1 // SPDX-License-Identifier: GPL-2.0-only
3 * STMicroelectronics accelerometers driver
5 * Copyright 2012-2013 STMicroelectronics Inc.
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/sysfs.h>
14 #include <linux/slab.h>
15 #include <linux/acpi.h>
16 #include <linux/iio/iio.h>
17 #include <linux/iio/sysfs.h>
18 #include <linux/iio/trigger.h>
20 #include <linux/iio/common/st_sensors.h>
23 #define ST_ACCEL_NUMBER_DATA_CHANNELS 3
25 /* DEFAULT VALUE FOR SENSORS */
26 #define ST_ACCEL_DEFAULT_OUT_X_L_ADDR 0x28
27 #define ST_ACCEL_DEFAULT_OUT_Y_L_ADDR 0x2a
28 #define ST_ACCEL_DEFAULT_OUT_Z_L_ADDR 0x2c
31 #define ST_ACCEL_FS_AVL_2G 2
32 #define ST_ACCEL_FS_AVL_4G 4
33 #define ST_ACCEL_FS_AVL_6G 6
34 #define ST_ACCEL_FS_AVL_8G 8
35 #define ST_ACCEL_FS_AVL_16G 16
36 #define ST_ACCEL_FS_AVL_100G 100
37 #define ST_ACCEL_FS_AVL_200G 200
38 #define ST_ACCEL_FS_AVL_400G 400
40 static const struct iio_mount_matrix *
41 st_accel_get_mount_matrix(const struct iio_dev *indio_dev,
42 const struct iio_chan_spec *chan)
44 struct st_sensor_data *adata = iio_priv(indio_dev);
46 return &adata->mount_matrix;
49 static const struct iio_chan_spec_ext_info st_accel_mount_matrix_ext_info[] = {
50 IIO_MOUNT_MATRIX(IIO_SHARED_BY_ALL, st_accel_get_mount_matrix),
54 static const struct iio_chan_spec st_accel_8bit_channels[] = {
55 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
56 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
57 ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 8, 8,
58 ST_ACCEL_DEFAULT_OUT_X_L_ADDR+1,
59 st_accel_mount_matrix_ext_info),
60 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
61 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
62 ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 8, 8,
63 ST_ACCEL_DEFAULT_OUT_Y_L_ADDR+1,
64 st_accel_mount_matrix_ext_info),
65 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
66 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
67 ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 8, 8,
68 ST_ACCEL_DEFAULT_OUT_Z_L_ADDR+1,
69 st_accel_mount_matrix_ext_info),
70 IIO_CHAN_SOFT_TIMESTAMP(3)
73 static const struct iio_chan_spec st_accel_12bit_channels[] = {
74 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
75 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
76 ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 12, 16,
77 ST_ACCEL_DEFAULT_OUT_X_L_ADDR,
78 st_accel_mount_matrix_ext_info),
79 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
80 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
81 ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 12, 16,
82 ST_ACCEL_DEFAULT_OUT_Y_L_ADDR,
83 st_accel_mount_matrix_ext_info),
84 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
85 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
86 ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 12, 16,
87 ST_ACCEL_DEFAULT_OUT_Z_L_ADDR,
88 st_accel_mount_matrix_ext_info),
89 IIO_CHAN_SOFT_TIMESTAMP(3)
92 static const struct iio_chan_spec st_accel_16bit_channels[] = {
93 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
94 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
95 ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 16, 16,
96 ST_ACCEL_DEFAULT_OUT_X_L_ADDR,
97 st_accel_mount_matrix_ext_info),
98 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
99 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
100 ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 16, 16,
101 ST_ACCEL_DEFAULT_OUT_Y_L_ADDR,
102 st_accel_mount_matrix_ext_info),
103 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
104 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
105 ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 16, 16,
106 ST_ACCEL_DEFAULT_OUT_Z_L_ADDR,
107 st_accel_mount_matrix_ext_info),
108 IIO_CHAN_SOFT_TIMESTAMP(3)
111 static const struct st_sensor_settings st_accel_sensors_settings[] = {
114 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
115 .sensors_supported = {
116 [0] = LIS3DH_ACCEL_DEV_NAME,
117 [1] = LSM303DLHC_ACCEL_DEV_NAME,
118 [2] = LSM330D_ACCEL_DEV_NAME,
119 [3] = LSM330DL_ACCEL_DEV_NAME,
120 [4] = LSM330DLC_ACCEL_DEV_NAME,
121 [5] = LSM303AGR_ACCEL_DEV_NAME,
122 [6] = LIS2DH12_ACCEL_DEV_NAME,
123 [7] = LIS3DE_ACCEL_DEV_NAME,
125 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
130 { .hz = 1, .value = 0x01, },
131 { .hz = 10, .value = 0x02, },
132 { .hz = 25, .value = 0x03, },
133 { .hz = 50, .value = 0x04, },
134 { .hz = 100, .value = 0x05, },
135 { .hz = 200, .value = 0x06, },
136 { .hz = 400, .value = 0x07, },
137 { .hz = 1600, .value = 0x08, },
143 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
146 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
147 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
154 .num = ST_ACCEL_FS_AVL_2G,
156 .gain = IIO_G_TO_M_S_2(1000),
159 .num = ST_ACCEL_FS_AVL_4G,
161 .gain = IIO_G_TO_M_S_2(2000),
164 .num = ST_ACCEL_FS_AVL_8G,
166 .gain = IIO_G_TO_M_S_2(4000),
169 .num = ST_ACCEL_FS_AVL_16G,
171 .gain = IIO_G_TO_M_S_2(12000),
187 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
195 .multi_read_bit = true,
200 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
201 .sensors_supported = {
202 [0] = LIS331DLH_ACCEL_DEV_NAME,
203 [1] = LSM303DL_ACCEL_DEV_NAME,
204 [2] = LSM303DLH_ACCEL_DEV_NAME,
205 [3] = LSM303DLM_ACCEL_DEV_NAME,
207 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
212 { .hz = 50, .value = 0x00, },
213 { .hz = 100, .value = 0x01, },
214 { .hz = 400, .value = 0x02, },
215 { .hz = 1000, .value = 0x03, },
221 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
222 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
225 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
226 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
233 .num = ST_ACCEL_FS_AVL_2G,
235 .gain = IIO_G_TO_M_S_2(1000),
238 .num = ST_ACCEL_FS_AVL_4G,
240 .gain = IIO_G_TO_M_S_2(2000),
243 .num = ST_ACCEL_FS_AVL_8G,
245 .gain = IIO_G_TO_M_S_2(3900),
269 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
277 .multi_read_bit = true,
282 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
283 .sensors_supported = {
284 [0] = LSM330_ACCEL_DEV_NAME,
286 .ch = (struct iio_chan_spec *)st_accel_16bit_channels,
291 { .hz = 3, .value = 0x01, },
292 { .hz = 6, .value = 0x02, },
293 { .hz = 12, .value = 0x03, },
294 { .hz = 25, .value = 0x04, },
295 { .hz = 50, .value = 0x05, },
296 { .hz = 100, .value = 0x06, },
297 { .hz = 200, .value = 0x07, },
298 { .hz = 400, .value = 0x08, },
299 { .hz = 800, .value = 0x09, },
300 { .hz = 1600, .value = 0x0a, },
306 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
309 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
310 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
317 .num = ST_ACCEL_FS_AVL_2G,
319 .gain = IIO_G_TO_M_S_2(61),
322 .num = ST_ACCEL_FS_AVL_4G,
324 .gain = IIO_G_TO_M_S_2(122),
327 .num = ST_ACCEL_FS_AVL_6G,
329 .gain = IIO_G_TO_M_S_2(183),
332 .num = ST_ACCEL_FS_AVL_8G,
334 .gain = IIO_G_TO_M_S_2(244),
337 .num = ST_ACCEL_FS_AVL_16G,
339 .gain = IIO_G_TO_M_S_2(732),
355 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
367 .multi_read_bit = false,
372 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
373 .sensors_supported = {
374 [0] = LIS3LV02DL_ACCEL_DEV_NAME,
376 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
379 .mask = 0x30, /* DF1 and DF0 */
381 { .hz = 40, .value = 0x00, },
382 { .hz = 160, .value = 0x01, },
383 { .hz = 640, .value = 0x02, },
384 { .hz = 2560, .value = 0x03, },
390 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
391 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
394 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
395 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
402 .num = ST_ACCEL_FS_AVL_2G,
404 .gain = IIO_G_TO_M_S_2(1000),
407 .num = ST_ACCEL_FS_AVL_6G,
409 .gain = IIO_G_TO_M_S_2(3000),
418 * Data Alignment Setting - needs to be set to get
419 * left-justified data like all other sensors.
431 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
439 .multi_read_bit = true,
440 .bootime = 2, /* guess */
444 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
445 .sensors_supported = {
446 [0] = LIS331DL_ACCEL_DEV_NAME,
447 [1] = LIS302DL_ACCEL_DEV_NAME,
449 .ch = (struct iio_chan_spec *)st_accel_8bit_channels,
454 { .hz = 100, .value = 0x00, },
455 { .hz = 400, .value = 0x01, },
461 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
462 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
465 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
466 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
472 * TODO: check these resulting gain settings, these are
473 * not in the datsheet
477 .num = ST_ACCEL_FS_AVL_2G,
479 .gain = IIO_G_TO_M_S_2(18000),
482 .num = ST_ACCEL_FS_AVL_8G,
484 .gain = IIO_G_TO_M_S_2(72000),
504 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
512 .multi_read_bit = false,
513 .bootime = 2, /* guess */
517 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
518 .sensors_supported = {
519 [0] = H3LIS331DL_ACCEL_DEV_NAME,
520 [1] = IIS328DQ_ACCEL_DEV_NAME,
522 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
527 { .hz = 50, .value = 0x00, },
528 { .hz = 100, .value = 0x01, },
529 { .hz = 400, .value = 0x02, },
530 { .hz = 1000, .value = 0x03, },
536 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
537 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
540 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
541 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
548 .num = ST_ACCEL_FS_AVL_100G,
550 .gain = IIO_G_TO_M_S_2(49000),
553 .num = ST_ACCEL_FS_AVL_200G,
555 .gain = IIO_G_TO_M_S_2(98000),
558 .num = ST_ACCEL_FS_AVL_400G,
560 .gain = IIO_G_TO_M_S_2(195000),
584 .multi_read_bit = true,
588 /* No WAI register present */
589 .sensors_supported = {
590 [0] = LIS3L02DQ_ACCEL_DEV_NAME,
592 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
597 { .hz = 280, .value = 0x00, },
598 { .hz = 560, .value = 0x01, },
599 { .hz = 1120, .value = 0x02, },
600 { .hz = 4480, .value = 0x03, },
606 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
607 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
610 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
611 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
616 .num = ST_ACCEL_FS_AVL_2G,
617 .gain = IIO_G_TO_M_S_2(488),
622 * The part has a BDU bit but if set the data is never
623 * updated so don't set it.
633 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
641 .multi_read_bit = false,
646 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
647 .sensors_supported = {
648 [0] = LNG2DM_ACCEL_DEV_NAME,
650 .ch = (struct iio_chan_spec *)st_accel_8bit_channels,
655 { .hz = 1, .value = 0x01, },
656 { .hz = 10, .value = 0x02, },
657 { .hz = 25, .value = 0x03, },
658 { .hz = 50, .value = 0x04, },
659 { .hz = 100, .value = 0x05, },
660 { .hz = 200, .value = 0x06, },
661 { .hz = 400, .value = 0x07, },
662 { .hz = 1600, .value = 0x08, },
668 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
671 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
672 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
679 .num = ST_ACCEL_FS_AVL_2G,
681 .gain = IIO_G_TO_M_S_2(15600),
684 .num = ST_ACCEL_FS_AVL_4G,
686 .gain = IIO_G_TO_M_S_2(31200),
689 .num = ST_ACCEL_FS_AVL_8G,
691 .gain = IIO_G_TO_M_S_2(62500),
694 .num = ST_ACCEL_FS_AVL_16G,
696 .gain = IIO_G_TO_M_S_2(187500),
708 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
716 .multi_read_bit = true,
721 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
722 .sensors_supported = {
723 [0] = LIS2DW12_ACCEL_DEV_NAME,
725 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
730 { .hz = 1, .value = 0x01, },
731 { .hz = 12, .value = 0x02, },
732 { .hz = 25, .value = 0x03, },
733 { .hz = 50, .value = 0x04, },
734 { .hz = 100, .value = 0x05, },
735 { .hz = 200, .value = 0x06, },
741 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
748 .num = ST_ACCEL_FS_AVL_2G,
750 .gain = IIO_G_TO_M_S_2(976),
753 .num = ST_ACCEL_FS_AVL_4G,
755 .gain = IIO_G_TO_M_S_2(1952),
758 .num = ST_ACCEL_FS_AVL_8G,
760 .gain = IIO_G_TO_M_S_2(3904),
763 .num = ST_ACCEL_FS_AVL_16G,
765 .gain = IIO_G_TO_M_S_2(7808),
789 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
797 .multi_read_bit = false,
802 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
803 .sensors_supported = {
804 [0] = LIS3DHH_ACCEL_DEV_NAME,
806 .ch = (struct iio_chan_spec *)st_accel_16bit_channels,
808 /* just ODR = 1100Hz available */
810 { .hz = 1100, .value = 0x00, },
816 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
817 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
822 .num = ST_ACCEL_FS_AVL_2G,
823 .gain = IIO_G_TO_M_S_2(76),
845 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
849 .multi_read_bit = false,
854 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
855 .sensors_supported = {
856 [0] = LIS2DE12_ACCEL_DEV_NAME,
858 .ch = (struct iio_chan_spec *)st_accel_8bit_channels,
863 { .hz = 1, .value = 0x01, },
864 { .hz = 10, .value = 0x02, },
865 { .hz = 25, .value = 0x03, },
866 { .hz = 50, .value = 0x04, },
867 { .hz = 100, .value = 0x05, },
868 { .hz = 200, .value = 0x06, },
869 { .hz = 400, .value = 0x07, },
870 { .hz = 1620, .value = 0x08, },
871 { .hz = 5376, .value = 0x09, },
877 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
880 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
881 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
888 .num = ST_ACCEL_FS_AVL_2G,
890 .gain = IIO_G_TO_M_S_2(15600),
893 .num = ST_ACCEL_FS_AVL_4G,
895 .gain = IIO_G_TO_M_S_2(31200),
898 .num = ST_ACCEL_FS_AVL_8G,
900 .gain = IIO_G_TO_M_S_2(62500),
903 .num = ST_ACCEL_FS_AVL_16G,
905 .gain = IIO_G_TO_M_S_2(187500),
917 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
925 .multi_read_bit = true,
930 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
931 .sensors_supported = {
932 [0] = LIS2HH12_ACCEL_DEV_NAME,
933 [1] = LSM303C_ACCEL_DEV_NAME,
935 .ch = (struct iio_chan_spec *)st_accel_16bit_channels,
940 { .hz = 10, .value = 0x01, },
941 { .hz = 50, .value = 0x02, },
942 { .hz = 100, .value = 0x03, },
943 { .hz = 200, .value = 0x04, },
944 { .hz = 400, .value = 0x05, },
945 { .hz = 800, .value = 0x06, },
951 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
954 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
955 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
962 .num = ST_ACCEL_FS_AVL_2G,
964 .gain = IIO_G_TO_M_S_2(61),
967 .num = ST_ACCEL_FS_AVL_4G,
969 .gain = IIO_G_TO_M_S_2(122),
972 .num = ST_ACCEL_FS_AVL_8G,
974 .gain = IIO_G_TO_M_S_2(244),
994 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
1002 .multi_read_bit = true,
1007 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
1008 .sensors_supported = {
1009 [0] = LSM9DS0_IMU_DEV_NAME,
1011 .ch = (struct iio_chan_spec *)st_accel_16bit_channels,
1014 .mask = GENMASK(7, 4),
1030 .mask = GENMASK(7, 4),
1031 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
1034 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
1035 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
1039 .mask = GENMASK(5, 3),
1042 .num = ST_ACCEL_FS_AVL_2G,
1044 .gain = IIO_G_TO_M_S_2(61),
1047 .num = ST_ACCEL_FS_AVL_4G,
1049 .gain = IIO_G_TO_M_S_2(122),
1052 .num = ST_ACCEL_FS_AVL_6G,
1054 .gain = IIO_G_TO_M_S_2(183),
1057 .num = ST_ACCEL_FS_AVL_8G,
1059 .gain = IIO_G_TO_M_S_2(244),
1062 .num = ST_ACCEL_FS_AVL_16G,
1064 .gain = IIO_G_TO_M_S_2(732),
1082 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
1083 .mask = GENMASK(2, 0),
1090 .multi_read_bit = true,
1095 * Not an ST part. Register-compatible with the LIS2DH, even
1096 * though the WAI value is different.
1099 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
1100 .sensors_supported = {
1101 [0] = SC7A20_ACCEL_DEV_NAME,
1103 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
1108 { .hz = 1, .value = 0x01, },
1109 { .hz = 10, .value = 0x02, },
1110 { .hz = 25, .value = 0x03, },
1111 { .hz = 50, .value = 0x04, },
1112 { .hz = 100, .value = 0x05, },
1113 { .hz = 200, .value = 0x06, },
1114 { .hz = 400, .value = 0x07, },
1115 { .hz = 1600, .value = 0x08, },
1121 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
1124 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
1125 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
1132 .num = ST_ACCEL_FS_AVL_2G,
1134 .gain = IIO_G_TO_M_S_2(1000),
1137 .num = ST_ACCEL_FS_AVL_4G,
1139 .gain = IIO_G_TO_M_S_2(2000),
1142 .num = ST_ACCEL_FS_AVL_8G,
1144 .gain = IIO_G_TO_M_S_2(4000),
1147 .num = ST_ACCEL_FS_AVL_16G,
1149 .gain = IIO_G_TO_M_S_2(12000),
1165 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
1173 .multi_read_bit = true,
1178 /* Default accel DRDY is available on INT1 pin */
1179 static const struct st_sensors_platform_data default_accel_pdata = {
1183 static int st_accel_read_raw(struct iio_dev *indio_dev,
1184 struct iio_chan_spec const *ch, int *val,
1185 int *val2, long mask)
1188 struct st_sensor_data *adata = iio_priv(indio_dev);
1191 case IIO_CHAN_INFO_RAW:
1192 err = st_sensors_read_info_raw(indio_dev, ch, val);
1197 case IIO_CHAN_INFO_SCALE:
1198 *val = adata->current_fullscale->gain / 1000000;
1199 *val2 = adata->current_fullscale->gain % 1000000;
1200 return IIO_VAL_INT_PLUS_MICRO;
1201 case IIO_CHAN_INFO_SAMP_FREQ:
1212 static int st_accel_write_raw(struct iio_dev *indio_dev,
1213 struct iio_chan_spec const *chan, int val, int val2, long mask)
1216 case IIO_CHAN_INFO_SCALE: {
1219 gain = val * 1000000 + val2;
1220 return st_sensors_set_fullscale_by_gain(indio_dev, gain);
1222 case IIO_CHAN_INFO_SAMP_FREQ:
1226 return st_sensors_set_odr(indio_dev, val);
1232 static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL();
1233 static ST_SENSORS_DEV_ATTR_SCALE_AVAIL(in_accel_scale_available);
1235 static struct attribute *st_accel_attributes[] = {
1236 &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
1237 &iio_dev_attr_in_accel_scale_available.dev_attr.attr,
1241 static const struct attribute_group st_accel_attribute_group = {
1242 .attrs = st_accel_attributes,
1245 static const struct iio_info accel_info = {
1246 .attrs = &st_accel_attribute_group,
1247 .read_raw = &st_accel_read_raw,
1248 .write_raw = &st_accel_write_raw,
1249 .debugfs_reg_access = &st_sensors_debugfs_reg_access,
1252 #ifdef CONFIG_IIO_TRIGGER
1253 static const struct iio_trigger_ops st_accel_trigger_ops = {
1254 .set_trigger_state = ST_ACCEL_TRIGGER_SET_STATE,
1255 .validate_device = st_sensors_validate_device,
1257 #define ST_ACCEL_TRIGGER_OPS (&st_accel_trigger_ops)
1259 #define ST_ACCEL_TRIGGER_OPS NULL
1263 /* Read ST-specific _ONT orientation data from ACPI and generate an
1264 * appropriate mount matrix.
1266 static int apply_acpi_orientation(struct iio_dev *indio_dev)
1268 struct st_sensor_data *adata = iio_priv(indio_dev);
1269 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
1270 struct acpi_device *adev;
1271 union acpi_object *ont;
1272 union acpi_object *elements;
1277 int final_ont[3][3] = { { 0 }, };
1279 /* For some reason, ST's _ONT translation does not apply directly
1280 * to the data read from the sensor. Another translation must be
1281 * performed first, as described by the matrix below. Perhaps
1282 * ST required this specific translation for the first product
1283 * where the device was mounted?
1285 const int default_ont[3][3] = {
1292 adev = ACPI_COMPANION(indio_dev->dev.parent);
1296 /* Read _ONT data, which should be a package of 6 integers. */
1297 status = acpi_evaluate_object(adev->handle, "_ONT", NULL, &buffer);
1298 if (status == AE_NOT_FOUND) {
1300 } else if (ACPI_FAILURE(status)) {
1301 dev_warn(&indio_dev->dev, "failed to execute _ONT: %d\n",
1306 ont = buffer.pointer;
1307 if (ont->type != ACPI_TYPE_PACKAGE || ont->package.count != 6)
1310 /* The first 3 integers provide axis order information.
1311 * e.g. 0 1 2 would indicate normal X,Y,Z ordering.
1312 * e.g. 1 0 2 indicates that data arrives in order Y,X,Z.
1314 elements = ont->package.elements;
1315 for (i = 0; i < 3; i++) {
1316 if (elements[i].type != ACPI_TYPE_INTEGER)
1319 val = elements[i].integer.value;
1323 /* Avoiding full matrix multiplication, we simply reorder the
1324 * columns in the default_ont matrix according to the
1325 * ordering provided by _ONT.
1327 final_ont[0][i] = default_ont[0][val];
1328 final_ont[1][i] = default_ont[1][val];
1329 final_ont[2][i] = default_ont[2][val];
1332 /* The final 3 integers provide sign flip information.
1333 * 0 means no change, 1 means flip.
1334 * e.g. 0 0 1 means that Z data should be sign-flipped.
1335 * This is applied after the axis reordering from above.
1338 for (i = 0; i < 3; i++) {
1339 if (elements[i].type != ACPI_TYPE_INTEGER)
1342 val = elements[i].integer.value;
1343 if (val != 0 && val != 1)
1348 /* Flip the values in the indicated column */
1349 final_ont[0][i] *= -1;
1350 final_ont[1][i] *= -1;
1351 final_ont[2][i] *= -1;
1354 /* Convert our integer matrix to a string-based iio_mount_matrix */
1355 for (i = 0; i < 3; i++) {
1356 for (j = 0; j < 3; j++) {
1357 int matrix_val = final_ont[i][j];
1360 switch (matrix_val) {
1373 adata->mount_matrix.rotation[i * 3 + j] = str_value;
1378 dev_info(&indio_dev->dev, "computed mount matrix from ACPI\n");
1381 kfree(buffer.pointer);
1383 dev_dbg(&indio_dev->dev,
1384 "failed to apply ACPI orientation data: %d\n", ret);
1388 #else /* !CONFIG_ACPI */
1389 static int apply_acpi_orientation(struct iio_dev *indio_dev)
1396 * st_accel_get_settings() - get sensor settings from device name
1397 * @name: device name buffer reference.
1399 * Return: valid reference on success, NULL otherwise.
1401 const struct st_sensor_settings *st_accel_get_settings(const char *name)
1403 int index = st_sensors_get_settings_index(name,
1404 st_accel_sensors_settings,
1405 ARRAY_SIZE(st_accel_sensors_settings));
1409 return &st_accel_sensors_settings[index];
1411 EXPORT_SYMBOL_NS(st_accel_get_settings, IIO_ST_SENSORS);
1413 int st_accel_common_probe(struct iio_dev *indio_dev)
1415 struct st_sensor_data *adata = iio_priv(indio_dev);
1416 struct device *parent = indio_dev->dev.parent;
1417 struct st_sensors_platform_data *pdata = dev_get_platdata(parent);
1420 indio_dev->modes = INDIO_DIRECT_MODE;
1421 indio_dev->info = &accel_info;
1423 err = st_sensors_verify_id(indio_dev);
1427 adata->num_data_channels = ST_ACCEL_NUMBER_DATA_CHANNELS;
1428 indio_dev->channels = adata->sensor_settings->ch;
1429 indio_dev->num_channels = ST_SENSORS_NUMBER_ALL_CHANNELS;
1432 * First try specific ACPI methods to retrieve orientation then try the
1435 err = apply_acpi_orientation(indio_dev);
1437 err = iio_read_mount_matrix(parent, &adata->mount_matrix);
1442 adata->current_fullscale = &adata->sensor_settings->fs.fs_avl[0];
1443 adata->odr = adata->sensor_settings->odr.odr_avl[0].hz;
1446 pdata = (struct st_sensors_platform_data *)&default_accel_pdata;
1448 err = st_sensors_init_sensor(indio_dev, pdata);
1452 err = st_accel_allocate_ring(indio_dev);
1456 if (adata->irq > 0) {
1457 err = st_sensors_allocate_trigger(indio_dev,
1458 ST_ACCEL_TRIGGER_OPS);
1463 return devm_iio_device_register(parent, indio_dev);
1465 EXPORT_SYMBOL_NS(st_accel_common_probe, IIO_ST_SENSORS);
1468 MODULE_DESCRIPTION("STMicroelectronics accelerometers driver");
1469 MODULE_LICENSE("GPL v2");
1470 MODULE_IMPORT_NS(IIO_ST_SENSORS);