1 // SPDX-License-Identifier: GPL-2.0+
3 * Renesas R-Car Fine Display Processor
5 * Video format converter and frame deinterlacer device.
8 * Copyright (c) 2016 Renesas Electronics Corporation.
10 * This code is developed and inspired from the vim2m, rcar_jpu,
11 * m2m-deinterlace, and vsp1 drivers.
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <linux/module.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/timer.h>
27 #include <media/rcar-fcp.h>
28 #include <media/v4l2-ctrls.h>
29 #include <media/v4l2-device.h>
30 #include <media/v4l2-event.h>
31 #include <media/v4l2-ioctl.h>
32 #include <media/v4l2-mem2mem.h>
33 #include <media/videobuf2-dma-contig.h>
35 static unsigned int debug;
36 module_param(debug, uint, 0644);
37 MODULE_PARM_DESC(debug, "activate debug info");
39 /* Minimum and maximum frame width/height */
40 #define FDP1_MIN_W 80U
41 #define FDP1_MIN_H 80U
43 #define FDP1_MAX_W 3840U
44 #define FDP1_MAX_H 2160U
46 #define FDP1_MAX_PLANES 3U
47 #define FDP1_MAX_STRIDE 8190U
49 /* Flags that indicate a format can be used for capture/output */
50 #define FDP1_CAPTURE BIT(0)
51 #define FDP1_OUTPUT BIT(1)
53 #define DRIVER_NAME "rcar_fdp1"
55 /* Number of Job's to have available on the processing queue */
56 #define FDP1_NUMBER_JOBS 8
58 #define dprintk(fdp1, fmt, arg...) \
59 v4l2_dbg(1, debug, &fdp1->v4l2_dev, "%s: " fmt, __func__, ## arg)
62 * FDP1 registers and bits
65 /* FDP1 start register - Imm */
66 #define FD1_CTL_CMD 0x0000
67 #define FD1_CTL_CMD_STRCMD BIT(0)
69 /* Sync generator register - Imm */
70 #define FD1_CTL_SGCMD 0x0004
71 #define FD1_CTL_SGCMD_SGEN BIT(0)
73 /* Register set end register - Imm */
74 #define FD1_CTL_REGEND 0x0008
75 #define FD1_CTL_REGEND_REGEND BIT(0)
77 /* Channel activation register - Vupdt */
78 #define FD1_CTL_CHACT 0x000c
79 #define FD1_CTL_CHACT_SMW BIT(9)
80 #define FD1_CTL_CHACT_WR BIT(8)
81 #define FD1_CTL_CHACT_SMR BIT(3)
82 #define FD1_CTL_CHACT_RD2 BIT(2)
83 #define FD1_CTL_CHACT_RD1 BIT(1)
84 #define FD1_CTL_CHACT_RD0 BIT(0)
86 /* Operation Mode Register - Vupdt */
87 #define FD1_CTL_OPMODE 0x0010
88 #define FD1_CTL_OPMODE_PRG BIT(4)
89 #define FD1_CTL_OPMODE_VIMD_INTERRUPT (0 << 0)
90 #define FD1_CTL_OPMODE_VIMD_BESTEFFORT (1 << 0)
91 #define FD1_CTL_OPMODE_VIMD_NOINTERRUPT (2 << 0)
93 #define FD1_CTL_VPERIOD 0x0014
94 #define FD1_CTL_CLKCTRL 0x0018
95 #define FD1_CTL_CLKCTRL_CSTP_N BIT(0)
97 /* Software reset register */
98 #define FD1_CTL_SRESET 0x001c
99 #define FD1_CTL_SRESET_SRST BIT(0)
101 /* Control status register (V-update-status) */
102 #define FD1_CTL_STATUS 0x0024
103 #define FD1_CTL_STATUS_VINT_CNT_MASK GENMASK(31, 16)
104 #define FD1_CTL_STATUS_VINT_CNT_SHIFT 16
105 #define FD1_CTL_STATUS_SGREGSET BIT(10)
106 #define FD1_CTL_STATUS_SGVERR BIT(9)
107 #define FD1_CTL_STATUS_SGFREND BIT(8)
108 #define FD1_CTL_STATUS_BSY BIT(0)
110 #define FD1_CTL_VCYCLE_STAT 0x0028
112 /* Interrupt enable register */
113 #define FD1_CTL_IRQENB 0x0038
114 /* Interrupt status register */
115 #define FD1_CTL_IRQSTA 0x003c
116 /* Interrupt control register */
117 #define FD1_CTL_IRQFSET 0x0040
119 /* Common IRQ Bit settings */
120 #define FD1_CTL_IRQ_VERE BIT(16)
121 #define FD1_CTL_IRQ_VINTE BIT(4)
122 #define FD1_CTL_IRQ_FREE BIT(0)
123 #define FD1_CTL_IRQ_MASK (FD1_CTL_IRQ_VERE | \
124 FD1_CTL_IRQ_VINTE | \
128 #define FD1_RPF_SIZE 0x0060
129 #define FD1_RPF_SIZE_MASK GENMASK(12, 0)
130 #define FD1_RPF_SIZE_H_SHIFT 16
131 #define FD1_RPF_SIZE_V_SHIFT 0
133 #define FD1_RPF_FORMAT 0x0064
134 #define FD1_RPF_FORMAT_CIPM BIT(16)
135 #define FD1_RPF_FORMAT_RSPYCS BIT(13)
136 #define FD1_RPF_FORMAT_RSPUVS BIT(12)
137 #define FD1_RPF_FORMAT_CF BIT(8)
139 #define FD1_RPF_PSTRIDE 0x0068
140 #define FD1_RPF_PSTRIDE_Y_SHIFT 16
141 #define FD1_RPF_PSTRIDE_C_SHIFT 0
143 /* RPF0 Source Component Y Address register */
144 #define FD1_RPF0_ADDR_Y 0x006c
146 /* RPF1 Current Picture Registers */
147 #define FD1_RPF1_ADDR_Y 0x0078
148 #define FD1_RPF1_ADDR_C0 0x007c
149 #define FD1_RPF1_ADDR_C1 0x0080
151 /* RPF2 next picture register */
152 #define FD1_RPF2_ADDR_Y 0x0084
154 #define FD1_RPF_SMSK_ADDR 0x0090
155 #define FD1_RPF_SWAP 0x0094
158 #define FD1_WPF_FORMAT 0x00c0
159 #define FD1_WPF_FORMAT_PDV_SHIFT 24
160 #define FD1_WPF_FORMAT_FCNL BIT(20)
161 #define FD1_WPF_FORMAT_WSPYCS BIT(15)
162 #define FD1_WPF_FORMAT_WSPUVS BIT(14)
163 #define FD1_WPF_FORMAT_WRTM_601_16 (0 << 9)
164 #define FD1_WPF_FORMAT_WRTM_601_0 (1 << 9)
165 #define FD1_WPF_FORMAT_WRTM_709_16 (2 << 9)
166 #define FD1_WPF_FORMAT_CSC BIT(8)
168 #define FD1_WPF_RNDCTL 0x00c4
169 #define FD1_WPF_RNDCTL_CBRM BIT(28)
170 #define FD1_WPF_RNDCTL_CLMD_NOCLIP (0 << 12)
171 #define FD1_WPF_RNDCTL_CLMD_CLIP_16_235 (1 << 12)
172 #define FD1_WPF_RNDCTL_CLMD_CLIP_1_254 (2 << 12)
174 #define FD1_WPF_PSTRIDE 0x00c8
175 #define FD1_WPF_PSTRIDE_Y_SHIFT 16
176 #define FD1_WPF_PSTRIDE_C_SHIFT 0
178 /* WPF Destination picture */
179 #define FD1_WPF_ADDR_Y 0x00cc
180 #define FD1_WPF_ADDR_C0 0x00d0
181 #define FD1_WPF_ADDR_C1 0x00d4
182 #define FD1_WPF_SWAP 0x00d8
183 #define FD1_WPF_SWAP_OSWAP_SHIFT 0
184 #define FD1_WPF_SWAP_SSWAP_SHIFT 4
187 #define FD1_RWPF_SWAP_BYTE BIT(0)
188 #define FD1_RWPF_SWAP_WORD BIT(1)
189 #define FD1_RWPF_SWAP_LWRD BIT(2)
190 #define FD1_RWPF_SWAP_LLWD BIT(3)
193 #define FD1_IPC_MODE 0x0100
194 #define FD1_IPC_MODE_DLI BIT(8)
195 #define FD1_IPC_MODE_DIM_ADAPT2D3D (0 << 0)
196 #define FD1_IPC_MODE_DIM_FIXED2D (1 << 0)
197 #define FD1_IPC_MODE_DIM_FIXED3D (2 << 0)
198 #define FD1_IPC_MODE_DIM_PREVFIELD (3 << 0)
199 #define FD1_IPC_MODE_DIM_NEXTFIELD (4 << 0)
201 #define FD1_IPC_SMSK_THRESH 0x0104
202 #define FD1_IPC_SMSK_THRESH_CONST 0x00010002
204 #define FD1_IPC_COMB_DET 0x0108
205 #define FD1_IPC_COMB_DET_CONST 0x00200040
207 #define FD1_IPC_MOTDEC 0x010c
208 #define FD1_IPC_MOTDEC_CONST 0x00008020
211 #define FD1_IPC_DLI_BLEND 0x0120
212 #define FD1_IPC_DLI_BLEND_CONST 0x0080ff02
214 #define FD1_IPC_DLI_HGAIN 0x0124
215 #define FD1_IPC_DLI_HGAIN_CONST 0x001000ff
217 #define FD1_IPC_DLI_SPRS 0x0128
218 #define FD1_IPC_DLI_SPRS_CONST 0x009004ff
220 #define FD1_IPC_DLI_ANGLE 0x012c
221 #define FD1_IPC_DLI_ANGLE_CONST 0x0004080c
223 #define FD1_IPC_DLI_ISOPIX0 0x0130
224 #define FD1_IPC_DLI_ISOPIX0_CONST 0xff10ff10
226 #define FD1_IPC_DLI_ISOPIX1 0x0134
227 #define FD1_IPC_DLI_ISOPIX1_CONST 0x0000ff10
229 /* Sensor registers */
230 #define FD1_IPC_SENSOR_TH0 0x0140
231 #define FD1_IPC_SENSOR_TH0_CONST 0x20208080
233 #define FD1_IPC_SENSOR_TH1 0x0144
234 #define FD1_IPC_SENSOR_TH1_CONST 0
236 #define FD1_IPC_SENSOR_CTL0 0x0170
237 #define FD1_IPC_SENSOR_CTL0_CONST 0x00002201
239 #define FD1_IPC_SENSOR_CTL1 0x0174
240 #define FD1_IPC_SENSOR_CTL1_CONST 0
242 #define FD1_IPC_SENSOR_CTL2 0x0178
243 #define FD1_IPC_SENSOR_CTL2_X_SHIFT 16
244 #define FD1_IPC_SENSOR_CTL2_Y_SHIFT 0
246 #define FD1_IPC_SENSOR_CTL3 0x017c
247 #define FD1_IPC_SENSOR_CTL3_0_SHIFT 16
248 #define FD1_IPC_SENSOR_CTL3_1_SHIFT 0
250 /* Line memory pixel number register */
251 #define FD1_IPC_LMEM 0x01e0
252 #define FD1_IPC_LMEM_LINEAR 1024
253 #define FD1_IPC_LMEM_TILE 960
255 /* Internal Data (HW Version) */
256 #define FD1_IP_INTDATA 0x0800
257 #define FD1_IP_M3W 0x02010202
258 #define FD1_IP_H3 0x02010203
259 #define FD1_IP_M3N 0x02010204
260 #define FD1_IP_E3 0x02010205
263 #define FD1_LUT_DIF_ADJ 0x1000
264 #define FD1_LUT_SAD_ADJ 0x1400
265 #define FD1_LUT_BLD_GAIN 0x1800
266 #define FD1_LUT_DIF_GAIN 0x1c00
267 #define FD1_LUT_MDET 0x2000
270 * struct fdp1_fmt - The FDP1 internal format data
271 * @fourcc: the fourcc code, to match the V4L2 API
272 * @bpp: bits per pixel per plane
273 * @num_planes: number of planes
274 * @hsub: horizontal subsampling factor
275 * @vsub: vertical subsampling factor
276 * @fmt: 7-bit format code for the fdp1 hardware
277 * @swap_yc: the Y and C components are swapped (Y comes before C)
278 * @swap_uv: the U and V components are swapped (V comes before U)
279 * @swap: swap register control
280 * @types: types of queue this format is applicable to
295 static const struct fdp1_fmt fdp1_formats[] = {
296 /* RGB formats are only supported by the Write Pixel Formatter */
298 { V4L2_PIX_FMT_RGB332, { 8, 0, 0 }, 1, 1, 1, 0x00, false, false,
299 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
300 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
302 { V4L2_PIX_FMT_XRGB444, { 16, 0, 0 }, 1, 1, 1, 0x01, false, false,
303 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
306 { V4L2_PIX_FMT_XRGB555, { 16, 0, 0 }, 1, 1, 1, 0x04, false, false,
307 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
310 { V4L2_PIX_FMT_RGB565, { 16, 0, 0 }, 1, 1, 1, 0x06, false, false,
311 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
314 { V4L2_PIX_FMT_ABGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
315 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
317 { V4L2_PIX_FMT_XBGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
318 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
320 { V4L2_PIX_FMT_ARGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
321 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
322 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
324 { V4L2_PIX_FMT_XRGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
325 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
326 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
328 { V4L2_PIX_FMT_RGB24, { 24, 0, 0 }, 1, 1, 1, 0x15, false, false,
329 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
330 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
332 { V4L2_PIX_FMT_BGR24, { 24, 0, 0 }, 1, 1, 1, 0x18, false, false,
333 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
334 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
336 { V4L2_PIX_FMT_ARGB444, { 16, 0, 0 }, 1, 1, 1, 0x19, false, false,
337 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
340 { V4L2_PIX_FMT_ARGB555, { 16, 0, 0 }, 1, 1, 1, 0x1b, false, false,
341 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
345 /* YUV Formats are supported by Read and Write Pixel Formatters */
347 { V4L2_PIX_FMT_NV16M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, false,
348 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
349 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
350 FDP1_CAPTURE | FDP1_OUTPUT },
351 { V4L2_PIX_FMT_NV61M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, true,
352 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
353 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
354 FDP1_CAPTURE | FDP1_OUTPUT },
355 { V4L2_PIX_FMT_NV12M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, false,
356 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
357 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
358 FDP1_CAPTURE | FDP1_OUTPUT },
359 { V4L2_PIX_FMT_NV21M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, true,
360 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
361 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
362 FDP1_CAPTURE | FDP1_OUTPUT },
363 { V4L2_PIX_FMT_UYVY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, false,
364 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
365 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
366 FDP1_CAPTURE | FDP1_OUTPUT },
367 { V4L2_PIX_FMT_VYUY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, true,
368 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
369 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
370 FDP1_CAPTURE | FDP1_OUTPUT },
371 { V4L2_PIX_FMT_YUYV, { 16, 0, 0 }, 1, 2, 1, 0x47, true, false,
372 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
373 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
374 FDP1_CAPTURE | FDP1_OUTPUT },
375 { V4L2_PIX_FMT_YVYU, { 16, 0, 0 }, 1, 2, 1, 0x47, true, true,
376 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
377 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
378 FDP1_CAPTURE | FDP1_OUTPUT },
379 { V4L2_PIX_FMT_YUV444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, false,
380 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
381 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
382 FDP1_CAPTURE | FDP1_OUTPUT },
383 { V4L2_PIX_FMT_YVU444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, true,
384 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
385 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
386 FDP1_CAPTURE | FDP1_OUTPUT },
387 { V4L2_PIX_FMT_YUV422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, false,
388 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
389 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
390 FDP1_CAPTURE | FDP1_OUTPUT },
391 { V4L2_PIX_FMT_YVU422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, true,
392 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
393 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
394 FDP1_CAPTURE | FDP1_OUTPUT },
395 { V4L2_PIX_FMT_YUV420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, false,
396 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
397 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
398 FDP1_CAPTURE | FDP1_OUTPUT },
399 { V4L2_PIX_FMT_YVU420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, true,
400 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
401 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
402 FDP1_CAPTURE | FDP1_OUTPUT },
405 static int fdp1_fmt_is_rgb(const struct fdp1_fmt *fmt)
407 return fmt->fmt <= 0x1b; /* Last RGB code */
411 * FDP1 Lookup tables range from 0...255 only
413 * Each table must be less than 256 entries, and all tables
414 * are padded out to 256 entries by duplicating the last value.
416 static const u8 fdp1_diff_adj[] = {
417 0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
418 0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
419 0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
422 static const u8 fdp1_sad_adj[] = {
423 0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
424 0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
425 0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
428 static const u8 fdp1_bld_gain[] = {
432 static const u8 fdp1_dif_gain[] = {
436 static const u8 fdp1_mdet[] = {
437 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
438 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
439 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
440 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
441 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
442 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
443 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
444 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
445 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
446 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
447 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
448 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
449 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
450 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
451 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
452 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
453 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
454 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
455 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
456 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
457 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
458 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
459 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
460 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
461 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
462 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
463 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
464 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
465 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
466 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
467 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
468 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
471 /* Per-queue, driver-specific private data */
473 const struct fdp1_fmt *fmt;
474 struct v4l2_pix_format_mplane format;
477 unsigned int stride_y;
478 unsigned int stride_c;
481 static const struct fdp1_fmt *fdp1_find_format(u32 pixelformat)
483 const struct fdp1_fmt *fmt;
486 for (i = 0; i < ARRAY_SIZE(fdp1_formats); i++) {
487 fmt = &fdp1_formats[i];
488 if (fmt->fourcc == pixelformat)
495 enum fdp1_deint_mode {
496 FDP1_PROGRESSIVE = 0, /* Must be zero when !deinterlacing */
504 #define FDP1_DEINT_MODE_USES_NEXT(mode) \
505 (mode == FDP1_ADAPT2D3D || \
506 mode == FDP1_FIXED3D || \
507 mode == FDP1_NEXTFIELD)
509 #define FDP1_DEINT_MODE_USES_PREV(mode) \
510 (mode == FDP1_ADAPT2D3D || \
511 mode == FDP1_FIXED3D || \
512 mode == FDP1_PREVFIELD)
515 * FDP1 operates on potentially 3 fields, which are tracked
516 * from the VB buffers using this context structure.
517 * Will always be a field or a full frame, never two fields.
519 struct fdp1_field_buffer {
520 struct vb2_v4l2_buffer *vb;
523 /* Should be NONE:TOP:BOTTOM only */
524 enum v4l2_field field;
526 /* Flag to indicate this is the last field in the vb */
529 /* Buffer queue lists */
530 struct list_head list;
534 struct v4l2_m2m_buffer m2m_buf;
535 struct fdp1_field_buffer fields[2];
536 unsigned int num_fields;
539 static inline struct fdp1_buffer *to_fdp1_buffer(struct vb2_v4l2_buffer *vb)
541 return container_of(vb, struct fdp1_buffer, m2m_buf.vb);
545 struct fdp1_field_buffer *previous;
546 struct fdp1_field_buffer *active;
547 struct fdp1_field_buffer *next;
548 struct fdp1_field_buffer *dst;
550 /* A job can only be on one list at a time */
551 struct list_head list;
555 struct v4l2_device v4l2_dev;
556 struct video_device vfd;
558 struct mutex dev_mutex;
560 spinlock_t device_process_lock;
567 struct fdp1_job jobs[FDP1_NUMBER_JOBS];
568 struct list_head free_job_list;
569 struct list_head queued_job_list;
570 struct list_head hw_job_list;
572 unsigned int clk_rate;
574 struct rcar_fcp_device *fcp;
575 struct v4l2_m2m_dev *m2m_dev;
580 struct fdp1_dev *fdp1;
582 struct v4l2_ctrl_handler hdl;
583 unsigned int sequence;
585 /* Processed buffers in this transaction */
588 /* Transaction length (i.e. how many buffers per transaction) */
591 /* Abort requested by m2m */
594 /* Deinterlace processing mode */
595 enum fdp1_deint_mode deint_mode;
598 * Adaptive 2D/3D mode uses a shared mask
599 * This is allocated at streamon, if the ADAPT2D3D mode
602 unsigned int smsk_size;
603 dma_addr_t smsk_addr[2];
606 /* Capture pipeline, can specify an alpha value
607 * for supported formats. 0-255 only
611 /* Source and destination queue data */
612 struct fdp1_q_data out_q; /* HW Source */
613 struct fdp1_q_data cap_q; /* HW Destination */
617 * Interlaced fields are used on 3 occasions, and tracked in this list.
619 * V4L2 Buffers are tracked inside the fdp1_buffer
620 * and released when the last 'field' completes
622 struct list_head fields_queue;
623 unsigned int buffers_queued;
626 * For de-interlacing we need to track our previous buffer
627 * while preparing our job lists.
629 struct fdp1_field_buffer *previous;
632 static inline struct fdp1_ctx *fh_to_ctx(struct v4l2_fh *fh)
634 return container_of(fh, struct fdp1_ctx, fh);
637 static struct fdp1_q_data *get_q_data(struct fdp1_ctx *ctx,
638 enum v4l2_buf_type type)
640 if (V4L2_TYPE_IS_OUTPUT(type))
647 * list_remove_job: Take the first item off the specified job list
649 * Returns: pointer to a job, or NULL if the list is empty.
651 static struct fdp1_job *list_remove_job(struct fdp1_dev *fdp1,
652 struct list_head *list)
654 struct fdp1_job *job;
657 spin_lock_irqsave(&fdp1->irqlock, flags);
658 job = list_first_entry_or_null(list, struct fdp1_job, list);
660 list_del(&job->list);
661 spin_unlock_irqrestore(&fdp1->irqlock, flags);
667 * list_add_job: Add a job to the specified job list
669 * Returns: void - always succeeds
671 static void list_add_job(struct fdp1_dev *fdp1,
672 struct list_head *list,
673 struct fdp1_job *job)
677 spin_lock_irqsave(&fdp1->irqlock, flags);
678 list_add_tail(&job->list, list);
679 spin_unlock_irqrestore(&fdp1->irqlock, flags);
682 static struct fdp1_job *fdp1_job_alloc(struct fdp1_dev *fdp1)
684 return list_remove_job(fdp1, &fdp1->free_job_list);
687 static void fdp1_job_free(struct fdp1_dev *fdp1, struct fdp1_job *job)
689 /* Ensure that all residue from previous jobs is gone */
690 memset(job, 0, sizeof(struct fdp1_job));
692 list_add_job(fdp1, &fdp1->free_job_list, job);
695 static void queue_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
697 list_add_job(fdp1, &fdp1->queued_job_list, job);
700 static struct fdp1_job *get_queued_job(struct fdp1_dev *fdp1)
702 return list_remove_job(fdp1, &fdp1->queued_job_list);
705 static void queue_hw_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
707 list_add_job(fdp1, &fdp1->hw_job_list, job);
710 static struct fdp1_job *get_hw_queued_job(struct fdp1_dev *fdp1)
712 return list_remove_job(fdp1, &fdp1->hw_job_list);
716 * Buffer lists handling
718 static void fdp1_field_complete(struct fdp1_ctx *ctx,
719 struct fdp1_field_buffer *fbuf)
721 /* job->previous may be on the first field */
725 if (fbuf->last_field)
726 v4l2_m2m_buf_done(fbuf->vb, VB2_BUF_STATE_DONE);
729 static void fdp1_queue_field(struct fdp1_ctx *ctx,
730 struct fdp1_field_buffer *fbuf)
734 spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
735 list_add_tail(&fbuf->list, &ctx->fields_queue);
736 spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
738 ctx->buffers_queued++;
741 static struct fdp1_field_buffer *fdp1_dequeue_field(struct fdp1_ctx *ctx)
743 struct fdp1_field_buffer *fbuf;
746 ctx->buffers_queued--;
748 spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
749 fbuf = list_first_entry_or_null(&ctx->fields_queue,
750 struct fdp1_field_buffer, list);
752 list_del(&fbuf->list);
753 spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
759 * Return the next field in the queue - or NULL,
760 * without removing the item from the list
762 static struct fdp1_field_buffer *fdp1_peek_queued_field(struct fdp1_ctx *ctx)
764 struct fdp1_field_buffer *fbuf;
767 spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
768 fbuf = list_first_entry_or_null(&ctx->fields_queue,
769 struct fdp1_field_buffer, list);
770 spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
775 static u32 fdp1_read(struct fdp1_dev *fdp1, unsigned int reg)
777 u32 value = ioread32(fdp1->regs + reg);
780 dprintk(fdp1, "Read 0x%08x from 0x%04x\n", value, reg);
785 static void fdp1_write(struct fdp1_dev *fdp1, u32 val, unsigned int reg)
788 dprintk(fdp1, "Write 0x%08x to 0x%04x\n", val, reg);
790 iowrite32(val, fdp1->regs + reg);
793 /* IPC registers are to be programmed with constant values */
794 static void fdp1_set_ipc_dli(struct fdp1_ctx *ctx)
796 struct fdp1_dev *fdp1 = ctx->fdp1;
798 fdp1_write(fdp1, FD1_IPC_SMSK_THRESH_CONST, FD1_IPC_SMSK_THRESH);
799 fdp1_write(fdp1, FD1_IPC_COMB_DET_CONST, FD1_IPC_COMB_DET);
800 fdp1_write(fdp1, FD1_IPC_MOTDEC_CONST, FD1_IPC_MOTDEC);
802 fdp1_write(fdp1, FD1_IPC_DLI_BLEND_CONST, FD1_IPC_DLI_BLEND);
803 fdp1_write(fdp1, FD1_IPC_DLI_HGAIN_CONST, FD1_IPC_DLI_HGAIN);
804 fdp1_write(fdp1, FD1_IPC_DLI_SPRS_CONST, FD1_IPC_DLI_SPRS);
805 fdp1_write(fdp1, FD1_IPC_DLI_ANGLE_CONST, FD1_IPC_DLI_ANGLE);
806 fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX0_CONST, FD1_IPC_DLI_ISOPIX0);
807 fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX1_CONST, FD1_IPC_DLI_ISOPIX1);
811 static void fdp1_set_ipc_sensor(struct fdp1_ctx *ctx)
813 struct fdp1_dev *fdp1 = ctx->fdp1;
814 struct fdp1_q_data *src_q_data = &ctx->out_q;
816 unsigned int hsize = src_q_data->format.width;
817 unsigned int vsize = src_q_data->format.height;
822 fdp1_write(fdp1, FD1_IPC_SENSOR_TH0_CONST, FD1_IPC_SENSOR_TH0);
823 fdp1_write(fdp1, FD1_IPC_SENSOR_TH1_CONST, FD1_IPC_SENSOR_TH1);
824 fdp1_write(fdp1, FD1_IPC_SENSOR_CTL0_CONST, FD1_IPC_SENSOR_CTL0);
825 fdp1_write(fdp1, FD1_IPC_SENSOR_CTL1_CONST, FD1_IPC_SENSOR_CTL1);
827 fdp1_write(fdp1, ((hsize - 1) << FD1_IPC_SENSOR_CTL2_X_SHIFT) |
828 ((vsize - 1) << FD1_IPC_SENSOR_CTL2_Y_SHIFT),
829 FD1_IPC_SENSOR_CTL2);
831 fdp1_write(fdp1, (x0 << FD1_IPC_SENSOR_CTL3_0_SHIFT) |
832 (x1 << FD1_IPC_SENSOR_CTL3_1_SHIFT),
833 FD1_IPC_SENSOR_CTL3);
837 * fdp1_write_lut: Write a padded LUT to the hw
839 * FDP1 uses constant data for de-interlacing processing,
840 * with large tables. These hardware tables are all 256 bytes
841 * long, however they often contain repeated data at the end.
843 * The last byte of the table is written to all remaining entries.
845 static void fdp1_write_lut(struct fdp1_dev *fdp1, const u8 *lut,
846 unsigned int len, unsigned int base)
851 /* Tables larger than the hw are clipped */
852 len = min(len, 256u);
854 for (i = 0; i < len; i++)
855 fdp1_write(fdp1, lut[i], base + (i*4));
857 /* Tables are padded with the last entry */
861 fdp1_write(fdp1, pad, base + (i*4));
864 static void fdp1_set_lut(struct fdp1_dev *fdp1)
866 fdp1_write_lut(fdp1, fdp1_diff_adj, ARRAY_SIZE(fdp1_diff_adj),
868 fdp1_write_lut(fdp1, fdp1_sad_adj, ARRAY_SIZE(fdp1_sad_adj),
870 fdp1_write_lut(fdp1, fdp1_bld_gain, ARRAY_SIZE(fdp1_bld_gain),
872 fdp1_write_lut(fdp1, fdp1_dif_gain, ARRAY_SIZE(fdp1_dif_gain),
874 fdp1_write_lut(fdp1, fdp1_mdet, ARRAY_SIZE(fdp1_mdet),
878 static void fdp1_configure_rpf(struct fdp1_ctx *ctx,
879 struct fdp1_job *job)
881 struct fdp1_dev *fdp1 = ctx->fdp1;
887 struct fdp1_q_data *q_data = &ctx->out_q;
889 /* Picture size is common to Source and Destination frames */
890 picture_size = (q_data->format.width << FD1_RPF_SIZE_H_SHIFT)
891 | (q_data->vsize << FD1_RPF_SIZE_V_SHIFT);
894 pstride = q_data->stride_y << FD1_RPF_PSTRIDE_Y_SHIFT;
895 if (q_data->format.num_planes > 1)
896 pstride |= q_data->stride_c << FD1_RPF_PSTRIDE_C_SHIFT;
899 format = q_data->fmt->fmt;
900 if (q_data->fmt->swap_yc)
901 format |= FD1_RPF_FORMAT_RSPYCS;
903 if (q_data->fmt->swap_uv)
904 format |= FD1_RPF_FORMAT_RSPUVS;
906 if (job->active->field == V4L2_FIELD_BOTTOM) {
907 format |= FD1_RPF_FORMAT_CF; /* Set for Bottom field */
908 smsk_addr = ctx->smsk_addr[0];
910 smsk_addr = ctx->smsk_addr[1];
913 /* Deint mode is non-zero when deinterlacing */
915 format |= FD1_RPF_FORMAT_CIPM;
917 fdp1_write(fdp1, format, FD1_RPF_FORMAT);
918 fdp1_write(fdp1, q_data->fmt->swap, FD1_RPF_SWAP);
919 fdp1_write(fdp1, picture_size, FD1_RPF_SIZE);
920 fdp1_write(fdp1, pstride, FD1_RPF_PSTRIDE);
921 fdp1_write(fdp1, smsk_addr, FD1_RPF_SMSK_ADDR);
923 /* Previous Field Channel (CH0) */
925 fdp1_write(fdp1, job->previous->addrs[0], FD1_RPF0_ADDR_Y);
927 /* Current Field Channel (CH1) */
928 fdp1_write(fdp1, job->active->addrs[0], FD1_RPF1_ADDR_Y);
929 fdp1_write(fdp1, job->active->addrs[1], FD1_RPF1_ADDR_C0);
930 fdp1_write(fdp1, job->active->addrs[2], FD1_RPF1_ADDR_C1);
932 /* Next Field Channel (CH2) */
934 fdp1_write(fdp1, job->next->addrs[0], FD1_RPF2_ADDR_Y);
937 static void fdp1_configure_wpf(struct fdp1_ctx *ctx,
938 struct fdp1_job *job)
940 struct fdp1_dev *fdp1 = ctx->fdp1;
941 struct fdp1_q_data *src_q_data = &ctx->out_q;
942 struct fdp1_q_data *q_data = &ctx->cap_q;
948 pstride = q_data->format.plane_fmt[0].bytesperline
949 << FD1_WPF_PSTRIDE_Y_SHIFT;
951 if (q_data->format.num_planes > 1)
952 pstride |= q_data->format.plane_fmt[1].bytesperline
953 << FD1_WPF_PSTRIDE_C_SHIFT;
955 format = q_data->fmt->fmt; /* Output Format Code */
957 if (q_data->fmt->swap_yc)
958 format |= FD1_WPF_FORMAT_WSPYCS;
960 if (q_data->fmt->swap_uv)
961 format |= FD1_WPF_FORMAT_WSPUVS;
963 if (fdp1_fmt_is_rgb(q_data->fmt)) {
964 /* Enable Colour Space conversion */
965 format |= FD1_WPF_FORMAT_CSC;
968 if (src_q_data->format.ycbcr_enc == V4L2_YCBCR_ENC_709)
969 format |= FD1_WPF_FORMAT_WRTM_709_16;
970 else if (src_q_data->format.quantization ==
971 V4L2_QUANTIZATION_FULL_RANGE)
972 format |= FD1_WPF_FORMAT_WRTM_601_0;
974 format |= FD1_WPF_FORMAT_WRTM_601_16;
977 /* Set an alpha value into the Pad Value */
978 format |= ctx->alpha << FD1_WPF_FORMAT_PDV_SHIFT;
980 /* Determine picture rounding and clipping */
981 rndctl = FD1_WPF_RNDCTL_CBRM; /* Rounding Off */
982 rndctl |= FD1_WPF_RNDCTL_CLMD_NOCLIP;
984 /* WPF Swap needs both ISWAP and OSWAP setting */
985 swap = q_data->fmt->swap << FD1_WPF_SWAP_OSWAP_SHIFT;
986 swap |= src_q_data->fmt->swap << FD1_WPF_SWAP_SSWAP_SHIFT;
988 fdp1_write(fdp1, format, FD1_WPF_FORMAT);
989 fdp1_write(fdp1, rndctl, FD1_WPF_RNDCTL);
990 fdp1_write(fdp1, swap, FD1_WPF_SWAP);
991 fdp1_write(fdp1, pstride, FD1_WPF_PSTRIDE);
993 fdp1_write(fdp1, job->dst->addrs[0], FD1_WPF_ADDR_Y);
994 fdp1_write(fdp1, job->dst->addrs[1], FD1_WPF_ADDR_C0);
995 fdp1_write(fdp1, job->dst->addrs[2], FD1_WPF_ADDR_C1);
998 static void fdp1_configure_deint_mode(struct fdp1_ctx *ctx,
999 struct fdp1_job *job)
1001 struct fdp1_dev *fdp1 = ctx->fdp1;
1002 u32 opmode = FD1_CTL_OPMODE_VIMD_NOINTERRUPT;
1003 u32 ipcmode = FD1_IPC_MODE_DLI; /* Always set */
1004 u32 channels = FD1_CTL_CHACT_WR | FD1_CTL_CHACT_RD1; /* Always on */
1006 /* De-interlacing Mode */
1007 switch (ctx->deint_mode) {
1009 case FDP1_PROGRESSIVE:
1010 dprintk(fdp1, "Progressive Mode\n");
1011 opmode |= FD1_CTL_OPMODE_PRG;
1012 ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
1014 case FDP1_ADAPT2D3D:
1015 dprintk(fdp1, "Adapt2D3D Mode\n");
1016 if (ctx->sequence == 0 || ctx->aborting)
1017 ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
1019 ipcmode |= FD1_IPC_MODE_DIM_ADAPT2D3D;
1021 if (ctx->sequence > 1) {
1022 channels |= FD1_CTL_CHACT_SMW;
1023 channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
1026 if (ctx->sequence > 2)
1027 channels |= FD1_CTL_CHACT_SMR;
1031 dprintk(fdp1, "Fixed 3D Mode\n");
1032 ipcmode |= FD1_IPC_MODE_DIM_FIXED3D;
1033 /* Except for first and last frame, enable all channels */
1034 if (!(ctx->sequence == 0 || ctx->aborting))
1035 channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
1038 dprintk(fdp1, "Fixed 2D Mode\n");
1039 ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
1040 /* No extra channels enabled */
1042 case FDP1_PREVFIELD:
1043 dprintk(fdp1, "Previous Field Mode\n");
1044 ipcmode |= FD1_IPC_MODE_DIM_PREVFIELD;
1045 channels |= FD1_CTL_CHACT_RD0; /* Previous */
1047 case FDP1_NEXTFIELD:
1048 dprintk(fdp1, "Next Field Mode\n");
1049 ipcmode |= FD1_IPC_MODE_DIM_NEXTFIELD;
1050 channels |= FD1_CTL_CHACT_RD2; /* Next */
1054 fdp1_write(fdp1, channels, FD1_CTL_CHACT);
1055 fdp1_write(fdp1, opmode, FD1_CTL_OPMODE);
1056 fdp1_write(fdp1, ipcmode, FD1_IPC_MODE);
1060 * fdp1_device_process() - Run the hardware
1062 * Configure and start the hardware to generate a single frame
1063 * of output given our input parameters.
1065 static int fdp1_device_process(struct fdp1_ctx *ctx)
1068 struct fdp1_dev *fdp1 = ctx->fdp1;
1069 struct fdp1_job *job;
1070 unsigned long flags;
1072 spin_lock_irqsave(&fdp1->device_process_lock, flags);
1074 /* Get a job to process */
1075 job = get_queued_job(fdp1);
1078 * VINT can call us to see if we can queue another job.
1079 * If we have no work to do, we simply return.
1081 spin_unlock_irqrestore(&fdp1->device_process_lock, flags);
1085 /* First Frame only? ... */
1086 fdp1_write(fdp1, FD1_CTL_CLKCTRL_CSTP_N, FD1_CTL_CLKCTRL);
1088 /* Set the mode, and configuration */
1089 fdp1_configure_deint_mode(ctx, job);
1091 /* DLI Static Configuration */
1092 fdp1_set_ipc_dli(ctx);
1094 /* Sensor Configuration */
1095 fdp1_set_ipc_sensor(ctx);
1097 /* Setup the source picture */
1098 fdp1_configure_rpf(ctx, job);
1100 /* Setup the destination picture */
1101 fdp1_configure_wpf(ctx, job);
1103 /* Line Memory Pixel Number Register for linear access */
1104 fdp1_write(fdp1, FD1_IPC_LMEM_LINEAR, FD1_IPC_LMEM);
1106 /* Enable Interrupts */
1107 fdp1_write(fdp1, FD1_CTL_IRQ_MASK, FD1_CTL_IRQENB);
1109 /* Finally, the Immediate Registers */
1111 /* This job is now in the HW queue */
1112 queue_hw_job(fdp1, job);
1114 /* Start the command */
1115 fdp1_write(fdp1, FD1_CTL_CMD_STRCMD, FD1_CTL_CMD);
1117 /* Registers will update to HW at next VINT */
1118 fdp1_write(fdp1, FD1_CTL_REGEND_REGEND, FD1_CTL_REGEND);
1120 /* Enable VINT Generator */
1121 fdp1_write(fdp1, FD1_CTL_SGCMD_SGEN, FD1_CTL_SGCMD);
1123 spin_unlock_irqrestore(&fdp1->device_process_lock, flags);
1133 * job_ready() - check whether an instance is ready to be scheduled to run
1135 static int fdp1_m2m_job_ready(void *priv)
1137 struct fdp1_ctx *ctx = priv;
1138 struct fdp1_q_data *src_q_data = &ctx->out_q;
1142 dprintk(ctx->fdp1, "+ Src: %d : Dst: %d\n",
1143 v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx),
1144 v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx));
1146 /* One output buffer is required for each field */
1147 if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
1150 if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) < srcbufs
1151 || v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) < dstbufs) {
1152 dprintk(ctx->fdp1, "Not enough buffers available\n");
1159 static void fdp1_m2m_job_abort(void *priv)
1161 struct fdp1_ctx *ctx = priv;
1163 dprintk(ctx->fdp1, "+\n");
1165 /* Will cancel the transaction in the next interrupt handler */
1168 /* Immediate abort sequence */
1169 fdp1_write(ctx->fdp1, 0, FD1_CTL_SGCMD);
1170 fdp1_write(ctx->fdp1, FD1_CTL_SRESET_SRST, FD1_CTL_SRESET);
1174 * fdp1_prepare_job: Prepare and queue a new job for a single action of work
1176 * Prepare the next field, (or frame in progressive) and an output
1177 * buffer for the hardware to perform a single operation.
1179 static struct fdp1_job *fdp1_prepare_job(struct fdp1_ctx *ctx)
1181 struct vb2_v4l2_buffer *vbuf;
1182 struct fdp1_buffer *fbuf;
1183 struct fdp1_dev *fdp1 = ctx->fdp1;
1184 struct fdp1_job *job;
1185 unsigned int buffers_required = 1;
1187 dprintk(fdp1, "+\n");
1189 if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode))
1190 buffers_required = 2;
1192 if (ctx->buffers_queued < buffers_required)
1195 job = fdp1_job_alloc(fdp1);
1197 dprintk(fdp1, "No free jobs currently available\n");
1201 job->active = fdp1_dequeue_field(ctx);
1203 /* Buffer check should prevent this ever happening */
1204 dprintk(fdp1, "No input buffers currently available\n");
1206 fdp1_job_free(fdp1, job);
1210 dprintk(fdp1, "+ Buffer en-route...\n");
1212 /* Source buffers have been prepared on our buffer_queue
1213 * Prepare our Output buffer
1215 vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
1216 fbuf = to_fdp1_buffer(vbuf);
1217 job->dst = &fbuf->fields[0];
1219 job->active->vb->sequence = ctx->sequence;
1220 job->dst->vb->sequence = ctx->sequence;
1223 if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode)) {
1224 job->previous = ctx->previous;
1226 /* Active buffer becomes the next job's previous buffer */
1227 ctx->previous = job->active;
1230 if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode)) {
1231 /* Must be called after 'active' is dequeued */
1232 job->next = fdp1_peek_queued_field(ctx);
1235 /* Transfer timestamps and flags from src->dst */
1237 job->dst->vb->vb2_buf.timestamp = job->active->vb->vb2_buf.timestamp;
1239 job->dst->vb->flags = job->active->vb->flags &
1240 V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
1242 /* Ideally, the frame-end function will just 'check' to see
1243 * if there are more jobs instead
1247 /* Finally, Put this job on the processing queue */
1248 queue_job(fdp1, job);
1250 dprintk(fdp1, "Job Queued translen = %d\n", ctx->translen);
1255 /* fdp1_m2m_device_run() - prepares and starts the device for an M2M task
1257 * A single input buffer is taken and serialised into our fdp1_buffer
1258 * queue. The queue is then processed to create as many jobs as possible
1259 * from our available input.
1261 static void fdp1_m2m_device_run(void *priv)
1263 struct fdp1_ctx *ctx = priv;
1264 struct fdp1_dev *fdp1 = ctx->fdp1;
1265 struct vb2_v4l2_buffer *src_vb;
1266 struct fdp1_buffer *buf;
1269 dprintk(fdp1, "+\n");
1273 /* Get our incoming buffer of either one or two fields, or one frame */
1274 src_vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1275 buf = to_fdp1_buffer(src_vb);
1277 for (i = 0; i < buf->num_fields; i++) {
1278 struct fdp1_field_buffer *fbuf = &buf->fields[i];
1280 fdp1_queue_field(ctx, fbuf);
1281 dprintk(fdp1, "Queued Buffer [%d] last_field:%d\n",
1282 i, fbuf->last_field);
1285 /* Queue as many jobs as our data provides for */
1286 while (fdp1_prepare_job(ctx))
1289 if (ctx->translen == 0) {
1290 dprintk(fdp1, "No jobs were processed. M2M action complete\n");
1291 v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
1295 /* Kick the job processing action */
1296 fdp1_device_process(ctx);
1302 * Handles the M2M level after a buffer completion event.
1304 static void device_frame_end(struct fdp1_dev *fdp1,
1305 enum vb2_buffer_state state)
1307 struct fdp1_ctx *ctx;
1308 unsigned long flags;
1309 struct fdp1_job *job = get_hw_queued_job(fdp1);
1311 dprintk(fdp1, "+\n");
1313 ctx = v4l2_m2m_get_curr_priv(fdp1->m2m_dev);
1316 v4l2_err(&fdp1->v4l2_dev,
1317 "Instance released before the end of transaction\n");
1321 ctx->num_processed++;
1324 * fdp1_field_complete will call buf_done only when the last vb2_buffer
1325 * reference is complete
1327 if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
1328 fdp1_field_complete(ctx, job->previous);
1330 fdp1_field_complete(ctx, job->active);
1332 spin_lock_irqsave(&fdp1->irqlock, flags);
1333 v4l2_m2m_buf_done(job->dst->vb, state);
1335 spin_unlock_irqrestore(&fdp1->irqlock, flags);
1337 /* Move this job back to the free job list */
1338 fdp1_job_free(fdp1, job);
1340 dprintk(fdp1, "curr_ctx->num_processed %d curr_ctx->translen %d\n",
1341 ctx->num_processed, ctx->translen);
1343 if (ctx->num_processed == ctx->translen ||
1345 dprintk(ctx->fdp1, "Finishing transaction\n");
1346 ctx->num_processed = 0;
1347 v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
1350 * For pipelined performance support, this would
1351 * be called from a VINT handler
1353 fdp1_device_process(ctx);
1360 static int fdp1_vidioc_querycap(struct file *file, void *priv,
1361 struct v4l2_capability *cap)
1363 strscpy(cap->driver, DRIVER_NAME, sizeof(cap->driver));
1364 strscpy(cap->card, DRIVER_NAME, sizeof(cap->card));
1365 snprintf(cap->bus_info, sizeof(cap->bus_info),
1366 "platform:%s", DRIVER_NAME);
1370 static int fdp1_enum_fmt(struct v4l2_fmtdesc *f, u32 type)
1372 unsigned int i, num;
1376 for (i = 0; i < ARRAY_SIZE(fdp1_formats); ++i) {
1377 if (fdp1_formats[i].types & type) {
1378 if (num == f->index)
1384 /* Format not found */
1385 if (i >= ARRAY_SIZE(fdp1_formats))
1389 f->pixelformat = fdp1_formats[i].fourcc;
1394 static int fdp1_enum_fmt_vid_cap(struct file *file, void *priv,
1395 struct v4l2_fmtdesc *f)
1397 return fdp1_enum_fmt(f, FDP1_CAPTURE);
1400 static int fdp1_enum_fmt_vid_out(struct file *file, void *priv,
1401 struct v4l2_fmtdesc *f)
1403 return fdp1_enum_fmt(f, FDP1_OUTPUT);
1406 static int fdp1_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
1408 struct fdp1_q_data *q_data;
1409 struct fdp1_ctx *ctx = fh_to_ctx(priv);
1411 if (!v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type))
1414 q_data = get_q_data(ctx, f->type);
1415 f->fmt.pix_mp = q_data->format;
1420 static void fdp1_compute_stride(struct v4l2_pix_format_mplane *pix,
1421 const struct fdp1_fmt *fmt)
1425 /* Compute and clamp the stride and image size. */
1426 for (i = 0; i < min_t(unsigned int, fmt->num_planes, 2U); ++i) {
1427 unsigned int hsub = i > 0 ? fmt->hsub : 1;
1428 unsigned int vsub = i > 0 ? fmt->vsub : 1;
1429 /* From VSP : TODO: Confirm alignment limits for FDP1 */
1430 unsigned int align = 128;
1433 bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
1434 pix->width / hsub * fmt->bpp[i] / 8,
1435 round_down(FDP1_MAX_STRIDE, align));
1437 pix->plane_fmt[i].bytesperline = round_up(bpl, align);
1438 pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
1439 * pix->height / vsub;
1443 if (fmt->num_planes == 3) {
1444 /* The two chroma planes must have the same stride. */
1445 pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
1446 pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
1451 static void fdp1_try_fmt_output(struct fdp1_ctx *ctx,
1452 const struct fdp1_fmt **fmtinfo,
1453 struct v4l2_pix_format_mplane *pix)
1455 const struct fdp1_fmt *fmt;
1457 unsigned int height;
1459 /* Validate the pixel format to ensure the output queue supports it. */
1460 fmt = fdp1_find_format(pix->pixelformat);
1461 if (!fmt || !(fmt->types & FDP1_OUTPUT))
1462 fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV);
1467 pix->pixelformat = fmt->fourcc;
1468 pix->num_planes = fmt->num_planes;
1471 * Progressive video and all interlaced field orders are acceptable.
1472 * Default to V4L2_FIELD_INTERLACED.
1474 if (pix->field != V4L2_FIELD_NONE &&
1475 pix->field != V4L2_FIELD_ALTERNATE &&
1476 !V4L2_FIELD_HAS_BOTH(pix->field))
1477 pix->field = V4L2_FIELD_INTERLACED;
1480 * The deinterlacer doesn't care about the colorspace, accept all values
1481 * and default to V4L2_COLORSPACE_SMPTE170M. The YUV to RGB conversion
1482 * at the output of the deinterlacer supports a subset of encodings and
1483 * quantization methods and will only be available when the colorspace
1486 if (pix->colorspace == V4L2_COLORSPACE_DEFAULT)
1487 pix->colorspace = V4L2_COLORSPACE_SMPTE170M;
1490 * Align the width and height for YUV 4:2:2 and 4:2:0 formats and clamp
1491 * them to the supported frame size range. The height boundary are
1492 * related to the full frame, divide them by two when the format passes
1493 * fields in separate buffers.
1495 width = round_down(pix->width, fmt->hsub);
1496 pix->width = clamp(width, FDP1_MIN_W, FDP1_MAX_W);
1498 height = round_down(pix->height, fmt->vsub);
1499 if (pix->field == V4L2_FIELD_ALTERNATE)
1500 pix->height = clamp(height, FDP1_MIN_H / 2, FDP1_MAX_H / 2);
1502 pix->height = clamp(height, FDP1_MIN_H, FDP1_MAX_H);
1504 fdp1_compute_stride(pix, fmt);
1507 static void fdp1_try_fmt_capture(struct fdp1_ctx *ctx,
1508 const struct fdp1_fmt **fmtinfo,
1509 struct v4l2_pix_format_mplane *pix)
1511 struct fdp1_q_data *src_data = &ctx->out_q;
1512 enum v4l2_colorspace colorspace;
1513 enum v4l2_ycbcr_encoding ycbcr_enc;
1514 enum v4l2_quantization quantization;
1515 const struct fdp1_fmt *fmt;
1519 * Validate the pixel format. We can only accept RGB output formats if
1520 * the input encoding and quantization are compatible with the format
1521 * conversions supported by the hardware. The supported combinations are
1523 * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_LIM_RANGE
1524 * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_FULL_RANGE
1525 * V4L2_YCBCR_ENC_709 + V4L2_QUANTIZATION_LIM_RANGE
1527 colorspace = src_data->format.colorspace;
1529 ycbcr_enc = src_data->format.ycbcr_enc;
1530 if (ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT)
1531 ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(colorspace);
1533 quantization = src_data->format.quantization;
1534 if (quantization == V4L2_QUANTIZATION_DEFAULT)
1535 quantization = V4L2_MAP_QUANTIZATION_DEFAULT(false, colorspace,
1538 allow_rgb = ycbcr_enc == V4L2_YCBCR_ENC_601 ||
1539 (ycbcr_enc == V4L2_YCBCR_ENC_709 &&
1540 quantization == V4L2_QUANTIZATION_LIM_RANGE);
1542 fmt = fdp1_find_format(pix->pixelformat);
1543 if (!fmt || (!allow_rgb && fdp1_fmt_is_rgb(fmt)))
1544 fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV);
1549 pix->pixelformat = fmt->fourcc;
1550 pix->num_planes = fmt->num_planes;
1551 pix->field = V4L2_FIELD_NONE;
1554 * The colorspace on the capture queue is copied from the output queue
1555 * as the hardware can't change the colorspace. It can convert YCbCr to
1556 * RGB though, in which case the encoding and quantization are set to
1557 * default values as anything else wouldn't make sense.
1559 pix->colorspace = src_data->format.colorspace;
1560 pix->xfer_func = src_data->format.xfer_func;
1562 if (fdp1_fmt_is_rgb(fmt)) {
1563 pix->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
1564 pix->quantization = V4L2_QUANTIZATION_DEFAULT;
1566 pix->ycbcr_enc = src_data->format.ycbcr_enc;
1567 pix->quantization = src_data->format.quantization;
1571 * The frame width is identical to the output queue, and the height is
1572 * either doubled or identical depending on whether the output queue
1573 * field order contains one or two fields per frame.
1575 pix->width = src_data->format.width;
1576 if (src_data->format.field == V4L2_FIELD_ALTERNATE)
1577 pix->height = 2 * src_data->format.height;
1579 pix->height = src_data->format.height;
1581 fdp1_compute_stride(pix, fmt);
1584 static int fdp1_try_fmt(struct file *file, void *priv, struct v4l2_format *f)
1586 struct fdp1_ctx *ctx = fh_to_ctx(priv);
1588 if (f->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
1589 fdp1_try_fmt_output(ctx, NULL, &f->fmt.pix_mp);
1591 fdp1_try_fmt_capture(ctx, NULL, &f->fmt.pix_mp);
1593 dprintk(ctx->fdp1, "Try %s format: %4.4s (0x%08x) %ux%u field %u\n",
1594 V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture",
1595 (char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat,
1596 f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field);
1601 static void fdp1_set_format(struct fdp1_ctx *ctx,
1602 struct v4l2_pix_format_mplane *pix,
1603 enum v4l2_buf_type type)
1605 struct fdp1_q_data *q_data = get_q_data(ctx, type);
1606 const struct fdp1_fmt *fmtinfo;
1608 if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
1609 fdp1_try_fmt_output(ctx, &fmtinfo, pix);
1611 fdp1_try_fmt_capture(ctx, &fmtinfo, pix);
1613 q_data->fmt = fmtinfo;
1614 q_data->format = *pix;
1616 q_data->vsize = pix->height;
1617 if (pix->field != V4L2_FIELD_NONE)
1620 q_data->stride_y = pix->plane_fmt[0].bytesperline;
1621 q_data->stride_c = pix->plane_fmt[1].bytesperline;
1623 /* Adjust strides for interleaved buffers */
1624 if (pix->field == V4L2_FIELD_INTERLACED ||
1625 pix->field == V4L2_FIELD_INTERLACED_TB ||
1626 pix->field == V4L2_FIELD_INTERLACED_BT) {
1627 q_data->stride_y *= 2;
1628 q_data->stride_c *= 2;
1631 /* Propagate the format from the output node to the capture node. */
1632 if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
1633 struct fdp1_q_data *dst_data = &ctx->cap_q;
1636 * Copy the format, clear the per-plane bytes per line and image
1637 * size, override the field and double the height if needed.
1639 dst_data->format = q_data->format;
1640 memset(dst_data->format.plane_fmt, 0,
1641 sizeof(dst_data->format.plane_fmt));
1643 dst_data->format.field = V4L2_FIELD_NONE;
1644 if (pix->field == V4L2_FIELD_ALTERNATE)
1645 dst_data->format.height *= 2;
1647 fdp1_try_fmt_capture(ctx, &dst_data->fmt, &dst_data->format);
1649 dst_data->vsize = dst_data->format.height;
1650 dst_data->stride_y = dst_data->format.plane_fmt[0].bytesperline;
1651 dst_data->stride_c = dst_data->format.plane_fmt[1].bytesperline;
1655 static int fdp1_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
1657 struct fdp1_ctx *ctx = fh_to_ctx(priv);
1658 struct v4l2_m2m_ctx *m2m_ctx = ctx->fh.m2m_ctx;
1659 struct vb2_queue *vq = v4l2_m2m_get_vq(m2m_ctx, f->type);
1661 if (vb2_is_busy(vq)) {
1662 v4l2_err(&ctx->fdp1->v4l2_dev, "%s queue busy\n", __func__);
1666 fdp1_set_format(ctx, &f->fmt.pix_mp, f->type);
1668 dprintk(ctx->fdp1, "Set %s format: %4.4s (0x%08x) %ux%u field %u\n",
1669 V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture",
1670 (char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat,
1671 f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field);
1676 static int fdp1_g_ctrl(struct v4l2_ctrl *ctrl)
1678 struct fdp1_ctx *ctx =
1679 container_of(ctrl->handler, struct fdp1_ctx, hdl);
1680 struct fdp1_q_data *src_q_data = &ctx->out_q;
1683 case V4L2_CID_MIN_BUFFERS_FOR_CAPTURE:
1684 if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
1694 static int fdp1_s_ctrl(struct v4l2_ctrl *ctrl)
1696 struct fdp1_ctx *ctx =
1697 container_of(ctrl->handler, struct fdp1_ctx, hdl);
1700 case V4L2_CID_ALPHA_COMPONENT:
1701 ctx->alpha = ctrl->val;
1704 case V4L2_CID_DEINTERLACING_MODE:
1705 ctx->deint_mode = ctrl->val;
1712 static const struct v4l2_ctrl_ops fdp1_ctrl_ops = {
1713 .s_ctrl = fdp1_s_ctrl,
1714 .g_volatile_ctrl = fdp1_g_ctrl,
1717 static const char * const fdp1_ctrl_deint_menu[] = {
1727 static const struct v4l2_ioctl_ops fdp1_ioctl_ops = {
1728 .vidioc_querycap = fdp1_vidioc_querycap,
1730 .vidioc_enum_fmt_vid_cap = fdp1_enum_fmt_vid_cap,
1731 .vidioc_enum_fmt_vid_out = fdp1_enum_fmt_vid_out,
1732 .vidioc_g_fmt_vid_cap_mplane = fdp1_g_fmt,
1733 .vidioc_g_fmt_vid_out_mplane = fdp1_g_fmt,
1734 .vidioc_try_fmt_vid_cap_mplane = fdp1_try_fmt,
1735 .vidioc_try_fmt_vid_out_mplane = fdp1_try_fmt,
1736 .vidioc_s_fmt_vid_cap_mplane = fdp1_s_fmt,
1737 .vidioc_s_fmt_vid_out_mplane = fdp1_s_fmt,
1739 .vidioc_reqbufs = v4l2_m2m_ioctl_reqbufs,
1740 .vidioc_querybuf = v4l2_m2m_ioctl_querybuf,
1741 .vidioc_qbuf = v4l2_m2m_ioctl_qbuf,
1742 .vidioc_dqbuf = v4l2_m2m_ioctl_dqbuf,
1743 .vidioc_prepare_buf = v4l2_m2m_ioctl_prepare_buf,
1744 .vidioc_create_bufs = v4l2_m2m_ioctl_create_bufs,
1745 .vidioc_expbuf = v4l2_m2m_ioctl_expbuf,
1747 .vidioc_streamon = v4l2_m2m_ioctl_streamon,
1748 .vidioc_streamoff = v4l2_m2m_ioctl_streamoff,
1750 .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
1751 .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
1758 static int fdp1_queue_setup(struct vb2_queue *vq,
1759 unsigned int *nbuffers, unsigned int *nplanes,
1760 unsigned int sizes[],
1761 struct device *alloc_ctxs[])
1763 struct fdp1_ctx *ctx = vb2_get_drv_priv(vq);
1764 struct fdp1_q_data *q_data;
1767 q_data = get_q_data(ctx, vq->type);
1770 if (*nplanes > FDP1_MAX_PLANES)
1776 *nplanes = q_data->format.num_planes;
1778 for (i = 0; i < *nplanes; i++)
1779 sizes[i] = q_data->format.plane_fmt[i].sizeimage;
1784 static void fdp1_buf_prepare_field(struct fdp1_q_data *q_data,
1785 struct vb2_v4l2_buffer *vbuf,
1786 unsigned int field_num)
1788 struct fdp1_buffer *buf = to_fdp1_buffer(vbuf);
1789 struct fdp1_field_buffer *fbuf = &buf->fields[field_num];
1790 unsigned int num_fields;
1793 num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1;
1796 fbuf->last_field = (field_num + 1) == num_fields;
1798 for (i = 0; i < vbuf->vb2_buf.num_planes; ++i)
1799 fbuf->addrs[i] = vb2_dma_contig_plane_dma_addr(&vbuf->vb2_buf, i);
1801 switch (vbuf->field) {
1802 case V4L2_FIELD_INTERLACED:
1804 * Interlaced means bottom-top for 60Hz TV standards (NTSC) and
1805 * top-bottom for 50Hz. As TV standards are not applicable to
1806 * the mem-to-mem API, use the height as a heuristic.
1808 fbuf->field = (q_data->format.height < 576) == field_num
1809 ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM;
1811 case V4L2_FIELD_INTERLACED_TB:
1812 case V4L2_FIELD_SEQ_TB:
1813 fbuf->field = field_num ? V4L2_FIELD_BOTTOM : V4L2_FIELD_TOP;
1815 case V4L2_FIELD_INTERLACED_BT:
1816 case V4L2_FIELD_SEQ_BT:
1817 fbuf->field = field_num ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM;
1820 fbuf->field = vbuf->field;
1824 /* Buffer is completed */
1828 /* Adjust buffer addresses for second field */
1829 switch (vbuf->field) {
1830 case V4L2_FIELD_INTERLACED:
1831 case V4L2_FIELD_INTERLACED_TB:
1832 case V4L2_FIELD_INTERLACED_BT:
1833 for (i = 0; i < vbuf->vb2_buf.num_planes; i++)
1835 (i == 0 ? q_data->stride_y : q_data->stride_c);
1837 case V4L2_FIELD_SEQ_TB:
1838 case V4L2_FIELD_SEQ_BT:
1839 for (i = 0; i < vbuf->vb2_buf.num_planes; i++)
1840 fbuf->addrs[i] += q_data->vsize *
1841 (i == 0 ? q_data->stride_y : q_data->stride_c);
1846 static int fdp1_buf_prepare(struct vb2_buffer *vb)
1848 struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
1849 struct fdp1_q_data *q_data = get_q_data(ctx, vb->vb2_queue->type);
1850 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1851 struct fdp1_buffer *buf = to_fdp1_buffer(vbuf);
1854 if (V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type)) {
1855 bool field_valid = true;
1857 /* Validate the buffer field. */
1858 switch (q_data->format.field) {
1859 case V4L2_FIELD_NONE:
1860 if (vbuf->field != V4L2_FIELD_NONE)
1861 field_valid = false;
1864 case V4L2_FIELD_ALTERNATE:
1865 if (vbuf->field != V4L2_FIELD_TOP &&
1866 vbuf->field != V4L2_FIELD_BOTTOM)
1867 field_valid = false;
1870 case V4L2_FIELD_INTERLACED:
1871 case V4L2_FIELD_SEQ_TB:
1872 case V4L2_FIELD_SEQ_BT:
1873 case V4L2_FIELD_INTERLACED_TB:
1874 case V4L2_FIELD_INTERLACED_BT:
1875 if (vbuf->field != q_data->format.field)
1876 field_valid = false;
1882 "buffer field %u invalid for format field %u\n",
1883 vbuf->field, q_data->format.field);
1887 vbuf->field = V4L2_FIELD_NONE;
1890 /* Validate the planes sizes. */
1891 for (i = 0; i < q_data->format.num_planes; i++) {
1892 unsigned long size = q_data->format.plane_fmt[i].sizeimage;
1894 if (vb2_plane_size(vb, i) < size) {
1896 "data will not fit into plane [%u/%u] (%lu < %lu)\n",
1897 i, q_data->format.num_planes,
1898 vb2_plane_size(vb, i), size);
1902 /* We have known size formats all around */
1903 vb2_set_plane_payload(vb, i, size);
1906 buf->num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1;
1907 for (i = 0; i < buf->num_fields; ++i)
1908 fdp1_buf_prepare_field(q_data, vbuf, i);
1913 static void fdp1_buf_queue(struct vb2_buffer *vb)
1915 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1916 struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
1918 v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
1921 static int fdp1_start_streaming(struct vb2_queue *q, unsigned int count)
1923 struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
1924 struct fdp1_q_data *q_data = get_q_data(ctx, q->type);
1926 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
1928 * Force our deint_mode when we are progressive,
1929 * ignoring any setting on the device from the user,
1930 * Otherwise, lock in the requested de-interlace mode.
1932 if (q_data->format.field == V4L2_FIELD_NONE)
1933 ctx->deint_mode = FDP1_PROGRESSIVE;
1935 if (ctx->deint_mode == FDP1_ADAPT2D3D) {
1937 dma_addr_t smsk_base;
1938 const u32 bpp = 2; /* bytes per pixel */
1940 stride = round_up(q_data->format.width, 8);
1942 ctx->smsk_size = bpp * stride * q_data->vsize;
1944 ctx->smsk_cpu = dma_alloc_coherent(ctx->fdp1->dev,
1945 ctx->smsk_size, &smsk_base, GFP_KERNEL);
1947 if (ctx->smsk_cpu == NULL) {
1948 dprintk(ctx->fdp1, "Failed to alloc smsk\n");
1952 ctx->smsk_addr[0] = smsk_base;
1953 ctx->smsk_addr[1] = smsk_base + (ctx->smsk_size/2);
1960 static void fdp1_stop_streaming(struct vb2_queue *q)
1962 struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
1963 struct vb2_v4l2_buffer *vbuf;
1964 unsigned long flags;
1967 if (V4L2_TYPE_IS_OUTPUT(q->type))
1968 vbuf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1970 vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
1973 spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
1974 v4l2_m2m_buf_done(vbuf, VB2_BUF_STATE_ERROR);
1975 spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
1978 /* Empty Output queues */
1979 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
1980 /* Empty our internal queues */
1981 struct fdp1_field_buffer *fbuf;
1983 /* Free any queued buffers */
1984 fbuf = fdp1_dequeue_field(ctx);
1985 while (fbuf != NULL) {
1986 fdp1_field_complete(ctx, fbuf);
1987 fbuf = fdp1_dequeue_field(ctx);
1990 /* Free smsk_data */
1991 if (ctx->smsk_cpu) {
1992 dma_free_coherent(ctx->fdp1->dev, ctx->smsk_size,
1993 ctx->smsk_cpu, ctx->smsk_addr[0]);
1994 ctx->smsk_addr[0] = ctx->smsk_addr[1] = 0;
1995 ctx->smsk_cpu = NULL;
1998 WARN(!list_empty(&ctx->fields_queue),
1999 "Buffer queue not empty");
2001 /* Empty Capture queues (Jobs) */
2002 struct fdp1_job *job;
2004 job = get_queued_job(ctx->fdp1);
2006 if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
2007 fdp1_field_complete(ctx, job->previous);
2009 fdp1_field_complete(ctx, job->active);
2011 v4l2_m2m_buf_done(job->dst->vb, VB2_BUF_STATE_ERROR);
2014 job = get_queued_job(ctx->fdp1);
2017 /* Free any held buffer in the ctx */
2018 fdp1_field_complete(ctx, ctx->previous);
2020 WARN(!list_empty(&ctx->fdp1->queued_job_list),
2021 "Queued Job List not empty");
2023 WARN(!list_empty(&ctx->fdp1->hw_job_list),
2024 "HW Job list not empty");
2028 static const struct vb2_ops fdp1_qops = {
2029 .queue_setup = fdp1_queue_setup,
2030 .buf_prepare = fdp1_buf_prepare,
2031 .buf_queue = fdp1_buf_queue,
2032 .start_streaming = fdp1_start_streaming,
2033 .stop_streaming = fdp1_stop_streaming,
2034 .wait_prepare = vb2_ops_wait_prepare,
2035 .wait_finish = vb2_ops_wait_finish,
2038 static int queue_init(void *priv, struct vb2_queue *src_vq,
2039 struct vb2_queue *dst_vq)
2041 struct fdp1_ctx *ctx = priv;
2044 src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
2045 src_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
2046 src_vq->drv_priv = ctx;
2047 src_vq->buf_struct_size = sizeof(struct fdp1_buffer);
2048 src_vq->ops = &fdp1_qops;
2049 src_vq->mem_ops = &vb2_dma_contig_memops;
2050 src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2051 src_vq->lock = &ctx->fdp1->dev_mutex;
2052 src_vq->dev = ctx->fdp1->dev;
2054 ret = vb2_queue_init(src_vq);
2058 dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
2059 dst_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
2060 dst_vq->drv_priv = ctx;
2061 dst_vq->buf_struct_size = sizeof(struct fdp1_buffer);
2062 dst_vq->ops = &fdp1_qops;
2063 dst_vq->mem_ops = &vb2_dma_contig_memops;
2064 dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2065 dst_vq->lock = &ctx->fdp1->dev_mutex;
2066 dst_vq->dev = ctx->fdp1->dev;
2068 return vb2_queue_init(dst_vq);
2074 static int fdp1_open(struct file *file)
2076 struct fdp1_dev *fdp1 = video_drvdata(file);
2077 struct v4l2_pix_format_mplane format;
2078 struct fdp1_ctx *ctx = NULL;
2079 struct v4l2_ctrl *ctrl;
2082 if (mutex_lock_interruptible(&fdp1->dev_mutex))
2083 return -ERESTARTSYS;
2085 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2091 v4l2_fh_init(&ctx->fh, video_devdata(file));
2092 file->private_data = &ctx->fh;
2095 /* Initialise Queues */
2096 INIT_LIST_HEAD(&ctx->fields_queue);
2101 /* Initialise controls */
2103 v4l2_ctrl_handler_init(&ctx->hdl, 3);
2104 v4l2_ctrl_new_std_menu_items(&ctx->hdl, &fdp1_ctrl_ops,
2105 V4L2_CID_DEINTERLACING_MODE,
2106 FDP1_NEXTFIELD, BIT(0), FDP1_FIXED3D,
2107 fdp1_ctrl_deint_menu);
2109 ctrl = v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
2110 V4L2_CID_MIN_BUFFERS_FOR_CAPTURE, 1, 2, 1, 1);
2112 ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
2114 v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
2115 V4L2_CID_ALPHA_COMPONENT, 0, 255, 1, 255);
2117 if (ctx->hdl.error) {
2118 ret = ctx->hdl.error;
2122 ctx->fh.ctrl_handler = &ctx->hdl;
2123 v4l2_ctrl_handler_setup(&ctx->hdl);
2125 /* Configure default parameters. */
2126 memset(&format, 0, sizeof(format));
2127 fdp1_set_format(ctx, &format, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
2129 ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(fdp1->m2m_dev, ctx, &queue_init);
2131 if (IS_ERR(ctx->fh.m2m_ctx)) {
2132 ret = PTR_ERR(ctx->fh.m2m_ctx);
2136 /* Perform any power management required */
2137 ret = pm_runtime_resume_and_get(fdp1->dev);
2141 v4l2_fh_add(&ctx->fh);
2143 dprintk(fdp1, "Created instance: %p, m2m_ctx: %p\n",
2144 ctx, ctx->fh.m2m_ctx);
2146 mutex_unlock(&fdp1->dev_mutex);
2150 v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
2152 v4l2_ctrl_handler_free(&ctx->hdl);
2155 mutex_unlock(&fdp1->dev_mutex);
2159 static int fdp1_release(struct file *file)
2161 struct fdp1_dev *fdp1 = video_drvdata(file);
2162 struct fdp1_ctx *ctx = fh_to_ctx(file->private_data);
2164 dprintk(fdp1, "Releasing instance %p\n", ctx);
2166 v4l2_fh_del(&ctx->fh);
2167 v4l2_fh_exit(&ctx->fh);
2168 v4l2_ctrl_handler_free(&ctx->hdl);
2169 mutex_lock(&fdp1->dev_mutex);
2170 v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
2171 mutex_unlock(&fdp1->dev_mutex);
2174 pm_runtime_put(fdp1->dev);
2179 static const struct v4l2_file_operations fdp1_fops = {
2180 .owner = THIS_MODULE,
2182 .release = fdp1_release,
2183 .poll = v4l2_m2m_fop_poll,
2184 .unlocked_ioctl = video_ioctl2,
2185 .mmap = v4l2_m2m_fop_mmap,
2188 static const struct video_device fdp1_videodev = {
2189 .name = DRIVER_NAME,
2190 .vfl_dir = VFL_DIR_M2M,
2192 .device_caps = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING,
2193 .ioctl_ops = &fdp1_ioctl_ops,
2195 .release = video_device_release_empty,
2198 static const struct v4l2_m2m_ops m2m_ops = {
2199 .device_run = fdp1_m2m_device_run,
2200 .job_ready = fdp1_m2m_job_ready,
2201 .job_abort = fdp1_m2m_job_abort,
2204 static irqreturn_t fdp1_irq_handler(int irq, void *dev_id)
2206 struct fdp1_dev *fdp1 = dev_id;
2212 int_status = fdp1_read(fdp1, FD1_CTL_IRQSTA);
2213 cycles = fdp1_read(fdp1, FD1_CTL_VCYCLE_STAT);
2214 ctl_status = fdp1_read(fdp1, FD1_CTL_STATUS);
2215 vint_cnt = (ctl_status & FD1_CTL_STATUS_VINT_CNT_MASK) >>
2216 FD1_CTL_STATUS_VINT_CNT_SHIFT;
2218 /* Clear interrupts */
2219 fdp1_write(fdp1, ~(int_status) & FD1_CTL_IRQ_MASK, FD1_CTL_IRQSTA);
2222 dprintk(fdp1, "IRQ: 0x%x %s%s%s\n", int_status,
2223 int_status & FD1_CTL_IRQ_VERE ? "[Error]" : "[!E]",
2224 int_status & FD1_CTL_IRQ_VINTE ? "[VSync]" : "[!V]",
2225 int_status & FD1_CTL_IRQ_FREE ? "[FrameEnd]" : "[!F]");
2227 dprintk(fdp1, "CycleStatus = %d (%dms)\n",
2228 cycles, cycles/(fdp1->clk_rate/1000));
2231 "Control Status = 0x%08x : VINT_CNT = %d %s:%s:%s:%s\n",
2232 ctl_status, vint_cnt,
2233 ctl_status & FD1_CTL_STATUS_SGREGSET ? "RegSet" : "",
2234 ctl_status & FD1_CTL_STATUS_SGVERR ? "Vsync Error" : "",
2235 ctl_status & FD1_CTL_STATUS_SGFREND ? "FrameEnd" : "",
2236 ctl_status & FD1_CTL_STATUS_BSY ? "Busy" : "");
2237 dprintk(fdp1, "***********************************\n");
2240 /* Spurious interrupt */
2241 if (!(FD1_CTL_IRQ_MASK & int_status))
2244 /* Work completed, release the frame */
2245 if (FD1_CTL_IRQ_VERE & int_status)
2246 device_frame_end(fdp1, VB2_BUF_STATE_ERROR);
2247 else if (FD1_CTL_IRQ_FREE & int_status)
2248 device_frame_end(fdp1, VB2_BUF_STATE_DONE);
2253 static int fdp1_probe(struct platform_device *pdev)
2255 struct fdp1_dev *fdp1;
2256 struct video_device *vfd;
2257 struct device_node *fcp_node;
2264 fdp1 = devm_kzalloc(&pdev->dev, sizeof(*fdp1), GFP_KERNEL);
2268 INIT_LIST_HEAD(&fdp1->free_job_list);
2269 INIT_LIST_HEAD(&fdp1->queued_job_list);
2270 INIT_LIST_HEAD(&fdp1->hw_job_list);
2272 /* Initialise the jobs on the free list */
2273 for (i = 0; i < ARRAY_SIZE(fdp1->jobs); i++)
2274 list_add(&fdp1->jobs[i].list, &fdp1->free_job_list);
2276 mutex_init(&fdp1->dev_mutex);
2278 spin_lock_init(&fdp1->irqlock);
2279 spin_lock_init(&fdp1->device_process_lock);
2280 fdp1->dev = &pdev->dev;
2281 platform_set_drvdata(pdev, fdp1);
2283 /* Memory-mapped registers */
2284 fdp1->regs = devm_platform_ioremap_resource(pdev, 0);
2285 if (IS_ERR(fdp1->regs))
2286 return PTR_ERR(fdp1->regs);
2288 /* Interrupt service routine registration */
2289 ret = platform_get_irq(pdev, 0);
2294 ret = devm_request_irq(&pdev->dev, fdp1->irq, fdp1_irq_handler, 0,
2295 dev_name(&pdev->dev), fdp1);
2297 dev_err(&pdev->dev, "cannot claim IRQ %d\n", fdp1->irq);
2302 fcp_node = of_parse_phandle(pdev->dev.of_node, "renesas,fcp", 0);
2304 fdp1->fcp = rcar_fcp_get(fcp_node);
2305 of_node_put(fcp_node);
2306 if (IS_ERR(fdp1->fcp)) {
2307 dev_dbg(&pdev->dev, "FCP not found (%ld)\n",
2308 PTR_ERR(fdp1->fcp));
2309 return PTR_ERR(fdp1->fcp);
2313 /* Determine our clock rate */
2314 clk = clk_get(&pdev->dev, NULL);
2320 fdp1->clk_rate = clk_get_rate(clk);
2323 /* V4L2 device registration */
2324 ret = v4l2_device_register(&pdev->dev, &fdp1->v4l2_dev);
2326 v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
2330 /* M2M registration */
2331 fdp1->m2m_dev = v4l2_m2m_init(&m2m_ops);
2332 if (IS_ERR(fdp1->m2m_dev)) {
2333 v4l2_err(&fdp1->v4l2_dev, "Failed to init mem2mem device\n");
2334 ret = PTR_ERR(fdp1->m2m_dev);
2338 /* Video registration */
2339 fdp1->vfd = fdp1_videodev;
2341 vfd->lock = &fdp1->dev_mutex;
2342 vfd->v4l2_dev = &fdp1->v4l2_dev;
2343 video_set_drvdata(vfd, fdp1);
2344 strscpy(vfd->name, fdp1_videodev.name, sizeof(vfd->name));
2346 ret = video_register_device(vfd, VFL_TYPE_VIDEO, 0);
2348 v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
2352 v4l2_info(&fdp1->v4l2_dev, "Device registered as /dev/video%d\n",
2355 /* Power up the cells to read HW */
2356 pm_runtime_enable(&pdev->dev);
2357 ret = pm_runtime_resume_and_get(fdp1->dev);
2361 hw_version = fdp1_read(fdp1, FD1_IP_INTDATA);
2362 switch (hw_version) {
2364 dprintk(fdp1, "FDP1 Version R-Car M3-W\n");
2367 dprintk(fdp1, "FDP1 Version R-Car H3\n");
2370 dprintk(fdp1, "FDP1 Version R-Car M3-N\n");
2373 dprintk(fdp1, "FDP1 Version R-Car E3\n");
2376 dev_err(fdp1->dev, "FDP1 Unidentifiable (0x%08x)\n",
2380 /* Allow the hw to sleep until an open call puts it to use */
2381 pm_runtime_put(fdp1->dev);
2386 pm_runtime_disable(fdp1->dev);
2389 v4l2_m2m_release(fdp1->m2m_dev);
2392 v4l2_device_unregister(&fdp1->v4l2_dev);
2395 rcar_fcp_put(fdp1->fcp);
2399 static void fdp1_remove(struct platform_device *pdev)
2401 struct fdp1_dev *fdp1 = platform_get_drvdata(pdev);
2403 v4l2_m2m_release(fdp1->m2m_dev);
2404 video_unregister_device(&fdp1->vfd);
2405 v4l2_device_unregister(&fdp1->v4l2_dev);
2406 pm_runtime_disable(&pdev->dev);
2407 rcar_fcp_put(fdp1->fcp);
2410 static int __maybe_unused fdp1_pm_runtime_suspend(struct device *dev)
2412 struct fdp1_dev *fdp1 = dev_get_drvdata(dev);
2414 rcar_fcp_disable(fdp1->fcp);
2419 static int __maybe_unused fdp1_pm_runtime_resume(struct device *dev)
2421 struct fdp1_dev *fdp1 = dev_get_drvdata(dev);
2423 /* Program in the static LUTs */
2426 return rcar_fcp_enable(fdp1->fcp);
2429 static const struct dev_pm_ops fdp1_pm_ops = {
2430 SET_RUNTIME_PM_OPS(fdp1_pm_runtime_suspend,
2431 fdp1_pm_runtime_resume,
2435 static const struct of_device_id fdp1_dt_ids[] = {
2436 { .compatible = "renesas,fdp1" },
2439 MODULE_DEVICE_TABLE(of, fdp1_dt_ids);
2441 static struct platform_driver fdp1_pdrv = {
2442 .probe = fdp1_probe,
2443 .remove_new = fdp1_remove,
2445 .name = DRIVER_NAME,
2446 .of_match_table = fdp1_dt_ids,
2451 module_platform_driver(fdp1_pdrv);
2453 MODULE_DESCRIPTION("Renesas R-Car Fine Display Processor Driver");
2455 MODULE_LICENSE("GPL");
2456 MODULE_ALIAS("platform:" DRIVER_NAME);