]> Git Repo - linux.git/blob - drivers/base/regmap/regmap-irq.c
crypto: akcipher - Drop sign/verify operations
[linux.git] / drivers / base / regmap / regmap-irq.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <[email protected]>
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17
18 #include "internal.h"
19
20 struct regmap_irq_chip_data {
21         struct mutex lock;
22         struct irq_chip irq_chip;
23
24         struct regmap *map;
25         const struct regmap_irq_chip *chip;
26
27         int irq_base;
28         struct irq_domain *domain;
29
30         int irq;
31         int wake_count;
32
33         void *status_reg_buf;
34         unsigned int *main_status_buf;
35         unsigned int *status_buf;
36         unsigned int *mask_buf;
37         unsigned int *mask_buf_def;
38         unsigned int *wake_buf;
39         unsigned int *type_buf;
40         unsigned int *type_buf_def;
41         unsigned int **config_buf;
42
43         unsigned int irq_reg_stride;
44
45         unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
46                                     unsigned int base, int index);
47
48         unsigned int clear_status:1;
49 };
50
51 static inline const
52 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
53                                      int irq)
54 {
55         return &data->chip->irqs[irq];
56 }
57
58 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
59 {
60         struct regmap *map = data->map;
61
62         /*
63          * While possible that a user-defined ->get_irq_reg() callback might
64          * be linear enough to support bulk reads, most of the time it won't.
65          * Therefore only allow them if the default callback is being used.
66          */
67         return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
68                data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
69                !map->use_single_read;
70 }
71
72 static void regmap_irq_lock(struct irq_data *data)
73 {
74         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
75
76         mutex_lock(&d->lock);
77 }
78
79 static void regmap_irq_sync_unlock(struct irq_data *data)
80 {
81         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
82         struct regmap *map = d->map;
83         int i, j, ret;
84         u32 reg;
85         u32 val;
86
87         if (d->chip->runtime_pm) {
88                 ret = pm_runtime_get_sync(map->dev);
89                 if (ret < 0)
90                         dev_err(map->dev, "IRQ sync failed to resume: %d\n",
91                                 ret);
92         }
93
94         if (d->clear_status) {
95                 for (i = 0; i < d->chip->num_regs; i++) {
96                         reg = d->get_irq_reg(d, d->chip->status_base, i);
97
98                         ret = regmap_read(map, reg, &val);
99                         if (ret)
100                                 dev_err(d->map->dev,
101                                         "Failed to clear the interrupt status bits\n");
102                 }
103
104                 d->clear_status = false;
105         }
106
107         /*
108          * If there's been a change in the mask write it back to the
109          * hardware.  We rely on the use of the regmap core cache to
110          * suppress pointless writes.
111          */
112         for (i = 0; i < d->chip->num_regs; i++) {
113                 if (d->chip->handle_mask_sync)
114                         d->chip->handle_mask_sync(i, d->mask_buf_def[i],
115                                                   d->mask_buf[i],
116                                                   d->chip->irq_drv_data);
117
118                 if (d->chip->mask_base && !d->chip->handle_mask_sync) {
119                         reg = d->get_irq_reg(d, d->chip->mask_base, i);
120                         ret = regmap_update_bits(d->map, reg,
121                                                  d->mask_buf_def[i],
122                                                  d->mask_buf[i]);
123                         if (ret)
124                                 dev_err(d->map->dev, "Failed to sync masks in %x\n", reg);
125                 }
126
127                 if (d->chip->unmask_base && !d->chip->handle_mask_sync) {
128                         reg = d->get_irq_reg(d, d->chip->unmask_base, i);
129                         ret = regmap_update_bits(d->map, reg,
130                                         d->mask_buf_def[i], ~d->mask_buf[i]);
131                         if (ret)
132                                 dev_err(d->map->dev, "Failed to sync masks in %x\n",
133                                         reg);
134                 }
135
136                 reg = d->get_irq_reg(d, d->chip->wake_base, i);
137                 if (d->wake_buf) {
138                         if (d->chip->wake_invert)
139                                 ret = regmap_update_bits(d->map, reg,
140                                                          d->mask_buf_def[i],
141                                                          ~d->wake_buf[i]);
142                         else
143                                 ret = regmap_update_bits(d->map, reg,
144                                                          d->mask_buf_def[i],
145                                                          d->wake_buf[i]);
146                         if (ret != 0)
147                                 dev_err(d->map->dev,
148                                         "Failed to sync wakes in %x: %d\n",
149                                         reg, ret);
150                 }
151
152                 if (!d->chip->init_ack_masked)
153                         continue;
154                 /*
155                  * Ack all the masked interrupts unconditionally,
156                  * OR if there is masked interrupt which hasn't been Acked,
157                  * it'll be ignored in irq handler, then may introduce irq storm
158                  */
159                 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
160                         reg = d->get_irq_reg(d, d->chip->ack_base, i);
161
162                         /* some chips ack by write 0 */
163                         if (d->chip->ack_invert)
164                                 ret = regmap_write(map, reg, ~d->mask_buf[i]);
165                         else
166                                 ret = regmap_write(map, reg, d->mask_buf[i]);
167                         if (d->chip->clear_ack) {
168                                 if (d->chip->ack_invert && !ret)
169                                         ret = regmap_write(map, reg, UINT_MAX);
170                                 else if (!ret)
171                                         ret = regmap_write(map, reg, 0);
172                         }
173                         if (ret != 0)
174                                 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
175                                         reg, ret);
176                 }
177         }
178
179         for (i = 0; i < d->chip->num_config_bases; i++) {
180                 for (j = 0; j < d->chip->num_config_regs; j++) {
181                         reg = d->get_irq_reg(d, d->chip->config_base[i], j);
182                         ret = regmap_write(map, reg, d->config_buf[i][j]);
183                         if (ret)
184                                 dev_err(d->map->dev,
185                                         "Failed to write config %x: %d\n",
186                                         reg, ret);
187                 }
188         }
189
190         if (d->chip->runtime_pm)
191                 pm_runtime_put(map->dev);
192
193         /* If we've changed our wakeup count propagate it to the parent */
194         if (d->wake_count < 0)
195                 for (i = d->wake_count; i < 0; i++)
196                         irq_set_irq_wake(d->irq, 0);
197         else if (d->wake_count > 0)
198                 for (i = 0; i < d->wake_count; i++)
199                         irq_set_irq_wake(d->irq, 1);
200
201         d->wake_count = 0;
202
203         mutex_unlock(&d->lock);
204 }
205
206 static void regmap_irq_enable(struct irq_data *data)
207 {
208         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
209         struct regmap *map = d->map;
210         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
211         unsigned int reg = irq_data->reg_offset / map->reg_stride;
212         unsigned int mask;
213
214         /*
215          * The type_in_mask flag means that the underlying hardware uses
216          * separate mask bits for each interrupt trigger type, but we want
217          * to have a single logical interrupt with a configurable type.
218          *
219          * If the interrupt we're enabling defines any supported types
220          * then instead of using the regular mask bits for this interrupt,
221          * use the value previously written to the type buffer at the
222          * corresponding offset in regmap_irq_set_type().
223          */
224         if (d->chip->type_in_mask && irq_data->type.types_supported)
225                 mask = d->type_buf[reg] & irq_data->mask;
226         else
227                 mask = irq_data->mask;
228
229         if (d->chip->clear_on_unmask)
230                 d->clear_status = true;
231
232         d->mask_buf[reg] &= ~mask;
233 }
234
235 static void regmap_irq_disable(struct irq_data *data)
236 {
237         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
238         struct regmap *map = d->map;
239         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
240
241         d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
242 }
243
244 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
245 {
246         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
247         struct regmap *map = d->map;
248         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
249         int reg, ret;
250         const struct regmap_irq_type *t = &irq_data->type;
251
252         if ((t->types_supported & type) != type)
253                 return 0;
254
255         reg = t->type_reg_offset / map->reg_stride;
256
257         if (d->chip->type_in_mask) {
258                 ret = regmap_irq_set_type_config_simple(&d->type_buf, type,
259                                                         irq_data, reg, d->chip->irq_drv_data);
260                 if (ret)
261                         return ret;
262         }
263
264         if (d->chip->set_type_config) {
265                 ret = d->chip->set_type_config(d->config_buf, type, irq_data,
266                                                reg, d->chip->irq_drv_data);
267                 if (ret)
268                         return ret;
269         }
270
271         return 0;
272 }
273
274 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
275 {
276         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
277         struct regmap *map = d->map;
278         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
279
280         if (on) {
281                 if (d->wake_buf)
282                         d->wake_buf[irq_data->reg_offset / map->reg_stride]
283                                 &= ~irq_data->mask;
284                 d->wake_count++;
285         } else {
286                 if (d->wake_buf)
287                         d->wake_buf[irq_data->reg_offset / map->reg_stride]
288                                 |= irq_data->mask;
289                 d->wake_count--;
290         }
291
292         return 0;
293 }
294
295 static const struct irq_chip regmap_irq_chip = {
296         .irq_bus_lock           = regmap_irq_lock,
297         .irq_bus_sync_unlock    = regmap_irq_sync_unlock,
298         .irq_disable            = regmap_irq_disable,
299         .irq_enable             = regmap_irq_enable,
300         .irq_set_type           = regmap_irq_set_type,
301         .irq_set_wake           = regmap_irq_set_wake,
302 };
303
304 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
305                                            unsigned int b)
306 {
307         const struct regmap_irq_chip *chip = data->chip;
308         const struct regmap_irq_sub_irq_map *subreg;
309         struct regmap *map = data->map;
310         unsigned int reg;
311         int i, ret = 0;
312
313         if (!chip->sub_reg_offsets) {
314                 reg = data->get_irq_reg(data, chip->status_base, b);
315                 ret = regmap_read(map, reg, &data->status_buf[b]);
316         } else {
317                 /*
318                  * Note we can't use ->get_irq_reg() here because the offsets
319                  * in 'subreg' are *not* interchangeable with indices.
320                  */
321                 subreg = &chip->sub_reg_offsets[b];
322                 for (i = 0; i < subreg->num_regs; i++) {
323                         unsigned int offset = subreg->offset[i];
324                         unsigned int index = offset / map->reg_stride;
325
326                         ret = regmap_read(map, chip->status_base + offset,
327                                           &data->status_buf[index]);
328                         if (ret)
329                                 break;
330                 }
331         }
332         return ret;
333 }
334
335 static irqreturn_t regmap_irq_thread(int irq, void *d)
336 {
337         struct regmap_irq_chip_data *data = d;
338         const struct regmap_irq_chip *chip = data->chip;
339         struct regmap *map = data->map;
340         int ret, i;
341         bool handled = false;
342         u32 reg;
343
344         if (chip->handle_pre_irq)
345                 chip->handle_pre_irq(chip->irq_drv_data);
346
347         if (chip->runtime_pm) {
348                 ret = pm_runtime_get_sync(map->dev);
349                 if (ret < 0) {
350                         dev_err(map->dev, "IRQ thread failed to resume: %d\n",
351                                 ret);
352                         goto exit;
353                 }
354         }
355
356         /*
357          * Read only registers with active IRQs if the chip has 'main status
358          * register'. Else read in the statuses, using a single bulk read if
359          * possible in order to reduce the I/O overheads.
360          */
361
362         if (chip->no_status) {
363                 /* no status register so default to all active */
364                 memset32(data->status_buf, GENMASK(31, 0), chip->num_regs);
365         } else if (chip->num_main_regs) {
366                 unsigned int max_main_bits;
367                 unsigned long size;
368
369                 size = chip->num_regs * sizeof(unsigned int);
370
371                 max_main_bits = (chip->num_main_status_bits) ?
372                                  chip->num_main_status_bits : chip->num_regs;
373                 /* Clear the status buf as we don't read all status regs */
374                 memset(data->status_buf, 0, size);
375
376                 /* We could support bulk read for main status registers
377                  * but I don't expect to see devices with really many main
378                  * status registers so let's only support single reads for the
379                  * sake of simplicity. and add bulk reads only if needed
380                  */
381                 for (i = 0; i < chip->num_main_regs; i++) {
382                         reg = data->get_irq_reg(data, chip->main_status, i);
383                         ret = regmap_read(map, reg, &data->main_status_buf[i]);
384                         if (ret) {
385                                 dev_err(map->dev,
386                                         "Failed to read IRQ status %d\n",
387                                         ret);
388                                 goto exit;
389                         }
390                 }
391
392                 /* Read sub registers with active IRQs */
393                 for (i = 0; i < chip->num_main_regs; i++) {
394                         unsigned int b;
395                         const unsigned long mreg = data->main_status_buf[i];
396
397                         for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
398                                 if (i * map->format.val_bytes * 8 + b >
399                                     max_main_bits)
400                                         break;
401                                 ret = read_sub_irq_data(data, b);
402
403                                 if (ret != 0) {
404                                         dev_err(map->dev,
405                                                 "Failed to read IRQ status %d\n",
406                                                 ret);
407                                         goto exit;
408                                 }
409                         }
410
411                 }
412         } else if (regmap_irq_can_bulk_read_status(data)) {
413
414                 u8 *buf8 = data->status_reg_buf;
415                 u16 *buf16 = data->status_reg_buf;
416                 u32 *buf32 = data->status_reg_buf;
417
418                 BUG_ON(!data->status_reg_buf);
419
420                 ret = regmap_bulk_read(map, chip->status_base,
421                                        data->status_reg_buf,
422                                        chip->num_regs);
423                 if (ret != 0) {
424                         dev_err(map->dev, "Failed to read IRQ status: %d\n",
425                                 ret);
426                         goto exit;
427                 }
428
429                 for (i = 0; i < data->chip->num_regs; i++) {
430                         switch (map->format.val_bytes) {
431                         case 1:
432                                 data->status_buf[i] = buf8[i];
433                                 break;
434                         case 2:
435                                 data->status_buf[i] = buf16[i];
436                                 break;
437                         case 4:
438                                 data->status_buf[i] = buf32[i];
439                                 break;
440                         default:
441                                 BUG();
442                                 goto exit;
443                         }
444                 }
445
446         } else {
447                 for (i = 0; i < data->chip->num_regs; i++) {
448                         unsigned int reg = data->get_irq_reg(data,
449                                         data->chip->status_base, i);
450                         ret = regmap_read(map, reg, &data->status_buf[i]);
451
452                         if (ret != 0) {
453                                 dev_err(map->dev,
454                                         "Failed to read IRQ status: %d\n",
455                                         ret);
456                                 goto exit;
457                         }
458                 }
459         }
460
461         if (chip->status_invert)
462                 for (i = 0; i < data->chip->num_regs; i++)
463                         data->status_buf[i] = ~data->status_buf[i];
464
465         /*
466          * Ignore masked IRQs and ack if we need to; we ack early so
467          * there is no race between handling and acknowledging the
468          * interrupt.  We assume that typically few of the interrupts
469          * will fire simultaneously so don't worry about overhead from
470          * doing a write per register.
471          */
472         for (i = 0; i < data->chip->num_regs; i++) {
473                 data->status_buf[i] &= ~data->mask_buf[i];
474
475                 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
476                         reg = data->get_irq_reg(data, data->chip->ack_base, i);
477
478                         if (chip->ack_invert)
479                                 ret = regmap_write(map, reg,
480                                                 ~data->status_buf[i]);
481                         else
482                                 ret = regmap_write(map, reg,
483                                                 data->status_buf[i]);
484                         if (chip->clear_ack) {
485                                 if (chip->ack_invert && !ret)
486                                         ret = regmap_write(map, reg, UINT_MAX);
487                                 else if (!ret)
488                                         ret = regmap_write(map, reg, 0);
489                         }
490                         if (ret != 0)
491                                 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
492                                         reg, ret);
493                 }
494         }
495
496         for (i = 0; i < chip->num_irqs; i++) {
497                 if (data->status_buf[chip->irqs[i].reg_offset /
498                                      map->reg_stride] & chip->irqs[i].mask) {
499                         handle_nested_irq(irq_find_mapping(data->domain, i));
500                         handled = true;
501                 }
502         }
503
504 exit:
505         if (chip->handle_post_irq)
506                 chip->handle_post_irq(chip->irq_drv_data);
507
508         if (chip->runtime_pm)
509                 pm_runtime_put(map->dev);
510
511         if (handled)
512                 return IRQ_HANDLED;
513         else
514                 return IRQ_NONE;
515 }
516
517 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
518                           irq_hw_number_t hw)
519 {
520         struct regmap_irq_chip_data *data = h->host_data;
521
522         irq_set_chip_data(virq, data);
523         irq_set_chip(virq, &data->irq_chip);
524         irq_set_nested_thread(virq, 1);
525         irq_set_parent(virq, data->irq);
526         irq_set_noprobe(virq);
527
528         return 0;
529 }
530
531 static const struct irq_domain_ops regmap_domain_ops = {
532         .map    = regmap_irq_map,
533         .xlate  = irq_domain_xlate_onetwocell,
534 };
535
536 /**
537  * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
538  * @data: Data for the &struct regmap_irq_chip
539  * @base: Base register
540  * @index: Register index
541  *
542  * Returns the register address corresponding to the given @base and @index
543  * by the formula ``base + index * regmap_stride * irq_reg_stride``.
544  */
545 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
546                                            unsigned int base, int index)
547 {
548         struct regmap *map = data->map;
549
550         return base + index * map->reg_stride * data->irq_reg_stride;
551 }
552 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
553
554 /**
555  * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
556  * @buf: Buffer containing configuration register values, this is a 2D array of
557  *       `num_config_bases` rows, each of `num_config_regs` elements.
558  * @type: The requested IRQ type.
559  * @irq_data: The IRQ being configured.
560  * @idx: Index of the irq's config registers within each array `buf[i]`
561  * @irq_drv_data: Driver specific IRQ data
562  *
563  * This is a &struct regmap_irq_chip->set_type_config callback suitable for
564  * chips with one config register. Register values are updated according to
565  * the &struct regmap_irq_type data associated with an IRQ.
566  */
567 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
568                                       const struct regmap_irq *irq_data,
569                                       int idx, void *irq_drv_data)
570 {
571         const struct regmap_irq_type *t = &irq_data->type;
572
573         if (t->type_reg_mask)
574                 buf[0][idx] &= ~t->type_reg_mask;
575         else
576                 buf[0][idx] &= ~(t->type_falling_val |
577                                  t->type_rising_val |
578                                  t->type_level_low_val |
579                                  t->type_level_high_val);
580
581         switch (type) {
582         case IRQ_TYPE_EDGE_FALLING:
583                 buf[0][idx] |= t->type_falling_val;
584                 break;
585
586         case IRQ_TYPE_EDGE_RISING:
587                 buf[0][idx] |= t->type_rising_val;
588                 break;
589
590         case IRQ_TYPE_EDGE_BOTH:
591                 buf[0][idx] |= (t->type_falling_val |
592                                 t->type_rising_val);
593                 break;
594
595         case IRQ_TYPE_LEVEL_HIGH:
596                 buf[0][idx] |= t->type_level_high_val;
597                 break;
598
599         case IRQ_TYPE_LEVEL_LOW:
600                 buf[0][idx] |= t->type_level_low_val;
601                 break;
602
603         default:
604                 return -EINVAL;
605         }
606
607         return 0;
608 }
609 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
610
611 static int regmap_irq_create_domain(struct fwnode_handle *fwnode, int irq_base,
612                                     const struct regmap_irq_chip *chip,
613                                     struct regmap_irq_chip_data *d)
614 {
615         struct irq_domain_info info = {
616                 .fwnode = fwnode,
617                 .size = chip->num_irqs,
618                 .hwirq_max = chip->num_irqs,
619                 .virq_base = irq_base,
620                 .ops = &regmap_domain_ops,
621                 .host_data = d,
622                 .name_suffix = chip->domain_suffix,
623         };
624
625         d->domain = irq_domain_instantiate(&info);
626         if (IS_ERR(d->domain)) {
627                 dev_err(d->map->dev, "Failed to create IRQ domain\n");
628                 return PTR_ERR(d->domain);
629         }
630
631         return 0;
632 }
633
634
635 /**
636  * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
637  *
638  * @fwnode: The firmware node where the IRQ domain should be added to.
639  * @map: The regmap for the device.
640  * @irq: The IRQ the device uses to signal interrupts.
641  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
642  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
643  * @chip: Configuration for the interrupt controller.
644  * @data: Runtime data structure for the controller, allocated on success.
645  *
646  * Returns 0 on success or an errno on failure.
647  *
648  * In order for this to be efficient the chip really should use a
649  * register cache.  The chip driver is responsible for restoring the
650  * register values used by the IRQ controller over suspend and resume.
651  */
652 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
653                                struct regmap *map, int irq,
654                                int irq_flags, int irq_base,
655                                const struct regmap_irq_chip *chip,
656                                struct regmap_irq_chip_data **data)
657 {
658         struct regmap_irq_chip_data *d;
659         int i;
660         int ret = -ENOMEM;
661         u32 reg;
662
663         if (chip->num_regs <= 0)
664                 return -EINVAL;
665
666         if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
667                 return -EINVAL;
668
669         if (chip->mask_base && chip->unmask_base && !chip->mask_unmask_non_inverted)
670                 return -EINVAL;
671
672         for (i = 0; i < chip->num_irqs; i++) {
673                 if (chip->irqs[i].reg_offset % map->reg_stride)
674                         return -EINVAL;
675                 if (chip->irqs[i].reg_offset / map->reg_stride >=
676                     chip->num_regs)
677                         return -EINVAL;
678         }
679
680         if (irq_base) {
681                 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
682                 if (irq_base < 0) {
683                         dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
684                                  irq_base);
685                         return irq_base;
686                 }
687         }
688
689         d = kzalloc(sizeof(*d), GFP_KERNEL);
690         if (!d)
691                 return -ENOMEM;
692
693         if (chip->num_main_regs) {
694                 d->main_status_buf = kcalloc(chip->num_main_regs,
695                                              sizeof(*d->main_status_buf),
696                                              GFP_KERNEL);
697
698                 if (!d->main_status_buf)
699                         goto err_alloc;
700         }
701
702         d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
703                                 GFP_KERNEL);
704         if (!d->status_buf)
705                 goto err_alloc;
706
707         d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
708                               GFP_KERNEL);
709         if (!d->mask_buf)
710                 goto err_alloc;
711
712         d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
713                                   GFP_KERNEL);
714         if (!d->mask_buf_def)
715                 goto err_alloc;
716
717         if (chip->wake_base) {
718                 d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
719                                       GFP_KERNEL);
720                 if (!d->wake_buf)
721                         goto err_alloc;
722         }
723
724         if (chip->type_in_mask) {
725                 d->type_buf_def = kcalloc(chip->num_regs,
726                                           sizeof(*d->type_buf_def), GFP_KERNEL);
727                 if (!d->type_buf_def)
728                         goto err_alloc;
729
730                 d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL);
731                 if (!d->type_buf)
732                         goto err_alloc;
733         }
734
735         if (chip->num_config_bases && chip->num_config_regs) {
736                 /*
737                  * Create config_buf[num_config_bases][num_config_regs]
738                  */
739                 d->config_buf = kcalloc(chip->num_config_bases,
740                                         sizeof(*d->config_buf), GFP_KERNEL);
741                 if (!d->config_buf)
742                         goto err_alloc;
743
744                 for (i = 0; i < chip->num_config_bases; i++) {
745                         d->config_buf[i] = kcalloc(chip->num_config_regs,
746                                                    sizeof(**d->config_buf),
747                                                    GFP_KERNEL);
748                         if (!d->config_buf[i])
749                                 goto err_alloc;
750                 }
751         }
752
753         d->irq_chip = regmap_irq_chip;
754         d->irq_chip.name = chip->name;
755         d->irq = irq;
756         d->map = map;
757         d->chip = chip;
758         d->irq_base = irq_base;
759
760         if (chip->irq_reg_stride)
761                 d->irq_reg_stride = chip->irq_reg_stride;
762         else
763                 d->irq_reg_stride = 1;
764
765         if (chip->get_irq_reg)
766                 d->get_irq_reg = chip->get_irq_reg;
767         else
768                 d->get_irq_reg = regmap_irq_get_irq_reg_linear;
769
770         if (regmap_irq_can_bulk_read_status(d)) {
771                 d->status_reg_buf = kmalloc_array(chip->num_regs,
772                                                   map->format.val_bytes,
773                                                   GFP_KERNEL);
774                 if (!d->status_reg_buf)
775                         goto err_alloc;
776         }
777
778         mutex_init(&d->lock);
779
780         for (i = 0; i < chip->num_irqs; i++)
781                 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
782                         |= chip->irqs[i].mask;
783
784         /* Mask all the interrupts by default */
785         for (i = 0; i < chip->num_regs; i++) {
786                 d->mask_buf[i] = d->mask_buf_def[i];
787
788                 if (chip->handle_mask_sync) {
789                         ret = chip->handle_mask_sync(i, d->mask_buf_def[i],
790                                                      d->mask_buf[i],
791                                                      chip->irq_drv_data);
792                         if (ret)
793                                 goto err_alloc;
794                 }
795
796                 if (chip->mask_base && !chip->handle_mask_sync) {
797                         reg = d->get_irq_reg(d, chip->mask_base, i);
798                         ret = regmap_update_bits(d->map, reg,
799                                                  d->mask_buf_def[i],
800                                                  d->mask_buf[i]);
801                         if (ret) {
802                                 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
803                                         reg, ret);
804                                 goto err_alloc;
805                         }
806                 }
807
808                 if (chip->unmask_base && !chip->handle_mask_sync) {
809                         reg = d->get_irq_reg(d, chip->unmask_base, i);
810                         ret = regmap_update_bits(d->map, reg,
811                                         d->mask_buf_def[i], ~d->mask_buf[i]);
812                         if (ret) {
813                                 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
814                                         reg, ret);
815                                 goto err_alloc;
816                         }
817                 }
818
819                 if (!chip->init_ack_masked)
820                         continue;
821
822                 /* Ack masked but set interrupts */
823                 if (d->chip->no_status) {
824                         /* no status register so default to all active */
825                         d->status_buf[i] = GENMASK(31, 0);
826                 } else {
827                         reg = d->get_irq_reg(d, d->chip->status_base, i);
828                         ret = regmap_read(map, reg, &d->status_buf[i]);
829                         if (ret != 0) {
830                                 dev_err(map->dev, "Failed to read IRQ status: %d\n",
831                                         ret);
832                                 goto err_alloc;
833                         }
834                 }
835
836                 if (chip->status_invert)
837                         d->status_buf[i] = ~d->status_buf[i];
838
839                 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
840                         reg = d->get_irq_reg(d, d->chip->ack_base, i);
841                         if (chip->ack_invert)
842                                 ret = regmap_write(map, reg,
843                                         ~(d->status_buf[i] & d->mask_buf[i]));
844                         else
845                                 ret = regmap_write(map, reg,
846                                         d->status_buf[i] & d->mask_buf[i]);
847                         if (chip->clear_ack) {
848                                 if (chip->ack_invert && !ret)
849                                         ret = regmap_write(map, reg, UINT_MAX);
850                                 else if (!ret)
851                                         ret = regmap_write(map, reg, 0);
852                         }
853                         if (ret != 0) {
854                                 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
855                                         reg, ret);
856                                 goto err_alloc;
857                         }
858                 }
859         }
860
861         /* Wake is disabled by default */
862         if (d->wake_buf) {
863                 for (i = 0; i < chip->num_regs; i++) {
864                         d->wake_buf[i] = d->mask_buf_def[i];
865                         reg = d->get_irq_reg(d, d->chip->wake_base, i);
866
867                         if (chip->wake_invert)
868                                 ret = regmap_update_bits(d->map, reg,
869                                                          d->mask_buf_def[i],
870                                                          0);
871                         else
872                                 ret = regmap_update_bits(d->map, reg,
873                                                          d->mask_buf_def[i],
874                                                          d->wake_buf[i]);
875                         if (ret != 0) {
876                                 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
877                                         reg, ret);
878                                 goto err_alloc;
879                         }
880                 }
881         }
882
883         ret = regmap_irq_create_domain(fwnode, irq_base, chip, d);
884         if (ret)
885                 goto err_alloc;
886
887         ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
888                                    irq_flags | IRQF_ONESHOT,
889                                    chip->name, d);
890         if (ret != 0) {
891                 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
892                         irq, chip->name, ret);
893                 goto err_domain;
894         }
895
896         *data = d;
897
898         return 0;
899
900 err_domain:
901         /* Should really dispose of the domain but... */
902 err_alloc:
903         kfree(d->type_buf);
904         kfree(d->type_buf_def);
905         kfree(d->wake_buf);
906         kfree(d->mask_buf_def);
907         kfree(d->mask_buf);
908         kfree(d->status_buf);
909         kfree(d->status_reg_buf);
910         if (d->config_buf) {
911                 for (i = 0; i < chip->num_config_bases; i++)
912                         kfree(d->config_buf[i]);
913                 kfree(d->config_buf);
914         }
915         kfree(d);
916         return ret;
917 }
918 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
919
920 /**
921  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
922  *
923  * @map: The regmap for the device.
924  * @irq: The IRQ the device uses to signal interrupts.
925  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
926  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
927  * @chip: Configuration for the interrupt controller.
928  * @data: Runtime data structure for the controller, allocated on success.
929  *
930  * Returns 0 on success or an errno on failure.
931  *
932  * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
933  * node of the regmap is used.
934  */
935 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
936                         int irq_base, const struct regmap_irq_chip *chip,
937                         struct regmap_irq_chip_data **data)
938 {
939         return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
940                                           irq_flags, irq_base, chip, data);
941 }
942 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
943
944 /**
945  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
946  *
947  * @irq: Primary IRQ for the device
948  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
949  *
950  * This function also disposes of all mapped IRQs on the chip.
951  */
952 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
953 {
954         unsigned int virq;
955         int i, hwirq;
956
957         if (!d)
958                 return;
959
960         free_irq(irq, d);
961
962         /* Dispose all virtual irq from irq domain before removing it */
963         for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
964                 /* Ignore hwirq if holes in the IRQ list */
965                 if (!d->chip->irqs[hwirq].mask)
966                         continue;
967
968                 /*
969                  * Find the virtual irq of hwirq on chip and if it is
970                  * there then dispose it
971                  */
972                 virq = irq_find_mapping(d->domain, hwirq);
973                 if (virq)
974                         irq_dispose_mapping(virq);
975         }
976
977         irq_domain_remove(d->domain);
978         kfree(d->type_buf);
979         kfree(d->type_buf_def);
980         kfree(d->wake_buf);
981         kfree(d->mask_buf_def);
982         kfree(d->mask_buf);
983         kfree(d->status_reg_buf);
984         kfree(d->status_buf);
985         if (d->config_buf) {
986                 for (i = 0; i < d->chip->num_config_bases; i++)
987                         kfree(d->config_buf[i]);
988                 kfree(d->config_buf);
989         }
990         kfree(d);
991 }
992 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
993
994 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
995 {
996         struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
997
998         regmap_del_irq_chip(d->irq, d);
999 }
1000
1001 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
1002
1003 {
1004         struct regmap_irq_chip_data **r = res;
1005
1006         if (!r || !*r) {
1007                 WARN_ON(!r || !*r);
1008                 return 0;
1009         }
1010         return *r == data;
1011 }
1012
1013 /**
1014  * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1015  *
1016  * @dev: The device pointer on which irq_chip belongs to.
1017  * @fwnode: The firmware node where the IRQ domain should be added to.
1018  * @map: The regmap for the device.
1019  * @irq: The IRQ the device uses to signal interrupts
1020  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1021  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1022  * @chip: Configuration for the interrupt controller.
1023  * @data: Runtime data structure for the controller, allocated on success
1024  *
1025  * Returns 0 on success or an errno on failure.
1026  *
1027  * The &regmap_irq_chip_data will be automatically released when the device is
1028  * unbound.
1029  */
1030 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1031                                     struct fwnode_handle *fwnode,
1032                                     struct regmap *map, int irq,
1033                                     int irq_flags, int irq_base,
1034                                     const struct regmap_irq_chip *chip,
1035                                     struct regmap_irq_chip_data **data)
1036 {
1037         struct regmap_irq_chip_data **ptr, *d;
1038         int ret;
1039
1040         ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1041                            GFP_KERNEL);
1042         if (!ptr)
1043                 return -ENOMEM;
1044
1045         ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1046                                          chip, &d);
1047         if (ret < 0) {
1048                 devres_free(ptr);
1049                 return ret;
1050         }
1051
1052         *ptr = d;
1053         devres_add(dev, ptr);
1054         *data = d;
1055         return 0;
1056 }
1057 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1058
1059 /**
1060  * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1061  *
1062  * @dev: The device pointer on which irq_chip belongs to.
1063  * @map: The regmap for the device.
1064  * @irq: The IRQ the device uses to signal interrupts
1065  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1066  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1067  * @chip: Configuration for the interrupt controller.
1068  * @data: Runtime data structure for the controller, allocated on success
1069  *
1070  * Returns 0 on success or an errno on failure.
1071  *
1072  * The &regmap_irq_chip_data will be automatically released when the device is
1073  * unbound.
1074  */
1075 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1076                              int irq_flags, int irq_base,
1077                              const struct regmap_irq_chip *chip,
1078                              struct regmap_irq_chip_data **data)
1079 {
1080         return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1081                                                irq, irq_flags, irq_base, chip,
1082                                                data);
1083 }
1084 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1085
1086 /**
1087  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1088  *
1089  * @dev: Device for which the resource was allocated.
1090  * @irq: Primary IRQ for the device.
1091  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1092  *
1093  * A resource managed version of regmap_del_irq_chip().
1094  */
1095 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1096                               struct regmap_irq_chip_data *data)
1097 {
1098         int rc;
1099
1100         WARN_ON(irq != data->irq);
1101         rc = devres_release(dev, devm_regmap_irq_chip_release,
1102                             devm_regmap_irq_chip_match, data);
1103
1104         if (rc != 0)
1105                 WARN_ON(rc);
1106 }
1107 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1108
1109 /**
1110  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1111  *
1112  * @data: regmap irq controller to operate on.
1113  *
1114  * Useful for drivers to request their own IRQs.
1115  */
1116 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1117 {
1118         WARN_ON(!data->irq_base);
1119         return data->irq_base;
1120 }
1121 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1122
1123 /**
1124  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1125  *
1126  * @data: regmap irq controller to operate on.
1127  * @irq: index of the interrupt requested in the chip IRQs.
1128  *
1129  * Useful for drivers to request their own IRQs.
1130  */
1131 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1132 {
1133         /* Handle holes in the IRQ list */
1134         if (!data->chip->irqs[irq].mask)
1135                 return -EINVAL;
1136
1137         return irq_create_mapping(data->domain, irq);
1138 }
1139 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1140
1141 /**
1142  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1143  *
1144  * @data: regmap_irq controller to operate on.
1145  *
1146  * Useful for drivers to request their own IRQs and for integration
1147  * with subsystems.  For ease of integration NULL is accepted as a
1148  * domain, allowing devices to just call this even if no domain is
1149  * allocated.
1150  */
1151 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1152 {
1153         if (data)
1154                 return data->domain;
1155         else
1156                 return NULL;
1157 }
1158 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
This page took 0.102681 seconds and 4 git commands to generate.