2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
94 #include <linux/uaccess.h>
95 #include <asm/unistd.h>
97 #include <net/compat.h>
99 #include <net/cls_cgroup.h>
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
146 .unlocked_ioctl = sock_ioctl,
148 .compat_ioctl = compat_sock_ioctl,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
159 * The protocol list. Each protocol is registered in here.
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
167 * Move socket addresses back and forth across the kernel/user
168 * divide and look after the messy bits.
172 * move_addr_to_kernel - copy a socket address into kernel space
173 * @uaddr: Address in user space
174 * @kaddr: Address in kernel space
175 * @ulen: Length in user space
177 * The address is copied into kernel space. If the provided address is
178 * too long an error code of -EINVAL is returned. If the copy gives
179 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
184 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
188 if (copy_from_user(kaddr, uaddr, ulen))
190 return audit_sockaddr(ulen, kaddr);
194 * move_addr_to_user - copy an address to user space
195 * @kaddr: kernel space address
196 * @klen: length of address in kernel
197 * @uaddr: user space address
198 * @ulen: pointer to user length field
200 * The value pointed to by ulen on entry is the buffer length available.
201 * This is overwritten with the buffer space used. -EINVAL is returned
202 * if an overlong buffer is specified or a negative buffer size. -EFAULT
203 * is returned if either the buffer or the length field are not
205 * After copying the data up to the limit the user specifies, the true
206 * length of the data is written over the length limit the user
207 * specified. Zero is returned for a success.
210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
211 void __user *uaddr, int __user *ulen)
216 BUG_ON(klen > sizeof(struct sockaddr_storage));
217 err = get_user(len, ulen);
225 if (audit_sockaddr(klen, kaddr))
227 if (copy_to_user(uaddr, kaddr, len))
231 * "fromlen shall refer to the value before truncation.."
234 return __put_user(klen, ulen);
237 static struct kmem_cache *sock_inode_cachep __ro_after_init;
239 static struct inode *sock_alloc_inode(struct super_block *sb)
241 struct socket_alloc *ei;
242 struct socket_wq *wq;
244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
247 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
249 kmem_cache_free(sock_inode_cachep, ei);
252 init_waitqueue_head(&wq->wait);
253 wq->fasync_list = NULL;
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
263 return &ei->vfs_inode;
266 static void sock_destroy_inode(struct inode *inode)
268 struct socket_alloc *ei;
270 ei = container_of(inode, struct socket_alloc, vfs_inode);
271 kfree_rcu(ei->socket.wq, rcu);
272 kmem_cache_free(sock_inode_cachep, ei);
275 static void init_once(void *foo)
277 struct socket_alloc *ei = (struct socket_alloc *)foo;
279 inode_init_once(&ei->vfs_inode);
282 static void init_inodecache(void)
284 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
285 sizeof(struct socket_alloc),
287 (SLAB_HWCACHE_ALIGN |
288 SLAB_RECLAIM_ACCOUNT |
289 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
291 BUG_ON(sock_inode_cachep == NULL);
294 static const struct super_operations sockfs_ops = {
295 .alloc_inode = sock_alloc_inode,
296 .destroy_inode = sock_destroy_inode,
297 .statfs = simple_statfs,
301 * sockfs_dname() is called from d_path().
303 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
305 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
306 d_inode(dentry)->i_ino);
309 static const struct dentry_operations sockfs_dentry_operations = {
310 .d_dname = sockfs_dname,
313 static int sockfs_xattr_get(const struct xattr_handler *handler,
314 struct dentry *dentry, struct inode *inode,
315 const char *suffix, void *value, size_t size)
318 if (dentry->d_name.len + 1 > size)
320 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
322 return dentry->d_name.len + 1;
325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
329 static const struct xattr_handler sockfs_xattr_handler = {
330 .name = XATTR_NAME_SOCKPROTONAME,
331 .get = sockfs_xattr_get,
334 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
335 struct dentry *dentry, struct inode *inode,
336 const char *suffix, const void *value,
337 size_t size, int flags)
339 /* Handled by LSM. */
343 static const struct xattr_handler sockfs_security_xattr_handler = {
344 .prefix = XATTR_SECURITY_PREFIX,
345 .set = sockfs_security_xattr_set,
348 static const struct xattr_handler *sockfs_xattr_handlers[] = {
349 &sockfs_xattr_handler,
350 &sockfs_security_xattr_handler,
354 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
355 int flags, const char *dev_name, void *data)
357 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
358 sockfs_xattr_handlers,
359 &sockfs_dentry_operations, SOCKFS_MAGIC);
362 static struct vfsmount *sock_mnt __read_mostly;
364 static struct file_system_type sock_fs_type = {
366 .mount = sockfs_mount,
367 .kill_sb = kill_anon_super,
371 * Obtains the first available file descriptor and sets it up for use.
373 * These functions create file structures and maps them to fd space
374 * of the current process. On success it returns file descriptor
375 * and file struct implicitly stored in sock->file.
376 * Note that another thread may close file descriptor before we return
377 * from this function. We use the fact that now we do not refer
378 * to socket after mapping. If one day we will need it, this
379 * function will increment ref. count on file by 1.
381 * In any case returned fd MAY BE not valid!
382 * This race condition is unavoidable
383 * with shared fd spaces, we cannot solve it inside kernel,
384 * but we take care of internal coherence yet.
388 * sock_alloc_file - Bind a &socket to a &file
390 * @flags: file status flags
391 * @dname: protocol name
393 * Returns the &file bound with @sock, implicitly storing it
394 * in sock->file. If dname is %NULL, sets to "".
395 * On failure the return is a ERR pointer (see linux/err.h).
396 * This function uses GFP_KERNEL internally.
399 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
404 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
406 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
407 O_RDWR | (flags & O_NONBLOCK),
415 file->private_data = sock;
418 EXPORT_SYMBOL(sock_alloc_file);
420 static int sock_map_fd(struct socket *sock, int flags)
422 struct file *newfile;
423 int fd = get_unused_fd_flags(flags);
424 if (unlikely(fd < 0)) {
429 newfile = sock_alloc_file(sock, flags, NULL);
430 if (likely(!IS_ERR(newfile))) {
431 fd_install(fd, newfile);
436 return PTR_ERR(newfile);
440 * sock_from_file - Return the &socket bounded to @file.
442 * @err: pointer to an error code return
444 * On failure returns %NULL and assigns -ENOTSOCK to @err.
447 struct socket *sock_from_file(struct file *file, int *err)
449 if (file->f_op == &socket_file_ops)
450 return file->private_data; /* set in sock_map_fd */
455 EXPORT_SYMBOL(sock_from_file);
458 * sockfd_lookup - Go from a file number to its socket slot
460 * @err: pointer to an error code return
462 * The file handle passed in is locked and the socket it is bound
463 * to is returned. If an error occurs the err pointer is overwritten
464 * with a negative errno code and NULL is returned. The function checks
465 * for both invalid handles and passing a handle which is not a socket.
467 * On a success the socket object pointer is returned.
470 struct socket *sockfd_lookup(int fd, int *err)
481 sock = sock_from_file(file, err);
486 EXPORT_SYMBOL(sockfd_lookup);
488 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
490 struct fd f = fdget(fd);
495 sock = sock_from_file(f.file, err);
497 *fput_needed = f.flags;
505 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
511 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
521 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
526 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
533 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
535 int err = simple_setattr(dentry, iattr);
537 if (!err && (iattr->ia_valid & ATTR_UID)) {
538 struct socket *sock = SOCKET_I(d_inode(dentry));
541 sock->sk->sk_uid = iattr->ia_uid;
549 static const struct inode_operations sockfs_inode_ops = {
550 .listxattr = sockfs_listxattr,
551 .setattr = sockfs_setattr,
555 * sock_alloc - allocate a socket
557 * Allocate a new inode and socket object. The two are bound together
558 * and initialised. The socket is then returned. If we are out of inodes
559 * NULL is returned. This functions uses GFP_KERNEL internally.
562 struct socket *sock_alloc(void)
567 inode = new_inode_pseudo(sock_mnt->mnt_sb);
571 sock = SOCKET_I(inode);
573 inode->i_ino = get_next_ino();
574 inode->i_mode = S_IFSOCK | S_IRWXUGO;
575 inode->i_uid = current_fsuid();
576 inode->i_gid = current_fsgid();
577 inode->i_op = &sockfs_inode_ops;
581 EXPORT_SYMBOL(sock_alloc);
584 * sock_release - close a socket
585 * @sock: socket to close
587 * The socket is released from the protocol stack if it has a release
588 * callback, and the inode is then released if the socket is bound to
589 * an inode not a file.
592 static void __sock_release(struct socket *sock, struct inode *inode)
595 struct module *owner = sock->ops->owner;
599 sock->ops->release(sock);
607 if (sock->wq->fasync_list)
608 pr_err("%s: fasync list not empty!\n", __func__);
611 iput(SOCK_INODE(sock));
617 void sock_release(struct socket *sock)
619 __sock_release(sock, NULL);
621 EXPORT_SYMBOL(sock_release);
623 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
625 u8 flags = *tx_flags;
627 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
628 flags |= SKBTX_HW_TSTAMP;
630 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
631 flags |= SKBTX_SW_TSTAMP;
633 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
634 flags |= SKBTX_SCHED_TSTAMP;
638 EXPORT_SYMBOL(__sock_tx_timestamp);
641 * sock_sendmsg - send a message through @sock
643 * @msg: message to send
645 * Sends @msg through @sock, passing through LSM.
646 * Returns the number of bytes sent, or an error code.
649 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
651 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
652 BUG_ON(ret == -EIOCBQUEUED);
656 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
658 int err = security_socket_sendmsg(sock, msg,
661 return err ?: sock_sendmsg_nosec(sock, msg);
663 EXPORT_SYMBOL(sock_sendmsg);
666 * kernel_sendmsg - send a message through @sock (kernel-space)
668 * @msg: message header
670 * @num: vec array length
671 * @size: total message data size
673 * Builds the message data with @vec and sends it through @sock.
674 * Returns the number of bytes sent, or an error code.
677 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
678 struct kvec *vec, size_t num, size_t size)
680 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
681 return sock_sendmsg(sock, msg);
683 EXPORT_SYMBOL(kernel_sendmsg);
686 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
688 * @msg: message header
689 * @vec: output s/g array
690 * @num: output s/g array length
691 * @size: total message data size
693 * Builds the message data with @vec and sends it through @sock.
694 * Returns the number of bytes sent, or an error code.
695 * Caller must hold @sk.
698 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
699 struct kvec *vec, size_t num, size_t size)
701 struct socket *sock = sk->sk_socket;
703 if (!sock->ops->sendmsg_locked)
704 return sock_no_sendmsg_locked(sk, msg, size);
706 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
708 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
710 EXPORT_SYMBOL(kernel_sendmsg_locked);
712 static bool skb_is_err_queue(const struct sk_buff *skb)
714 /* pkt_type of skbs enqueued on the error queue are set to
715 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
716 * in recvmsg, since skbs received on a local socket will never
717 * have a pkt_type of PACKET_OUTGOING.
719 return skb->pkt_type == PACKET_OUTGOING;
722 /* On transmit, software and hardware timestamps are returned independently.
723 * As the two skb clones share the hardware timestamp, which may be updated
724 * before the software timestamp is received, a hardware TX timestamp may be
725 * returned only if there is no software TX timestamp. Ignore false software
726 * timestamps, which may be made in the __sock_recv_timestamp() call when the
727 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
728 * hardware timestamp.
730 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
732 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
735 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
737 struct scm_ts_pktinfo ts_pktinfo;
738 struct net_device *orig_dev;
740 if (!skb_mac_header_was_set(skb))
743 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
746 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
748 ts_pktinfo.if_index = orig_dev->ifindex;
751 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
752 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
753 sizeof(ts_pktinfo), &ts_pktinfo);
757 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
759 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
762 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
763 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
764 struct scm_timestamping_internal tss;
766 int empty = 1, false_tstamp = 0;
767 struct skb_shared_hwtstamps *shhwtstamps =
770 /* Race occurred between timestamp enabling and packet
771 receiving. Fill in the current time for now. */
772 if (need_software_tstamp && skb->tstamp == 0) {
773 __net_timestamp(skb);
777 if (need_software_tstamp) {
778 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
780 struct __kernel_sock_timeval tv;
782 skb_get_new_timestamp(skb, &tv);
783 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
786 struct __kernel_old_timeval tv;
788 skb_get_timestamp(skb, &tv);
789 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
794 struct __kernel_timespec ts;
796 skb_get_new_timestampns(skb, &ts);
797 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
802 skb_get_timestampns(skb, &ts);
803 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
809 memset(&tss, 0, sizeof(tss));
810 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
811 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
814 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
815 !skb_is_swtx_tstamp(skb, false_tstamp) &&
816 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
818 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
819 !skb_is_err_queue(skb))
820 put_ts_pktinfo(msg, skb);
823 if (sock_flag(sk, SOCK_TSTAMP_NEW))
824 put_cmsg_scm_timestamping64(msg, &tss);
826 put_cmsg_scm_timestamping(msg, &tss);
828 if (skb_is_err_queue(skb) && skb->len &&
829 SKB_EXT_ERR(skb)->opt_stats)
830 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
831 skb->len, skb->data);
834 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
836 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
841 if (!sock_flag(sk, SOCK_WIFI_STATUS))
843 if (!skb->wifi_acked_valid)
846 ack = skb->wifi_acked;
848 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
850 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
852 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
855 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
856 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
857 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
860 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
863 sock_recv_timestamp(msg, sk, skb);
864 sock_recv_drops(msg, sk, skb);
866 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
869 * sock_recvmsg - receive a message from @sock
871 * @msg: message to receive
872 * @flags: message flags
874 * Receives @msg from @sock, passing through LSM. Returns the total number
875 * of bytes received, or an error.
878 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
881 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
884 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
886 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
888 return err ?: sock_recvmsg_nosec(sock, msg, flags);
890 EXPORT_SYMBOL(sock_recvmsg);
893 * kernel_recvmsg - Receive a message from a socket (kernel space)
894 * @sock: The socket to receive the message from
895 * @msg: Received message
896 * @vec: Input s/g array for message data
897 * @num: Size of input s/g array
898 * @size: Number of bytes to read
899 * @flags: Message flags (MSG_DONTWAIT, etc...)
901 * On return the msg structure contains the scatter/gather array passed in the
902 * vec argument. The array is modified so that it consists of the unfilled
903 * portion of the original array.
905 * The returned value is the total number of bytes received, or an error.
908 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
909 struct kvec *vec, size_t num, size_t size, int flags)
911 mm_segment_t oldfs = get_fs();
914 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
916 result = sock_recvmsg(sock, msg, flags);
920 EXPORT_SYMBOL(kernel_recvmsg);
922 static ssize_t sock_sendpage(struct file *file, struct page *page,
923 int offset, size_t size, loff_t *ppos, int more)
928 sock = file->private_data;
930 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
931 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
934 return kernel_sendpage(sock, page, offset, size, flags);
937 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
938 struct pipe_inode_info *pipe, size_t len,
941 struct socket *sock = file->private_data;
943 if (unlikely(!sock->ops->splice_read))
944 return generic_file_splice_read(file, ppos, pipe, len, flags);
946 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
949 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
951 struct file *file = iocb->ki_filp;
952 struct socket *sock = file->private_data;
953 struct msghdr msg = {.msg_iter = *to,
957 if (file->f_flags & O_NONBLOCK)
958 msg.msg_flags = MSG_DONTWAIT;
960 if (iocb->ki_pos != 0)
963 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
966 res = sock_recvmsg(sock, &msg, msg.msg_flags);
971 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
973 struct file *file = iocb->ki_filp;
974 struct socket *sock = file->private_data;
975 struct msghdr msg = {.msg_iter = *from,
979 if (iocb->ki_pos != 0)
982 if (file->f_flags & O_NONBLOCK)
983 msg.msg_flags = MSG_DONTWAIT;
985 if (sock->type == SOCK_SEQPACKET)
986 msg.msg_flags |= MSG_EOR;
988 res = sock_sendmsg(sock, &msg);
989 *from = msg.msg_iter;
994 * Atomic setting of ioctl hooks to avoid race
995 * with module unload.
998 static DEFINE_MUTEX(br_ioctl_mutex);
999 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1001 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1003 mutex_lock(&br_ioctl_mutex);
1004 br_ioctl_hook = hook;
1005 mutex_unlock(&br_ioctl_mutex);
1007 EXPORT_SYMBOL(brioctl_set);
1009 static DEFINE_MUTEX(vlan_ioctl_mutex);
1010 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1012 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1014 mutex_lock(&vlan_ioctl_mutex);
1015 vlan_ioctl_hook = hook;
1016 mutex_unlock(&vlan_ioctl_mutex);
1018 EXPORT_SYMBOL(vlan_ioctl_set);
1020 static DEFINE_MUTEX(dlci_ioctl_mutex);
1021 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1023 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1025 mutex_lock(&dlci_ioctl_mutex);
1026 dlci_ioctl_hook = hook;
1027 mutex_unlock(&dlci_ioctl_mutex);
1029 EXPORT_SYMBOL(dlci_ioctl_set);
1031 static long sock_do_ioctl(struct net *net, struct socket *sock,
1032 unsigned int cmd, unsigned long arg)
1035 void __user *argp = (void __user *)arg;
1037 err = sock->ops->ioctl(sock, cmd, arg);
1040 * If this ioctl is unknown try to hand it down
1041 * to the NIC driver.
1043 if (err != -ENOIOCTLCMD)
1046 if (cmd == SIOCGIFCONF) {
1048 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1051 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1053 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1058 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1060 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1061 if (!err && need_copyout)
1062 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1069 * With an ioctl, arg may well be a user mode pointer, but we don't know
1070 * what to do with it - that's up to the protocol still.
1074 * get_net_ns - increment the refcount of the network namespace
1075 * @ns: common namespace (net)
1077 * Returns the net's common namespace.
1080 struct ns_common *get_net_ns(struct ns_common *ns)
1082 return &get_net(container_of(ns, struct net, ns))->ns;
1084 EXPORT_SYMBOL_GPL(get_net_ns);
1086 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1088 struct socket *sock;
1090 void __user *argp = (void __user *)arg;
1094 sock = file->private_data;
1097 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1100 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1102 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1103 if (!err && need_copyout)
1104 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1107 #ifdef CONFIG_WEXT_CORE
1108 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1109 err = wext_handle_ioctl(net, cmd, argp);
1116 if (get_user(pid, (int __user *)argp))
1118 err = f_setown(sock->file, pid, 1);
1122 err = put_user(f_getown(sock->file),
1123 (int __user *)argp);
1131 request_module("bridge");
1133 mutex_lock(&br_ioctl_mutex);
1135 err = br_ioctl_hook(net, cmd, argp);
1136 mutex_unlock(&br_ioctl_mutex);
1141 if (!vlan_ioctl_hook)
1142 request_module("8021q");
1144 mutex_lock(&vlan_ioctl_mutex);
1145 if (vlan_ioctl_hook)
1146 err = vlan_ioctl_hook(net, argp);
1147 mutex_unlock(&vlan_ioctl_mutex);
1152 if (!dlci_ioctl_hook)
1153 request_module("dlci");
1155 mutex_lock(&dlci_ioctl_mutex);
1156 if (dlci_ioctl_hook)
1157 err = dlci_ioctl_hook(cmd, argp);
1158 mutex_unlock(&dlci_ioctl_mutex);
1162 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1165 err = open_related_ns(&net->ns, get_net_ns);
1167 case SIOCGSTAMP_OLD:
1168 case SIOCGSTAMPNS_OLD:
1169 if (!sock->ops->gettstamp) {
1173 err = sock->ops->gettstamp(sock, argp,
1174 cmd == SIOCGSTAMP_OLD,
1175 !IS_ENABLED(CONFIG_64BIT));
1176 case SIOCGSTAMP_NEW:
1177 case SIOCGSTAMPNS_NEW:
1178 if (!sock->ops->gettstamp) {
1182 err = sock->ops->gettstamp(sock, argp,
1183 cmd == SIOCGSTAMP_NEW,
1187 err = sock_do_ioctl(net, sock, cmd, arg);
1194 * sock_create_lite - creates a socket
1195 * @family: protocol family (AF_INET, ...)
1196 * @type: communication type (SOCK_STREAM, ...)
1197 * @protocol: protocol (0, ...)
1200 * Creates a new socket and assigns it to @res, passing through LSM.
1201 * The new socket initialization is not complete, see kernel_accept().
1202 * Returns 0 or an error. On failure @res is set to %NULL.
1203 * This function internally uses GFP_KERNEL.
1206 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1209 struct socket *sock = NULL;
1211 err = security_socket_create(family, type, protocol, 1);
1215 sock = sock_alloc();
1222 err = security_socket_post_create(sock, family, type, protocol, 1);
1234 EXPORT_SYMBOL(sock_create_lite);
1236 /* No kernel lock held - perfect */
1237 static __poll_t sock_poll(struct file *file, poll_table *wait)
1239 struct socket *sock = file->private_data;
1240 __poll_t events = poll_requested_events(wait), flag = 0;
1242 if (!sock->ops->poll)
1245 if (sk_can_busy_loop(sock->sk)) {
1246 /* poll once if requested by the syscall */
1247 if (events & POLL_BUSY_LOOP)
1248 sk_busy_loop(sock->sk, 1);
1250 /* if this socket can poll_ll, tell the system call */
1251 flag = POLL_BUSY_LOOP;
1254 return sock->ops->poll(file, sock, wait) | flag;
1257 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1259 struct socket *sock = file->private_data;
1261 return sock->ops->mmap(file, sock, vma);
1264 static int sock_close(struct inode *inode, struct file *filp)
1266 __sock_release(SOCKET_I(inode), inode);
1271 * Update the socket async list
1273 * Fasync_list locking strategy.
1275 * 1. fasync_list is modified only under process context socket lock
1276 * i.e. under semaphore.
1277 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1278 * or under socket lock
1281 static int sock_fasync(int fd, struct file *filp, int on)
1283 struct socket *sock = filp->private_data;
1284 struct sock *sk = sock->sk;
1285 struct socket_wq *wq;
1292 fasync_helper(fd, filp, on, &wq->fasync_list);
1294 if (!wq->fasync_list)
1295 sock_reset_flag(sk, SOCK_FASYNC);
1297 sock_set_flag(sk, SOCK_FASYNC);
1303 /* This function may be called only under rcu_lock */
1305 int sock_wake_async(struct socket_wq *wq, int how, int band)
1307 if (!wq || !wq->fasync_list)
1311 case SOCK_WAKE_WAITD:
1312 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1315 case SOCK_WAKE_SPACE:
1316 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1321 kill_fasync(&wq->fasync_list, SIGIO, band);
1324 kill_fasync(&wq->fasync_list, SIGURG, band);
1329 EXPORT_SYMBOL(sock_wake_async);
1332 * __sock_create - creates a socket
1333 * @net: net namespace
1334 * @family: protocol family (AF_INET, ...)
1335 * @type: communication type (SOCK_STREAM, ...)
1336 * @protocol: protocol (0, ...)
1338 * @kern: boolean for kernel space sockets
1340 * Creates a new socket and assigns it to @res, passing through LSM.
1341 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1342 * be set to true if the socket resides in kernel space.
1343 * This function internally uses GFP_KERNEL.
1346 int __sock_create(struct net *net, int family, int type, int protocol,
1347 struct socket **res, int kern)
1350 struct socket *sock;
1351 const struct net_proto_family *pf;
1354 * Check protocol is in range
1356 if (family < 0 || family >= NPROTO)
1357 return -EAFNOSUPPORT;
1358 if (type < 0 || type >= SOCK_MAX)
1363 This uglymoron is moved from INET layer to here to avoid
1364 deadlock in module load.
1366 if (family == PF_INET && type == SOCK_PACKET) {
1367 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1372 err = security_socket_create(family, type, protocol, kern);
1377 * Allocate the socket and allow the family to set things up. if
1378 * the protocol is 0, the family is instructed to select an appropriate
1381 sock = sock_alloc();
1383 net_warn_ratelimited("socket: no more sockets\n");
1384 return -ENFILE; /* Not exactly a match, but its the
1385 closest posix thing */
1390 #ifdef CONFIG_MODULES
1391 /* Attempt to load a protocol module if the find failed.
1393 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1394 * requested real, full-featured networking support upon configuration.
1395 * Otherwise module support will break!
1397 if (rcu_access_pointer(net_families[family]) == NULL)
1398 request_module("net-pf-%d", family);
1402 pf = rcu_dereference(net_families[family]);
1403 err = -EAFNOSUPPORT;
1408 * We will call the ->create function, that possibly is in a loadable
1409 * module, so we have to bump that loadable module refcnt first.
1411 if (!try_module_get(pf->owner))
1414 /* Now protected by module ref count */
1417 err = pf->create(net, sock, protocol, kern);
1419 goto out_module_put;
1422 * Now to bump the refcnt of the [loadable] module that owns this
1423 * socket at sock_release time we decrement its refcnt.
1425 if (!try_module_get(sock->ops->owner))
1426 goto out_module_busy;
1429 * Now that we're done with the ->create function, the [loadable]
1430 * module can have its refcnt decremented
1432 module_put(pf->owner);
1433 err = security_socket_post_create(sock, family, type, protocol, kern);
1435 goto out_sock_release;
1441 err = -EAFNOSUPPORT;
1444 module_put(pf->owner);
1451 goto out_sock_release;
1453 EXPORT_SYMBOL(__sock_create);
1456 * sock_create - creates a socket
1457 * @family: protocol family (AF_INET, ...)
1458 * @type: communication type (SOCK_STREAM, ...)
1459 * @protocol: protocol (0, ...)
1462 * A wrapper around __sock_create().
1463 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1466 int sock_create(int family, int type, int protocol, struct socket **res)
1468 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1470 EXPORT_SYMBOL(sock_create);
1473 * sock_create_kern - creates a socket (kernel space)
1474 * @net: net namespace
1475 * @family: protocol family (AF_INET, ...)
1476 * @type: communication type (SOCK_STREAM, ...)
1477 * @protocol: protocol (0, ...)
1480 * A wrapper around __sock_create().
1481 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1484 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1486 return __sock_create(net, family, type, protocol, res, 1);
1488 EXPORT_SYMBOL(sock_create_kern);
1490 int __sys_socket(int family, int type, int protocol)
1493 struct socket *sock;
1496 /* Check the SOCK_* constants for consistency. */
1497 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1498 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1499 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1500 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1502 flags = type & ~SOCK_TYPE_MASK;
1503 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1505 type &= SOCK_TYPE_MASK;
1507 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1508 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1510 retval = sock_create(family, type, protocol, &sock);
1514 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1517 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1519 return __sys_socket(family, type, protocol);
1523 * Create a pair of connected sockets.
1526 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1528 struct socket *sock1, *sock2;
1530 struct file *newfile1, *newfile2;
1533 flags = type & ~SOCK_TYPE_MASK;
1534 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1536 type &= SOCK_TYPE_MASK;
1538 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1539 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1542 * reserve descriptors and make sure we won't fail
1543 * to return them to userland.
1545 fd1 = get_unused_fd_flags(flags);
1546 if (unlikely(fd1 < 0))
1549 fd2 = get_unused_fd_flags(flags);
1550 if (unlikely(fd2 < 0)) {
1555 err = put_user(fd1, &usockvec[0]);
1559 err = put_user(fd2, &usockvec[1]);
1564 * Obtain the first socket and check if the underlying protocol
1565 * supports the socketpair call.
1568 err = sock_create(family, type, protocol, &sock1);
1569 if (unlikely(err < 0))
1572 err = sock_create(family, type, protocol, &sock2);
1573 if (unlikely(err < 0)) {
1574 sock_release(sock1);
1578 err = security_socket_socketpair(sock1, sock2);
1579 if (unlikely(err)) {
1580 sock_release(sock2);
1581 sock_release(sock1);
1585 err = sock1->ops->socketpair(sock1, sock2);
1586 if (unlikely(err < 0)) {
1587 sock_release(sock2);
1588 sock_release(sock1);
1592 newfile1 = sock_alloc_file(sock1, flags, NULL);
1593 if (IS_ERR(newfile1)) {
1594 err = PTR_ERR(newfile1);
1595 sock_release(sock2);
1599 newfile2 = sock_alloc_file(sock2, flags, NULL);
1600 if (IS_ERR(newfile2)) {
1601 err = PTR_ERR(newfile2);
1606 audit_fd_pair(fd1, fd2);
1608 fd_install(fd1, newfile1);
1609 fd_install(fd2, newfile2);
1618 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1619 int __user *, usockvec)
1621 return __sys_socketpair(family, type, protocol, usockvec);
1625 * Bind a name to a socket. Nothing much to do here since it's
1626 * the protocol's responsibility to handle the local address.
1628 * We move the socket address to kernel space before we call
1629 * the protocol layer (having also checked the address is ok).
1632 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1634 struct socket *sock;
1635 struct sockaddr_storage address;
1636 int err, fput_needed;
1638 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1640 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1642 err = security_socket_bind(sock,
1643 (struct sockaddr *)&address,
1646 err = sock->ops->bind(sock,
1650 fput_light(sock->file, fput_needed);
1655 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1657 return __sys_bind(fd, umyaddr, addrlen);
1661 * Perform a listen. Basically, we allow the protocol to do anything
1662 * necessary for a listen, and if that works, we mark the socket as
1663 * ready for listening.
1666 int __sys_listen(int fd, int backlog)
1668 struct socket *sock;
1669 int err, fput_needed;
1672 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1674 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1675 if ((unsigned int)backlog > somaxconn)
1676 backlog = somaxconn;
1678 err = security_socket_listen(sock, backlog);
1680 err = sock->ops->listen(sock, backlog);
1682 fput_light(sock->file, fput_needed);
1687 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1689 return __sys_listen(fd, backlog);
1693 * For accept, we attempt to create a new socket, set up the link
1694 * with the client, wake up the client, then return the new
1695 * connected fd. We collect the address of the connector in kernel
1696 * space and move it to user at the very end. This is unclean because
1697 * we open the socket then return an error.
1699 * 1003.1g adds the ability to recvmsg() to query connection pending
1700 * status to recvmsg. We need to add that support in a way thats
1701 * clean when we restructure accept also.
1704 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1705 int __user *upeer_addrlen, int flags)
1707 struct socket *sock, *newsock;
1708 struct file *newfile;
1709 int err, len, newfd, fput_needed;
1710 struct sockaddr_storage address;
1712 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1715 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1716 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1718 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1723 newsock = sock_alloc();
1727 newsock->type = sock->type;
1728 newsock->ops = sock->ops;
1731 * We don't need try_module_get here, as the listening socket (sock)
1732 * has the protocol module (sock->ops->owner) held.
1734 __module_get(newsock->ops->owner);
1736 newfd = get_unused_fd_flags(flags);
1737 if (unlikely(newfd < 0)) {
1739 sock_release(newsock);
1742 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1743 if (IS_ERR(newfile)) {
1744 err = PTR_ERR(newfile);
1745 put_unused_fd(newfd);
1749 err = security_socket_accept(sock, newsock);
1753 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1757 if (upeer_sockaddr) {
1758 len = newsock->ops->getname(newsock,
1759 (struct sockaddr *)&address, 2);
1761 err = -ECONNABORTED;
1764 err = move_addr_to_user(&address,
1765 len, upeer_sockaddr, upeer_addrlen);
1770 /* File flags are not inherited via accept() unlike another OSes. */
1772 fd_install(newfd, newfile);
1776 fput_light(sock->file, fput_needed);
1781 put_unused_fd(newfd);
1785 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1786 int __user *, upeer_addrlen, int, flags)
1788 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1791 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1792 int __user *, upeer_addrlen)
1794 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1798 * Attempt to connect to a socket with the server address. The address
1799 * is in user space so we verify it is OK and move it to kernel space.
1801 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1804 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1805 * other SEQPACKET protocols that take time to connect() as it doesn't
1806 * include the -EINPROGRESS status for such sockets.
1809 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1811 struct socket *sock;
1812 struct sockaddr_storage address;
1813 int err, fput_needed;
1815 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1818 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1823 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1827 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1828 sock->file->f_flags);
1830 fput_light(sock->file, fput_needed);
1835 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1838 return __sys_connect(fd, uservaddr, addrlen);
1842 * Get the local address ('name') of a socket object. Move the obtained
1843 * name to user space.
1846 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1847 int __user *usockaddr_len)
1849 struct socket *sock;
1850 struct sockaddr_storage address;
1851 int err, fput_needed;
1853 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1857 err = security_socket_getsockname(sock);
1861 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1864 /* "err" is actually length in this case */
1865 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1868 fput_light(sock->file, fput_needed);
1873 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1874 int __user *, usockaddr_len)
1876 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1880 * Get the remote address ('name') of a socket object. Move the obtained
1881 * name to user space.
1884 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1885 int __user *usockaddr_len)
1887 struct socket *sock;
1888 struct sockaddr_storage address;
1889 int err, fput_needed;
1891 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1893 err = security_socket_getpeername(sock);
1895 fput_light(sock->file, fput_needed);
1899 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1901 /* "err" is actually length in this case */
1902 err = move_addr_to_user(&address, err, usockaddr,
1904 fput_light(sock->file, fput_needed);
1909 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1910 int __user *, usockaddr_len)
1912 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1916 * Send a datagram to a given address. We move the address into kernel
1917 * space and check the user space data area is readable before invoking
1920 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1921 struct sockaddr __user *addr, int addr_len)
1923 struct socket *sock;
1924 struct sockaddr_storage address;
1930 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1933 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1937 msg.msg_name = NULL;
1938 msg.msg_control = NULL;
1939 msg.msg_controllen = 0;
1940 msg.msg_namelen = 0;
1942 err = move_addr_to_kernel(addr, addr_len, &address);
1945 msg.msg_name = (struct sockaddr *)&address;
1946 msg.msg_namelen = addr_len;
1948 if (sock->file->f_flags & O_NONBLOCK)
1949 flags |= MSG_DONTWAIT;
1950 msg.msg_flags = flags;
1951 err = sock_sendmsg(sock, &msg);
1954 fput_light(sock->file, fput_needed);
1959 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1960 unsigned int, flags, struct sockaddr __user *, addr,
1963 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1967 * Send a datagram down a socket.
1970 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1971 unsigned int, flags)
1973 return __sys_sendto(fd, buff, len, flags, NULL, 0);
1977 * Receive a frame from the socket and optionally record the address of the
1978 * sender. We verify the buffers are writable and if needed move the
1979 * sender address from kernel to user space.
1981 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1982 struct sockaddr __user *addr, int __user *addr_len)
1984 struct socket *sock;
1987 struct sockaddr_storage address;
1991 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1994 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1998 msg.msg_control = NULL;
1999 msg.msg_controllen = 0;
2000 /* Save some cycles and don't copy the address if not needed */
2001 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2002 /* We assume all kernel code knows the size of sockaddr_storage */
2003 msg.msg_namelen = 0;
2004 msg.msg_iocb = NULL;
2006 if (sock->file->f_flags & O_NONBLOCK)
2007 flags |= MSG_DONTWAIT;
2008 err = sock_recvmsg(sock, &msg, flags);
2010 if (err >= 0 && addr != NULL) {
2011 err2 = move_addr_to_user(&address,
2012 msg.msg_namelen, addr, addr_len);
2017 fput_light(sock->file, fput_needed);
2022 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2023 unsigned int, flags, struct sockaddr __user *, addr,
2024 int __user *, addr_len)
2026 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2030 * Receive a datagram from a socket.
2033 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2034 unsigned int, flags)
2036 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2040 * Set a socket option. Because we don't know the option lengths we have
2041 * to pass the user mode parameter for the protocols to sort out.
2044 static int __sys_setsockopt(int fd, int level, int optname,
2045 char __user *optval, int optlen)
2047 int err, fput_needed;
2048 struct socket *sock;
2053 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2055 err = security_socket_setsockopt(sock, level, optname);
2059 if (level == SOL_SOCKET)
2061 sock_setsockopt(sock, level, optname, optval,
2065 sock->ops->setsockopt(sock, level, optname, optval,
2068 fput_light(sock->file, fput_needed);
2073 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2074 char __user *, optval, int, optlen)
2076 return __sys_setsockopt(fd, level, optname, optval, optlen);
2080 * Get a socket option. Because we don't know the option lengths we have
2081 * to pass a user mode parameter for the protocols to sort out.
2084 static int __sys_getsockopt(int fd, int level, int optname,
2085 char __user *optval, int __user *optlen)
2087 int err, fput_needed;
2088 struct socket *sock;
2090 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2092 err = security_socket_getsockopt(sock, level, optname);
2096 if (level == SOL_SOCKET)
2098 sock_getsockopt(sock, level, optname, optval,
2102 sock->ops->getsockopt(sock, level, optname, optval,
2105 fput_light(sock->file, fput_needed);
2110 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2111 char __user *, optval, int __user *, optlen)
2113 return __sys_getsockopt(fd, level, optname, optval, optlen);
2117 * Shutdown a socket.
2120 int __sys_shutdown(int fd, int how)
2122 int err, fput_needed;
2123 struct socket *sock;
2125 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2127 err = security_socket_shutdown(sock, how);
2129 err = sock->ops->shutdown(sock, how);
2130 fput_light(sock->file, fput_needed);
2135 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2137 return __sys_shutdown(fd, how);
2140 /* A couple of helpful macros for getting the address of the 32/64 bit
2141 * fields which are the same type (int / unsigned) on our platforms.
2143 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2144 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2145 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2147 struct used_address {
2148 struct sockaddr_storage name;
2149 unsigned int name_len;
2152 static int copy_msghdr_from_user(struct msghdr *kmsg,
2153 struct user_msghdr __user *umsg,
2154 struct sockaddr __user **save_addr,
2157 struct user_msghdr msg;
2160 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2163 kmsg->msg_control = (void __force *)msg.msg_control;
2164 kmsg->msg_controllen = msg.msg_controllen;
2165 kmsg->msg_flags = msg.msg_flags;
2167 kmsg->msg_namelen = msg.msg_namelen;
2169 kmsg->msg_namelen = 0;
2171 if (kmsg->msg_namelen < 0)
2174 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2175 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2178 *save_addr = msg.msg_name;
2180 if (msg.msg_name && kmsg->msg_namelen) {
2182 err = move_addr_to_kernel(msg.msg_name,
2189 kmsg->msg_name = NULL;
2190 kmsg->msg_namelen = 0;
2193 if (msg.msg_iovlen > UIO_MAXIOV)
2196 kmsg->msg_iocb = NULL;
2198 return import_iovec(save_addr ? READ : WRITE,
2199 msg.msg_iov, msg.msg_iovlen,
2200 UIO_FASTIOV, iov, &kmsg->msg_iter);
2203 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2204 struct msghdr *msg_sys, unsigned int flags,
2205 struct used_address *used_address,
2206 unsigned int allowed_msghdr_flags)
2208 struct compat_msghdr __user *msg_compat =
2209 (struct compat_msghdr __user *)msg;
2210 struct sockaddr_storage address;
2211 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2212 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2213 __aligned(sizeof(__kernel_size_t));
2214 /* 20 is size of ipv6_pktinfo */
2215 unsigned char *ctl_buf = ctl;
2219 msg_sys->msg_name = &address;
2221 if (MSG_CMSG_COMPAT & flags)
2222 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2224 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2230 if (msg_sys->msg_controllen > INT_MAX)
2232 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2233 ctl_len = msg_sys->msg_controllen;
2234 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2236 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2240 ctl_buf = msg_sys->msg_control;
2241 ctl_len = msg_sys->msg_controllen;
2242 } else if (ctl_len) {
2243 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2244 CMSG_ALIGN(sizeof(struct cmsghdr)));
2245 if (ctl_len > sizeof(ctl)) {
2246 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2247 if (ctl_buf == NULL)
2252 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2253 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2254 * checking falls down on this.
2256 if (copy_from_user(ctl_buf,
2257 (void __user __force *)msg_sys->msg_control,
2260 msg_sys->msg_control = ctl_buf;
2262 msg_sys->msg_flags = flags;
2264 if (sock->file->f_flags & O_NONBLOCK)
2265 msg_sys->msg_flags |= MSG_DONTWAIT;
2267 * If this is sendmmsg() and current destination address is same as
2268 * previously succeeded address, omit asking LSM's decision.
2269 * used_address->name_len is initialized to UINT_MAX so that the first
2270 * destination address never matches.
2272 if (used_address && msg_sys->msg_name &&
2273 used_address->name_len == msg_sys->msg_namelen &&
2274 !memcmp(&used_address->name, msg_sys->msg_name,
2275 used_address->name_len)) {
2276 err = sock_sendmsg_nosec(sock, msg_sys);
2279 err = sock_sendmsg(sock, msg_sys);
2281 * If this is sendmmsg() and sending to current destination address was
2282 * successful, remember it.
2284 if (used_address && err >= 0) {
2285 used_address->name_len = msg_sys->msg_namelen;
2286 if (msg_sys->msg_name)
2287 memcpy(&used_address->name, msg_sys->msg_name,
2288 used_address->name_len);
2293 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2300 * BSD sendmsg interface
2303 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2304 bool forbid_cmsg_compat)
2306 int fput_needed, err;
2307 struct msghdr msg_sys;
2308 struct socket *sock;
2310 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2313 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2317 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2319 fput_light(sock->file, fput_needed);
2324 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2326 return __sys_sendmsg(fd, msg, flags, true);
2330 * Linux sendmmsg interface
2333 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2334 unsigned int flags, bool forbid_cmsg_compat)
2336 int fput_needed, err, datagrams;
2337 struct socket *sock;
2338 struct mmsghdr __user *entry;
2339 struct compat_mmsghdr __user *compat_entry;
2340 struct msghdr msg_sys;
2341 struct used_address used_address;
2342 unsigned int oflags = flags;
2344 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2347 if (vlen > UIO_MAXIOV)
2352 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2356 used_address.name_len = UINT_MAX;
2358 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2362 while (datagrams < vlen) {
2363 if (datagrams == vlen - 1)
2366 if (MSG_CMSG_COMPAT & flags) {
2367 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2368 &msg_sys, flags, &used_address, MSG_EOR);
2371 err = __put_user(err, &compat_entry->msg_len);
2374 err = ___sys_sendmsg(sock,
2375 (struct user_msghdr __user *)entry,
2376 &msg_sys, flags, &used_address, MSG_EOR);
2379 err = put_user(err, &entry->msg_len);
2386 if (msg_data_left(&msg_sys))
2391 fput_light(sock->file, fput_needed);
2393 /* We only return an error if no datagrams were able to be sent */
2400 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2401 unsigned int, vlen, unsigned int, flags)
2403 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2406 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2407 struct msghdr *msg_sys, unsigned int flags, int nosec)
2409 struct compat_msghdr __user *msg_compat =
2410 (struct compat_msghdr __user *)msg;
2411 struct iovec iovstack[UIO_FASTIOV];
2412 struct iovec *iov = iovstack;
2413 unsigned long cmsg_ptr;
2417 /* kernel mode address */
2418 struct sockaddr_storage addr;
2420 /* user mode address pointers */
2421 struct sockaddr __user *uaddr;
2422 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2424 msg_sys->msg_name = &addr;
2426 if (MSG_CMSG_COMPAT & flags)
2427 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2429 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2433 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2434 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2436 /* We assume all kernel code knows the size of sockaddr_storage */
2437 msg_sys->msg_namelen = 0;
2439 if (sock->file->f_flags & O_NONBLOCK)
2440 flags |= MSG_DONTWAIT;
2441 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2446 if (uaddr != NULL) {
2447 err = move_addr_to_user(&addr,
2448 msg_sys->msg_namelen, uaddr,
2453 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2457 if (MSG_CMSG_COMPAT & flags)
2458 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2459 &msg_compat->msg_controllen);
2461 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2462 &msg->msg_controllen);
2473 * BSD recvmsg interface
2476 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2477 bool forbid_cmsg_compat)
2479 int fput_needed, err;
2480 struct msghdr msg_sys;
2481 struct socket *sock;
2483 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2486 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2490 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2492 fput_light(sock->file, fput_needed);
2497 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2498 unsigned int, flags)
2500 return __sys_recvmsg(fd, msg, flags, true);
2504 * Linux recvmmsg interface
2507 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2508 unsigned int vlen, unsigned int flags,
2509 struct timespec64 *timeout)
2511 int fput_needed, err, datagrams;
2512 struct socket *sock;
2513 struct mmsghdr __user *entry;
2514 struct compat_mmsghdr __user *compat_entry;
2515 struct msghdr msg_sys;
2516 struct timespec64 end_time;
2517 struct timespec64 timeout64;
2520 poll_select_set_timeout(&end_time, timeout->tv_sec,
2526 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2530 if (likely(!(flags & MSG_ERRQUEUE))) {
2531 err = sock_error(sock->sk);
2539 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2541 while (datagrams < vlen) {
2543 * No need to ask LSM for more than the first datagram.
2545 if (MSG_CMSG_COMPAT & flags) {
2546 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2547 &msg_sys, flags & ~MSG_WAITFORONE,
2551 err = __put_user(err, &compat_entry->msg_len);
2554 err = ___sys_recvmsg(sock,
2555 (struct user_msghdr __user *)entry,
2556 &msg_sys, flags & ~MSG_WAITFORONE,
2560 err = put_user(err, &entry->msg_len);
2568 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2569 if (flags & MSG_WAITFORONE)
2570 flags |= MSG_DONTWAIT;
2573 ktime_get_ts64(&timeout64);
2574 *timeout = timespec64_sub(end_time, timeout64);
2575 if (timeout->tv_sec < 0) {
2576 timeout->tv_sec = timeout->tv_nsec = 0;
2580 /* Timeout, return less than vlen datagrams */
2581 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2585 /* Out of band data, return right away */
2586 if (msg_sys.msg_flags & MSG_OOB)
2594 if (datagrams == 0) {
2600 * We may return less entries than requested (vlen) if the
2601 * sock is non block and there aren't enough datagrams...
2603 if (err != -EAGAIN) {
2605 * ... or if recvmsg returns an error after we
2606 * received some datagrams, where we record the
2607 * error to return on the next call or if the
2608 * app asks about it using getsockopt(SO_ERROR).
2610 sock->sk->sk_err = -err;
2613 fput_light(sock->file, fput_needed);
2618 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2619 unsigned int vlen, unsigned int flags,
2620 struct __kernel_timespec __user *timeout,
2621 struct old_timespec32 __user *timeout32)
2624 struct timespec64 timeout_sys;
2626 if (timeout && get_timespec64(&timeout_sys, timeout))
2629 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2632 if (!timeout && !timeout32)
2633 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2635 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2640 if (timeout && put_timespec64(&timeout_sys, timeout))
2641 datagrams = -EFAULT;
2643 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2644 datagrams = -EFAULT;
2649 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2650 unsigned int, vlen, unsigned int, flags,
2651 struct __kernel_timespec __user *, timeout)
2653 if (flags & MSG_CMSG_COMPAT)
2656 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2659 #ifdef CONFIG_COMPAT_32BIT_TIME
2660 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2661 unsigned int, vlen, unsigned int, flags,
2662 struct old_timespec32 __user *, timeout)
2664 if (flags & MSG_CMSG_COMPAT)
2667 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2671 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2672 /* Argument list sizes for sys_socketcall */
2673 #define AL(x) ((x) * sizeof(unsigned long))
2674 static const unsigned char nargs[21] = {
2675 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2676 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2677 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2684 * System call vectors.
2686 * Argument checking cleaned up. Saved 20% in size.
2687 * This function doesn't need to set the kernel lock because
2688 * it is set by the callees.
2691 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2693 unsigned long a[AUDITSC_ARGS];
2694 unsigned long a0, a1;
2698 if (call < 1 || call > SYS_SENDMMSG)
2700 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2703 if (len > sizeof(a))
2706 /* copy_from_user should be SMP safe. */
2707 if (copy_from_user(a, args, len))
2710 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2719 err = __sys_socket(a0, a1, a[2]);
2722 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2725 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2728 err = __sys_listen(a0, a1);
2731 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2732 (int __user *)a[2], 0);
2734 case SYS_GETSOCKNAME:
2736 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2737 (int __user *)a[2]);
2739 case SYS_GETPEERNAME:
2741 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2742 (int __user *)a[2]);
2744 case SYS_SOCKETPAIR:
2745 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2748 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2752 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2753 (struct sockaddr __user *)a[4], a[5]);
2756 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2760 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2761 (struct sockaddr __user *)a[4],
2762 (int __user *)a[5]);
2765 err = __sys_shutdown(a0, a1);
2767 case SYS_SETSOCKOPT:
2768 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2771 case SYS_GETSOCKOPT:
2773 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2774 (int __user *)a[4]);
2777 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2781 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2785 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2789 if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME))
2790 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2792 (struct __kernel_timespec __user *)a[4],
2795 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2797 (struct old_timespec32 __user *)a[4]);
2800 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2801 (int __user *)a[2], a[3]);
2810 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2813 * sock_register - add a socket protocol handler
2814 * @ops: description of protocol
2816 * This function is called by a protocol handler that wants to
2817 * advertise its address family, and have it linked into the
2818 * socket interface. The value ops->family corresponds to the
2819 * socket system call protocol family.
2821 int sock_register(const struct net_proto_family *ops)
2825 if (ops->family >= NPROTO) {
2826 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2830 spin_lock(&net_family_lock);
2831 if (rcu_dereference_protected(net_families[ops->family],
2832 lockdep_is_held(&net_family_lock)))
2835 rcu_assign_pointer(net_families[ops->family], ops);
2838 spin_unlock(&net_family_lock);
2840 pr_info("NET: Registered protocol family %d\n", ops->family);
2843 EXPORT_SYMBOL(sock_register);
2846 * sock_unregister - remove a protocol handler
2847 * @family: protocol family to remove
2849 * This function is called by a protocol handler that wants to
2850 * remove its address family, and have it unlinked from the
2851 * new socket creation.
2853 * If protocol handler is a module, then it can use module reference
2854 * counts to protect against new references. If protocol handler is not
2855 * a module then it needs to provide its own protection in
2856 * the ops->create routine.
2858 void sock_unregister(int family)
2860 BUG_ON(family < 0 || family >= NPROTO);
2862 spin_lock(&net_family_lock);
2863 RCU_INIT_POINTER(net_families[family], NULL);
2864 spin_unlock(&net_family_lock);
2868 pr_info("NET: Unregistered protocol family %d\n", family);
2870 EXPORT_SYMBOL(sock_unregister);
2872 bool sock_is_registered(int family)
2874 return family < NPROTO && rcu_access_pointer(net_families[family]);
2877 static int __init sock_init(void)
2881 * Initialize the network sysctl infrastructure.
2883 err = net_sysctl_init();
2888 * Initialize skbuff SLAB cache
2893 * Initialize the protocols module.
2898 err = register_filesystem(&sock_fs_type);
2901 sock_mnt = kern_mount(&sock_fs_type);
2902 if (IS_ERR(sock_mnt)) {
2903 err = PTR_ERR(sock_mnt);
2907 /* The real protocol initialization is performed in later initcalls.
2910 #ifdef CONFIG_NETFILTER
2911 err = netfilter_init();
2916 ptp_classifier_init();
2922 unregister_filesystem(&sock_fs_type);
2927 core_initcall(sock_init); /* early initcall */
2929 #ifdef CONFIG_PROC_FS
2930 void socket_seq_show(struct seq_file *seq)
2932 seq_printf(seq, "sockets: used %d\n",
2933 sock_inuse_get(seq->private));
2935 #endif /* CONFIG_PROC_FS */
2937 #ifdef CONFIG_COMPAT
2938 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2940 struct compat_ifconf ifc32;
2944 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2947 ifc.ifc_len = ifc32.ifc_len;
2948 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2951 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2956 ifc32.ifc_len = ifc.ifc_len;
2957 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2963 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2965 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2966 bool convert_in = false, convert_out = false;
2967 size_t buf_size = 0;
2968 struct ethtool_rxnfc __user *rxnfc = NULL;
2970 u32 rule_cnt = 0, actual_rule_cnt;
2975 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2978 compat_rxnfc = compat_ptr(data);
2980 if (get_user(ethcmd, &compat_rxnfc->cmd))
2983 /* Most ethtool structures are defined without padding.
2984 * Unfortunately struct ethtool_rxnfc is an exception.
2989 case ETHTOOL_GRXCLSRLALL:
2990 /* Buffer size is variable */
2991 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2993 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2995 buf_size += rule_cnt * sizeof(u32);
2997 case ETHTOOL_GRXRINGS:
2998 case ETHTOOL_GRXCLSRLCNT:
2999 case ETHTOOL_GRXCLSRULE:
3000 case ETHTOOL_SRXCLSRLINS:
3003 case ETHTOOL_SRXCLSRLDEL:
3004 buf_size += sizeof(struct ethtool_rxnfc);
3006 rxnfc = compat_alloc_user_space(buf_size);
3010 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3013 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3016 /* We expect there to be holes between fs.m_ext and
3017 * fs.ring_cookie and at the end of fs, but nowhere else.
3019 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3020 sizeof(compat_rxnfc->fs.m_ext) !=
3021 offsetof(struct ethtool_rxnfc, fs.m_ext) +
3022 sizeof(rxnfc->fs.m_ext));
3024 offsetof(struct compat_ethtool_rxnfc, fs.location) -
3025 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3026 offsetof(struct ethtool_rxnfc, fs.location) -
3027 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3029 if (copy_in_user(rxnfc, compat_rxnfc,
3030 (void __user *)(&rxnfc->fs.m_ext + 1) -
3031 (void __user *)rxnfc) ||
3032 copy_in_user(&rxnfc->fs.ring_cookie,
3033 &compat_rxnfc->fs.ring_cookie,
3034 (void __user *)(&rxnfc->fs.location + 1) -
3035 (void __user *)&rxnfc->fs.ring_cookie))
3037 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3038 if (put_user(rule_cnt, &rxnfc->rule_cnt))
3040 } else if (copy_in_user(&rxnfc->rule_cnt,
3041 &compat_rxnfc->rule_cnt,
3042 sizeof(rxnfc->rule_cnt)))
3046 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3051 if (copy_in_user(compat_rxnfc, rxnfc,
3052 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3053 (const void __user *)rxnfc) ||
3054 copy_in_user(&compat_rxnfc->fs.ring_cookie,
3055 &rxnfc->fs.ring_cookie,
3056 (const void __user *)(&rxnfc->fs.location + 1) -
3057 (const void __user *)&rxnfc->fs.ring_cookie) ||
3058 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3059 sizeof(rxnfc->rule_cnt)))
3062 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3063 /* As an optimisation, we only copy the actual
3064 * number of rules that the underlying
3065 * function returned. Since Mallory might
3066 * change the rule count in user memory, we
3067 * check that it is less than the rule count
3068 * originally given (as the user buffer size),
3069 * which has been range-checked.
3071 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3073 if (actual_rule_cnt < rule_cnt)
3074 rule_cnt = actual_rule_cnt;
3075 if (copy_in_user(&compat_rxnfc->rule_locs[0],
3076 &rxnfc->rule_locs[0],
3077 rule_cnt * sizeof(u32)))
3085 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3087 compat_uptr_t uptr32;
3092 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3095 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3098 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3099 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3101 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3103 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3104 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3110 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3111 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3112 struct compat_ifreq __user *u_ifreq32)
3117 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3119 if (get_user(data32, &u_ifreq32->ifr_data))
3121 ifreq.ifr_data = compat_ptr(data32);
3123 return dev_ioctl(net, cmd, &ifreq, NULL);
3126 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3128 struct compat_ifreq __user *uifr32)
3130 struct ifreq __user *uifr;
3133 /* Handle the fact that while struct ifreq has the same *layout* on
3134 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3135 * which are handled elsewhere, it still has different *size* due to
3136 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3137 * resulting in struct ifreq being 32 and 40 bytes respectively).
3138 * As a result, if the struct happens to be at the end of a page and
3139 * the next page isn't readable/writable, we get a fault. To prevent
3140 * that, copy back and forth to the full size.
3143 uifr = compat_alloc_user_space(sizeof(*uifr));
3144 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3147 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3158 case SIOCGIFBRDADDR:
3159 case SIOCGIFDSTADDR:
3160 case SIOCGIFNETMASK:
3166 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3174 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3175 struct compat_ifreq __user *uifr32)
3178 struct compat_ifmap __user *uifmap32;
3181 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3182 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3183 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3184 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3185 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3186 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3187 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3188 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3192 err = dev_ioctl(net, cmd, &ifr, NULL);
3194 if (cmd == SIOCGIFMAP && !err) {
3195 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3196 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3197 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3198 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3199 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3200 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3201 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3210 struct sockaddr rt_dst; /* target address */
3211 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3212 struct sockaddr rt_genmask; /* target network mask (IP) */
3213 unsigned short rt_flags;
3216 unsigned char rt_tos;
3217 unsigned char rt_class;
3219 short rt_metric; /* +1 for binary compatibility! */
3220 /* char * */ u32 rt_dev; /* forcing the device at add */
3221 u32 rt_mtu; /* per route MTU/Window */
3222 u32 rt_window; /* Window clamping */
3223 unsigned short rt_irtt; /* Initial RTT */
3226 struct in6_rtmsg32 {
3227 struct in6_addr rtmsg_dst;
3228 struct in6_addr rtmsg_src;
3229 struct in6_addr rtmsg_gateway;
3239 static int routing_ioctl(struct net *net, struct socket *sock,
3240 unsigned int cmd, void __user *argp)
3244 struct in6_rtmsg r6;
3248 mm_segment_t old_fs = get_fs();
3250 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3251 struct in6_rtmsg32 __user *ur6 = argp;
3252 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3253 3 * sizeof(struct in6_addr));
3254 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3255 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3256 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3257 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3258 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3259 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3260 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3264 struct rtentry32 __user *ur4 = argp;
3265 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3266 3 * sizeof(struct sockaddr));
3267 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3268 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3269 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3270 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3271 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3272 ret |= get_user(rtdev, &(ur4->rt_dev));
3274 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3275 r4.rt_dev = (char __user __force *)devname;
3289 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3296 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3297 * for some operations; this forces use of the newer bridge-utils that
3298 * use compatible ioctls
3300 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3304 if (get_user(tmp, argp))
3306 if (tmp == BRCTL_GET_VERSION)
3307 return BRCTL_VERSION + 1;
3311 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3312 unsigned int cmd, unsigned long arg)
3314 void __user *argp = compat_ptr(arg);
3315 struct sock *sk = sock->sk;
3316 struct net *net = sock_net(sk);
3318 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3319 return compat_ifr_data_ioctl(net, cmd, argp);
3324 return old_bridge_ioctl(argp);
3326 return compat_dev_ifconf(net, argp);
3328 return ethtool_ioctl(net, argp);
3330 return compat_siocwandev(net, argp);
3333 return compat_sioc_ifmap(net, cmd, argp);
3336 return routing_ioctl(net, sock, cmd, argp);
3337 case SIOCGSTAMP_OLD:
3338 case SIOCGSTAMPNS_OLD:
3339 if (!sock->ops->gettstamp)
3340 return -ENOIOCTLCMD;
3341 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3342 !COMPAT_USE_64BIT_TIME);
3344 case SIOCBONDSLAVEINFOQUERY:
3345 case SIOCBONDINFOQUERY:
3348 return compat_ifr_data_ioctl(net, cmd, argp);
3361 case SIOCGSTAMP_NEW:
3362 case SIOCGSTAMPNS_NEW:
3363 return sock_ioctl(file, cmd, arg);
3380 case SIOCSIFHWBROADCAST:
3382 case SIOCGIFBRDADDR:
3383 case SIOCSIFBRDADDR:
3384 case SIOCGIFDSTADDR:
3385 case SIOCSIFDSTADDR:
3386 case SIOCGIFNETMASK:
3387 case SIOCSIFNETMASK:
3399 case SIOCBONDENSLAVE:
3400 case SIOCBONDRELEASE:
3401 case SIOCBONDSETHWADDR:
3402 case SIOCBONDCHANGEACTIVE:
3403 return compat_ifreq_ioctl(net, sock, cmd, argp);
3409 return sock_do_ioctl(net, sock, cmd, arg);
3412 return -ENOIOCTLCMD;
3415 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3418 struct socket *sock = file->private_data;
3419 int ret = -ENOIOCTLCMD;
3426 if (sock->ops->compat_ioctl)
3427 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3429 if (ret == -ENOIOCTLCMD &&
3430 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3431 ret = compat_wext_handle_ioctl(net, cmd, arg);
3433 if (ret == -ENOIOCTLCMD)
3434 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3441 * kernel_bind - bind an address to a socket (kernel space)
3444 * @addrlen: length of address
3446 * Returns 0 or an error.
3449 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3451 return sock->ops->bind(sock, addr, addrlen);
3453 EXPORT_SYMBOL(kernel_bind);
3456 * kernel_listen - move socket to listening state (kernel space)
3458 * @backlog: pending connections queue size
3460 * Returns 0 or an error.
3463 int kernel_listen(struct socket *sock, int backlog)
3465 return sock->ops->listen(sock, backlog);
3467 EXPORT_SYMBOL(kernel_listen);
3470 * kernel_accept - accept a connection (kernel space)
3471 * @sock: listening socket
3472 * @newsock: new connected socket
3475 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3476 * If it fails, @newsock is guaranteed to be %NULL.
3477 * Returns 0 or an error.
3480 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3482 struct sock *sk = sock->sk;
3485 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3490 err = sock->ops->accept(sock, *newsock, flags, true);
3492 sock_release(*newsock);
3497 (*newsock)->ops = sock->ops;
3498 __module_get((*newsock)->ops->owner);
3503 EXPORT_SYMBOL(kernel_accept);
3506 * kernel_connect - connect a socket (kernel space)
3509 * @addrlen: address length
3510 * @flags: flags (O_NONBLOCK, ...)
3512 * For datagram sockets, @addr is the addres to which datagrams are sent
3513 * by default, and the only address from which datagrams are received.
3514 * For stream sockets, attempts to connect to @addr.
3515 * Returns 0 or an error code.
3518 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3521 return sock->ops->connect(sock, addr, addrlen, flags);
3523 EXPORT_SYMBOL(kernel_connect);
3526 * kernel_getsockname - get the address which the socket is bound (kernel space)
3528 * @addr: address holder
3530 * Fills the @addr pointer with the address which the socket is bound.
3531 * Returns 0 or an error code.
3534 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3536 return sock->ops->getname(sock, addr, 0);
3538 EXPORT_SYMBOL(kernel_getsockname);
3541 * kernel_peername - get the address which the socket is connected (kernel space)
3543 * @addr: address holder
3545 * Fills the @addr pointer with the address which the socket is connected.
3546 * Returns 0 or an error code.
3549 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3551 return sock->ops->getname(sock, addr, 1);
3553 EXPORT_SYMBOL(kernel_getpeername);
3556 * kernel_getsockopt - get a socket option (kernel space)
3558 * @level: API level (SOL_SOCKET, ...)
3559 * @optname: option tag
3560 * @optval: option value
3561 * @optlen: option length
3563 * Assigns the option length to @optlen.
3564 * Returns 0 or an error.
3567 int kernel_getsockopt(struct socket *sock, int level, int optname,
3568 char *optval, int *optlen)
3570 mm_segment_t oldfs = get_fs();
3571 char __user *uoptval;
3572 int __user *uoptlen;
3575 uoptval = (char __user __force *) optval;
3576 uoptlen = (int __user __force *) optlen;
3579 if (level == SOL_SOCKET)
3580 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3582 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3587 EXPORT_SYMBOL(kernel_getsockopt);
3590 * kernel_setsockopt - set a socket option (kernel space)
3592 * @level: API level (SOL_SOCKET, ...)
3593 * @optname: option tag
3594 * @optval: option value
3595 * @optlen: option length
3597 * Returns 0 or an error.
3600 int kernel_setsockopt(struct socket *sock, int level, int optname,
3601 char *optval, unsigned int optlen)
3603 mm_segment_t oldfs = get_fs();
3604 char __user *uoptval;
3607 uoptval = (char __user __force *) optval;
3610 if (level == SOL_SOCKET)
3611 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3613 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3618 EXPORT_SYMBOL(kernel_setsockopt);
3621 * kernel_sendpage - send a &page through a socket (kernel space)
3624 * @offset: page offset
3625 * @size: total size in bytes
3626 * @flags: flags (MSG_DONTWAIT, ...)
3628 * Returns the total amount sent in bytes or an error.
3631 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3632 size_t size, int flags)
3634 if (sock->ops->sendpage)
3635 return sock->ops->sendpage(sock, page, offset, size, flags);
3637 return sock_no_sendpage(sock, page, offset, size, flags);
3639 EXPORT_SYMBOL(kernel_sendpage);
3642 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3645 * @offset: page offset
3646 * @size: total size in bytes
3647 * @flags: flags (MSG_DONTWAIT, ...)
3649 * Returns the total amount sent in bytes or an error.
3650 * Caller must hold @sk.
3653 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3654 size_t size, int flags)
3656 struct socket *sock = sk->sk_socket;
3658 if (sock->ops->sendpage_locked)
3659 return sock->ops->sendpage_locked(sk, page, offset, size,
3662 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3664 EXPORT_SYMBOL(kernel_sendpage_locked);
3667 * kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3669 * @how: connection part
3671 * Returns 0 or an error.
3674 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3676 return sock->ops->shutdown(sock, how);
3678 EXPORT_SYMBOL(kernel_sock_shutdown);
3681 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3684 * This routine returns the IP overhead imposed by a socket i.e.
3685 * the length of the underlying IP header, depending on whether
3686 * this is an IPv4 or IPv6 socket and the length from IP options turned
3687 * on at the socket. Assumes that the caller has a lock on the socket.
3690 u32 kernel_sock_ip_overhead(struct sock *sk)
3692 struct inet_sock *inet;
3693 struct ip_options_rcu *opt;
3695 #if IS_ENABLED(CONFIG_IPV6)
3696 struct ipv6_pinfo *np;
3697 struct ipv6_txoptions *optv6 = NULL;
3698 #endif /* IS_ENABLED(CONFIG_IPV6) */
3703 switch (sk->sk_family) {
3706 overhead += sizeof(struct iphdr);
3707 opt = rcu_dereference_protected(inet->inet_opt,
3708 sock_owned_by_user(sk));
3710 overhead += opt->opt.optlen;
3712 #if IS_ENABLED(CONFIG_IPV6)
3715 overhead += sizeof(struct ipv6hdr);
3717 optv6 = rcu_dereference_protected(np->opt,
3718 sock_owned_by_user(sk));
3720 overhead += (optv6->opt_flen + optv6->opt_nflen);
3722 #endif /* IS_ENABLED(CONFIG_IPV6) */
3723 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3727 EXPORT_SYMBOL(kernel_sock_ip_overhead);