]> Git Repo - linux.git/blob - drivers/media/pci/intel/ipu3/cio2-bridge.c
arm64: avoid prototype warnings for syscalls
[linux.git] / drivers / media / pci / intel / ipu3 / cio2-bridge.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Author: Dan Scally <[email protected]> */
3
4 #include <linux/acpi.h>
5 #include <linux/device.h>
6 #include <linux/i2c.h>
7 #include <linux/pci.h>
8 #include <linux/property.h>
9 #include <media/v4l2-fwnode.h>
10
11 #include "cio2-bridge.h"
12
13 /*
14  * Extend this array with ACPI Hardware IDs of devices known to be working
15  * plus the number of link-frequencies expected by their drivers, along with
16  * the frequency values in hertz. This is somewhat opportunistic way of adding
17  * support for this for now in the hopes of a better source for the information
18  * (possibly some encoded value in the SSDB buffer that we're unaware of)
19  * becoming apparent in the future.
20  *
21  * Do not add an entry for a sensor that is not actually supported.
22  */
23 static const struct cio2_sensor_config cio2_supported_sensors[] = {
24         /* Omnivision OV5693 */
25         CIO2_SENSOR_CONFIG("INT33BE", 1, 419200000),
26         /* Omnivision OV8865 */
27         CIO2_SENSOR_CONFIG("INT347A", 1, 360000000),
28         /* Omnivision OV7251 */
29         CIO2_SENSOR_CONFIG("INT347E", 1, 319200000),
30         /* Omnivision OV2680 */
31         CIO2_SENSOR_CONFIG("OVTI2680", 0),
32         /* Omnivision ov8856 */
33         CIO2_SENSOR_CONFIG("OVTI8856", 3, 180000000, 360000000, 720000000),
34         /* Omnivision ov2740 */
35         CIO2_SENSOR_CONFIG("INT3474", 1, 360000000),
36         /* Hynix hi556 */
37         CIO2_SENSOR_CONFIG("INT3537", 1, 437000000),
38         /* Omnivision ov13b10 */
39         CIO2_SENSOR_CONFIG("OVTIDB10", 1, 560000000),
40 };
41
42 static const struct cio2_property_names prop_names = {
43         .clock_frequency = "clock-frequency",
44         .rotation = "rotation",
45         .orientation = "orientation",
46         .bus_type = "bus-type",
47         .data_lanes = "data-lanes",
48         .remote_endpoint = "remote-endpoint",
49         .link_frequencies = "link-frequencies",
50 };
51
52 static const char * const cio2_vcm_types[] = {
53         "ad5823",
54         "dw9714",
55         "ad5816",
56         "dw9719",
57         "dw9718",
58         "dw9806b",
59         "wv517s",
60         "lc898122xa",
61         "lc898212axb",
62 };
63
64 static int cio2_bridge_read_acpi_buffer(struct acpi_device *adev, char *id,
65                                         void *data, u32 size)
66 {
67         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
68         union acpi_object *obj;
69         acpi_status status;
70         int ret = 0;
71
72         status = acpi_evaluate_object(adev->handle, id, NULL, &buffer);
73         if (ACPI_FAILURE(status))
74                 return -ENODEV;
75
76         obj = buffer.pointer;
77         if (!obj) {
78                 dev_err(&adev->dev, "Couldn't locate ACPI buffer\n");
79                 return -ENODEV;
80         }
81
82         if (obj->type != ACPI_TYPE_BUFFER) {
83                 dev_err(&adev->dev, "Not an ACPI buffer\n");
84                 ret = -ENODEV;
85                 goto out_free_buff;
86         }
87
88         if (obj->buffer.length > size) {
89                 dev_err(&adev->dev, "Given buffer is too small\n");
90                 ret = -EINVAL;
91                 goto out_free_buff;
92         }
93
94         memcpy(data, obj->buffer.pointer, obj->buffer.length);
95
96 out_free_buff:
97         kfree(buffer.pointer);
98         return ret;
99 }
100
101 static u32 cio2_bridge_parse_rotation(struct cio2_sensor *sensor)
102 {
103         switch (sensor->ssdb.degree) {
104         case CIO2_SENSOR_ROTATION_NORMAL:
105                 return 0;
106         case CIO2_SENSOR_ROTATION_INVERTED:
107                 return 180;
108         default:
109                 dev_warn(&sensor->adev->dev,
110                          "Unknown rotation %d. Assume 0 degree rotation\n",
111                          sensor->ssdb.degree);
112                 return 0;
113         }
114 }
115
116 static enum v4l2_fwnode_orientation cio2_bridge_parse_orientation(struct cio2_sensor *sensor)
117 {
118         switch (sensor->pld->panel) {
119         case ACPI_PLD_PANEL_FRONT:
120                 return V4L2_FWNODE_ORIENTATION_FRONT;
121         case ACPI_PLD_PANEL_BACK:
122                 return V4L2_FWNODE_ORIENTATION_BACK;
123         case ACPI_PLD_PANEL_TOP:
124         case ACPI_PLD_PANEL_LEFT:
125         case ACPI_PLD_PANEL_RIGHT:
126         case ACPI_PLD_PANEL_UNKNOWN:
127                 return V4L2_FWNODE_ORIENTATION_EXTERNAL;
128         default:
129                 dev_warn(&sensor->adev->dev, "Unknown _PLD panel value %d\n",
130                          sensor->pld->panel);
131                 return V4L2_FWNODE_ORIENTATION_EXTERNAL;
132         }
133 }
134
135 static void cio2_bridge_create_fwnode_properties(
136         struct cio2_sensor *sensor,
137         struct cio2_bridge *bridge,
138         const struct cio2_sensor_config *cfg)
139 {
140         u32 rotation;
141         enum v4l2_fwnode_orientation orientation;
142
143         rotation = cio2_bridge_parse_rotation(sensor);
144         orientation = cio2_bridge_parse_orientation(sensor);
145
146         sensor->prop_names = prop_names;
147
148         sensor->local_ref[0] = SOFTWARE_NODE_REFERENCE(&sensor->swnodes[SWNODE_CIO2_ENDPOINT]);
149         sensor->remote_ref[0] = SOFTWARE_NODE_REFERENCE(&sensor->swnodes[SWNODE_SENSOR_ENDPOINT]);
150
151         sensor->dev_properties[0] = PROPERTY_ENTRY_U32(
152                                         sensor->prop_names.clock_frequency,
153                                         sensor->ssdb.mclkspeed);
154         sensor->dev_properties[1] = PROPERTY_ENTRY_U32(
155                                         sensor->prop_names.rotation,
156                                         rotation);
157         sensor->dev_properties[2] = PROPERTY_ENTRY_U32(
158                                         sensor->prop_names.orientation,
159                                         orientation);
160         if (sensor->ssdb.vcmtype) {
161                 sensor->vcm_ref[0] =
162                         SOFTWARE_NODE_REFERENCE(&sensor->swnodes[SWNODE_VCM]);
163                 sensor->dev_properties[3] =
164                         PROPERTY_ENTRY_REF_ARRAY("lens-focus", sensor->vcm_ref);
165         }
166
167         sensor->ep_properties[0] = PROPERTY_ENTRY_U32(
168                                         sensor->prop_names.bus_type,
169                                         V4L2_FWNODE_BUS_TYPE_CSI2_DPHY);
170         sensor->ep_properties[1] = PROPERTY_ENTRY_U32_ARRAY_LEN(
171                                         sensor->prop_names.data_lanes,
172                                         bridge->data_lanes,
173                                         sensor->ssdb.lanes);
174         sensor->ep_properties[2] = PROPERTY_ENTRY_REF_ARRAY(
175                                         sensor->prop_names.remote_endpoint,
176                                         sensor->local_ref);
177
178         if (cfg->nr_link_freqs > 0)
179                 sensor->ep_properties[3] = PROPERTY_ENTRY_U64_ARRAY_LEN(
180                         sensor->prop_names.link_frequencies,
181                         cfg->link_freqs,
182                         cfg->nr_link_freqs);
183
184         sensor->cio2_properties[0] = PROPERTY_ENTRY_U32_ARRAY_LEN(
185                                         sensor->prop_names.data_lanes,
186                                         bridge->data_lanes,
187                                         sensor->ssdb.lanes);
188         sensor->cio2_properties[1] = PROPERTY_ENTRY_REF_ARRAY(
189                                         sensor->prop_names.remote_endpoint,
190                                         sensor->remote_ref);
191 }
192
193 static void cio2_bridge_init_swnode_names(struct cio2_sensor *sensor)
194 {
195         snprintf(sensor->node_names.remote_port,
196                  sizeof(sensor->node_names.remote_port),
197                  SWNODE_GRAPH_PORT_NAME_FMT, sensor->ssdb.link);
198         snprintf(sensor->node_names.port,
199                  sizeof(sensor->node_names.port),
200                  SWNODE_GRAPH_PORT_NAME_FMT, 0); /* Always port 0 */
201         snprintf(sensor->node_names.endpoint,
202                  sizeof(sensor->node_names.endpoint),
203                  SWNODE_GRAPH_ENDPOINT_NAME_FMT, 0); /* And endpoint 0 */
204 }
205
206 static void cio2_bridge_init_swnode_group(struct cio2_sensor *sensor)
207 {
208         struct software_node *nodes = sensor->swnodes;
209
210         sensor->group[SWNODE_SENSOR_HID] = &nodes[SWNODE_SENSOR_HID];
211         sensor->group[SWNODE_SENSOR_PORT] = &nodes[SWNODE_SENSOR_PORT];
212         sensor->group[SWNODE_SENSOR_ENDPOINT] = &nodes[SWNODE_SENSOR_ENDPOINT];
213         sensor->group[SWNODE_CIO2_PORT] = &nodes[SWNODE_CIO2_PORT];
214         sensor->group[SWNODE_CIO2_ENDPOINT] = &nodes[SWNODE_CIO2_ENDPOINT];
215         if (sensor->ssdb.vcmtype)
216                 sensor->group[SWNODE_VCM] =  &nodes[SWNODE_VCM];
217 }
218
219 static void cio2_bridge_create_connection_swnodes(struct cio2_bridge *bridge,
220                                                   struct cio2_sensor *sensor)
221 {
222         struct software_node *nodes = sensor->swnodes;
223         char vcm_name[ACPI_ID_LEN + 4];
224
225         cio2_bridge_init_swnode_names(sensor);
226
227         nodes[SWNODE_SENSOR_HID] = NODE_SENSOR(sensor->name,
228                                                sensor->dev_properties);
229         nodes[SWNODE_SENSOR_PORT] = NODE_PORT(sensor->node_names.port,
230                                               &nodes[SWNODE_SENSOR_HID]);
231         nodes[SWNODE_SENSOR_ENDPOINT] = NODE_ENDPOINT(
232                                                 sensor->node_names.endpoint,
233                                                 &nodes[SWNODE_SENSOR_PORT],
234                                                 sensor->ep_properties);
235         nodes[SWNODE_CIO2_PORT] = NODE_PORT(sensor->node_names.remote_port,
236                                             &bridge->cio2_hid_node);
237         nodes[SWNODE_CIO2_ENDPOINT] = NODE_ENDPOINT(
238                                                 sensor->node_names.endpoint,
239                                                 &nodes[SWNODE_CIO2_PORT],
240                                                 sensor->cio2_properties);
241         if (sensor->ssdb.vcmtype) {
242                 /* append ssdb.link to distinguish VCM nodes with same HID */
243                 snprintf(vcm_name, sizeof(vcm_name), "%s-%u",
244                          cio2_vcm_types[sensor->ssdb.vcmtype - 1],
245                          sensor->ssdb.link);
246                 nodes[SWNODE_VCM] = NODE_VCM(vcm_name);
247         }
248
249         cio2_bridge_init_swnode_group(sensor);
250 }
251
252 static void cio2_bridge_instantiate_vcm_i2c_client(struct cio2_sensor *sensor)
253 {
254         struct i2c_board_info board_info = { };
255         char name[16];
256
257         if (!sensor->ssdb.vcmtype)
258                 return;
259
260         snprintf(name, sizeof(name), "%s-VCM", acpi_dev_name(sensor->adev));
261         board_info.dev_name = name;
262         strscpy(board_info.type, cio2_vcm_types[sensor->ssdb.vcmtype - 1],
263                 ARRAY_SIZE(board_info.type));
264         board_info.swnode = &sensor->swnodes[SWNODE_VCM];
265
266         sensor->vcm_i2c_client =
267                 i2c_acpi_new_device_by_fwnode(acpi_fwnode_handle(sensor->adev),
268                                               1, &board_info);
269         if (IS_ERR(sensor->vcm_i2c_client)) {
270                 dev_warn(&sensor->adev->dev, "Error instantiation VCM i2c-client: %ld\n",
271                          PTR_ERR(sensor->vcm_i2c_client));
272                 sensor->vcm_i2c_client = NULL;
273         }
274 }
275
276 static void cio2_bridge_unregister_sensors(struct cio2_bridge *bridge)
277 {
278         struct cio2_sensor *sensor;
279         unsigned int i;
280
281         for (i = 0; i < bridge->n_sensors; i++) {
282                 sensor = &bridge->sensors[i];
283                 software_node_unregister_node_group(sensor->group);
284                 ACPI_FREE(sensor->pld);
285                 acpi_dev_put(sensor->adev);
286                 i2c_unregister_device(sensor->vcm_i2c_client);
287         }
288 }
289
290 static int cio2_bridge_connect_sensor(const struct cio2_sensor_config *cfg,
291                                       struct cio2_bridge *bridge,
292                                       struct pci_dev *cio2)
293 {
294         struct fwnode_handle *fwnode, *primary;
295         struct cio2_sensor *sensor;
296         struct acpi_device *adev;
297         acpi_status status;
298         int ret;
299
300         for_each_acpi_dev_match(adev, cfg->hid, NULL, -1) {
301                 if (!adev->status.enabled)
302                         continue;
303
304                 if (bridge->n_sensors >= CIO2_NUM_PORTS) {
305                         acpi_dev_put(adev);
306                         dev_err(&cio2->dev, "Exceeded available CIO2 ports\n");
307                         return -EINVAL;
308                 }
309
310                 sensor = &bridge->sensors[bridge->n_sensors];
311
312                 ret = cio2_bridge_read_acpi_buffer(adev, "SSDB",
313                                                    &sensor->ssdb,
314                                                    sizeof(sensor->ssdb));
315                 if (ret)
316                         goto err_put_adev;
317
318                 snprintf(sensor->name, sizeof(sensor->name), "%s-%u",
319                          cfg->hid, sensor->ssdb.link);
320
321                 if (sensor->ssdb.vcmtype > ARRAY_SIZE(cio2_vcm_types)) {
322                         dev_warn(&adev->dev, "Unknown VCM type %d\n",
323                                  sensor->ssdb.vcmtype);
324                         sensor->ssdb.vcmtype = 0;
325                 }
326
327                 status = acpi_get_physical_device_location(adev->handle, &sensor->pld);
328                 if (ACPI_FAILURE(status)) {
329                         ret = -ENODEV;
330                         goto err_put_adev;
331                 }
332
333                 if (sensor->ssdb.lanes > CIO2_MAX_LANES) {
334                         dev_err(&adev->dev,
335                                 "Number of lanes in SSDB is invalid\n");
336                         ret = -EINVAL;
337                         goto err_free_pld;
338                 }
339
340                 cio2_bridge_create_fwnode_properties(sensor, bridge, cfg);
341                 cio2_bridge_create_connection_swnodes(bridge, sensor);
342
343                 ret = software_node_register_node_group(sensor->group);
344                 if (ret)
345                         goto err_free_pld;
346
347                 fwnode = software_node_fwnode(&sensor->swnodes[
348                                                       SWNODE_SENSOR_HID]);
349                 if (!fwnode) {
350                         ret = -ENODEV;
351                         goto err_free_swnodes;
352                 }
353
354                 sensor->adev = acpi_dev_get(adev);
355
356                 primary = acpi_fwnode_handle(adev);
357                 primary->secondary = fwnode;
358
359                 cio2_bridge_instantiate_vcm_i2c_client(sensor);
360
361                 dev_info(&cio2->dev, "Found supported sensor %s\n",
362                          acpi_dev_name(adev));
363
364                 bridge->n_sensors++;
365         }
366
367         return 0;
368
369 err_free_swnodes:
370         software_node_unregister_node_group(sensor->group);
371 err_free_pld:
372         ACPI_FREE(sensor->pld);
373 err_put_adev:
374         acpi_dev_put(adev);
375         return ret;
376 }
377
378 static int cio2_bridge_connect_sensors(struct cio2_bridge *bridge,
379                                        struct pci_dev *cio2)
380 {
381         unsigned int i;
382         int ret;
383
384         for (i = 0; i < ARRAY_SIZE(cio2_supported_sensors); i++) {
385                 const struct cio2_sensor_config *cfg =
386                         &cio2_supported_sensors[i];
387
388                 ret = cio2_bridge_connect_sensor(cfg, bridge, cio2);
389                 if (ret)
390                         goto err_unregister_sensors;
391         }
392
393         return 0;
394
395 err_unregister_sensors:
396         cio2_bridge_unregister_sensors(bridge);
397         return ret;
398 }
399
400 /*
401  * The VCM cannot be probed until the PMIC is completely setup. We cannot rely
402  * on -EPROBE_DEFER for this, since the consumer<->supplier relations between
403  * the VCM and regulators/clks are not described in ACPI, instead they are
404  * passed as board-data to the PMIC drivers. Since -PROBE_DEFER does not work
405  * for the clks/regulators the VCM i2c-clients must not be instantiated until
406  * the PMIC is fully setup.
407  *
408  * The sensor/VCM ACPI device has an ACPI _DEP on the PMIC, check this using the
409  * acpi_dev_ready_for_enumeration() helper, like the i2c-core-acpi code does
410  * for the sensors.
411  */
412 static int cio2_bridge_sensors_are_ready(void)
413 {
414         struct acpi_device *adev;
415         bool ready = true;
416         unsigned int i;
417
418         for (i = 0; i < ARRAY_SIZE(cio2_supported_sensors); i++) {
419                 const struct cio2_sensor_config *cfg =
420                         &cio2_supported_sensors[i];
421
422                 for_each_acpi_dev_match(adev, cfg->hid, NULL, -1) {
423                         if (!adev->status.enabled)
424                                 continue;
425
426                         if (!acpi_dev_ready_for_enumeration(adev))
427                                 ready = false;
428                 }
429         }
430
431         return ready;
432 }
433
434 int cio2_bridge_init(struct pci_dev *cio2)
435 {
436         struct device *dev = &cio2->dev;
437         struct fwnode_handle *fwnode;
438         struct cio2_bridge *bridge;
439         unsigned int i;
440         int ret;
441
442         if (!cio2_bridge_sensors_are_ready())
443                 return -EPROBE_DEFER;
444
445         bridge = kzalloc(sizeof(*bridge), GFP_KERNEL);
446         if (!bridge)
447                 return -ENOMEM;
448
449         strscpy(bridge->cio2_node_name, CIO2_HID,
450                 sizeof(bridge->cio2_node_name));
451         bridge->cio2_hid_node.name = bridge->cio2_node_name;
452
453         ret = software_node_register(&bridge->cio2_hid_node);
454         if (ret < 0) {
455                 dev_err(dev, "Failed to register the CIO2 HID node\n");
456                 goto err_free_bridge;
457         }
458
459         /*
460          * Map the lane arrangement, which is fixed for the IPU3 (meaning we
461          * only need one, rather than one per sensor). We include it as a
462          * member of the struct cio2_bridge rather than a global variable so
463          * that it survives if the module is unloaded along with the rest of
464          * the struct.
465          */
466         for (i = 0; i < CIO2_MAX_LANES; i++)
467                 bridge->data_lanes[i] = i + 1;
468
469         ret = cio2_bridge_connect_sensors(bridge, cio2);
470         if (ret || bridge->n_sensors == 0)
471                 goto err_unregister_cio2;
472
473         dev_info(dev, "Connected %d cameras\n", bridge->n_sensors);
474
475         fwnode = software_node_fwnode(&bridge->cio2_hid_node);
476         if (!fwnode) {
477                 dev_err(dev, "Error getting fwnode from cio2 software_node\n");
478                 ret = -ENODEV;
479                 goto err_unregister_sensors;
480         }
481
482         set_secondary_fwnode(dev, fwnode);
483
484         return 0;
485
486 err_unregister_sensors:
487         cio2_bridge_unregister_sensors(bridge);
488 err_unregister_cio2:
489         software_node_unregister(&bridge->cio2_hid_node);
490 err_free_bridge:
491         kfree(bridge);
492
493         return ret;
494 }
This page took 0.063881 seconds and 4 git commands to generate.