2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
26 /* Bluetooth HCI core. */
28 #include <linux/export.h>
29 #include <linux/idr.h>
30 #include <linux/rfkill.h>
31 #include <linux/debugfs.h>
32 #include <linux/crypto.h>
33 #include <linux/property.h>
34 #include <asm/unaligned.h>
36 #include <net/bluetooth/bluetooth.h>
37 #include <net/bluetooth/hci_core.h>
38 #include <net/bluetooth/l2cap.h>
39 #include <net/bluetooth/mgmt.h>
41 #include "hci_request.h"
42 #include "hci_debugfs.h"
46 static void hci_rx_work(struct work_struct *work);
47 static void hci_cmd_work(struct work_struct *work);
48 static void hci_tx_work(struct work_struct *work);
51 LIST_HEAD(hci_dev_list);
52 DEFINE_RWLOCK(hci_dev_list_lock);
54 /* HCI callback list */
55 LIST_HEAD(hci_cb_list);
56 DEFINE_MUTEX(hci_cb_list_lock);
58 /* HCI ID Numbering */
59 static DEFINE_IDA(hci_index_ida);
61 /* ---- HCI debugfs entries ---- */
63 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
64 size_t count, loff_t *ppos)
66 struct hci_dev *hdev = file->private_data;
69 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
72 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
75 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
76 size_t count, loff_t *ppos)
78 struct hci_dev *hdev = file->private_data;
83 if (!test_bit(HCI_UP, &hdev->flags))
86 err = kstrtobool_from_user(user_buf, count, &enable);
90 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
93 hci_req_sync_lock(hdev);
95 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
98 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
100 hci_req_sync_unlock(hdev);
107 hci_dev_change_flag(hdev, HCI_DUT_MODE);
112 static const struct file_operations dut_mode_fops = {
114 .read = dut_mode_read,
115 .write = dut_mode_write,
116 .llseek = default_llseek,
119 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
120 size_t count, loff_t *ppos)
122 struct hci_dev *hdev = file->private_data;
125 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
128 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
131 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
132 size_t count, loff_t *ppos)
134 struct hci_dev *hdev = file->private_data;
138 err = kstrtobool_from_user(user_buf, count, &enable);
142 /* When the diagnostic flags are not persistent and the transport
143 * is not active or in user channel operation, then there is no need
144 * for the vendor callback. Instead just store the desired value and
145 * the setting will be programmed when the controller gets powered on.
147 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
148 (!test_bit(HCI_RUNNING, &hdev->flags) ||
149 hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
152 hci_req_sync_lock(hdev);
153 err = hdev->set_diag(hdev, enable);
154 hci_req_sync_unlock(hdev);
161 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
163 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
168 static const struct file_operations vendor_diag_fops = {
170 .read = vendor_diag_read,
171 .write = vendor_diag_write,
172 .llseek = default_llseek,
175 static void hci_debugfs_create_basic(struct hci_dev *hdev)
177 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
181 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
185 static int hci_reset_req(struct hci_request *req, unsigned long opt)
187 BT_DBG("%s %ld", req->hdev->name, opt);
190 set_bit(HCI_RESET, &req->hdev->flags);
191 hci_req_add(req, HCI_OP_RESET, 0, NULL);
195 static void bredr_init(struct hci_request *req)
197 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
199 /* Read Local Supported Features */
200 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
202 /* Read Local Version */
203 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
205 /* Read BD Address */
206 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
209 static void amp_init1(struct hci_request *req)
211 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
213 /* Read Local Version */
214 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
216 /* Read Local Supported Commands */
217 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
219 /* Read Local AMP Info */
220 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
222 /* Read Data Blk size */
223 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
225 /* Read Flow Control Mode */
226 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
228 /* Read Location Data */
229 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
232 static int amp_init2(struct hci_request *req)
234 /* Read Local Supported Features. Not all AMP controllers
235 * support this so it's placed conditionally in the second
238 if (req->hdev->commands[14] & 0x20)
239 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
244 static int hci_init1_req(struct hci_request *req, unsigned long opt)
246 struct hci_dev *hdev = req->hdev;
248 BT_DBG("%s %ld", hdev->name, opt);
251 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
252 hci_reset_req(req, 0);
254 switch (hdev->dev_type) {
262 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
269 static void bredr_setup(struct hci_request *req)
274 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
275 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
277 /* Read Class of Device */
278 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
280 /* Read Local Name */
281 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
283 /* Read Voice Setting */
284 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
286 /* Read Number of Supported IAC */
287 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
289 /* Read Current IAC LAP */
290 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
292 /* Clear Event Filters */
293 flt_type = HCI_FLT_CLEAR_ALL;
294 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
296 /* Connection accept timeout ~20 secs */
297 param = cpu_to_le16(0x7d00);
298 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, ¶m);
301 static void le_setup(struct hci_request *req)
303 struct hci_dev *hdev = req->hdev;
305 /* Read LE Buffer Size */
306 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
308 /* Read LE Local Supported Features */
309 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
311 /* Read LE Supported States */
312 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
314 /* LE-only controllers have LE implicitly enabled */
315 if (!lmp_bredr_capable(hdev))
316 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
319 static void hci_setup_event_mask(struct hci_request *req)
321 struct hci_dev *hdev = req->hdev;
323 /* The second byte is 0xff instead of 0x9f (two reserved bits
324 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
327 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
329 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
330 * any event mask for pre 1.2 devices.
332 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
335 if (lmp_bredr_capable(hdev)) {
336 events[4] |= 0x01; /* Flow Specification Complete */
338 /* Use a different default for LE-only devices */
339 memset(events, 0, sizeof(events));
340 events[1] |= 0x20; /* Command Complete */
341 events[1] |= 0x40; /* Command Status */
342 events[1] |= 0x80; /* Hardware Error */
344 /* If the controller supports the Disconnect command, enable
345 * the corresponding event. In addition enable packet flow
346 * control related events.
348 if (hdev->commands[0] & 0x20) {
349 events[0] |= 0x10; /* Disconnection Complete */
350 events[2] |= 0x04; /* Number of Completed Packets */
351 events[3] |= 0x02; /* Data Buffer Overflow */
354 /* If the controller supports the Read Remote Version
355 * Information command, enable the corresponding event.
357 if (hdev->commands[2] & 0x80)
358 events[1] |= 0x08; /* Read Remote Version Information
362 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
363 events[0] |= 0x80; /* Encryption Change */
364 events[5] |= 0x80; /* Encryption Key Refresh Complete */
368 if (lmp_inq_rssi_capable(hdev) ||
369 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
370 events[4] |= 0x02; /* Inquiry Result with RSSI */
372 if (lmp_ext_feat_capable(hdev))
373 events[4] |= 0x04; /* Read Remote Extended Features Complete */
375 if (lmp_esco_capable(hdev)) {
376 events[5] |= 0x08; /* Synchronous Connection Complete */
377 events[5] |= 0x10; /* Synchronous Connection Changed */
380 if (lmp_sniffsubr_capable(hdev))
381 events[5] |= 0x20; /* Sniff Subrating */
383 if (lmp_pause_enc_capable(hdev))
384 events[5] |= 0x80; /* Encryption Key Refresh Complete */
386 if (lmp_ext_inq_capable(hdev))
387 events[5] |= 0x40; /* Extended Inquiry Result */
389 if (lmp_no_flush_capable(hdev))
390 events[7] |= 0x01; /* Enhanced Flush Complete */
392 if (lmp_lsto_capable(hdev))
393 events[6] |= 0x80; /* Link Supervision Timeout Changed */
395 if (lmp_ssp_capable(hdev)) {
396 events[6] |= 0x01; /* IO Capability Request */
397 events[6] |= 0x02; /* IO Capability Response */
398 events[6] |= 0x04; /* User Confirmation Request */
399 events[6] |= 0x08; /* User Passkey Request */
400 events[6] |= 0x10; /* Remote OOB Data Request */
401 events[6] |= 0x20; /* Simple Pairing Complete */
402 events[7] |= 0x04; /* User Passkey Notification */
403 events[7] |= 0x08; /* Keypress Notification */
404 events[7] |= 0x10; /* Remote Host Supported
405 * Features Notification
409 if (lmp_le_capable(hdev))
410 events[7] |= 0x20; /* LE Meta-Event */
412 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
415 static int hci_init2_req(struct hci_request *req, unsigned long opt)
417 struct hci_dev *hdev = req->hdev;
419 if (hdev->dev_type == HCI_AMP)
420 return amp_init2(req);
422 if (lmp_bredr_capable(hdev))
425 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
427 if (lmp_le_capable(hdev))
430 /* All Bluetooth 1.2 and later controllers should support the
431 * HCI command for reading the local supported commands.
433 * Unfortunately some controllers indicate Bluetooth 1.2 support,
434 * but do not have support for this command. If that is the case,
435 * the driver can quirk the behavior and skip reading the local
436 * supported commands.
438 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
439 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
440 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
442 if (lmp_ssp_capable(hdev)) {
443 /* When SSP is available, then the host features page
444 * should also be available as well. However some
445 * controllers list the max_page as 0 as long as SSP
446 * has not been enabled. To achieve proper debugging
447 * output, force the minimum max_page to 1 at least.
449 hdev->max_page = 0x01;
451 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
454 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
455 sizeof(mode), &mode);
457 struct hci_cp_write_eir cp;
459 memset(hdev->eir, 0, sizeof(hdev->eir));
460 memset(&cp, 0, sizeof(cp));
462 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
466 if (lmp_inq_rssi_capable(hdev) ||
467 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
470 /* If Extended Inquiry Result events are supported, then
471 * they are clearly preferred over Inquiry Result with RSSI
474 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
476 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
479 if (lmp_inq_tx_pwr_capable(hdev))
480 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
482 if (lmp_ext_feat_capable(hdev)) {
483 struct hci_cp_read_local_ext_features cp;
486 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
490 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
492 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
499 static void hci_setup_link_policy(struct hci_request *req)
501 struct hci_dev *hdev = req->hdev;
502 struct hci_cp_write_def_link_policy cp;
505 if (lmp_rswitch_capable(hdev))
506 link_policy |= HCI_LP_RSWITCH;
507 if (lmp_hold_capable(hdev))
508 link_policy |= HCI_LP_HOLD;
509 if (lmp_sniff_capable(hdev))
510 link_policy |= HCI_LP_SNIFF;
511 if (lmp_park_capable(hdev))
512 link_policy |= HCI_LP_PARK;
514 cp.policy = cpu_to_le16(link_policy);
515 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
518 static void hci_set_le_support(struct hci_request *req)
520 struct hci_dev *hdev = req->hdev;
521 struct hci_cp_write_le_host_supported cp;
523 /* LE-only devices do not support explicit enablement */
524 if (!lmp_bredr_capable(hdev))
527 memset(&cp, 0, sizeof(cp));
529 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
534 if (cp.le != lmp_host_le_capable(hdev))
535 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
539 static void hci_set_event_mask_page_2(struct hci_request *req)
541 struct hci_dev *hdev = req->hdev;
542 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
543 bool changed = false;
545 /* If Connectionless Slave Broadcast master role is supported
546 * enable all necessary events for it.
548 if (lmp_csb_master_capable(hdev)) {
549 events[1] |= 0x40; /* Triggered Clock Capture */
550 events[1] |= 0x80; /* Synchronization Train Complete */
551 events[2] |= 0x10; /* Slave Page Response Timeout */
552 events[2] |= 0x20; /* CSB Channel Map Change */
556 /* If Connectionless Slave Broadcast slave role is supported
557 * enable all necessary events for it.
559 if (lmp_csb_slave_capable(hdev)) {
560 events[2] |= 0x01; /* Synchronization Train Received */
561 events[2] |= 0x02; /* CSB Receive */
562 events[2] |= 0x04; /* CSB Timeout */
563 events[2] |= 0x08; /* Truncated Page Complete */
567 /* Enable Authenticated Payload Timeout Expired event if supported */
568 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
573 /* Some Broadcom based controllers indicate support for Set Event
574 * Mask Page 2 command, but then actually do not support it. Since
575 * the default value is all bits set to zero, the command is only
576 * required if the event mask has to be changed. In case no change
577 * to the event mask is needed, skip this command.
580 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
581 sizeof(events), events);
584 static int hci_init3_req(struct hci_request *req, unsigned long opt)
586 struct hci_dev *hdev = req->hdev;
589 hci_setup_event_mask(req);
591 if (hdev->commands[6] & 0x20 &&
592 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
593 struct hci_cp_read_stored_link_key cp;
595 bacpy(&cp.bdaddr, BDADDR_ANY);
597 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
600 if (hdev->commands[5] & 0x10)
601 hci_setup_link_policy(req);
603 if (hdev->commands[8] & 0x01)
604 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
606 /* Some older Broadcom based Bluetooth 1.2 controllers do not
607 * support the Read Page Scan Type command. Check support for
608 * this command in the bit mask of supported commands.
610 if (hdev->commands[13] & 0x01)
611 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
613 if (lmp_le_capable(hdev)) {
616 memset(events, 0, sizeof(events));
618 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
619 events[0] |= 0x10; /* LE Long Term Key Request */
621 /* If controller supports the Connection Parameters Request
622 * Link Layer Procedure, enable the corresponding event.
624 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
625 events[0] |= 0x20; /* LE Remote Connection
629 /* If the controller supports the Data Length Extension
630 * feature, enable the corresponding event.
632 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
633 events[0] |= 0x40; /* LE Data Length Change */
635 /* If the controller supports Extended Scanner Filter
636 * Policies, enable the correspondig event.
638 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
639 events[1] |= 0x04; /* LE Direct Advertising
643 /* If the controller supports Channel Selection Algorithm #2
644 * feature, enable the corresponding event.
646 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
647 events[2] |= 0x08; /* LE Channel Selection
651 /* If the controller supports the LE Set Scan Enable command,
652 * enable the corresponding advertising report event.
654 if (hdev->commands[26] & 0x08)
655 events[0] |= 0x02; /* LE Advertising Report */
657 /* If the controller supports the LE Create Connection
658 * command, enable the corresponding event.
660 if (hdev->commands[26] & 0x10)
661 events[0] |= 0x01; /* LE Connection Complete */
663 /* If the controller supports the LE Connection Update
664 * command, enable the corresponding event.
666 if (hdev->commands[27] & 0x04)
667 events[0] |= 0x04; /* LE Connection Update
671 /* If the controller supports the LE Read Remote Used Features
672 * command, enable the corresponding event.
674 if (hdev->commands[27] & 0x20)
675 events[0] |= 0x08; /* LE Read Remote Used
679 /* If the controller supports the LE Read Local P-256
680 * Public Key command, enable the corresponding event.
682 if (hdev->commands[34] & 0x02)
683 events[0] |= 0x80; /* LE Read Local P-256
684 * Public Key Complete
687 /* If the controller supports the LE Generate DHKey
688 * command, enable the corresponding event.
690 if (hdev->commands[34] & 0x04)
691 events[1] |= 0x01; /* LE Generate DHKey Complete */
693 /* If the controller supports the LE Set Default PHY or
694 * LE Set PHY commands, enable the corresponding event.
696 if (hdev->commands[35] & (0x20 | 0x40))
697 events[1] |= 0x08; /* LE PHY Update Complete */
699 /* If the controller supports LE Set Extended Scan Parameters
700 * and LE Set Extended Scan Enable commands, enable the
701 * corresponding event.
703 if (use_ext_scan(hdev))
704 events[1] |= 0x10; /* LE Extended Advertising
708 /* If the controller supports the LE Extended Create Connection
709 * command, enable the corresponding event.
711 if (use_ext_conn(hdev))
712 events[1] |= 0x02; /* LE Enhanced Connection
716 /* If the controller supports the LE Extended Advertising
717 * command, enable the corresponding event.
719 if (ext_adv_capable(hdev))
720 events[2] |= 0x02; /* LE Advertising Set
724 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
727 /* Read LE Advertising Channel TX Power */
728 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
729 /* HCI TS spec forbids mixing of legacy and extended
730 * advertising commands wherein READ_ADV_TX_POWER is
731 * also included. So do not call it if extended adv
732 * is supported otherwise controller will return
733 * COMMAND_DISALLOWED for extended commands.
735 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
738 if (hdev->commands[26] & 0x40) {
739 /* Read LE White List Size */
740 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
744 if (hdev->commands[26] & 0x80) {
745 /* Clear LE White List */
746 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
749 if (hdev->commands[34] & 0x40) {
750 /* Read LE Resolving List Size */
751 hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
755 if (hdev->commands[34] & 0x20) {
756 /* Clear LE Resolving List */
757 hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
760 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
761 /* Read LE Maximum Data Length */
762 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
764 /* Read LE Suggested Default Data Length */
765 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
768 if (ext_adv_capable(hdev)) {
769 /* Read LE Number of Supported Advertising Sets */
770 hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
774 hci_set_le_support(req);
777 /* Read features beyond page 1 if available */
778 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
779 struct hci_cp_read_local_ext_features cp;
782 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
789 static int hci_init4_req(struct hci_request *req, unsigned long opt)
791 struct hci_dev *hdev = req->hdev;
793 /* Some Broadcom based Bluetooth controllers do not support the
794 * Delete Stored Link Key command. They are clearly indicating its
795 * absence in the bit mask of supported commands.
797 * Check the supported commands and only if the the command is marked
798 * as supported send it. If not supported assume that the controller
799 * does not have actual support for stored link keys which makes this
800 * command redundant anyway.
802 * Some controllers indicate that they support handling deleting
803 * stored link keys, but they don't. The quirk lets a driver
804 * just disable this command.
806 if (hdev->commands[6] & 0x80 &&
807 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
808 struct hci_cp_delete_stored_link_key cp;
810 bacpy(&cp.bdaddr, BDADDR_ANY);
811 cp.delete_all = 0x01;
812 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
816 /* Set event mask page 2 if the HCI command for it is supported */
817 if (hdev->commands[22] & 0x04)
818 hci_set_event_mask_page_2(req);
820 /* Read local codec list if the HCI command is supported */
821 if (hdev->commands[29] & 0x20)
822 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
824 /* Get MWS transport configuration if the HCI command is supported */
825 if (hdev->commands[30] & 0x08)
826 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
828 /* Check for Synchronization Train support */
829 if (lmp_sync_train_capable(hdev))
830 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
832 /* Enable Secure Connections if supported and configured */
833 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
834 bredr_sc_enabled(hdev)) {
837 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
838 sizeof(support), &support);
841 /* Set Suggested Default Data Length to maximum if supported */
842 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
843 struct hci_cp_le_write_def_data_len cp;
845 cp.tx_len = hdev->le_max_tx_len;
846 cp.tx_time = hdev->le_max_tx_time;
847 hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
850 /* Set Default PHY parameters if command is supported */
851 if (hdev->commands[35] & 0x20) {
852 struct hci_cp_le_set_default_phy cp;
855 cp.tx_phys = hdev->le_tx_def_phys;
856 cp.rx_phys = hdev->le_rx_def_phys;
858 hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
864 static int __hci_init(struct hci_dev *hdev)
868 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
872 if (hci_dev_test_flag(hdev, HCI_SETUP))
873 hci_debugfs_create_basic(hdev);
875 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
879 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
880 * BR/EDR/LE type controllers. AMP controllers only need the
881 * first two stages of init.
883 if (hdev->dev_type != HCI_PRIMARY)
886 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
890 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
894 /* This function is only called when the controller is actually in
895 * configured state. When the controller is marked as unconfigured,
896 * this initialization procedure is not run.
898 * It means that it is possible that a controller runs through its
899 * setup phase and then discovers missing settings. If that is the
900 * case, then this function will not be called. It then will only
901 * be called during the config phase.
903 * So only when in setup phase or config phase, create the debugfs
904 * entries and register the SMP channels.
906 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
907 !hci_dev_test_flag(hdev, HCI_CONFIG))
910 hci_debugfs_create_common(hdev);
912 if (lmp_bredr_capable(hdev))
913 hci_debugfs_create_bredr(hdev);
915 if (lmp_le_capable(hdev))
916 hci_debugfs_create_le(hdev);
921 static int hci_init0_req(struct hci_request *req, unsigned long opt)
923 struct hci_dev *hdev = req->hdev;
925 BT_DBG("%s %ld", hdev->name, opt);
928 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
929 hci_reset_req(req, 0);
931 /* Read Local Version */
932 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
934 /* Read BD Address */
935 if (hdev->set_bdaddr)
936 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
941 static int __hci_unconf_init(struct hci_dev *hdev)
945 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
948 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
952 if (hci_dev_test_flag(hdev, HCI_SETUP))
953 hci_debugfs_create_basic(hdev);
958 static int hci_scan_req(struct hci_request *req, unsigned long opt)
962 BT_DBG("%s %x", req->hdev->name, scan);
964 /* Inquiry and Page scans */
965 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
969 static int hci_auth_req(struct hci_request *req, unsigned long opt)
973 BT_DBG("%s %x", req->hdev->name, auth);
976 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
980 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
984 BT_DBG("%s %x", req->hdev->name, encrypt);
987 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
991 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
993 __le16 policy = cpu_to_le16(opt);
995 BT_DBG("%s %x", req->hdev->name, policy);
997 /* Default link policy */
998 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
1002 /* Get HCI device by index.
1003 * Device is held on return. */
1004 struct hci_dev *hci_dev_get(int index)
1006 struct hci_dev *hdev = NULL, *d;
1008 BT_DBG("%d", index);
1013 read_lock(&hci_dev_list_lock);
1014 list_for_each_entry(d, &hci_dev_list, list) {
1015 if (d->id == index) {
1016 hdev = hci_dev_hold(d);
1020 read_unlock(&hci_dev_list_lock);
1024 /* ---- Inquiry support ---- */
1026 bool hci_discovery_active(struct hci_dev *hdev)
1028 struct discovery_state *discov = &hdev->discovery;
1030 switch (discov->state) {
1031 case DISCOVERY_FINDING:
1032 case DISCOVERY_RESOLVING:
1040 void hci_discovery_set_state(struct hci_dev *hdev, int state)
1042 int old_state = hdev->discovery.state;
1044 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1046 if (old_state == state)
1049 hdev->discovery.state = state;
1052 case DISCOVERY_STOPPED:
1053 hci_update_background_scan(hdev);
1055 if (old_state != DISCOVERY_STARTING)
1056 mgmt_discovering(hdev, 0);
1058 case DISCOVERY_STARTING:
1060 case DISCOVERY_FINDING:
1061 mgmt_discovering(hdev, 1);
1063 case DISCOVERY_RESOLVING:
1065 case DISCOVERY_STOPPING:
1070 void hci_inquiry_cache_flush(struct hci_dev *hdev)
1072 struct discovery_state *cache = &hdev->discovery;
1073 struct inquiry_entry *p, *n;
1075 list_for_each_entry_safe(p, n, &cache->all, all) {
1080 INIT_LIST_HEAD(&cache->unknown);
1081 INIT_LIST_HEAD(&cache->resolve);
1084 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1087 struct discovery_state *cache = &hdev->discovery;
1088 struct inquiry_entry *e;
1090 BT_DBG("cache %p, %pMR", cache, bdaddr);
1092 list_for_each_entry(e, &cache->all, all) {
1093 if (!bacmp(&e->data.bdaddr, bdaddr))
1100 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1103 struct discovery_state *cache = &hdev->discovery;
1104 struct inquiry_entry *e;
1106 BT_DBG("cache %p, %pMR", cache, bdaddr);
1108 list_for_each_entry(e, &cache->unknown, list) {
1109 if (!bacmp(&e->data.bdaddr, bdaddr))
1116 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1120 struct discovery_state *cache = &hdev->discovery;
1121 struct inquiry_entry *e;
1123 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1125 list_for_each_entry(e, &cache->resolve, list) {
1126 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1128 if (!bacmp(&e->data.bdaddr, bdaddr))
1135 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1136 struct inquiry_entry *ie)
1138 struct discovery_state *cache = &hdev->discovery;
1139 struct list_head *pos = &cache->resolve;
1140 struct inquiry_entry *p;
1142 list_del(&ie->list);
1144 list_for_each_entry(p, &cache->resolve, list) {
1145 if (p->name_state != NAME_PENDING &&
1146 abs(p->data.rssi) >= abs(ie->data.rssi))
1151 list_add(&ie->list, pos);
1154 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1157 struct discovery_state *cache = &hdev->discovery;
1158 struct inquiry_entry *ie;
1161 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1163 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1165 if (!data->ssp_mode)
1166 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1168 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1170 if (!ie->data.ssp_mode)
1171 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1173 if (ie->name_state == NAME_NEEDED &&
1174 data->rssi != ie->data.rssi) {
1175 ie->data.rssi = data->rssi;
1176 hci_inquiry_cache_update_resolve(hdev, ie);
1182 /* Entry not in the cache. Add new one. */
1183 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1185 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1189 list_add(&ie->all, &cache->all);
1192 ie->name_state = NAME_KNOWN;
1194 ie->name_state = NAME_NOT_KNOWN;
1195 list_add(&ie->list, &cache->unknown);
1199 if (name_known && ie->name_state != NAME_KNOWN &&
1200 ie->name_state != NAME_PENDING) {
1201 ie->name_state = NAME_KNOWN;
1202 list_del(&ie->list);
1205 memcpy(&ie->data, data, sizeof(*data));
1206 ie->timestamp = jiffies;
1207 cache->timestamp = jiffies;
1209 if (ie->name_state == NAME_NOT_KNOWN)
1210 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1216 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1218 struct discovery_state *cache = &hdev->discovery;
1219 struct inquiry_info *info = (struct inquiry_info *) buf;
1220 struct inquiry_entry *e;
1223 list_for_each_entry(e, &cache->all, all) {
1224 struct inquiry_data *data = &e->data;
1229 bacpy(&info->bdaddr, &data->bdaddr);
1230 info->pscan_rep_mode = data->pscan_rep_mode;
1231 info->pscan_period_mode = data->pscan_period_mode;
1232 info->pscan_mode = data->pscan_mode;
1233 memcpy(info->dev_class, data->dev_class, 3);
1234 info->clock_offset = data->clock_offset;
1240 BT_DBG("cache %p, copied %d", cache, copied);
1244 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1246 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1247 struct hci_dev *hdev = req->hdev;
1248 struct hci_cp_inquiry cp;
1250 BT_DBG("%s", hdev->name);
1252 if (test_bit(HCI_INQUIRY, &hdev->flags))
1256 memcpy(&cp.lap, &ir->lap, 3);
1257 cp.length = ir->length;
1258 cp.num_rsp = ir->num_rsp;
1259 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1264 int hci_inquiry(void __user *arg)
1266 __u8 __user *ptr = arg;
1267 struct hci_inquiry_req ir;
1268 struct hci_dev *hdev;
1269 int err = 0, do_inquiry = 0, max_rsp;
1273 if (copy_from_user(&ir, ptr, sizeof(ir)))
1276 hdev = hci_dev_get(ir.dev_id);
1280 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1285 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1290 if (hdev->dev_type != HCI_PRIMARY) {
1295 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1301 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1302 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1303 hci_inquiry_cache_flush(hdev);
1306 hci_dev_unlock(hdev);
1308 timeo = ir.length * msecs_to_jiffies(2000);
1311 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1316 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1317 * cleared). If it is interrupted by a signal, return -EINTR.
1319 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1320 TASK_INTERRUPTIBLE))
1324 /* for unlimited number of responses we will use buffer with
1327 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1329 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1330 * copy it to the user space.
1332 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1339 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1340 hci_dev_unlock(hdev);
1342 BT_DBG("num_rsp %d", ir.num_rsp);
1344 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1346 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1360 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1361 * (BD_ADDR) for a HCI device from
1362 * a firmware node property.
1363 * @hdev: The HCI device
1365 * Search the firmware node for 'local-bd-address'.
1367 * All-zero BD addresses are rejected, because those could be properties
1368 * that exist in the firmware tables, but were not updated by the firmware. For
1369 * example, the DTS could define 'local-bd-address', with zero BD addresses.
1371 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1373 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1377 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1378 (u8 *)&ba, sizeof(ba));
1379 if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1382 bacpy(&hdev->public_addr, &ba);
1385 static int hci_dev_do_open(struct hci_dev *hdev)
1389 BT_DBG("%s %p", hdev->name, hdev);
1391 hci_req_sync_lock(hdev);
1393 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1398 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1399 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1400 /* Check for rfkill but allow the HCI setup stage to
1401 * proceed (which in itself doesn't cause any RF activity).
1403 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1408 /* Check for valid public address or a configured static
1409 * random adddress, but let the HCI setup proceed to
1410 * be able to determine if there is a public address
1413 * In case of user channel usage, it is not important
1414 * if a public address or static random address is
1417 * This check is only valid for BR/EDR controllers
1418 * since AMP controllers do not have an address.
1420 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1421 hdev->dev_type == HCI_PRIMARY &&
1422 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1423 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1424 ret = -EADDRNOTAVAIL;
1429 if (test_bit(HCI_UP, &hdev->flags)) {
1434 if (hdev->open(hdev)) {
1439 set_bit(HCI_RUNNING, &hdev->flags);
1440 hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1442 atomic_set(&hdev->cmd_cnt, 1);
1443 set_bit(HCI_INIT, &hdev->flags);
1445 if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1446 test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1447 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1450 ret = hdev->setup(hdev);
1455 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1456 if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1457 hci_dev_get_bd_addr_from_property(hdev);
1459 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1461 ret = hdev->set_bdaddr(hdev,
1462 &hdev->public_addr);
1464 ret = -EADDRNOTAVAIL;
1468 /* The transport driver can set these quirks before
1469 * creating the HCI device or in its setup callback.
1471 * In case any of them is set, the controller has to
1472 * start up as unconfigured.
1474 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1475 test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1476 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1478 /* For an unconfigured controller it is required to
1479 * read at least the version information provided by
1480 * the Read Local Version Information command.
1482 * If the set_bdaddr driver callback is provided, then
1483 * also the original Bluetooth public device address
1484 * will be read using the Read BD Address command.
1486 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1487 ret = __hci_unconf_init(hdev);
1490 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1491 /* If public address change is configured, ensure that
1492 * the address gets programmed. If the driver does not
1493 * support changing the public address, fail the power
1496 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1498 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1500 ret = -EADDRNOTAVAIL;
1504 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1505 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1506 ret = __hci_init(hdev);
1507 if (!ret && hdev->post_init)
1508 ret = hdev->post_init(hdev);
1512 /* If the HCI Reset command is clearing all diagnostic settings,
1513 * then they need to be reprogrammed after the init procedure
1516 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1517 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1518 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1519 ret = hdev->set_diag(hdev, true);
1521 clear_bit(HCI_INIT, &hdev->flags);
1525 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1526 hci_adv_instances_set_rpa_expired(hdev, true);
1527 set_bit(HCI_UP, &hdev->flags);
1528 hci_sock_dev_event(hdev, HCI_DEV_UP);
1529 hci_leds_update_powered(hdev, true);
1530 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1531 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1532 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1533 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1534 hci_dev_test_flag(hdev, HCI_MGMT) &&
1535 hdev->dev_type == HCI_PRIMARY) {
1536 ret = __hci_req_hci_power_on(hdev);
1537 mgmt_power_on(hdev, ret);
1540 /* Init failed, cleanup */
1541 flush_work(&hdev->tx_work);
1542 flush_work(&hdev->cmd_work);
1543 flush_work(&hdev->rx_work);
1545 skb_queue_purge(&hdev->cmd_q);
1546 skb_queue_purge(&hdev->rx_q);
1551 if (hdev->sent_cmd) {
1552 kfree_skb(hdev->sent_cmd);
1553 hdev->sent_cmd = NULL;
1556 clear_bit(HCI_RUNNING, &hdev->flags);
1557 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1560 hdev->flags &= BIT(HCI_RAW);
1564 hci_req_sync_unlock(hdev);
1568 /* ---- HCI ioctl helpers ---- */
1570 int hci_dev_open(__u16 dev)
1572 struct hci_dev *hdev;
1575 hdev = hci_dev_get(dev);
1579 /* Devices that are marked as unconfigured can only be powered
1580 * up as user channel. Trying to bring them up as normal devices
1581 * will result into a failure. Only user channel operation is
1584 * When this function is called for a user channel, the flag
1585 * HCI_USER_CHANNEL will be set first before attempting to
1588 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1589 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1594 /* We need to ensure that no other power on/off work is pending
1595 * before proceeding to call hci_dev_do_open. This is
1596 * particularly important if the setup procedure has not yet
1599 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1600 cancel_delayed_work(&hdev->power_off);
1602 /* After this call it is guaranteed that the setup procedure
1603 * has finished. This means that error conditions like RFKILL
1604 * or no valid public or static random address apply.
1606 flush_workqueue(hdev->req_workqueue);
1608 /* For controllers not using the management interface and that
1609 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1610 * so that pairing works for them. Once the management interface
1611 * is in use this bit will be cleared again and userspace has
1612 * to explicitly enable it.
1614 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1615 !hci_dev_test_flag(hdev, HCI_MGMT))
1616 hci_dev_set_flag(hdev, HCI_BONDABLE);
1618 err = hci_dev_do_open(hdev);
1625 /* This function requires the caller holds hdev->lock */
1626 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1628 struct hci_conn_params *p;
1630 list_for_each_entry(p, &hdev->le_conn_params, list) {
1632 hci_conn_drop(p->conn);
1633 hci_conn_put(p->conn);
1636 list_del_init(&p->action);
1639 BT_DBG("All LE pending actions cleared");
1642 int hci_dev_do_close(struct hci_dev *hdev)
1646 BT_DBG("%s %p", hdev->name, hdev);
1648 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1649 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1650 test_bit(HCI_UP, &hdev->flags)) {
1651 /* Execute vendor specific shutdown routine */
1653 hdev->shutdown(hdev);
1656 cancel_delayed_work(&hdev->power_off);
1658 hci_request_cancel_all(hdev);
1659 hci_req_sync_lock(hdev);
1661 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1662 cancel_delayed_work_sync(&hdev->cmd_timer);
1663 hci_req_sync_unlock(hdev);
1667 hci_leds_update_powered(hdev, false);
1669 /* Flush RX and TX works */
1670 flush_work(&hdev->tx_work);
1671 flush_work(&hdev->rx_work);
1673 if (hdev->discov_timeout > 0) {
1674 hdev->discov_timeout = 0;
1675 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1676 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1679 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1680 cancel_delayed_work(&hdev->service_cache);
1682 if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1683 struct adv_info *adv_instance;
1685 cancel_delayed_work_sync(&hdev->rpa_expired);
1687 list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1688 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1691 /* Avoid potential lockdep warnings from the *_flush() calls by
1692 * ensuring the workqueue is empty up front.
1694 drain_workqueue(hdev->workqueue);
1698 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1700 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1702 if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1703 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1704 hci_dev_test_flag(hdev, HCI_MGMT))
1705 __mgmt_power_off(hdev);
1707 hci_inquiry_cache_flush(hdev);
1708 hci_pend_le_actions_clear(hdev);
1709 hci_conn_hash_flush(hdev);
1710 hci_dev_unlock(hdev);
1712 smp_unregister(hdev);
1714 hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1720 skb_queue_purge(&hdev->cmd_q);
1721 atomic_set(&hdev->cmd_cnt, 1);
1722 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1723 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1724 set_bit(HCI_INIT, &hdev->flags);
1725 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1726 clear_bit(HCI_INIT, &hdev->flags);
1729 /* flush cmd work */
1730 flush_work(&hdev->cmd_work);
1733 skb_queue_purge(&hdev->rx_q);
1734 skb_queue_purge(&hdev->cmd_q);
1735 skb_queue_purge(&hdev->raw_q);
1737 /* Drop last sent command */
1738 if (hdev->sent_cmd) {
1739 cancel_delayed_work_sync(&hdev->cmd_timer);
1740 kfree_skb(hdev->sent_cmd);
1741 hdev->sent_cmd = NULL;
1744 clear_bit(HCI_RUNNING, &hdev->flags);
1745 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1747 /* After this point our queues are empty
1748 * and no tasks are scheduled. */
1752 hdev->flags &= BIT(HCI_RAW);
1753 hci_dev_clear_volatile_flags(hdev);
1755 /* Controller radio is available but is currently powered down */
1756 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1758 memset(hdev->eir, 0, sizeof(hdev->eir));
1759 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1760 bacpy(&hdev->random_addr, BDADDR_ANY);
1762 hci_req_sync_unlock(hdev);
1768 int hci_dev_close(__u16 dev)
1770 struct hci_dev *hdev;
1773 hdev = hci_dev_get(dev);
1777 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1782 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1783 cancel_delayed_work(&hdev->power_off);
1785 err = hci_dev_do_close(hdev);
1792 static int hci_dev_do_reset(struct hci_dev *hdev)
1796 BT_DBG("%s %p", hdev->name, hdev);
1798 hci_req_sync_lock(hdev);
1801 skb_queue_purge(&hdev->rx_q);
1802 skb_queue_purge(&hdev->cmd_q);
1804 /* Avoid potential lockdep warnings from the *_flush() calls by
1805 * ensuring the workqueue is empty up front.
1807 drain_workqueue(hdev->workqueue);
1810 hci_inquiry_cache_flush(hdev);
1811 hci_conn_hash_flush(hdev);
1812 hci_dev_unlock(hdev);
1817 atomic_set(&hdev->cmd_cnt, 1);
1818 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1820 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1822 hci_req_sync_unlock(hdev);
1826 int hci_dev_reset(__u16 dev)
1828 struct hci_dev *hdev;
1831 hdev = hci_dev_get(dev);
1835 if (!test_bit(HCI_UP, &hdev->flags)) {
1840 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1845 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1850 err = hci_dev_do_reset(hdev);
1857 int hci_dev_reset_stat(__u16 dev)
1859 struct hci_dev *hdev;
1862 hdev = hci_dev_get(dev);
1866 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1871 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1876 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1883 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1885 bool conn_changed, discov_changed;
1887 BT_DBG("%s scan 0x%02x", hdev->name, scan);
1889 if ((scan & SCAN_PAGE))
1890 conn_changed = !hci_dev_test_and_set_flag(hdev,
1893 conn_changed = hci_dev_test_and_clear_flag(hdev,
1896 if ((scan & SCAN_INQUIRY)) {
1897 discov_changed = !hci_dev_test_and_set_flag(hdev,
1900 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1901 discov_changed = hci_dev_test_and_clear_flag(hdev,
1905 if (!hci_dev_test_flag(hdev, HCI_MGMT))
1908 if (conn_changed || discov_changed) {
1909 /* In case this was disabled through mgmt */
1910 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1912 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1913 hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1915 mgmt_new_settings(hdev);
1919 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1921 struct hci_dev *hdev;
1922 struct hci_dev_req dr;
1925 if (copy_from_user(&dr, arg, sizeof(dr)))
1928 hdev = hci_dev_get(dr.dev_id);
1932 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1937 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1942 if (hdev->dev_type != HCI_PRIMARY) {
1947 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1954 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1955 HCI_INIT_TIMEOUT, NULL);
1959 if (!lmp_encrypt_capable(hdev)) {
1964 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1965 /* Auth must be enabled first */
1966 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1967 HCI_INIT_TIMEOUT, NULL);
1972 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1973 HCI_INIT_TIMEOUT, NULL);
1977 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1978 HCI_INIT_TIMEOUT, NULL);
1980 /* Ensure that the connectable and discoverable states
1981 * get correctly modified as this was a non-mgmt change.
1984 hci_update_scan_state(hdev, dr.dev_opt);
1988 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1989 HCI_INIT_TIMEOUT, NULL);
1992 case HCISETLINKMODE:
1993 hdev->link_mode = ((__u16) dr.dev_opt) &
1994 (HCI_LM_MASTER | HCI_LM_ACCEPT);
1998 if (hdev->pkt_type == (__u16) dr.dev_opt)
2001 hdev->pkt_type = (__u16) dr.dev_opt;
2002 mgmt_phy_configuration_changed(hdev, NULL);
2006 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
2007 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2011 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
2012 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2025 int hci_get_dev_list(void __user *arg)
2027 struct hci_dev *hdev;
2028 struct hci_dev_list_req *dl;
2029 struct hci_dev_req *dr;
2030 int n = 0, size, err;
2033 if (get_user(dev_num, (__u16 __user *) arg))
2036 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2039 size = sizeof(*dl) + dev_num * sizeof(*dr);
2041 dl = kzalloc(size, GFP_KERNEL);
2047 read_lock(&hci_dev_list_lock);
2048 list_for_each_entry(hdev, &hci_dev_list, list) {
2049 unsigned long flags = hdev->flags;
2051 /* When the auto-off is configured it means the transport
2052 * is running, but in that case still indicate that the
2053 * device is actually down.
2055 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2056 flags &= ~BIT(HCI_UP);
2058 (dr + n)->dev_id = hdev->id;
2059 (dr + n)->dev_opt = flags;
2064 read_unlock(&hci_dev_list_lock);
2067 size = sizeof(*dl) + n * sizeof(*dr);
2069 err = copy_to_user(arg, dl, size);
2072 return err ? -EFAULT : 0;
2075 int hci_get_dev_info(void __user *arg)
2077 struct hci_dev *hdev;
2078 struct hci_dev_info di;
2079 unsigned long flags;
2082 if (copy_from_user(&di, arg, sizeof(di)))
2085 hdev = hci_dev_get(di.dev_id);
2089 /* When the auto-off is configured it means the transport
2090 * is running, but in that case still indicate that the
2091 * device is actually down.
2093 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2094 flags = hdev->flags & ~BIT(HCI_UP);
2096 flags = hdev->flags;
2098 strcpy(di.name, hdev->name);
2099 di.bdaddr = hdev->bdaddr;
2100 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2102 di.pkt_type = hdev->pkt_type;
2103 if (lmp_bredr_capable(hdev)) {
2104 di.acl_mtu = hdev->acl_mtu;
2105 di.acl_pkts = hdev->acl_pkts;
2106 di.sco_mtu = hdev->sco_mtu;
2107 di.sco_pkts = hdev->sco_pkts;
2109 di.acl_mtu = hdev->le_mtu;
2110 di.acl_pkts = hdev->le_pkts;
2114 di.link_policy = hdev->link_policy;
2115 di.link_mode = hdev->link_mode;
2117 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2118 memcpy(&di.features, &hdev->features, sizeof(di.features));
2120 if (copy_to_user(arg, &di, sizeof(di)))
2128 /* ---- Interface to HCI drivers ---- */
2130 static int hci_rfkill_set_block(void *data, bool blocked)
2132 struct hci_dev *hdev = data;
2134 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2136 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2140 hci_dev_set_flag(hdev, HCI_RFKILLED);
2141 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2142 !hci_dev_test_flag(hdev, HCI_CONFIG))
2143 hci_dev_do_close(hdev);
2145 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2151 static const struct rfkill_ops hci_rfkill_ops = {
2152 .set_block = hci_rfkill_set_block,
2155 static void hci_power_on(struct work_struct *work)
2157 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2160 BT_DBG("%s", hdev->name);
2162 if (test_bit(HCI_UP, &hdev->flags) &&
2163 hci_dev_test_flag(hdev, HCI_MGMT) &&
2164 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2165 cancel_delayed_work(&hdev->power_off);
2166 hci_req_sync_lock(hdev);
2167 err = __hci_req_hci_power_on(hdev);
2168 hci_req_sync_unlock(hdev);
2169 mgmt_power_on(hdev, err);
2173 err = hci_dev_do_open(hdev);
2176 mgmt_set_powered_failed(hdev, err);
2177 hci_dev_unlock(hdev);
2181 /* During the HCI setup phase, a few error conditions are
2182 * ignored and they need to be checked now. If they are still
2183 * valid, it is important to turn the device back off.
2185 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2186 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2187 (hdev->dev_type == HCI_PRIMARY &&
2188 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2189 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2190 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2191 hci_dev_do_close(hdev);
2192 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2193 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2194 HCI_AUTO_OFF_TIMEOUT);
2197 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2198 /* For unconfigured devices, set the HCI_RAW flag
2199 * so that userspace can easily identify them.
2201 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2202 set_bit(HCI_RAW, &hdev->flags);
2204 /* For fully configured devices, this will send
2205 * the Index Added event. For unconfigured devices,
2206 * it will send Unconfigued Index Added event.
2208 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2209 * and no event will be send.
2211 mgmt_index_added(hdev);
2212 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2213 /* When the controller is now configured, then it
2214 * is important to clear the HCI_RAW flag.
2216 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2217 clear_bit(HCI_RAW, &hdev->flags);
2219 /* Powering on the controller with HCI_CONFIG set only
2220 * happens with the transition from unconfigured to
2221 * configured. This will send the Index Added event.
2223 mgmt_index_added(hdev);
2227 static void hci_power_off(struct work_struct *work)
2229 struct hci_dev *hdev = container_of(work, struct hci_dev,
2232 BT_DBG("%s", hdev->name);
2234 hci_dev_do_close(hdev);
2237 static void hci_error_reset(struct work_struct *work)
2239 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2241 BT_DBG("%s", hdev->name);
2244 hdev->hw_error(hdev, hdev->hw_error_code);
2246 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2248 if (hci_dev_do_close(hdev))
2251 hci_dev_do_open(hdev);
2254 void hci_uuids_clear(struct hci_dev *hdev)
2256 struct bt_uuid *uuid, *tmp;
2258 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2259 list_del(&uuid->list);
2264 void hci_link_keys_clear(struct hci_dev *hdev)
2266 struct link_key *key;
2268 list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2269 list_del_rcu(&key->list);
2270 kfree_rcu(key, rcu);
2274 void hci_smp_ltks_clear(struct hci_dev *hdev)
2278 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2279 list_del_rcu(&k->list);
2284 void hci_smp_irks_clear(struct hci_dev *hdev)
2288 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2289 list_del_rcu(&k->list);
2294 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2299 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2300 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2310 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2311 u8 key_type, u8 old_key_type)
2314 if (key_type < 0x03)
2317 /* Debug keys are insecure so don't store them persistently */
2318 if (key_type == HCI_LK_DEBUG_COMBINATION)
2321 /* Changed combination key and there's no previous one */
2322 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2325 /* Security mode 3 case */
2329 /* BR/EDR key derived using SC from an LE link */
2330 if (conn->type == LE_LINK)
2333 /* Neither local nor remote side had no-bonding as requirement */
2334 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2337 /* Local side had dedicated bonding as requirement */
2338 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2341 /* Remote side had dedicated bonding as requirement */
2342 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2345 /* If none of the above criteria match, then don't store the key
2350 static u8 ltk_role(u8 type)
2352 if (type == SMP_LTK)
2353 return HCI_ROLE_MASTER;
2355 return HCI_ROLE_SLAVE;
2358 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2359 u8 addr_type, u8 role)
2364 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2365 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2368 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2378 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2380 struct smp_irk *irk;
2383 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2384 if (!bacmp(&irk->rpa, rpa)) {
2390 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2391 if (smp_irk_matches(hdev, irk->val, rpa)) {
2392 bacpy(&irk->rpa, rpa);
2402 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2405 struct smp_irk *irk;
2407 /* Identity Address must be public or static random */
2408 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2412 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2413 if (addr_type == irk->addr_type &&
2414 bacmp(bdaddr, &irk->bdaddr) == 0) {
2424 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2425 bdaddr_t *bdaddr, u8 *val, u8 type,
2426 u8 pin_len, bool *persistent)
2428 struct link_key *key, *old_key;
2431 old_key = hci_find_link_key(hdev, bdaddr);
2433 old_key_type = old_key->type;
2436 old_key_type = conn ? conn->key_type : 0xff;
2437 key = kzalloc(sizeof(*key), GFP_KERNEL);
2440 list_add_rcu(&key->list, &hdev->link_keys);
2443 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2445 /* Some buggy controller combinations generate a changed
2446 * combination key for legacy pairing even when there's no
2448 if (type == HCI_LK_CHANGED_COMBINATION &&
2449 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2450 type = HCI_LK_COMBINATION;
2452 conn->key_type = type;
2455 bacpy(&key->bdaddr, bdaddr);
2456 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2457 key->pin_len = pin_len;
2459 if (type == HCI_LK_CHANGED_COMBINATION)
2460 key->type = old_key_type;
2465 *persistent = hci_persistent_key(hdev, conn, type,
2471 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2472 u8 addr_type, u8 type, u8 authenticated,
2473 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2475 struct smp_ltk *key, *old_key;
2476 u8 role = ltk_role(type);
2478 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2482 key = kzalloc(sizeof(*key), GFP_KERNEL);
2485 list_add_rcu(&key->list, &hdev->long_term_keys);
2488 bacpy(&key->bdaddr, bdaddr);
2489 key->bdaddr_type = addr_type;
2490 memcpy(key->val, tk, sizeof(key->val));
2491 key->authenticated = authenticated;
2494 key->enc_size = enc_size;
2500 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2501 u8 addr_type, u8 val[16], bdaddr_t *rpa)
2503 struct smp_irk *irk;
2505 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2507 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2511 bacpy(&irk->bdaddr, bdaddr);
2512 irk->addr_type = addr_type;
2514 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2517 memcpy(irk->val, val, 16);
2518 bacpy(&irk->rpa, rpa);
2523 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2525 struct link_key *key;
2527 key = hci_find_link_key(hdev, bdaddr);
2531 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2533 list_del_rcu(&key->list);
2534 kfree_rcu(key, rcu);
2539 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2544 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2545 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2548 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2550 list_del_rcu(&k->list);
2555 return removed ? 0 : -ENOENT;
2558 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2562 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2563 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2566 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2568 list_del_rcu(&k->list);
2573 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2576 struct smp_irk *irk;
2579 if (type == BDADDR_BREDR) {
2580 if (hci_find_link_key(hdev, bdaddr))
2585 /* Convert to HCI addr type which struct smp_ltk uses */
2586 if (type == BDADDR_LE_PUBLIC)
2587 addr_type = ADDR_LE_DEV_PUBLIC;
2589 addr_type = ADDR_LE_DEV_RANDOM;
2591 irk = hci_get_irk(hdev, bdaddr, addr_type);
2593 bdaddr = &irk->bdaddr;
2594 addr_type = irk->addr_type;
2598 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2599 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2609 /* HCI command timer function */
2610 static void hci_cmd_timeout(struct work_struct *work)
2612 struct hci_dev *hdev = container_of(work, struct hci_dev,
2615 if (hdev->sent_cmd) {
2616 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2617 u16 opcode = __le16_to_cpu(sent->opcode);
2619 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2621 bt_dev_err(hdev, "command tx timeout");
2624 if (hdev->cmd_timeout)
2625 hdev->cmd_timeout(hdev);
2627 atomic_set(&hdev->cmd_cnt, 1);
2628 queue_work(hdev->workqueue, &hdev->cmd_work);
2631 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2632 bdaddr_t *bdaddr, u8 bdaddr_type)
2634 struct oob_data *data;
2636 list_for_each_entry(data, &hdev->remote_oob_data, list) {
2637 if (bacmp(bdaddr, &data->bdaddr) != 0)
2639 if (data->bdaddr_type != bdaddr_type)
2647 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2650 struct oob_data *data;
2652 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2656 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2658 list_del(&data->list);
2664 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2666 struct oob_data *data, *n;
2668 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2669 list_del(&data->list);
2674 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2675 u8 bdaddr_type, u8 *hash192, u8 *rand192,
2676 u8 *hash256, u8 *rand256)
2678 struct oob_data *data;
2680 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2682 data = kmalloc(sizeof(*data), GFP_KERNEL);
2686 bacpy(&data->bdaddr, bdaddr);
2687 data->bdaddr_type = bdaddr_type;
2688 list_add(&data->list, &hdev->remote_oob_data);
2691 if (hash192 && rand192) {
2692 memcpy(data->hash192, hash192, sizeof(data->hash192));
2693 memcpy(data->rand192, rand192, sizeof(data->rand192));
2694 if (hash256 && rand256)
2695 data->present = 0x03;
2697 memset(data->hash192, 0, sizeof(data->hash192));
2698 memset(data->rand192, 0, sizeof(data->rand192));
2699 if (hash256 && rand256)
2700 data->present = 0x02;
2702 data->present = 0x00;
2705 if (hash256 && rand256) {
2706 memcpy(data->hash256, hash256, sizeof(data->hash256));
2707 memcpy(data->rand256, rand256, sizeof(data->rand256));
2709 memset(data->hash256, 0, sizeof(data->hash256));
2710 memset(data->rand256, 0, sizeof(data->rand256));
2711 if (hash192 && rand192)
2712 data->present = 0x01;
2715 BT_DBG("%s for %pMR", hdev->name, bdaddr);
2720 /* This function requires the caller holds hdev->lock */
2721 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2723 struct adv_info *adv_instance;
2725 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2726 if (adv_instance->instance == instance)
2727 return adv_instance;
2733 /* This function requires the caller holds hdev->lock */
2734 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2736 struct adv_info *cur_instance;
2738 cur_instance = hci_find_adv_instance(hdev, instance);
2742 if (cur_instance == list_last_entry(&hdev->adv_instances,
2743 struct adv_info, list))
2744 return list_first_entry(&hdev->adv_instances,
2745 struct adv_info, list);
2747 return list_next_entry(cur_instance, list);
2750 /* This function requires the caller holds hdev->lock */
2751 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2753 struct adv_info *adv_instance;
2755 adv_instance = hci_find_adv_instance(hdev, instance);
2759 BT_DBG("%s removing %dMR", hdev->name, instance);
2761 if (hdev->cur_adv_instance == instance) {
2762 if (hdev->adv_instance_timeout) {
2763 cancel_delayed_work(&hdev->adv_instance_expire);
2764 hdev->adv_instance_timeout = 0;
2766 hdev->cur_adv_instance = 0x00;
2769 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2771 list_del(&adv_instance->list);
2772 kfree(adv_instance);
2774 hdev->adv_instance_cnt--;
2779 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2781 struct adv_info *adv_instance, *n;
2783 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2784 adv_instance->rpa_expired = rpa_expired;
2787 /* This function requires the caller holds hdev->lock */
2788 void hci_adv_instances_clear(struct hci_dev *hdev)
2790 struct adv_info *adv_instance, *n;
2792 if (hdev->adv_instance_timeout) {
2793 cancel_delayed_work(&hdev->adv_instance_expire);
2794 hdev->adv_instance_timeout = 0;
2797 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2798 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2799 list_del(&adv_instance->list);
2800 kfree(adv_instance);
2803 hdev->adv_instance_cnt = 0;
2804 hdev->cur_adv_instance = 0x00;
2807 static void adv_instance_rpa_expired(struct work_struct *work)
2809 struct adv_info *adv_instance = container_of(work, struct adv_info,
2810 rpa_expired_cb.work);
2814 adv_instance->rpa_expired = true;
2817 /* This function requires the caller holds hdev->lock */
2818 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2819 u16 adv_data_len, u8 *adv_data,
2820 u16 scan_rsp_len, u8 *scan_rsp_data,
2821 u16 timeout, u16 duration)
2823 struct adv_info *adv_instance;
2825 adv_instance = hci_find_adv_instance(hdev, instance);
2827 memset(adv_instance->adv_data, 0,
2828 sizeof(adv_instance->adv_data));
2829 memset(adv_instance->scan_rsp_data, 0,
2830 sizeof(adv_instance->scan_rsp_data));
2832 if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2833 instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2836 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2840 adv_instance->pending = true;
2841 adv_instance->instance = instance;
2842 list_add(&adv_instance->list, &hdev->adv_instances);
2843 hdev->adv_instance_cnt++;
2846 adv_instance->flags = flags;
2847 adv_instance->adv_data_len = adv_data_len;
2848 adv_instance->scan_rsp_len = scan_rsp_len;
2851 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2854 memcpy(adv_instance->scan_rsp_data,
2855 scan_rsp_data, scan_rsp_len);
2857 adv_instance->timeout = timeout;
2858 adv_instance->remaining_time = timeout;
2861 adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2863 adv_instance->duration = duration;
2865 adv_instance->tx_power = HCI_TX_POWER_INVALID;
2867 INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
2868 adv_instance_rpa_expired);
2870 BT_DBG("%s for %dMR", hdev->name, instance);
2875 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2876 bdaddr_t *bdaddr, u8 type)
2878 struct bdaddr_list *b;
2880 list_for_each_entry(b, bdaddr_list, list) {
2881 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2888 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2889 struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2892 struct bdaddr_list_with_irk *b;
2894 list_for_each_entry(b, bdaddr_list, list) {
2895 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2902 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2904 struct bdaddr_list *b, *n;
2906 list_for_each_entry_safe(b, n, bdaddr_list, list) {
2912 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2914 struct bdaddr_list *entry;
2916 if (!bacmp(bdaddr, BDADDR_ANY))
2919 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2922 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2926 bacpy(&entry->bdaddr, bdaddr);
2927 entry->bdaddr_type = type;
2929 list_add(&entry->list, list);
2934 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2935 u8 type, u8 *peer_irk, u8 *local_irk)
2937 struct bdaddr_list_with_irk *entry;
2939 if (!bacmp(bdaddr, BDADDR_ANY))
2942 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2945 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2949 bacpy(&entry->bdaddr, bdaddr);
2950 entry->bdaddr_type = type;
2953 memcpy(entry->peer_irk, peer_irk, 16);
2956 memcpy(entry->local_irk, local_irk, 16);
2958 list_add(&entry->list, list);
2963 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2965 struct bdaddr_list *entry;
2967 if (!bacmp(bdaddr, BDADDR_ANY)) {
2968 hci_bdaddr_list_clear(list);
2972 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2976 list_del(&entry->list);
2982 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2985 struct bdaddr_list_with_irk *entry;
2987 if (!bacmp(bdaddr, BDADDR_ANY)) {
2988 hci_bdaddr_list_clear(list);
2992 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2996 list_del(&entry->list);
3002 /* This function requires the caller holds hdev->lock */
3003 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3004 bdaddr_t *addr, u8 addr_type)
3006 struct hci_conn_params *params;
3008 list_for_each_entry(params, &hdev->le_conn_params, list) {
3009 if (bacmp(¶ms->addr, addr) == 0 &&
3010 params->addr_type == addr_type) {
3018 /* This function requires the caller holds hdev->lock */
3019 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3020 bdaddr_t *addr, u8 addr_type)
3022 struct hci_conn_params *param;
3024 list_for_each_entry(param, list, action) {
3025 if (bacmp(¶m->addr, addr) == 0 &&
3026 param->addr_type == addr_type)
3033 /* This function requires the caller holds hdev->lock */
3034 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3035 bdaddr_t *addr, u8 addr_type)
3037 struct hci_conn_params *params;
3039 params = hci_conn_params_lookup(hdev, addr, addr_type);
3043 params = kzalloc(sizeof(*params), GFP_KERNEL);
3045 bt_dev_err(hdev, "out of memory");
3049 bacpy(¶ms->addr, addr);
3050 params->addr_type = addr_type;
3052 list_add(¶ms->list, &hdev->le_conn_params);
3053 INIT_LIST_HEAD(¶ms->action);
3055 params->conn_min_interval = hdev->le_conn_min_interval;
3056 params->conn_max_interval = hdev->le_conn_max_interval;
3057 params->conn_latency = hdev->le_conn_latency;
3058 params->supervision_timeout = hdev->le_supv_timeout;
3059 params->auto_connect = HCI_AUTO_CONN_DISABLED;
3061 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3066 static void hci_conn_params_free(struct hci_conn_params *params)
3069 hci_conn_drop(params->conn);
3070 hci_conn_put(params->conn);
3073 list_del(¶ms->action);
3074 list_del(¶ms->list);
3078 /* This function requires the caller holds hdev->lock */
3079 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3081 struct hci_conn_params *params;
3083 params = hci_conn_params_lookup(hdev, addr, addr_type);
3087 hci_conn_params_free(params);
3089 hci_update_background_scan(hdev);
3091 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3094 /* This function requires the caller holds hdev->lock */
3095 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3097 struct hci_conn_params *params, *tmp;
3099 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3100 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3103 /* If trying to estabilish one time connection to disabled
3104 * device, leave the params, but mark them as just once.
3106 if (params->explicit_connect) {
3107 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3111 list_del(¶ms->list);
3115 BT_DBG("All LE disabled connection parameters were removed");
3118 /* This function requires the caller holds hdev->lock */
3119 static void hci_conn_params_clear_all(struct hci_dev *hdev)
3121 struct hci_conn_params *params, *tmp;
3123 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3124 hci_conn_params_free(params);
3126 BT_DBG("All LE connection parameters were removed");
3129 /* Copy the Identity Address of the controller.
3131 * If the controller has a public BD_ADDR, then by default use that one.
3132 * If this is a LE only controller without a public address, default to
3133 * the static random address.
3135 * For debugging purposes it is possible to force controllers with a
3136 * public address to use the static random address instead.
3138 * In case BR/EDR has been disabled on a dual-mode controller and
3139 * userspace has configured a static address, then that address
3140 * becomes the identity address instead of the public BR/EDR address.
3142 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3145 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3146 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3147 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3148 bacmp(&hdev->static_addr, BDADDR_ANY))) {
3149 bacpy(bdaddr, &hdev->static_addr);
3150 *bdaddr_type = ADDR_LE_DEV_RANDOM;
3152 bacpy(bdaddr, &hdev->bdaddr);
3153 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
3157 /* Alloc HCI device */
3158 struct hci_dev *hci_alloc_dev(void)
3160 struct hci_dev *hdev;
3162 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3166 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3167 hdev->esco_type = (ESCO_HV1);
3168 hdev->link_mode = (HCI_LM_ACCEPT);
3169 hdev->num_iac = 0x01; /* One IAC support is mandatory */
3170 hdev->io_capability = 0x03; /* No Input No Output */
3171 hdev->manufacturer = 0xffff; /* Default to internal use */
3172 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3173 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3174 hdev->adv_instance_cnt = 0;
3175 hdev->cur_adv_instance = 0x00;
3176 hdev->adv_instance_timeout = 0;
3178 hdev->sniff_max_interval = 800;
3179 hdev->sniff_min_interval = 80;
3181 hdev->le_adv_channel_map = 0x07;
3182 hdev->le_adv_min_interval = 0x0800;
3183 hdev->le_adv_max_interval = 0x0800;
3184 hdev->le_scan_interval = 0x0060;
3185 hdev->le_scan_window = 0x0030;
3186 hdev->le_conn_min_interval = 0x0018;
3187 hdev->le_conn_max_interval = 0x0028;
3188 hdev->le_conn_latency = 0x0000;
3189 hdev->le_supv_timeout = 0x002a;
3190 hdev->le_def_tx_len = 0x001b;
3191 hdev->le_def_tx_time = 0x0148;
3192 hdev->le_max_tx_len = 0x001b;
3193 hdev->le_max_tx_time = 0x0148;
3194 hdev->le_max_rx_len = 0x001b;
3195 hdev->le_max_rx_time = 0x0148;
3196 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3197 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3198 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3199 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3201 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3202 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3203 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3204 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3206 mutex_init(&hdev->lock);
3207 mutex_init(&hdev->req_lock);
3209 INIT_LIST_HEAD(&hdev->mgmt_pending);
3210 INIT_LIST_HEAD(&hdev->blacklist);
3211 INIT_LIST_HEAD(&hdev->whitelist);
3212 INIT_LIST_HEAD(&hdev->uuids);
3213 INIT_LIST_HEAD(&hdev->link_keys);
3214 INIT_LIST_HEAD(&hdev->long_term_keys);
3215 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3216 INIT_LIST_HEAD(&hdev->remote_oob_data);
3217 INIT_LIST_HEAD(&hdev->le_white_list);
3218 INIT_LIST_HEAD(&hdev->le_resolv_list);
3219 INIT_LIST_HEAD(&hdev->le_conn_params);
3220 INIT_LIST_HEAD(&hdev->pend_le_conns);
3221 INIT_LIST_HEAD(&hdev->pend_le_reports);
3222 INIT_LIST_HEAD(&hdev->conn_hash.list);
3223 INIT_LIST_HEAD(&hdev->adv_instances);
3225 INIT_WORK(&hdev->rx_work, hci_rx_work);
3226 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3227 INIT_WORK(&hdev->tx_work, hci_tx_work);
3228 INIT_WORK(&hdev->power_on, hci_power_on);
3229 INIT_WORK(&hdev->error_reset, hci_error_reset);
3231 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3233 skb_queue_head_init(&hdev->rx_q);
3234 skb_queue_head_init(&hdev->cmd_q);
3235 skb_queue_head_init(&hdev->raw_q);
3237 init_waitqueue_head(&hdev->req_wait_q);
3239 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3241 hci_request_setup(hdev);
3243 hci_init_sysfs(hdev);
3244 discovery_init(hdev);
3248 EXPORT_SYMBOL(hci_alloc_dev);
3250 /* Free HCI device */
3251 void hci_free_dev(struct hci_dev *hdev)
3253 /* will free via device release */
3254 put_device(&hdev->dev);
3256 EXPORT_SYMBOL(hci_free_dev);
3258 /* Register HCI device */
3259 int hci_register_dev(struct hci_dev *hdev)
3263 if (!hdev->open || !hdev->close || !hdev->send)
3266 /* Do not allow HCI_AMP devices to register at index 0,
3267 * so the index can be used as the AMP controller ID.
3269 switch (hdev->dev_type) {
3271 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3274 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3283 sprintf(hdev->name, "hci%d", id);
3286 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3288 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3289 if (!hdev->workqueue) {
3294 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3296 if (!hdev->req_workqueue) {
3297 destroy_workqueue(hdev->workqueue);
3302 if (!IS_ERR_OR_NULL(bt_debugfs))
3303 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3305 dev_set_name(&hdev->dev, "%s", hdev->name);
3307 error = device_add(&hdev->dev);
3311 hci_leds_init(hdev);
3313 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3314 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3317 if (rfkill_register(hdev->rfkill) < 0) {
3318 rfkill_destroy(hdev->rfkill);
3319 hdev->rfkill = NULL;
3323 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3324 hci_dev_set_flag(hdev, HCI_RFKILLED);
3326 hci_dev_set_flag(hdev, HCI_SETUP);
3327 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3329 if (hdev->dev_type == HCI_PRIMARY) {
3330 /* Assume BR/EDR support until proven otherwise (such as
3331 * through reading supported features during init.
3333 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3336 write_lock(&hci_dev_list_lock);
3337 list_add(&hdev->list, &hci_dev_list);
3338 write_unlock(&hci_dev_list_lock);
3340 /* Devices that are marked for raw-only usage are unconfigured
3341 * and should not be included in normal operation.
3343 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3344 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3346 hci_sock_dev_event(hdev, HCI_DEV_REG);
3349 queue_work(hdev->req_workqueue, &hdev->power_on);
3354 destroy_workqueue(hdev->workqueue);
3355 destroy_workqueue(hdev->req_workqueue);
3357 ida_simple_remove(&hci_index_ida, hdev->id);
3361 EXPORT_SYMBOL(hci_register_dev);
3363 /* Unregister HCI device */
3364 void hci_unregister_dev(struct hci_dev *hdev)
3368 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3370 hci_dev_set_flag(hdev, HCI_UNREGISTER);
3374 write_lock(&hci_dev_list_lock);
3375 list_del(&hdev->list);
3376 write_unlock(&hci_dev_list_lock);
3378 cancel_work_sync(&hdev->power_on);
3380 hci_dev_do_close(hdev);
3382 if (!test_bit(HCI_INIT, &hdev->flags) &&
3383 !hci_dev_test_flag(hdev, HCI_SETUP) &&
3384 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3386 mgmt_index_removed(hdev);
3387 hci_dev_unlock(hdev);
3390 /* mgmt_index_removed should take care of emptying the
3392 BUG_ON(!list_empty(&hdev->mgmt_pending));
3394 hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3397 rfkill_unregister(hdev->rfkill);
3398 rfkill_destroy(hdev->rfkill);
3401 device_del(&hdev->dev);
3403 debugfs_remove_recursive(hdev->debugfs);
3404 kfree_const(hdev->hw_info);
3405 kfree_const(hdev->fw_info);
3407 destroy_workqueue(hdev->workqueue);
3408 destroy_workqueue(hdev->req_workqueue);
3411 hci_bdaddr_list_clear(&hdev->blacklist);
3412 hci_bdaddr_list_clear(&hdev->whitelist);
3413 hci_uuids_clear(hdev);
3414 hci_link_keys_clear(hdev);
3415 hci_smp_ltks_clear(hdev);
3416 hci_smp_irks_clear(hdev);
3417 hci_remote_oob_data_clear(hdev);
3418 hci_adv_instances_clear(hdev);
3419 hci_bdaddr_list_clear(&hdev->le_white_list);
3420 hci_bdaddr_list_clear(&hdev->le_resolv_list);
3421 hci_conn_params_clear_all(hdev);
3422 hci_discovery_filter_clear(hdev);
3423 hci_dev_unlock(hdev);
3427 ida_simple_remove(&hci_index_ida, id);
3429 EXPORT_SYMBOL(hci_unregister_dev);
3431 /* Suspend HCI device */
3432 int hci_suspend_dev(struct hci_dev *hdev)
3434 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3437 EXPORT_SYMBOL(hci_suspend_dev);
3439 /* Resume HCI device */
3440 int hci_resume_dev(struct hci_dev *hdev)
3442 hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3445 EXPORT_SYMBOL(hci_resume_dev);
3447 /* Reset HCI device */
3448 int hci_reset_dev(struct hci_dev *hdev)
3450 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3451 struct sk_buff *skb;
3453 skb = bt_skb_alloc(3, GFP_ATOMIC);
3457 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3458 skb_put_data(skb, hw_err, 3);
3460 /* Send Hardware Error to upper stack */
3461 return hci_recv_frame(hdev, skb);
3463 EXPORT_SYMBOL(hci_reset_dev);
3465 /* Receive frame from HCI drivers */
3466 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3468 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3469 && !test_bit(HCI_INIT, &hdev->flags))) {
3474 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3475 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3476 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3482 bt_cb(skb)->incoming = 1;
3485 __net_timestamp(skb);
3487 skb_queue_tail(&hdev->rx_q, skb);
3488 queue_work(hdev->workqueue, &hdev->rx_work);
3492 EXPORT_SYMBOL(hci_recv_frame);
3494 /* Receive diagnostic message from HCI drivers */
3495 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3497 /* Mark as diagnostic packet */
3498 hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3501 __net_timestamp(skb);
3503 skb_queue_tail(&hdev->rx_q, skb);
3504 queue_work(hdev->workqueue, &hdev->rx_work);
3508 EXPORT_SYMBOL(hci_recv_diag);
3510 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3514 va_start(vargs, fmt);
3515 kfree_const(hdev->hw_info);
3516 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3519 EXPORT_SYMBOL(hci_set_hw_info);
3521 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3525 va_start(vargs, fmt);
3526 kfree_const(hdev->fw_info);
3527 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3530 EXPORT_SYMBOL(hci_set_fw_info);
3532 /* ---- Interface to upper protocols ---- */
3534 int hci_register_cb(struct hci_cb *cb)
3536 BT_DBG("%p name %s", cb, cb->name);
3538 mutex_lock(&hci_cb_list_lock);
3539 list_add_tail(&cb->list, &hci_cb_list);
3540 mutex_unlock(&hci_cb_list_lock);
3544 EXPORT_SYMBOL(hci_register_cb);
3546 int hci_unregister_cb(struct hci_cb *cb)
3548 BT_DBG("%p name %s", cb, cb->name);
3550 mutex_lock(&hci_cb_list_lock);
3551 list_del(&cb->list);
3552 mutex_unlock(&hci_cb_list_lock);
3556 EXPORT_SYMBOL(hci_unregister_cb);
3558 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3562 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3566 __net_timestamp(skb);
3568 /* Send copy to monitor */
3569 hci_send_to_monitor(hdev, skb);
3571 if (atomic_read(&hdev->promisc)) {
3572 /* Send copy to the sockets */
3573 hci_send_to_sock(hdev, skb);
3576 /* Get rid of skb owner, prior to sending to the driver. */
3579 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3584 err = hdev->send(hdev, skb);
3586 bt_dev_err(hdev, "sending frame failed (%d)", err);
3591 /* Send HCI command */
3592 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3595 struct sk_buff *skb;
3597 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3599 skb = hci_prepare_cmd(hdev, opcode, plen, param);
3601 bt_dev_err(hdev, "no memory for command");
3605 /* Stand-alone HCI commands must be flagged as
3606 * single-command requests.
3608 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3610 skb_queue_tail(&hdev->cmd_q, skb);
3611 queue_work(hdev->workqueue, &hdev->cmd_work);
3616 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3619 struct sk_buff *skb;
3621 if (hci_opcode_ogf(opcode) != 0x3f) {
3622 /* A controller receiving a command shall respond with either
3623 * a Command Status Event or a Command Complete Event.
3624 * Therefore, all standard HCI commands must be sent via the
3625 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3626 * Some vendors do not comply with this rule for vendor-specific
3627 * commands and do not return any event. We want to support
3628 * unresponded commands for such cases only.
3630 bt_dev_err(hdev, "unresponded command not supported");
3634 skb = hci_prepare_cmd(hdev, opcode, plen, param);
3636 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3641 hci_send_frame(hdev, skb);
3645 EXPORT_SYMBOL(__hci_cmd_send);
3647 /* Get data from the previously sent command */
3648 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3650 struct hci_command_hdr *hdr;
3652 if (!hdev->sent_cmd)
3655 hdr = (void *) hdev->sent_cmd->data;
3657 if (hdr->opcode != cpu_to_le16(opcode))
3660 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3662 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3665 /* Send HCI command and wait for command commplete event */
3666 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3667 const void *param, u32 timeout)
3669 struct sk_buff *skb;
3671 if (!test_bit(HCI_UP, &hdev->flags))
3672 return ERR_PTR(-ENETDOWN);
3674 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3676 hci_req_sync_lock(hdev);
3677 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3678 hci_req_sync_unlock(hdev);
3682 EXPORT_SYMBOL(hci_cmd_sync);
3685 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3687 struct hci_acl_hdr *hdr;
3690 skb_push(skb, HCI_ACL_HDR_SIZE);
3691 skb_reset_transport_header(skb);
3692 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3693 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3694 hdr->dlen = cpu_to_le16(len);
3697 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3698 struct sk_buff *skb, __u16 flags)
3700 struct hci_conn *conn = chan->conn;
3701 struct hci_dev *hdev = conn->hdev;
3702 struct sk_buff *list;
3704 skb->len = skb_headlen(skb);
3707 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3709 switch (hdev->dev_type) {
3711 hci_add_acl_hdr(skb, conn->handle, flags);
3714 hci_add_acl_hdr(skb, chan->handle, flags);
3717 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3721 list = skb_shinfo(skb)->frag_list;
3723 /* Non fragmented */
3724 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3726 skb_queue_tail(queue, skb);
3729 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3731 skb_shinfo(skb)->frag_list = NULL;
3733 /* Queue all fragments atomically. We need to use spin_lock_bh
3734 * here because of 6LoWPAN links, as there this function is
3735 * called from softirq and using normal spin lock could cause
3738 spin_lock_bh(&queue->lock);
3740 __skb_queue_tail(queue, skb);
3742 flags &= ~ACL_START;
3745 skb = list; list = list->next;
3747 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3748 hci_add_acl_hdr(skb, conn->handle, flags);
3750 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3752 __skb_queue_tail(queue, skb);
3755 spin_unlock_bh(&queue->lock);
3759 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3761 struct hci_dev *hdev = chan->conn->hdev;
3763 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3765 hci_queue_acl(chan, &chan->data_q, skb, flags);
3767 queue_work(hdev->workqueue, &hdev->tx_work);
3771 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3773 struct hci_dev *hdev = conn->hdev;
3774 struct hci_sco_hdr hdr;
3776 BT_DBG("%s len %d", hdev->name, skb->len);
3778 hdr.handle = cpu_to_le16(conn->handle);
3779 hdr.dlen = skb->len;
3781 skb_push(skb, HCI_SCO_HDR_SIZE);
3782 skb_reset_transport_header(skb);
3783 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3785 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3787 skb_queue_tail(&conn->data_q, skb);
3788 queue_work(hdev->workqueue, &hdev->tx_work);
3791 /* ---- HCI TX task (outgoing data) ---- */
3793 /* HCI Connection scheduler */
3794 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3797 struct hci_conn_hash *h = &hdev->conn_hash;
3798 struct hci_conn *conn = NULL, *c;
3799 unsigned int num = 0, min = ~0;
3801 /* We don't have to lock device here. Connections are always
3802 * added and removed with TX task disabled. */
3806 list_for_each_entry_rcu(c, &h->list, list) {
3807 if (c->type != type || skb_queue_empty(&c->data_q))
3810 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3815 if (c->sent < min) {
3820 if (hci_conn_num(hdev, type) == num)
3829 switch (conn->type) {
3831 cnt = hdev->acl_cnt;
3835 cnt = hdev->sco_cnt;
3838 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3842 bt_dev_err(hdev, "unknown link type %d", conn->type);
3850 BT_DBG("conn %p quote %d", conn, *quote);
3854 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3856 struct hci_conn_hash *h = &hdev->conn_hash;
3859 bt_dev_err(hdev, "link tx timeout");
3863 /* Kill stalled connections */
3864 list_for_each_entry_rcu(c, &h->list, list) {
3865 if (c->type == type && c->sent) {
3866 bt_dev_err(hdev, "killing stalled connection %pMR",
3868 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3875 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3878 struct hci_conn_hash *h = &hdev->conn_hash;
3879 struct hci_chan *chan = NULL;
3880 unsigned int num = 0, min = ~0, cur_prio = 0;
3881 struct hci_conn *conn;
3882 int cnt, q, conn_num = 0;
3884 BT_DBG("%s", hdev->name);
3888 list_for_each_entry_rcu(conn, &h->list, list) {
3889 struct hci_chan *tmp;
3891 if (conn->type != type)
3894 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3899 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3900 struct sk_buff *skb;
3902 if (skb_queue_empty(&tmp->data_q))
3905 skb = skb_peek(&tmp->data_q);
3906 if (skb->priority < cur_prio)
3909 if (skb->priority > cur_prio) {
3912 cur_prio = skb->priority;
3917 if (conn->sent < min) {
3923 if (hci_conn_num(hdev, type) == conn_num)
3932 switch (chan->conn->type) {
3934 cnt = hdev->acl_cnt;
3937 cnt = hdev->block_cnt;
3941 cnt = hdev->sco_cnt;
3944 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3948 bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
3953 BT_DBG("chan %p quote %d", chan, *quote);
3957 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3959 struct hci_conn_hash *h = &hdev->conn_hash;
3960 struct hci_conn *conn;
3963 BT_DBG("%s", hdev->name);
3967 list_for_each_entry_rcu(conn, &h->list, list) {
3968 struct hci_chan *chan;
3970 if (conn->type != type)
3973 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3978 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3979 struct sk_buff *skb;
3986 if (skb_queue_empty(&chan->data_q))
3989 skb = skb_peek(&chan->data_q);
3990 if (skb->priority >= HCI_PRIO_MAX - 1)
3993 skb->priority = HCI_PRIO_MAX - 1;
3995 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3999 if (hci_conn_num(hdev, type) == num)
4007 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4009 /* Calculate count of blocks used by this packet */
4010 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4013 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4015 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4016 /* ACL tx timeout must be longer than maximum
4017 * link supervision timeout (40.9 seconds) */
4018 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4019 HCI_ACL_TX_TIMEOUT))
4020 hci_link_tx_to(hdev, ACL_LINK);
4024 static void hci_sched_acl_pkt(struct hci_dev *hdev)
4026 unsigned int cnt = hdev->acl_cnt;
4027 struct hci_chan *chan;
4028 struct sk_buff *skb;
4031 __check_timeout(hdev, cnt);
4033 while (hdev->acl_cnt &&
4034 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) {
4035 u32 priority = (skb_peek(&chan->data_q))->priority;
4036 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4037 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4038 skb->len, skb->priority);
4040 /* Stop if priority has changed */
4041 if (skb->priority < priority)
4044 skb = skb_dequeue(&chan->data_q);
4046 hci_conn_enter_active_mode(chan->conn,
4047 bt_cb(skb)->force_active);
4049 hci_send_frame(hdev, skb);
4050 hdev->acl_last_tx = jiffies;
4058 if (cnt != hdev->acl_cnt)
4059 hci_prio_recalculate(hdev, ACL_LINK);
4062 static void hci_sched_acl_blk(struct hci_dev *hdev)
4064 unsigned int cnt = hdev->block_cnt;
4065 struct hci_chan *chan;
4066 struct sk_buff *skb;
4070 __check_timeout(hdev, cnt);
4072 BT_DBG("%s", hdev->name);
4074 if (hdev->dev_type == HCI_AMP)
4079 while (hdev->block_cnt > 0 &&
4080 (chan = hci_chan_sent(hdev, type, "e))) {
4081 u32 priority = (skb_peek(&chan->data_q))->priority;
4082 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4085 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4086 skb->len, skb->priority);
4088 /* Stop if priority has changed */
4089 if (skb->priority < priority)
4092 skb = skb_dequeue(&chan->data_q);
4094 blocks = __get_blocks(hdev, skb);
4095 if (blocks > hdev->block_cnt)
4098 hci_conn_enter_active_mode(chan->conn,
4099 bt_cb(skb)->force_active);
4101 hci_send_frame(hdev, skb);
4102 hdev->acl_last_tx = jiffies;
4104 hdev->block_cnt -= blocks;
4107 chan->sent += blocks;
4108 chan->conn->sent += blocks;
4112 if (cnt != hdev->block_cnt)
4113 hci_prio_recalculate(hdev, type);
4116 static void hci_sched_acl(struct hci_dev *hdev)
4118 BT_DBG("%s", hdev->name);
4120 /* No ACL link over BR/EDR controller */
4121 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4124 /* No AMP link over AMP controller */
4125 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4128 switch (hdev->flow_ctl_mode) {
4129 case HCI_FLOW_CTL_MODE_PACKET_BASED:
4130 hci_sched_acl_pkt(hdev);
4133 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4134 hci_sched_acl_blk(hdev);
4140 static void hci_sched_sco(struct hci_dev *hdev)
4142 struct hci_conn *conn;
4143 struct sk_buff *skb;
4146 BT_DBG("%s", hdev->name);
4148 if (!hci_conn_num(hdev, SCO_LINK))
4151 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) {
4152 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4153 BT_DBG("skb %p len %d", skb, skb->len);
4154 hci_send_frame(hdev, skb);
4157 if (conn->sent == ~0)
4163 static void hci_sched_esco(struct hci_dev *hdev)
4165 struct hci_conn *conn;
4166 struct sk_buff *skb;
4169 BT_DBG("%s", hdev->name);
4171 if (!hci_conn_num(hdev, ESCO_LINK))
4174 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4176 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4177 BT_DBG("skb %p len %d", skb, skb->len);
4178 hci_send_frame(hdev, skb);
4181 if (conn->sent == ~0)
4187 static void hci_sched_le(struct hci_dev *hdev)
4189 struct hci_chan *chan;
4190 struct sk_buff *skb;
4191 int quote, cnt, tmp;
4193 BT_DBG("%s", hdev->name);
4195 if (!hci_conn_num(hdev, LE_LINK))
4198 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4199 /* LE tx timeout must be longer than maximum
4200 * link supervision timeout (40.9 seconds) */
4201 if (!hdev->le_cnt && hdev->le_pkts &&
4202 time_after(jiffies, hdev->le_last_tx + HZ * 45))
4203 hci_link_tx_to(hdev, LE_LINK);
4206 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4208 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) {
4209 u32 priority = (skb_peek(&chan->data_q))->priority;
4210 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4211 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4212 skb->len, skb->priority);
4214 /* Stop if priority has changed */
4215 if (skb->priority < priority)
4218 skb = skb_dequeue(&chan->data_q);
4220 hci_send_frame(hdev, skb);
4221 hdev->le_last_tx = jiffies;
4232 hdev->acl_cnt = cnt;
4235 hci_prio_recalculate(hdev, LE_LINK);
4238 static void hci_tx_work(struct work_struct *work)
4240 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4241 struct sk_buff *skb;
4243 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4244 hdev->sco_cnt, hdev->le_cnt);
4246 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4247 /* Schedule queues and send stuff to HCI driver */
4248 hci_sched_acl(hdev);
4249 hci_sched_sco(hdev);
4250 hci_sched_esco(hdev);
4254 /* Send next queued raw (unknown type) packet */
4255 while ((skb = skb_dequeue(&hdev->raw_q)))
4256 hci_send_frame(hdev, skb);
4259 /* ----- HCI RX task (incoming data processing) ----- */
4261 /* ACL data packet */
4262 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4264 struct hci_acl_hdr *hdr = (void *) skb->data;
4265 struct hci_conn *conn;
4266 __u16 handle, flags;
4268 skb_pull(skb, HCI_ACL_HDR_SIZE);
4270 handle = __le16_to_cpu(hdr->handle);
4271 flags = hci_flags(handle);
4272 handle = hci_handle(handle);
4274 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4277 hdev->stat.acl_rx++;
4280 conn = hci_conn_hash_lookup_handle(hdev, handle);
4281 hci_dev_unlock(hdev);
4284 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4286 /* Send to upper protocol */
4287 l2cap_recv_acldata(conn, skb, flags);
4290 bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4297 /* SCO data packet */
4298 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4300 struct hci_sco_hdr *hdr = (void *) skb->data;
4301 struct hci_conn *conn;
4304 skb_pull(skb, HCI_SCO_HDR_SIZE);
4306 handle = __le16_to_cpu(hdr->handle);
4308 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4310 hdev->stat.sco_rx++;
4313 conn = hci_conn_hash_lookup_handle(hdev, handle);
4314 hci_dev_unlock(hdev);
4317 /* Send to upper protocol */
4318 sco_recv_scodata(conn, skb);
4321 bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4328 static bool hci_req_is_complete(struct hci_dev *hdev)
4330 struct sk_buff *skb;
4332 skb = skb_peek(&hdev->cmd_q);
4336 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4339 static void hci_resend_last(struct hci_dev *hdev)
4341 struct hci_command_hdr *sent;
4342 struct sk_buff *skb;
4345 if (!hdev->sent_cmd)
4348 sent = (void *) hdev->sent_cmd->data;
4349 opcode = __le16_to_cpu(sent->opcode);
4350 if (opcode == HCI_OP_RESET)
4353 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4357 skb_queue_head(&hdev->cmd_q, skb);
4358 queue_work(hdev->workqueue, &hdev->cmd_work);
4361 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4362 hci_req_complete_t *req_complete,
4363 hci_req_complete_skb_t *req_complete_skb)
4365 struct sk_buff *skb;
4366 unsigned long flags;
4368 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4370 /* If the completed command doesn't match the last one that was
4371 * sent we need to do special handling of it.
4373 if (!hci_sent_cmd_data(hdev, opcode)) {
4374 /* Some CSR based controllers generate a spontaneous
4375 * reset complete event during init and any pending
4376 * command will never be completed. In such a case we
4377 * need to resend whatever was the last sent
4380 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4381 hci_resend_last(hdev);
4386 /* If the command succeeded and there's still more commands in
4387 * this request the request is not yet complete.
4389 if (!status && !hci_req_is_complete(hdev))
4392 /* If this was the last command in a request the complete
4393 * callback would be found in hdev->sent_cmd instead of the
4394 * command queue (hdev->cmd_q).
4396 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4397 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4401 if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4402 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4406 /* Remove all pending commands belonging to this request */
4407 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4408 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4409 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4410 __skb_queue_head(&hdev->cmd_q, skb);
4414 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4415 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4417 *req_complete = bt_cb(skb)->hci.req_complete;
4420 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4423 static void hci_rx_work(struct work_struct *work)
4425 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4426 struct sk_buff *skb;
4428 BT_DBG("%s", hdev->name);
4430 while ((skb = skb_dequeue(&hdev->rx_q))) {
4431 /* Send copy to monitor */
4432 hci_send_to_monitor(hdev, skb);
4434 if (atomic_read(&hdev->promisc)) {
4435 /* Send copy to the sockets */
4436 hci_send_to_sock(hdev, skb);
4439 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4444 if (test_bit(HCI_INIT, &hdev->flags)) {
4445 /* Don't process data packets in this states. */
4446 switch (hci_skb_pkt_type(skb)) {
4447 case HCI_ACLDATA_PKT:
4448 case HCI_SCODATA_PKT:
4455 switch (hci_skb_pkt_type(skb)) {
4457 BT_DBG("%s Event packet", hdev->name);
4458 hci_event_packet(hdev, skb);
4461 case HCI_ACLDATA_PKT:
4462 BT_DBG("%s ACL data packet", hdev->name);
4463 hci_acldata_packet(hdev, skb);
4466 case HCI_SCODATA_PKT:
4467 BT_DBG("%s SCO data packet", hdev->name);
4468 hci_scodata_packet(hdev, skb);
4478 static void hci_cmd_work(struct work_struct *work)
4480 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4481 struct sk_buff *skb;
4483 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4484 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4486 /* Send queued commands */
4487 if (atomic_read(&hdev->cmd_cnt)) {
4488 skb = skb_dequeue(&hdev->cmd_q);
4492 kfree_skb(hdev->sent_cmd);
4494 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4495 if (hdev->sent_cmd) {
4496 atomic_dec(&hdev->cmd_cnt);
4497 hci_send_frame(hdev, skb);
4498 if (test_bit(HCI_RESET, &hdev->flags))
4499 cancel_delayed_work(&hdev->cmd_timer);
4501 schedule_delayed_work(&hdev->cmd_timer,
4504 skb_queue_head(&hdev->cmd_q, skb);
4505 queue_work(hdev->workqueue, &hdev->cmd_work);