1 // SPDX-License-Identifier: GPL-2.0-only
3 * Driver for mt2063 Micronas tuner
5 * Copyright (c) 2011 Mauro Carvalho Chehab
7 * This driver came from a driver originally written by:
9 * Made publicly available by Terratec, at:
10 * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/string.h>
17 #include <linux/videodev2.h>
18 #include <linux/gcd.h>
22 static unsigned int debug;
23 module_param(debug, int, 0644);
24 MODULE_PARM_DESC(debug, "Set Verbosity level");
26 #define dprintk(level, fmt, arg...) do { \
28 printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ## arg); \
32 /* positive error codes used internally */
34 /* Info: Unavoidable LO-related spur may be present in the output */
35 #define MT2063_SPUR_PRESENT_ERR (0x00800000)
37 /* Info: Mask of bits used for # of LO-related spurs that were avoided during tuning */
38 #define MT2063_SPUR_CNT_MASK (0x001f0000)
39 #define MT2063_SPUR_SHIFT (16)
41 /* Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */
42 #define MT2063_UPC_RANGE (0x04000000)
44 /* Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */
45 #define MT2063_DNC_RANGE (0x08000000)
48 * Constant defining the version of the following structure
49 * and therefore the API for this code.
51 * When compiling the tuner driver, the preprocessor will
52 * check against this version number to make sure that
53 * it matches the version that the tuner driver knows about.
56 /* DECT Frequency Avoidance */
57 #define MT2063_DECT_AVOID_US_FREQS 0x00000001
59 #define MT2063_DECT_AVOID_EURO_FREQS 0x00000002
61 #define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_US_FREQS) != 0)
63 #define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_EURO_FREQS) != 0)
65 enum MT2063_DECT_Avoid_Type {
66 MT2063_NO_DECT_AVOIDANCE = 0, /* Do not create DECT exclusion zones. */
67 MT2063_AVOID_US_DECT = MT2063_DECT_AVOID_US_FREQS, /* Avoid US DECT frequencies. */
68 MT2063_AVOID_EURO_DECT = MT2063_DECT_AVOID_EURO_FREQS, /* Avoid European DECT frequencies. */
69 MT2063_AVOID_BOTH /* Avoid both regions. Not typically used. */
72 #define MT2063_MAX_ZONES 48
74 struct MT2063_ExclZone_t {
77 struct MT2063_ExclZone_t *next_;
81 * Structure of data needed for Spur Avoidance
83 struct MT2063_AvoidSpursData_t {
95 u32 f_LO1_FracN_Avoid;
96 u32 f_LO2_FracN_Avoid;
98 u32 f_min_LO_Separation;
101 enum MT2063_DECT_Avoid_Type avoidDECT;
106 struct MT2063_ExclZone_t *freeZones;
107 struct MT2063_ExclZone_t *usedZones;
108 struct MT2063_ExclZone_t MT2063_ExclZones[MT2063_MAX_ZONES];
112 * Parameter for function MT2063_SetPowerMask that specifies the power down
113 * of various sections of the MT2063.
115 enum MT2063_Mask_Bits {
116 MT2063_REG_SD = 0x0040, /* Shutdown regulator */
117 MT2063_SRO_SD = 0x0020, /* Shutdown SRO */
118 MT2063_AFC_SD = 0x0010, /* Shutdown AFC A/D */
119 MT2063_PD_SD = 0x0002, /* Enable power detector shutdown */
120 MT2063_PDADC_SD = 0x0001, /* Enable power detector A/D shutdown */
121 MT2063_VCO_SD = 0x8000, /* Enable VCO shutdown */
122 MT2063_LTX_SD = 0x4000, /* Enable LTX shutdown */
123 MT2063_LT1_SD = 0x2000, /* Enable LT1 shutdown */
124 MT2063_LNA_SD = 0x1000, /* Enable LNA shutdown */
125 MT2063_UPC_SD = 0x0800, /* Enable upconverter shutdown */
126 MT2063_DNC_SD = 0x0400, /* Enable downconverter shutdown */
127 MT2063_VGA_SD = 0x0200, /* Enable VGA shutdown */
128 MT2063_AMP_SD = 0x0100, /* Enable AMP shutdown */
129 MT2063_ALL_SD = 0xFF73, /* All shutdown bits for this tuner */
130 MT2063_NONE_SD = 0x0000 /* No shutdown bits */
134 * Possible values for MT2063_DNC_OUTPUT
136 enum MT2063_DNC_Output_Enable {
144 * Two-wire serial bus subaddresses of the tuner registers.
145 * Also known as the tuner's register addresses.
147 enum MT2063_Register_Offsets {
148 MT2063_REG_PART_REV = 0, /* 0x00: Part/Rev Code */
149 MT2063_REG_LO1CQ_1, /* 0x01: LO1C Queued Byte 1 */
150 MT2063_REG_LO1CQ_2, /* 0x02: LO1C Queued Byte 2 */
151 MT2063_REG_LO2CQ_1, /* 0x03: LO2C Queued Byte 1 */
152 MT2063_REG_LO2CQ_2, /* 0x04: LO2C Queued Byte 2 */
153 MT2063_REG_LO2CQ_3, /* 0x05: LO2C Queued Byte 3 */
154 MT2063_REG_RSVD_06, /* 0x06: Reserved */
155 MT2063_REG_LO_STATUS, /* 0x07: LO Status */
156 MT2063_REG_FIFFC, /* 0x08: FIFF Center */
157 MT2063_REG_CLEARTUNE, /* 0x09: ClearTune Filter */
158 MT2063_REG_ADC_OUT, /* 0x0A: ADC_OUT */
159 MT2063_REG_LO1C_1, /* 0x0B: LO1C Byte 1 */
160 MT2063_REG_LO1C_2, /* 0x0C: LO1C Byte 2 */
161 MT2063_REG_LO2C_1, /* 0x0D: LO2C Byte 1 */
162 MT2063_REG_LO2C_2, /* 0x0E: LO2C Byte 2 */
163 MT2063_REG_LO2C_3, /* 0x0F: LO2C Byte 3 */
164 MT2063_REG_RSVD_10, /* 0x10: Reserved */
165 MT2063_REG_PWR_1, /* 0x11: PWR Byte 1 */
166 MT2063_REG_PWR_2, /* 0x12: PWR Byte 2 */
167 MT2063_REG_TEMP_STATUS, /* 0x13: Temp Status */
168 MT2063_REG_XO_STATUS, /* 0x14: Crystal Status */
169 MT2063_REG_RF_STATUS, /* 0x15: RF Attn Status */
170 MT2063_REG_FIF_STATUS, /* 0x16: FIF Attn Status */
171 MT2063_REG_LNA_OV, /* 0x17: LNA Attn Override */
172 MT2063_REG_RF_OV, /* 0x18: RF Attn Override */
173 MT2063_REG_FIF_OV, /* 0x19: FIF Attn Override */
174 MT2063_REG_LNA_TGT, /* 0x1A: Reserved */
175 MT2063_REG_PD1_TGT, /* 0x1B: Pwr Det 1 Target */
176 MT2063_REG_PD2_TGT, /* 0x1C: Pwr Det 2 Target */
177 MT2063_REG_RSVD_1D, /* 0x1D: Reserved */
178 MT2063_REG_RSVD_1E, /* 0x1E: Reserved */
179 MT2063_REG_RSVD_1F, /* 0x1F: Reserved */
180 MT2063_REG_RSVD_20, /* 0x20: Reserved */
181 MT2063_REG_BYP_CTRL, /* 0x21: Bypass Control */
182 MT2063_REG_RSVD_22, /* 0x22: Reserved */
183 MT2063_REG_RSVD_23, /* 0x23: Reserved */
184 MT2063_REG_RSVD_24, /* 0x24: Reserved */
185 MT2063_REG_RSVD_25, /* 0x25: Reserved */
186 MT2063_REG_RSVD_26, /* 0x26: Reserved */
187 MT2063_REG_RSVD_27, /* 0x27: Reserved */
188 MT2063_REG_FIFF_CTRL, /* 0x28: FIFF Control */
189 MT2063_REG_FIFF_OFFSET, /* 0x29: FIFF Offset */
190 MT2063_REG_CTUNE_CTRL, /* 0x2A: Reserved */
191 MT2063_REG_CTUNE_OV, /* 0x2B: Reserved */
192 MT2063_REG_CTRL_2C, /* 0x2C: Reserved */
193 MT2063_REG_FIFF_CTRL2, /* 0x2D: Fiff Control */
194 MT2063_REG_RSVD_2E, /* 0x2E: Reserved */
195 MT2063_REG_DNC_GAIN, /* 0x2F: DNC Control */
196 MT2063_REG_VGA_GAIN, /* 0x30: VGA Gain Ctrl */
197 MT2063_REG_RSVD_31, /* 0x31: Reserved */
198 MT2063_REG_TEMP_SEL, /* 0x32: Temperature Selection */
199 MT2063_REG_RSVD_33, /* 0x33: Reserved */
200 MT2063_REG_RSVD_34, /* 0x34: Reserved */
201 MT2063_REG_RSVD_35, /* 0x35: Reserved */
202 MT2063_REG_RSVD_36, /* 0x36: Reserved */
203 MT2063_REG_RSVD_37, /* 0x37: Reserved */
204 MT2063_REG_RSVD_38, /* 0x38: Reserved */
205 MT2063_REG_RSVD_39, /* 0x39: Reserved */
206 MT2063_REG_RSVD_3A, /* 0x3A: Reserved */
207 MT2063_REG_RSVD_3B, /* 0x3B: Reserved */
208 MT2063_REG_RSVD_3C, /* 0x3C: Reserved */
212 struct mt2063_state {
213 struct i2c_adapter *i2c;
217 const struct mt2063_config *config;
218 struct dvb_tuner_ops ops;
219 struct dvb_frontend *frontend;
227 struct MT2063_AvoidSpursData_t AS_Data;
233 u8 reg[MT2063_REG_END_REGS];
237 * mt2063_write - Write data into the I2C bus
239 static int mt2063_write(struct mt2063_state *state, u8 reg, u8 *data, u32 len)
241 struct dvb_frontend *fe = state->frontend;
244 struct i2c_msg msg = {
245 .addr = state->config->tuner_address,
254 memcpy(msg.buf + 1, data, len);
256 if (fe->ops.i2c_gate_ctrl)
257 fe->ops.i2c_gate_ctrl(fe, 1);
258 ret = i2c_transfer(state->i2c, &msg, 1);
259 if (fe->ops.i2c_gate_ctrl)
260 fe->ops.i2c_gate_ctrl(fe, 0);
263 printk(KERN_ERR "%s error ret=%d\n", __func__, ret);
269 * mt2063_write - Write register data into the I2C bus, caching the value
271 static int mt2063_setreg(struct mt2063_state *state, u8 reg, u8 val)
277 if (reg >= MT2063_REG_END_REGS)
280 status = mt2063_write(state, reg, &val, 1);
284 state->reg[reg] = val;
290 * mt2063_read - Read data from the I2C bus
292 static int mt2063_read(struct mt2063_state *state,
293 u8 subAddress, u8 *pData, u32 cnt)
295 int status = 0; /* Status to be returned */
296 struct dvb_frontend *fe = state->frontend;
299 dprintk(2, "addr 0x%02x, cnt %d\n", subAddress, cnt);
301 if (fe->ops.i2c_gate_ctrl)
302 fe->ops.i2c_gate_ctrl(fe, 1);
304 for (i = 0; i < cnt; i++) {
305 u8 b0[] = { subAddress + i };
306 struct i2c_msg msg[] = {
308 .addr = state->config->tuner_address,
313 .addr = state->config->tuner_address,
320 status = i2c_transfer(state->i2c, msg, 2);
321 dprintk(2, "addr 0x%02x, ret = %d, val = 0x%02x\n",
322 subAddress + i, status, *(pData + i));
326 if (fe->ops.i2c_gate_ctrl)
327 fe->ops.i2c_gate_ctrl(fe, 0);
330 printk(KERN_ERR "Can't read from address 0x%02x,\n",
337 * FIXME: Is this really needed?
339 static int MT2063_Sleep(struct dvb_frontend *fe)
342 * ToDo: Add code here to implement a OS blocking
350 * Microtune spur avoidance
353 /* Implement ceiling, floor functions. */
354 #define ceil(n, d) (((n) < 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0))
355 #define floor(n, d) (((n) < 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d))
357 struct MT2063_FIFZone_t {
362 static struct MT2063_ExclZone_t *InsertNode(struct MT2063_AvoidSpursData_t
364 struct MT2063_ExclZone_t *pPrevNode)
366 struct MT2063_ExclZone_t *pNode;
370 /* Check for a node in the free list */
371 if (pAS_Info->freeZones != NULL) {
372 /* Use one from the free list */
373 pNode = pAS_Info->freeZones;
374 pAS_Info->freeZones = pNode->next_;
376 /* Grab a node from the array */
377 pNode = &pAS_Info->MT2063_ExclZones[pAS_Info->nZones];
380 if (pPrevNode != NULL) {
381 pNode->next_ = pPrevNode->next_;
382 pPrevNode->next_ = pNode;
383 } else { /* insert at the beginning of the list */
385 pNode->next_ = pAS_Info->usedZones;
386 pAS_Info->usedZones = pNode;
393 static struct MT2063_ExclZone_t *RemoveNode(struct MT2063_AvoidSpursData_t
395 struct MT2063_ExclZone_t *pPrevNode,
396 struct MT2063_ExclZone_t
399 struct MT2063_ExclZone_t *pNext = pNodeToRemove->next_;
403 /* Make previous node point to the subsequent node */
404 if (pPrevNode != NULL)
405 pPrevNode->next_ = pNext;
407 /* Add pNodeToRemove to the beginning of the freeZones */
408 pNodeToRemove->next_ = pAS_Info->freeZones;
409 pAS_Info->freeZones = pNodeToRemove;
411 /* Decrement node count */
420 * Add (and merge) an exclusion zone into the list.
421 * If the range (f_min, f_max) is totally outside the
422 * 1st IF BW, ignore the entry.
423 * If the range (f_min, f_max) is negative, ignore the entry.
425 static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info,
426 u32 f_min, u32 f_max)
428 struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
429 struct MT2063_ExclZone_t *pPrev = NULL;
430 struct MT2063_ExclZone_t *pNext = NULL;
434 /* Check to see if this overlaps the 1st IF filter */
435 if ((f_max > (pAS_Info->f_if1_Center - (pAS_Info->f_if1_bw / 2)))
436 && (f_min < (pAS_Info->f_if1_Center + (pAS_Info->f_if1_bw / 2)))
437 && (f_min < f_max)) {
441 * New entry: |---| |--| |--| |-| |---| |--|
443 * Existing: |--| |--| |--| |---| |-| |--|
446 /* Check for our place in the list */
447 while ((pNode != NULL) && (pNode->max_ < f_min)) {
449 pNode = pNode->next_;
452 if ((pNode != NULL) && (pNode->min_ < f_max)) {
453 /* Combine me with pNode */
454 if (f_min < pNode->min_)
456 if (f_max > pNode->max_)
459 pNode = InsertNode(pAS_Info, pPrev);
464 /* Look for merging possibilities */
465 pNext = pNode->next_;
466 while ((pNext != NULL) && (pNext->min_ < pNode->max_)) {
467 if (pNext->max_ > pNode->max_)
468 pNode->max_ = pNext->max_;
469 /* Remove pNext, return ptr to pNext->next */
470 pNext = RemoveNode(pAS_Info, pNode, pNext);
476 * Reset all exclusion zones.
477 * Add zones to protect the PLL FracN regions near zero
479 static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t *pAS_Info)
485 pAS_Info->nZones = 0; /* this clears the used list */
486 pAS_Info->usedZones = NULL; /* reset ptr */
487 pAS_Info->freeZones = NULL; /* reset ptr */
491 ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 +
492 pAS_Info->f_in) / pAS_Info->f_ref) - pAS_Info->f_in;
494 pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
495 pAS_Info->f_LO1_FracN_Avoid) {
496 /* Exclude LO1 FracN */
497 MT2063_AddExclZone(pAS_Info,
498 center - pAS_Info->f_LO1_FracN_Avoid,
500 MT2063_AddExclZone(pAS_Info, center + 1,
501 center + pAS_Info->f_LO1_FracN_Avoid);
502 center += pAS_Info->f_ref;
507 ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 -
508 pAS_Info->f_out) / pAS_Info->f_ref) + pAS_Info->f_out;
510 pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
511 pAS_Info->f_LO2_FracN_Avoid) {
512 /* Exclude LO2 FracN */
513 MT2063_AddExclZone(pAS_Info,
514 center - pAS_Info->f_LO2_FracN_Avoid,
516 MT2063_AddExclZone(pAS_Info, center + 1,
517 center + pAS_Info->f_LO2_FracN_Avoid);
518 center += pAS_Info->f_ref;
521 if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
522 /* Exclude LO1 values that conflict with DECT channels */
523 MT2063_AddExclZone(pAS_Info, 1920836000 - pAS_Info->f_in, 1922236000 - pAS_Info->f_in); /* Ctr = 1921.536 */
524 MT2063_AddExclZone(pAS_Info, 1922564000 - pAS_Info->f_in, 1923964000 - pAS_Info->f_in); /* Ctr = 1923.264 */
525 MT2063_AddExclZone(pAS_Info, 1924292000 - pAS_Info->f_in, 1925692000 - pAS_Info->f_in); /* Ctr = 1924.992 */
526 MT2063_AddExclZone(pAS_Info, 1926020000 - pAS_Info->f_in, 1927420000 - pAS_Info->f_in); /* Ctr = 1926.720 */
527 MT2063_AddExclZone(pAS_Info, 1927748000 - pAS_Info->f_in, 1929148000 - pAS_Info->f_in); /* Ctr = 1928.448 */
530 if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
531 MT2063_AddExclZone(pAS_Info, 1896644000 - pAS_Info->f_in, 1898044000 - pAS_Info->f_in); /* Ctr = 1897.344 */
532 MT2063_AddExclZone(pAS_Info, 1894916000 - pAS_Info->f_in, 1896316000 - pAS_Info->f_in); /* Ctr = 1895.616 */
533 MT2063_AddExclZone(pAS_Info, 1893188000 - pAS_Info->f_in, 1894588000 - pAS_Info->f_in); /* Ctr = 1893.888 */
534 MT2063_AddExclZone(pAS_Info, 1891460000 - pAS_Info->f_in, 1892860000 - pAS_Info->f_in); /* Ctr = 1892.16 */
535 MT2063_AddExclZone(pAS_Info, 1889732000 - pAS_Info->f_in, 1891132000 - pAS_Info->f_in); /* Ctr = 1890.432 */
536 MT2063_AddExclZone(pAS_Info, 1888004000 - pAS_Info->f_in, 1889404000 - pAS_Info->f_in); /* Ctr = 1888.704 */
537 MT2063_AddExclZone(pAS_Info, 1886276000 - pAS_Info->f_in, 1887676000 - pAS_Info->f_in); /* Ctr = 1886.976 */
538 MT2063_AddExclZone(pAS_Info, 1884548000 - pAS_Info->f_in, 1885948000 - pAS_Info->f_in); /* Ctr = 1885.248 */
539 MT2063_AddExclZone(pAS_Info, 1882820000 - pAS_Info->f_in, 1884220000 - pAS_Info->f_in); /* Ctr = 1883.52 */
540 MT2063_AddExclZone(pAS_Info, 1881092000 - pAS_Info->f_in, 1882492000 - pAS_Info->f_in); /* Ctr = 1881.792 */
545 * MT_ChooseFirstIF - Choose the best available 1st IF
546 * If f_Desired is not excluded, choose that first.
547 * Otherwise, return the value closest to f_Center that is
550 static u32 MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t *pAS_Info)
553 * Update "f_Desired" to be the nearest "combinational-multiple" of
555 * The resulting number, F_LO1 must be a multiple of f_LO1_Step.
556 * And F_LO1 is the arithmetic sum of f_in + f_Center.
557 * Neither f_in, nor f_Center must be a multiple of f_LO1_Step.
558 * However, the sum must be.
560 const u32 f_Desired =
561 pAS_Info->f_LO1_Step *
562 ((pAS_Info->f_if1_Request + pAS_Info->f_in +
563 pAS_Info->f_LO1_Step / 2) / pAS_Info->f_LO1_Step) -
566 (pAS_Info->f_LO1_Step >
567 pAS_Info->f_LO2_Step) ? pAS_Info->f_LO1_Step : pAS_Info->
572 u32 bDesiredExcluded = 0;
573 u32 bZeroExcluded = 0;
576 struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
577 struct MT2063_FIFZone_t zones[MT2063_MAX_ZONES];
581 if (pAS_Info->nZones == 0)
585 * f_Center needs to be an integer multiple of f_Step away
588 if (pAS_Info->f_if1_Center > f_Desired)
592 ((pAS_Info->f_if1_Center - f_Desired +
593 f_Step / 2) / f_Step);
598 ((f_Desired - pAS_Info->f_if1_Center +
599 f_Step / 2) / f_Step);
602 * Take MT_ExclZones, center around f_Center and change the
603 * resolution to f_Step
605 while (pNode != NULL) {
608 floor((s32) (pNode->min_ - f_Center), (s32) f_Step);
612 ceil((s32) (pNode->max_ - f_Center), (s32) f_Step);
614 if ((pNode->min_ < f_Desired) && (pNode->max_ > f_Desired))
615 bDesiredExcluded = 1;
617 if ((tmpMin < 0) && (tmpMax > 0))
620 /* See if this zone overlaps the previous */
621 if ((j > 0) && (tmpMin < zones[j - 1].max_))
622 zones[j - 1].max_ = tmpMax;
625 zones[j].min_ = tmpMin;
626 zones[j].max_ = tmpMax;
629 pNode = pNode->next_;
633 * If the desired is okay, return with it
635 if (bDesiredExcluded == 0)
639 * If the desired is excluded and the center is okay, return with it
641 if (bZeroExcluded == 0)
644 /* Find the value closest to 0 (f_Center) */
645 bestDiff = zones[0].min_;
646 for (i = 0; i < j; i++) {
647 if (abs(zones[i].min_) < abs(bestDiff))
648 bestDiff = zones[i].min_;
649 if (abs(zones[i].max_) < abs(bestDiff))
650 bestDiff = zones[i].max_;
654 return f_Center - ((u32) (-bestDiff) * f_Step);
656 return f_Center + (bestDiff * f_Step);
660 * IsSpurInBand() - Checks to see if a spur will be present within the IF's
661 * bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW)
664 * <--+-+-+-------------------+-------------------+-+-+-->
666 * ^ b=-fIFOut+fIFBW/2 -b=+fIFOut-fIFBW/2 ^
667 * a=-fIFOut-fIFBW/2 -a=+fIFOut+fIFBW/2
669 * Note that some equations are doubled to prevent round-off
670 * problems when calculating fIFBW/2
672 * @pAS_Info: Avoid Spurs information block
673 * @fm: If spur, amount f_IF1 has to move negative
674 * @fp: If spur, amount f_IF1 has to move positive
676 * Returns 1 if an LO spur would be present, otherwise 0.
678 static u32 IsSpurInBand(struct MT2063_AvoidSpursData_t *pAS_Info,
682 ** Calculate LO frequency settings.
685 const u32 f_LO1 = pAS_Info->f_LO1;
686 const u32 f_LO2 = pAS_Info->f_LO2;
687 const u32 d = pAS_Info->f_out + pAS_Info->f_out_bw / 2;
688 const u32 c = d - pAS_Info->f_out_bw;
689 const u32 f = pAS_Info->f_zif_bw / 2;
690 const u32 f_Scale = (f_LO1 / (UINT_MAX / 2 / pAS_Info->maxH1)) + 1;
691 s32 f_nsLO1, f_nsLO2;
693 u32 ma, mb, mc, md, me, mf;
694 u32 lo_gcd, gd_Scale, gc_Scale, gf_Scale, hgds, hgfs, hgcs;
701 ** For each edge (d, c & f), calculate a scale, based on the gcd
702 ** of f_LO1, f_LO2 and the edge value. Use the larger of this
703 ** gcd-based scale factor or f_Scale.
705 lo_gcd = gcd(f_LO1, f_LO2);
706 gd_Scale = max((u32) gcd(lo_gcd, d), f_Scale);
708 gc_Scale = max((u32) gcd(lo_gcd, c), f_Scale);
710 gf_Scale = max((u32) gcd(lo_gcd, f), f_Scale);
713 n0 = DIV_ROUND_UP(f_LO2 - d, f_LO1 - f_LO2);
715 /* Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic */
716 for (n = n0; n <= pAS_Info->maxH1; ++n) {
717 md = (n * ((f_LO1 + hgds) / gd_Scale) -
718 ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
720 /* If # fLO2 harmonics > m_maxLOSpurHarmonic, then no spurs present */
721 if (md >= pAS_Info->maxH1)
724 ma = (n * ((f_LO1 + hgds) / gd_Scale) +
725 ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
727 /* If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic */
731 mc = (n * ((f_LO1 + hgcs) / gc_Scale) -
732 ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
734 f_nsLO1 = (s32) (n * (f_LO1 / gc_Scale));
735 f_nsLO2 = (s32) (mc * (f_LO2 / gc_Scale));
737 (gc_Scale * (f_nsLO1 - f_nsLO2)) +
738 n * (f_LO1 % gc_Scale) - mc * (f_LO2 % gc_Scale);
740 *fp = ((f_Spur - (s32) c) / (mc - n)) + 1;
741 *fm = (((s32) d - f_Spur) / (mc - n)) + 1;
745 /* Location of Zero-IF-spur to be checked */
746 me = (n * ((f_LO1 + hgfs) / gf_Scale) +
747 ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
748 mf = (n * ((f_LO1 + hgfs) / gf_Scale) -
749 ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
751 f_nsLO1 = n * (f_LO1 / gf_Scale);
752 f_nsLO2 = me * (f_LO2 / gf_Scale);
754 (gf_Scale * (f_nsLO1 - f_nsLO2)) +
755 n * (f_LO1 % gf_Scale) - me * (f_LO2 % gf_Scale);
757 *fp = ((f_Spur + (s32) f) / (me - n)) + 1;
758 *fm = (((s32) f - f_Spur) / (me - n)) + 1;
762 mb = (n * ((f_LO1 + hgcs) / gc_Scale) +
763 ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
765 f_nsLO1 = n * (f_LO1 / gc_Scale);
766 f_nsLO2 = ma * (f_LO2 / gc_Scale);
768 (gc_Scale * (f_nsLO1 - f_nsLO2)) +
769 n * (f_LO1 % gc_Scale) - ma * (f_LO2 % gc_Scale);
771 *fp = (((s32) d + f_Spur) / (ma - n)) + 1;
772 *fm = (-(f_Spur + (s32) c) / (ma - n)) + 1;
782 * MT_AvoidSpurs() - Main entry point to avoid spurs.
783 * Checks for existing spurs in present LO1, LO2 freqs
784 * and if present, chooses spur-free LO1, LO2 combination
785 * that tunes the same input/output frequencies.
787 static u32 MT2063_AvoidSpurs(struct MT2063_AvoidSpursData_t *pAS_Info)
790 u32 fm, fp; /* restricted range on LO's */
791 pAS_Info->bSpurAvoided = 0;
792 pAS_Info->nSpursFound = 0;
796 if (pAS_Info->maxH1 == 0)
800 * Avoid LO Generated Spurs
802 * Make sure that have no LO-related spurs within the IF output
805 * If there is an LO spur in this band, start at the current IF1 frequency
806 * and work out until we find a spur-free frequency or run up against the
807 * 1st IF SAW band edge. Use temporary copies of fLO1 and fLO2 so that they
808 * will be unchanged if a spur-free setting is not found.
810 pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
811 if (pAS_Info->bSpurPresent) {
812 u32 zfIF1 = pAS_Info->f_LO1 - pAS_Info->f_in; /* current attempt at a 1st IF */
813 u32 zfLO1 = pAS_Info->f_LO1; /* current attempt at an LO1 freq */
814 u32 zfLO2 = pAS_Info->f_LO2; /* current attempt at an LO2 freq */
819 ** Spur was found, attempt to find a spur-free 1st IF
822 pAS_Info->nSpursFound++;
824 /* Raise f_IF1_upper, if needed */
825 MT2063_AddExclZone(pAS_Info, zfIF1 - fm, zfIF1 + fp);
827 /* Choose next IF1 that is closest to f_IF1_CENTER */
828 new_IF1 = MT2063_ChooseFirstIF(pAS_Info);
830 if (new_IF1 > zfIF1) {
831 pAS_Info->f_LO1 += (new_IF1 - zfIF1);
832 pAS_Info->f_LO2 += (new_IF1 - zfIF1);
834 pAS_Info->f_LO1 -= (zfIF1 - new_IF1);
835 pAS_Info->f_LO2 -= (zfIF1 - new_IF1);
839 if (zfIF1 > pAS_Info->f_if1_Center)
840 delta_IF1 = zfIF1 - pAS_Info->f_if1_Center;
842 delta_IF1 = pAS_Info->f_if1_Center - zfIF1;
844 pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
846 * Continue while the new 1st IF is still within the 1st IF bandwidth
847 * and there is a spur in the band (again)
849 } while ((2 * delta_IF1 + pAS_Info->f_out_bw <= pAS_Info->f_if1_bw) && pAS_Info->bSpurPresent);
852 * Use the LO-spur free values found. If the search went all
853 * the way to the 1st IF band edge and always found spurs, just
854 * leave the original choice. It's as "good" as any other.
856 if (pAS_Info->bSpurPresent == 1) {
857 status |= MT2063_SPUR_PRESENT_ERR;
858 pAS_Info->f_LO1 = zfLO1;
859 pAS_Info->f_LO2 = zfLO2;
861 pAS_Info->bSpurAvoided = 1;
866 nSpursFound << MT2063_SPUR_SHIFT) & MT2063_SPUR_CNT_MASK);
872 * Constants used by the tuning algorithm
874 #define MT2063_REF_FREQ (16000000UL) /* Reference oscillator Frequency (in Hz) */
875 #define MT2063_IF1_BW (22000000UL) /* The IF1 filter bandwidth (in Hz) */
876 #define MT2063_TUNE_STEP_SIZE (50000UL) /* Tune in steps of 50 kHz */
877 #define MT2063_SPUR_STEP_HZ (250000UL) /* Step size (in Hz) to move IF1 when avoiding spurs */
878 #define MT2063_ZIF_BW (2000000UL) /* Zero-IF spur-free bandwidth (in Hz) */
879 #define MT2063_MAX_HARMONICS_1 (15UL) /* Highest intra-tuner LO Spur Harmonic to be avoided */
880 #define MT2063_MAX_HARMONICS_2 (5UL) /* Highest inter-tuner LO Spur Harmonic to be avoided */
881 #define MT2063_MIN_LO_SEP (1000000UL) /* Minimum inter-tuner LO frequency separation */
882 #define MT2063_LO1_FRACN_AVOID (0UL) /* LO1 FracN numerator avoid region (in Hz) */
883 #define MT2063_LO2_FRACN_AVOID (199999UL) /* LO2 FracN numerator avoid region (in Hz) */
884 #define MT2063_MIN_FIN_FREQ (44000000UL) /* Minimum input frequency (in Hz) */
885 #define MT2063_MAX_FIN_FREQ (1100000000UL) /* Maximum input frequency (in Hz) */
886 #define MT2063_MIN_FOUT_FREQ (36000000UL) /* Minimum output frequency (in Hz) */
887 #define MT2063_MAX_FOUT_FREQ (57000000UL) /* Maximum output frequency (in Hz) */
888 #define MT2063_MIN_DNC_FREQ (1293000000UL) /* Minimum LO2 frequency (in Hz) */
889 #define MT2063_MAX_DNC_FREQ (1614000000UL) /* Maximum LO2 frequency (in Hz) */
890 #define MT2063_MIN_UPC_FREQ (1396000000UL) /* Minimum LO1 frequency (in Hz) */
891 #define MT2063_MAX_UPC_FREQ (2750000000UL) /* Maximum LO1 frequency (in Hz) */
894 * Define the supported Part/Rev codes for the MT2063
896 #define MT2063_B0 (0x9B)
897 #define MT2063_B1 (0x9C)
898 #define MT2063_B2 (0x9D)
899 #define MT2063_B3 (0x9E)
902 * mt2063_lockStatus - Checks to see if LO1 and LO2 are locked
904 * @state: struct mt2063_state pointer
906 * This function returns 0, if no lock, 1 if locked and a value < 1 if error
908 static int mt2063_lockStatus(struct mt2063_state *state)
910 const u32 nMaxWait = 100; /* wait a maximum of 100 msec */
911 const u32 nPollRate = 2; /* poll status bits every 2 ms */
912 const u32 nMaxLoops = nMaxWait / nPollRate;
913 const u8 LO1LK = 0x80;
920 /* LO2 Lock bit was in a different place for B0 version */
921 if (state->tuner_id == MT2063_B0)
925 status = mt2063_read(state, MT2063_REG_LO_STATUS,
926 &state->reg[MT2063_REG_LO_STATUS], 1);
931 if ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) ==
933 return TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO;
935 msleep(nPollRate); /* Wait between retries */
936 } while (++nDelays < nMaxLoops);
939 * Got no lock or partial lock
945 * Constants for setting receiver modes.
946 * (6 modes defined at this time, enumerated by mt2063_delivery_sys)
947 * (DNC1GC & DNC2GC are the values, which are used, when the specific
948 * DNC Output is selected, the other is always off)
950 * enum mt2063_delivery_sys
951 * -------------+----------------------------------------------
952 * Mode 0 : | MT2063_CABLE_QAM
953 * Mode 1 : | MT2063_CABLE_ANALOG
954 * Mode 2 : | MT2063_OFFAIR_COFDM
955 * Mode 3 : | MT2063_OFFAIR_COFDM_SAWLESS
956 * Mode 4 : | MT2063_OFFAIR_ANALOG
957 * Mode 5 : | MT2063_OFFAIR_8VSB
958 * --------------+----------------------------------------------
960 * |<---------- Mode -------------->|
961 * Reg Field | 0 | 1 | 2 | 3 | 4 | 5 |
962 * ------------+-----+-----+-----+-----+-----+-----+
963 * RFAGCen | OFF | OFF | OFF | OFF | OFF | OFF
964 * LNARin | 0 | 0 | 3 | 3 | 3 | 3
965 * FIFFQen | 1 | 1 | 1 | 1 | 1 | 1
966 * FIFFq | 0 | 0 | 0 | 0 | 0 | 0
967 * DNC1gc | 0 | 0 | 0 | 0 | 0 | 0
968 * DNC2gc | 0 | 0 | 0 | 0 | 0 | 0
969 * GCU Auto | 1 | 1 | 1 | 1 | 1 | 1
970 * LNA max Atn | 31 | 31 | 31 | 31 | 31 | 31
971 * LNA Target | 44 | 43 | 43 | 43 | 43 | 43
972 * ign RF Ovl | 0 | 0 | 0 | 0 | 0 | 0
973 * RF max Atn | 31 | 31 | 31 | 31 | 31 | 31
974 * PD1 Target | 36 | 36 | 38 | 38 | 36 | 38
975 * ign FIF Ovl | 0 | 0 | 0 | 0 | 0 | 0
976 * FIF max Atn | 5 | 5 | 5 | 5 | 5 | 5
977 * PD2 Target | 40 | 33 | 42 | 42 | 33 | 42
980 enum mt2063_delivery_sys {
981 MT2063_CABLE_QAM = 0,
984 MT2063_OFFAIR_COFDM_SAWLESS,
985 MT2063_OFFAIR_ANALOG,
987 MT2063_NUM_RCVR_MODES
990 static const char *mt2063_mode_name[] = {
991 [MT2063_CABLE_QAM] = "digital cable",
992 [MT2063_CABLE_ANALOG] = "analog cable",
993 [MT2063_OFFAIR_COFDM] = "digital offair",
994 [MT2063_OFFAIR_COFDM_SAWLESS] = "digital offair without SAW",
995 [MT2063_OFFAIR_ANALOG] = "analog offair",
996 [MT2063_OFFAIR_8VSB] = "analog offair 8vsb",
999 static const u8 RFAGCEN[] = { 0, 0, 0, 0, 0, 0 };
1000 static const u8 LNARIN[] = { 0, 0, 3, 3, 3, 3 };
1001 static const u8 FIFFQEN[] = { 1, 1, 1, 1, 1, 1 };
1002 static const u8 FIFFQ[] = { 0, 0, 0, 0, 0, 0 };
1003 static const u8 DNC1GC[] = { 0, 0, 0, 0, 0, 0 };
1004 static const u8 DNC2GC[] = { 0, 0, 0, 0, 0, 0 };
1005 static const u8 ACLNAMAX[] = { 31, 31, 31, 31, 31, 31 };
1006 static const u8 LNATGT[] = { 44, 43, 43, 43, 43, 43 };
1007 static const u8 RFOVDIS[] = { 0, 0, 0, 0, 0, 0 };
1008 static const u8 ACRFMAX[] = { 31, 31, 31, 31, 31, 31 };
1009 static const u8 PD1TGT[] = { 36, 36, 38, 38, 36, 38 };
1010 static const u8 FIFOVDIS[] = { 0, 0, 0, 0, 0, 0 };
1011 static const u8 ACFIFMAX[] = { 29, 29, 29, 29, 29, 29 };
1012 static const u8 PD2TGT[] = { 40, 33, 38, 42, 30, 38 };
1015 * mt2063_set_dnc_output_enable()
1017 static u32 mt2063_get_dnc_output_enable(struct mt2063_state *state,
1018 enum MT2063_DNC_Output_Enable *pValue)
1022 if ((state->reg[MT2063_REG_DNC_GAIN] & 0x03) == 0x03) { /* if DNC1 is off */
1023 if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */
1024 *pValue = MT2063_DNC_NONE;
1026 *pValue = MT2063_DNC_2;
1027 } else { /* DNC1 is on */
1028 if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */
1029 *pValue = MT2063_DNC_1;
1031 *pValue = MT2063_DNC_BOTH;
1037 * mt2063_set_dnc_output_enable()
1039 static u32 mt2063_set_dnc_output_enable(struct mt2063_state *state,
1040 enum MT2063_DNC_Output_Enable nValue)
1042 int status = 0; /* Status to be returned */
1047 /* selects, which DNC output is used */
1049 case MT2063_DNC_NONE:
1050 val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */
1051 if (state->reg[MT2063_REG_DNC_GAIN] !=
1054 mt2063_setreg(state,
1055 MT2063_REG_DNC_GAIN,
1058 val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */
1059 if (state->reg[MT2063_REG_VGA_GAIN] !=
1062 mt2063_setreg(state,
1063 MT2063_REG_VGA_GAIN,
1066 val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */
1067 if (state->reg[MT2063_REG_RSVD_20] !=
1070 mt2063_setreg(state,
1076 val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */
1077 if (state->reg[MT2063_REG_DNC_GAIN] !=
1080 mt2063_setreg(state,
1081 MT2063_REG_DNC_GAIN,
1084 val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */
1085 if (state->reg[MT2063_REG_VGA_GAIN] !=
1088 mt2063_setreg(state,
1089 MT2063_REG_VGA_GAIN,
1092 val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */
1093 if (state->reg[MT2063_REG_RSVD_20] !=
1096 mt2063_setreg(state,
1102 val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */
1103 if (state->reg[MT2063_REG_DNC_GAIN] !=
1106 mt2063_setreg(state,
1107 MT2063_REG_DNC_GAIN,
1110 val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */
1111 if (state->reg[MT2063_REG_VGA_GAIN] !=
1114 mt2063_setreg(state,
1115 MT2063_REG_VGA_GAIN,
1118 val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */
1119 if (state->reg[MT2063_REG_RSVD_20] !=
1122 mt2063_setreg(state,
1127 case MT2063_DNC_BOTH:
1128 val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */
1129 if (state->reg[MT2063_REG_DNC_GAIN] !=
1132 mt2063_setreg(state,
1133 MT2063_REG_DNC_GAIN,
1136 val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */
1137 if (state->reg[MT2063_REG_VGA_GAIN] !=
1140 mt2063_setreg(state,
1141 MT2063_REG_VGA_GAIN,
1144 val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */
1145 if (state->reg[MT2063_REG_RSVD_20] !=
1148 mt2063_setreg(state,
1161 * MT2063_SetReceiverMode() - Set the MT2063 receiver mode, according with
1162 * the selected enum mt2063_delivery_sys type.
1164 * (DNC1GC & DNC2GC are the values, which are used, when the specific
1165 * DNC Output is selected, the other is always off)
1167 * @state: ptr to mt2063_state structure
1168 * @Mode: desired receiver delivery system
1170 * Note: Register cache must be valid for it to work
1173 static u32 MT2063_SetReceiverMode(struct mt2063_state *state,
1174 enum mt2063_delivery_sys Mode)
1176 int status = 0; /* Status to be returned */
1182 if (Mode >= MT2063_NUM_RCVR_MODES)
1189 reg[MT2063_REG_PD1_TGT] & ~0x40) | (RFAGCEN[Mode]
1192 if (state->reg[MT2063_REG_PD1_TGT] != val)
1193 status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
1198 u8 val = (state->reg[MT2063_REG_CTRL_2C] & ~0x03) |
1199 (LNARIN[Mode] & 0x03);
1200 if (state->reg[MT2063_REG_CTRL_2C] != val)
1201 status |= mt2063_setreg(state, MT2063_REG_CTRL_2C, val);
1204 /* FIFFQEN and FIFFQ */
1208 reg[MT2063_REG_FIFF_CTRL2] & ~0xF0) |
1209 (FIFFQEN[Mode] << 7) | (FIFFQ[Mode] << 4);
1210 if (state->reg[MT2063_REG_FIFF_CTRL2] != val) {
1212 mt2063_setreg(state, MT2063_REG_FIFF_CTRL2, val);
1213 /* trigger FIFF calibration, needed after changing FIFFQ */
1215 (state->reg[MT2063_REG_FIFF_CTRL] | 0x01);
1217 mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
1220 reg[MT2063_REG_FIFF_CTRL] & ~0x01);
1222 mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
1226 /* DNC1GC & DNC2GC */
1227 status |= mt2063_get_dnc_output_enable(state, &longval);
1228 status |= mt2063_set_dnc_output_enable(state, longval);
1232 u8 val = (state->reg[MT2063_REG_LNA_OV] & ~0x1F) |
1233 (ACLNAMAX[Mode] & 0x1F);
1234 if (state->reg[MT2063_REG_LNA_OV] != val)
1235 status |= mt2063_setreg(state, MT2063_REG_LNA_OV, val);
1240 u8 val = (state->reg[MT2063_REG_LNA_TGT] & ~0x3F) |
1241 (LNATGT[Mode] & 0x3F);
1242 if (state->reg[MT2063_REG_LNA_TGT] != val)
1243 status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
1248 u8 val = (state->reg[MT2063_REG_RF_OV] & ~0x1F) |
1249 (ACRFMAX[Mode] & 0x1F);
1250 if (state->reg[MT2063_REG_RF_OV] != val)
1251 status |= mt2063_setreg(state, MT2063_REG_RF_OV, val);
1256 u8 val = (state->reg[MT2063_REG_PD1_TGT] & ~0x3F) |
1257 (PD1TGT[Mode] & 0x3F);
1258 if (state->reg[MT2063_REG_PD1_TGT] != val)
1259 status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
1264 u8 val = ACFIFMAX[Mode];
1265 if (state->reg[MT2063_REG_PART_REV] != MT2063_B3 && val > 5)
1267 val = (state->reg[MT2063_REG_FIF_OV] & ~0x1F) |
1269 if (state->reg[MT2063_REG_FIF_OV] != val)
1270 status |= mt2063_setreg(state, MT2063_REG_FIF_OV, val);
1275 u8 val = (state->reg[MT2063_REG_PD2_TGT] & ~0x3F) |
1276 (PD2TGT[Mode] & 0x3F);
1277 if (state->reg[MT2063_REG_PD2_TGT] != val)
1278 status |= mt2063_setreg(state, MT2063_REG_PD2_TGT, val);
1281 /* Ignore ATN Overload */
1283 val = (state->reg[MT2063_REG_LNA_TGT] & ~0x80) |
1284 (RFOVDIS[Mode] ? 0x80 : 0x00);
1285 if (state->reg[MT2063_REG_LNA_TGT] != val)
1286 status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
1289 /* Ignore FIF Overload */
1291 val = (state->reg[MT2063_REG_PD1_TGT] & ~0x80) |
1292 (FIFOVDIS[Mode] ? 0x80 : 0x00);
1293 if (state->reg[MT2063_REG_PD1_TGT] != val)
1294 status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
1298 state->rcvr_mode = Mode;
1299 dprintk(1, "mt2063 mode changed to %s\n",
1300 mt2063_mode_name[state->rcvr_mode]);
1307 * MT2063_ClearPowerMaskBits () - Clears the power-down mask bits for various
1308 * sections of the MT2063
1310 * @Bits: Mask bits to be cleared.
1312 * See definition of MT2063_Mask_Bits type for description
1313 * of each of the power bits.
1315 static u32 MT2063_ClearPowerMaskBits(struct mt2063_state *state,
1316 enum MT2063_Mask_Bits Bits)
1321 Bits = (enum MT2063_Mask_Bits)(Bits & MT2063_ALL_SD); /* Only valid bits for this tuner */
1322 if ((Bits & 0xFF00) != 0) {
1323 state->reg[MT2063_REG_PWR_2] &= ~(u8) (Bits >> 8);
1327 &state->reg[MT2063_REG_PWR_2], 1);
1329 if ((Bits & 0xFF) != 0) {
1330 state->reg[MT2063_REG_PWR_1] &= ~(u8) (Bits & 0xFF);
1334 &state->reg[MT2063_REG_PWR_1], 1);
1341 * MT2063_SoftwareShutdown() - Enables or disables software shutdown function.
1342 * When Shutdown is 1, any section whose power
1343 * mask is set will be shutdown.
1345 static u32 MT2063_SoftwareShutdown(struct mt2063_state *state, u8 Shutdown)
1351 state->reg[MT2063_REG_PWR_1] |= 0x04;
1353 state->reg[MT2063_REG_PWR_1] &= ~0x04;
1355 status = mt2063_write(state,
1357 &state->reg[MT2063_REG_PWR_1], 1);
1359 if (Shutdown != 1) {
1360 state->reg[MT2063_REG_BYP_CTRL] =
1361 (state->reg[MT2063_REG_BYP_CTRL] & 0x9F) | 0x40;
1364 MT2063_REG_BYP_CTRL,
1365 &state->reg[MT2063_REG_BYP_CTRL],
1367 state->reg[MT2063_REG_BYP_CTRL] =
1368 (state->reg[MT2063_REG_BYP_CTRL] & 0x9F);
1371 MT2063_REG_BYP_CTRL,
1372 &state->reg[MT2063_REG_BYP_CTRL],
1379 static u32 MT2063_Round_fLO(u32 f_LO, u32 f_LO_Step, u32 f_ref)
1381 return f_ref * (f_LO / f_ref)
1382 + f_LO_Step * (((f_LO % f_ref) + (f_LO_Step / 2)) / f_LO_Step);
1386 * MT2063_fLO_FractionalTerm - Calculates the portion contributed by FracN / denom.
1387 * This function preserves maximum precision without
1388 * risk of overflow. It accurately calculates
1389 * f_ref * num / denom to within 1 HZ with fixed math.
1391 * @f_ref: SRO frequency.
1392 * @num: Fractional portion of the multiplier
1393 * @denom: denominator portion of the ratio
1395 * This calculation handles f_ref as two separate 14-bit fields.
1396 * Therefore, a maximum value of 2^28-1 may safely be used for f_ref.
1397 * This is the genesis of the magic number "14" and the magic mask value of
1400 * This routine successfully handles denom values up to and including 2^18.
1401 * Returns: f_ref * num / denom
1403 static u32 MT2063_fLO_FractionalTerm(u32 f_ref, u32 num, u32 denom)
1405 u32 t1 = (f_ref >> 14) * num;
1406 u32 term1 = t1 / denom;
1407 u32 loss = t1 % denom;
1409 (((f_ref & 0x00003FFF) * num + (loss << 14)) + (denom / 2)) / denom;
1410 return (term1 << 14) + term2;
1414 * MT2063_CalcLO1Mult - Calculates Integer divider value and the numerator
1415 * value for a FracN PLL.
1417 * This function assumes that the f_LO and f_Ref are
1418 * evenly divisible by f_LO_Step.
1420 * @Div: OUTPUT: Whole number portion of the multiplier
1421 * @FracN: OUTPUT: Fractional portion of the multiplier
1422 * @f_LO: desired LO frequency.
1423 * @f_LO_Step: Minimum step size for the LO (in Hz).
1424 * @f_Ref: SRO frequency.
1425 * @f_Avoid: Range of PLL frequencies to avoid near integer multiples
1428 * Returns: Recalculated LO frequency.
1430 static u32 MT2063_CalcLO1Mult(u32 *Div,
1433 u32 f_LO_Step, u32 f_Ref)
1435 /* Calculate the whole number portion of the divider */
1436 *Div = f_LO / f_Ref;
1438 /* Calculate the numerator value (round to nearest f_LO_Step) */
1440 (64 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
1441 (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
1443 return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 64);
1447 * MT2063_CalcLO2Mult - Calculates Integer divider value and the numerator
1448 * value for a FracN PLL.
1450 * This function assumes that the f_LO and f_Ref are
1451 * evenly divisible by f_LO_Step.
1453 * @Div: OUTPUT: Whole number portion of the multiplier
1454 * @FracN: OUTPUT: Fractional portion of the multiplier
1455 * @f_LO: desired LO frequency.
1456 * @f_LO_Step: Minimum step size for the LO (in Hz).
1457 * @f_Ref: SRO frequency.
1459 * Returns: Recalculated LO frequency.
1461 static u32 MT2063_CalcLO2Mult(u32 *Div,
1464 u32 f_LO_Step, u32 f_Ref)
1466 /* Calculate the whole number portion of the divider */
1467 *Div = f_LO / f_Ref;
1469 /* Calculate the numerator value (round to nearest f_LO_Step) */
1471 (8191 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
1472 (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
1474 return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN,
1479 * FindClearTuneFilter() - Calculate the corrrect ClearTune filter to be
1480 * used for a given input frequency.
1482 * @state: ptr to tuner data structure
1483 * @f_in: RF input center frequency (in Hz).
1485 * Returns: ClearTune filter number (0-31)
1487 static u32 FindClearTuneFilter(struct mt2063_state *state, u32 f_in)
1490 u32 idx; /* index loop */
1493 ** Find RF Band setting
1495 RFBand = 31; /* def when f_in > all */
1496 for (idx = 0; idx < 31; ++idx) {
1497 if (state->CTFiltMax[idx] >= f_in) {
1506 * MT2063_Tune() - Change the tuner's tuned frequency to RFin.
1508 static u32 MT2063_Tune(struct mt2063_state *state, u32 f_in)
1509 { /* RF input center frequency */
1512 u32 LO1; /* 1st LO register value */
1513 u32 Num1; /* Numerator for LO1 reg. value */
1514 u32 f_IF1; /* 1st IF requested */
1515 u32 LO2; /* 2nd LO register value */
1516 u32 Num2; /* Numerator for LO2 reg. value */
1517 u32 ofLO1, ofLO2; /* last time's LO frequencies */
1518 u8 fiffc = 0x80; /* FIFF center freq from tuner */
1519 u32 fiffof; /* Offset from FIFF center freq */
1520 const u8 LO1LK = 0x80; /* Mask for LO1 Lock bit */
1521 u8 LO2LK = 0x08; /* Mask for LO2 Lock bit */
1526 /* Check the input and output frequency ranges */
1527 if ((f_in < MT2063_MIN_FIN_FREQ) || (f_in > MT2063_MAX_FIN_FREQ))
1530 if ((state->AS_Data.f_out < MT2063_MIN_FOUT_FREQ)
1531 || (state->AS_Data.f_out > MT2063_MAX_FOUT_FREQ))
1535 * Save original LO1 and LO2 register values
1537 ofLO1 = state->AS_Data.f_LO1;
1538 ofLO2 = state->AS_Data.f_LO2;
1541 * Find and set RF Band setting
1543 if (state->ctfilt_sw == 1) {
1544 val = (state->reg[MT2063_REG_CTUNE_CTRL] | 0x08);
1545 if (state->reg[MT2063_REG_CTUNE_CTRL] != val) {
1547 mt2063_setreg(state, MT2063_REG_CTUNE_CTRL, val);
1549 val = state->reg[MT2063_REG_CTUNE_OV];
1550 RFBand = FindClearTuneFilter(state, f_in);
1551 state->reg[MT2063_REG_CTUNE_OV] =
1552 (u8) ((state->reg[MT2063_REG_CTUNE_OV] & ~0x1F)
1554 if (state->reg[MT2063_REG_CTUNE_OV] != val) {
1556 mt2063_setreg(state, MT2063_REG_CTUNE_OV, val);
1561 * Read the FIFF Center Frequency from the tuner
1567 &state->reg[MT2063_REG_FIFFC], 1);
1568 fiffc = state->reg[MT2063_REG_FIFFC];
1571 * Assign in the requested values
1573 state->AS_Data.f_in = f_in;
1574 /* Request a 1st IF such that LO1 is on a step size */
1575 state->AS_Data.f_if1_Request =
1576 MT2063_Round_fLO(state->AS_Data.f_if1_Request + f_in,
1577 state->AS_Data.f_LO1_Step,
1578 state->AS_Data.f_ref) - f_in;
1581 * Calculate frequency settings. f_IF1_FREQ + f_in is the
1582 * desired LO1 frequency
1584 MT2063_ResetExclZones(&state->AS_Data);
1586 f_IF1 = MT2063_ChooseFirstIF(&state->AS_Data);
1588 state->AS_Data.f_LO1 =
1589 MT2063_Round_fLO(f_IF1 + f_in, state->AS_Data.f_LO1_Step,
1590 state->AS_Data.f_ref);
1592 state->AS_Data.f_LO2 =
1593 MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
1594 state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
1597 * Check for any LO spurs in the output bandwidth and adjust
1598 * the LO settings to avoid them if needed
1600 status |= MT2063_AvoidSpurs(&state->AS_Data);
1602 * MT_AvoidSpurs spurs may have changed the LO1 & LO2 values.
1603 * Recalculate the LO frequencies and the values to be placed
1604 * in the tuning registers.
1606 state->AS_Data.f_LO1 =
1607 MT2063_CalcLO1Mult(&LO1, &Num1, state->AS_Data.f_LO1,
1608 state->AS_Data.f_LO1_Step, state->AS_Data.f_ref);
1609 state->AS_Data.f_LO2 =
1610 MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
1611 state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
1612 state->AS_Data.f_LO2 =
1613 MT2063_CalcLO2Mult(&LO2, &Num2, state->AS_Data.f_LO2,
1614 state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
1617 * Check the upconverter and downconverter frequency ranges
1619 if ((state->AS_Data.f_LO1 < MT2063_MIN_UPC_FREQ)
1620 || (state->AS_Data.f_LO1 > MT2063_MAX_UPC_FREQ))
1621 status |= MT2063_UPC_RANGE;
1622 if ((state->AS_Data.f_LO2 < MT2063_MIN_DNC_FREQ)
1623 || (state->AS_Data.f_LO2 > MT2063_MAX_DNC_FREQ))
1624 status |= MT2063_DNC_RANGE;
1625 /* LO2 Lock bit was in a different place for B0 version */
1626 if (state->tuner_id == MT2063_B0)
1630 * If we have the same LO frequencies and we're already locked,
1631 * then skip re-programming the LO registers.
1633 if ((ofLO1 != state->AS_Data.f_LO1)
1634 || (ofLO2 != state->AS_Data.f_LO2)
1635 || ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) !=
1638 * Calculate the FIFFOF register value
1641 * FIFFOF = ------------ - 8 * FIFFC - 4992
1645 (state->AS_Data.f_LO1 -
1646 f_in) / (state->AS_Data.f_ref / 64) - 8 * (u32) fiffc -
1652 * Place all of the calculated values into the local tuner
1656 state->reg[MT2063_REG_LO1CQ_1] = (u8) (LO1 & 0xFF); /* DIV1q */
1657 state->reg[MT2063_REG_LO1CQ_2] = (u8) (Num1 & 0x3F); /* NUM1q */
1658 state->reg[MT2063_REG_LO2CQ_1] = (u8) (((LO2 & 0x7F) << 1) /* DIV2q */
1659 |(Num2 >> 12)); /* NUM2q (hi) */
1660 state->reg[MT2063_REG_LO2CQ_2] = (u8) ((Num2 & 0x0FF0) >> 4); /* NUM2q (mid) */
1661 state->reg[MT2063_REG_LO2CQ_3] = (u8) (0xE0 | (Num2 & 0x000F)); /* NUM2q (lo) */
1664 * Now write out the computed register values
1665 * IMPORTANT: There is a required order for writing
1666 * (0x05 must follow all the others).
1668 status |= mt2063_write(state, MT2063_REG_LO1CQ_1, &state->reg[MT2063_REG_LO1CQ_1], 5); /* 0x01 - 0x05 */
1669 if (state->tuner_id == MT2063_B0) {
1670 /* Re-write the one-shot bits to trigger the tune operation */
1671 status |= mt2063_write(state, MT2063_REG_LO2CQ_3, &state->reg[MT2063_REG_LO2CQ_3], 1); /* 0x05 */
1673 /* Write out the FIFF offset only if it's changing */
1674 if (state->reg[MT2063_REG_FIFF_OFFSET] !=
1676 state->reg[MT2063_REG_FIFF_OFFSET] =
1680 MT2063_REG_FIFF_OFFSET,
1682 reg[MT2063_REG_FIFF_OFFSET],
1688 * Check for LO's locking
1694 status = mt2063_lockStatus(state);
1698 return -EINVAL; /* Couldn't lock */
1701 * If we locked OK, assign calculated data to mt2063_state structure
1703 state->f_IF1_actual = state->AS_Data.f_LO1 - f_in;
1709 static const u8 MT2063B0_defaults[] = {
1723 0x2C, 0x27, /* bit at 0x20 is cleared below */
1725 0x2C, 0x07, /* bit at 0x20 is cleared here */
1728 0x28, 0xE1, /* Set the FIFCrst bit here */
1729 0x28, 0xE0, /* Clear the FIFCrst bit here */
1733 /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
1734 static const u8 MT2063B1_defaults[] = {
1737 0x11, 0x10, /* New Enable AFCsd */
1746 0x22, 0x21, /* New - ver 1.03 */
1747 0x23, 0x3C, /* New - ver 1.10 */
1748 0x24, 0x20, /* New - ver 1.03 */
1749 0x2C, 0x24, /* bit at 0x20 is cleared below */
1750 0x2D, 0x87, /* FIFFQ=0 */
1752 0x30, 0x0C, /* New - ver 1.11 */
1753 0x31, 0x1B, /* New - ver 1.11 */
1754 0x2C, 0x04, /* bit at 0x20 is cleared here */
1755 0x28, 0xE1, /* Set the FIFCrst bit here */
1756 0x28, 0xE0, /* Clear the FIFCrst bit here */
1760 /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
1761 static const u8 MT2063B3_defaults[] = {
1765 0x2C, 0x24, /* bit at 0x20 is cleared below */
1766 0x2C, 0x04, /* bit at 0x20 is cleared here */
1767 0x28, 0xE1, /* Set the FIFCrst bit here */
1768 0x28, 0xE0, /* Clear the FIFCrst bit here */
1772 static int mt2063_init(struct dvb_frontend *fe)
1775 struct mt2063_state *state = fe->tuner_priv;
1776 u8 all_resets = 0xF0; /* reset/load bits */
1777 const u8 *def = NULL;
1786 state->rcvr_mode = MT2063_CABLE_QAM;
1788 /* Read the Part/Rev code from the tuner */
1789 status = mt2063_read(state, MT2063_REG_PART_REV,
1790 &state->reg[MT2063_REG_PART_REV], 1);
1792 printk(KERN_ERR "Can't read mt2063 part ID\n");
1796 /* Check the part/rev code */
1797 switch (state->reg[MT2063_REG_PART_REV]) {
1811 printk(KERN_ERR "mt2063: Unknown mt2063 device ID (0x%02x)\n",
1812 state->reg[MT2063_REG_PART_REV]);
1813 return -ENODEV; /* Wrong tuner Part/Rev code */
1816 /* Check the 2nd byte of the Part/Rev code from the tuner */
1817 status = mt2063_read(state, MT2063_REG_RSVD_3B,
1818 &state->reg[MT2063_REG_RSVD_3B], 1);
1820 /* b7 != 0 ==> NOT MT2063 */
1821 if (status < 0 || ((state->reg[MT2063_REG_RSVD_3B] & 0x80) != 0x00)) {
1822 printk(KERN_ERR "mt2063: Unknown part ID (0x%02x%02x)\n",
1823 state->reg[MT2063_REG_PART_REV],
1824 state->reg[MT2063_REG_RSVD_3B]);
1825 return -ENODEV; /* Wrong tuner Part/Rev code */
1828 printk(KERN_INFO "mt2063: detected a mt2063 %s\n", step);
1830 /* Reset the tuner */
1831 status = mt2063_write(state, MT2063_REG_LO2CQ_3, &all_resets, 1);
1835 /* change all of the default values that vary from the HW reset values */
1836 /* def = (state->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */
1837 switch (state->reg[MT2063_REG_PART_REV]) {
1839 def = MT2063B3_defaults;
1843 def = MT2063B1_defaults;
1847 def = MT2063B0_defaults;
1854 while (status >= 0 && *def) {
1857 status = mt2063_write(state, reg, &val, 1);
1862 /* Wait for FIFF location to complete. */
1865 while (status >= 0 && (FCRUN != 0) && (maxReads-- > 0)) {
1867 status = mt2063_read(state,
1868 MT2063_REG_XO_STATUS,
1870 reg[MT2063_REG_XO_STATUS], 1);
1871 FCRUN = (state->reg[MT2063_REG_XO_STATUS] & 0x40) >> 6;
1874 if (FCRUN != 0 || status < 0)
1877 status = mt2063_read(state,
1879 &state->reg[MT2063_REG_FIFFC], 1);
1883 /* Read back all the registers from the tuner */
1884 status = mt2063_read(state,
1885 MT2063_REG_PART_REV,
1886 state->reg, MT2063_REG_END_REGS);
1890 /* Initialize the tuner state. */
1891 state->tuner_id = state->reg[MT2063_REG_PART_REV];
1892 state->AS_Data.f_ref = MT2063_REF_FREQ;
1893 state->AS_Data.f_if1_Center = (state->AS_Data.f_ref / 8) *
1894 ((u32) state->reg[MT2063_REG_FIFFC] + 640);
1895 state->AS_Data.f_if1_bw = MT2063_IF1_BW;
1896 state->AS_Data.f_out = 43750000UL;
1897 state->AS_Data.f_out_bw = 6750000UL;
1898 state->AS_Data.f_zif_bw = MT2063_ZIF_BW;
1899 state->AS_Data.f_LO1_Step = state->AS_Data.f_ref / 64;
1900 state->AS_Data.f_LO2_Step = MT2063_TUNE_STEP_SIZE;
1901 state->AS_Data.maxH1 = MT2063_MAX_HARMONICS_1;
1902 state->AS_Data.maxH2 = MT2063_MAX_HARMONICS_2;
1903 state->AS_Data.f_min_LO_Separation = MT2063_MIN_LO_SEP;
1904 state->AS_Data.f_if1_Request = state->AS_Data.f_if1_Center;
1905 state->AS_Data.f_LO1 = 2181000000UL;
1906 state->AS_Data.f_LO2 = 1486249786UL;
1907 state->f_IF1_actual = state->AS_Data.f_if1_Center;
1908 state->AS_Data.f_in = state->AS_Data.f_LO1 - state->f_IF1_actual;
1909 state->AS_Data.f_LO1_FracN_Avoid = MT2063_LO1_FRACN_AVOID;
1910 state->AS_Data.f_LO2_FracN_Avoid = MT2063_LO2_FRACN_AVOID;
1911 state->num_regs = MT2063_REG_END_REGS;
1912 state->AS_Data.avoidDECT = MT2063_AVOID_BOTH;
1913 state->ctfilt_sw = 0;
1915 state->CTFiltMax[0] = 69230000;
1916 state->CTFiltMax[1] = 105770000;
1917 state->CTFiltMax[2] = 140350000;
1918 state->CTFiltMax[3] = 177110000;
1919 state->CTFiltMax[4] = 212860000;
1920 state->CTFiltMax[5] = 241130000;
1921 state->CTFiltMax[6] = 274370000;
1922 state->CTFiltMax[7] = 309820000;
1923 state->CTFiltMax[8] = 342450000;
1924 state->CTFiltMax[9] = 378870000;
1925 state->CTFiltMax[10] = 416210000;
1926 state->CTFiltMax[11] = 456500000;
1927 state->CTFiltMax[12] = 495790000;
1928 state->CTFiltMax[13] = 534530000;
1929 state->CTFiltMax[14] = 572610000;
1930 state->CTFiltMax[15] = 598970000;
1931 state->CTFiltMax[16] = 635910000;
1932 state->CTFiltMax[17] = 672130000;
1933 state->CTFiltMax[18] = 714840000;
1934 state->CTFiltMax[19] = 739660000;
1935 state->CTFiltMax[20] = 770410000;
1936 state->CTFiltMax[21] = 814660000;
1937 state->CTFiltMax[22] = 846950000;
1938 state->CTFiltMax[23] = 867820000;
1939 state->CTFiltMax[24] = 915980000;
1940 state->CTFiltMax[25] = 947450000;
1941 state->CTFiltMax[26] = 983110000;
1942 state->CTFiltMax[27] = 1021630000;
1943 state->CTFiltMax[28] = 1061870000;
1944 state->CTFiltMax[29] = 1098330000;
1945 state->CTFiltMax[30] = 1138990000;
1948 ** Fetch the FCU osc value and use it and the fRef value to
1949 ** scale all of the Band Max values
1952 state->reg[MT2063_REG_CTUNE_CTRL] = 0x0A;
1953 status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
1954 &state->reg[MT2063_REG_CTUNE_CTRL], 1);
1958 /* Read the ClearTune filter calibration value */
1959 status = mt2063_read(state, MT2063_REG_FIFFC,
1960 &state->reg[MT2063_REG_FIFFC], 1);
1964 fcu_osc = state->reg[MT2063_REG_FIFFC];
1966 state->reg[MT2063_REG_CTUNE_CTRL] = 0x00;
1967 status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
1968 &state->reg[MT2063_REG_CTUNE_CTRL], 1);
1972 /* Adjust each of the values in the ClearTune filter cross-over table */
1973 for (i = 0; i < 31; i++)
1974 state->CTFiltMax[i] = (state->CTFiltMax[i] / 768) * (fcu_osc + 640);
1976 status = MT2063_SoftwareShutdown(state, 1);
1979 status = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
1988 static int mt2063_get_status(struct dvb_frontend *fe, u32 *tuner_status)
1990 struct mt2063_state *state = fe->tuner_priv;
1999 status = mt2063_lockStatus(state);
2003 *tuner_status = TUNER_STATUS_LOCKED;
2005 dprintk(1, "Tuner status: %d", *tuner_status);
2010 static void mt2063_release(struct dvb_frontend *fe)
2012 struct mt2063_state *state = fe->tuner_priv;
2016 fe->tuner_priv = NULL;
2020 static int mt2063_set_analog_params(struct dvb_frontend *fe,
2021 struct analog_parameters *params)
2023 struct mt2063_state *state = fe->tuner_priv;
2034 status = mt2063_init(fe);
2039 switch (params->mode) {
2040 case V4L2_TUNER_RADIO:
2041 pict_car = 38900000;
2043 pict2chanb_vsb = -(ch_bw / 2);
2044 rcvr_mode = MT2063_OFFAIR_ANALOG;
2046 case V4L2_TUNER_ANALOG_TV:
2047 rcvr_mode = MT2063_CABLE_ANALOG;
2048 if (params->std & ~V4L2_STD_MN) {
2049 pict_car = 38900000;
2051 pict2chanb_vsb = -1250000;
2052 } else if (params->std & V4L2_STD_PAL_G) {
2053 pict_car = 38900000;
2055 pict2chanb_vsb = -1250000;
2056 } else { /* PAL/SECAM standards */
2057 pict_car = 38900000;
2059 pict2chanb_vsb = -1250000;
2065 if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));
2067 state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */
2068 state->AS_Data.f_out = if_mid;
2069 state->AS_Data.f_out_bw = ch_bw + 750000;
2070 status = MT2063_SetReceiverMode(state, rcvr_mode);
2074 dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
2075 params->frequency, ch_bw, pict2chanb_vsb);
2077 status = MT2063_Tune(state, (params->frequency + (pict2chanb_vsb + (ch_bw / 2))));
2081 state->frequency = params->frequency;
2086 * As defined on EN 300 429, the DVB-C roll-off factor is 0.15.
2087 * So, the amount of the needed bandwidth is given by:
2088 * Bw = Symbol_rate * (1 + 0.15)
2089 * As such, the maximum symbol rate supported by 6 MHz is given by:
2090 * max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds
2092 #define MAX_SYMBOL_RATE_6MHz 5217391
2094 static int mt2063_set_params(struct dvb_frontend *fe)
2096 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
2097 struct mt2063_state *state = fe->tuner_priv;
2106 status = mt2063_init(fe);
2113 if (c->bandwidth_hz == 0)
2115 if (c->bandwidth_hz <= 6000000)
2117 else if (c->bandwidth_hz <= 7000000)
2122 switch (c->delivery_system) {
2124 rcvr_mode = MT2063_OFFAIR_COFDM;
2125 pict_car = 36125000;
2126 pict2chanb_vsb = -(ch_bw / 2);
2128 case SYS_DVBC_ANNEX_A:
2129 case SYS_DVBC_ANNEX_C:
2130 rcvr_mode = MT2063_CABLE_QAM;
2131 pict_car = 36125000;
2132 pict2chanb_vsb = -(ch_bw / 2);
2137 if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));
2139 state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */
2140 state->AS_Data.f_out = if_mid;
2141 state->AS_Data.f_out_bw = ch_bw + 750000;
2142 status = MT2063_SetReceiverMode(state, rcvr_mode);
2146 dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
2147 c->frequency, ch_bw, pict2chanb_vsb);
2149 status = MT2063_Tune(state, (c->frequency + (pict2chanb_vsb + (ch_bw / 2))));
2154 state->frequency = c->frequency;
2158 static int mt2063_get_if_frequency(struct dvb_frontend *fe, u32 *freq)
2160 struct mt2063_state *state = fe->tuner_priv;
2167 *freq = state->AS_Data.f_out;
2169 dprintk(1, "IF frequency: %d\n", *freq);
2174 static int mt2063_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
2176 struct mt2063_state *state = fe->tuner_priv;
2183 *bw = state->AS_Data.f_out_bw - 750000;
2185 dprintk(1, "bandwidth: %d\n", *bw);
2190 static const struct dvb_tuner_ops mt2063_ops = {
2192 .name = "MT2063 Silicon Tuner",
2193 .frequency_min_hz = 45 * MHz,
2194 .frequency_max_hz = 865 * MHz,
2197 .init = mt2063_init,
2198 .sleep = MT2063_Sleep,
2199 .get_status = mt2063_get_status,
2200 .set_analog_params = mt2063_set_analog_params,
2201 .set_params = mt2063_set_params,
2202 .get_if_frequency = mt2063_get_if_frequency,
2203 .get_bandwidth = mt2063_get_bandwidth,
2204 .release = mt2063_release,
2207 struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
2208 struct mt2063_config *config,
2209 struct i2c_adapter *i2c)
2211 struct mt2063_state *state = NULL;
2215 state = kzalloc(sizeof(struct mt2063_state), GFP_KERNEL);
2219 state->config = config;
2221 state->frontend = fe;
2222 state->reference = config->refclock / 1000; /* kHz */
2223 fe->tuner_priv = state;
2224 fe->ops.tuner_ops = mt2063_ops;
2226 printk(KERN_INFO "%s: Attaching MT2063\n", __func__);
2229 EXPORT_SYMBOL_GPL(mt2063_attach);
2233 * Ancillary routines visible outside mt2063
2234 * FIXME: Remove them in favor of using standard tuner callbacks
2236 static int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe)
2238 struct mt2063_state *state = fe->tuner_priv;
2243 err = MT2063_SoftwareShutdown(state, 1);
2245 printk(KERN_ERR "%s: Couldn't shutdown\n", __func__);
2250 static int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe)
2252 struct mt2063_state *state = fe->tuner_priv;
2257 err = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
2259 printk(KERN_ERR "%s: Invalid parameter\n", __func__);
2265 MODULE_AUTHOR("Mauro Carvalho Chehab");
2266 MODULE_DESCRIPTION("MT2063 Silicon tuner");
2267 MODULE_LICENSE("GPL");