1 // SPDX-License-Identifier: GPL-2.0
3 * Thunderbolt driver - switch/port utility functions
6 * Copyright (C) 2018, Intel Corporation
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/module.h>
12 #include <linux/nvmem-provider.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sizes.h>
16 #include <linux/slab.h>
17 #include <linux/string_helpers.h>
21 /* Switch NVM support */
23 struct nvm_auth_status {
24 struct list_head list;
29 static bool clx_enabled = true;
30 module_param_named(clx, clx_enabled, bool, 0444);
31 MODULE_PARM_DESC(clx, "allow low power states on the high-speed lanes (default: true)");
34 * Hold NVM authentication failure status per switch This information
35 * needs to stay around even when the switch gets power cycled so we
38 static LIST_HEAD(nvm_auth_status_cache);
39 static DEFINE_MUTEX(nvm_auth_status_lock);
41 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
43 struct nvm_auth_status *st;
45 list_for_each_entry(st, &nvm_auth_status_cache, list) {
46 if (uuid_equal(&st->uuid, sw->uuid))
53 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
55 struct nvm_auth_status *st;
57 mutex_lock(&nvm_auth_status_lock);
58 st = __nvm_get_auth_status(sw);
59 mutex_unlock(&nvm_auth_status_lock);
61 *status = st ? st->status : 0;
64 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
66 struct nvm_auth_status *st;
68 if (WARN_ON(!sw->uuid))
71 mutex_lock(&nvm_auth_status_lock);
72 st = __nvm_get_auth_status(sw);
75 st = kzalloc(sizeof(*st), GFP_KERNEL);
79 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
80 INIT_LIST_HEAD(&st->list);
81 list_add_tail(&st->list, &nvm_auth_status_cache);
86 mutex_unlock(&nvm_auth_status_lock);
89 static void nvm_clear_auth_status(const struct tb_switch *sw)
91 struct nvm_auth_status *st;
93 mutex_lock(&nvm_auth_status_lock);
94 st = __nvm_get_auth_status(sw);
99 mutex_unlock(&nvm_auth_status_lock);
102 static int nvm_validate_and_write(struct tb_switch *sw)
104 unsigned int image_size;
108 ret = tb_nvm_validate(sw->nvm);
112 ret = tb_nvm_write_headers(sw->nvm);
116 buf = sw->nvm->buf_data_start;
117 image_size = sw->nvm->buf_data_size;
119 if (tb_switch_is_usb4(sw))
120 ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
122 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
126 sw->nvm->flushed = true;
130 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
135 * Root switch NVM upgrade requires that we disconnect the
136 * existing paths first (in case it is not in safe mode
139 if (!sw->safe_mode) {
142 ret = tb_domain_disconnect_all_paths(sw->tb);
146 * The host controller goes away pretty soon after this if
147 * everything goes well so getting timeout is expected.
149 ret = dma_port_flash_update_auth(sw->dma_port);
150 if (!ret || ret == -ETIMEDOUT)
154 * Any error from update auth operation requires power
155 * cycling of the host router.
157 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
158 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
159 nvm_set_auth_status(sw, status);
163 * From safe mode we can get out by just power cycling the
166 dma_port_power_cycle(sw->dma_port);
170 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
172 int ret, retries = 10;
174 ret = dma_port_flash_update_auth(sw->dma_port);
180 /* Power cycle is required */
187 * Poll here for the authentication status. It takes some time
188 * for the device to respond (we get timeout for a while). Once
189 * we get response the device needs to be power cycled in order
190 * to the new NVM to be taken into use.
195 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
196 if (ret < 0 && ret != -ETIMEDOUT)
200 tb_sw_warn(sw, "failed to authenticate NVM\n");
201 nvm_set_auth_status(sw, status);
204 tb_sw_info(sw, "power cycling the switch now\n");
205 dma_port_power_cycle(sw->dma_port);
215 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
217 struct pci_dev *root_port;
220 * During host router NVM upgrade we should not allow root port to
221 * go into D3cold because some root ports cannot trigger PME
222 * itself. To be on the safe side keep the root port in D0 during
223 * the whole upgrade process.
225 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
227 pm_runtime_get_noresume(&root_port->dev);
230 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
232 struct pci_dev *root_port;
234 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
236 pm_runtime_put(&root_port->dev);
239 static inline bool nvm_readable(struct tb_switch *sw)
241 if (tb_switch_is_usb4(sw)) {
243 * USB4 devices must support NVM operations but it is
244 * optional for hosts. Therefore we query the NVM sector
245 * size here and if it is supported assume NVM
246 * operations are implemented.
248 return usb4_switch_nvm_sector_size(sw) > 0;
251 /* Thunderbolt 2 and 3 devices support NVM through DMA port */
252 return !!sw->dma_port;
255 static inline bool nvm_upgradeable(struct tb_switch *sw)
257 if (sw->no_nvm_upgrade)
259 return nvm_readable(sw);
262 static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
266 if (tb_switch_is_usb4(sw)) {
268 ret = usb4_switch_nvm_set_offset(sw, 0);
272 sw->nvm->authenticating = true;
273 return usb4_switch_nvm_authenticate(sw);
278 sw->nvm->authenticating = true;
280 nvm_authenticate_start_dma_port(sw);
281 ret = nvm_authenticate_host_dma_port(sw);
283 ret = nvm_authenticate_device_dma_port(sw);
290 * tb_switch_nvm_read() - Read router NVM
291 * @sw: Router whose NVM to read
292 * @address: Start address on the NVM
293 * @buf: Buffer where the read data is copied
294 * @size: Size of the buffer in bytes
296 * Reads from router NVM and returns the requested data in @buf. Locking
297 * is up to the caller. Returns %0 in success and negative errno in case
300 int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
303 if (tb_switch_is_usb4(sw))
304 return usb4_switch_nvm_read(sw, address, buf, size);
305 return dma_port_flash_read(sw->dma_port, address, buf, size);
308 static int nvm_read(void *priv, unsigned int offset, void *val, size_t bytes)
310 struct tb_nvm *nvm = priv;
311 struct tb_switch *sw = tb_to_switch(nvm->dev);
314 pm_runtime_get_sync(&sw->dev);
316 if (!mutex_trylock(&sw->tb->lock)) {
317 ret = restart_syscall();
321 ret = tb_switch_nvm_read(sw, offset, val, bytes);
322 mutex_unlock(&sw->tb->lock);
325 pm_runtime_mark_last_busy(&sw->dev);
326 pm_runtime_put_autosuspend(&sw->dev);
331 static int nvm_write(void *priv, unsigned int offset, void *val, size_t bytes)
333 struct tb_nvm *nvm = priv;
334 struct tb_switch *sw = tb_to_switch(nvm->dev);
337 if (!mutex_trylock(&sw->tb->lock))
338 return restart_syscall();
341 * Since writing the NVM image might require some special steps,
342 * for example when CSS headers are written, we cache the image
343 * locally here and handle the special cases when the user asks
344 * us to authenticate the image.
346 ret = tb_nvm_write_buf(nvm, offset, val, bytes);
347 mutex_unlock(&sw->tb->lock);
352 static int tb_switch_nvm_add(struct tb_switch *sw)
357 if (!nvm_readable(sw))
360 nvm = tb_nvm_alloc(&sw->dev);
362 ret = PTR_ERR(nvm) == -EOPNOTSUPP ? 0 : PTR_ERR(nvm);
366 ret = tb_nvm_read_version(nvm);
371 * If the switch is in safe-mode the only accessible portion of
372 * the NVM is the non-active one where userspace is expected to
373 * write new functional NVM.
375 if (!sw->safe_mode) {
376 ret = tb_nvm_add_active(nvm, nvm_read);
381 if (!sw->no_nvm_upgrade) {
382 ret = tb_nvm_add_non_active(nvm, nvm_write);
391 tb_sw_dbg(sw, "NVM upgrade disabled\n");
392 sw->no_nvm_upgrade = true;
399 static void tb_switch_nvm_remove(struct tb_switch *sw)
409 /* Remove authentication status in case the switch is unplugged */
410 if (!nvm->authenticating)
411 nvm_clear_auth_status(sw);
416 /* port utility functions */
418 static const char *tb_port_type(const struct tb_regs_port_header *port)
420 switch (port->type >> 16) {
422 switch ((u8) port->type) {
447 static void tb_dump_port(struct tb *tb, const struct tb_port *port)
449 const struct tb_regs_port_header *regs = &port->config;
452 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
453 regs->port_number, regs->vendor_id, regs->device_id,
454 regs->revision, regs->thunderbolt_version, tb_port_type(regs),
456 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
457 regs->max_in_hop_id, regs->max_out_hop_id);
458 tb_dbg(tb, " Max counters: %d\n", regs->max_counters);
459 tb_dbg(tb, " NFC Credits: %#x\n", regs->nfc_credits);
460 tb_dbg(tb, " Credits (total/control): %u/%u\n", port->total_credits,
465 * tb_port_state() - get connectedness state of a port
466 * @port: the port to check
468 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
470 * Return: Returns an enum tb_port_state on success or an error code on failure.
472 int tb_port_state(struct tb_port *port)
474 struct tb_cap_phy phy;
476 if (port->cap_phy == 0) {
477 tb_port_WARN(port, "does not have a PHY\n");
480 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
487 * tb_wait_for_port() - wait for a port to become ready
488 * @port: Port to wait
489 * @wait_if_unplugged: Wait also when port is unplugged
491 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
492 * wait_if_unplugged is set then we also wait if the port is in state
493 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
494 * switch resume). Otherwise we only wait if a device is registered but the link
495 * has not yet been established.
497 * Return: Returns an error code on failure. Returns 0 if the port is not
498 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
499 * if the port is connected and in state TB_PORT_UP.
501 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
505 if (!port->cap_phy) {
506 tb_port_WARN(port, "does not have PHY\n");
509 if (tb_is_upstream_port(port)) {
510 tb_port_WARN(port, "is the upstream port\n");
515 state = tb_port_state(port);
517 case TB_PORT_DISABLED:
518 tb_port_dbg(port, "is disabled (state: 0)\n");
521 case TB_PORT_UNPLUGGED:
522 if (wait_if_unplugged) {
523 /* used during resume */
525 "is unplugged (state: 7), retrying...\n");
529 tb_port_dbg(port, "is unplugged (state: 7)\n");
533 case TB_PORT_TX_CL0S:
534 case TB_PORT_RX_CL0S:
537 tb_port_dbg(port, "is connected, link is up (state: %d)\n", state);
545 * After plug-in the state is TB_PORT_CONNECTING. Give it some
549 "is connected, link is not up (state: %d), retrying...\n",
556 "failed to reach state TB_PORT_UP. Ignoring port...\n");
561 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
562 * @port: Port to add/remove NFC credits
563 * @credits: Credits to add/remove
565 * Change the number of NFC credits allocated to @port by @credits. To remove
566 * NFC credits pass a negative amount of credits.
568 * Return: Returns 0 on success or an error code on failure.
570 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
574 if (credits == 0 || port->sw->is_unplugged)
578 * USB4 restricts programming NFC buffers to lane adapters only
579 * so skip other ports.
581 if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
584 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
586 credits = max_t(int, -nfc_credits, credits);
588 nfc_credits += credits;
590 tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
591 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
593 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
594 port->config.nfc_credits |= nfc_credits;
596 return tb_port_write(port, &port->config.nfc_credits,
597 TB_CFG_PORT, ADP_CS_4, 1);
601 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
602 * @port: Port whose counters to clear
603 * @counter: Counter index to clear
605 * Return: Returns 0 on success or an error code on failure.
607 int tb_port_clear_counter(struct tb_port *port, int counter)
609 u32 zero[3] = { 0, 0, 0 };
610 tb_port_dbg(port, "clearing counter %d\n", counter);
611 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
615 * tb_port_unlock() - Unlock downstream port
616 * @port: Port to unlock
618 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
619 * downstream router accessible for CM.
621 int tb_port_unlock(struct tb_port *port)
623 if (tb_switch_is_icm(port->sw))
625 if (!tb_port_is_null(port))
627 if (tb_switch_is_usb4(port->sw))
628 return usb4_port_unlock(port);
632 static int __tb_port_enable(struct tb_port *port, bool enable)
637 if (!tb_port_is_null(port))
640 ret = tb_port_read(port, &phy, TB_CFG_PORT,
641 port->cap_phy + LANE_ADP_CS_1, 1);
646 phy &= ~LANE_ADP_CS_1_LD;
648 phy |= LANE_ADP_CS_1_LD;
651 ret = tb_port_write(port, &phy, TB_CFG_PORT,
652 port->cap_phy + LANE_ADP_CS_1, 1);
656 tb_port_dbg(port, "lane %s\n", str_enabled_disabled(enable));
661 * tb_port_enable() - Enable lane adapter
662 * @port: Port to enable (can be %NULL)
664 * This is used for lane 0 and 1 adapters to enable it.
666 int tb_port_enable(struct tb_port *port)
668 return __tb_port_enable(port, true);
672 * tb_port_disable() - Disable lane adapter
673 * @port: Port to disable (can be %NULL)
675 * This is used for lane 0 and 1 adapters to disable it.
677 int tb_port_disable(struct tb_port *port)
679 return __tb_port_enable(port, false);
683 * tb_init_port() - initialize a port
685 * This is a helper method for tb_switch_alloc. Does not check or initialize
686 * any downstream switches.
688 * Return: Returns 0 on success or an error code on failure.
690 static int tb_init_port(struct tb_port *port)
695 INIT_LIST_HEAD(&port->list);
697 /* Control adapter does not have configuration space */
701 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
703 if (res == -ENODEV) {
704 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
706 port->disabled = true;
712 /* Port 0 is the switch itself and has no PHY. */
713 if (port->config.type == TB_TYPE_PORT) {
714 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
719 tb_port_WARN(port, "non switch port without a PHY\n");
721 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
723 port->cap_usb4 = cap;
726 * USB4 ports the buffers allocated for the control path
727 * can be read from the path config space. Legacy
728 * devices we use hard-coded value.
730 if (tb_switch_is_usb4(port->sw)) {
731 struct tb_regs_hop hop;
733 if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
734 port->ctl_credits = hop.initial_credits;
736 if (!port->ctl_credits)
737 port->ctl_credits = 2;
740 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
742 port->cap_adap = cap;
745 port->total_credits =
746 (port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
747 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
749 tb_dump_port(port->sw->tb, port);
753 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
760 port_max_hopid = port->config.max_in_hop_id;
761 ida = &port->in_hopids;
763 port_max_hopid = port->config.max_out_hop_id;
764 ida = &port->out_hopids;
768 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
771 if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
772 min_hopid = TB_PATH_MIN_HOPID;
774 if (max_hopid < 0 || max_hopid > port_max_hopid)
775 max_hopid = port_max_hopid;
777 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
781 * tb_port_alloc_in_hopid() - Allocate input HopID from port
782 * @port: Port to allocate HopID for
783 * @min_hopid: Minimum acceptable input HopID
784 * @max_hopid: Maximum acceptable input HopID
786 * Return: HopID between @min_hopid and @max_hopid or negative errno in
789 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
791 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
795 * tb_port_alloc_out_hopid() - Allocate output HopID from port
796 * @port: Port to allocate HopID for
797 * @min_hopid: Minimum acceptable output HopID
798 * @max_hopid: Maximum acceptable output HopID
800 * Return: HopID between @min_hopid and @max_hopid or negative errno in
803 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
805 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
809 * tb_port_release_in_hopid() - Release allocated input HopID from port
810 * @port: Port whose HopID to release
811 * @hopid: HopID to release
813 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
815 ida_simple_remove(&port->in_hopids, hopid);
819 * tb_port_release_out_hopid() - Release allocated output HopID from port
820 * @port: Port whose HopID to release
821 * @hopid: HopID to release
823 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
825 ida_simple_remove(&port->out_hopids, hopid);
828 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
829 const struct tb_switch *sw)
831 u64 mask = (1ULL << parent->config.depth * 8) - 1;
832 return (tb_route(parent) & mask) == (tb_route(sw) & mask);
836 * tb_next_port_on_path() - Return next port for given port on a path
837 * @start: Start port of the walk
838 * @end: End port of the walk
839 * @prev: Previous port (%NULL if this is the first)
841 * This function can be used to walk from one port to another if they
842 * are connected through zero or more switches. If the @prev is dual
843 * link port, the function follows that link and returns another end on
846 * If the @end port has been reached, return %NULL.
848 * Domain tb->lock must be held when this function is called.
850 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
851 struct tb_port *prev)
853 struct tb_port *next;
858 if (prev->sw == end->sw) {
864 if (tb_switch_is_reachable(prev->sw, end->sw)) {
865 next = tb_port_at(tb_route(end->sw), prev->sw);
866 /* Walk down the topology if next == prev */
868 (next == prev || next->dual_link_port == prev))
871 if (tb_is_upstream_port(prev)) {
874 next = tb_upstream_port(prev->sw);
876 * Keep the same link if prev and next are both
879 if (next->dual_link_port &&
880 next->link_nr != prev->link_nr) {
881 next = next->dual_link_port;
886 return next != prev ? next : NULL;
890 * tb_port_get_link_speed() - Get current link speed
891 * @port: Port to check (USB4 or CIO)
893 * Returns link speed in Gb/s or negative errno in case of failure.
895 int tb_port_get_link_speed(struct tb_port *port)
903 ret = tb_port_read(port, &val, TB_CFG_PORT,
904 port->cap_phy + LANE_ADP_CS_1, 1);
908 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
909 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
910 return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
914 * tb_port_get_link_width() - Get current link width
915 * @port: Port to check (USB4 or CIO)
917 * Returns link width. Return values can be 1 (Single-Lane), 2 (Dual-Lane)
918 * or negative errno in case of failure.
920 int tb_port_get_link_width(struct tb_port *port)
928 ret = tb_port_read(port, &val, TB_CFG_PORT,
929 port->cap_phy + LANE_ADP_CS_1, 1);
933 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
934 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
937 static bool tb_port_is_width_supported(struct tb_port *port, int width)
945 ret = tb_port_read(port, &phy, TB_CFG_PORT,
946 port->cap_phy + LANE_ADP_CS_0, 1);
950 widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
951 LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
953 return !!(widths & width);
957 * tb_port_set_link_width() - Set target link width of the lane adapter
958 * @port: Lane adapter
959 * @width: Target link width (%1 or %2)
961 * Sets the target link width of the lane adapter to @width. Does not
962 * enable/disable lane bonding. For that call tb_port_set_lane_bonding().
964 * Return: %0 in case of success and negative errno in case of error
966 int tb_port_set_link_width(struct tb_port *port, unsigned int width)
974 ret = tb_port_read(port, &val, TB_CFG_PORT,
975 port->cap_phy + LANE_ADP_CS_1, 1);
979 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
982 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
983 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
986 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
987 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
993 return tb_port_write(port, &val, TB_CFG_PORT,
994 port->cap_phy + LANE_ADP_CS_1, 1);
998 * tb_port_set_lane_bonding() - Enable/disable lane bonding
999 * @port: Lane adapter
1000 * @bonding: enable/disable bonding
1002 * Enables or disables lane bonding. This should be called after target
1003 * link width has been set (tb_port_set_link_width()). Note in most
1004 * cases one should use tb_port_lane_bonding_enable() instead to enable
1007 * As a side effect sets @port->bonding accordingly (and does the same
1010 * Return: %0 in case of success and negative errno in case of error
1012 int tb_port_set_lane_bonding(struct tb_port *port, bool bonding)
1020 ret = tb_port_read(port, &val, TB_CFG_PORT,
1021 port->cap_phy + LANE_ADP_CS_1, 1);
1026 val |= LANE_ADP_CS_1_LB;
1028 val &= ~LANE_ADP_CS_1_LB;
1030 ret = tb_port_write(port, &val, TB_CFG_PORT,
1031 port->cap_phy + LANE_ADP_CS_1, 1);
1036 * When lane 0 bonding is set it will affect lane 1 too so
1039 port->bonded = bonding;
1040 port->dual_link_port->bonded = bonding;
1046 * tb_port_lane_bonding_enable() - Enable bonding on port
1047 * @port: port to enable
1049 * Enable bonding by setting the link width of the port and the other
1050 * port in case of dual link port. Does not wait for the link to
1051 * actually reach the bonded state so caller needs to call
1052 * tb_port_wait_for_link_width() before enabling any paths through the
1053 * link to make sure the link is in expected state.
1055 * Return: %0 in case of success and negative errno in case of error
1057 int tb_port_lane_bonding_enable(struct tb_port *port)
1062 * Enable lane bonding for both links if not already enabled by
1063 * for example the boot firmware.
1065 ret = tb_port_get_link_width(port);
1067 ret = tb_port_set_link_width(port, 2);
1072 ret = tb_port_get_link_width(port->dual_link_port);
1074 ret = tb_port_set_link_width(port->dual_link_port, 2);
1079 ret = tb_port_set_lane_bonding(port, true);
1086 tb_port_set_link_width(port->dual_link_port, 1);
1088 tb_port_set_link_width(port, 1);
1093 * tb_port_lane_bonding_disable() - Disable bonding on port
1094 * @port: port to disable
1096 * Disable bonding by setting the link width of the port and the
1097 * other port in case of dual link port.
1099 void tb_port_lane_bonding_disable(struct tb_port *port)
1101 tb_port_set_lane_bonding(port, false);
1102 tb_port_set_link_width(port->dual_link_port, 1);
1103 tb_port_set_link_width(port, 1);
1107 * tb_port_wait_for_link_width() - Wait until link reaches specific width
1108 * @port: Port to wait for
1109 * @width: Expected link width (%1 or %2)
1110 * @timeout_msec: Timeout in ms how long to wait
1112 * Should be used after both ends of the link have been bonded (or
1113 * bonding has been disabled) to wait until the link actually reaches
1114 * the expected state. Returns %-ETIMEDOUT if the @width was not reached
1115 * within the given timeout, %0 if it did.
1117 int tb_port_wait_for_link_width(struct tb_port *port, int width,
1120 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1124 ret = tb_port_get_link_width(port);
1127 * Sometimes we get port locked error when
1128 * polling the lanes so we can ignore it and
1133 } else if (ret == width) {
1137 usleep_range(1000, 2000);
1138 } while (ktime_before(ktime_get(), timeout));
1143 static int tb_port_do_update_credits(struct tb_port *port)
1148 ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1152 if (nfc_credits != port->config.nfc_credits) {
1155 total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1156 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1158 tb_port_dbg(port, "total credits changed %u -> %u\n",
1159 port->total_credits, total);
1161 port->config.nfc_credits = nfc_credits;
1162 port->total_credits = total;
1169 * tb_port_update_credits() - Re-read port total credits
1170 * @port: Port to update
1172 * After the link is bonded (or bonding was disabled) the port total
1173 * credits may change, so this function needs to be called to re-read
1174 * the credits. Updates also the second lane adapter.
1176 int tb_port_update_credits(struct tb_port *port)
1180 ret = tb_port_do_update_credits(port);
1183 return tb_port_do_update_credits(port->dual_link_port);
1186 static int __tb_port_pm_secondary_set(struct tb_port *port, bool secondary)
1191 ret = tb_port_read(port, &phy, TB_CFG_PORT,
1192 port->cap_phy + LANE_ADP_CS_1, 1);
1197 phy |= LANE_ADP_CS_1_PMS;
1199 phy &= ~LANE_ADP_CS_1_PMS;
1201 return tb_port_write(port, &phy, TB_CFG_PORT,
1202 port->cap_phy + LANE_ADP_CS_1, 1);
1205 static int tb_port_pm_secondary_enable(struct tb_port *port)
1207 return __tb_port_pm_secondary_set(port, true);
1210 static int tb_port_pm_secondary_disable(struct tb_port *port)
1212 return __tb_port_pm_secondary_set(port, false);
1215 /* Called for USB4 or Titan Ridge routers only */
1216 static bool tb_port_clx_supported(struct tb_port *port, unsigned int clx_mask)
1221 /* Don't enable CLx in case of two single-lane links */
1222 if (!port->bonded && port->dual_link_port)
1225 /* Don't enable CLx in case of inter-domain link */
1229 if (tb_switch_is_usb4(port->sw)) {
1230 if (!usb4_port_clx_supported(port))
1232 } else if (!tb_lc_is_clx_supported(port)) {
1236 if (clx_mask & TB_CL1) {
1237 /* CL0s and CL1 are enabled and supported together */
1238 mask |= LANE_ADP_CS_0_CL0S_SUPPORT | LANE_ADP_CS_0_CL1_SUPPORT;
1240 if (clx_mask & TB_CL2)
1241 mask |= LANE_ADP_CS_0_CL2_SUPPORT;
1243 ret = tb_port_read(port, &val, TB_CFG_PORT,
1244 port->cap_phy + LANE_ADP_CS_0, 1);
1248 return !!(val & mask);
1251 static int __tb_port_clx_set(struct tb_port *port, enum tb_clx clx, bool enable)
1256 /* CL0s and CL1 are enabled and supported together */
1258 mask = LANE_ADP_CS_1_CL0S_ENABLE | LANE_ADP_CS_1_CL1_ENABLE;
1260 /* For now we support only CL0s and CL1. Not CL2 */
1263 ret = tb_port_read(port, &phy, TB_CFG_PORT,
1264 port->cap_phy + LANE_ADP_CS_1, 1);
1273 return tb_port_write(port, &phy, TB_CFG_PORT,
1274 port->cap_phy + LANE_ADP_CS_1, 1);
1277 static int tb_port_clx_disable(struct tb_port *port, enum tb_clx clx)
1279 return __tb_port_clx_set(port, clx, false);
1282 static int tb_port_clx_enable(struct tb_port *port, enum tb_clx clx)
1284 return __tb_port_clx_set(port, clx, true);
1288 * tb_port_is_clx_enabled() - Is given CL state enabled
1289 * @port: USB4 port to check
1290 * @clx_mask: Mask of CL states to check
1292 * Returns true if any of the given CL states is enabled for @port.
1294 bool tb_port_is_clx_enabled(struct tb_port *port, unsigned int clx_mask)
1299 if (!tb_port_clx_supported(port, clx_mask))
1302 if (clx_mask & TB_CL1)
1303 mask |= LANE_ADP_CS_1_CL0S_ENABLE | LANE_ADP_CS_1_CL1_ENABLE;
1304 if (clx_mask & TB_CL2)
1305 mask |= LANE_ADP_CS_1_CL2_ENABLE;
1307 ret = tb_port_read(port, &val, TB_CFG_PORT,
1308 port->cap_phy + LANE_ADP_CS_1, 1);
1312 return !!(val & mask);
1315 static int tb_port_start_lane_initialization(struct tb_port *port)
1319 if (tb_switch_is_usb4(port->sw))
1322 ret = tb_lc_start_lane_initialization(port);
1323 return ret == -EINVAL ? 0 : ret;
1327 * Returns true if the port had something (router, XDomain) connected
1330 static bool tb_port_resume(struct tb_port *port)
1332 bool has_remote = tb_port_has_remote(port);
1335 usb4_port_device_resume(port->usb4);
1336 } else if (!has_remote) {
1338 * For disconnected downstream lane adapters start lane
1339 * initialization now so we detect future connects.
1341 * For XDomain start the lane initialzation now so the
1342 * link gets re-established.
1344 * This is only needed for non-USB4 ports.
1346 if (!tb_is_upstream_port(port) || port->xdomain)
1347 tb_port_start_lane_initialization(port);
1350 return has_remote || port->xdomain;
1354 * tb_port_is_enabled() - Is the adapter port enabled
1355 * @port: Port to check
1357 bool tb_port_is_enabled(struct tb_port *port)
1359 switch (port->config.type) {
1360 case TB_TYPE_PCIE_UP:
1361 case TB_TYPE_PCIE_DOWN:
1362 return tb_pci_port_is_enabled(port);
1364 case TB_TYPE_DP_HDMI_IN:
1365 case TB_TYPE_DP_HDMI_OUT:
1366 return tb_dp_port_is_enabled(port);
1368 case TB_TYPE_USB3_UP:
1369 case TB_TYPE_USB3_DOWN:
1370 return tb_usb3_port_is_enabled(port);
1378 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1379 * @port: USB3 adapter port to check
1381 bool tb_usb3_port_is_enabled(struct tb_port *port)
1385 if (tb_port_read(port, &data, TB_CFG_PORT,
1386 port->cap_adap + ADP_USB3_CS_0, 1))
1389 return !!(data & ADP_USB3_CS_0_PE);
1393 * tb_usb3_port_enable() - Enable USB3 adapter port
1394 * @port: USB3 adapter port to enable
1395 * @enable: Enable/disable the USB3 adapter
1397 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1399 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1402 if (!port->cap_adap)
1404 return tb_port_write(port, &word, TB_CFG_PORT,
1405 port->cap_adap + ADP_USB3_CS_0, 1);
1409 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1410 * @port: PCIe port to check
1412 bool tb_pci_port_is_enabled(struct tb_port *port)
1416 if (tb_port_read(port, &data, TB_CFG_PORT,
1417 port->cap_adap + ADP_PCIE_CS_0, 1))
1420 return !!(data & ADP_PCIE_CS_0_PE);
1424 * tb_pci_port_enable() - Enable PCIe adapter port
1425 * @port: PCIe port to enable
1426 * @enable: Enable/disable the PCIe adapter
1428 int tb_pci_port_enable(struct tb_port *port, bool enable)
1430 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1431 if (!port->cap_adap)
1433 return tb_port_write(port, &word, TB_CFG_PORT,
1434 port->cap_adap + ADP_PCIE_CS_0, 1);
1438 * tb_dp_port_hpd_is_active() - Is HPD already active
1439 * @port: DP out port to check
1441 * Checks if the DP OUT adapter port has HDP bit already set.
1443 int tb_dp_port_hpd_is_active(struct tb_port *port)
1448 ret = tb_port_read(port, &data, TB_CFG_PORT,
1449 port->cap_adap + ADP_DP_CS_2, 1);
1453 return !!(data & ADP_DP_CS_2_HDP);
1457 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1458 * @port: Port to clear HPD
1460 * If the DP IN port has HDP set, this function can be used to clear it.
1462 int tb_dp_port_hpd_clear(struct tb_port *port)
1467 ret = tb_port_read(port, &data, TB_CFG_PORT,
1468 port->cap_adap + ADP_DP_CS_3, 1);
1472 data |= ADP_DP_CS_3_HDPC;
1473 return tb_port_write(port, &data, TB_CFG_PORT,
1474 port->cap_adap + ADP_DP_CS_3, 1);
1478 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1479 * @port: DP IN/OUT port to set hops
1480 * @video: Video Hop ID
1481 * @aux_tx: AUX TX Hop ID
1482 * @aux_rx: AUX RX Hop ID
1484 * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1485 * router DP adapters too but does not program the values as the fields
1488 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1489 unsigned int aux_tx, unsigned int aux_rx)
1494 if (tb_switch_is_usb4(port->sw))
1497 ret = tb_port_read(port, data, TB_CFG_PORT,
1498 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1502 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1503 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1504 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1506 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1507 ADP_DP_CS_0_VIDEO_HOPID_MASK;
1508 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1509 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1510 ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1512 return tb_port_write(port, data, TB_CFG_PORT,
1513 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1517 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1518 * @port: DP adapter port to check
1520 bool tb_dp_port_is_enabled(struct tb_port *port)
1524 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1528 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1532 * tb_dp_port_enable() - Enables/disables DP paths of a port
1533 * @port: DP IN/OUT port
1534 * @enable: Enable/disable DP path
1536 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1537 * calling this function.
1539 int tb_dp_port_enable(struct tb_port *port, bool enable)
1544 ret = tb_port_read(port, data, TB_CFG_PORT,
1545 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1550 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1552 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1554 return tb_port_write(port, data, TB_CFG_PORT,
1555 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1558 /* switch utility functions */
1560 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1562 switch (sw->generation) {
1564 return "Thunderbolt 1";
1566 return "Thunderbolt 2";
1568 return "Thunderbolt 3";
1576 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1578 const struct tb_regs_switch_header *regs = &sw->config;
1580 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1581 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1582 regs->revision, regs->thunderbolt_version);
1583 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number);
1584 tb_dbg(tb, " Config:\n");
1586 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1587 regs->upstream_port_number, regs->depth,
1588 (((u64) regs->route_hi) << 32) | regs->route_lo,
1589 regs->enabled, regs->plug_events_delay);
1590 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
1591 regs->__unknown1, regs->__unknown4);
1595 * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET
1596 * @sw: Switch to reset
1598 * Return: Returns 0 on success or an error code on failure.
1600 int tb_switch_reset(struct tb_switch *sw)
1602 struct tb_cfg_result res;
1604 if (sw->generation > 1)
1607 tb_sw_dbg(sw, "resetting switch\n");
1609 res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1610 TB_CFG_SWITCH, 2, 2);
1613 res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1620 * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1621 * @sw: Router to read the offset value from
1622 * @offset: Offset in the router config space to read from
1623 * @bit: Bit mask in the offset to wait for
1624 * @value: Value of the bits to wait for
1625 * @timeout_msec: Timeout in ms how long to wait
1627 * Wait till the specified bits in specified offset reach specified value.
1628 * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
1629 * within the given timeout or a negative errno in case of failure.
1631 int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
1632 u32 value, int timeout_msec)
1634 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1640 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
1644 if ((val & bit) == value)
1647 usleep_range(50, 100);
1648 } while (ktime_before(ktime_get(), timeout));
1654 * tb_plug_events_active() - enable/disable plug events on a switch
1656 * Also configures a sane plug_events_delay of 255ms.
1658 * Return: Returns 0 on success or an error code on failure.
1660 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1665 if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1668 sw->config.plug_events_delay = 0xff;
1669 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1673 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1678 data = data & 0xFFFFFF83;
1679 switch (sw->config.device_id) {
1680 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1681 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1682 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1686 * Skip Alpine Ridge, it needs to have vendor
1687 * specific USB hotplug event enabled for the
1688 * internal xHCI to work.
1690 if (!tb_switch_is_alpine_ridge(sw))
1691 data |= TB_PLUG_EVENTS_USB_DISABLE;
1696 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1697 sw->cap_plug_events + 1, 1);
1700 static ssize_t authorized_show(struct device *dev,
1701 struct device_attribute *attr,
1704 struct tb_switch *sw = tb_to_switch(dev);
1706 return sysfs_emit(buf, "%u\n", sw->authorized);
1709 static int disapprove_switch(struct device *dev, void *not_used)
1711 char *envp[] = { "AUTHORIZED=0", NULL };
1712 struct tb_switch *sw;
1714 sw = tb_to_switch(dev);
1715 if (sw && sw->authorized) {
1718 /* First children */
1719 ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1723 ret = tb_domain_disapprove_switch(sw->tb, sw);
1728 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1734 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1736 char envp_string[13];
1738 char *envp[] = { envp_string, NULL };
1740 if (!mutex_trylock(&sw->tb->lock))
1741 return restart_syscall();
1743 if (!!sw->authorized == !!val)
1747 /* Disapprove switch */
1750 ret = disapprove_switch(&sw->dev, NULL);
1755 /* Approve switch */
1758 ret = tb_domain_approve_switch_key(sw->tb, sw);
1760 ret = tb_domain_approve_switch(sw->tb, sw);
1763 /* Challenge switch */
1766 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1774 sw->authorized = val;
1776 * Notify status change to the userspace, informing the new
1777 * value of /sys/bus/thunderbolt/devices/.../authorized.
1779 sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1780 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1784 mutex_unlock(&sw->tb->lock);
1788 static ssize_t authorized_store(struct device *dev,
1789 struct device_attribute *attr,
1790 const char *buf, size_t count)
1792 struct tb_switch *sw = tb_to_switch(dev);
1796 ret = kstrtouint(buf, 0, &val);
1802 pm_runtime_get_sync(&sw->dev);
1803 ret = tb_switch_set_authorized(sw, val);
1804 pm_runtime_mark_last_busy(&sw->dev);
1805 pm_runtime_put_autosuspend(&sw->dev);
1807 return ret ? ret : count;
1809 static DEVICE_ATTR_RW(authorized);
1811 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1814 struct tb_switch *sw = tb_to_switch(dev);
1816 return sysfs_emit(buf, "%u\n", sw->boot);
1818 static DEVICE_ATTR_RO(boot);
1820 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1823 struct tb_switch *sw = tb_to_switch(dev);
1825 return sysfs_emit(buf, "%#x\n", sw->device);
1827 static DEVICE_ATTR_RO(device);
1830 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1832 struct tb_switch *sw = tb_to_switch(dev);
1834 return sysfs_emit(buf, "%s\n", sw->device_name ?: "");
1836 static DEVICE_ATTR_RO(device_name);
1839 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1841 struct tb_switch *sw = tb_to_switch(dev);
1843 return sysfs_emit(buf, "%u\n", sw->generation);
1845 static DEVICE_ATTR_RO(generation);
1847 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1850 struct tb_switch *sw = tb_to_switch(dev);
1853 if (!mutex_trylock(&sw->tb->lock))
1854 return restart_syscall();
1857 ret = sysfs_emit(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1859 ret = sysfs_emit(buf, "\n");
1861 mutex_unlock(&sw->tb->lock);
1865 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1866 const char *buf, size_t count)
1868 struct tb_switch *sw = tb_to_switch(dev);
1869 u8 key[TB_SWITCH_KEY_SIZE];
1870 ssize_t ret = count;
1873 if (!strcmp(buf, "\n"))
1875 else if (hex2bin(key, buf, sizeof(key)))
1878 if (!mutex_trylock(&sw->tb->lock))
1879 return restart_syscall();
1881 if (sw->authorized) {
1888 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1894 mutex_unlock(&sw->tb->lock);
1897 static DEVICE_ATTR(key, 0600, key_show, key_store);
1899 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1902 struct tb_switch *sw = tb_to_switch(dev);
1904 return sysfs_emit(buf, "%u.0 Gb/s\n", sw->link_speed);
1908 * Currently all lanes must run at the same speed but we expose here
1909 * both directions to allow possible asymmetric links in the future.
1911 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1912 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1914 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1917 struct tb_switch *sw = tb_to_switch(dev);
1919 return sysfs_emit(buf, "%u\n", sw->link_width);
1923 * Currently link has same amount of lanes both directions (1 or 2) but
1924 * expose them separately to allow possible asymmetric links in the future.
1926 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1927 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1929 static ssize_t nvm_authenticate_show(struct device *dev,
1930 struct device_attribute *attr, char *buf)
1932 struct tb_switch *sw = tb_to_switch(dev);
1935 nvm_get_auth_status(sw, &status);
1936 return sysfs_emit(buf, "%#x\n", status);
1939 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1942 struct tb_switch *sw = tb_to_switch(dev);
1945 pm_runtime_get_sync(&sw->dev);
1947 if (!mutex_trylock(&sw->tb->lock)) {
1948 ret = restart_syscall();
1952 if (sw->no_nvm_upgrade) {
1957 /* If NVMem devices are not yet added */
1963 ret = kstrtoint(buf, 10, &val);
1967 /* Always clear the authentication status */
1968 nvm_clear_auth_status(sw);
1971 if (val == AUTHENTICATE_ONLY) {
1975 ret = nvm_authenticate(sw, true);
1977 if (!sw->nvm->flushed) {
1978 if (!sw->nvm->buf) {
1983 ret = nvm_validate_and_write(sw);
1984 if (ret || val == WRITE_ONLY)
1987 if (val == WRITE_AND_AUTHENTICATE) {
1989 ret = tb_lc_force_power(sw);
1991 ret = nvm_authenticate(sw, false);
1997 mutex_unlock(&sw->tb->lock);
1999 pm_runtime_mark_last_busy(&sw->dev);
2000 pm_runtime_put_autosuspend(&sw->dev);
2005 static ssize_t nvm_authenticate_store(struct device *dev,
2006 struct device_attribute *attr, const char *buf, size_t count)
2008 int ret = nvm_authenticate_sysfs(dev, buf, false);
2013 static DEVICE_ATTR_RW(nvm_authenticate);
2015 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
2016 struct device_attribute *attr, char *buf)
2018 return nvm_authenticate_show(dev, attr, buf);
2021 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
2022 struct device_attribute *attr, const char *buf, size_t count)
2026 ret = nvm_authenticate_sysfs(dev, buf, true);
2027 return ret ? ret : count;
2029 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
2031 static ssize_t nvm_version_show(struct device *dev,
2032 struct device_attribute *attr, char *buf)
2034 struct tb_switch *sw = tb_to_switch(dev);
2037 if (!mutex_trylock(&sw->tb->lock))
2038 return restart_syscall();
2045 ret = sysfs_emit(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
2047 mutex_unlock(&sw->tb->lock);
2051 static DEVICE_ATTR_RO(nvm_version);
2053 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
2056 struct tb_switch *sw = tb_to_switch(dev);
2058 return sysfs_emit(buf, "%#x\n", sw->vendor);
2060 static DEVICE_ATTR_RO(vendor);
2063 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
2065 struct tb_switch *sw = tb_to_switch(dev);
2067 return sysfs_emit(buf, "%s\n", sw->vendor_name ?: "");
2069 static DEVICE_ATTR_RO(vendor_name);
2071 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
2074 struct tb_switch *sw = tb_to_switch(dev);
2076 return sysfs_emit(buf, "%pUb\n", sw->uuid);
2078 static DEVICE_ATTR_RO(unique_id);
2080 static struct attribute *switch_attrs[] = {
2081 &dev_attr_authorized.attr,
2082 &dev_attr_boot.attr,
2083 &dev_attr_device.attr,
2084 &dev_attr_device_name.attr,
2085 &dev_attr_generation.attr,
2087 &dev_attr_nvm_authenticate.attr,
2088 &dev_attr_nvm_authenticate_on_disconnect.attr,
2089 &dev_attr_nvm_version.attr,
2090 &dev_attr_rx_speed.attr,
2091 &dev_attr_rx_lanes.attr,
2092 &dev_attr_tx_speed.attr,
2093 &dev_attr_tx_lanes.attr,
2094 &dev_attr_vendor.attr,
2095 &dev_attr_vendor_name.attr,
2096 &dev_attr_unique_id.attr,
2100 static umode_t switch_attr_is_visible(struct kobject *kobj,
2101 struct attribute *attr, int n)
2103 struct device *dev = kobj_to_dev(kobj);
2104 struct tb_switch *sw = tb_to_switch(dev);
2106 if (attr == &dev_attr_authorized.attr) {
2107 if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
2108 sw->tb->security_level == TB_SECURITY_DPONLY)
2110 } else if (attr == &dev_attr_device.attr) {
2113 } else if (attr == &dev_attr_device_name.attr) {
2114 if (!sw->device_name)
2116 } else if (attr == &dev_attr_vendor.attr) {
2119 } else if (attr == &dev_attr_vendor_name.attr) {
2120 if (!sw->vendor_name)
2122 } else if (attr == &dev_attr_key.attr) {
2124 sw->tb->security_level == TB_SECURITY_SECURE &&
2125 sw->security_level == TB_SECURITY_SECURE)
2128 } else if (attr == &dev_attr_rx_speed.attr ||
2129 attr == &dev_attr_rx_lanes.attr ||
2130 attr == &dev_attr_tx_speed.attr ||
2131 attr == &dev_attr_tx_lanes.attr) {
2135 } else if (attr == &dev_attr_nvm_authenticate.attr) {
2136 if (nvm_upgradeable(sw))
2139 } else if (attr == &dev_attr_nvm_version.attr) {
2140 if (nvm_readable(sw))
2143 } else if (attr == &dev_attr_boot.attr) {
2147 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
2148 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
2153 return sw->safe_mode ? 0 : attr->mode;
2156 static const struct attribute_group switch_group = {
2157 .is_visible = switch_attr_is_visible,
2158 .attrs = switch_attrs,
2161 static const struct attribute_group *switch_groups[] = {
2166 static void tb_switch_release(struct device *dev)
2168 struct tb_switch *sw = tb_to_switch(dev);
2169 struct tb_port *port;
2171 dma_port_free(sw->dma_port);
2173 tb_switch_for_each_port(sw, port) {
2174 ida_destroy(&port->in_hopids);
2175 ida_destroy(&port->out_hopids);
2179 kfree(sw->device_name);
2180 kfree(sw->vendor_name);
2187 static int tb_switch_uevent(const struct device *dev, struct kobj_uevent_env *env)
2189 const struct tb_switch *sw = tb_to_switch(dev);
2192 if (sw->config.thunderbolt_version == USB4_VERSION_1_0) {
2193 if (add_uevent_var(env, "USB4_VERSION=1.0"))
2197 if (!tb_route(sw)) {
2200 const struct tb_port *port;
2203 /* Device is hub if it has any downstream ports */
2204 tb_switch_for_each_port(sw, port) {
2205 if (!port->disabled && !tb_is_upstream_port(port) &&
2206 tb_port_is_null(port)) {
2212 type = hub ? "hub" : "device";
2215 if (add_uevent_var(env, "USB4_TYPE=%s", type))
2221 * Currently only need to provide the callbacks. Everything else is handled
2222 * in the connection manager.
2224 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2226 struct tb_switch *sw = tb_to_switch(dev);
2227 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2229 if (cm_ops->runtime_suspend_switch)
2230 return cm_ops->runtime_suspend_switch(sw);
2235 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2237 struct tb_switch *sw = tb_to_switch(dev);
2238 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2240 if (cm_ops->runtime_resume_switch)
2241 return cm_ops->runtime_resume_switch(sw);
2245 static const struct dev_pm_ops tb_switch_pm_ops = {
2246 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2250 struct device_type tb_switch_type = {
2251 .name = "thunderbolt_device",
2252 .release = tb_switch_release,
2253 .uevent = tb_switch_uevent,
2254 .pm = &tb_switch_pm_ops,
2257 static int tb_switch_get_generation(struct tb_switch *sw)
2259 switch (sw->config.device_id) {
2260 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2261 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2262 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2263 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2264 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2265 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2266 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2267 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2270 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2271 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2272 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2275 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2276 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2277 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2278 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2279 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2280 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2281 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2282 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2283 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2284 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2288 if (tb_switch_is_usb4(sw))
2292 * For unknown switches assume generation to be 1 to be
2295 tb_sw_warn(sw, "unsupported switch device id %#x\n",
2296 sw->config.device_id);
2301 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2305 if (tb_switch_is_usb4(sw) ||
2306 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2307 max_depth = USB4_SWITCH_MAX_DEPTH;
2309 max_depth = TB_SWITCH_MAX_DEPTH;
2311 return depth > max_depth;
2315 * tb_switch_alloc() - allocate a switch
2316 * @tb: Pointer to the owning domain
2317 * @parent: Parent device for this switch
2318 * @route: Route string for this switch
2320 * Allocates and initializes a switch. Will not upload configuration to
2321 * the switch. For that you need to call tb_switch_configure()
2322 * separately. The returned switch should be released by calling
2325 * Return: Pointer to the allocated switch or ERR_PTR() in case of
2328 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2331 struct tb_switch *sw;
2335 /* Unlock the downstream port so we can access the switch below */
2337 struct tb_switch *parent_sw = tb_to_switch(parent);
2338 struct tb_port *down;
2340 down = tb_port_at(route, parent_sw);
2341 tb_port_unlock(down);
2344 depth = tb_route_length(route);
2346 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2347 if (upstream_port < 0)
2348 return ERR_PTR(upstream_port);
2350 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2352 return ERR_PTR(-ENOMEM);
2355 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2357 goto err_free_sw_ports;
2359 sw->generation = tb_switch_get_generation(sw);
2361 tb_dbg(tb, "current switch config:\n");
2362 tb_dump_switch(tb, sw);
2364 /* configure switch */
2365 sw->config.upstream_port_number = upstream_port;
2366 sw->config.depth = depth;
2367 sw->config.route_hi = upper_32_bits(route);
2368 sw->config.route_lo = lower_32_bits(route);
2369 sw->config.enabled = 0;
2371 /* Make sure we do not exceed maximum topology limit */
2372 if (tb_switch_exceeds_max_depth(sw, depth)) {
2373 ret = -EADDRNOTAVAIL;
2374 goto err_free_sw_ports;
2377 /* initialize ports */
2378 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2382 goto err_free_sw_ports;
2385 for (i = 0; i <= sw->config.max_port_number; i++) {
2386 /* minimum setup for tb_find_cap and tb_drom_read to work */
2387 sw->ports[i].sw = sw;
2388 sw->ports[i].port = i;
2390 /* Control port does not need HopID allocation */
2392 ida_init(&sw->ports[i].in_hopids);
2393 ida_init(&sw->ports[i].out_hopids);
2397 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2399 sw->cap_plug_events = ret;
2401 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
2403 sw->cap_vsec_tmu = ret;
2405 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2409 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
2413 /* Root switch is always authorized */
2415 sw->authorized = true;
2417 device_initialize(&sw->dev);
2418 sw->dev.parent = parent;
2419 sw->dev.bus = &tb_bus_type;
2420 sw->dev.type = &tb_switch_type;
2421 sw->dev.groups = switch_groups;
2422 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2430 return ERR_PTR(ret);
2434 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2435 * @tb: Pointer to the owning domain
2436 * @parent: Parent device for this switch
2437 * @route: Route string for this switch
2439 * This creates a switch in safe mode. This means the switch pretty much
2440 * lacks all capabilities except DMA configuration port before it is
2441 * flashed with a valid NVM firmware.
2443 * The returned switch must be released by calling tb_switch_put().
2445 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2448 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2450 struct tb_switch *sw;
2452 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2454 return ERR_PTR(-ENOMEM);
2457 sw->config.depth = tb_route_length(route);
2458 sw->config.route_hi = upper_32_bits(route);
2459 sw->config.route_lo = lower_32_bits(route);
2460 sw->safe_mode = true;
2462 device_initialize(&sw->dev);
2463 sw->dev.parent = parent;
2464 sw->dev.bus = &tb_bus_type;
2465 sw->dev.type = &tb_switch_type;
2466 sw->dev.groups = switch_groups;
2467 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2473 * tb_switch_configure() - Uploads configuration to the switch
2474 * @sw: Switch to configure
2476 * Call this function before the switch is added to the system. It will
2477 * upload configuration to the switch and makes it available for the
2478 * connection manager to use. Can be called to the switch again after
2479 * resume from low power states to re-initialize it.
2481 * Return: %0 in case of success and negative errno in case of failure
2483 int tb_switch_configure(struct tb_switch *sw)
2485 struct tb *tb = sw->tb;
2489 route = tb_route(sw);
2491 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2492 sw->config.enabled ? "restoring" : "initializing", route,
2493 tb_route_length(route), sw->config.upstream_port_number);
2495 sw->config.enabled = 1;
2497 if (tb_switch_is_usb4(sw)) {
2499 * For USB4 devices, we need to program the CM version
2500 * accordingly so that it knows to expose all the
2501 * additional capabilities.
2503 sw->config.cmuv = USB4_VERSION_1_0;
2504 sw->config.plug_events_delay = 0xa;
2506 /* Enumerate the switch */
2507 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2512 ret = usb4_switch_setup(sw);
2514 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2515 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2516 sw->config.vendor_id);
2518 if (!sw->cap_plug_events) {
2519 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2523 /* Enumerate the switch */
2524 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2530 return tb_plug_events_active(sw, true);
2533 static int tb_switch_set_uuid(struct tb_switch *sw)
2542 if (tb_switch_is_usb4(sw)) {
2543 ret = usb4_switch_read_uid(sw, &sw->uid);
2549 * The newer controllers include fused UUID as part of
2550 * link controller specific registers
2552 ret = tb_lc_read_uuid(sw, uuid);
2562 * ICM generates UUID based on UID and fills the upper
2563 * two words with ones. This is not strictly following
2564 * UUID format but we want to be compatible with it so
2565 * we do the same here.
2567 uuid[0] = sw->uid & 0xffffffff;
2568 uuid[1] = (sw->uid >> 32) & 0xffffffff;
2569 uuid[2] = 0xffffffff;
2570 uuid[3] = 0xffffffff;
2573 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2579 static int tb_switch_add_dma_port(struct tb_switch *sw)
2584 switch (sw->generation) {
2586 /* Only root switch can be upgraded */
2593 ret = tb_switch_set_uuid(sw);
2600 * DMA port is the only thing available when the switch
2608 if (sw->no_nvm_upgrade)
2611 if (tb_switch_is_usb4(sw)) {
2612 ret = usb4_switch_nvm_authenticate_status(sw, &status);
2617 tb_sw_info(sw, "switch flash authentication failed\n");
2618 nvm_set_auth_status(sw, status);
2624 /* Root switch DMA port requires running firmware */
2625 if (!tb_route(sw) && !tb_switch_is_icm(sw))
2628 sw->dma_port = dma_port_alloc(sw);
2633 * If there is status already set then authentication failed
2634 * when the dma_port_flash_update_auth() returned. Power cycling
2635 * is not needed (it was done already) so only thing we do here
2636 * is to unblock runtime PM of the root port.
2638 nvm_get_auth_status(sw, &status);
2641 nvm_authenticate_complete_dma_port(sw);
2646 * Check status of the previous flash authentication. If there
2647 * is one we need to power cycle the switch in any case to make
2648 * it functional again.
2650 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2654 /* Now we can allow root port to suspend again */
2656 nvm_authenticate_complete_dma_port(sw);
2659 tb_sw_info(sw, "switch flash authentication failed\n");
2660 nvm_set_auth_status(sw, status);
2663 tb_sw_info(sw, "power cycling the switch now\n");
2664 dma_port_power_cycle(sw->dma_port);
2667 * We return error here which causes the switch adding failure.
2668 * It should appear back after power cycle is complete.
2673 static void tb_switch_default_link_ports(struct tb_switch *sw)
2677 for (i = 1; i <= sw->config.max_port_number; i++) {
2678 struct tb_port *port = &sw->ports[i];
2679 struct tb_port *subordinate;
2681 if (!tb_port_is_null(port))
2684 /* Check for the subordinate port */
2685 if (i == sw->config.max_port_number ||
2686 !tb_port_is_null(&sw->ports[i + 1]))
2689 /* Link them if not already done so (by DROM) */
2690 subordinate = &sw->ports[i + 1];
2691 if (!port->dual_link_port && !subordinate->dual_link_port) {
2693 port->dual_link_port = subordinate;
2694 subordinate->link_nr = 1;
2695 subordinate->dual_link_port = port;
2697 tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2698 port->port, subordinate->port);
2703 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2705 const struct tb_port *up = tb_upstream_port(sw);
2707 if (!up->dual_link_port || !up->dual_link_port->remote)
2710 if (tb_switch_is_usb4(sw))
2711 return usb4_switch_lane_bonding_possible(sw);
2712 return tb_lc_lane_bonding_possible(sw);
2715 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2718 bool change = false;
2721 if (!tb_route(sw) || tb_switch_is_icm(sw))
2724 up = tb_upstream_port(sw);
2726 ret = tb_port_get_link_speed(up);
2729 if (sw->link_speed != ret)
2731 sw->link_speed = ret;
2733 ret = tb_port_get_link_width(up);
2736 if (sw->link_width != ret)
2738 sw->link_width = ret;
2740 /* Notify userspace that there is possible link attribute change */
2741 if (device_is_registered(&sw->dev) && change)
2742 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2748 * tb_switch_lane_bonding_enable() - Enable lane bonding
2749 * @sw: Switch to enable lane bonding
2751 * Connection manager can call this function to enable lane bonding of a
2752 * switch. If conditions are correct and both switches support the feature,
2753 * lanes are bonded. It is safe to call this to any switch.
2755 int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2757 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2758 struct tb_port *up, *down;
2759 u64 route = tb_route(sw);
2765 if (!tb_switch_lane_bonding_possible(sw))
2768 up = tb_upstream_port(sw);
2769 down = tb_port_at(route, parent);
2771 if (!tb_port_is_width_supported(up, 2) ||
2772 !tb_port_is_width_supported(down, 2))
2775 ret = tb_port_lane_bonding_enable(up);
2777 tb_port_warn(up, "failed to enable lane bonding\n");
2781 ret = tb_port_lane_bonding_enable(down);
2783 tb_port_warn(down, "failed to enable lane bonding\n");
2784 tb_port_lane_bonding_disable(up);
2788 ret = tb_port_wait_for_link_width(down, 2, 100);
2790 tb_port_warn(down, "timeout enabling lane bonding\n");
2794 tb_port_update_credits(down);
2795 tb_port_update_credits(up);
2796 tb_switch_update_link_attributes(sw);
2798 tb_sw_dbg(sw, "lane bonding enabled\n");
2803 * tb_switch_lane_bonding_disable() - Disable lane bonding
2804 * @sw: Switch whose lane bonding to disable
2806 * Disables lane bonding between @sw and parent. This can be called even
2807 * if lanes were not bonded originally.
2809 void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2811 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2812 struct tb_port *up, *down;
2817 up = tb_upstream_port(sw);
2821 down = tb_port_at(tb_route(sw), parent);
2823 tb_port_lane_bonding_disable(up);
2824 tb_port_lane_bonding_disable(down);
2827 * It is fine if we get other errors as the router might have
2830 if (tb_port_wait_for_link_width(down, 1, 100) == -ETIMEDOUT)
2831 tb_sw_warn(sw, "timeout disabling lane bonding\n");
2833 tb_port_update_credits(down);
2834 tb_port_update_credits(up);
2835 tb_switch_update_link_attributes(sw);
2837 tb_sw_dbg(sw, "lane bonding disabled\n");
2841 * tb_switch_configure_link() - Set link configured
2842 * @sw: Switch whose link is configured
2844 * Sets the link upstream from @sw configured (from both ends) so that
2845 * it will not be disconnected when the domain exits sleep. Can be
2846 * called for any switch.
2848 * It is recommended that this is called after lane bonding is enabled.
2850 * Returns %0 on success and negative errno in case of error.
2852 int tb_switch_configure_link(struct tb_switch *sw)
2854 struct tb_port *up, *down;
2857 if (!tb_route(sw) || tb_switch_is_icm(sw))
2860 up = tb_upstream_port(sw);
2861 if (tb_switch_is_usb4(up->sw))
2862 ret = usb4_port_configure(up);
2864 ret = tb_lc_configure_port(up);
2869 if (tb_switch_is_usb4(down->sw))
2870 return usb4_port_configure(down);
2871 return tb_lc_configure_port(down);
2875 * tb_switch_unconfigure_link() - Unconfigure link
2876 * @sw: Switch whose link is unconfigured
2878 * Sets the link unconfigured so the @sw will be disconnected if the
2879 * domain exists sleep.
2881 void tb_switch_unconfigure_link(struct tb_switch *sw)
2883 struct tb_port *up, *down;
2885 if (sw->is_unplugged)
2887 if (!tb_route(sw) || tb_switch_is_icm(sw))
2890 up = tb_upstream_port(sw);
2891 if (tb_switch_is_usb4(up->sw))
2892 usb4_port_unconfigure(up);
2894 tb_lc_unconfigure_port(up);
2897 if (tb_switch_is_usb4(down->sw))
2898 usb4_port_unconfigure(down);
2900 tb_lc_unconfigure_port(down);
2903 static void tb_switch_credits_init(struct tb_switch *sw)
2905 if (tb_switch_is_icm(sw))
2907 if (!tb_switch_is_usb4(sw))
2909 if (usb4_switch_credits_init(sw))
2910 tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
2913 static int tb_switch_port_hotplug_enable(struct tb_switch *sw)
2915 struct tb_port *port;
2917 if (tb_switch_is_icm(sw))
2920 tb_switch_for_each_port(sw, port) {
2923 if (!port->cap_usb4)
2926 res = usb4_port_hotplug_enable(port);
2934 * tb_switch_add() - Add a switch to the domain
2935 * @sw: Switch to add
2937 * This is the last step in adding switch to the domain. It will read
2938 * identification information from DROM and initializes ports so that
2939 * they can be used to connect other switches. The switch will be
2940 * exposed to the userspace when this function successfully returns. To
2941 * remove and release the switch, call tb_switch_remove().
2943 * Return: %0 in case of success and negative errno in case of failure
2945 int tb_switch_add(struct tb_switch *sw)
2950 * Initialize DMA control port now before we read DROM. Recent
2951 * host controllers have more complete DROM on NVM that includes
2952 * vendor and model identification strings which we then expose
2953 * to the userspace. NVM can be accessed through DMA
2954 * configuration based mailbox.
2956 ret = tb_switch_add_dma_port(sw);
2958 dev_err(&sw->dev, "failed to add DMA port\n");
2962 if (!sw->safe_mode) {
2963 tb_switch_credits_init(sw);
2966 ret = tb_drom_read(sw);
2968 dev_warn(&sw->dev, "reading DROM failed: %d\n", ret);
2969 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2971 ret = tb_switch_set_uuid(sw);
2973 dev_err(&sw->dev, "failed to set UUID\n");
2977 for (i = 0; i <= sw->config.max_port_number; i++) {
2978 if (sw->ports[i].disabled) {
2979 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2982 ret = tb_init_port(&sw->ports[i]);
2984 dev_err(&sw->dev, "failed to initialize port %d\n", i);
2989 tb_check_quirks(sw);
2991 tb_switch_default_link_ports(sw);
2993 ret = tb_switch_update_link_attributes(sw);
2997 ret = tb_switch_tmu_init(sw);
3002 ret = tb_switch_port_hotplug_enable(sw);
3006 ret = device_add(&sw->dev);
3008 dev_err(&sw->dev, "failed to add device: %d\n", ret);
3013 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
3014 sw->vendor, sw->device);
3015 if (sw->vendor_name && sw->device_name)
3016 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
3020 ret = usb4_switch_add_ports(sw);
3022 dev_err(&sw->dev, "failed to add USB4 ports\n");
3026 ret = tb_switch_nvm_add(sw);
3028 dev_err(&sw->dev, "failed to add NVM devices\n");
3033 * Thunderbolt routers do not generate wakeups themselves but
3034 * they forward wakeups from tunneled protocols, so enable it
3037 device_init_wakeup(&sw->dev, true);
3039 pm_runtime_set_active(&sw->dev);
3041 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
3042 pm_runtime_use_autosuspend(&sw->dev);
3043 pm_runtime_mark_last_busy(&sw->dev);
3044 pm_runtime_enable(&sw->dev);
3045 pm_request_autosuspend(&sw->dev);
3048 tb_switch_debugfs_init(sw);
3052 usb4_switch_remove_ports(sw);
3054 device_del(&sw->dev);
3060 * tb_switch_remove() - Remove and release a switch
3061 * @sw: Switch to remove
3063 * This will remove the switch from the domain and release it after last
3064 * reference count drops to zero. If there are switches connected below
3065 * this switch, they will be removed as well.
3067 void tb_switch_remove(struct tb_switch *sw)
3069 struct tb_port *port;
3071 tb_switch_debugfs_remove(sw);
3074 pm_runtime_get_sync(&sw->dev);
3075 pm_runtime_disable(&sw->dev);
3078 /* port 0 is the switch itself and never has a remote */
3079 tb_switch_for_each_port(sw, port) {
3080 if (tb_port_has_remote(port)) {
3081 tb_switch_remove(port->remote->sw);
3082 port->remote = NULL;
3083 } else if (port->xdomain) {
3084 tb_xdomain_remove(port->xdomain);
3085 port->xdomain = NULL;
3088 /* Remove any downstream retimers */
3089 tb_retimer_remove_all(port);
3092 if (!sw->is_unplugged)
3093 tb_plug_events_active(sw, false);
3095 tb_switch_nvm_remove(sw);
3096 usb4_switch_remove_ports(sw);
3099 dev_info(&sw->dev, "device disconnected\n");
3100 device_unregister(&sw->dev);
3104 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
3105 * @sw: Router to mark unplugged
3107 void tb_sw_set_unplugged(struct tb_switch *sw)
3109 struct tb_port *port;
3111 if (sw == sw->tb->root_switch) {
3112 tb_sw_WARN(sw, "cannot unplug root switch\n");
3115 if (sw->is_unplugged) {
3116 tb_sw_WARN(sw, "is_unplugged already set\n");
3119 sw->is_unplugged = true;
3120 tb_switch_for_each_port(sw, port) {
3121 if (tb_port_has_remote(port))
3122 tb_sw_set_unplugged(port->remote->sw);
3123 else if (port->xdomain)
3124 port->xdomain->is_unplugged = true;
3128 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
3131 tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
3133 tb_sw_dbg(sw, "disabling wakeup\n");
3135 if (tb_switch_is_usb4(sw))
3136 return usb4_switch_set_wake(sw, flags);
3137 return tb_lc_set_wake(sw, flags);
3140 int tb_switch_resume(struct tb_switch *sw)
3142 struct tb_port *port;
3145 tb_sw_dbg(sw, "resuming switch\n");
3148 * Check for UID of the connected switches except for root
3149 * switch which we assume cannot be removed.
3155 * Check first that we can still read the switch config
3156 * space. It may be that there is now another domain
3159 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
3161 tb_sw_info(sw, "switch not present anymore\n");
3165 /* We don't have any way to confirm this was the same device */
3169 if (tb_switch_is_usb4(sw))
3170 err = usb4_switch_read_uid(sw, &uid);
3172 err = tb_drom_read_uid_only(sw, &uid);
3174 tb_sw_warn(sw, "uid read failed\n");
3177 if (sw->uid != uid) {
3179 "changed while suspended (uid %#llx -> %#llx)\n",
3185 err = tb_switch_configure(sw);
3190 tb_switch_set_wake(sw, 0);
3192 err = tb_switch_tmu_init(sw);
3196 /* check for surviving downstream switches */
3197 tb_switch_for_each_port(sw, port) {
3198 if (!tb_port_is_null(port))
3201 if (!tb_port_resume(port))
3204 if (tb_wait_for_port(port, true) <= 0) {
3206 "lost during suspend, disconnecting\n");
3207 if (tb_port_has_remote(port))
3208 tb_sw_set_unplugged(port->remote->sw);
3209 else if (port->xdomain)
3210 port->xdomain->is_unplugged = true;
3213 * Always unlock the port so the downstream
3214 * switch/domain is accessible.
3216 if (tb_port_unlock(port))
3217 tb_port_warn(port, "failed to unlock port\n");
3218 if (port->remote && tb_switch_resume(port->remote->sw)) {
3220 "lost during suspend, disconnecting\n");
3221 tb_sw_set_unplugged(port->remote->sw);
3229 * tb_switch_suspend() - Put a switch to sleep
3230 * @sw: Switch to suspend
3231 * @runtime: Is this runtime suspend or system sleep
3233 * Suspends router and all its children. Enables wakes according to
3234 * value of @runtime and then sets sleep bit for the router. If @sw is
3235 * host router the domain is ready to go to sleep once this function
3238 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
3240 unsigned int flags = 0;
3241 struct tb_port *port;
3244 tb_sw_dbg(sw, "suspending switch\n");
3247 * Actually only needed for Titan Ridge but for simplicity can be
3248 * done for USB4 device too as CLx is re-enabled at resume.
3249 * CL0s and CL1 are enabled and supported together.
3251 if (tb_switch_is_clx_enabled(sw, TB_CL1)) {
3252 if (tb_switch_disable_clx(sw, TB_CL1))
3253 tb_sw_warn(sw, "failed to disable %s on upstream port\n",
3254 tb_switch_clx_name(TB_CL1));
3257 err = tb_plug_events_active(sw, false);
3261 tb_switch_for_each_port(sw, port) {
3262 if (tb_port_has_remote(port))
3263 tb_switch_suspend(port->remote->sw, runtime);
3267 /* Trigger wake when something is plugged in/out */
3268 flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3269 flags |= TB_WAKE_ON_USB4;
3270 flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3271 } else if (device_may_wakeup(&sw->dev)) {
3272 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3275 tb_switch_set_wake(sw, flags);
3277 if (tb_switch_is_usb4(sw))
3278 usb4_switch_set_sleep(sw);
3280 tb_lc_set_sleep(sw);
3284 * tb_switch_query_dp_resource() - Query availability of DP resource
3285 * @sw: Switch whose DP resource is queried
3288 * Queries availability of DP resource for DP tunneling using switch
3289 * specific means. Returns %true if resource is available.
3291 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3293 if (tb_switch_is_usb4(sw))
3294 return usb4_switch_query_dp_resource(sw, in);
3295 return tb_lc_dp_sink_query(sw, in);
3299 * tb_switch_alloc_dp_resource() - Allocate available DP resource
3300 * @sw: Switch whose DP resource is allocated
3303 * Allocates DP resource for DP tunneling. The resource must be
3304 * available for this to succeed (see tb_switch_query_dp_resource()).
3305 * Returns %0 in success and negative errno otherwise.
3307 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3311 if (tb_switch_is_usb4(sw))
3312 ret = usb4_switch_alloc_dp_resource(sw, in);
3314 ret = tb_lc_dp_sink_alloc(sw, in);
3317 tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
3320 tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
3326 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3327 * @sw: Switch whose DP resource is de-allocated
3330 * De-allocates DP resource that was previously allocated for DP
3333 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3337 if (tb_switch_is_usb4(sw))
3338 ret = usb4_switch_dealloc_dp_resource(sw, in);
3340 ret = tb_lc_dp_sink_dealloc(sw, in);
3343 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3346 tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
3349 struct tb_sw_lookup {
3357 static int tb_switch_match(struct device *dev, const void *data)
3359 struct tb_switch *sw = tb_to_switch(dev);
3360 const struct tb_sw_lookup *lookup = data;
3364 if (sw->tb != lookup->tb)
3368 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3370 if (lookup->route) {
3371 return sw->config.route_lo == lower_32_bits(lookup->route) &&
3372 sw->config.route_hi == upper_32_bits(lookup->route);
3375 /* Root switch is matched only by depth */
3379 return sw->link == lookup->link && sw->depth == lookup->depth;
3383 * tb_switch_find_by_link_depth() - Find switch by link and depth
3384 * @tb: Domain the switch belongs
3385 * @link: Link number the switch is connected
3386 * @depth: Depth of the switch in link
3388 * Returned switch has reference count increased so the caller needs to
3389 * call tb_switch_put() when done with the switch.
3391 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3393 struct tb_sw_lookup lookup;
3396 memset(&lookup, 0, sizeof(lookup));
3399 lookup.depth = depth;
3401 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3403 return tb_to_switch(dev);
3409 * tb_switch_find_by_uuid() - Find switch by UUID
3410 * @tb: Domain the switch belongs
3411 * @uuid: UUID to look for
3413 * Returned switch has reference count increased so the caller needs to
3414 * call tb_switch_put() when done with the switch.
3416 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3418 struct tb_sw_lookup lookup;
3421 memset(&lookup, 0, sizeof(lookup));
3425 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3427 return tb_to_switch(dev);
3433 * tb_switch_find_by_route() - Find switch by route string
3434 * @tb: Domain the switch belongs
3435 * @route: Route string to look for
3437 * Returned switch has reference count increased so the caller needs to
3438 * call tb_switch_put() when done with the switch.
3440 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3442 struct tb_sw_lookup lookup;
3446 return tb_switch_get(tb->root_switch);
3448 memset(&lookup, 0, sizeof(lookup));
3450 lookup.route = route;
3452 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3454 return tb_to_switch(dev);
3460 * tb_switch_find_port() - return the first port of @type on @sw or NULL
3461 * @sw: Switch to find the port from
3462 * @type: Port type to look for
3464 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3465 enum tb_port_type type)
3467 struct tb_port *port;
3469 tb_switch_for_each_port(sw, port) {
3470 if (port->config.type == type)
3477 static int tb_switch_pm_secondary_resolve(struct tb_switch *sw)
3479 struct tb_switch *parent = tb_switch_parent(sw);
3480 struct tb_port *up, *down;
3486 up = tb_upstream_port(sw);
3487 down = tb_port_at(tb_route(sw), parent);
3488 ret = tb_port_pm_secondary_enable(up);
3492 return tb_port_pm_secondary_disable(down);
3495 static int __tb_switch_enable_clx(struct tb_switch *sw, enum tb_clx clx)
3497 struct tb_switch *parent = tb_switch_parent(sw);
3498 bool up_clx_support, down_clx_support;
3499 struct tb_port *up, *down;
3502 if (!tb_switch_is_clx_supported(sw))
3506 * Enable CLx for host router's downstream port as part of the
3507 * downstream router enabling procedure.
3512 /* Enable CLx only for first hop router (depth = 1) */
3513 if (tb_route(parent))
3516 ret = tb_switch_pm_secondary_resolve(sw);
3520 up = tb_upstream_port(sw);
3521 down = tb_port_at(tb_route(sw), parent);
3523 up_clx_support = tb_port_clx_supported(up, clx);
3524 down_clx_support = tb_port_clx_supported(down, clx);
3526 tb_port_dbg(up, "%s %ssupported\n", tb_switch_clx_name(clx),
3527 up_clx_support ? "" : "not ");
3528 tb_port_dbg(down, "%s %ssupported\n", tb_switch_clx_name(clx),
3529 down_clx_support ? "" : "not ");
3531 if (!up_clx_support || !down_clx_support)
3534 ret = tb_port_clx_enable(up, clx);
3538 ret = tb_port_clx_enable(down, clx);
3540 tb_port_clx_disable(up, clx);
3544 ret = tb_switch_mask_clx_objections(sw);
3546 tb_port_clx_disable(up, clx);
3547 tb_port_clx_disable(down, clx);
3553 tb_port_dbg(up, "%s enabled\n", tb_switch_clx_name(clx));
3558 * tb_switch_enable_clx() - Enable CLx on upstream port of specified router
3559 * @sw: Router to enable CLx for
3560 * @clx: The CLx state to enable
3562 * Enable CLx state only for first hop router. That is the most common
3563 * use-case, that is intended for better thermal management, and so helps
3564 * to improve performance. CLx is enabled only if both sides of the link
3565 * support CLx, and if both sides of the link are not configured as two
3566 * single lane links and only if the link is not inter-domain link. The
3567 * complete set of conditions is described in CM Guide 1.0 section 8.1.
3569 * Return: Returns 0 on success or an error code on failure.
3571 int tb_switch_enable_clx(struct tb_switch *sw, enum tb_clx clx)
3573 struct tb_switch *root_sw = sw->tb->root_switch;
3579 * CLx is not enabled and validated on Intel USB4 platforms before
3582 if (root_sw->generation < 4 || tb_switch_is_tiger_lake(root_sw))
3587 /* CL0s and CL1 are enabled and supported together */
3588 return __tb_switch_enable_clx(sw, clx);
3595 static int __tb_switch_disable_clx(struct tb_switch *sw, enum tb_clx clx)
3597 struct tb_switch *parent = tb_switch_parent(sw);
3598 struct tb_port *up, *down;
3601 if (!tb_switch_is_clx_supported(sw))
3605 * Disable CLx for host router's downstream port as part of the
3606 * downstream router enabling procedure.
3611 /* Disable CLx only for first hop router (depth = 1) */
3612 if (tb_route(parent))
3615 up = tb_upstream_port(sw);
3616 down = tb_port_at(tb_route(sw), parent);
3617 ret = tb_port_clx_disable(up, clx);
3621 ret = tb_port_clx_disable(down, clx);
3625 sw->clx = TB_CLX_DISABLE;
3627 tb_port_dbg(up, "%s disabled\n", tb_switch_clx_name(clx));
3632 * tb_switch_disable_clx() - Disable CLx on upstream port of specified router
3633 * @sw: Router to disable CLx for
3634 * @clx: The CLx state to disable
3636 * Return: Returns 0 on success or an error code on failure.
3638 int tb_switch_disable_clx(struct tb_switch *sw, enum tb_clx clx)
3645 /* CL0s and CL1 are enabled and supported together */
3646 return __tb_switch_disable_clx(sw, clx);
3654 * tb_switch_mask_clx_objections() - Mask CLx objections for a router
3655 * @sw: Router to mask objections for
3657 * Mask the objections coming from the second depth routers in order to
3658 * stop these objections from interfering with the CLx states of the first
3661 int tb_switch_mask_clx_objections(struct tb_switch *sw)
3663 int up_port = sw->config.upstream_port_number;
3664 u32 offset, val[2], mask_obj, unmask_obj;
3667 /* Only Titan Ridge of pre-USB4 devices support CLx states */
3668 if (!tb_switch_is_titan_ridge(sw))
3675 * In Titan Ridge there are only 2 dual-lane Thunderbolt ports:
3676 * Port A consists of lane adapters 1,2 and
3677 * Port B consists of lane adapters 3,4
3678 * If upstream port is A, (lanes are 1,2), we mask objections from
3679 * port B (lanes 3,4) and unmask objections from Port A and vice-versa.
3682 mask_obj = TB_LOW_PWR_C0_PORT_B_MASK;
3683 unmask_obj = TB_LOW_PWR_C1_PORT_A_MASK;
3684 offset = TB_LOW_PWR_C1_CL1;
3686 mask_obj = TB_LOW_PWR_C1_PORT_A_MASK;
3687 unmask_obj = TB_LOW_PWR_C0_PORT_B_MASK;
3688 offset = TB_LOW_PWR_C3_CL1;
3691 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH,
3692 sw->cap_lp + offset, ARRAY_SIZE(val));
3696 for (i = 0; i < ARRAY_SIZE(val); i++) {
3698 val[i] &= ~unmask_obj;
3701 return tb_sw_write(sw, &val, TB_CFG_SWITCH,
3702 sw->cap_lp + offset, ARRAY_SIZE(val));
3706 * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3707 * device. For now used only for Titan Ridge.
3709 static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
3710 unsigned int pcie_offset, u32 value)
3712 u32 offset, command, val;
3715 if (sw->generation != 3)
3718 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
3719 ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
3723 command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
3724 command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
3725 command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
3726 command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3727 << TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
3728 command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
3730 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
3732 ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
3736 ret = tb_switch_wait_for_bit(sw, offset,
3737 TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
3741 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
3745 if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
3752 * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3753 * @sw: Router to enable PCIe L1
3755 * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3756 * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3757 * was configured. Due to Intel platforms limitation, shall be called only
3758 * for first hop switch.
3760 int tb_switch_pcie_l1_enable(struct tb_switch *sw)
3762 struct tb_switch *parent = tb_switch_parent(sw);
3768 if (!tb_switch_is_titan_ridge(sw))
3771 /* Enable PCIe L1 enable only for first hop router (depth = 1) */
3772 if (tb_route(parent))
3775 /* Write to downstream PCIe bridge #5 aka Dn4 */
3776 ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
3780 /* Write to Upstream PCIe bridge #0 aka Up0 */
3781 return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
3785 * tb_switch_xhci_connect() - Connect internal xHCI
3786 * @sw: Router whose xHCI to connect
3788 * Can be called to any router. For Alpine Ridge and Titan Ridge
3789 * performs special flows that bring the xHCI functional for any device
3790 * connected to the type-C port. Call only after PCIe tunnel has been
3791 * established. The function only does the connect if not done already
3792 * so can be called several times for the same router.
3794 int tb_switch_xhci_connect(struct tb_switch *sw)
3796 struct tb_port *port1, *port3;
3799 if (sw->generation != 3)
3802 port1 = &sw->ports[1];
3803 port3 = &sw->ports[3];
3805 if (tb_switch_is_alpine_ridge(sw)) {
3806 bool usb_port1, usb_port3, xhci_port1, xhci_port3;
3808 usb_port1 = tb_lc_is_usb_plugged(port1);
3809 usb_port3 = tb_lc_is_usb_plugged(port3);
3810 xhci_port1 = tb_lc_is_xhci_connected(port1);
3811 xhci_port3 = tb_lc_is_xhci_connected(port3);
3813 /* Figure out correct USB port to connect */
3814 if (usb_port1 && !xhci_port1) {
3815 ret = tb_lc_xhci_connect(port1);
3819 if (usb_port3 && !xhci_port3)
3820 return tb_lc_xhci_connect(port3);
3821 } else if (tb_switch_is_titan_ridge(sw)) {
3822 ret = tb_lc_xhci_connect(port1);
3825 return tb_lc_xhci_connect(port3);
3832 * tb_switch_xhci_disconnect() - Disconnect internal xHCI
3833 * @sw: Router whose xHCI to disconnect
3835 * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
3838 void tb_switch_xhci_disconnect(struct tb_switch *sw)
3840 if (sw->generation == 3) {
3841 struct tb_port *port1 = &sw->ports[1];
3842 struct tb_port *port3 = &sw->ports[3];
3844 tb_lc_xhci_disconnect(port1);
3845 tb_port_dbg(port1, "disconnected xHCI\n");
3846 tb_lc_xhci_disconnect(port3);
3847 tb_port_dbg(port3, "disconnected xHCI\n");