]> Git Repo - linux.git/blob - drivers/bluetooth/hci_bcm4377.c
crypto: akcipher - Drop sign/verify operations
[linux.git] / drivers / bluetooth / hci_bcm4377.c
1 // SPDX-License-Identifier: GPL-2.0-only OR MIT
2 /*
3  * Bluetooth HCI driver for Broadcom 4377/4378/4387/4388 devices attached via PCIe
4  *
5  * Copyright (C) The Asahi Linux Contributors
6  */
7
8 #include <linux/async.h>
9 #include <linux/bitfield.h>
10 #include <linux/completion.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmi.h>
13 #include <linux/firmware.h>
14 #include <linux/module.h>
15 #include <linux/msi.h>
16 #include <linux/of.h>
17 #include <linux/pci.h>
18 #include <linux/printk.h>
19
20 #include <asm/unaligned.h>
21
22 #include <net/bluetooth/bluetooth.h>
23 #include <net/bluetooth/hci_core.h>
24
25 enum bcm4377_chip {
26         BCM4377 = 0,
27         BCM4378,
28         BCM4387,
29         BCM4388,
30 };
31
32 #define BCM4377_DEVICE_ID 0x5fa0
33 #define BCM4378_DEVICE_ID 0x5f69
34 #define BCM4387_DEVICE_ID 0x5f71
35 #define BCM4388_DEVICE_ID 0x5f72
36
37 #define BCM4377_TIMEOUT msecs_to_jiffies(1000)
38 #define BCM4377_BOOT_TIMEOUT msecs_to_jiffies(5000)
39
40 /*
41  * These devices only support DMA transactions inside a 32bit window
42  * (possibly to avoid 64 bit arithmetic). The window size cannot exceed
43  * 0xffffffff but is always aligned down to the previous 0x200 byte boundary
44  * which effectively limits the window to [start, start+0xfffffe00].
45  * We just limit the DMA window to [0, 0xfffffe00] to make sure we don't
46  * run into this limitation.
47  */
48 #define BCM4377_DMA_MASK 0xfffffe00
49
50 #define BCM4377_PCIECFG_BAR0_WINDOW1       0x80
51 #define BCM4377_PCIECFG_BAR0_WINDOW2       0x70
52 #define BCM4377_PCIECFG_BAR0_CORE2_WINDOW1 0x74
53 #define BCM4377_PCIECFG_BAR0_CORE2_WINDOW2 0x78
54 #define BCM4377_PCIECFG_BAR2_WINDOW        0x84
55
56 #define BCM4377_PCIECFG_BAR0_CORE2_WINDOW1_DEFAULT 0x18011000
57 #define BCM4377_PCIECFG_BAR2_WINDOW_DEFAULT        0x19000000
58
59 #define BCM4377_PCIECFG_SUBSYSTEM_CTRL 0x88
60
61 #define BCM4377_BAR0_FW_DOORBELL 0x140
62 #define BCM4377_BAR0_RTI_CONTROL 0x144
63
64 #define BCM4377_BAR0_SLEEP_CONTROL            0x150
65 #define BCM4377_BAR0_SLEEP_CONTROL_UNQUIESCE  0
66 #define BCM4377_BAR0_SLEEP_CONTROL_AWAKE      2
67 #define BCM4377_BAR0_SLEEP_CONTROL_QUIESCE    3
68
69 #define BCM4377_BAR0_DOORBELL       0x174
70 #define BCM4377_BAR0_DOORBELL_VALUE GENMASK(31, 16)
71 #define BCM4377_BAR0_DOORBELL_IDX   GENMASK(15, 8)
72 #define BCM4377_BAR0_DOORBELL_RING  BIT(5)
73
74 #define BCM4377_BAR0_HOST_WINDOW_LO   0x590
75 #define BCM4377_BAR0_HOST_WINDOW_HI   0x594
76 #define BCM4377_BAR0_HOST_WINDOW_SIZE 0x598
77
78 #define BCM4377_BAR2_BOOTSTAGE 0x200454
79
80 #define BCM4377_BAR2_FW_LO   0x200478
81 #define BCM4377_BAR2_FW_HI   0x20047c
82 #define BCM4377_BAR2_FW_SIZE 0x200480
83
84 #define BCM4377_BAR2_CONTEXT_ADDR_LO 0x20048c
85 #define BCM4377_BAR2_CONTEXT_ADDR_HI 0x200450
86
87 #define BCM4377_BAR2_RTI_STATUS      0x20045c
88 #define BCM4377_BAR2_RTI_WINDOW_LO   0x200494
89 #define BCM4377_BAR2_RTI_WINDOW_HI   0x200498
90 #define BCM4377_BAR2_RTI_WINDOW_SIZE 0x20049c
91
92 #define BCM4377_OTP_SIZE          0xe0
93 #define BCM4377_OTP_SYS_VENDOR    0x15
94 #define BCM4377_OTP_CIS           0x80
95 #define BCM4377_OTP_VENDOR_HDR    0x00000008
96 #define BCM4377_OTP_MAX_PARAM_LEN 16
97
98 #define BCM4377_N_TRANSFER_RINGS   9
99 #define BCM4377_N_COMPLETION_RINGS 6
100
101 #define BCM4377_MAX_RING_SIZE 256
102
103 #define BCM4377_MSGID_GENERATION GENMASK(15, 8)
104 #define BCM4377_MSGID_ID         GENMASK(7, 0)
105
106 #define BCM4377_RING_N_ENTRIES 128
107
108 #define BCM4377_CONTROL_MSG_SIZE                   0x34
109 #define BCM4377_XFER_RING_MAX_INPLACE_PAYLOAD_SIZE (4 * 0xff)
110
111 #define MAX_ACL_PAYLOAD_SIZE   (HCI_MAX_FRAME_SIZE + HCI_ACL_HDR_SIZE)
112 #define MAX_SCO_PAYLOAD_SIZE   (HCI_MAX_SCO_SIZE + HCI_SCO_HDR_SIZE)
113 #define MAX_EVENT_PAYLOAD_SIZE (HCI_MAX_EVENT_SIZE + HCI_EVENT_HDR_SIZE)
114
115 enum bcm4377_otp_params_type {
116         BCM4377_OTP_BOARD_PARAMS,
117         BCM4377_OTP_CHIP_PARAMS
118 };
119
120 enum bcm4377_transfer_ring_id {
121         BCM4377_XFER_RING_CONTROL = 0,
122         BCM4377_XFER_RING_HCI_H2D = 1,
123         BCM4377_XFER_RING_HCI_D2H = 2,
124         BCM4377_XFER_RING_SCO_H2D = 3,
125         BCM4377_XFER_RING_SCO_D2H = 4,
126         BCM4377_XFER_RING_ACL_H2D = 5,
127         BCM4377_XFER_RING_ACL_D2H = 6,
128 };
129
130 enum bcm4377_completion_ring_id {
131         BCM4377_ACK_RING_CONTROL = 0,
132         BCM4377_ACK_RING_HCI_ACL = 1,
133         BCM4377_EVENT_RING_HCI_ACL = 2,
134         BCM4377_ACK_RING_SCO = 3,
135         BCM4377_EVENT_RING_SCO = 4,
136 };
137
138 enum bcm4377_doorbell {
139         BCM4377_DOORBELL_CONTROL = 0,
140         BCM4377_DOORBELL_HCI_H2D = 1,
141         BCM4377_DOORBELL_HCI_D2H = 2,
142         BCM4377_DOORBELL_ACL_H2D = 3,
143         BCM4377_DOORBELL_ACL_D2H = 4,
144         BCM4377_DOORBELL_SCO = 6,
145 };
146
147 /*
148  * Transfer ring entry
149  *
150  * flags: Flags to indicate if the payload is appended or mapped
151  * len: Payload length
152  * payload: Optional payload DMA address
153  * id: Message id to recognize the answer in the completion ring entry
154  */
155 struct bcm4377_xfer_ring_entry {
156 #define BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED    BIT(0)
157 #define BCM4377_XFER_RING_FLAG_PAYLOAD_IN_FOOTER BIT(1)
158         u8 flags;
159         __le16 len;
160         u8 _unk0;
161         __le64 payload;
162         __le16 id;
163         u8 _unk1[2];
164 } __packed;
165 static_assert(sizeof(struct bcm4377_xfer_ring_entry) == 0x10);
166
167 /*
168  * Completion ring entry
169  *
170  * flags: Flags to indicate if the payload is appended or mapped. If the payload
171  *        is mapped it can be found in the buffer of the corresponding transfer
172  *        ring message.
173  * ring_id: Transfer ring ID which required this message
174  * msg_id: Message ID specified in transfer ring entry
175  * len: Payload length
176  */
177 struct bcm4377_completion_ring_entry {
178         u8 flags;
179         u8 _unk0;
180         __le16 ring_id;
181         __le16 msg_id;
182         __le32 len;
183         u8 _unk1[6];
184 } __packed;
185 static_assert(sizeof(struct bcm4377_completion_ring_entry) == 0x10);
186
187 enum bcm4377_control_message_type {
188         BCM4377_CONTROL_MSG_CREATE_XFER_RING = 1,
189         BCM4377_CONTROL_MSG_CREATE_COMPLETION_RING = 2,
190         BCM4377_CONTROL_MSG_DESTROY_XFER_RING = 3,
191         BCM4377_CONTROL_MSG_DESTROY_COMPLETION_RING = 4,
192 };
193
194 /*
195  * Control message used to create a completion ring
196  *
197  * msg_type: Must be BCM4377_CONTROL_MSG_CREATE_COMPLETION_RING
198  * header_size: Unknown, but probably reserved space in front of the entry
199  * footer_size: Number of 32 bit words reserved for payloads after the entry
200  * id/id_again: Completion ring index
201  * ring_iova: DMA address of the ring buffer
202  * n_elements: Number of elements inside the ring buffer
203  * msi: MSI index, doesn't work for all rings though and should be zero
204  * intmod_delay: Unknown delay
205  * intmod_bytes: Unknown
206  */
207 struct bcm4377_create_completion_ring_msg {
208         u8 msg_type;
209         u8 header_size;
210         u8 footer_size;
211         u8 _unk0;
212         __le16 id;
213         __le16 id_again;
214         __le64 ring_iova;
215         __le16 n_elements;
216         __le32 unk;
217         u8 _unk1[6];
218         __le16 msi;
219         __le16 intmod_delay;
220         __le32 intmod_bytes;
221         __le16 _unk2;
222         __le32 _unk3;
223         u8 _unk4[10];
224 } __packed;
225 static_assert(sizeof(struct bcm4377_create_completion_ring_msg) ==
226               BCM4377_CONTROL_MSG_SIZE);
227
228 /*
229  * Control ring message used to destroy a completion ring
230  *
231  * msg_type: Must be BCM4377_CONTROL_MSG_DESTROY_COMPLETION_RING
232  * ring_id: Completion ring to be destroyed
233  */
234 struct bcm4377_destroy_completion_ring_msg {
235         u8 msg_type;
236         u8 _pad0;
237         __le16 ring_id;
238         u8 _pad1[48];
239 } __packed;
240 static_assert(sizeof(struct bcm4377_destroy_completion_ring_msg) ==
241               BCM4377_CONTROL_MSG_SIZE);
242
243 /*
244  * Control message used to create a transfer ring
245  *
246  * msg_type: Must be BCM4377_CONTROL_MSG_CREATE_XFER_RING
247  * header_size: Number of 32 bit words reserved for unknown content before the
248  *              entry
249  * footer_size: Number of 32 bit words reserved for payloads after the entry
250  * ring_id/ring_id_again: Transfer ring index
251  * ring_iova: DMA address of the ring buffer
252  * n_elements: Number of elements inside the ring buffer
253  * completion_ring_id: Completion ring index for acknowledgements and events
254  * doorbell: Doorbell index used to notify device of new entries
255  * flags: Transfer ring flags
256  *          - virtual: set if there is no associated shared memory and only the
257  *                     corresponding completion ring is used
258  *          - sync: only set for the SCO rings
259  */
260 struct bcm4377_create_transfer_ring_msg {
261         u8 msg_type;
262         u8 header_size;
263         u8 footer_size;
264         u8 _unk0;
265         __le16 ring_id;
266         __le16 ring_id_again;
267         __le64 ring_iova;
268         u8 _unk1[8];
269         __le16 n_elements;
270         __le16 completion_ring_id;
271         __le16 doorbell;
272 #define BCM4377_XFER_RING_FLAG_VIRTUAL BIT(7)
273 #define BCM4377_XFER_RING_FLAG_SYNC    BIT(8)
274         __le16 flags;
275         u8 _unk2[20];
276 } __packed;
277 static_assert(sizeof(struct bcm4377_create_transfer_ring_msg) ==
278               BCM4377_CONTROL_MSG_SIZE);
279
280 /*
281  * Control ring message used to destroy a transfer ring
282  *
283  * msg_type: Must be BCM4377_CONTROL_MSG_DESTROY_XFER_RING
284  * ring_id: Transfer ring to be destroyed
285  */
286 struct bcm4377_destroy_transfer_ring_msg {
287         u8 msg_type;
288         u8 _pad0;
289         __le16 ring_id;
290         u8 _pad1[48];
291 } __packed;
292 static_assert(sizeof(struct bcm4377_destroy_transfer_ring_msg) ==
293               BCM4377_CONTROL_MSG_SIZE);
294
295 /*
296  * "Converged IPC" context struct used to make the device aware of all other
297  * shared memory structures. A pointer to this structure is configured inside a
298  * MMIO register.
299  *
300  * version: Protocol version, must be 2.
301  * size: Size of this structure, must be 0x68.
302  * enabled_caps: Enabled capabilities. Unknown bitfield but should be 2.
303  * peripheral_info_addr: DMA address for a 0x20 buffer to which the device will
304  *                       write unknown contents
305  * {completion,xfer}_ring_{tails,heads}_addr: DMA pointers to ring heads/tails
306  * n_completion_rings: Number of completion rings, the firmware only works if
307  *                     this is set to BCM4377_N_COMPLETION_RINGS.
308  * n_xfer_rings: Number of transfer rings, the firmware only works if
309  *               this is set to BCM4377_N_TRANSFER_RINGS.
310  * control_completion_ring_addr: Control completion ring buffer DMA address
311  * control_xfer_ring_addr: Control transfer ring buffer DMA address
312  * control_xfer_ring_n_entries: Number of control transfer ring entries
313  * control_completion_ring_n_entries: Number of control completion ring entries
314  * control_xfer_ring_doorbell: Control transfer ring doorbell
315  * control_completion_ring_doorbell: Control completion ring doorbell,
316  *                                   must be set to 0xffff
317  * control_xfer_ring_msi: Control completion ring MSI index, must be 0
318  * control_completion_ring_msi: Control completion ring MSI index, must be 0.
319  * control_xfer_ring_header_size: Number of 32 bit words reserved in front of
320  *                                every control transfer ring entry
321  * control_xfer_ring_footer_size: Number of 32 bit words reserved after every
322  *                                control transfer ring entry
323  * control_completion_ring_header_size: Number of 32 bit words reserved in front
324  *                                      of every control completion ring entry
325  * control_completion_ring_footer_size: Number of 32 bit words reserved after
326  *                                      every control completion ring entry
327  * scratch_pad: Optional scratch pad DMA address
328  * scratch_pad_size: Scratch pad size
329  */
330 struct bcm4377_context {
331         __le16 version;
332         __le16 size;
333         __le32 enabled_caps;
334
335         __le64 peripheral_info_addr;
336
337         /* ring heads and tails */
338         __le64 completion_ring_heads_addr;
339         __le64 xfer_ring_tails_addr;
340         __le64 completion_ring_tails_addr;
341         __le64 xfer_ring_heads_addr;
342         __le16 n_completion_rings;
343         __le16 n_xfer_rings;
344
345         /* control ring configuration */
346         __le64 control_completion_ring_addr;
347         __le64 control_xfer_ring_addr;
348         __le16 control_xfer_ring_n_entries;
349         __le16 control_completion_ring_n_entries;
350         __le16 control_xfer_ring_doorbell;
351         __le16 control_completion_ring_doorbell;
352         __le16 control_xfer_ring_msi;
353         __le16 control_completion_ring_msi;
354         u8 control_xfer_ring_header_size;
355         u8 control_xfer_ring_footer_size;
356         u8 control_completion_ring_header_size;
357         u8 control_completion_ring_footer_size;
358
359         __le16 _unk0;
360         __le16 _unk1;
361
362         __le64 scratch_pad;
363         __le32 scratch_pad_size;
364
365         __le32 _unk3;
366 } __packed;
367 static_assert(sizeof(struct bcm4377_context) == 0x68);
368
369 #define BCM4378_CALIBRATION_CHUNK_SIZE 0xe6
370 struct bcm4378_hci_send_calibration_cmd {
371         u8 unk;
372         __le16 blocks_left;
373         u8 data[BCM4378_CALIBRATION_CHUNK_SIZE];
374 } __packed;
375
376 #define BCM4378_PTB_CHUNK_SIZE 0xcf
377 struct bcm4378_hci_send_ptb_cmd {
378         __le16 blocks_left;
379         u8 data[BCM4378_PTB_CHUNK_SIZE];
380 } __packed;
381
382 /*
383  * Shared memory structure used to store the ring head and tail pointers.
384  */
385 struct bcm4377_ring_state {
386         __le16 completion_ring_head[BCM4377_N_COMPLETION_RINGS];
387         __le16 completion_ring_tail[BCM4377_N_COMPLETION_RINGS];
388         __le16 xfer_ring_head[BCM4377_N_TRANSFER_RINGS];
389         __le16 xfer_ring_tail[BCM4377_N_TRANSFER_RINGS];
390 };
391
392 /*
393  * A transfer ring can be used in two configurations:
394  *  1) Send control or HCI messages to the device which are then acknowledged
395  *     in the corresponding completion ring
396  *  2) Receiving HCI frames from the devices. In this case the transfer ring
397  *     itself contains empty messages that are acknowledged once data is
398  *     available from the device. If the payloads fit inside the footers
399  *     of the completion ring the transfer ring can be configured to be
400  *     virtual such that it has no ring buffer.
401  *
402  * ring_id: ring index hardcoded in the firmware
403  * doorbell: doorbell index to notify device of new entries
404  * payload_size: optional in-place payload size
405  * mapped_payload_size: optional out-of-place payload size
406  * completion_ring: index of corresponding completion ring
407  * n_entries: number of entries inside this ring
408  * generation: ring generation; incremented on hci_open to detect stale messages
409  * sync: set to true for SCO rings
410  * virtual: set to true if this ring has no entries and is just required to
411  *          setup a corresponding completion ring for device->host messages
412  * d2h_buffers_only: set to true if this ring is only used to provide large
413  *                   buffers used by device->host messages in the completion
414  *                   ring
415  * allow_wait: allow to wait for messages to be acknowledged
416  * enabled: true once the ring has been created and can be used
417  * ring: ring buffer for entries (struct bcm4377_xfer_ring_entry)
418  * ring_dma: DMA address for ring entry buffer
419  * payloads: payload buffer for mapped_payload_size payloads
420  * payloads_dma:DMA address for payload buffer
421  * events: pointer to array of completions if waiting is allowed
422  * msgids: bitmap to keep track of used message ids
423  * lock: Spinlock to protect access to ring structurs used in the irq handler
424  */
425 struct bcm4377_transfer_ring {
426         enum bcm4377_transfer_ring_id ring_id;
427         enum bcm4377_doorbell doorbell;
428         size_t payload_size;
429         size_t mapped_payload_size;
430         u8 completion_ring;
431         u16 n_entries;
432         u8 generation;
433
434         bool sync;
435         bool virtual;
436         bool d2h_buffers_only;
437         bool allow_wait;
438         bool enabled;
439
440         void *ring;
441         dma_addr_t ring_dma;
442
443         void *payloads;
444         dma_addr_t payloads_dma;
445
446         struct completion **events;
447         DECLARE_BITMAP(msgids, BCM4377_MAX_RING_SIZE);
448         spinlock_t lock;
449 };
450
451 /*
452  * A completion ring can be either used to either acknowledge messages sent in
453  * the corresponding transfer ring or to receive messages associated with the
454  * transfer ring. When used to receive messages the transfer ring either
455  * has no ring buffer and is only advanced ("virtual transfer ring") or it
456  * only contains empty DMA buffers to be used for the payloads.
457  *
458  * ring_id: completion ring id, hardcoded in firmware
459  * payload_size: optional payload size after each entry
460  * delay: unknown delay
461  * n_entries: number of entries in this ring
462  * enabled: true once the ring has been created and can be used
463  * ring: ring buffer for entries (struct bcm4377_completion_ring_entry)
464  * ring_dma: DMA address of ring buffer
465  * transfer_rings: bitmap of corresponding transfer ring ids
466  */
467 struct bcm4377_completion_ring {
468         enum bcm4377_completion_ring_id ring_id;
469         u16 payload_size;
470         u16 delay;
471         u16 n_entries;
472         bool enabled;
473
474         void *ring;
475         dma_addr_t ring_dma;
476
477         unsigned long transfer_rings;
478 };
479
480 struct bcm4377_data;
481
482 /*
483  * Chip-specific configuration struct
484  *
485  * id: Chip id (e.g. 0x4377 for BCM4377)
486  * otp_offset: Offset to the start of the OTP inside BAR0
487  * bar0_window1: Backplane address mapped to the first window in BAR0
488  * bar0_window2: Backplane address mapped to the second window in BAR0
489  * bar0_core2_window2: Optional backplane address mapped to the second core's
490  *                     second window in BAR0
491  * has_bar0_core2_window2: Set to true if this chip requires the second core's
492  *                         second window to be configured
493  * bar2_offset: Offset to the start of the variables in BAR2
494  * clear_pciecfg_subsystem_ctrl_bit19: Set to true if bit 19 in the
495  *                                     vendor-specific subsystem control
496  *                                     register has to be cleared
497  * disable_aspm: Set to true if ASPM must be disabled due to hardware errata
498  * broken_ext_scan: Set to true if the chip erroneously claims to support
499  *                  extended scanning
500  * broken_mws_transport_config: Set to true if the chip erroneously claims to
501  *                              support MWS Transport Configuration
502  * broken_le_ext_adv_report_phy: Set to true if this chip stuffs flags inside
503  *                               reserved bits of Primary/Secondary_PHY inside
504  *                               LE Extended Advertising Report events which
505  *                               have to be ignored
506  * send_calibration: Optional callback to send calibration data
507  * send_ptb: Callback to send "PTB" regulatory/calibration data
508  */
509 struct bcm4377_hw {
510         unsigned int id;
511
512         u32 otp_offset;
513
514         u32 bar0_window1;
515         u32 bar0_window2;
516         u32 bar0_core2_window2;
517         u32 bar2_offset;
518
519         unsigned long has_bar0_core2_window2 : 1;
520         unsigned long clear_pciecfg_subsystem_ctrl_bit19 : 1;
521         unsigned long disable_aspm : 1;
522         unsigned long broken_ext_scan : 1;
523         unsigned long broken_mws_transport_config : 1;
524         unsigned long broken_le_coded : 1;
525         unsigned long broken_le_ext_adv_report_phy : 1;
526
527         int (*send_calibration)(struct bcm4377_data *bcm4377);
528         int (*send_ptb)(struct bcm4377_data *bcm4377,
529                         const struct firmware *fw);
530 };
531
532 static const struct bcm4377_hw bcm4377_hw_variants[];
533 static const struct dmi_system_id bcm4377_dmi_board_table[];
534
535 /*
536  * Private struct associated with each device containing global state
537  *
538  * pdev: Pointer to associated struct pci_dev
539  * hdev: Pointer to associated strucy hci_dev
540  * bar0: iomem pointing to BAR0
541  * bar1: iomem pointing to BAR2
542  * bootstage: Current value of the bootstage
543  * rti_status: Current "RTI" status value
544  * hw: Pointer to chip-specific struct bcm4377_hw
545  * taurus_cal_blob: "Taurus" calibration blob used for some chips
546  * taurus_cal_size: "Taurus" calibration blob size
547  * taurus_beamforming_cal_blob: "Taurus" beamforming calibration blob used for
548  *                              some chips
549  * taurus_beamforming_cal_size: "Taurus" beamforming calibration blob size
550  * stepping: Chip stepping read from OTP; used for firmware selection
551  * vendor: Antenna vendor read from OTP; used for firmware selection
552  * board_type: Board type from FDT or DMI match; used for firmware selection
553  * event: Event for changed bootstage or rti_status; used for booting firmware
554  * ctx: "Converged IPC" context
555  * ctx_dma: "Converged IPC" context DMA address
556  * ring_state: Shared memory buffer containing ring head and tail indexes
557  * ring_state_dma: DMA address for ring_state
558  * {control,hci_acl,sco}_ack_ring: Completion rings used to acknowledge messages
559  * {hci_acl,sco}_event_ring: Completion rings used for device->host messages
560  * control_h2d_ring: Transfer ring used for control messages
561  * {hci,sco,acl}_h2d_ring: Transfer ring used to transfer HCI frames
562  * {hci,sco,acl}_d2h_ring: Transfer ring used to receive HCI frames in the
563  *                         corresponding completion ring
564  */
565 struct bcm4377_data {
566         struct pci_dev *pdev;
567         struct hci_dev *hdev;
568
569         void __iomem *bar0;
570         void __iomem *bar2;
571
572         u32 bootstage;
573         u32 rti_status;
574
575         const struct bcm4377_hw *hw;
576
577         const void *taurus_cal_blob;
578         int taurus_cal_size;
579         const void *taurus_beamforming_cal_blob;
580         int taurus_beamforming_cal_size;
581
582         char stepping[BCM4377_OTP_MAX_PARAM_LEN];
583         char vendor[BCM4377_OTP_MAX_PARAM_LEN];
584         const char *board_type;
585
586         struct completion event;
587
588         struct bcm4377_context *ctx;
589         dma_addr_t ctx_dma;
590
591         struct bcm4377_ring_state *ring_state;
592         dma_addr_t ring_state_dma;
593
594         /*
595          * The HCI and ACL rings have to be merged because this structure is
596          * hardcoded in the firmware.
597          */
598         struct bcm4377_completion_ring control_ack_ring;
599         struct bcm4377_completion_ring hci_acl_ack_ring;
600         struct bcm4377_completion_ring hci_acl_event_ring;
601         struct bcm4377_completion_ring sco_ack_ring;
602         struct bcm4377_completion_ring sco_event_ring;
603
604         struct bcm4377_transfer_ring control_h2d_ring;
605         struct bcm4377_transfer_ring hci_h2d_ring;
606         struct bcm4377_transfer_ring hci_d2h_ring;
607         struct bcm4377_transfer_ring sco_h2d_ring;
608         struct bcm4377_transfer_ring sco_d2h_ring;
609         struct bcm4377_transfer_ring acl_h2d_ring;
610         struct bcm4377_transfer_ring acl_d2h_ring;
611 };
612
613 static void bcm4377_ring_doorbell(struct bcm4377_data *bcm4377, u8 doorbell,
614                                   u16 val)
615 {
616         u32 db = 0;
617
618         db |= FIELD_PREP(BCM4377_BAR0_DOORBELL_VALUE, val);
619         db |= FIELD_PREP(BCM4377_BAR0_DOORBELL_IDX, doorbell);
620         db |= BCM4377_BAR0_DOORBELL_RING;
621
622         dev_dbg(&bcm4377->pdev->dev, "write %d to doorbell #%d (0x%x)\n", val,
623                 doorbell, db);
624         iowrite32(db, bcm4377->bar0 + BCM4377_BAR0_DOORBELL);
625 }
626
627 static int bcm4377_extract_msgid(struct bcm4377_data *bcm4377,
628                                  struct bcm4377_transfer_ring *ring,
629                                  u16 raw_msgid, u8 *msgid)
630 {
631         u8 generation = FIELD_GET(BCM4377_MSGID_GENERATION, raw_msgid);
632         *msgid = FIELD_GET(BCM4377_MSGID_ID, raw_msgid);
633
634         if (generation != ring->generation) {
635                 dev_warn(
636                         &bcm4377->pdev->dev,
637                         "invalid message generation %d should be %d in entry for ring %d\n",
638                         generation, ring->generation, ring->ring_id);
639                 return -EINVAL;
640         }
641
642         if (*msgid >= ring->n_entries) {
643                 dev_warn(&bcm4377->pdev->dev,
644                          "invalid message id in entry for ring %d: %d > %d\n",
645                          ring->ring_id, *msgid, ring->n_entries);
646                 return -EINVAL;
647         }
648
649         return 0;
650 }
651
652 static void bcm4377_handle_event(struct bcm4377_data *bcm4377,
653                                  struct bcm4377_transfer_ring *ring,
654                                  u16 raw_msgid, u8 entry_flags, u8 type,
655                                  void *payload, size_t len)
656 {
657         struct sk_buff *skb;
658         u16 head;
659         u8 msgid;
660         unsigned long flags;
661
662         spin_lock_irqsave(&ring->lock, flags);
663         if (!ring->enabled) {
664                 dev_warn(&bcm4377->pdev->dev,
665                          "event for disabled transfer ring %d\n",
666                          ring->ring_id);
667                 goto out;
668         }
669
670         if (ring->d2h_buffers_only &&
671             entry_flags & BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED) {
672                 if (bcm4377_extract_msgid(bcm4377, ring, raw_msgid, &msgid))
673                         goto out;
674
675                 if (len > ring->mapped_payload_size) {
676                         dev_warn(
677                                 &bcm4377->pdev->dev,
678                                 "invalid payload len in event for ring %d: %zu > %zu\n",
679                                 ring->ring_id, len, ring->mapped_payload_size);
680                         goto out;
681                 }
682
683                 payload = ring->payloads + msgid * ring->mapped_payload_size;
684         }
685
686         skb = bt_skb_alloc(len, GFP_ATOMIC);
687         if (!skb)
688                 goto out;
689
690         memcpy(skb_put(skb, len), payload, len);
691         hci_skb_pkt_type(skb) = type;
692         hci_recv_frame(bcm4377->hdev, skb);
693
694 out:
695         head = le16_to_cpu(bcm4377->ring_state->xfer_ring_head[ring->ring_id]);
696         head = (head + 1) % ring->n_entries;
697         bcm4377->ring_state->xfer_ring_head[ring->ring_id] = cpu_to_le16(head);
698
699         bcm4377_ring_doorbell(bcm4377, ring->doorbell, head);
700
701         spin_unlock_irqrestore(&ring->lock, flags);
702 }
703
704 static void bcm4377_handle_ack(struct bcm4377_data *bcm4377,
705                                struct bcm4377_transfer_ring *ring,
706                                u16 raw_msgid)
707 {
708         unsigned long flags;
709         u8 msgid;
710
711         spin_lock_irqsave(&ring->lock, flags);
712
713         if (bcm4377_extract_msgid(bcm4377, ring, raw_msgid, &msgid))
714                 goto unlock;
715
716         if (!test_bit(msgid, ring->msgids)) {
717                 dev_warn(
718                         &bcm4377->pdev->dev,
719                         "invalid message id in ack for ring %d: %d is not used\n",
720                         ring->ring_id, msgid);
721                 goto unlock;
722         }
723
724         if (ring->allow_wait && ring->events[msgid]) {
725                 complete(ring->events[msgid]);
726                 ring->events[msgid] = NULL;
727         }
728
729         bitmap_release_region(ring->msgids, msgid, 0);
730
731 unlock:
732         spin_unlock_irqrestore(&ring->lock, flags);
733 }
734
735 static void bcm4377_handle_completion(struct bcm4377_data *bcm4377,
736                                       struct bcm4377_completion_ring *ring,
737                                       u16 pos)
738 {
739         struct bcm4377_completion_ring_entry *entry;
740         u16 msg_id, transfer_ring;
741         size_t entry_size, data_len;
742         void *data;
743
744         if (pos >= ring->n_entries) {
745                 dev_warn(&bcm4377->pdev->dev,
746                          "invalid offset %d for completion ring %d\n", pos,
747                          ring->ring_id);
748                 return;
749         }
750
751         entry_size = sizeof(*entry) + ring->payload_size;
752         entry = ring->ring + pos * entry_size;
753         data = ring->ring + pos * entry_size + sizeof(*entry);
754         data_len = le32_to_cpu(entry->len);
755         msg_id = le16_to_cpu(entry->msg_id);
756         transfer_ring = le16_to_cpu(entry->ring_id);
757
758         if ((ring->transfer_rings & BIT(transfer_ring)) == 0) {
759                 dev_warn(
760                         &bcm4377->pdev->dev,
761                         "invalid entry at offset %d for transfer ring %d in completion ring %d\n",
762                         pos, transfer_ring, ring->ring_id);
763                 return;
764         }
765
766         dev_dbg(&bcm4377->pdev->dev,
767                 "entry in completion ring %d for transfer ring %d with msg_id %d\n",
768                 ring->ring_id, transfer_ring, msg_id);
769
770         switch (transfer_ring) {
771         case BCM4377_XFER_RING_CONTROL:
772                 bcm4377_handle_ack(bcm4377, &bcm4377->control_h2d_ring, msg_id);
773                 break;
774         case BCM4377_XFER_RING_HCI_H2D:
775                 bcm4377_handle_ack(bcm4377, &bcm4377->hci_h2d_ring, msg_id);
776                 break;
777         case BCM4377_XFER_RING_SCO_H2D:
778                 bcm4377_handle_ack(bcm4377, &bcm4377->sco_h2d_ring, msg_id);
779                 break;
780         case BCM4377_XFER_RING_ACL_H2D:
781                 bcm4377_handle_ack(bcm4377, &bcm4377->acl_h2d_ring, msg_id);
782                 break;
783
784         case BCM4377_XFER_RING_HCI_D2H:
785                 bcm4377_handle_event(bcm4377, &bcm4377->hci_d2h_ring, msg_id,
786                                      entry->flags, HCI_EVENT_PKT, data,
787                                      data_len);
788                 break;
789         case BCM4377_XFER_RING_SCO_D2H:
790                 bcm4377_handle_event(bcm4377, &bcm4377->sco_d2h_ring, msg_id,
791                                      entry->flags, HCI_SCODATA_PKT, data,
792                                      data_len);
793                 break;
794         case BCM4377_XFER_RING_ACL_D2H:
795                 bcm4377_handle_event(bcm4377, &bcm4377->acl_d2h_ring, msg_id,
796                                      entry->flags, HCI_ACLDATA_PKT, data,
797                                      data_len);
798                 break;
799
800         default:
801                 dev_warn(
802                         &bcm4377->pdev->dev,
803                         "entry in completion ring %d for unknown transfer ring %d with msg_id %d\n",
804                         ring->ring_id, transfer_ring, msg_id);
805         }
806 }
807
808 static void bcm4377_poll_completion_ring(struct bcm4377_data *bcm4377,
809                                          struct bcm4377_completion_ring *ring)
810 {
811         u16 tail;
812         __le16 *heads = bcm4377->ring_state->completion_ring_head;
813         __le16 *tails = bcm4377->ring_state->completion_ring_tail;
814
815         if (!ring->enabled)
816                 return;
817
818         tail = le16_to_cpu(tails[ring->ring_id]);
819         dev_dbg(&bcm4377->pdev->dev,
820                 "completion ring #%d: head: %d, tail: %d\n", ring->ring_id,
821                 le16_to_cpu(heads[ring->ring_id]), tail);
822
823         while (tail != le16_to_cpu(READ_ONCE(heads[ring->ring_id]))) {
824                 /*
825                  * ensure the CPU doesn't speculate through the comparison.
826                  * otherwise it might already read the (empty) queue entry
827                  * before the updated head has been loaded and checked.
828                  */
829                 dma_rmb();
830
831                 bcm4377_handle_completion(bcm4377, ring, tail);
832
833                 tail = (tail + 1) % ring->n_entries;
834                 tails[ring->ring_id] = cpu_to_le16(tail);
835         }
836 }
837
838 static irqreturn_t bcm4377_irq(int irq, void *data)
839 {
840         struct bcm4377_data *bcm4377 = data;
841         u32 bootstage, rti_status;
842
843         bootstage = ioread32(bcm4377->bar2 + bcm4377->hw->bar2_offset + BCM4377_BAR2_BOOTSTAGE);
844         rti_status = ioread32(bcm4377->bar2 + bcm4377->hw->bar2_offset + BCM4377_BAR2_RTI_STATUS);
845
846         if (bootstage != bcm4377->bootstage ||
847             rti_status != bcm4377->rti_status) {
848                 dev_dbg(&bcm4377->pdev->dev,
849                         "bootstage = %d -> %d, rti state = %d -> %d\n",
850                         bcm4377->bootstage, bootstage, bcm4377->rti_status,
851                         rti_status);
852                 complete(&bcm4377->event);
853                 bcm4377->bootstage = bootstage;
854                 bcm4377->rti_status = rti_status;
855         }
856
857         if (rti_status > 2)
858                 dev_err(&bcm4377->pdev->dev, "RTI status is %d\n", rti_status);
859
860         bcm4377_poll_completion_ring(bcm4377, &bcm4377->control_ack_ring);
861         bcm4377_poll_completion_ring(bcm4377, &bcm4377->hci_acl_event_ring);
862         bcm4377_poll_completion_ring(bcm4377, &bcm4377->hci_acl_ack_ring);
863         bcm4377_poll_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
864         bcm4377_poll_completion_ring(bcm4377, &bcm4377->sco_event_ring);
865
866         return IRQ_HANDLED;
867 }
868
869 static int bcm4377_enqueue(struct bcm4377_data *bcm4377,
870                            struct bcm4377_transfer_ring *ring, void *data,
871                            size_t len, bool wait)
872 {
873         unsigned long flags;
874         struct bcm4377_xfer_ring_entry *entry;
875         void *payload;
876         size_t offset;
877         u16 head, tail, new_head;
878         u16 raw_msgid;
879         int ret, msgid;
880         DECLARE_COMPLETION_ONSTACK(event);
881
882         if (len > ring->payload_size && len > ring->mapped_payload_size) {
883                 dev_warn(
884                         &bcm4377->pdev->dev,
885                         "payload len %zu is too large for ring %d (max is %zu or %zu)\n",
886                         len, ring->ring_id, ring->payload_size,
887                         ring->mapped_payload_size);
888                 return -EINVAL;
889         }
890         if (wait && !ring->allow_wait)
891                 return -EINVAL;
892         if (ring->virtual)
893                 return -EINVAL;
894
895         spin_lock_irqsave(&ring->lock, flags);
896
897         head = le16_to_cpu(bcm4377->ring_state->xfer_ring_head[ring->ring_id]);
898         tail = le16_to_cpu(bcm4377->ring_state->xfer_ring_tail[ring->ring_id]);
899
900         new_head = (head + 1) % ring->n_entries;
901
902         if (new_head == tail) {
903                 dev_warn(&bcm4377->pdev->dev,
904                          "can't send message because ring %d is full\n",
905                          ring->ring_id);
906                 ret = -EINVAL;
907                 goto out;
908         }
909
910         msgid = bitmap_find_free_region(ring->msgids, ring->n_entries, 0);
911         if (msgid < 0) {
912                 dev_warn(&bcm4377->pdev->dev,
913                          "can't find message id for ring %d\n", ring->ring_id);
914                 ret = -EINVAL;
915                 goto out;
916         }
917
918         raw_msgid = FIELD_PREP(BCM4377_MSGID_GENERATION, ring->generation);
919         raw_msgid |= FIELD_PREP(BCM4377_MSGID_ID, msgid);
920
921         offset = head * (sizeof(*entry) + ring->payload_size);
922         entry = ring->ring + offset;
923
924         memset(entry, 0, sizeof(*entry));
925         entry->id = cpu_to_le16(raw_msgid);
926         entry->len = cpu_to_le16(len);
927
928         if (len <= ring->payload_size) {
929                 entry->flags = BCM4377_XFER_RING_FLAG_PAYLOAD_IN_FOOTER;
930                 payload = ring->ring + offset + sizeof(*entry);
931         } else {
932                 entry->flags = BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED;
933                 entry->payload = cpu_to_le64(ring->payloads_dma +
934                                              msgid * ring->mapped_payload_size);
935                 payload = ring->payloads + msgid * ring->mapped_payload_size;
936         }
937
938         memcpy(payload, data, len);
939
940         if (wait)
941                 ring->events[msgid] = &event;
942
943         /*
944          * The 4377 chips stop responding to any commands as soon as they
945          * have been idle for a while. Poking the sleep control register here
946          * makes them come alive again.
947          */
948         iowrite32(BCM4377_BAR0_SLEEP_CONTROL_AWAKE,
949                   bcm4377->bar0 + BCM4377_BAR0_SLEEP_CONTROL);
950
951         dev_dbg(&bcm4377->pdev->dev,
952                 "updating head for transfer queue #%d to %d\n", ring->ring_id,
953                 new_head);
954         bcm4377->ring_state->xfer_ring_head[ring->ring_id] =
955                 cpu_to_le16(new_head);
956
957         if (!ring->sync)
958                 bcm4377_ring_doorbell(bcm4377, ring->doorbell, new_head);
959         ret = 0;
960
961 out:
962         spin_unlock_irqrestore(&ring->lock, flags);
963
964         if (ret == 0 && wait) {
965                 ret = wait_for_completion_interruptible_timeout(
966                         &event, BCM4377_TIMEOUT);
967                 if (ret == 0)
968                         ret = -ETIMEDOUT;
969                 else if (ret > 0)
970                         ret = 0;
971
972                 spin_lock_irqsave(&ring->lock, flags);
973                 ring->events[msgid] = NULL;
974                 spin_unlock_irqrestore(&ring->lock, flags);
975         }
976
977         return ret;
978 }
979
980 static int bcm4377_create_completion_ring(struct bcm4377_data *bcm4377,
981                                           struct bcm4377_completion_ring *ring)
982 {
983         struct bcm4377_create_completion_ring_msg msg;
984         int ret;
985
986         if (ring->enabled) {
987                 dev_warn(&bcm4377->pdev->dev,
988                          "completion ring %d already enabled\n", ring->ring_id);
989                 return 0;
990         }
991
992         memset(ring->ring, 0,
993                ring->n_entries * (sizeof(struct bcm4377_completion_ring_entry) +
994                                   ring->payload_size));
995         memset(&msg, 0, sizeof(msg));
996         msg.msg_type = BCM4377_CONTROL_MSG_CREATE_COMPLETION_RING;
997         msg.id = cpu_to_le16(ring->ring_id);
998         msg.id_again = cpu_to_le16(ring->ring_id);
999         msg.ring_iova = cpu_to_le64(ring->ring_dma);
1000         msg.n_elements = cpu_to_le16(ring->n_entries);
1001         msg.intmod_bytes = cpu_to_le32(0xffffffff);
1002         msg.unk = cpu_to_le32(0xffffffff);
1003         msg.intmod_delay = cpu_to_le16(ring->delay);
1004         msg.footer_size = ring->payload_size / 4;
1005
1006         ret = bcm4377_enqueue(bcm4377, &bcm4377->control_h2d_ring, &msg,
1007                               sizeof(msg), true);
1008         if (!ret)
1009                 ring->enabled = true;
1010
1011         return ret;
1012 }
1013
1014 static int bcm4377_destroy_completion_ring(struct bcm4377_data *bcm4377,
1015                                            struct bcm4377_completion_ring *ring)
1016 {
1017         struct bcm4377_destroy_completion_ring_msg msg;
1018         int ret;
1019
1020         memset(&msg, 0, sizeof(msg));
1021         msg.msg_type = BCM4377_CONTROL_MSG_DESTROY_COMPLETION_RING;
1022         msg.ring_id = cpu_to_le16(ring->ring_id);
1023
1024         ret = bcm4377_enqueue(bcm4377, &bcm4377->control_h2d_ring, &msg,
1025                               sizeof(msg), true);
1026         if (ret)
1027                 dev_warn(&bcm4377->pdev->dev,
1028                          "failed to destroy completion ring %d\n",
1029                          ring->ring_id);
1030
1031         ring->enabled = false;
1032         return ret;
1033 }
1034
1035 static int bcm4377_create_transfer_ring(struct bcm4377_data *bcm4377,
1036                                         struct bcm4377_transfer_ring *ring)
1037 {
1038         struct bcm4377_create_transfer_ring_msg msg;
1039         u16 flags = 0;
1040         int ret, i;
1041         unsigned long spinlock_flags;
1042
1043         if (ring->virtual)
1044                 flags |= BCM4377_XFER_RING_FLAG_VIRTUAL;
1045         if (ring->sync)
1046                 flags |= BCM4377_XFER_RING_FLAG_SYNC;
1047
1048         spin_lock_irqsave(&ring->lock, spinlock_flags);
1049         memset(&msg, 0, sizeof(msg));
1050         msg.msg_type = BCM4377_CONTROL_MSG_CREATE_XFER_RING;
1051         msg.ring_id = cpu_to_le16(ring->ring_id);
1052         msg.ring_id_again = cpu_to_le16(ring->ring_id);
1053         msg.ring_iova = cpu_to_le64(ring->ring_dma);
1054         msg.n_elements = cpu_to_le16(ring->n_entries);
1055         msg.completion_ring_id = cpu_to_le16(ring->completion_ring);
1056         msg.doorbell = cpu_to_le16(ring->doorbell);
1057         msg.flags = cpu_to_le16(flags);
1058         msg.footer_size = ring->payload_size / 4;
1059
1060         bcm4377->ring_state->xfer_ring_head[ring->ring_id] = 0;
1061         bcm4377->ring_state->xfer_ring_tail[ring->ring_id] = 0;
1062         ring->generation++;
1063         spin_unlock_irqrestore(&ring->lock, spinlock_flags);
1064
1065         ret = bcm4377_enqueue(bcm4377, &bcm4377->control_h2d_ring, &msg,
1066                               sizeof(msg), true);
1067
1068         spin_lock_irqsave(&ring->lock, spinlock_flags);
1069
1070         if (ring->d2h_buffers_only) {
1071                 for (i = 0; i < ring->n_entries; ++i) {
1072                         struct bcm4377_xfer_ring_entry *entry =
1073                                 ring->ring + i * sizeof(*entry);
1074                         u16 raw_msgid = FIELD_PREP(BCM4377_MSGID_GENERATION,
1075                                                    ring->generation);
1076                         raw_msgid |= FIELD_PREP(BCM4377_MSGID_ID, i);
1077
1078                         memset(entry, 0, sizeof(*entry));
1079                         entry->id = cpu_to_le16(raw_msgid);
1080                         entry->len = cpu_to_le16(ring->mapped_payload_size);
1081                         entry->flags = BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED;
1082                         entry->payload =
1083                                 cpu_to_le64(ring->payloads_dma +
1084                                             i * ring->mapped_payload_size);
1085                 }
1086         }
1087
1088         /*
1089          * send some messages if this is a device->host ring to allow the device
1090          * to reply by acknowledging them in the completion ring
1091          */
1092         if (ring->virtual || ring->d2h_buffers_only) {
1093                 bcm4377->ring_state->xfer_ring_head[ring->ring_id] =
1094                         cpu_to_le16(0xf);
1095                 bcm4377_ring_doorbell(bcm4377, ring->doorbell, 0xf);
1096         }
1097
1098         ring->enabled = true;
1099         spin_unlock_irqrestore(&ring->lock, spinlock_flags);
1100
1101         return ret;
1102 }
1103
1104 static int bcm4377_destroy_transfer_ring(struct bcm4377_data *bcm4377,
1105                                          struct bcm4377_transfer_ring *ring)
1106 {
1107         struct bcm4377_destroy_transfer_ring_msg msg;
1108         int ret;
1109
1110         memset(&msg, 0, sizeof(msg));
1111         msg.msg_type = BCM4377_CONTROL_MSG_DESTROY_XFER_RING;
1112         msg.ring_id = cpu_to_le16(ring->ring_id);
1113
1114         ret = bcm4377_enqueue(bcm4377, &bcm4377->control_h2d_ring, &msg,
1115                               sizeof(msg), true);
1116         if (ret)
1117                 dev_warn(&bcm4377->pdev->dev,
1118                          "failed to destroy transfer ring %d\n", ring->ring_id);
1119
1120         ring->enabled = false;
1121         return ret;
1122 }
1123
1124 static int __bcm4378_send_calibration_chunk(struct bcm4377_data *bcm4377,
1125                                             const void *data, size_t data_len,
1126                                             u16 blocks_left)
1127 {
1128         struct bcm4378_hci_send_calibration_cmd cmd;
1129         struct sk_buff *skb;
1130
1131         if (data_len > sizeof(cmd.data))
1132                 return -EINVAL;
1133
1134         memset(&cmd, 0, sizeof(cmd));
1135         cmd.unk = 0x03;
1136         cmd.blocks_left = cpu_to_le16(blocks_left);
1137         memcpy(cmd.data, data, data_len);
1138
1139         skb = __hci_cmd_sync(bcm4377->hdev, 0xfd97, sizeof(cmd), &cmd,
1140                              HCI_INIT_TIMEOUT);
1141         if (IS_ERR(skb))
1142                 return PTR_ERR(skb);
1143
1144         kfree_skb(skb);
1145         return 0;
1146 }
1147
1148 static int __bcm4378_send_calibration(struct bcm4377_data *bcm4377,
1149                                       const void *data, size_t data_size)
1150 {
1151         int ret;
1152         size_t i, left, transfer_len;
1153         size_t blocks =
1154                 DIV_ROUND_UP(data_size, (size_t)BCM4378_CALIBRATION_CHUNK_SIZE);
1155
1156         if (!data) {
1157                 dev_err(&bcm4377->pdev->dev,
1158                         "no calibration data available.\n");
1159                 return -ENOENT;
1160         }
1161
1162         for (i = 0, left = data_size; i < blocks; ++i, left -= transfer_len) {
1163                 transfer_len =
1164                         min_t(size_t, left, BCM4378_CALIBRATION_CHUNK_SIZE);
1165
1166                 ret = __bcm4378_send_calibration_chunk(
1167                         bcm4377, data + i * BCM4378_CALIBRATION_CHUNK_SIZE,
1168                         transfer_len, blocks - i - 1);
1169                 if (ret) {
1170                         dev_err(&bcm4377->pdev->dev,
1171                                 "send calibration chunk failed with %d\n", ret);
1172                         return ret;
1173                 }
1174         }
1175
1176         return 0;
1177 }
1178
1179 static int bcm4378_send_calibration(struct bcm4377_data *bcm4377)
1180 {
1181         if ((strcmp(bcm4377->stepping, "b1") == 0) ||
1182             strcmp(bcm4377->stepping, "b3") == 0)
1183                 return __bcm4378_send_calibration(
1184                         bcm4377, bcm4377->taurus_beamforming_cal_blob,
1185                         bcm4377->taurus_beamforming_cal_size);
1186         else
1187                 return __bcm4378_send_calibration(bcm4377,
1188                                                   bcm4377->taurus_cal_blob,
1189                                                   bcm4377->taurus_cal_size);
1190 }
1191
1192 static int bcm4387_send_calibration(struct bcm4377_data *bcm4377)
1193 {
1194         if (strcmp(bcm4377->stepping, "c2") == 0)
1195                 return __bcm4378_send_calibration(
1196                         bcm4377, bcm4377->taurus_beamforming_cal_blob,
1197                         bcm4377->taurus_beamforming_cal_size);
1198         else
1199                 return __bcm4378_send_calibration(bcm4377,
1200                                                   bcm4377->taurus_cal_blob,
1201                                                   bcm4377->taurus_cal_size);
1202 }
1203
1204 static int bcm4388_send_calibration(struct bcm4377_data *bcm4377)
1205 {
1206         /* BCM4388 always uses beamforming */
1207         return __bcm4378_send_calibration(
1208                 bcm4377, bcm4377->taurus_beamforming_cal_blob,
1209                 bcm4377->taurus_beamforming_cal_size);
1210 }
1211
1212 static const struct firmware *bcm4377_request_blob(struct bcm4377_data *bcm4377,
1213                                                    const char *suffix)
1214 {
1215         const struct firmware *fw;
1216         char name0[64], name1[64];
1217         int ret;
1218
1219         snprintf(name0, sizeof(name0), "brcm/brcmbt%04x%s-%s-%s.%s",
1220                  bcm4377->hw->id, bcm4377->stepping, bcm4377->board_type,
1221                  bcm4377->vendor, suffix);
1222         snprintf(name1, sizeof(name1), "brcm/brcmbt%04x%s-%s.%s",
1223                  bcm4377->hw->id, bcm4377->stepping, bcm4377->board_type,
1224                  suffix);
1225         dev_dbg(&bcm4377->pdev->dev, "Trying to load firmware: '%s' or '%s'\n",
1226                 name0, name1);
1227
1228         ret = firmware_request_nowarn(&fw, name0, &bcm4377->pdev->dev);
1229         if (!ret)
1230                 return fw;
1231         ret = firmware_request_nowarn(&fw, name1, &bcm4377->pdev->dev);
1232         if (!ret)
1233                 return fw;
1234
1235         dev_err(&bcm4377->pdev->dev,
1236                 "Unable to load firmware; tried '%s' and '%s'\n", name0, name1);
1237         return NULL;
1238 }
1239
1240 static int bcm4377_send_ptb(struct bcm4377_data *bcm4377,
1241                             const struct firmware *fw)
1242 {
1243         struct sk_buff *skb;
1244
1245         skb = __hci_cmd_sync(bcm4377->hdev, 0xfd98, fw->size, fw->data,
1246                              HCI_INIT_TIMEOUT);
1247         /*
1248          * This command seems to always fail on more recent firmware versions
1249          * (even in traces taken from the macOS driver). It's unclear why this
1250          * happens but because the PTB file contains calibration and/or
1251          * regulatory data and may be required on older firmware we still try to
1252          * send it here just in case and just ignore if it fails.
1253          */
1254         if (!IS_ERR(skb))
1255                 kfree_skb(skb);
1256         return 0;
1257 }
1258
1259 static int bcm4378_send_ptb_chunk(struct bcm4377_data *bcm4377,
1260                                   const void *data, size_t data_len,
1261                                   u16 blocks_left)
1262 {
1263         struct bcm4378_hci_send_ptb_cmd cmd;
1264         struct sk_buff *skb;
1265
1266         if (data_len > BCM4378_PTB_CHUNK_SIZE)
1267                 return -EINVAL;
1268
1269         memset(&cmd, 0, sizeof(cmd));
1270         cmd.blocks_left = cpu_to_le16(blocks_left);
1271         memcpy(cmd.data, data, data_len);
1272
1273         skb = __hci_cmd_sync(bcm4377->hdev, 0xfe0d, sizeof(cmd), &cmd,
1274                              HCI_INIT_TIMEOUT);
1275         if (IS_ERR(skb))
1276                 return PTR_ERR(skb);
1277
1278         kfree_skb(skb);
1279         return 0;
1280 }
1281
1282 static int bcm4378_send_ptb(struct bcm4377_data *bcm4377,
1283                             const struct firmware *fw)
1284 {
1285         size_t chunks = DIV_ROUND_UP(fw->size, (size_t)BCM4378_PTB_CHUNK_SIZE);
1286         size_t i, left, transfer_len;
1287         int ret;
1288
1289         for (i = 0, left = fw->size; i < chunks; ++i, left -= transfer_len) {
1290                 transfer_len = min_t(size_t, left, BCM4378_PTB_CHUNK_SIZE);
1291
1292                 dev_dbg(&bcm4377->pdev->dev, "sending ptb chunk %zu/%zu\n",
1293                         i + 1, chunks);
1294                 ret = bcm4378_send_ptb_chunk(
1295                         bcm4377, fw->data + i * BCM4378_PTB_CHUNK_SIZE,
1296                         transfer_len, chunks - i - 1);
1297                 if (ret) {
1298                         dev_err(&bcm4377->pdev->dev,
1299                                 "sending ptb chunk %zu failed (%d)", i, ret);
1300                         return ret;
1301                 }
1302         }
1303
1304         return 0;
1305 }
1306
1307 static int bcm4377_hci_open(struct hci_dev *hdev)
1308 {
1309         struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
1310         int ret;
1311
1312         dev_dbg(&bcm4377->pdev->dev, "creating rings\n");
1313
1314         ret = bcm4377_create_completion_ring(bcm4377,
1315                                              &bcm4377->hci_acl_ack_ring);
1316         if (ret)
1317                 return ret;
1318         ret = bcm4377_create_completion_ring(bcm4377,
1319                                              &bcm4377->hci_acl_event_ring);
1320         if (ret)
1321                 goto destroy_hci_acl_ack;
1322         ret = bcm4377_create_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
1323         if (ret)
1324                 goto destroy_hci_acl_event;
1325         ret = bcm4377_create_completion_ring(bcm4377, &bcm4377->sco_event_ring);
1326         if (ret)
1327                 goto destroy_sco_ack;
1328         dev_dbg(&bcm4377->pdev->dev,
1329                 "all completion rings successfully created!\n");
1330
1331         ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->hci_h2d_ring);
1332         if (ret)
1333                 goto destroy_sco_event;
1334         ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->hci_d2h_ring);
1335         if (ret)
1336                 goto destroy_hci_h2d;
1337         ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->sco_h2d_ring);
1338         if (ret)
1339                 goto destroy_hci_d2h;
1340         ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->sco_d2h_ring);
1341         if (ret)
1342                 goto destroy_sco_h2d;
1343         ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->acl_h2d_ring);
1344         if (ret)
1345                 goto destroy_sco_d2h;
1346         ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->acl_d2h_ring);
1347         if (ret)
1348                 goto destroy_acl_h2d;
1349         dev_dbg(&bcm4377->pdev->dev,
1350                 "all transfer rings successfully created!\n");
1351
1352         return 0;
1353
1354 destroy_acl_h2d:
1355         bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->acl_h2d_ring);
1356 destroy_sco_d2h:
1357         bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->sco_d2h_ring);
1358 destroy_sco_h2d:
1359         bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->sco_h2d_ring);
1360 destroy_hci_d2h:
1361         bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->hci_h2d_ring);
1362 destroy_hci_h2d:
1363         bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->hci_d2h_ring);
1364 destroy_sco_event:
1365         bcm4377_destroy_completion_ring(bcm4377, &bcm4377->sco_event_ring);
1366 destroy_sco_ack:
1367         bcm4377_destroy_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
1368 destroy_hci_acl_event:
1369         bcm4377_destroy_completion_ring(bcm4377, &bcm4377->hci_acl_event_ring);
1370 destroy_hci_acl_ack:
1371         bcm4377_destroy_completion_ring(bcm4377, &bcm4377->hci_acl_ack_ring);
1372
1373         dev_err(&bcm4377->pdev->dev, "Creating rings failed with %d\n", ret);
1374         return ret;
1375 }
1376
1377 static int bcm4377_hci_close(struct hci_dev *hdev)
1378 {
1379         struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
1380
1381         dev_dbg(&bcm4377->pdev->dev, "destroying rings in hci_close\n");
1382
1383         bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->acl_d2h_ring);
1384         bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->acl_h2d_ring);
1385         bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->sco_d2h_ring);
1386         bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->sco_h2d_ring);
1387         bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->hci_d2h_ring);
1388         bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->hci_h2d_ring);
1389
1390         bcm4377_destroy_completion_ring(bcm4377, &bcm4377->sco_event_ring);
1391         bcm4377_destroy_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
1392         bcm4377_destroy_completion_ring(bcm4377, &bcm4377->hci_acl_event_ring);
1393         bcm4377_destroy_completion_ring(bcm4377, &bcm4377->hci_acl_ack_ring);
1394
1395         return 0;
1396 }
1397
1398 static bool bcm4377_is_valid_bdaddr(struct bcm4377_data *bcm4377,
1399                                     bdaddr_t *addr)
1400 {
1401         if (addr->b[0] != 0x93)
1402                 return true;
1403         if (addr->b[1] != 0x76)
1404                 return true;
1405         if (addr->b[2] != 0x00)
1406                 return true;
1407         if (addr->b[4] != (bcm4377->hw->id & 0xff))
1408                 return true;
1409         if (addr->b[5] != (bcm4377->hw->id >> 8))
1410                 return true;
1411         return false;
1412 }
1413
1414 static int bcm4377_check_bdaddr(struct bcm4377_data *bcm4377)
1415 {
1416         struct hci_rp_read_bd_addr *bda;
1417         struct sk_buff *skb;
1418
1419         skb = __hci_cmd_sync(bcm4377->hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
1420                              HCI_INIT_TIMEOUT);
1421         if (IS_ERR(skb)) {
1422                 int err = PTR_ERR(skb);
1423
1424                 dev_err(&bcm4377->pdev->dev, "HCI_OP_READ_BD_ADDR failed (%d)",
1425                         err);
1426                 return err;
1427         }
1428
1429         if (skb->len != sizeof(*bda)) {
1430                 dev_err(&bcm4377->pdev->dev,
1431                         "HCI_OP_READ_BD_ADDR reply length invalid");
1432                 kfree_skb(skb);
1433                 return -EIO;
1434         }
1435
1436         bda = (struct hci_rp_read_bd_addr *)skb->data;
1437         if (!bcm4377_is_valid_bdaddr(bcm4377, &bda->bdaddr))
1438                 set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &bcm4377->hdev->quirks);
1439
1440         kfree_skb(skb);
1441         return 0;
1442 }
1443
1444 static int bcm4377_hci_setup(struct hci_dev *hdev)
1445 {
1446         struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
1447         const struct firmware *fw;
1448         int ret;
1449
1450         if (bcm4377->hw->send_calibration) {
1451                 ret = bcm4377->hw->send_calibration(bcm4377);
1452                 if (ret)
1453                         return ret;
1454         }
1455
1456         fw = bcm4377_request_blob(bcm4377, "ptb");
1457         if (!fw) {
1458                 dev_err(&bcm4377->pdev->dev, "failed to load PTB data");
1459                 return -ENOENT;
1460         }
1461
1462         ret = bcm4377->hw->send_ptb(bcm4377, fw);
1463         release_firmware(fw);
1464         if (ret)
1465                 return ret;
1466
1467         return bcm4377_check_bdaddr(bcm4377);
1468 }
1469
1470 static int bcm4377_hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
1471 {
1472         struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
1473         struct bcm4377_transfer_ring *ring;
1474         int ret;
1475
1476         switch (hci_skb_pkt_type(skb)) {
1477         case HCI_COMMAND_PKT:
1478                 hdev->stat.cmd_tx++;
1479                 ring = &bcm4377->hci_h2d_ring;
1480                 break;
1481
1482         case HCI_ACLDATA_PKT:
1483                 hdev->stat.acl_tx++;
1484                 ring = &bcm4377->acl_h2d_ring;
1485                 break;
1486
1487         case HCI_SCODATA_PKT:
1488                 hdev->stat.sco_tx++;
1489                 ring = &bcm4377->sco_h2d_ring;
1490                 break;
1491
1492         default:
1493                 return -EILSEQ;
1494         }
1495
1496         ret = bcm4377_enqueue(bcm4377, ring, skb->data, skb->len, false);
1497         if (ret < 0) {
1498                 hdev->stat.err_tx++;
1499                 return ret;
1500         }
1501
1502         hdev->stat.byte_tx += skb->len;
1503         kfree_skb(skb);
1504         return ret;
1505 }
1506
1507 static int bcm4377_hci_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
1508 {
1509         struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
1510         struct sk_buff *skb;
1511         int err;
1512
1513         skb = __hci_cmd_sync(hdev, 0xfc01, 6, bdaddr, HCI_INIT_TIMEOUT);
1514         if (IS_ERR(skb)) {
1515                 err = PTR_ERR(skb);
1516                 dev_err(&bcm4377->pdev->dev,
1517                         "Change address command failed (%d)", err);
1518                 return err;
1519         }
1520         kfree_skb(skb);
1521
1522         return 0;
1523 }
1524
1525 static int bcm4377_alloc_transfer_ring(struct bcm4377_data *bcm4377,
1526                                        struct bcm4377_transfer_ring *ring)
1527 {
1528         size_t entry_size;
1529
1530         spin_lock_init(&ring->lock);
1531         ring->payload_size = ALIGN(ring->payload_size, 4);
1532         ring->mapped_payload_size = ALIGN(ring->mapped_payload_size, 4);
1533
1534         if (ring->payload_size > BCM4377_XFER_RING_MAX_INPLACE_PAYLOAD_SIZE)
1535                 return -EINVAL;
1536         if (ring->n_entries > BCM4377_MAX_RING_SIZE)
1537                 return -EINVAL;
1538         if (ring->virtual && ring->allow_wait)
1539                 return -EINVAL;
1540
1541         if (ring->d2h_buffers_only) {
1542                 if (ring->virtual)
1543                         return -EINVAL;
1544                 if (ring->payload_size)
1545                         return -EINVAL;
1546                 if (!ring->mapped_payload_size)
1547                         return -EINVAL;
1548         }
1549         if (ring->virtual)
1550                 return 0;
1551
1552         entry_size =
1553                 ring->payload_size + sizeof(struct bcm4377_xfer_ring_entry);
1554         ring->ring = dmam_alloc_coherent(&bcm4377->pdev->dev,
1555                                          ring->n_entries * entry_size,
1556                                          &ring->ring_dma, GFP_KERNEL);
1557         if (!ring->ring)
1558                 return -ENOMEM;
1559
1560         if (ring->allow_wait) {
1561                 ring->events = devm_kcalloc(&bcm4377->pdev->dev,
1562                                             ring->n_entries,
1563                                             sizeof(*ring->events), GFP_KERNEL);
1564                 if (!ring->events)
1565                         return -ENOMEM;
1566         }
1567
1568         if (ring->mapped_payload_size) {
1569                 ring->payloads = dmam_alloc_coherent(
1570                         &bcm4377->pdev->dev,
1571                         ring->n_entries * ring->mapped_payload_size,
1572                         &ring->payloads_dma, GFP_KERNEL);
1573                 if (!ring->payloads)
1574                         return -ENOMEM;
1575         }
1576
1577         return 0;
1578 }
1579
1580 static int bcm4377_alloc_completion_ring(struct bcm4377_data *bcm4377,
1581                                          struct bcm4377_completion_ring *ring)
1582 {
1583         size_t entry_size;
1584
1585         ring->payload_size = ALIGN(ring->payload_size, 4);
1586         if (ring->payload_size > BCM4377_XFER_RING_MAX_INPLACE_PAYLOAD_SIZE)
1587                 return -EINVAL;
1588         if (ring->n_entries > BCM4377_MAX_RING_SIZE)
1589                 return -EINVAL;
1590
1591         entry_size = ring->payload_size +
1592                      sizeof(struct bcm4377_completion_ring_entry);
1593
1594         ring->ring = dmam_alloc_coherent(&bcm4377->pdev->dev,
1595                                          ring->n_entries * entry_size,
1596                                          &ring->ring_dma, GFP_KERNEL);
1597         if (!ring->ring)
1598                 return -ENOMEM;
1599         return 0;
1600 }
1601
1602 static int bcm4377_init_context(struct bcm4377_data *bcm4377)
1603 {
1604         struct device *dev = &bcm4377->pdev->dev;
1605         dma_addr_t peripheral_info_dma;
1606
1607         bcm4377->ctx = dmam_alloc_coherent(dev, sizeof(*bcm4377->ctx),
1608                                            &bcm4377->ctx_dma, GFP_KERNEL);
1609         if (!bcm4377->ctx)
1610                 return -ENOMEM;
1611         memset(bcm4377->ctx, 0, sizeof(*bcm4377->ctx));
1612
1613         bcm4377->ring_state =
1614                 dmam_alloc_coherent(dev, sizeof(*bcm4377->ring_state),
1615                                     &bcm4377->ring_state_dma, GFP_KERNEL);
1616         if (!bcm4377->ring_state)
1617                 return -ENOMEM;
1618         memset(bcm4377->ring_state, 0, sizeof(*bcm4377->ring_state));
1619
1620         bcm4377->ctx->version = cpu_to_le16(1);
1621         bcm4377->ctx->size = cpu_to_le16(sizeof(*bcm4377->ctx));
1622         bcm4377->ctx->enabled_caps = cpu_to_le32(2);
1623
1624         /*
1625          * The BT device will write 0x20 bytes of data to this buffer but
1626          * the exact contents are unknown. It only needs to exist for BT
1627          * to work such that we can just allocate and then ignore it.
1628          */
1629         if (!dmam_alloc_coherent(&bcm4377->pdev->dev, 0x20,
1630                                  &peripheral_info_dma, GFP_KERNEL))
1631                 return -ENOMEM;
1632         bcm4377->ctx->peripheral_info_addr = cpu_to_le64(peripheral_info_dma);
1633
1634         bcm4377->ctx->xfer_ring_heads_addr = cpu_to_le64(
1635                 bcm4377->ring_state_dma +
1636                 offsetof(struct bcm4377_ring_state, xfer_ring_head));
1637         bcm4377->ctx->xfer_ring_tails_addr = cpu_to_le64(
1638                 bcm4377->ring_state_dma +
1639                 offsetof(struct bcm4377_ring_state, xfer_ring_tail));
1640         bcm4377->ctx->completion_ring_heads_addr = cpu_to_le64(
1641                 bcm4377->ring_state_dma +
1642                 offsetof(struct bcm4377_ring_state, completion_ring_head));
1643         bcm4377->ctx->completion_ring_tails_addr = cpu_to_le64(
1644                 bcm4377->ring_state_dma +
1645                 offsetof(struct bcm4377_ring_state, completion_ring_tail));
1646
1647         bcm4377->ctx->n_completion_rings =
1648                 cpu_to_le16(BCM4377_N_COMPLETION_RINGS);
1649         bcm4377->ctx->n_xfer_rings = cpu_to_le16(BCM4377_N_TRANSFER_RINGS);
1650
1651         bcm4377->ctx->control_completion_ring_addr =
1652                 cpu_to_le64(bcm4377->control_ack_ring.ring_dma);
1653         bcm4377->ctx->control_completion_ring_n_entries =
1654                 cpu_to_le16(bcm4377->control_ack_ring.n_entries);
1655         bcm4377->ctx->control_completion_ring_doorbell = cpu_to_le16(0xffff);
1656         bcm4377->ctx->control_completion_ring_msi = 0;
1657         bcm4377->ctx->control_completion_ring_header_size = 0;
1658         bcm4377->ctx->control_completion_ring_footer_size = 0;
1659
1660         bcm4377->ctx->control_xfer_ring_addr =
1661                 cpu_to_le64(bcm4377->control_h2d_ring.ring_dma);
1662         bcm4377->ctx->control_xfer_ring_n_entries =
1663                 cpu_to_le16(bcm4377->control_h2d_ring.n_entries);
1664         bcm4377->ctx->control_xfer_ring_doorbell =
1665                 cpu_to_le16(bcm4377->control_h2d_ring.doorbell);
1666         bcm4377->ctx->control_xfer_ring_msi = 0;
1667         bcm4377->ctx->control_xfer_ring_header_size = 0;
1668         bcm4377->ctx->control_xfer_ring_footer_size =
1669                 bcm4377->control_h2d_ring.payload_size / 4;
1670
1671         dev_dbg(&bcm4377->pdev->dev, "context initialized at IOVA %pad",
1672                 &bcm4377->ctx_dma);
1673
1674         return 0;
1675 }
1676
1677 static int bcm4377_prepare_rings(struct bcm4377_data *bcm4377)
1678 {
1679         int ret;
1680
1681         /*
1682          * Even though many of these settings appear to be configurable
1683          * when sending the "create ring" messages most of these are
1684          * actually hardcoded in some (and quite possibly all) firmware versions
1685          * and changing them on the host has no effect.
1686          * Specifically, this applies to at least the doorbells, the transfer
1687          * and completion ring ids and their mapping (e.g. both HCI and ACL
1688          * entries will always be queued in completion rings 1 and 2 no matter
1689          * what we configure here).
1690          */
1691         bcm4377->control_ack_ring.ring_id = BCM4377_ACK_RING_CONTROL;
1692         bcm4377->control_ack_ring.n_entries = 32;
1693         bcm4377->control_ack_ring.transfer_rings =
1694                 BIT(BCM4377_XFER_RING_CONTROL);
1695
1696         bcm4377->hci_acl_ack_ring.ring_id = BCM4377_ACK_RING_HCI_ACL;
1697         bcm4377->hci_acl_ack_ring.n_entries = 2 * BCM4377_RING_N_ENTRIES;
1698         bcm4377->hci_acl_ack_ring.transfer_rings =
1699                 BIT(BCM4377_XFER_RING_HCI_H2D) | BIT(BCM4377_XFER_RING_ACL_H2D);
1700         bcm4377->hci_acl_ack_ring.delay = 1000;
1701
1702         /*
1703          * A payload size of MAX_EVENT_PAYLOAD_SIZE is enough here since large
1704          * ACL packets will be transmitted inside buffers mapped via
1705          * acl_d2h_ring anyway.
1706          */
1707         bcm4377->hci_acl_event_ring.ring_id = BCM4377_EVENT_RING_HCI_ACL;
1708         bcm4377->hci_acl_event_ring.payload_size = MAX_EVENT_PAYLOAD_SIZE;
1709         bcm4377->hci_acl_event_ring.n_entries = 2 * BCM4377_RING_N_ENTRIES;
1710         bcm4377->hci_acl_event_ring.transfer_rings =
1711                 BIT(BCM4377_XFER_RING_HCI_D2H) | BIT(BCM4377_XFER_RING_ACL_D2H);
1712         bcm4377->hci_acl_event_ring.delay = 1000;
1713
1714         bcm4377->sco_ack_ring.ring_id = BCM4377_ACK_RING_SCO;
1715         bcm4377->sco_ack_ring.n_entries = BCM4377_RING_N_ENTRIES;
1716         bcm4377->sco_ack_ring.transfer_rings = BIT(BCM4377_XFER_RING_SCO_H2D);
1717
1718         bcm4377->sco_event_ring.ring_id = BCM4377_EVENT_RING_SCO;
1719         bcm4377->sco_event_ring.payload_size = MAX_SCO_PAYLOAD_SIZE;
1720         bcm4377->sco_event_ring.n_entries = BCM4377_RING_N_ENTRIES;
1721         bcm4377->sco_event_ring.transfer_rings = BIT(BCM4377_XFER_RING_SCO_D2H);
1722
1723         bcm4377->control_h2d_ring.ring_id = BCM4377_XFER_RING_CONTROL;
1724         bcm4377->control_h2d_ring.doorbell = BCM4377_DOORBELL_CONTROL;
1725         bcm4377->control_h2d_ring.payload_size = BCM4377_CONTROL_MSG_SIZE;
1726         bcm4377->control_h2d_ring.completion_ring = BCM4377_ACK_RING_CONTROL;
1727         bcm4377->control_h2d_ring.allow_wait = true;
1728         bcm4377->control_h2d_ring.n_entries = BCM4377_RING_N_ENTRIES;
1729
1730         bcm4377->hci_h2d_ring.ring_id = BCM4377_XFER_RING_HCI_H2D;
1731         bcm4377->hci_h2d_ring.doorbell = BCM4377_DOORBELL_HCI_H2D;
1732         bcm4377->hci_h2d_ring.payload_size = MAX_EVENT_PAYLOAD_SIZE;
1733         bcm4377->hci_h2d_ring.completion_ring = BCM4377_ACK_RING_HCI_ACL;
1734         bcm4377->hci_h2d_ring.n_entries = BCM4377_RING_N_ENTRIES;
1735
1736         bcm4377->hci_d2h_ring.ring_id = BCM4377_XFER_RING_HCI_D2H;
1737         bcm4377->hci_d2h_ring.doorbell = BCM4377_DOORBELL_HCI_D2H;
1738         bcm4377->hci_d2h_ring.completion_ring = BCM4377_EVENT_RING_HCI_ACL;
1739         bcm4377->hci_d2h_ring.virtual = true;
1740         bcm4377->hci_d2h_ring.n_entries = BCM4377_RING_N_ENTRIES;
1741
1742         bcm4377->sco_h2d_ring.ring_id = BCM4377_XFER_RING_SCO_H2D;
1743         bcm4377->sco_h2d_ring.doorbell = BCM4377_DOORBELL_SCO;
1744         bcm4377->sco_h2d_ring.payload_size = MAX_SCO_PAYLOAD_SIZE;
1745         bcm4377->sco_h2d_ring.completion_ring = BCM4377_ACK_RING_SCO;
1746         bcm4377->sco_h2d_ring.sync = true;
1747         bcm4377->sco_h2d_ring.n_entries = BCM4377_RING_N_ENTRIES;
1748
1749         bcm4377->sco_d2h_ring.ring_id = BCM4377_XFER_RING_SCO_D2H;
1750         bcm4377->sco_d2h_ring.doorbell = BCM4377_DOORBELL_SCO;
1751         bcm4377->sco_d2h_ring.completion_ring = BCM4377_EVENT_RING_SCO;
1752         bcm4377->sco_d2h_ring.virtual = true;
1753         bcm4377->sco_d2h_ring.sync = true;
1754         bcm4377->sco_d2h_ring.n_entries = BCM4377_RING_N_ENTRIES;
1755
1756         /*
1757          * This ring has to use mapped_payload_size because the largest ACL
1758          * packet doesn't fit inside the largest possible footer
1759          */
1760         bcm4377->acl_h2d_ring.ring_id = BCM4377_XFER_RING_ACL_H2D;
1761         bcm4377->acl_h2d_ring.doorbell = BCM4377_DOORBELL_ACL_H2D;
1762         bcm4377->acl_h2d_ring.mapped_payload_size = MAX_ACL_PAYLOAD_SIZE;
1763         bcm4377->acl_h2d_ring.completion_ring = BCM4377_ACK_RING_HCI_ACL;
1764         bcm4377->acl_h2d_ring.n_entries = BCM4377_RING_N_ENTRIES;
1765
1766         /*
1767          * This ring only contains empty buffers to be used by incoming
1768          * ACL packets that do not fit inside the footer of hci_acl_event_ring
1769          */
1770         bcm4377->acl_d2h_ring.ring_id = BCM4377_XFER_RING_ACL_D2H;
1771         bcm4377->acl_d2h_ring.doorbell = BCM4377_DOORBELL_ACL_D2H;
1772         bcm4377->acl_d2h_ring.completion_ring = BCM4377_EVENT_RING_HCI_ACL;
1773         bcm4377->acl_d2h_ring.d2h_buffers_only = true;
1774         bcm4377->acl_d2h_ring.mapped_payload_size = MAX_ACL_PAYLOAD_SIZE;
1775         bcm4377->acl_d2h_ring.n_entries = BCM4377_RING_N_ENTRIES;
1776
1777         /*
1778          * no need for any cleanup since this is only called from _probe
1779          * and only devres-managed allocations are used
1780          */
1781         ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->control_h2d_ring);
1782         if (ret)
1783                 return ret;
1784         ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->hci_h2d_ring);
1785         if (ret)
1786                 return ret;
1787         ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->hci_d2h_ring);
1788         if (ret)
1789                 return ret;
1790         ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->sco_h2d_ring);
1791         if (ret)
1792                 return ret;
1793         ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->sco_d2h_ring);
1794         if (ret)
1795                 return ret;
1796         ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->acl_h2d_ring);
1797         if (ret)
1798                 return ret;
1799         ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->acl_d2h_ring);
1800         if (ret)
1801                 return ret;
1802
1803         ret = bcm4377_alloc_completion_ring(bcm4377,
1804                                             &bcm4377->control_ack_ring);
1805         if (ret)
1806                 return ret;
1807         ret = bcm4377_alloc_completion_ring(bcm4377,
1808                                             &bcm4377->hci_acl_ack_ring);
1809         if (ret)
1810                 return ret;
1811         ret = bcm4377_alloc_completion_ring(bcm4377,
1812                                             &bcm4377->hci_acl_event_ring);
1813         if (ret)
1814                 return ret;
1815         ret = bcm4377_alloc_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
1816         if (ret)
1817                 return ret;
1818         ret = bcm4377_alloc_completion_ring(bcm4377, &bcm4377->sco_event_ring);
1819         if (ret)
1820                 return ret;
1821
1822         dev_dbg(&bcm4377->pdev->dev, "all rings allocated and prepared\n");
1823
1824         return 0;
1825 }
1826
1827 static int bcm4377_boot(struct bcm4377_data *bcm4377)
1828 {
1829         const struct firmware *fw;
1830         void *bfr;
1831         dma_addr_t fw_dma;
1832         int ret = 0;
1833         u32 bootstage, rti_status;
1834
1835         bootstage = ioread32(bcm4377->bar2 + bcm4377->hw->bar2_offset + BCM4377_BAR2_BOOTSTAGE);
1836         rti_status = ioread32(bcm4377->bar2 + bcm4377->hw->bar2_offset + BCM4377_BAR2_RTI_STATUS);
1837
1838         if (bootstage != 0) {
1839                 dev_err(&bcm4377->pdev->dev, "bootstage is %d and not 0\n",
1840                         bootstage);
1841                 return -EINVAL;
1842         }
1843
1844         if (rti_status != 0) {
1845                 dev_err(&bcm4377->pdev->dev, "RTI status is %d and not 0\n",
1846                         rti_status);
1847                 return -EINVAL;
1848         }
1849
1850         fw = bcm4377_request_blob(bcm4377, "bin");
1851         if (!fw) {
1852                 dev_err(&bcm4377->pdev->dev, "Failed to load firmware\n");
1853                 return -ENOENT;
1854         }
1855
1856         bfr = dma_alloc_coherent(&bcm4377->pdev->dev, fw->size, &fw_dma,
1857                                  GFP_KERNEL);
1858         if (!bfr) {
1859                 ret = -ENOMEM;
1860                 goto out_release_fw;
1861         }
1862
1863         memcpy(bfr, fw->data, fw->size);
1864
1865         iowrite32(0, bcm4377->bar0 + BCM4377_BAR0_HOST_WINDOW_LO);
1866         iowrite32(0, bcm4377->bar0 + BCM4377_BAR0_HOST_WINDOW_HI);
1867         iowrite32(BCM4377_DMA_MASK,
1868                   bcm4377->bar0 + BCM4377_BAR0_HOST_WINDOW_SIZE);
1869
1870         iowrite32(lower_32_bits(fw_dma),
1871                   bcm4377->bar2 + bcm4377->hw->bar2_offset + BCM4377_BAR2_FW_LO);
1872         iowrite32(upper_32_bits(fw_dma),
1873                   bcm4377->bar2 + bcm4377->hw->bar2_offset + BCM4377_BAR2_FW_HI);
1874         iowrite32(fw->size,
1875                   bcm4377->bar2 + bcm4377->hw->bar2_offset + BCM4377_BAR2_FW_SIZE);
1876         iowrite32(0, bcm4377->bar0 + BCM4377_BAR0_FW_DOORBELL);
1877
1878         dev_dbg(&bcm4377->pdev->dev, "waiting for firmware to boot\n");
1879
1880         ret = wait_for_completion_interruptible_timeout(&bcm4377->event,
1881                                                         BCM4377_BOOT_TIMEOUT);
1882         if (ret == 0) {
1883                 ret = -ETIMEDOUT;
1884                 goto out_dma_free;
1885         } else if (ret < 0) {
1886                 goto out_dma_free;
1887         }
1888
1889         if (bcm4377->bootstage != 2) {
1890                 dev_err(&bcm4377->pdev->dev, "boostage %d != 2\n",
1891                         bcm4377->bootstage);
1892                 ret = -ENXIO;
1893                 goto out_dma_free;
1894         }
1895
1896         dev_dbg(&bcm4377->pdev->dev, "firmware has booted (stage = %x)\n",
1897                 bcm4377->bootstage);
1898         ret = 0;
1899
1900 out_dma_free:
1901         dma_free_coherent(&bcm4377->pdev->dev, fw->size, bfr, fw_dma);
1902 out_release_fw:
1903         release_firmware(fw);
1904         return ret;
1905 }
1906
1907 static int bcm4377_setup_rti(struct bcm4377_data *bcm4377)
1908 {
1909         int ret;
1910
1911         dev_dbg(&bcm4377->pdev->dev, "starting RTI\n");
1912         iowrite32(1, bcm4377->bar0 + BCM4377_BAR0_RTI_CONTROL);
1913
1914         ret = wait_for_completion_interruptible_timeout(&bcm4377->event,
1915                                                         BCM4377_TIMEOUT);
1916         if (ret == 0) {
1917                 dev_err(&bcm4377->pdev->dev,
1918                         "timed out while waiting for RTI to transition to state 1");
1919                 return -ETIMEDOUT;
1920         } else if (ret < 0) {
1921                 return ret;
1922         }
1923
1924         if (bcm4377->rti_status != 1) {
1925                 dev_err(&bcm4377->pdev->dev, "RTI did not ack state 1 (%d)\n",
1926                         bcm4377->rti_status);
1927                 return -ENODEV;
1928         }
1929         dev_dbg(&bcm4377->pdev->dev, "RTI is in state 1\n");
1930
1931         /* allow access to the entire IOVA space again */
1932         iowrite32(0, bcm4377->bar2 + bcm4377->hw->bar2_offset + BCM4377_BAR2_RTI_WINDOW_LO);
1933         iowrite32(0, bcm4377->bar2 + bcm4377->hw->bar2_offset + BCM4377_BAR2_RTI_WINDOW_HI);
1934         iowrite32(BCM4377_DMA_MASK,
1935                   bcm4377->bar2 + bcm4377->hw->bar2_offset + BCM4377_BAR2_RTI_WINDOW_SIZE);
1936
1937         /* setup "Converged IPC" context */
1938         iowrite32(lower_32_bits(bcm4377->ctx_dma),
1939                   bcm4377->bar2 + bcm4377->hw->bar2_offset + BCM4377_BAR2_CONTEXT_ADDR_LO);
1940         iowrite32(upper_32_bits(bcm4377->ctx_dma),
1941                   bcm4377->bar2 + bcm4377->hw->bar2_offset + BCM4377_BAR2_CONTEXT_ADDR_HI);
1942         iowrite32(2, bcm4377->bar0 + BCM4377_BAR0_RTI_CONTROL);
1943
1944         ret = wait_for_completion_interruptible_timeout(&bcm4377->event,
1945                                                         BCM4377_TIMEOUT);
1946         if (ret == 0) {
1947                 dev_err(&bcm4377->pdev->dev,
1948                         "timed out while waiting for RTI to transition to state 2");
1949                 return -ETIMEDOUT;
1950         } else if (ret < 0) {
1951                 return ret;
1952         }
1953
1954         if (bcm4377->rti_status != 2) {
1955                 dev_err(&bcm4377->pdev->dev, "RTI did not ack state 2 (%d)\n",
1956                         bcm4377->rti_status);
1957                 return -ENODEV;
1958         }
1959
1960         dev_dbg(&bcm4377->pdev->dev,
1961                 "RTI is in state 2; control ring is ready\n");
1962         bcm4377->control_ack_ring.enabled = true;
1963
1964         return 0;
1965 }
1966
1967 static int bcm4377_parse_otp_board_params(struct bcm4377_data *bcm4377,
1968                                           char tag, const char *val, size_t len)
1969 {
1970         if (tag != 'V')
1971                 return 0;
1972         if (len >= sizeof(bcm4377->vendor))
1973                 return -EINVAL;
1974
1975         strscpy(bcm4377->vendor, val, len + 1);
1976         return 0;
1977 }
1978
1979 static int bcm4377_parse_otp_chip_params(struct bcm4377_data *bcm4377, char tag,
1980                                          const char *val, size_t len)
1981 {
1982         size_t idx = 0;
1983
1984         if (tag != 's')
1985                 return 0;
1986         if (len >= sizeof(bcm4377->stepping))
1987                 return -EINVAL;
1988
1989         while (len != 0) {
1990                 bcm4377->stepping[idx] = tolower(val[idx]);
1991                 if (val[idx] == '\0')
1992                         return 0;
1993
1994                 idx++;
1995                 len--;
1996         }
1997
1998         bcm4377->stepping[idx] = '\0';
1999         return 0;
2000 }
2001
2002 static int bcm4377_parse_otp_str(struct bcm4377_data *bcm4377, const u8 *str,
2003                                  enum bcm4377_otp_params_type type)
2004 {
2005         const char *p;
2006         int ret;
2007
2008         p = skip_spaces(str);
2009         while (*p) {
2010                 char tag = *p++;
2011                 const char *end;
2012                 size_t len;
2013
2014                 if (*p++ != '=') /* implicit NUL check */
2015                         return -EINVAL;
2016
2017                 /* *p might be NUL here, if so end == p and len == 0 */
2018                 end = strchrnul(p, ' ');
2019                 len = end - p;
2020
2021                 /* leave 1 byte for NUL in destination string */
2022                 if (len > (BCM4377_OTP_MAX_PARAM_LEN - 1))
2023                         return -EINVAL;
2024
2025                 switch (type) {
2026                 case BCM4377_OTP_BOARD_PARAMS:
2027                         ret = bcm4377_parse_otp_board_params(bcm4377, tag, p,
2028                                                              len);
2029                         break;
2030                 case BCM4377_OTP_CHIP_PARAMS:
2031                         ret = bcm4377_parse_otp_chip_params(bcm4377, tag, p,
2032                                                             len);
2033                         break;
2034                 default:
2035                         ret = -EINVAL;
2036                         break;
2037                 }
2038
2039                 if (ret)
2040                         return ret;
2041
2042                 /* Skip to next arg, if any */
2043                 p = skip_spaces(end);
2044         }
2045
2046         return 0;
2047 }
2048
2049 static int bcm4377_parse_otp_sys_vendor(struct bcm4377_data *bcm4377, u8 *otp,
2050                                         size_t size)
2051 {
2052         int idx = 4;
2053         const char *chip_params;
2054         const char *board_params;
2055         int ret;
2056
2057         /* 4-byte header and two empty strings */
2058         if (size < 6)
2059                 return -EINVAL;
2060
2061         if (get_unaligned_le32(otp) != BCM4377_OTP_VENDOR_HDR)
2062                 return -EINVAL;
2063
2064         chip_params = &otp[idx];
2065
2066         /* Skip first string, including terminator */
2067         idx += strnlen(chip_params, size - idx) + 1;
2068         if (idx >= size)
2069                 return -EINVAL;
2070
2071         board_params = &otp[idx];
2072
2073         /* Skip to terminator of second string */
2074         idx += strnlen(board_params, size - idx);
2075         if (idx >= size)
2076                 return -EINVAL;
2077
2078         /* At this point both strings are guaranteed NUL-terminated */
2079         dev_dbg(&bcm4377->pdev->dev,
2080                 "OTP: chip_params='%s' board_params='%s'\n", chip_params,
2081                 board_params);
2082
2083         ret = bcm4377_parse_otp_str(bcm4377, chip_params,
2084                                     BCM4377_OTP_CHIP_PARAMS);
2085         if (ret)
2086                 return ret;
2087
2088         ret = bcm4377_parse_otp_str(bcm4377, board_params,
2089                                     BCM4377_OTP_BOARD_PARAMS);
2090         if (ret)
2091                 return ret;
2092
2093         if (!bcm4377->stepping[0] || !bcm4377->vendor[0])
2094                 return -EINVAL;
2095
2096         dev_dbg(&bcm4377->pdev->dev, "OTP: stepping=%s, vendor=%s\n",
2097                 bcm4377->stepping, bcm4377->vendor);
2098         return 0;
2099 }
2100
2101 static int bcm4377_parse_otp(struct bcm4377_data *bcm4377)
2102 {
2103         u8 *otp;
2104         int i;
2105         int ret = -ENOENT;
2106
2107         otp = kzalloc(BCM4377_OTP_SIZE, GFP_KERNEL);
2108         if (!otp)
2109                 return -ENOMEM;
2110
2111         for (i = 0; i < BCM4377_OTP_SIZE; ++i)
2112                 otp[i] = ioread8(bcm4377->bar0 + bcm4377->hw->otp_offset + i);
2113
2114         i = 0;
2115         while (i < (BCM4377_OTP_SIZE - 1)) {
2116                 u8 type = otp[i];
2117                 u8 length = otp[i + 1];
2118
2119                 if (type == 0)
2120                         break;
2121
2122                 if ((i + 2 + length) > BCM4377_OTP_SIZE)
2123                         break;
2124
2125                 switch (type) {
2126                 case BCM4377_OTP_SYS_VENDOR:
2127                         dev_dbg(&bcm4377->pdev->dev,
2128                                 "OTP @ 0x%x (%d): SYS_VENDOR", i, length);
2129                         ret = bcm4377_parse_otp_sys_vendor(bcm4377, &otp[i + 2],
2130                                                            length);
2131                         break;
2132                 case BCM4377_OTP_CIS:
2133                         dev_dbg(&bcm4377->pdev->dev, "OTP @ 0x%x (%d): CIS", i,
2134                                 length);
2135                         break;
2136                 default:
2137                         dev_dbg(&bcm4377->pdev->dev, "OTP @ 0x%x (%d): unknown",
2138                                 i, length);
2139                         break;
2140                 }
2141
2142                 i += 2 + length;
2143         }
2144
2145         kfree(otp);
2146         return ret;
2147 }
2148
2149 static int bcm4377_init_cfg(struct bcm4377_data *bcm4377)
2150 {
2151         int ret;
2152         u32 ctrl;
2153
2154         ret = pci_write_config_dword(bcm4377->pdev,
2155                                      BCM4377_PCIECFG_BAR0_WINDOW1,
2156                                      bcm4377->hw->bar0_window1);
2157         if (ret)
2158                 return ret;
2159
2160         ret = pci_write_config_dword(bcm4377->pdev,
2161                                      BCM4377_PCIECFG_BAR0_WINDOW2,
2162                                      bcm4377->hw->bar0_window2);
2163         if (ret)
2164                 return ret;
2165
2166         ret = pci_write_config_dword(
2167                 bcm4377->pdev, BCM4377_PCIECFG_BAR0_CORE2_WINDOW1,
2168                 BCM4377_PCIECFG_BAR0_CORE2_WINDOW1_DEFAULT);
2169         if (ret)
2170                 return ret;
2171
2172         if (bcm4377->hw->has_bar0_core2_window2) {
2173                 ret = pci_write_config_dword(bcm4377->pdev,
2174                                              BCM4377_PCIECFG_BAR0_CORE2_WINDOW2,
2175                                              bcm4377->hw->bar0_core2_window2);
2176                 if (ret)
2177                         return ret;
2178         }
2179
2180         ret = pci_write_config_dword(bcm4377->pdev, BCM4377_PCIECFG_BAR2_WINDOW,
2181                                      BCM4377_PCIECFG_BAR2_WINDOW_DEFAULT);
2182         if (ret)
2183                 return ret;
2184
2185         ret = pci_read_config_dword(bcm4377->pdev,
2186                                     BCM4377_PCIECFG_SUBSYSTEM_CTRL, &ctrl);
2187         if (ret)
2188                 return ret;
2189
2190         if (bcm4377->hw->clear_pciecfg_subsystem_ctrl_bit19)
2191                 ctrl &= ~BIT(19);
2192         ctrl |= BIT(16);
2193
2194         return pci_write_config_dword(bcm4377->pdev,
2195                                       BCM4377_PCIECFG_SUBSYSTEM_CTRL, ctrl);
2196 }
2197
2198 static int bcm4377_probe_dmi(struct bcm4377_data *bcm4377)
2199 {
2200         const struct dmi_system_id *board_type_dmi_id;
2201
2202         board_type_dmi_id = dmi_first_match(bcm4377_dmi_board_table);
2203         if (board_type_dmi_id && board_type_dmi_id->driver_data) {
2204                 bcm4377->board_type = board_type_dmi_id->driver_data;
2205                 dev_dbg(&bcm4377->pdev->dev,
2206                         "found board type via DMI match: %s\n",
2207                         bcm4377->board_type);
2208         }
2209
2210         return 0;
2211 }
2212
2213 static int bcm4377_probe_of(struct bcm4377_data *bcm4377)
2214 {
2215         struct device_node *np = bcm4377->pdev->dev.of_node;
2216         int ret;
2217
2218         if (!np)
2219                 return 0;
2220
2221         ret = of_property_read_string(np, "brcm,board-type",
2222                                       &bcm4377->board_type);
2223         if (ret) {
2224                 dev_err(&bcm4377->pdev->dev, "no brcm,board-type property\n");
2225                 return ret;
2226         }
2227
2228         bcm4377->taurus_beamforming_cal_blob =
2229                 of_get_property(np, "brcm,taurus-bf-cal-blob",
2230                                 &bcm4377->taurus_beamforming_cal_size);
2231         if (!bcm4377->taurus_beamforming_cal_blob) {
2232                 dev_err(&bcm4377->pdev->dev,
2233                         "no brcm,taurus-bf-cal-blob property\n");
2234                 return -ENOENT;
2235         }
2236         bcm4377->taurus_cal_blob = of_get_property(np, "brcm,taurus-cal-blob",
2237                                                    &bcm4377->taurus_cal_size);
2238         if (!bcm4377->taurus_cal_blob) {
2239                 dev_err(&bcm4377->pdev->dev,
2240                         "no brcm,taurus-cal-blob property\n");
2241                 return -ENOENT;
2242         }
2243
2244         return 0;
2245 }
2246
2247 static void bcm4377_disable_aspm(struct bcm4377_data *bcm4377)
2248 {
2249         pci_disable_link_state(bcm4377->pdev,
2250                                PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1);
2251
2252         /*
2253          * pci_disable_link_state can fail if either CONFIG_PCIEASPM is disabled
2254          * or if the BIOS hasn't handed over control to us. We must *always*
2255          * disable ASPM for this device due to hardware errata though.
2256          */
2257         pcie_capability_clear_word(bcm4377->pdev, PCI_EXP_LNKCTL,
2258                                    PCI_EXP_LNKCTL_ASPMC);
2259 }
2260
2261 static void bcm4377_pci_free_irq_vectors(void *data)
2262 {
2263         pci_free_irq_vectors(data);
2264 }
2265
2266 static void bcm4377_hci_free_dev(void *data)
2267 {
2268         hci_free_dev(data);
2269 }
2270
2271 static void bcm4377_hci_unregister_dev(void *data)
2272 {
2273         hci_unregister_dev(data);
2274 }
2275
2276 static int bcm4377_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2277 {
2278         struct bcm4377_data *bcm4377;
2279         struct hci_dev *hdev;
2280         int ret, irq;
2281
2282         ret = dma_set_mask_and_coherent(&pdev->dev, BCM4377_DMA_MASK);
2283         if (ret)
2284                 return ret;
2285
2286         bcm4377 = devm_kzalloc(&pdev->dev, sizeof(*bcm4377), GFP_KERNEL);
2287         if (!bcm4377)
2288                 return -ENOMEM;
2289
2290         bcm4377->pdev = pdev;
2291         bcm4377->hw = &bcm4377_hw_variants[id->driver_data];
2292         init_completion(&bcm4377->event);
2293
2294         ret = bcm4377_prepare_rings(bcm4377);
2295         if (ret)
2296                 return ret;
2297
2298         ret = bcm4377_init_context(bcm4377);
2299         if (ret)
2300                 return ret;
2301
2302         ret = bcm4377_probe_dmi(bcm4377);
2303         if (ret)
2304                 return ret;
2305         ret = bcm4377_probe_of(bcm4377);
2306         if (ret)
2307                 return ret;
2308         if (!bcm4377->board_type) {
2309                 dev_err(&pdev->dev, "unable to determine board type\n");
2310                 return -ENODEV;
2311         }
2312
2313         if (bcm4377->hw->disable_aspm)
2314                 bcm4377_disable_aspm(bcm4377);
2315
2316         ret = pci_reset_function_locked(pdev);
2317         if (ret)
2318                 dev_warn(
2319                         &pdev->dev,
2320                         "function level reset failed with %d; trying to continue anyway\n",
2321                         ret);
2322
2323         /*
2324          * If this number is too low and we try to access any BAR too
2325          * early the device will crash. Experiments have shown that
2326          * approximately 50 msec is the minimum amount we have to wait.
2327          * Let's double that to be safe.
2328          */
2329         msleep(100);
2330
2331         ret = pcim_enable_device(pdev);
2332         if (ret)
2333                 return ret;
2334         pci_set_master(pdev);
2335
2336         ret = bcm4377_init_cfg(bcm4377);
2337         if (ret)
2338                 return ret;
2339
2340         bcm4377->bar0 = pcim_iomap(pdev, 0, 0);
2341         if (!bcm4377->bar0)
2342                 return -EBUSY;
2343         bcm4377->bar2 = pcim_iomap(pdev, 2, 0);
2344         if (!bcm4377->bar2)
2345                 return -EBUSY;
2346
2347         ret = bcm4377_parse_otp(bcm4377);
2348         if (ret) {
2349                 dev_err(&pdev->dev, "Reading OTP failed with %d\n", ret);
2350                 return ret;
2351         }
2352
2353         /*
2354          * Legacy interrupts result in an IRQ storm because we don't know where
2355          * the interrupt mask and status registers for these chips are.
2356          * MSIs are acked automatically instead.
2357          */
2358         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
2359         if (ret < 0)
2360                 return -ENODEV;
2361         ret = devm_add_action_or_reset(&pdev->dev, bcm4377_pci_free_irq_vectors,
2362                                        pdev);
2363         if (ret)
2364                 return ret;
2365
2366         irq = pci_irq_vector(pdev, 0);
2367         if (irq <= 0)
2368                 return -ENODEV;
2369
2370         ret = devm_request_irq(&pdev->dev, irq, bcm4377_irq, 0, "bcm4377",
2371                                bcm4377);
2372         if (ret)
2373                 return ret;
2374
2375         hdev = hci_alloc_dev();
2376         if (!hdev)
2377                 return -ENOMEM;
2378         ret = devm_add_action_or_reset(&pdev->dev, bcm4377_hci_free_dev, hdev);
2379         if (ret)
2380                 return ret;
2381
2382         bcm4377->hdev = hdev;
2383
2384         hdev->bus = HCI_PCI;
2385         hdev->open = bcm4377_hci_open;
2386         hdev->close = bcm4377_hci_close;
2387         hdev->send = bcm4377_hci_send_frame;
2388         hdev->set_bdaddr = bcm4377_hci_set_bdaddr;
2389         hdev->setup = bcm4377_hci_setup;
2390
2391         if (bcm4377->hw->broken_mws_transport_config)
2392                 set_bit(HCI_QUIRK_BROKEN_MWS_TRANSPORT_CONFIG, &hdev->quirks);
2393         if (bcm4377->hw->broken_ext_scan)
2394                 set_bit(HCI_QUIRK_BROKEN_EXT_SCAN, &hdev->quirks);
2395         if (bcm4377->hw->broken_le_coded)
2396                 set_bit(HCI_QUIRK_BROKEN_LE_CODED, &hdev->quirks);
2397         if (bcm4377->hw->broken_le_ext_adv_report_phy)
2398                 set_bit(HCI_QUIRK_FIXUP_LE_EXT_ADV_REPORT_PHY, &hdev->quirks);
2399
2400         pci_set_drvdata(pdev, bcm4377);
2401         hci_set_drvdata(hdev, bcm4377);
2402         SET_HCIDEV_DEV(hdev, &pdev->dev);
2403
2404         ret = bcm4377_boot(bcm4377);
2405         if (ret)
2406                 return ret;
2407
2408         ret = bcm4377_setup_rti(bcm4377);
2409         if (ret)
2410                 return ret;
2411
2412         ret = hci_register_dev(hdev);
2413         if (ret)
2414                 return ret;
2415         return devm_add_action_or_reset(&pdev->dev, bcm4377_hci_unregister_dev,
2416                                         hdev);
2417 }
2418
2419 static int bcm4377_suspend(struct pci_dev *pdev, pm_message_t state)
2420 {
2421         struct bcm4377_data *bcm4377 = pci_get_drvdata(pdev);
2422         int ret;
2423
2424         ret = hci_suspend_dev(bcm4377->hdev);
2425         if (ret)
2426                 return ret;
2427
2428         iowrite32(BCM4377_BAR0_SLEEP_CONTROL_QUIESCE,
2429                   bcm4377->bar0 + BCM4377_BAR0_SLEEP_CONTROL);
2430
2431         return 0;
2432 }
2433
2434 static int bcm4377_resume(struct pci_dev *pdev)
2435 {
2436         struct bcm4377_data *bcm4377 = pci_get_drvdata(pdev);
2437
2438         iowrite32(BCM4377_BAR0_SLEEP_CONTROL_UNQUIESCE,
2439                   bcm4377->bar0 + BCM4377_BAR0_SLEEP_CONTROL);
2440
2441         return hci_resume_dev(bcm4377->hdev);
2442 }
2443
2444 static const struct dmi_system_id bcm4377_dmi_board_table[] = {
2445         {
2446                 .matches = {
2447                         DMI_MATCH(DMI_BOARD_VENDOR, "Apple Inc."),
2448                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookAir9,1"),
2449                 },
2450                 .driver_data = "apple,formosa",
2451         },
2452         {
2453                 .matches = {
2454                         DMI_MATCH(DMI_BOARD_VENDOR, "Apple Inc."),
2455                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro15,4"),
2456                 },
2457                 .driver_data = "apple,formosa",
2458         },
2459         {
2460                 .matches = {
2461                         DMI_MATCH(DMI_BOARD_VENDOR, "Apple Inc."),
2462                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro16,3"),
2463                 },
2464                 .driver_data = "apple,formosa",
2465         },
2466         {}
2467 };
2468
2469 static const struct bcm4377_hw bcm4377_hw_variants[] = {
2470         [BCM4377] = {
2471                 .id = 0x4377,
2472                 .otp_offset = 0x4120,
2473                 .bar0_window1 = 0x1800b000,
2474                 .bar0_window2 = 0x1810c000,
2475                 .disable_aspm = true,
2476                 .broken_ext_scan = true,
2477                 .send_ptb = bcm4377_send_ptb,
2478         },
2479
2480         [BCM4378] = {
2481                 .id = 0x4378,
2482                 .otp_offset = 0x4120,
2483                 .bar0_window1 = 0x18002000,
2484                 .bar0_window2 = 0x1810a000,
2485                 .bar0_core2_window2 = 0x18107000,
2486                 .has_bar0_core2_window2 = true,
2487                 .broken_mws_transport_config = true,
2488                 .broken_le_coded = true,
2489                 .send_calibration = bcm4378_send_calibration,
2490                 .send_ptb = bcm4378_send_ptb,
2491         },
2492
2493         [BCM4387] = {
2494                 .id = 0x4387,
2495                 .otp_offset = 0x413c,
2496                 .bar0_window1 = 0x18002000,
2497                 .bar0_window2 = 0x18109000,
2498                 .bar0_core2_window2 = 0x18106000,
2499                 .has_bar0_core2_window2 = true,
2500                 .clear_pciecfg_subsystem_ctrl_bit19 = true,
2501                 .broken_mws_transport_config = true,
2502                 .broken_le_coded = true,
2503                 .broken_le_ext_adv_report_phy = true,
2504                 .send_calibration = bcm4387_send_calibration,
2505                 .send_ptb = bcm4378_send_ptb,
2506         },
2507
2508         [BCM4388] = {
2509                 .id = 0x4388,
2510                 .otp_offset = 0x415c,
2511                 .bar2_offset = 0x200000,
2512                 .bar0_window1 = 0x18002000,
2513                 .bar0_window2 = 0x18109000,
2514                 .bar0_core2_window2 = 0x18106000,
2515                 .has_bar0_core2_window2 = true,
2516                 .broken_mws_transport_config = true,
2517                 .broken_le_coded = true,
2518                 .broken_le_ext_adv_report_phy = true,
2519                 .send_calibration = bcm4388_send_calibration,
2520                 .send_ptb = bcm4378_send_ptb,
2521         },
2522 };
2523
2524 #define BCM4377_DEVID_ENTRY(id)                                             \
2525         {                                                                   \
2526                 PCI_VENDOR_ID_BROADCOM, BCM##id##_DEVICE_ID, PCI_ANY_ID,    \
2527                         PCI_ANY_ID, PCI_CLASS_NETWORK_OTHER << 8, 0xffff00, \
2528                         BCM##id                                             \
2529         }
2530
2531 static const struct pci_device_id bcm4377_devid_table[] = {
2532         BCM4377_DEVID_ENTRY(4377),
2533         BCM4377_DEVID_ENTRY(4378),
2534         BCM4377_DEVID_ENTRY(4387),
2535         BCM4377_DEVID_ENTRY(4388),
2536         {},
2537 };
2538 MODULE_DEVICE_TABLE(pci, bcm4377_devid_table);
2539
2540 static struct pci_driver bcm4377_pci_driver = {
2541         .name = "hci_bcm4377",
2542         .id_table = bcm4377_devid_table,
2543         .probe = bcm4377_probe,
2544         .suspend = bcm4377_suspend,
2545         .resume = bcm4377_resume,
2546 };
2547 module_pci_driver(bcm4377_pci_driver);
2548
2549 MODULE_AUTHOR("Sven Peter <[email protected]>");
2550 MODULE_DESCRIPTION("Bluetooth support for Broadcom 4377/4378/4387/4388 devices");
2551 MODULE_LICENSE("Dual MIT/GPL");
2552 MODULE_FIRMWARE("brcm/brcmbt4377*.bin");
2553 MODULE_FIRMWARE("brcm/brcmbt4377*.ptb");
2554 MODULE_FIRMWARE("brcm/brcmbt4378*.bin");
2555 MODULE_FIRMWARE("brcm/brcmbt4378*.ptb");
2556 MODULE_FIRMWARE("brcm/brcmbt4387*.bin");
2557 MODULE_FIRMWARE("brcm/brcmbt4387*.ptb");
2558 MODULE_FIRMWARE("brcm/brcmbt4388*.bin");
2559 MODULE_FIRMWARE("brcm/brcmbt4388*.ptb");
This page took 0.208566 seconds and 4 git commands to generate.