME   (7)
71
72 struct hpet_dev {
73         struct hpets *hd_hpets;
74         struct hpet __iomem *hd_hpet;
75         struct hpet_timer __iomem *hd_timer;
76         unsigned long hd_ireqfreq;
77         unsigned long hd_irqdata;
78         wait_queue_head_t hd_waitqueue;
79         struct fasync_struct *hd_async_queue;
80         unsigned int hd_flags;
81         unsigned int hd_irq;
82         unsigned int hd_hdwirq;
83         char hd_name[HPET_DEV_NAME];
84 };
85
86 struct hpets {
87         struct hpets *hp_next;
88         struct hpet __iomem *hp_hpet;
89         unsigned long hp_hpet_phys;
90         unsigned long long hp_tick_freq;
91         unsigned long hp_delta;
92         unsigned int hp_ntimer;
93         unsigned int hp_which;
94         struct hpet_dev hp_dev[] __counted_by(hp_ntimer);
95 };
96
97 static struct hpets *hpets;
98
99 #define HPET_OPEN               0x0001
100 #define HPET_IE                 0x0002  /* interrupt enabled */
101 #define HPET_PERIODIC           0x0004
102 #define HPET_SHARED_IRQ         0x0008
103
104 static irqreturn_t hpet_interrupt(int irq, void *data)
105 {
106         struct hpet_dev *devp;
107         unsigned long isr;
108
109         devp = data;
110         isr = 1 << (devp - devp->hd_hpets->hp_dev);
111
112         if ((devp->hd_flags & HPET_SHARED_IRQ) &&
113             !(isr & readl(&devp->hd_hpet->hpet_isr)))
114                 return IRQ_NONE;
115
116         spin_lock(&hpet_lock);
117         devp->hd_irqdata++;
118
119         /*
120          * For non-periodic timers, increment the accumulator.
121          * This has the effect of treating non-periodic like periodic.
122          */
123         if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
124                 unsigned long t, mc, base, k;
125                 struct hpet __iomem *hpet = devp->hd_hpet;
126                 struct hpets *hpetp = devp->hd_hpets;
127
128                 t = devp->hd_ireqfreq;
129                 read_counter(&devp->hd_timer->hpet_compare);
130                 mc = read_counter(&hpet->hpet_mc);
131                 /* The time for the next interrupt would logically be t + m,
132                  * however, if we are very unlucky and the interrupt is delayed
133                  * for longer than t then we will completely miss the next
134                  * interrupt if we set t + m and an application will hang.
135                  * Therefore we need to make a more complex computation assuming
136                  * that there exists a k for which the following is true:
137                  * k * t + base < mc + delta
138                  * (k + 1) * t + base > mc + delta
139                  * where t is the interval in hpet ticks for the given freq,
140                  * base is the theoretical start value 0 < base < t,
141                  * mc is the main counter value at the time of the interrupt,
142                  * delta is the time it takes to write the a value to the
143                  * comparator.
144                  * k may then be computed as (mc - base + delta) / t .
145                  */
146                 base = mc % t;
147                 k = (mc - base + hpetp->hp_delta) / t;
148                 write_counter(t * (k + 1) + base,
149                               &devp->hd_timer->hpet_compare);
150         }
151
152         if (devp->hd_flags & HPET_SHARED_IRQ)
153                 writel(isr, &devp->hd_hpet->hpet_isr);
154         spin_unlock(&hpet_lock);
155
156         wake_up_interruptible(&devp->hd_waitqueue);
157
158         kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
159
160         return IRQ_HANDLED;
161 }
162
163 static void hpet_timer_set_irq(struct hpet_dev *devp)
164 {
165         unsigned long v;
166         int irq, gsi;
167         struct hpet_timer __iomem *timer;
168
169         spin_lock_irq(&hpet_lock);
170         if (devp->hd_hdwirq) {
171                 spin_unlock_irq(&hpet_lock);
172                 return;
173         }
174
175         timer = devp->hd_timer;
176
177         /* we prefer level triggered mode */
178         v = readl(&timer->hpet_config);
179         if (!(v & Tn_INT_TYPE_CNF_MASK)) {
180                 v |= Tn_INT_TYPE_CNF_MASK;
181                 writel(v, &timer->hpet_config);
182         }
183         spin_unlock_irq(&hpet_lock);
184
185         v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
186                                  Tn_INT_ROUTE_CAP_SHIFT;
187
188         /*
189          * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
190          * legacy device. In IO APIC mode, we skip all the legacy IRQS.
191          */
192         if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
193                 v &= ~0xf3df;
194         else
195                 v &= ~0xffff;
196
197         for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
198                 if (irq >= nr_irqs) {
199                         irq = HPET_MAX_IRQ;
200                         break;
201                 }
202
203                 gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
204                                         ACPI_ACTIVE_LOW);
205                 if (gsi > 0)
206                         break;
207
208                 /* FIXME: Setup interrupt source table */
209         }
210
211         if (irq < HPET_MAX_IRQ) {
212                 spin_lock_irq(&hpet_lock);
213                 v = readl(&timer->hpet_config);
214                 v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
215                 writel(v, &timer->hpet_config);
216                 devp->hd_hdwirq = gsi;
217                 spin_unlock_irq(&hpet_lock);
218         }
219         return;
220 }
221
222 static int hpet_open(struct inode *inode, struct file *file)
223 {
224         struct hpet_dev *devp;
225         struct hpets *hpetp;
226         int i;
227
228         if (file->f_mode & FMODE_WRITE)
229                 return -EINVAL;
230
231         mutex_lock(&hpet_mutex);
232         spin_lock_irq(&hpet_lock);
233
234         for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
235                 for (i = 0; i < hpetp->hp_ntimer; i++)
236                         if (hpetp->hp_dev[i].hd_flags & HPET_OPEN) {
237                                 continue;
238                         } else {
239                                 devp = &hpetp->hp_dev[i];
240                                 break;
241                         }
242
243         if (!devp) {
244                 spin_unlock_irq(&hpet_lock);
245                 mutex_unlock(&hpet_mutex);
246                 return -EBUSY;
247         }
248
249         file->private_data = devp;
250         devp->hd_irqdata = 0;
251         devp->hd_flags |= HPET_OPEN;
252         spin_unlock_irq(&hpet_lock);
253         mutex_unlock(&hpet_mutex);
254
255         hpet_timer_set_irq(devp);
256
257         return 0;
258 }
259
260 static ssize_t
261 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
262 {
263         DECLARE_WAITQUEUE(wait, current);
264         unsigned long data;
265         ssize_t retval;
266         struct hpet_dev *devp;
267
268         devp = file->private_data;
269         if (!devp->hd_ireqfreq)
270                 return -EIO;
271
272         if (in_compat_syscall()) {
273                 if (count < sizeof(compat_ulong_t))
274                         return -EINVAL;
275         } else {
276                 if (count < sizeof(unsigned long))
277                         return -EINVAL;
278         }
279
280         add_wait_queue(&devp->hd_waitqueue, &wait);
281
282         for ( ; ; ) {
283                 set_current_state(TASK_INTERRUPTIBLE);
284
285                 spin_lock_irq(&hpet_lock);
286                 data = devp->hd_irqdata;
287                 devp->hd_irqdata = 0;
288                 spin_unlock_irq(&hpet_lock);
289
290                 if (data) {
291                         break;
292                 } else if (file->f_flags & O_NONBLOCK) {
293                         retval = -EAGAIN;
294                         goto out;
295                 } else if (signal_pending(current)) {
296                         retval = -ERESTARTSYS;
297                         goto out;
298                 }
299                 schedule();
300         }
301
302         if (in_compat_syscall()) {
303                 retval = put_user(data, (compat_ulong_t __user *)buf);
304                 if (!retval)
305                         retval = sizeof(compat_ulong_t);
306         } else {
307                 retval = put_user(data, (unsigned long __user *)buf);
308                 if (!retval)
309                         retval = sizeof(unsigned long);
310         }
311
312 out:
313         __set_current_state(TASK_RUNNING);
314         remove_wait_queue(&devp->hd_waitqueue, &wait);
315
316         return retval;
317 }
318
319 static __poll_t hpet_poll(struct file *file, poll_table * wait)
320 {
321         unsigned long v;
322         struct hpet_dev *devp;
323
324         devp = file->private_data;
325
326         if (!devp->hd_ireqfreq)
327                 return 0;
328
329         poll_wait(file, &devp->hd_waitqueue, wait);
330
331         spin_lock_irq(&hpet_lock);
332         v = devp->hd_irqdata;
333         spin_unlock_irq(&hpet_lock);
334
335         if (v != 0)
336                 return EPOLLIN | EPOLLRDNORM;
337
338         return 0;
339 }
340
341 #ifdef CONFIG_HPET_MMAP
342 #ifdef CONFIG_HPET_MMAP_DEFAULT
343 static int hpet_mmap_enabled = 1;
344 #else
345 static int hpet_mmap_enabled = 0;
346 #endif
347
348 static __init int hpet_mmap_enable(char *str)
349 {
350         get_option(&str, &hpet_mmap_enabled);
351         pr_info("HPET mmap %s\n", hpet_mmap_enabled ? "enabled" : "disabled");
352         return 1;
353 }
354 __setup("hpet_mmap=", hpet_mmap_enable);
355
356 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
357 {
358         struct hpet_dev *devp;
359         unsigned long addr;
360
361         if (!hpet_mmap_enabled)
362                 return -EACCES;
363
364         devp = file->private_data;
365         addr = devp->hd_hpets->hp_hpet_phys;
366
367         if (addr & (PAGE_SIZE - 1))
368                 return -ENOSYS;
369
370         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
371         return vm_iomap_memory(vma, addr, PAGE_SIZE);
372 }
373 #else
374 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
375 {
376         return -ENOSYS;
377 }
378 #endif
379
380 static int hpet_fasync(int fd, struct file *file, int on)
381 {
382         struct hpet_dev *devp;
383
384         devp = file->private_data;
385
386         if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
387                 return 0;
388         else
389                 return -EIO;
390 }
391
392 static int hpet_release(struct inode *inode, struct file *file)
393 {
394         struct hpet_dev *devp;
395         struct hpet_timer __iomem *timer;
396         int irq = 0;
397
398         devp = file->private_data;
399         timer = devp->hd_timer;
400
401         spin_lock_irq(&hpet_lock);
402
403         writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
404                &timer->hpet_config);
405
406         irq = devp->hd_irq;
407         devp->hd_irq = 0;
408
409         devp->hd_ireqfreq = 0;
410
411         if (devp->hd_flags & HPET_PERIODIC
412             && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
413                 unsigned long v;
414
415                 v = readq(&timer->hpet_config);
416                 v ^= Tn_TYPE_CNF_MASK;
417                 writeq(v, &timer->hpet_config);
418         }
419
420         devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
421         spin_unlock_irq(&hpet_lock);
422
423         if (irq)
424                 free_irq(irq, devp);
425
426         file->private_data = NULL;
427         return 0;
428 }
429
430 static int hpet_ioctl_ieon(struct hpet_dev *devp)
431 {
432         struct hpet_timer __iomem *timer;
433         struct hpet __iomem *hpet;
434         struct hpets *hpetp;
435         int irq;
436         unsigned long g, v, t, m;
437         unsigned long flags, isr;
438
439         timer = devp->hd_timer;
440         hpet = devp->hd_hpet;
441         hpetp = devp->hd_hpets;
442
443         if (!devp->hd_ireqfreq)
444                 return -EIO;
445
446         spin_lock_irq(&hpet_lock);
447
448         if (devp->hd_flags & HPET_IE) {
449                 spin_unlock_irq(&hpet_lock);
450                 return -EBUSY;
451         }
452
453         devp->hd_flags |= HPET_IE;
454
455         if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
456                 devp->hd_flags |= HPET_SHARED_IRQ;
457         spin_unlock_irq(&hpet_lock);
458
459         irq = devp->hd_hdwirq;
460
461         if (irq) {
462                 unsigned long irq_flags;
463
464                 if (devp->hd_flags & HPET_SHARED_IRQ) {
465                         /*
466                          * To prevent the interrupt handler from seeing an
467                          * unwanted interrupt status bit, program the timer
468                          * so that it will not fire in the near future ...
469                          */
470                         writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
471                                &timer->hpet_config);
472                         write_counter(read_counter(&hpet->hpet_mc),
473                                       &timer->hpet_compare);
474                         /* ... and clear any left-over status. */
475                         isr = 1 << (devp - devp->hd_hpets->hp_dev);
476                         writel(isr, &hpet->hpet_isr);
477                 }
478
479                 sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
480                 irq_flags = devp->hd_flags & HPET_SHARED_IRQ ? IRQF_SHARED : 0;
481                 if (request_irq(irq, hpet_interrupt, irq_flags,
482                                 devp->hd_name, (void *)devp)) {
483                         printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
484                         irq = 0;
485                 }
486         }
487
488         if (irq == 0) {
489                 spin_lock_irq(&hpet_lock);
490                 devp->hd_flags ^= HPET_IE;
491                 spin_unlock_irq(&hpet_lock);
492                 return -EIO;
493         }
494
495         devp->hd_irq = irq;
496         t = devp->hd_ireqfreq;
497         v = readq(&timer->hpet_config);
498
499         /* 64-bit comparators are not yet supported through the ioctls,
500          * so force this into 32-bit mode if it supports both modes
501          */
502         g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
503
504         if (devp->hd_flags & HPET_PERIODIC) {
505                 g |= Tn_TYPE_CNF_MASK;
506                 v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
507                 writeq(v, &timer->hpet_config);
508                 local_irq_save(flags);
509
510                 /*
511                  * NOTE: First we modify the hidden accumulator
512                  * register supported by periodic-capable comparators.
513                  * We never want to modify the (single) counter; that
514                  * would affect all the comparators. The value written
515                  * is the counter value when the first interrupt is due.
516                  */
517                 m = read_counter(&hpet->hpet_mc);
518                 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
519                 /*
520                  * Then we modify the comparator, indicating the period
521                  * for subsequent interrupt.
522                  */
523                 write_counter(t, &timer->hpet_compare);
524         } else {
525                 local_irq_save(flags);
526                 m = read_counter(&hpet->hpet_mc);
527                 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
528         }
529
530         if (devp->hd_flags & HPET_SHARED_IRQ) {
531                 isr = 1 << (devp - devp->hd_hpets->hp_dev);
532                 writel(isr, &hpet->hpet_isr);
533         }
534         writeq(g, &timer->hpet_config);
535         local_irq_restore(flags);
536
537         return 0;
538 }
539
540 /* converts Hz to number of timer ticks */
541 static inline unsigned long hpet_time_div(struct hpets *hpets,
542                                           unsigned long dis)
543 {
544         unsigned long long m;
545
546         m = hpets->hp_tick_freq + (dis >> 1);
547         return div64_ul(m, dis);
548 }
549
550 static int
551 hpet_ioctl_common(struct hpet_dev *devp, unsigned int cmd, unsigned long arg,
552                   struct hpet_info *info)
553 {
554         struct hpet_timer __iomem *timer;
555         struct hpets *hpetp;
556         int err;
557         unsigned long v;
558
559         switch (cmd) {
560         case HPET_IE_OFF:
561         case HPET_INFO:
562         case HPET_EPI:
563         case HPET_DPI:
564         case HPET_IRQFREQ:
565                 timer = devp->hd_timer;
566                 hpetp = devp->hd_hpets;
567                 break;
568         case HPET_IE_ON:
569                 return hpet_ioctl_ieon(devp);
570         default:
571                 return -EINVAL;
572         }
573
574         err = 0;
575
576         switch (cmd) {
577         case HPET_IE_OFF:
578                 if ((devp->hd_flags & HPET_IE) == 0)
579                         break;
580                 v = readq(&timer->hpet_config);
581                 v &= ~Tn_INT_ENB_CNF_MASK;
582                 writeq(v, &timer->hpet_config);
583                 if (devp->hd_irq) {
584                         free_irq(devp->hd_irq, devp);
585                         devp->hd_irq = 0;
586                 }
587                 devp->hd_flags ^= HPET_IE;
588                 break;
589         case HPET_INFO:
590                 {
591                         memset(info, 0, sizeof(*info));
592                         if (devp->hd_ireqfreq)
593                                 info->hi_ireqfreq =
594                                         hpet_time_div(hpetp, devp->hd_ireqfreq);
595                         info->hi_flags =
596                             readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
597                         info->hi_hpet = hpetp->hp_which;
598                         info->hi_timer = devp - hpetp->hp_dev;
599                         break;
600                 }
601         case HPET_EPI:
602                 v = readq(&timer->hpet_config);
603                 if ((v & Tn_PER_INT_CAP_MASK) == 0) {
604                         err = -ENXIO;
605                         break;
606                 }
607                 devp->hd_flags |= HPET_PERIODIC;
608                 break;
609         case HPET_DPI:
610                 v = readq(&timer->hpet_config);
611                 if ((v & Tn_PER_INT_CAP_MASK) == 0) {
612                         err = -ENXIO;
613                         break;
614                 }
615                 if (devp->hd_flags & HPET_PERIODIC &&
616                     readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
617                         v = readq(&timer->hpet_config);
618                         v ^= Tn_TYPE_CNF_MASK;
619                         writeq(v, &timer->hpet_config);
620                 }
621                 devp->hd_flags &= ~HPET_PERIODIC;
622                 break;
623         case HPET_IRQFREQ:
624                 if ((arg > hpet_max_freq) &&
625                     !capable(CAP_SYS_RESOURCE)) {
626                         err = -EACCES;
627                         break;
628                 }
629
630                 if (!arg) {
631                         err = -EINVAL;
632                         break;
633                 }
634
635                 devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
636         }
637
638         return err;
639 }
640
641 static long
642 hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
643 {
644         struct hpet_info info;
645         int err;
646
647         mutex_lock(&hpet_mutex);
648         err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
649         mutex_unlock(&hpet_mutex);
650
651         if ((cmd == HPET_INFO) && !err &&
652             (copy_to_user((void __user *)arg, &info, sizeof(info))))
653                 err = -EFAULT;
654
655         return err;
656 }
657
658 #ifdef CONFIG_COMPAT
659 struct compat_hpet_info {
660         compat_ulong_t hi_ireqfreq;     /* Hz */
661         compat_ulong_t hi_flags;        /* information */
662         unsigned short hi_hpet;
663         unsigned short hi_timer;
664 };
665
666 /* 32-bit types would lead to different command codes which should be
667  * translated into 64-bit ones before passed to hpet_ioctl_common
668  */
669 #define COMPAT_HPET_INFO       _IOR('h', 0x03, struct compat_hpet_info)
670 #define COMPAT_HPET_IRQFREQ    _IOW('h', 0x6, compat_ulong_t)
671
672 static long
673 hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
674 {
675         struct hpet_info info;
676         int err;
677
678         if (cmd == COMPAT_HPET_INFO)
679                 cmd = HPET_INFO;
680
681         if (cmd == COMPAT_HPET_IRQFREQ)
682                 cmd = HPET_IRQFREQ;
683
684         mutex_lock(&hpet_mutex);
685         err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
686         mutex_unlock(&hpet_mutex);
687
688         if ((cmd == HPET_INFO) && !err) {
689                 struct compat_hpet_info __user *u = compat_ptr(arg);
690                 if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
691                     put_user(info.hi_flags, &u->hi_flags) ||
692                     put_user(info.hi_hpet, &u->hi_hpet) ||
693                     put_user(info.hi_timer, &u->hi_timer))
694                         err = -EFAULT;
695         }
696
697         return err;
698 }
699 #endif
700
701 static const struct file_operations hpet_fops = {
702         .owner = THIS_MODULE,
703         .read = hpet_read,
704         .poll = hpet_poll,
705         .unlocked_ioctl = hpet_ioctl,
706 #ifdef CONFIG_COMPAT
707         .compat_ioctl = hpet_compat_ioctl,
708 #endif
709         .open = hpet_open,
710         .release = hpet_release,
711         .fasync = hpet_fasync,
712         .mmap = hpet_mmap,
713 };
714
715 static int hpet_is_known(struct hpet_data *hdp)
716 {
717         struct hpets *hpetp;
718
719         for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
720                 if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
721                         return 1;
722
723         return 0;
724 }
725
726 static struct ctl_table hpet_table[] = {
727         {
728          .procname = "max-user-freq",
729          .data = &hpet_max_freq,
730          .maxlen = sizeof(int),
731          .mode = 0644,
732          .proc_handler = proc_dointvec,
733          },
734 };
735
736 static struct ctl_table_header *sysctl_header;
737
738 /*
739  * Adjustment for when arming the timer with
740  * initial conditions.  That is, main counter
741  * ticks expired before interrupts are enabled.
742  */
743 #define TICK_CALIBRATE  (1000UL)
744
745 static unsigned long __hpet_calibrate(struct hpets *hpetp)
746 {
747         struct hpet_timer __iomem *timer = NULL;
748         unsigned long t, m, count, i, flags, start;
749         struct hpet_dev *devp;
750         int j;
751         struct hpet __iomem *hpet;
752
753         for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
754                 if ((devp->hd_flags & HPET_OPEN) == 0) {
755                         timer = devp->hd_timer;
756                         break;
757                 }
758
759         if (!timer)
760                 return 0;
761
762         hpet = hpetp->hp_hpet;
763         t = read_counter(&timer->hpet_compare);
764
765         i = 0;
766         count = hpet_time_div(hpetp, TICK_CALIBRATE);
767
768         local_irq_save(flags);
769
770         start = read_counter(&hpet->hpet_mc);
771
772         do {
773                 m = read_counter(&hpet->hpet_mc);
774                 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
775         } while (i++, (m - start) < count);
776
777         local_irq_restore(flags);
778
779         return (m - start) / i;
780 }
781
782 static unsigned long hpet_calibrate(struct hpets *hpetp)
783 {
784         unsigned long ret = ~0UL;
785         unsigned long tmp;
786
787         /*
788          * Try to calibrate until return value becomes stable small value.
789          * If SMI interruption occurs in calibration loop, the return value
790          * will be big. This avoids its impact.
791          */
792         for ( ; ; ) {
793                 tmp = __hpet_calibrate(hpetp);
794                 if (ret <= tmp)
795                         break;
796                 ret = tmp;
797         }
798
799         return ret;
800 }
801
802 int hpet_alloc(struct hpet_data *hdp)
803 {
804         u64 cap, mcfg;
805         struct hpet_dev *devp;
806         u32 i, ntimer;
807         struct hpets *hpetp;
808         struct hpet __iomem *hpet;
809         static struct hpets *last;
810         u32 period;
811         unsigned long long temp;
812         u32 remainder;
813
814         /*
815          * hpet_alloc can be called by platform dependent code.
816          * If platform dependent code has allocated the hpet that
817          * ACPI has also reported, then we catch it here.
818          */
819         if (hpet_is_known(hdp)) {
820                 printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
821                         __func__);
822                 return 0;
823         }
824
825         hpetp = kzalloc(struct_size(hpetp, hp_dev, hdp->hd_nirqs),
826                         GFP_KERNEL);
827
828         if (!hpetp)
829                 return -ENOMEM;
830
831         hpetp->hp_which = hpet_nhpet++;
832         hpetp->hp_hpet = hdp->hd_address;
833         hpetp->hp_hpet_phys = hdp->hd_phys_address;
834
835         hpetp->hp_ntimer = hdp->hd_nirqs;
836
837         for (i = 0; i < hdp->hd_nirqs; i++)
838                 hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
839
840         hpet = hpetp->hp_hpet;
841
842         cap = readq(&hpet->hpet_cap);
843
844         ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
845
846         if (hpetp->hp_ntimer != ntimer) {
847                 printk(KERN_WARNING "hpet: number irqs doesn't agree"
848                        " with number of timers\n");
849                 kfree(hpetp);
850                 return -ENODEV;
851         }
852
853         if (last)
854                 last->hp_next = hpetp;
855         else
856                 hpets = hpetp;
857
858         last = hpetp;
859
860         period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
861                 HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
862         temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
863         temp += period >> 1; /* round */
864         do_div(temp, period);
865         hpetp->hp_tick_freq = temp; /* ticks per second */
866
867         printk(KERN_INFO "hpet%u: at MMIO 0x%lx, IRQ%s",
868                 hpetp->hp_which, hdp->hd_phys_address,
869                 hpetp->hp_ntimer > 1 ? "s" : "");
870         for (i = 0; i < hpetp->hp_ntimer; i++)
871                 printk(KERN_CONT "%s %u", i > 0 ? "," : "", hdp->hd_irq[i]);
872         printk(KERN_CONT "\n");
873
874         temp = hpetp->hp_tick_freq;
875         remainder = do_div(temp, 1000000);
876         printk(KERN_INFO
877                 "hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
878                 hpetp->hp_which, hpetp->hp_ntimer,
879                 cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
880                 (unsigned) temp, remainder);
881
882         mcfg = readq(&hpet->hpet_config);
883         if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
884                 write_counter(0L, &hpet->hpet_mc);
885                 mcfg |= HPET_ENABLE_CNF_MASK;
886                 writeq(mcfg, &hpet->hpet_config);
887         }
888
889         for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
890                 struct hpet_timer __iomem *timer;
891
892                 timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
893
894                 devp->hd_hpets = hpetp;
895                 devp->hd_hpet = hpet;
896                 devp->hd_timer = timer;
897
898                 /*
899                  * If the timer was reserved by platform code,
900                  * then make timer unavailable for opens.
901                  */
902                 if (hdp->hd_state & (1 << i)) {
903                         devp->hd_flags = HPET_OPEN;
904                         continue;
905                 }
906
907                 init_waitqueue_head(&devp->hd_waitqueue);
908         }
909
910         hpetp->hp_delta = hpet_calibrate(hpetp);
911
912         return 0;
913 }
914
915 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
916 {
917         struct hpet_data *hdp;
918         acpi_status status;
919         struct acpi_resource_address64 addr;
920
921         hdp = data;
922
923         status = acpi_resource_to_address64(res, &addr);
924
925         if (ACPI_SUCCESS(status)) {
926                 hdp->hd_phys_address = addr.address.minimum;
927                 hdp->hd_address = ioremap(addr.address.minimum, addr.address.address_length);
928                 if (!hdp->hd_address)
929                         return AE_ERROR;
930
931                 if (hpet_is_known(hdp)) {
932                         iounmap(hdp->hd_address);
933                         return AE_ALREADY_EXISTS;
934                 }
935         } else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
936                 struct acpi_resource_fixed_memory32 *fixmem32;
937
938                 fixmem32 = &res->data.fixed_memory32;
939
940                 hdp->hd_phys_address = fixmem32->address;
941                 hdp->hd_address = ioremap(fixmem32->address,
942                                                 HPET_RANGE_SIZE);
943                 if (!hdp->hd_address)
944                         return AE_ERROR;
945
946                 if (hpet_is_known(hdp)) {
947                         iounmap(hdp->hd_address);
948                         return AE_ALREADY_EXISTS;
949                 }
950         } else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
951                 struct acpi_resource_extended_irq *irqp;
952                 int i, irq;
953
954                 irqp = &res->data.extended_irq;
955
956                 for (i = 0; i < irqp->interrupt_count; i++) {
957                         if (hdp->hd_nirqs >= HPET_MAX_TIMERS)
958                                 break;
959
960                         irq = acpi_register_gsi(NULL, irqp->interrupts[i],
961                                                 irqp->triggering,
962                                                 irqp->polarity);
963                         if (irq < 0)
964                                 return AE_ERROR;
965
966                         hdp->hd_irq[hdp->hd_nirqs] = irq;
967                         hdp->hd_nirqs++;
968                 }
969         }
970
971         return AE_OK;
972 }
973
974 static int hpet_acpi_add(struct acpi_device *device)
975 {
976         acpi_status result;
977         struct hpet_data data;
978
979         memset(&data, 0, sizeof(data));
980
981         result =
982             acpi_walk_resources(device->handle, METHOD_NAME__CRS,
983                                 hpet_resources, &data);
984
985         if (ACPI_FAILURE(result))
986                 return -ENODEV;
987
988         if (!data.hd_address || !data.hd_nirqs) {
989                 if (data.hd_address)
990                         iounmap(data.hd_address);
991                 printk("%s: no address or irqs in _CRS\n", __func__);
992                 return -ENODEV;
993         }
994
995         return hpet_alloc(&data);
996 }
997
998 static const struct acpi_device_id hpet_device_ids[] = {
999         {"PNP0103", 0},
1000         {"", 0},
1001 };
1002
1003 static struct acpi_driver hpet_acpi_driver = {
1004         .name = "hpet",
1005         .ids = hpet_device_ids,
1006         .ops = {
1007                 .add = hpet_acpi_add,
1008                 },
1009 };
1010
1011 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1012
1013 static int __init hpet_init(void)
1014 {
1015         int result;
1016
1017         result = misc_register(&hpet_misc);
1018         if (result < 0)
1019                 return -ENODEV;
1020
1021         sysctl_header = register_sysctl("dev/hpet", hpet_table);
1022
1023         result = acpi_bus_register_driver(&hpet_acpi_driver);
1024         if (result < 0) {
1025                 if (sysctl_header)
1026                         unregister_sysctl_table(sysctl_header);
1027                 misc_deregister(&hpet_misc);
1028                 return result;
1029         }
1030
1031         return 0;
1032 }
1033 device_initcall(hpet_init);
1034
1035 /*
1036 MODULE_AUTHOR("Bob Picco <[email protected]>");
1037 MODULE_LICENSE("GPL");
1038 */
This page took 0.088346 seconds and 4 git commands to generate.