]> Git Repo - linux.git/blob - fs/btrfs/scrub.c
setlocalversion: use only the correct release tag for git-describe
[linux.git] / fs / btrfs / scrub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "check-integrity.h"
20 #include "raid56.h"
21 #include "block-group.h"
22 #include "zoned.h"
23 #include "fs.h"
24 #include "accessors.h"
25 #include "file-item.h"
26 #include "scrub.h"
27
28 /*
29  * This is only the first step towards a full-features scrub. It reads all
30  * extent and super block and verifies the checksums. In case a bad checksum
31  * is found or the extent cannot be read, good data will be written back if
32  * any can be found.
33  *
34  * Future enhancements:
35  *  - In case an unrepairable extent is encountered, track which files are
36  *    affected and report them
37  *  - track and record media errors, throw out bad devices
38  *  - add a mode to also read unallocated space
39  */
40
41 struct scrub_block;
42 struct scrub_ctx;
43
44 /*
45  * The following three values only influence the performance.
46  *
47  * The last one configures the number of parallel and outstanding I/O
48  * operations. The first one configures an upper limit for the number
49  * of (dynamically allocated) pages that are added to a bio.
50  */
51 #define SCRUB_SECTORS_PER_BIO   32      /* 128KiB per bio for 4KiB pages */
52 #define SCRUB_BIOS_PER_SCTX     64      /* 8MiB per device in flight for 4KiB pages */
53
54 /*
55  * The following value times PAGE_SIZE needs to be large enough to match the
56  * largest node/leaf/sector size that shall be supported.
57  */
58 #define SCRUB_MAX_SECTORS_PER_BLOCK     (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
59
60 #define SCRUB_MAX_PAGES                 (DIV_ROUND_UP(BTRFS_MAX_METADATA_BLOCKSIZE, PAGE_SIZE))
61
62 /*
63  * Maximum number of mirrors that can be available for all profiles counting
64  * the target device of dev-replace as one. During an active device replace
65  * procedure, the target device of the copy operation is a mirror for the
66  * filesystem data as well that can be used to read data in order to repair
67  * read errors on other disks.
68  *
69  * Current value is derived from RAID1C4 with 4 copies.
70  */
71 #define BTRFS_MAX_MIRRORS (4 + 1)
72
73 struct scrub_recover {
74         refcount_t              refs;
75         struct btrfs_io_context *bioc;
76         u64                     map_length;
77 };
78
79 struct scrub_sector {
80         struct scrub_block      *sblock;
81         struct list_head        list;
82         u64                     flags;  /* extent flags */
83         u64                     generation;
84         /* Offset in bytes to @sblock. */
85         u32                     offset;
86         atomic_t                refs;
87         unsigned int            have_csum:1;
88         unsigned int            io_error:1;
89         u8                      csum[BTRFS_CSUM_SIZE];
90
91         struct scrub_recover    *recover;
92 };
93
94 struct scrub_bio {
95         int                     index;
96         struct scrub_ctx        *sctx;
97         struct btrfs_device     *dev;
98         struct bio              *bio;
99         blk_status_t            status;
100         u64                     logical;
101         u64                     physical;
102         struct scrub_sector     *sectors[SCRUB_SECTORS_PER_BIO];
103         int                     sector_count;
104         int                     next_free;
105         struct work_struct      work;
106 };
107
108 struct scrub_block {
109         /*
110          * Each page will have its page::private used to record the logical
111          * bytenr.
112          */
113         struct page             *pages[SCRUB_MAX_PAGES];
114         struct scrub_sector     *sectors[SCRUB_MAX_SECTORS_PER_BLOCK];
115         struct btrfs_device     *dev;
116         /* Logical bytenr of the sblock */
117         u64                     logical;
118         u64                     physical;
119         u64                     physical_for_dev_replace;
120         /* Length of sblock in bytes */
121         u32                     len;
122         int                     sector_count;
123         int                     mirror_num;
124
125         atomic_t                outstanding_sectors;
126         refcount_t              refs; /* free mem on transition to zero */
127         struct scrub_ctx        *sctx;
128         struct scrub_parity     *sparity;
129         struct {
130                 unsigned int    header_error:1;
131                 unsigned int    checksum_error:1;
132                 unsigned int    no_io_error_seen:1;
133                 unsigned int    generation_error:1; /* also sets header_error */
134
135                 /* The following is for the data used to check parity */
136                 /* It is for the data with checksum */
137                 unsigned int    data_corrected:1;
138         };
139         struct work_struct      work;
140 };
141
142 /* Used for the chunks with parity stripe such RAID5/6 */
143 struct scrub_parity {
144         struct scrub_ctx        *sctx;
145
146         struct btrfs_device     *scrub_dev;
147
148         u64                     logic_start;
149
150         u64                     logic_end;
151
152         int                     nsectors;
153
154         u32                     stripe_len;
155
156         refcount_t              refs;
157
158         struct list_head        sectors_list;
159
160         /* Work of parity check and repair */
161         struct work_struct      work;
162
163         /* Mark the parity blocks which have data */
164         unsigned long           dbitmap;
165
166         /*
167          * Mark the parity blocks which have data, but errors happen when
168          * read data or check data
169          */
170         unsigned long           ebitmap;
171 };
172
173 struct scrub_ctx {
174         struct scrub_bio        *bios[SCRUB_BIOS_PER_SCTX];
175         struct btrfs_fs_info    *fs_info;
176         int                     first_free;
177         int                     curr;
178         atomic_t                bios_in_flight;
179         atomic_t                workers_pending;
180         spinlock_t              list_lock;
181         wait_queue_head_t       list_wait;
182         struct list_head        csum_list;
183         atomic_t                cancel_req;
184         int                     readonly;
185         int                     sectors_per_bio;
186
187         /* State of IO submission throttling affecting the associated device */
188         ktime_t                 throttle_deadline;
189         u64                     throttle_sent;
190
191         int                     is_dev_replace;
192         u64                     write_pointer;
193
194         struct scrub_bio        *wr_curr_bio;
195         struct mutex            wr_lock;
196         struct btrfs_device     *wr_tgtdev;
197         bool                    flush_all_writes;
198
199         /*
200          * statistics
201          */
202         struct btrfs_scrub_progress stat;
203         spinlock_t              stat_lock;
204
205         /*
206          * Use a ref counter to avoid use-after-free issues. Scrub workers
207          * decrement bios_in_flight and workers_pending and then do a wakeup
208          * on the list_wait wait queue. We must ensure the main scrub task
209          * doesn't free the scrub context before or while the workers are
210          * doing the wakeup() call.
211          */
212         refcount_t              refs;
213 };
214
215 struct scrub_warning {
216         struct btrfs_path       *path;
217         u64                     extent_item_size;
218         const char              *errstr;
219         u64                     physical;
220         u64                     logical;
221         struct btrfs_device     *dev;
222 };
223
224 struct full_stripe_lock {
225         struct rb_node node;
226         u64 logical;
227         u64 refs;
228         struct mutex mutex;
229 };
230
231 #ifndef CONFIG_64BIT
232 /* This structure is for archtectures whose (void *) is smaller than u64 */
233 struct scrub_page_private {
234         u64 logical;
235 };
236 #endif
237
238 static int attach_scrub_page_private(struct page *page, u64 logical)
239 {
240 #ifdef CONFIG_64BIT
241         attach_page_private(page, (void *)logical);
242         return 0;
243 #else
244         struct scrub_page_private *spp;
245
246         spp = kmalloc(sizeof(*spp), GFP_KERNEL);
247         if (!spp)
248                 return -ENOMEM;
249         spp->logical = logical;
250         attach_page_private(page, (void *)spp);
251         return 0;
252 #endif
253 }
254
255 static void detach_scrub_page_private(struct page *page)
256 {
257 #ifdef CONFIG_64BIT
258         detach_page_private(page);
259         return;
260 #else
261         struct scrub_page_private *spp;
262
263         spp = detach_page_private(page);
264         kfree(spp);
265         return;
266 #endif
267 }
268
269 static struct scrub_block *alloc_scrub_block(struct scrub_ctx *sctx,
270                                              struct btrfs_device *dev,
271                                              u64 logical, u64 physical,
272                                              u64 physical_for_dev_replace,
273                                              int mirror_num)
274 {
275         struct scrub_block *sblock;
276
277         sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
278         if (!sblock)
279                 return NULL;
280         refcount_set(&sblock->refs, 1);
281         sblock->sctx = sctx;
282         sblock->logical = logical;
283         sblock->physical = physical;
284         sblock->physical_for_dev_replace = physical_for_dev_replace;
285         sblock->dev = dev;
286         sblock->mirror_num = mirror_num;
287         sblock->no_io_error_seen = 1;
288         /*
289          * Scrub_block::pages will be allocated at alloc_scrub_sector() when
290          * the corresponding page is not allocated.
291          */
292         return sblock;
293 }
294
295 /*
296  * Allocate a new scrub sector and attach it to @sblock.
297  *
298  * Will also allocate new pages for @sblock if needed.
299  */
300 static struct scrub_sector *alloc_scrub_sector(struct scrub_block *sblock,
301                                                u64 logical)
302 {
303         const pgoff_t page_index = (logical - sblock->logical) >> PAGE_SHIFT;
304         struct scrub_sector *ssector;
305
306         /* We must never have scrub_block exceed U32_MAX in size. */
307         ASSERT(logical - sblock->logical < U32_MAX);
308
309         ssector = kzalloc(sizeof(*ssector), GFP_KERNEL);
310         if (!ssector)
311                 return NULL;
312
313         /* Allocate a new page if the slot is not allocated */
314         if (!sblock->pages[page_index]) {
315                 int ret;
316
317                 sblock->pages[page_index] = alloc_page(GFP_KERNEL);
318                 if (!sblock->pages[page_index]) {
319                         kfree(ssector);
320                         return NULL;
321                 }
322                 ret = attach_scrub_page_private(sblock->pages[page_index],
323                                 sblock->logical + (page_index << PAGE_SHIFT));
324                 if (ret < 0) {
325                         kfree(ssector);
326                         __free_page(sblock->pages[page_index]);
327                         sblock->pages[page_index] = NULL;
328                         return NULL;
329                 }
330         }
331
332         atomic_set(&ssector->refs, 1);
333         ssector->sblock = sblock;
334         /* The sector to be added should not be used */
335         ASSERT(sblock->sectors[sblock->sector_count] == NULL);
336         ssector->offset = logical - sblock->logical;
337
338         /* The sector count must be smaller than the limit */
339         ASSERT(sblock->sector_count < SCRUB_MAX_SECTORS_PER_BLOCK);
340
341         sblock->sectors[sblock->sector_count] = ssector;
342         sblock->sector_count++;
343         sblock->len += sblock->sctx->fs_info->sectorsize;
344
345         return ssector;
346 }
347
348 static struct page *scrub_sector_get_page(struct scrub_sector *ssector)
349 {
350         struct scrub_block *sblock = ssector->sblock;
351         pgoff_t index;
352         /*
353          * When calling this function, ssector must be alreaday attached to the
354          * parent sblock.
355          */
356         ASSERT(sblock);
357
358         /* The range should be inside the sblock range */
359         ASSERT(ssector->offset < sblock->len);
360
361         index = ssector->offset >> PAGE_SHIFT;
362         ASSERT(index < SCRUB_MAX_PAGES);
363         ASSERT(sblock->pages[index]);
364         ASSERT(PagePrivate(sblock->pages[index]));
365         return sblock->pages[index];
366 }
367
368 static unsigned int scrub_sector_get_page_offset(struct scrub_sector *ssector)
369 {
370         struct scrub_block *sblock = ssector->sblock;
371
372         /*
373          * When calling this function, ssector must be already attached to the
374          * parent sblock.
375          */
376         ASSERT(sblock);
377
378         /* The range should be inside the sblock range */
379         ASSERT(ssector->offset < sblock->len);
380
381         return offset_in_page(ssector->offset);
382 }
383
384 static char *scrub_sector_get_kaddr(struct scrub_sector *ssector)
385 {
386         return page_address(scrub_sector_get_page(ssector)) +
387                scrub_sector_get_page_offset(ssector);
388 }
389
390 static int bio_add_scrub_sector(struct bio *bio, struct scrub_sector *ssector,
391                                 unsigned int len)
392 {
393         return bio_add_page(bio, scrub_sector_get_page(ssector), len,
394                             scrub_sector_get_page_offset(ssector));
395 }
396
397 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
398                                      struct scrub_block *sblocks_for_recheck[]);
399 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
400                                 struct scrub_block *sblock,
401                                 int retry_failed_mirror);
402 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
403 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
404                                              struct scrub_block *sblock_good);
405 static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
406                                             struct scrub_block *sblock_good,
407                                             int sector_num, int force_write);
408 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
409 static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock,
410                                              int sector_num);
411 static int scrub_checksum_data(struct scrub_block *sblock);
412 static int scrub_checksum_tree_block(struct scrub_block *sblock);
413 static int scrub_checksum_super(struct scrub_block *sblock);
414 static void scrub_block_put(struct scrub_block *sblock);
415 static void scrub_sector_get(struct scrub_sector *sector);
416 static void scrub_sector_put(struct scrub_sector *sector);
417 static void scrub_parity_get(struct scrub_parity *sparity);
418 static void scrub_parity_put(struct scrub_parity *sparity);
419 static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
420                          u64 physical, struct btrfs_device *dev, u64 flags,
421                          u64 gen, int mirror_num, u8 *csum,
422                          u64 physical_for_dev_replace);
423 static void scrub_bio_end_io(struct bio *bio);
424 static void scrub_bio_end_io_worker(struct work_struct *work);
425 static void scrub_block_complete(struct scrub_block *sblock);
426 static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
427                                  u64 extent_logical, u32 extent_len,
428                                  u64 *extent_physical,
429                                  struct btrfs_device **extent_dev,
430                                  int *extent_mirror_num);
431 static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
432                                       struct scrub_sector *sector);
433 static void scrub_wr_submit(struct scrub_ctx *sctx);
434 static void scrub_wr_bio_end_io(struct bio *bio);
435 static void scrub_wr_bio_end_io_worker(struct work_struct *work);
436 static void scrub_put_ctx(struct scrub_ctx *sctx);
437
438 static inline int scrub_is_page_on_raid56(struct scrub_sector *sector)
439 {
440         return sector->recover &&
441                (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
442 }
443
444 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
445 {
446         refcount_inc(&sctx->refs);
447         atomic_inc(&sctx->bios_in_flight);
448 }
449
450 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
451 {
452         atomic_dec(&sctx->bios_in_flight);
453         wake_up(&sctx->list_wait);
454         scrub_put_ctx(sctx);
455 }
456
457 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
458 {
459         while (atomic_read(&fs_info->scrub_pause_req)) {
460                 mutex_unlock(&fs_info->scrub_lock);
461                 wait_event(fs_info->scrub_pause_wait,
462                    atomic_read(&fs_info->scrub_pause_req) == 0);
463                 mutex_lock(&fs_info->scrub_lock);
464         }
465 }
466
467 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
468 {
469         atomic_inc(&fs_info->scrubs_paused);
470         wake_up(&fs_info->scrub_pause_wait);
471 }
472
473 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
474 {
475         mutex_lock(&fs_info->scrub_lock);
476         __scrub_blocked_if_needed(fs_info);
477         atomic_dec(&fs_info->scrubs_paused);
478         mutex_unlock(&fs_info->scrub_lock);
479
480         wake_up(&fs_info->scrub_pause_wait);
481 }
482
483 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
484 {
485         scrub_pause_on(fs_info);
486         scrub_pause_off(fs_info);
487 }
488
489 /*
490  * Insert new full stripe lock into full stripe locks tree
491  *
492  * Return pointer to existing or newly inserted full_stripe_lock structure if
493  * everything works well.
494  * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
495  *
496  * NOTE: caller must hold full_stripe_locks_root->lock before calling this
497  * function
498  */
499 static struct full_stripe_lock *insert_full_stripe_lock(
500                 struct btrfs_full_stripe_locks_tree *locks_root,
501                 u64 fstripe_logical)
502 {
503         struct rb_node **p;
504         struct rb_node *parent = NULL;
505         struct full_stripe_lock *entry;
506         struct full_stripe_lock *ret;
507
508         lockdep_assert_held(&locks_root->lock);
509
510         p = &locks_root->root.rb_node;
511         while (*p) {
512                 parent = *p;
513                 entry = rb_entry(parent, struct full_stripe_lock, node);
514                 if (fstripe_logical < entry->logical) {
515                         p = &(*p)->rb_left;
516                 } else if (fstripe_logical > entry->logical) {
517                         p = &(*p)->rb_right;
518                 } else {
519                         entry->refs++;
520                         return entry;
521                 }
522         }
523
524         /*
525          * Insert new lock.
526          */
527         ret = kmalloc(sizeof(*ret), GFP_KERNEL);
528         if (!ret)
529                 return ERR_PTR(-ENOMEM);
530         ret->logical = fstripe_logical;
531         ret->refs = 1;
532         mutex_init(&ret->mutex);
533
534         rb_link_node(&ret->node, parent, p);
535         rb_insert_color(&ret->node, &locks_root->root);
536         return ret;
537 }
538
539 /*
540  * Search for a full stripe lock of a block group
541  *
542  * Return pointer to existing full stripe lock if found
543  * Return NULL if not found
544  */
545 static struct full_stripe_lock *search_full_stripe_lock(
546                 struct btrfs_full_stripe_locks_tree *locks_root,
547                 u64 fstripe_logical)
548 {
549         struct rb_node *node;
550         struct full_stripe_lock *entry;
551
552         lockdep_assert_held(&locks_root->lock);
553
554         node = locks_root->root.rb_node;
555         while (node) {
556                 entry = rb_entry(node, struct full_stripe_lock, node);
557                 if (fstripe_logical < entry->logical)
558                         node = node->rb_left;
559                 else if (fstripe_logical > entry->logical)
560                         node = node->rb_right;
561                 else
562                         return entry;
563         }
564         return NULL;
565 }
566
567 /*
568  * Helper to get full stripe logical from a normal bytenr.
569  *
570  * Caller must ensure @cache is a RAID56 block group.
571  */
572 static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
573 {
574         u64 ret;
575
576         /*
577          * Due to chunk item size limit, full stripe length should not be
578          * larger than U32_MAX. Just a sanity check here.
579          */
580         WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
581
582         /*
583          * round_down() can only handle power of 2, while RAID56 full
584          * stripe length can be 64KiB * n, so we need to manually round down.
585          */
586         ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
587                         cache->full_stripe_len + cache->start;
588         return ret;
589 }
590
591 /*
592  * Lock a full stripe to avoid concurrency of recovery and read
593  *
594  * It's only used for profiles with parities (RAID5/6), for other profiles it
595  * does nothing.
596  *
597  * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
598  * So caller must call unlock_full_stripe() at the same context.
599  *
600  * Return <0 if encounters error.
601  */
602 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
603                             bool *locked_ret)
604 {
605         struct btrfs_block_group *bg_cache;
606         struct btrfs_full_stripe_locks_tree *locks_root;
607         struct full_stripe_lock *existing;
608         u64 fstripe_start;
609         int ret = 0;
610
611         *locked_ret = false;
612         bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
613         if (!bg_cache) {
614                 ASSERT(0);
615                 return -ENOENT;
616         }
617
618         /* Profiles not based on parity don't need full stripe lock */
619         if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
620                 goto out;
621         locks_root = &bg_cache->full_stripe_locks_root;
622
623         fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
624
625         /* Now insert the full stripe lock */
626         mutex_lock(&locks_root->lock);
627         existing = insert_full_stripe_lock(locks_root, fstripe_start);
628         mutex_unlock(&locks_root->lock);
629         if (IS_ERR(existing)) {
630                 ret = PTR_ERR(existing);
631                 goto out;
632         }
633         mutex_lock(&existing->mutex);
634         *locked_ret = true;
635 out:
636         btrfs_put_block_group(bg_cache);
637         return ret;
638 }
639
640 /*
641  * Unlock a full stripe.
642  *
643  * NOTE: Caller must ensure it's the same context calling corresponding
644  * lock_full_stripe().
645  *
646  * Return 0 if we unlock full stripe without problem.
647  * Return <0 for error
648  */
649 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
650                               bool locked)
651 {
652         struct btrfs_block_group *bg_cache;
653         struct btrfs_full_stripe_locks_tree *locks_root;
654         struct full_stripe_lock *fstripe_lock;
655         u64 fstripe_start;
656         bool freeit = false;
657         int ret = 0;
658
659         /* If we didn't acquire full stripe lock, no need to continue */
660         if (!locked)
661                 return 0;
662
663         bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
664         if (!bg_cache) {
665                 ASSERT(0);
666                 return -ENOENT;
667         }
668         if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
669                 goto out;
670
671         locks_root = &bg_cache->full_stripe_locks_root;
672         fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
673
674         mutex_lock(&locks_root->lock);
675         fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
676         /* Unpaired unlock_full_stripe() detected */
677         if (!fstripe_lock) {
678                 WARN_ON(1);
679                 ret = -ENOENT;
680                 mutex_unlock(&locks_root->lock);
681                 goto out;
682         }
683
684         if (fstripe_lock->refs == 0) {
685                 WARN_ON(1);
686                 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
687                         fstripe_lock->logical);
688         } else {
689                 fstripe_lock->refs--;
690         }
691
692         if (fstripe_lock->refs == 0) {
693                 rb_erase(&fstripe_lock->node, &locks_root->root);
694                 freeit = true;
695         }
696         mutex_unlock(&locks_root->lock);
697
698         mutex_unlock(&fstripe_lock->mutex);
699         if (freeit)
700                 kfree(fstripe_lock);
701 out:
702         btrfs_put_block_group(bg_cache);
703         return ret;
704 }
705
706 static void scrub_free_csums(struct scrub_ctx *sctx)
707 {
708         while (!list_empty(&sctx->csum_list)) {
709                 struct btrfs_ordered_sum *sum;
710                 sum = list_first_entry(&sctx->csum_list,
711                                        struct btrfs_ordered_sum, list);
712                 list_del(&sum->list);
713                 kfree(sum);
714         }
715 }
716
717 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
718 {
719         int i;
720
721         if (!sctx)
722                 return;
723
724         /* this can happen when scrub is cancelled */
725         if (sctx->curr != -1) {
726                 struct scrub_bio *sbio = sctx->bios[sctx->curr];
727
728                 for (i = 0; i < sbio->sector_count; i++)
729                         scrub_block_put(sbio->sectors[i]->sblock);
730                 bio_put(sbio->bio);
731         }
732
733         for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
734                 struct scrub_bio *sbio = sctx->bios[i];
735
736                 if (!sbio)
737                         break;
738                 kfree(sbio);
739         }
740
741         kfree(sctx->wr_curr_bio);
742         scrub_free_csums(sctx);
743         kfree(sctx);
744 }
745
746 static void scrub_put_ctx(struct scrub_ctx *sctx)
747 {
748         if (refcount_dec_and_test(&sctx->refs))
749                 scrub_free_ctx(sctx);
750 }
751
752 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
753                 struct btrfs_fs_info *fs_info, int is_dev_replace)
754 {
755         struct scrub_ctx *sctx;
756         int             i;
757
758         sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
759         if (!sctx)
760                 goto nomem;
761         refcount_set(&sctx->refs, 1);
762         sctx->is_dev_replace = is_dev_replace;
763         sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO;
764         sctx->curr = -1;
765         sctx->fs_info = fs_info;
766         INIT_LIST_HEAD(&sctx->csum_list);
767         for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
768                 struct scrub_bio *sbio;
769
770                 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
771                 if (!sbio)
772                         goto nomem;
773                 sctx->bios[i] = sbio;
774
775                 sbio->index = i;
776                 sbio->sctx = sctx;
777                 sbio->sector_count = 0;
778                 INIT_WORK(&sbio->work, scrub_bio_end_io_worker);
779
780                 if (i != SCRUB_BIOS_PER_SCTX - 1)
781                         sctx->bios[i]->next_free = i + 1;
782                 else
783                         sctx->bios[i]->next_free = -1;
784         }
785         sctx->first_free = 0;
786         atomic_set(&sctx->bios_in_flight, 0);
787         atomic_set(&sctx->workers_pending, 0);
788         atomic_set(&sctx->cancel_req, 0);
789
790         spin_lock_init(&sctx->list_lock);
791         spin_lock_init(&sctx->stat_lock);
792         init_waitqueue_head(&sctx->list_wait);
793         sctx->throttle_deadline = 0;
794
795         WARN_ON(sctx->wr_curr_bio != NULL);
796         mutex_init(&sctx->wr_lock);
797         sctx->wr_curr_bio = NULL;
798         if (is_dev_replace) {
799                 WARN_ON(!fs_info->dev_replace.tgtdev);
800                 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
801                 sctx->flush_all_writes = false;
802         }
803
804         return sctx;
805
806 nomem:
807         scrub_free_ctx(sctx);
808         return ERR_PTR(-ENOMEM);
809 }
810
811 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
812                                      u64 root, void *warn_ctx)
813 {
814         u32 nlink;
815         int ret;
816         int i;
817         unsigned nofs_flag;
818         struct extent_buffer *eb;
819         struct btrfs_inode_item *inode_item;
820         struct scrub_warning *swarn = warn_ctx;
821         struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
822         struct inode_fs_paths *ipath = NULL;
823         struct btrfs_root *local_root;
824         struct btrfs_key key;
825
826         local_root = btrfs_get_fs_root(fs_info, root, true);
827         if (IS_ERR(local_root)) {
828                 ret = PTR_ERR(local_root);
829                 goto err;
830         }
831
832         /*
833          * this makes the path point to (inum INODE_ITEM ioff)
834          */
835         key.objectid = inum;
836         key.type = BTRFS_INODE_ITEM_KEY;
837         key.offset = 0;
838
839         ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
840         if (ret) {
841                 btrfs_put_root(local_root);
842                 btrfs_release_path(swarn->path);
843                 goto err;
844         }
845
846         eb = swarn->path->nodes[0];
847         inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
848                                         struct btrfs_inode_item);
849         nlink = btrfs_inode_nlink(eb, inode_item);
850         btrfs_release_path(swarn->path);
851
852         /*
853          * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
854          * uses GFP_NOFS in this context, so we keep it consistent but it does
855          * not seem to be strictly necessary.
856          */
857         nofs_flag = memalloc_nofs_save();
858         ipath = init_ipath(4096, local_root, swarn->path);
859         memalloc_nofs_restore(nofs_flag);
860         if (IS_ERR(ipath)) {
861                 btrfs_put_root(local_root);
862                 ret = PTR_ERR(ipath);
863                 ipath = NULL;
864                 goto err;
865         }
866         ret = paths_from_inode(inum, ipath);
867
868         if (ret < 0)
869                 goto err;
870
871         /*
872          * we deliberately ignore the bit ipath might have been too small to
873          * hold all of the paths here
874          */
875         for (i = 0; i < ipath->fspath->elem_cnt; ++i)
876                 btrfs_warn_in_rcu(fs_info,
877 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
878                                   swarn->errstr, swarn->logical,
879                                   btrfs_dev_name(swarn->dev),
880                                   swarn->physical,
881                                   root, inum, offset,
882                                   fs_info->sectorsize, nlink,
883                                   (char *)(unsigned long)ipath->fspath->val[i]);
884
885         btrfs_put_root(local_root);
886         free_ipath(ipath);
887         return 0;
888
889 err:
890         btrfs_warn_in_rcu(fs_info,
891                           "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
892                           swarn->errstr, swarn->logical,
893                           btrfs_dev_name(swarn->dev),
894                           swarn->physical,
895                           root, inum, offset, ret);
896
897         free_ipath(ipath);
898         return 0;
899 }
900
901 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
902 {
903         struct btrfs_device *dev;
904         struct btrfs_fs_info *fs_info;
905         struct btrfs_path *path;
906         struct btrfs_key found_key;
907         struct extent_buffer *eb;
908         struct btrfs_extent_item *ei;
909         struct scrub_warning swarn;
910         unsigned long ptr = 0;
911         u64 flags = 0;
912         u64 ref_root;
913         u32 item_size;
914         u8 ref_level = 0;
915         int ret;
916
917         WARN_ON(sblock->sector_count < 1);
918         dev = sblock->dev;
919         fs_info = sblock->sctx->fs_info;
920
921         /* Super block error, no need to search extent tree. */
922         if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
923                 btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
924                         errstr, btrfs_dev_name(dev), sblock->physical);
925                 return;
926         }
927         path = btrfs_alloc_path();
928         if (!path)
929                 return;
930
931         swarn.physical = sblock->physical;
932         swarn.logical = sblock->logical;
933         swarn.errstr = errstr;
934         swarn.dev = NULL;
935
936         ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
937                                   &flags);
938         if (ret < 0)
939                 goto out;
940
941         swarn.extent_item_size = found_key.offset;
942
943         eb = path->nodes[0];
944         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
945         item_size = btrfs_item_size(eb, path->slots[0]);
946
947         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
948                 do {
949                         ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
950                                                       item_size, &ref_root,
951                                                       &ref_level);
952                         btrfs_warn_in_rcu(fs_info,
953 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
954                                 errstr, swarn.logical,
955                                 btrfs_dev_name(dev),
956                                 swarn.physical,
957                                 ref_level ? "node" : "leaf",
958                                 ret < 0 ? -1 : ref_level,
959                                 ret < 0 ? -1 : ref_root);
960                 } while (ret != 1);
961                 btrfs_release_path(path);
962         } else {
963                 struct btrfs_backref_walk_ctx ctx = { 0 };
964
965                 btrfs_release_path(path);
966
967                 ctx.bytenr = found_key.objectid;
968                 ctx.extent_item_pos = swarn.logical - found_key.objectid;
969                 ctx.fs_info = fs_info;
970
971                 swarn.path = path;
972                 swarn.dev = dev;
973
974                 iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
975         }
976
977 out:
978         btrfs_free_path(path);
979 }
980
981 static inline void scrub_get_recover(struct scrub_recover *recover)
982 {
983         refcount_inc(&recover->refs);
984 }
985
986 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
987                                      struct scrub_recover *recover)
988 {
989         if (refcount_dec_and_test(&recover->refs)) {
990                 btrfs_bio_counter_dec(fs_info);
991                 btrfs_put_bioc(recover->bioc);
992                 kfree(recover);
993         }
994 }
995
996 /*
997  * scrub_handle_errored_block gets called when either verification of the
998  * sectors failed or the bio failed to read, e.g. with EIO. In the latter
999  * case, this function handles all sectors in the bio, even though only one
1000  * may be bad.
1001  * The goal of this function is to repair the errored block by using the
1002  * contents of one of the mirrors.
1003  */
1004 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
1005 {
1006         struct scrub_ctx *sctx = sblock_to_check->sctx;
1007         struct btrfs_device *dev = sblock_to_check->dev;
1008         struct btrfs_fs_info *fs_info;
1009         u64 logical;
1010         unsigned int failed_mirror_index;
1011         unsigned int is_metadata;
1012         unsigned int have_csum;
1013         /* One scrub_block for each mirror */
1014         struct scrub_block *sblocks_for_recheck[BTRFS_MAX_MIRRORS] = { 0 };
1015         struct scrub_block *sblock_bad;
1016         int ret;
1017         int mirror_index;
1018         int sector_num;
1019         int success;
1020         bool full_stripe_locked;
1021         unsigned int nofs_flag;
1022         static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1023                                       DEFAULT_RATELIMIT_BURST);
1024
1025         BUG_ON(sblock_to_check->sector_count < 1);
1026         fs_info = sctx->fs_info;
1027         if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1028                 /*
1029                  * If we find an error in a super block, we just report it.
1030                  * They will get written with the next transaction commit
1031                  * anyway
1032                  */
1033                 scrub_print_warning("super block error", sblock_to_check);
1034                 spin_lock(&sctx->stat_lock);
1035                 ++sctx->stat.super_errors;
1036                 spin_unlock(&sctx->stat_lock);
1037                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
1038                 return 0;
1039         }
1040         logical = sblock_to_check->logical;
1041         ASSERT(sblock_to_check->mirror_num);
1042         failed_mirror_index = sblock_to_check->mirror_num - 1;
1043         is_metadata = !(sblock_to_check->sectors[0]->flags &
1044                         BTRFS_EXTENT_FLAG_DATA);
1045         have_csum = sblock_to_check->sectors[0]->have_csum;
1046
1047         if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
1048                 return 0;
1049
1050         /*
1051          * We must use GFP_NOFS because the scrub task might be waiting for a
1052          * worker task executing this function and in turn a transaction commit
1053          * might be waiting the scrub task to pause (which needs to wait for all
1054          * the worker tasks to complete before pausing).
1055          * We do allocations in the workers through insert_full_stripe_lock()
1056          * and scrub_add_sector_to_wr_bio(), which happens down the call chain of
1057          * this function.
1058          */
1059         nofs_flag = memalloc_nofs_save();
1060         /*
1061          * For RAID5/6, race can happen for a different device scrub thread.
1062          * For data corruption, Parity and Data threads will both try
1063          * to recovery the data.
1064          * Race can lead to doubly added csum error, or even unrecoverable
1065          * error.
1066          */
1067         ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
1068         if (ret < 0) {
1069                 memalloc_nofs_restore(nofs_flag);
1070                 spin_lock(&sctx->stat_lock);
1071                 if (ret == -ENOMEM)
1072                         sctx->stat.malloc_errors++;
1073                 sctx->stat.read_errors++;
1074                 sctx->stat.uncorrectable_errors++;
1075                 spin_unlock(&sctx->stat_lock);
1076                 return ret;
1077         }
1078
1079         /*
1080          * read all mirrors one after the other. This includes to
1081          * re-read the extent or metadata block that failed (that was
1082          * the cause that this fixup code is called) another time,
1083          * sector by sector this time in order to know which sectors
1084          * caused I/O errors and which ones are good (for all mirrors).
1085          * It is the goal to handle the situation when more than one
1086          * mirror contains I/O errors, but the errors do not
1087          * overlap, i.e. the data can be repaired by selecting the
1088          * sectors from those mirrors without I/O error on the
1089          * particular sectors. One example (with blocks >= 2 * sectorsize)
1090          * would be that mirror #1 has an I/O error on the first sector,
1091          * the second sector is good, and mirror #2 has an I/O error on
1092          * the second sector, but the first sector is good.
1093          * Then the first sector of the first mirror can be repaired by
1094          * taking the first sector of the second mirror, and the
1095          * second sector of the second mirror can be repaired by
1096          * copying the contents of the 2nd sector of the 1st mirror.
1097          * One more note: if the sectors of one mirror contain I/O
1098          * errors, the checksum cannot be verified. In order to get
1099          * the best data for repairing, the first attempt is to find
1100          * a mirror without I/O errors and with a validated checksum.
1101          * Only if this is not possible, the sectors are picked from
1102          * mirrors with I/O errors without considering the checksum.
1103          * If the latter is the case, at the end, the checksum of the
1104          * repaired area is verified in order to correctly maintain
1105          * the statistics.
1106          */
1107         for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
1108                 /*
1109                  * Note: the two members refs and outstanding_sectors are not
1110                  * used in the blocks that are used for the recheck procedure.
1111                  *
1112                  * But alloc_scrub_block() will initialize sblock::ref anyway,
1113                  * so we can use scrub_block_put() to clean them up.
1114                  *
1115                  * And here we don't setup the physical/dev for the sblock yet,
1116                  * they will be correctly initialized in scrub_setup_recheck_block().
1117                  */
1118                 sblocks_for_recheck[mirror_index] = alloc_scrub_block(sctx, NULL,
1119                                                         logical, 0, 0, mirror_index);
1120                 if (!sblocks_for_recheck[mirror_index]) {
1121                         spin_lock(&sctx->stat_lock);
1122                         sctx->stat.malloc_errors++;
1123                         sctx->stat.read_errors++;
1124                         sctx->stat.uncorrectable_errors++;
1125                         spin_unlock(&sctx->stat_lock);
1126                         btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1127                         goto out;
1128                 }
1129         }
1130
1131         /* Setup the context, map the logical blocks and alloc the sectors */
1132         ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1133         if (ret) {
1134                 spin_lock(&sctx->stat_lock);
1135                 sctx->stat.read_errors++;
1136                 sctx->stat.uncorrectable_errors++;
1137                 spin_unlock(&sctx->stat_lock);
1138                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1139                 goto out;
1140         }
1141         BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1142         sblock_bad = sblocks_for_recheck[failed_mirror_index];
1143
1144         /* build and submit the bios for the failed mirror, check checksums */
1145         scrub_recheck_block(fs_info, sblock_bad, 1);
1146
1147         if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
1148             sblock_bad->no_io_error_seen) {
1149                 /*
1150                  * The error disappeared after reading sector by sector, or
1151                  * the area was part of a huge bio and other parts of the
1152                  * bio caused I/O errors, or the block layer merged several
1153                  * read requests into one and the error is caused by a
1154                  * different bio (usually one of the two latter cases is
1155                  * the cause)
1156                  */
1157                 spin_lock(&sctx->stat_lock);
1158                 sctx->stat.unverified_errors++;
1159                 sblock_to_check->data_corrected = 1;
1160                 spin_unlock(&sctx->stat_lock);
1161
1162                 if (sctx->is_dev_replace)
1163                         scrub_write_block_to_dev_replace(sblock_bad);
1164                 goto out;
1165         }
1166
1167         if (!sblock_bad->no_io_error_seen) {
1168                 spin_lock(&sctx->stat_lock);
1169                 sctx->stat.read_errors++;
1170                 spin_unlock(&sctx->stat_lock);
1171                 if (__ratelimit(&rs))
1172                         scrub_print_warning("i/o error", sblock_to_check);
1173                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1174         } else if (sblock_bad->checksum_error) {
1175                 spin_lock(&sctx->stat_lock);
1176                 sctx->stat.csum_errors++;
1177                 spin_unlock(&sctx->stat_lock);
1178                 if (__ratelimit(&rs))
1179                         scrub_print_warning("checksum error", sblock_to_check);
1180                 btrfs_dev_stat_inc_and_print(dev,
1181                                              BTRFS_DEV_STAT_CORRUPTION_ERRS);
1182         } else if (sblock_bad->header_error) {
1183                 spin_lock(&sctx->stat_lock);
1184                 sctx->stat.verify_errors++;
1185                 spin_unlock(&sctx->stat_lock);
1186                 if (__ratelimit(&rs))
1187                         scrub_print_warning("checksum/header error",
1188                                             sblock_to_check);
1189                 if (sblock_bad->generation_error)
1190                         btrfs_dev_stat_inc_and_print(dev,
1191                                 BTRFS_DEV_STAT_GENERATION_ERRS);
1192                 else
1193                         btrfs_dev_stat_inc_and_print(dev,
1194                                 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1195         }
1196
1197         if (sctx->readonly) {
1198                 ASSERT(!sctx->is_dev_replace);
1199                 goto out;
1200         }
1201
1202         /*
1203          * now build and submit the bios for the other mirrors, check
1204          * checksums.
1205          * First try to pick the mirror which is completely without I/O
1206          * errors and also does not have a checksum error.
1207          * If one is found, and if a checksum is present, the full block
1208          * that is known to contain an error is rewritten. Afterwards
1209          * the block is known to be corrected.
1210          * If a mirror is found which is completely correct, and no
1211          * checksum is present, only those sectors are rewritten that had
1212          * an I/O error in the block to be repaired, since it cannot be
1213          * determined, which copy of the other sectors is better (and it
1214          * could happen otherwise that a correct sector would be
1215          * overwritten by a bad one).
1216          */
1217         for (mirror_index = 0; ;mirror_index++) {
1218                 struct scrub_block *sblock_other;
1219
1220                 if (mirror_index == failed_mirror_index)
1221                         continue;
1222
1223                 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1224                 if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1225                         if (mirror_index >= BTRFS_MAX_MIRRORS)
1226                                 break;
1227                         if (!sblocks_for_recheck[mirror_index]->sector_count)
1228                                 break;
1229
1230                         sblock_other = sblocks_for_recheck[mirror_index];
1231                 } else {
1232                         struct scrub_recover *r = sblock_bad->sectors[0]->recover;
1233                         int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
1234
1235                         if (mirror_index >= max_allowed)
1236                                 break;
1237                         if (!sblocks_for_recheck[1]->sector_count)
1238                                 break;
1239
1240                         ASSERT(failed_mirror_index == 0);
1241                         sblock_other = sblocks_for_recheck[1];
1242                         sblock_other->mirror_num = 1 + mirror_index;
1243                 }
1244
1245                 /* build and submit the bios, check checksums */
1246                 scrub_recheck_block(fs_info, sblock_other, 0);
1247
1248                 if (!sblock_other->header_error &&
1249                     !sblock_other->checksum_error &&
1250                     sblock_other->no_io_error_seen) {
1251                         if (sctx->is_dev_replace) {
1252                                 scrub_write_block_to_dev_replace(sblock_other);
1253                                 goto corrected_error;
1254                         } else {
1255                                 ret = scrub_repair_block_from_good_copy(
1256                                                 sblock_bad, sblock_other);
1257                                 if (!ret)
1258                                         goto corrected_error;
1259                         }
1260                 }
1261         }
1262
1263         if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1264                 goto did_not_correct_error;
1265
1266         /*
1267          * In case of I/O errors in the area that is supposed to be
1268          * repaired, continue by picking good copies of those sectors.
1269          * Select the good sectors from mirrors to rewrite bad sectors from
1270          * the area to fix. Afterwards verify the checksum of the block
1271          * that is supposed to be repaired. This verification step is
1272          * only done for the purpose of statistic counting and for the
1273          * final scrub report, whether errors remain.
1274          * A perfect algorithm could make use of the checksum and try
1275          * all possible combinations of sectors from the different mirrors
1276          * until the checksum verification succeeds. For example, when
1277          * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1278          * of mirror #2 is readable but the final checksum test fails,
1279          * then the 2nd sector of mirror #3 could be tried, whether now
1280          * the final checksum succeeds. But this would be a rare
1281          * exception and is therefore not implemented. At least it is
1282          * avoided that the good copy is overwritten.
1283          * A more useful improvement would be to pick the sectors
1284          * without I/O error based on sector sizes (512 bytes on legacy
1285          * disks) instead of on sectorsize. Then maybe 512 byte of one
1286          * mirror could be repaired by taking 512 byte of a different
1287          * mirror, even if other 512 byte sectors in the same sectorsize
1288          * area are unreadable.
1289          */
1290         success = 1;
1291         for (sector_num = 0; sector_num < sblock_bad->sector_count;
1292              sector_num++) {
1293                 struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1294                 struct scrub_block *sblock_other = NULL;
1295
1296                 /* Skip no-io-error sectors in scrub */
1297                 if (!sector_bad->io_error && !sctx->is_dev_replace)
1298                         continue;
1299
1300                 if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1301                         /*
1302                          * In case of dev replace, if raid56 rebuild process
1303                          * didn't work out correct data, then copy the content
1304                          * in sblock_bad to make sure target device is identical
1305                          * to source device, instead of writing garbage data in
1306                          * sblock_for_recheck array to target device.
1307                          */
1308                         sblock_other = NULL;
1309                 } else if (sector_bad->io_error) {
1310                         /* Try to find no-io-error sector in mirrors */
1311                         for (mirror_index = 0;
1312                              mirror_index < BTRFS_MAX_MIRRORS &&
1313                              sblocks_for_recheck[mirror_index]->sector_count > 0;
1314                              mirror_index++) {
1315                                 if (!sblocks_for_recheck[mirror_index]->
1316                                     sectors[sector_num]->io_error) {
1317                                         sblock_other = sblocks_for_recheck[mirror_index];
1318                                         break;
1319                                 }
1320                         }
1321                         if (!sblock_other)
1322                                 success = 0;
1323                 }
1324
1325                 if (sctx->is_dev_replace) {
1326                         /*
1327                          * Did not find a mirror to fetch the sector from.
1328                          * scrub_write_sector_to_dev_replace() handles this
1329                          * case (sector->io_error), by filling the block with
1330                          * zeros before submitting the write request
1331                          */
1332                         if (!sblock_other)
1333                                 sblock_other = sblock_bad;
1334
1335                         if (scrub_write_sector_to_dev_replace(sblock_other,
1336                                                               sector_num) != 0) {
1337                                 atomic64_inc(
1338                                         &fs_info->dev_replace.num_write_errors);
1339                                 success = 0;
1340                         }
1341                 } else if (sblock_other) {
1342                         ret = scrub_repair_sector_from_good_copy(sblock_bad,
1343                                                                  sblock_other,
1344                                                                  sector_num, 0);
1345                         if (0 == ret)
1346                                 sector_bad->io_error = 0;
1347                         else
1348                                 success = 0;
1349                 }
1350         }
1351
1352         if (success && !sctx->is_dev_replace) {
1353                 if (is_metadata || have_csum) {
1354                         /*
1355                          * need to verify the checksum now that all
1356                          * sectors on disk are repaired (the write
1357                          * request for data to be repaired is on its way).
1358                          * Just be lazy and use scrub_recheck_block()
1359                          * which re-reads the data before the checksum
1360                          * is verified, but most likely the data comes out
1361                          * of the page cache.
1362                          */
1363                         scrub_recheck_block(fs_info, sblock_bad, 1);
1364                         if (!sblock_bad->header_error &&
1365                             !sblock_bad->checksum_error &&
1366                             sblock_bad->no_io_error_seen)
1367                                 goto corrected_error;
1368                         else
1369                                 goto did_not_correct_error;
1370                 } else {
1371 corrected_error:
1372                         spin_lock(&sctx->stat_lock);
1373                         sctx->stat.corrected_errors++;
1374                         sblock_to_check->data_corrected = 1;
1375                         spin_unlock(&sctx->stat_lock);
1376                         btrfs_err_rl_in_rcu(fs_info,
1377                                 "fixed up error at logical %llu on dev %s",
1378                                 logical, btrfs_dev_name(dev));
1379                 }
1380         } else {
1381 did_not_correct_error:
1382                 spin_lock(&sctx->stat_lock);
1383                 sctx->stat.uncorrectable_errors++;
1384                 spin_unlock(&sctx->stat_lock);
1385                 btrfs_err_rl_in_rcu(fs_info,
1386                         "unable to fixup (regular) error at logical %llu on dev %s",
1387                         logical, btrfs_dev_name(dev));
1388         }
1389
1390 out:
1391         for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
1392                 struct scrub_block *sblock = sblocks_for_recheck[mirror_index];
1393                 struct scrub_recover *recover;
1394                 int sector_index;
1395
1396                 /* Not allocated, continue checking the next mirror */
1397                 if (!sblock)
1398                         continue;
1399
1400                 for (sector_index = 0; sector_index < sblock->sector_count;
1401                      sector_index++) {
1402                         /*
1403                          * Here we just cleanup the recover, each sector will be
1404                          * properly cleaned up by later scrub_block_put()
1405                          */
1406                         recover = sblock->sectors[sector_index]->recover;
1407                         if (recover) {
1408                                 scrub_put_recover(fs_info, recover);
1409                                 sblock->sectors[sector_index]->recover = NULL;
1410                         }
1411                 }
1412                 scrub_block_put(sblock);
1413         }
1414
1415         ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1416         memalloc_nofs_restore(nofs_flag);
1417         if (ret < 0)
1418                 return ret;
1419         return 0;
1420 }
1421
1422 static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1423 {
1424         if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
1425                 return 2;
1426         else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
1427                 return 3;
1428         else
1429                 return (int)bioc->num_stripes;
1430 }
1431
1432 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1433                                                  u64 *raid_map,
1434                                                  int nstripes, int mirror,
1435                                                  int *stripe_index,
1436                                                  u64 *stripe_offset)
1437 {
1438         int i;
1439
1440         if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1441                 /* RAID5/6 */
1442                 for (i = 0; i < nstripes; i++) {
1443                         if (raid_map[i] == RAID6_Q_STRIPE ||
1444                             raid_map[i] == RAID5_P_STRIPE)
1445                                 continue;
1446
1447                         if (logical >= raid_map[i] &&
1448                             logical < raid_map[i] + BTRFS_STRIPE_LEN)
1449                                 break;
1450                 }
1451
1452                 *stripe_index = i;
1453                 *stripe_offset = logical - raid_map[i];
1454         } else {
1455                 /* The other RAID type */
1456                 *stripe_index = mirror;
1457                 *stripe_offset = 0;
1458         }
1459 }
1460
1461 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1462                                      struct scrub_block *sblocks_for_recheck[])
1463 {
1464         struct scrub_ctx *sctx = original_sblock->sctx;
1465         struct btrfs_fs_info *fs_info = sctx->fs_info;
1466         u64 logical = original_sblock->logical;
1467         u64 length = original_sblock->sector_count << fs_info->sectorsize_bits;
1468         u64 generation = original_sblock->sectors[0]->generation;
1469         u64 flags = original_sblock->sectors[0]->flags;
1470         u64 have_csum = original_sblock->sectors[0]->have_csum;
1471         struct scrub_recover *recover;
1472         struct btrfs_io_context *bioc;
1473         u64 sublen;
1474         u64 mapped_length;
1475         u64 stripe_offset;
1476         int stripe_index;
1477         int sector_index = 0;
1478         int mirror_index;
1479         int nmirrors;
1480         int ret;
1481
1482         while (length > 0) {
1483                 sublen = min_t(u64, length, fs_info->sectorsize);
1484                 mapped_length = sublen;
1485                 bioc = NULL;
1486
1487                 /*
1488                  * With a length of sectorsize, each returned stripe represents
1489                  * one mirror
1490                  */
1491                 btrfs_bio_counter_inc_blocked(fs_info);
1492                 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1493                                        logical, &mapped_length, &bioc);
1494                 if (ret || !bioc || mapped_length < sublen) {
1495                         btrfs_put_bioc(bioc);
1496                         btrfs_bio_counter_dec(fs_info);
1497                         return -EIO;
1498                 }
1499
1500                 recover = kzalloc(sizeof(struct scrub_recover), GFP_KERNEL);
1501                 if (!recover) {
1502                         btrfs_put_bioc(bioc);
1503                         btrfs_bio_counter_dec(fs_info);
1504                         return -ENOMEM;
1505                 }
1506
1507                 refcount_set(&recover->refs, 1);
1508                 recover->bioc = bioc;
1509                 recover->map_length = mapped_length;
1510
1511                 ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK);
1512
1513                 nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
1514
1515                 for (mirror_index = 0; mirror_index < nmirrors;
1516                      mirror_index++) {
1517                         struct scrub_block *sblock;
1518                         struct scrub_sector *sector;
1519
1520                         sblock = sblocks_for_recheck[mirror_index];
1521                         sblock->sctx = sctx;
1522
1523                         sector = alloc_scrub_sector(sblock, logical);
1524                         if (!sector) {
1525                                 spin_lock(&sctx->stat_lock);
1526                                 sctx->stat.malloc_errors++;
1527                                 spin_unlock(&sctx->stat_lock);
1528                                 scrub_put_recover(fs_info, recover);
1529                                 return -ENOMEM;
1530                         }
1531                         sector->flags = flags;
1532                         sector->generation = generation;
1533                         sector->have_csum = have_csum;
1534                         if (have_csum)
1535                                 memcpy(sector->csum,
1536                                        original_sblock->sectors[0]->csum,
1537                                        sctx->fs_info->csum_size);
1538
1539                         scrub_stripe_index_and_offset(logical,
1540                                                       bioc->map_type,
1541                                                       bioc->raid_map,
1542                                                       bioc->num_stripes -
1543                                                       bioc->num_tgtdevs,
1544                                                       mirror_index,
1545                                                       &stripe_index,
1546                                                       &stripe_offset);
1547                         /*
1548                          * We're at the first sector, also populate @sblock
1549                          * physical and dev.
1550                          */
1551                         if (sector_index == 0) {
1552                                 sblock->physical =
1553                                         bioc->stripes[stripe_index].physical +
1554                                         stripe_offset;
1555                                 sblock->dev = bioc->stripes[stripe_index].dev;
1556                                 sblock->physical_for_dev_replace =
1557                                         original_sblock->physical_for_dev_replace;
1558                         }
1559
1560                         BUG_ON(sector_index >= original_sblock->sector_count);
1561                         scrub_get_recover(recover);
1562                         sector->recover = recover;
1563                 }
1564                 scrub_put_recover(fs_info, recover);
1565                 length -= sublen;
1566                 logical += sublen;
1567                 sector_index++;
1568         }
1569
1570         return 0;
1571 }
1572
1573 static void scrub_bio_wait_endio(struct bio *bio)
1574 {
1575         complete(bio->bi_private);
1576 }
1577
1578 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1579                                         struct bio *bio,
1580                                         struct scrub_sector *sector)
1581 {
1582         DECLARE_COMPLETION_ONSTACK(done);
1583
1584         bio->bi_iter.bi_sector = (sector->offset + sector->sblock->logical) >>
1585                                  SECTOR_SHIFT;
1586         bio->bi_private = &done;
1587         bio->bi_end_io = scrub_bio_wait_endio;
1588         raid56_parity_recover(bio, sector->recover->bioc, sector->sblock->mirror_num);
1589
1590         wait_for_completion_io(&done);
1591         return blk_status_to_errno(bio->bi_status);
1592 }
1593
1594 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1595                                           struct scrub_block *sblock)
1596 {
1597         struct scrub_sector *first_sector = sblock->sectors[0];
1598         struct bio *bio;
1599         int i;
1600
1601         /* All sectors in sblock belong to the same stripe on the same device. */
1602         ASSERT(sblock->dev);
1603         if (!sblock->dev->bdev)
1604                 goto out;
1605
1606         bio = bio_alloc(sblock->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
1607
1608         for (i = 0; i < sblock->sector_count; i++) {
1609                 struct scrub_sector *sector = sblock->sectors[i];
1610
1611                 bio_add_scrub_sector(bio, sector, fs_info->sectorsize);
1612         }
1613
1614         if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) {
1615                 bio_put(bio);
1616                 goto out;
1617         }
1618
1619         bio_put(bio);
1620
1621         scrub_recheck_block_checksum(sblock);
1622
1623         return;
1624 out:
1625         for (i = 0; i < sblock->sector_count; i++)
1626                 sblock->sectors[i]->io_error = 1;
1627
1628         sblock->no_io_error_seen = 0;
1629 }
1630
1631 /*
1632  * This function will check the on disk data for checksum errors, header errors
1633  * and read I/O errors. If any I/O errors happen, the exact sectors which are
1634  * errored are marked as being bad. The goal is to enable scrub to take those
1635  * sectors that are not errored from all the mirrors so that the sectors that
1636  * are errored in the just handled mirror can be repaired.
1637  */
1638 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1639                                 struct scrub_block *sblock,
1640                                 int retry_failed_mirror)
1641 {
1642         int i;
1643
1644         sblock->no_io_error_seen = 1;
1645
1646         /* short cut for raid56 */
1647         if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0]))
1648                 return scrub_recheck_block_on_raid56(fs_info, sblock);
1649
1650         for (i = 0; i < sblock->sector_count; i++) {
1651                 struct scrub_sector *sector = sblock->sectors[i];
1652                 struct bio bio;
1653                 struct bio_vec bvec;
1654
1655                 if (sblock->dev->bdev == NULL) {
1656                         sector->io_error = 1;
1657                         sblock->no_io_error_seen = 0;
1658                         continue;
1659                 }
1660
1661                 bio_init(&bio, sblock->dev->bdev, &bvec, 1, REQ_OP_READ);
1662                 bio_add_scrub_sector(&bio, sector, fs_info->sectorsize);
1663                 bio.bi_iter.bi_sector = (sblock->physical + sector->offset) >>
1664                                         SECTOR_SHIFT;
1665
1666                 btrfsic_check_bio(&bio);
1667                 if (submit_bio_wait(&bio)) {
1668                         sector->io_error = 1;
1669                         sblock->no_io_error_seen = 0;
1670                 }
1671
1672                 bio_uninit(&bio);
1673         }
1674
1675         if (sblock->no_io_error_seen)
1676                 scrub_recheck_block_checksum(sblock);
1677 }
1678
1679 static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector)
1680 {
1681         struct btrfs_fs_devices *fs_devices = sector->sblock->dev->fs_devices;
1682         int ret;
1683
1684         ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1685         return !ret;
1686 }
1687
1688 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1689 {
1690         sblock->header_error = 0;
1691         sblock->checksum_error = 0;
1692         sblock->generation_error = 0;
1693
1694         if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1695                 scrub_checksum_data(sblock);
1696         else
1697                 scrub_checksum_tree_block(sblock);
1698 }
1699
1700 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1701                                              struct scrub_block *sblock_good)
1702 {
1703         int i;
1704         int ret = 0;
1705
1706         for (i = 0; i < sblock_bad->sector_count; i++) {
1707                 int ret_sub;
1708
1709                 ret_sub = scrub_repair_sector_from_good_copy(sblock_bad,
1710                                                              sblock_good, i, 1);
1711                 if (ret_sub)
1712                         ret = ret_sub;
1713         }
1714
1715         return ret;
1716 }
1717
1718 static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
1719                                               struct scrub_block *sblock_good,
1720                                               int sector_num, int force_write)
1721 {
1722         struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1723         struct scrub_sector *sector_good = sblock_good->sectors[sector_num];
1724         struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1725         const u32 sectorsize = fs_info->sectorsize;
1726
1727         if (force_write || sblock_bad->header_error ||
1728             sblock_bad->checksum_error || sector_bad->io_error) {
1729                 struct bio bio;
1730                 struct bio_vec bvec;
1731                 int ret;
1732
1733                 if (!sblock_bad->dev->bdev) {
1734                         btrfs_warn_rl(fs_info,
1735                                 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1736                         return -EIO;
1737                 }
1738
1739                 bio_init(&bio, sblock_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE);
1740                 bio.bi_iter.bi_sector = (sblock_bad->physical +
1741                                          sector_bad->offset) >> SECTOR_SHIFT;
1742                 ret = bio_add_scrub_sector(&bio, sector_good, sectorsize);
1743
1744                 btrfsic_check_bio(&bio);
1745                 ret = submit_bio_wait(&bio);
1746                 bio_uninit(&bio);
1747
1748                 if (ret) {
1749                         btrfs_dev_stat_inc_and_print(sblock_bad->dev,
1750                                 BTRFS_DEV_STAT_WRITE_ERRS);
1751                         atomic64_inc(&fs_info->dev_replace.num_write_errors);
1752                         return -EIO;
1753                 }
1754         }
1755
1756         return 0;
1757 }
1758
1759 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1760 {
1761         struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1762         int i;
1763
1764         /*
1765          * This block is used for the check of the parity on the source device,
1766          * so the data needn't be written into the destination device.
1767          */
1768         if (sblock->sparity)
1769                 return;
1770
1771         for (i = 0; i < sblock->sector_count; i++) {
1772                 int ret;
1773
1774                 ret = scrub_write_sector_to_dev_replace(sblock, i);
1775                 if (ret)
1776                         atomic64_inc(&fs_info->dev_replace.num_write_errors);
1777         }
1778 }
1779
1780 static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num)
1781 {
1782         const u32 sectorsize = sblock->sctx->fs_info->sectorsize;
1783         struct scrub_sector *sector = sblock->sectors[sector_num];
1784
1785         if (sector->io_error)
1786                 memset(scrub_sector_get_kaddr(sector), 0, sectorsize);
1787
1788         return scrub_add_sector_to_wr_bio(sblock->sctx, sector);
1789 }
1790
1791 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
1792 {
1793         int ret = 0;
1794         u64 length;
1795
1796         if (!btrfs_is_zoned(sctx->fs_info))
1797                 return 0;
1798
1799         if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
1800                 return 0;
1801
1802         if (sctx->write_pointer < physical) {
1803                 length = physical - sctx->write_pointer;
1804
1805                 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
1806                                                 sctx->write_pointer, length);
1807                 if (!ret)
1808                         sctx->write_pointer = physical;
1809         }
1810         return ret;
1811 }
1812
1813 static void scrub_block_get(struct scrub_block *sblock)
1814 {
1815         refcount_inc(&sblock->refs);
1816 }
1817
1818 static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
1819                                       struct scrub_sector *sector)
1820 {
1821         struct scrub_block *sblock = sector->sblock;
1822         struct scrub_bio *sbio;
1823         int ret;
1824         const u32 sectorsize = sctx->fs_info->sectorsize;
1825
1826         mutex_lock(&sctx->wr_lock);
1827 again:
1828         if (!sctx->wr_curr_bio) {
1829                 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1830                                               GFP_KERNEL);
1831                 if (!sctx->wr_curr_bio) {
1832                         mutex_unlock(&sctx->wr_lock);
1833                         return -ENOMEM;
1834                 }
1835                 sctx->wr_curr_bio->sctx = sctx;
1836                 sctx->wr_curr_bio->sector_count = 0;
1837         }
1838         sbio = sctx->wr_curr_bio;
1839         if (sbio->sector_count == 0) {
1840                 ret = fill_writer_pointer_gap(sctx, sector->offset +
1841                                               sblock->physical_for_dev_replace);
1842                 if (ret) {
1843                         mutex_unlock(&sctx->wr_lock);
1844                         return ret;
1845                 }
1846
1847                 sbio->physical = sblock->physical_for_dev_replace + sector->offset;
1848                 sbio->logical = sblock->logical + sector->offset;
1849                 sbio->dev = sctx->wr_tgtdev;
1850                 if (!sbio->bio) {
1851                         sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
1852                                               REQ_OP_WRITE, GFP_NOFS);
1853                 }
1854                 sbio->bio->bi_private = sbio;
1855                 sbio->bio->bi_end_io = scrub_wr_bio_end_io;
1856                 sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
1857                 sbio->status = 0;
1858         } else if (sbio->physical + sbio->sector_count * sectorsize !=
1859                    sblock->physical_for_dev_replace + sector->offset ||
1860                    sbio->logical + sbio->sector_count * sectorsize !=
1861                    sblock->logical + sector->offset) {
1862                 scrub_wr_submit(sctx);
1863                 goto again;
1864         }
1865
1866         ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
1867         if (ret != sectorsize) {
1868                 if (sbio->sector_count < 1) {
1869                         bio_put(sbio->bio);
1870                         sbio->bio = NULL;
1871                         mutex_unlock(&sctx->wr_lock);
1872                         return -EIO;
1873                 }
1874                 scrub_wr_submit(sctx);
1875                 goto again;
1876         }
1877
1878         sbio->sectors[sbio->sector_count] = sector;
1879         scrub_sector_get(sector);
1880         /*
1881          * Since ssector no longer holds a page, but uses sblock::pages, we
1882          * have to ensure the sblock had not been freed before our write bio
1883          * finished.
1884          */
1885         scrub_block_get(sector->sblock);
1886
1887         sbio->sector_count++;
1888         if (sbio->sector_count == sctx->sectors_per_bio)
1889                 scrub_wr_submit(sctx);
1890         mutex_unlock(&sctx->wr_lock);
1891
1892         return 0;
1893 }
1894
1895 static void scrub_wr_submit(struct scrub_ctx *sctx)
1896 {
1897         struct scrub_bio *sbio;
1898
1899         if (!sctx->wr_curr_bio)
1900                 return;
1901
1902         sbio = sctx->wr_curr_bio;
1903         sctx->wr_curr_bio = NULL;
1904         scrub_pending_bio_inc(sctx);
1905         /* process all writes in a single worker thread. Then the block layer
1906          * orders the requests before sending them to the driver which
1907          * doubled the write performance on spinning disks when measured
1908          * with Linux 3.5 */
1909         btrfsic_check_bio(sbio->bio);
1910         submit_bio(sbio->bio);
1911
1912         if (btrfs_is_zoned(sctx->fs_info))
1913                 sctx->write_pointer = sbio->physical + sbio->sector_count *
1914                         sctx->fs_info->sectorsize;
1915 }
1916
1917 static void scrub_wr_bio_end_io(struct bio *bio)
1918 {
1919         struct scrub_bio *sbio = bio->bi_private;
1920         struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1921
1922         sbio->status = bio->bi_status;
1923         sbio->bio = bio;
1924
1925         INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker);
1926         queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1927 }
1928
1929 static void scrub_wr_bio_end_io_worker(struct work_struct *work)
1930 {
1931         struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1932         struct scrub_ctx *sctx = sbio->sctx;
1933         int i;
1934
1935         ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
1936         if (sbio->status) {
1937                 struct btrfs_dev_replace *dev_replace =
1938                         &sbio->sctx->fs_info->dev_replace;
1939
1940                 for (i = 0; i < sbio->sector_count; i++) {
1941                         struct scrub_sector *sector = sbio->sectors[i];
1942
1943                         sector->io_error = 1;
1944                         atomic64_inc(&dev_replace->num_write_errors);
1945                 }
1946         }
1947
1948         /*
1949          * In scrub_add_sector_to_wr_bio() we grab extra ref for sblock, now in
1950          * endio we should put the sblock.
1951          */
1952         for (i = 0; i < sbio->sector_count; i++) {
1953                 scrub_block_put(sbio->sectors[i]->sblock);
1954                 scrub_sector_put(sbio->sectors[i]);
1955         }
1956
1957         bio_put(sbio->bio);
1958         kfree(sbio);
1959         scrub_pending_bio_dec(sctx);
1960 }
1961
1962 static int scrub_checksum(struct scrub_block *sblock)
1963 {
1964         u64 flags;
1965         int ret;
1966
1967         /*
1968          * No need to initialize these stats currently,
1969          * because this function only use return value
1970          * instead of these stats value.
1971          *
1972          * Todo:
1973          * always use stats
1974          */
1975         sblock->header_error = 0;
1976         sblock->generation_error = 0;
1977         sblock->checksum_error = 0;
1978
1979         WARN_ON(sblock->sector_count < 1);
1980         flags = sblock->sectors[0]->flags;
1981         ret = 0;
1982         if (flags & BTRFS_EXTENT_FLAG_DATA)
1983                 ret = scrub_checksum_data(sblock);
1984         else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1985                 ret = scrub_checksum_tree_block(sblock);
1986         else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1987                 ret = scrub_checksum_super(sblock);
1988         else
1989                 WARN_ON(1);
1990         if (ret)
1991                 scrub_handle_errored_block(sblock);
1992
1993         return ret;
1994 }
1995
1996 static int scrub_checksum_data(struct scrub_block *sblock)
1997 {
1998         struct scrub_ctx *sctx = sblock->sctx;
1999         struct btrfs_fs_info *fs_info = sctx->fs_info;
2000         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2001         u8 csum[BTRFS_CSUM_SIZE];
2002         struct scrub_sector *sector;
2003         char *kaddr;
2004
2005         BUG_ON(sblock->sector_count < 1);
2006         sector = sblock->sectors[0];
2007         if (!sector->have_csum)
2008                 return 0;
2009
2010         kaddr = scrub_sector_get_kaddr(sector);
2011
2012         shash->tfm = fs_info->csum_shash;
2013         crypto_shash_init(shash);
2014
2015         crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
2016
2017         if (memcmp(csum, sector->csum, fs_info->csum_size))
2018                 sblock->checksum_error = 1;
2019         return sblock->checksum_error;
2020 }
2021
2022 static int scrub_checksum_tree_block(struct scrub_block *sblock)
2023 {
2024         struct scrub_ctx *sctx = sblock->sctx;
2025         struct btrfs_header *h;
2026         struct btrfs_fs_info *fs_info = sctx->fs_info;
2027         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2028         u8 calculated_csum[BTRFS_CSUM_SIZE];
2029         u8 on_disk_csum[BTRFS_CSUM_SIZE];
2030         /*
2031          * This is done in sectorsize steps even for metadata as there's a
2032          * constraint for nodesize to be aligned to sectorsize. This will need
2033          * to change so we don't misuse data and metadata units like that.
2034          */
2035         const u32 sectorsize = sctx->fs_info->sectorsize;
2036         const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
2037         int i;
2038         struct scrub_sector *sector;
2039         char *kaddr;
2040
2041         BUG_ON(sblock->sector_count < 1);
2042
2043         /* Each member in sectors is just one sector */
2044         ASSERT(sblock->sector_count == num_sectors);
2045
2046         sector = sblock->sectors[0];
2047         kaddr = scrub_sector_get_kaddr(sector);
2048         h = (struct btrfs_header *)kaddr;
2049         memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
2050
2051         /*
2052          * we don't use the getter functions here, as we
2053          * a) don't have an extent buffer and
2054          * b) the page is already kmapped
2055          */
2056         if (sblock->logical != btrfs_stack_header_bytenr(h))
2057                 sblock->header_error = 1;
2058
2059         if (sector->generation != btrfs_stack_header_generation(h)) {
2060                 sblock->header_error = 1;
2061                 sblock->generation_error = 1;
2062         }
2063
2064         if (!scrub_check_fsid(h->fsid, sector))
2065                 sblock->header_error = 1;
2066
2067         if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
2068                    BTRFS_UUID_SIZE))
2069                 sblock->header_error = 1;
2070
2071         shash->tfm = fs_info->csum_shash;
2072         crypto_shash_init(shash);
2073         crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
2074                             sectorsize - BTRFS_CSUM_SIZE);
2075
2076         for (i = 1; i < num_sectors; i++) {
2077                 kaddr = scrub_sector_get_kaddr(sblock->sectors[i]);
2078                 crypto_shash_update(shash, kaddr, sectorsize);
2079         }
2080
2081         crypto_shash_final(shash, calculated_csum);
2082         if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
2083                 sblock->checksum_error = 1;
2084
2085         return sblock->header_error || sblock->checksum_error;
2086 }
2087
2088 static int scrub_checksum_super(struct scrub_block *sblock)
2089 {
2090         struct btrfs_super_block *s;
2091         struct scrub_ctx *sctx = sblock->sctx;
2092         struct btrfs_fs_info *fs_info = sctx->fs_info;
2093         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2094         u8 calculated_csum[BTRFS_CSUM_SIZE];
2095         struct scrub_sector *sector;
2096         char *kaddr;
2097         int fail_gen = 0;
2098         int fail_cor = 0;
2099
2100         BUG_ON(sblock->sector_count < 1);
2101         sector = sblock->sectors[0];
2102         kaddr = scrub_sector_get_kaddr(sector);
2103         s = (struct btrfs_super_block *)kaddr;
2104
2105         if (sblock->logical != btrfs_super_bytenr(s))
2106                 ++fail_cor;
2107
2108         if (sector->generation != btrfs_super_generation(s))
2109                 ++fail_gen;
2110
2111         if (!scrub_check_fsid(s->fsid, sector))
2112                 ++fail_cor;
2113
2114         shash->tfm = fs_info->csum_shash;
2115         crypto_shash_init(shash);
2116         crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
2117                         BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
2118
2119         if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
2120                 ++fail_cor;
2121
2122         return fail_cor + fail_gen;
2123 }
2124
2125 static void scrub_block_put(struct scrub_block *sblock)
2126 {
2127         if (refcount_dec_and_test(&sblock->refs)) {
2128                 int i;
2129
2130                 if (sblock->sparity)
2131                         scrub_parity_put(sblock->sparity);
2132
2133                 for (i = 0; i < sblock->sector_count; i++)
2134                         scrub_sector_put(sblock->sectors[i]);
2135                 for (i = 0; i < DIV_ROUND_UP(sblock->len, PAGE_SIZE); i++) {
2136                         if (sblock->pages[i]) {
2137                                 detach_scrub_page_private(sblock->pages[i]);
2138                                 __free_page(sblock->pages[i]);
2139                         }
2140                 }
2141                 kfree(sblock);
2142         }
2143 }
2144
2145 static void scrub_sector_get(struct scrub_sector *sector)
2146 {
2147         atomic_inc(&sector->refs);
2148 }
2149
2150 static void scrub_sector_put(struct scrub_sector *sector)
2151 {
2152         if (atomic_dec_and_test(&sector->refs))
2153                 kfree(sector);
2154 }
2155
2156 /*
2157  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
2158  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
2159  */
2160 static void scrub_throttle(struct scrub_ctx *sctx)
2161 {
2162         const int time_slice = 1000;
2163         struct scrub_bio *sbio;
2164         struct btrfs_device *device;
2165         s64 delta;
2166         ktime_t now;
2167         u32 div;
2168         u64 bwlimit;
2169
2170         sbio = sctx->bios[sctx->curr];
2171         device = sbio->dev;
2172         bwlimit = READ_ONCE(device->scrub_speed_max);
2173         if (bwlimit == 0)
2174                 return;
2175
2176         /*
2177          * Slice is divided into intervals when the IO is submitted, adjust by
2178          * bwlimit and maximum of 64 intervals.
2179          */
2180         div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
2181         div = min_t(u32, 64, div);
2182
2183         /* Start new epoch, set deadline */
2184         now = ktime_get();
2185         if (sctx->throttle_deadline == 0) {
2186                 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
2187                 sctx->throttle_sent = 0;
2188         }
2189
2190         /* Still in the time to send? */
2191         if (ktime_before(now, sctx->throttle_deadline)) {
2192                 /* If current bio is within the limit, send it */
2193                 sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
2194                 if (sctx->throttle_sent <= div_u64(bwlimit, div))
2195                         return;
2196
2197                 /* We're over the limit, sleep until the rest of the slice */
2198                 delta = ktime_ms_delta(sctx->throttle_deadline, now);
2199         } else {
2200                 /* New request after deadline, start new epoch */
2201                 delta = 0;
2202         }
2203
2204         if (delta) {
2205                 long timeout;
2206
2207                 timeout = div_u64(delta * HZ, 1000);
2208                 schedule_timeout_interruptible(timeout);
2209         }
2210
2211         /* Next call will start the deadline period */
2212         sctx->throttle_deadline = 0;
2213 }
2214
2215 static void scrub_submit(struct scrub_ctx *sctx)
2216 {
2217         struct scrub_bio *sbio;
2218
2219         if (sctx->curr == -1)
2220                 return;
2221
2222         scrub_throttle(sctx);
2223
2224         sbio = sctx->bios[sctx->curr];
2225         sctx->curr = -1;
2226         scrub_pending_bio_inc(sctx);
2227         btrfsic_check_bio(sbio->bio);
2228         submit_bio(sbio->bio);
2229 }
2230
2231 static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx,
2232                                       struct scrub_sector *sector)
2233 {
2234         struct scrub_block *sblock = sector->sblock;
2235         struct scrub_bio *sbio;
2236         const u32 sectorsize = sctx->fs_info->sectorsize;
2237         int ret;
2238
2239 again:
2240         /*
2241          * grab a fresh bio or wait for one to become available
2242          */
2243         while (sctx->curr == -1) {
2244                 spin_lock(&sctx->list_lock);
2245                 sctx->curr = sctx->first_free;
2246                 if (sctx->curr != -1) {
2247                         sctx->first_free = sctx->bios[sctx->curr]->next_free;
2248                         sctx->bios[sctx->curr]->next_free = -1;
2249                         sctx->bios[sctx->curr]->sector_count = 0;
2250                         spin_unlock(&sctx->list_lock);
2251                 } else {
2252                         spin_unlock(&sctx->list_lock);
2253                         wait_event(sctx->list_wait, sctx->first_free != -1);
2254                 }
2255         }
2256         sbio = sctx->bios[sctx->curr];
2257         if (sbio->sector_count == 0) {
2258                 sbio->physical = sblock->physical + sector->offset;
2259                 sbio->logical = sblock->logical + sector->offset;
2260                 sbio->dev = sblock->dev;
2261                 if (!sbio->bio) {
2262                         sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
2263                                               REQ_OP_READ, GFP_NOFS);
2264                 }
2265                 sbio->bio->bi_private = sbio;
2266                 sbio->bio->bi_end_io = scrub_bio_end_io;
2267                 sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
2268                 sbio->status = 0;
2269         } else if (sbio->physical + sbio->sector_count * sectorsize !=
2270                    sblock->physical + sector->offset ||
2271                    sbio->logical + sbio->sector_count * sectorsize !=
2272                    sblock->logical + sector->offset ||
2273                    sbio->dev != sblock->dev) {
2274                 scrub_submit(sctx);
2275                 goto again;
2276         }
2277
2278         sbio->sectors[sbio->sector_count] = sector;
2279         ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
2280         if (ret != sectorsize) {
2281                 if (sbio->sector_count < 1) {
2282                         bio_put(sbio->bio);
2283                         sbio->bio = NULL;
2284                         return -EIO;
2285                 }
2286                 scrub_submit(sctx);
2287                 goto again;
2288         }
2289
2290         scrub_block_get(sblock); /* one for the page added to the bio */
2291         atomic_inc(&sblock->outstanding_sectors);
2292         sbio->sector_count++;
2293         if (sbio->sector_count == sctx->sectors_per_bio)
2294                 scrub_submit(sctx);
2295
2296         return 0;
2297 }
2298
2299 static void scrub_missing_raid56_end_io(struct bio *bio)
2300 {
2301         struct scrub_block *sblock = bio->bi_private;
2302         struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2303
2304         btrfs_bio_counter_dec(fs_info);
2305         if (bio->bi_status)
2306                 sblock->no_io_error_seen = 0;
2307
2308         bio_put(bio);
2309
2310         queue_work(fs_info->scrub_workers, &sblock->work);
2311 }
2312
2313 static void scrub_missing_raid56_worker(struct work_struct *work)
2314 {
2315         struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2316         struct scrub_ctx *sctx = sblock->sctx;
2317         struct btrfs_fs_info *fs_info = sctx->fs_info;
2318         u64 logical;
2319         struct btrfs_device *dev;
2320
2321         logical = sblock->logical;
2322         dev = sblock->dev;
2323
2324         if (sblock->no_io_error_seen)
2325                 scrub_recheck_block_checksum(sblock);
2326
2327         if (!sblock->no_io_error_seen) {
2328                 spin_lock(&sctx->stat_lock);
2329                 sctx->stat.read_errors++;
2330                 spin_unlock(&sctx->stat_lock);
2331                 btrfs_err_rl_in_rcu(fs_info,
2332                         "IO error rebuilding logical %llu for dev %s",
2333                         logical, btrfs_dev_name(dev));
2334         } else if (sblock->header_error || sblock->checksum_error) {
2335                 spin_lock(&sctx->stat_lock);
2336                 sctx->stat.uncorrectable_errors++;
2337                 spin_unlock(&sctx->stat_lock);
2338                 btrfs_err_rl_in_rcu(fs_info,
2339                         "failed to rebuild valid logical %llu for dev %s",
2340                         logical, btrfs_dev_name(dev));
2341         } else {
2342                 scrub_write_block_to_dev_replace(sblock);
2343         }
2344
2345         if (sctx->is_dev_replace && sctx->flush_all_writes) {
2346                 mutex_lock(&sctx->wr_lock);
2347                 scrub_wr_submit(sctx);
2348                 mutex_unlock(&sctx->wr_lock);
2349         }
2350
2351         scrub_block_put(sblock);
2352         scrub_pending_bio_dec(sctx);
2353 }
2354
2355 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2356 {
2357         struct scrub_ctx *sctx = sblock->sctx;
2358         struct btrfs_fs_info *fs_info = sctx->fs_info;
2359         u64 length = sblock->sector_count << fs_info->sectorsize_bits;
2360         u64 logical = sblock->logical;
2361         struct btrfs_io_context *bioc = NULL;
2362         struct bio *bio;
2363         struct btrfs_raid_bio *rbio;
2364         int ret;
2365         int i;
2366
2367         btrfs_bio_counter_inc_blocked(fs_info);
2368         ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2369                                &length, &bioc);
2370         if (ret || !bioc || !bioc->raid_map)
2371                 goto bioc_out;
2372
2373         if (WARN_ON(!sctx->is_dev_replace ||
2374                     !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2375                 /*
2376                  * We shouldn't be scrubbing a missing device. Even for dev
2377                  * replace, we should only get here for RAID 5/6. We either
2378                  * managed to mount something with no mirrors remaining or
2379                  * there's a bug in scrub_find_good_copy()/btrfs_map_block().
2380                  */
2381                 goto bioc_out;
2382         }
2383
2384         bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2385         bio->bi_iter.bi_sector = logical >> 9;
2386         bio->bi_private = sblock;
2387         bio->bi_end_io = scrub_missing_raid56_end_io;
2388
2389         rbio = raid56_alloc_missing_rbio(bio, bioc);
2390         if (!rbio)
2391                 goto rbio_out;
2392
2393         for (i = 0; i < sblock->sector_count; i++) {
2394                 struct scrub_sector *sector = sblock->sectors[i];
2395
2396                 raid56_add_scrub_pages(rbio, scrub_sector_get_page(sector),
2397                                        scrub_sector_get_page_offset(sector),
2398                                        sector->offset + sector->sblock->logical);
2399         }
2400
2401         INIT_WORK(&sblock->work, scrub_missing_raid56_worker);
2402         scrub_block_get(sblock);
2403         scrub_pending_bio_inc(sctx);
2404         raid56_submit_missing_rbio(rbio);
2405         btrfs_put_bioc(bioc);
2406         return;
2407
2408 rbio_out:
2409         bio_put(bio);
2410 bioc_out:
2411         btrfs_bio_counter_dec(fs_info);
2412         btrfs_put_bioc(bioc);
2413         spin_lock(&sctx->stat_lock);
2414         sctx->stat.malloc_errors++;
2415         spin_unlock(&sctx->stat_lock);
2416 }
2417
2418 static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
2419                        u64 physical, struct btrfs_device *dev, u64 flags,
2420                        u64 gen, int mirror_num, u8 *csum,
2421                        u64 physical_for_dev_replace)
2422 {
2423         struct scrub_block *sblock;
2424         const u32 sectorsize = sctx->fs_info->sectorsize;
2425         int index;
2426
2427         sblock = alloc_scrub_block(sctx, dev, logical, physical,
2428                                    physical_for_dev_replace, mirror_num);
2429         if (!sblock) {
2430                 spin_lock(&sctx->stat_lock);
2431                 sctx->stat.malloc_errors++;
2432                 spin_unlock(&sctx->stat_lock);
2433                 return -ENOMEM;
2434         }
2435
2436         for (index = 0; len > 0; index++) {
2437                 struct scrub_sector *sector;
2438                 /*
2439                  * Here we will allocate one page for one sector to scrub.
2440                  * This is fine if PAGE_SIZE == sectorsize, but will cost
2441                  * more memory for PAGE_SIZE > sectorsize case.
2442                  */
2443                 u32 l = min(sectorsize, len);
2444
2445                 sector = alloc_scrub_sector(sblock, logical);
2446                 if (!sector) {
2447                         spin_lock(&sctx->stat_lock);
2448                         sctx->stat.malloc_errors++;
2449                         spin_unlock(&sctx->stat_lock);
2450                         scrub_block_put(sblock);
2451                         return -ENOMEM;
2452                 }
2453                 sector->flags = flags;
2454                 sector->generation = gen;
2455                 if (csum) {
2456                         sector->have_csum = 1;
2457                         memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2458                 } else {
2459                         sector->have_csum = 0;
2460                 }
2461                 len -= l;
2462                 logical += l;
2463                 physical += l;
2464                 physical_for_dev_replace += l;
2465         }
2466
2467         WARN_ON(sblock->sector_count == 0);
2468         if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2469                 /*
2470                  * This case should only be hit for RAID 5/6 device replace. See
2471                  * the comment in scrub_missing_raid56_pages() for details.
2472                  */
2473                 scrub_missing_raid56_pages(sblock);
2474         } else {
2475                 for (index = 0; index < sblock->sector_count; index++) {
2476                         struct scrub_sector *sector = sblock->sectors[index];
2477                         int ret;
2478
2479                         ret = scrub_add_sector_to_rd_bio(sctx, sector);
2480                         if (ret) {
2481                                 scrub_block_put(sblock);
2482                                 return ret;
2483                         }
2484                 }
2485
2486                 if (flags & BTRFS_EXTENT_FLAG_SUPER)
2487                         scrub_submit(sctx);
2488         }
2489
2490         /* last one frees, either here or in bio completion for last page */
2491         scrub_block_put(sblock);
2492         return 0;
2493 }
2494
2495 static void scrub_bio_end_io(struct bio *bio)
2496 {
2497         struct scrub_bio *sbio = bio->bi_private;
2498         struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2499
2500         sbio->status = bio->bi_status;
2501         sbio->bio = bio;
2502
2503         queue_work(fs_info->scrub_workers, &sbio->work);
2504 }
2505
2506 static void scrub_bio_end_io_worker(struct work_struct *work)
2507 {
2508         struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2509         struct scrub_ctx *sctx = sbio->sctx;
2510         int i;
2511
2512         ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
2513         if (sbio->status) {
2514                 for (i = 0; i < sbio->sector_count; i++) {
2515                         struct scrub_sector *sector = sbio->sectors[i];
2516
2517                         sector->io_error = 1;
2518                         sector->sblock->no_io_error_seen = 0;
2519                 }
2520         }
2521
2522         /* Now complete the scrub_block items that have all pages completed */
2523         for (i = 0; i < sbio->sector_count; i++) {
2524                 struct scrub_sector *sector = sbio->sectors[i];
2525                 struct scrub_block *sblock = sector->sblock;
2526
2527                 if (atomic_dec_and_test(&sblock->outstanding_sectors))
2528                         scrub_block_complete(sblock);
2529                 scrub_block_put(sblock);
2530         }
2531
2532         bio_put(sbio->bio);
2533         sbio->bio = NULL;
2534         spin_lock(&sctx->list_lock);
2535         sbio->next_free = sctx->first_free;
2536         sctx->first_free = sbio->index;
2537         spin_unlock(&sctx->list_lock);
2538
2539         if (sctx->is_dev_replace && sctx->flush_all_writes) {
2540                 mutex_lock(&sctx->wr_lock);
2541                 scrub_wr_submit(sctx);
2542                 mutex_unlock(&sctx->wr_lock);
2543         }
2544
2545         scrub_pending_bio_dec(sctx);
2546 }
2547
2548 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2549                                        unsigned long *bitmap,
2550                                        u64 start, u32 len)
2551 {
2552         u64 offset;
2553         u32 nsectors;
2554         u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2555
2556         if (len >= sparity->stripe_len) {
2557                 bitmap_set(bitmap, 0, sparity->nsectors);
2558                 return;
2559         }
2560
2561         start -= sparity->logic_start;
2562         start = div64_u64_rem(start, sparity->stripe_len, &offset);
2563         offset = offset >> sectorsize_bits;
2564         nsectors = len >> sectorsize_bits;
2565
2566         if (offset + nsectors <= sparity->nsectors) {
2567                 bitmap_set(bitmap, offset, nsectors);
2568                 return;
2569         }
2570
2571         bitmap_set(bitmap, offset, sparity->nsectors - offset);
2572         bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2573 }
2574
2575 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2576                                                    u64 start, u32 len)
2577 {
2578         __scrub_mark_bitmap(sparity, &sparity->ebitmap, start, len);
2579 }
2580
2581 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2582                                                   u64 start, u32 len)
2583 {
2584         __scrub_mark_bitmap(sparity, &sparity->dbitmap, start, len);
2585 }
2586
2587 static void scrub_block_complete(struct scrub_block *sblock)
2588 {
2589         int corrupted = 0;
2590
2591         if (!sblock->no_io_error_seen) {
2592                 corrupted = 1;
2593                 scrub_handle_errored_block(sblock);
2594         } else {
2595                 /*
2596                  * if has checksum error, write via repair mechanism in
2597                  * dev replace case, otherwise write here in dev replace
2598                  * case.
2599                  */
2600                 corrupted = scrub_checksum(sblock);
2601                 if (!corrupted && sblock->sctx->is_dev_replace)
2602                         scrub_write_block_to_dev_replace(sblock);
2603         }
2604
2605         if (sblock->sparity && corrupted && !sblock->data_corrected) {
2606                 u64 start = sblock->logical;
2607                 u64 end = sblock->logical +
2608                           sblock->sectors[sblock->sector_count - 1]->offset +
2609                           sblock->sctx->fs_info->sectorsize;
2610
2611                 ASSERT(end - start <= U32_MAX);
2612                 scrub_parity_mark_sectors_error(sblock->sparity,
2613                                                 start, end - start);
2614         }
2615 }
2616
2617 static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
2618 {
2619         sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
2620         list_del(&sum->list);
2621         kfree(sum);
2622 }
2623
2624 /*
2625  * Find the desired csum for range [logical, logical + sectorsize), and store
2626  * the csum into @csum.
2627  *
2628  * The search source is sctx->csum_list, which is a pre-populated list
2629  * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2630  * that is before @logical.
2631  *
2632  * Return 0 if there is no csum for the range.
2633  * Return 1 if there is csum for the range and copied to @csum.
2634  */
2635 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2636 {
2637         bool found = false;
2638
2639         while (!list_empty(&sctx->csum_list)) {
2640                 struct btrfs_ordered_sum *sum = NULL;
2641                 unsigned long index;
2642                 unsigned long num_sectors;
2643
2644                 sum = list_first_entry(&sctx->csum_list,
2645                                        struct btrfs_ordered_sum, list);
2646                 /* The current csum range is beyond our range, no csum found */
2647                 if (sum->bytenr > logical)
2648                         break;
2649
2650                 /*
2651                  * The current sum is before our bytenr, since scrub is always
2652                  * done in bytenr order, the csum will never be used anymore,
2653                  * clean it up so that later calls won't bother with the range,
2654                  * and continue search the next range.
2655                  */
2656                 if (sum->bytenr + sum->len <= logical) {
2657                         drop_csum_range(sctx, sum);
2658                         continue;
2659                 }
2660
2661                 /* Now the csum range covers our bytenr, copy the csum */
2662                 found = true;
2663                 index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
2664                 num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2665
2666                 memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
2667                        sctx->fs_info->csum_size);
2668
2669                 /* Cleanup the range if we're at the end of the csum range */
2670                 if (index == num_sectors - 1)
2671                         drop_csum_range(sctx, sum);
2672                 break;
2673         }
2674         if (!found)
2675                 return 0;
2676         return 1;
2677 }
2678
2679 /* scrub extent tries to collect up to 64 kB for each bio */
2680 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2681                         u64 logical, u32 len,
2682                         u64 physical, struct btrfs_device *dev, u64 flags,
2683                         u64 gen, int mirror_num)
2684 {
2685         struct btrfs_device *src_dev = dev;
2686         u64 src_physical = physical;
2687         int src_mirror = mirror_num;
2688         int ret;
2689         u8 csum[BTRFS_CSUM_SIZE];
2690         u32 blocksize;
2691
2692         if (flags & BTRFS_EXTENT_FLAG_DATA) {
2693                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2694                         blocksize = map->stripe_len;
2695                 else
2696                         blocksize = sctx->fs_info->sectorsize;
2697                 spin_lock(&sctx->stat_lock);
2698                 sctx->stat.data_extents_scrubbed++;
2699                 sctx->stat.data_bytes_scrubbed += len;
2700                 spin_unlock(&sctx->stat_lock);
2701         } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2702                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2703                         blocksize = map->stripe_len;
2704                 else
2705                         blocksize = sctx->fs_info->nodesize;
2706                 spin_lock(&sctx->stat_lock);
2707                 sctx->stat.tree_extents_scrubbed++;
2708                 sctx->stat.tree_bytes_scrubbed += len;
2709                 spin_unlock(&sctx->stat_lock);
2710         } else {
2711                 blocksize = sctx->fs_info->sectorsize;
2712                 WARN_ON(1);
2713         }
2714
2715         /*
2716          * For dev-replace case, we can have @dev being a missing device.
2717          * Regular scrub will avoid its execution on missing device at all,
2718          * as that would trigger tons of read error.
2719          *
2720          * Reading from missing device will cause read error counts to
2721          * increase unnecessarily.
2722          * So here we change the read source to a good mirror.
2723          */
2724         if (sctx->is_dev_replace && !dev->bdev)
2725                 scrub_find_good_copy(sctx->fs_info, logical, len, &src_physical,
2726                                      &src_dev, &src_mirror);
2727         while (len) {
2728                 u32 l = min(len, blocksize);
2729                 int have_csum = 0;
2730
2731                 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2732                         /* push csums to sbio */
2733                         have_csum = scrub_find_csum(sctx, logical, csum);
2734                         if (have_csum == 0)
2735                                 ++sctx->stat.no_csum;
2736                 }
2737                 ret = scrub_sectors(sctx, logical, l, src_physical, src_dev,
2738                                     flags, gen, src_mirror,
2739                                     have_csum ? csum : NULL, physical);
2740                 if (ret)
2741                         return ret;
2742                 len -= l;
2743                 logical += l;
2744                 physical += l;
2745                 src_physical += l;
2746         }
2747         return 0;
2748 }
2749
2750 static int scrub_sectors_for_parity(struct scrub_parity *sparity,
2751                                   u64 logical, u32 len,
2752                                   u64 physical, struct btrfs_device *dev,
2753                                   u64 flags, u64 gen, int mirror_num, u8 *csum)
2754 {
2755         struct scrub_ctx *sctx = sparity->sctx;
2756         struct scrub_block *sblock;
2757         const u32 sectorsize = sctx->fs_info->sectorsize;
2758         int index;
2759
2760         ASSERT(IS_ALIGNED(len, sectorsize));
2761
2762         sblock = alloc_scrub_block(sctx, dev, logical, physical, physical, mirror_num);
2763         if (!sblock) {
2764                 spin_lock(&sctx->stat_lock);
2765                 sctx->stat.malloc_errors++;
2766                 spin_unlock(&sctx->stat_lock);
2767                 return -ENOMEM;
2768         }
2769
2770         sblock->sparity = sparity;
2771         scrub_parity_get(sparity);
2772
2773         for (index = 0; len > 0; index++) {
2774                 struct scrub_sector *sector;
2775
2776                 sector = alloc_scrub_sector(sblock, logical);
2777                 if (!sector) {
2778                         spin_lock(&sctx->stat_lock);
2779                         sctx->stat.malloc_errors++;
2780                         spin_unlock(&sctx->stat_lock);
2781                         scrub_block_put(sblock);
2782                         return -ENOMEM;
2783                 }
2784                 sblock->sectors[index] = sector;
2785                 /* For scrub parity */
2786                 scrub_sector_get(sector);
2787                 list_add_tail(&sector->list, &sparity->sectors_list);
2788                 sector->flags = flags;
2789                 sector->generation = gen;
2790                 if (csum) {
2791                         sector->have_csum = 1;
2792                         memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2793                 } else {
2794                         sector->have_csum = 0;
2795                 }
2796
2797                 /* Iterate over the stripe range in sectorsize steps */
2798                 len -= sectorsize;
2799                 logical += sectorsize;
2800                 physical += sectorsize;
2801         }
2802
2803         WARN_ON(sblock->sector_count == 0);
2804         for (index = 0; index < sblock->sector_count; index++) {
2805                 struct scrub_sector *sector = sblock->sectors[index];
2806                 int ret;
2807
2808                 ret = scrub_add_sector_to_rd_bio(sctx, sector);
2809                 if (ret) {
2810                         scrub_block_put(sblock);
2811                         return ret;
2812                 }
2813         }
2814
2815         /* Last one frees, either here or in bio completion for last sector */
2816         scrub_block_put(sblock);
2817         return 0;
2818 }
2819
2820 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2821                                    u64 logical, u32 len,
2822                                    u64 physical, struct btrfs_device *dev,
2823                                    u64 flags, u64 gen, int mirror_num)
2824 {
2825         struct scrub_ctx *sctx = sparity->sctx;
2826         int ret;
2827         u8 csum[BTRFS_CSUM_SIZE];
2828         u32 blocksize;
2829
2830         if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2831                 scrub_parity_mark_sectors_error(sparity, logical, len);
2832                 return 0;
2833         }
2834
2835         if (flags & BTRFS_EXTENT_FLAG_DATA) {
2836                 blocksize = sparity->stripe_len;
2837         } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2838                 blocksize = sparity->stripe_len;
2839         } else {
2840                 blocksize = sctx->fs_info->sectorsize;
2841                 WARN_ON(1);
2842         }
2843
2844         while (len) {
2845                 u32 l = min(len, blocksize);
2846                 int have_csum = 0;
2847
2848                 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2849                         /* push csums to sbio */
2850                         have_csum = scrub_find_csum(sctx, logical, csum);
2851                         if (have_csum == 0)
2852                                 goto skip;
2853                 }
2854                 ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev,
2855                                              flags, gen, mirror_num,
2856                                              have_csum ? csum : NULL);
2857                 if (ret)
2858                         return ret;
2859 skip:
2860                 len -= l;
2861                 logical += l;
2862                 physical += l;
2863         }
2864         return 0;
2865 }
2866
2867 /*
2868  * Given a physical address, this will calculate it's
2869  * logical offset. if this is a parity stripe, it will return
2870  * the most left data stripe's logical offset.
2871  *
2872  * return 0 if it is a data stripe, 1 means parity stripe.
2873  */
2874 static int get_raid56_logic_offset(u64 physical, int num,
2875                                    struct map_lookup *map, u64 *offset,
2876                                    u64 *stripe_start)
2877 {
2878         int i;
2879         int j = 0;
2880         u64 stripe_nr;
2881         u64 last_offset;
2882         u32 stripe_index;
2883         u32 rot;
2884         const int data_stripes = nr_data_stripes(map);
2885
2886         last_offset = (physical - map->stripes[num].physical) * data_stripes;
2887         if (stripe_start)
2888                 *stripe_start = last_offset;
2889
2890         *offset = last_offset;
2891         for (i = 0; i < data_stripes; i++) {
2892                 *offset = last_offset + i * map->stripe_len;
2893
2894                 stripe_nr = div64_u64(*offset, map->stripe_len);
2895                 stripe_nr = div_u64(stripe_nr, data_stripes);
2896
2897                 /* Work out the disk rotation on this stripe-set */
2898                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2899                 /* calculate which stripe this data locates */
2900                 rot += i;
2901                 stripe_index = rot % map->num_stripes;
2902                 if (stripe_index == num)
2903                         return 0;
2904                 if (stripe_index < num)
2905                         j++;
2906         }
2907         *offset = last_offset + j * map->stripe_len;
2908         return 1;
2909 }
2910
2911 static void scrub_free_parity(struct scrub_parity *sparity)
2912 {
2913         struct scrub_ctx *sctx = sparity->sctx;
2914         struct scrub_sector *curr, *next;
2915         int nbits;
2916
2917         nbits = bitmap_weight(&sparity->ebitmap, sparity->nsectors);
2918         if (nbits) {
2919                 spin_lock(&sctx->stat_lock);
2920                 sctx->stat.read_errors += nbits;
2921                 sctx->stat.uncorrectable_errors += nbits;
2922                 spin_unlock(&sctx->stat_lock);
2923         }
2924
2925         list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) {
2926                 list_del_init(&curr->list);
2927                 scrub_sector_put(curr);
2928         }
2929
2930         kfree(sparity);
2931 }
2932
2933 static void scrub_parity_bio_endio_worker(struct work_struct *work)
2934 {
2935         struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2936                                                     work);
2937         struct scrub_ctx *sctx = sparity->sctx;
2938
2939         btrfs_bio_counter_dec(sctx->fs_info);
2940         scrub_free_parity(sparity);
2941         scrub_pending_bio_dec(sctx);
2942 }
2943
2944 static void scrub_parity_bio_endio(struct bio *bio)
2945 {
2946         struct scrub_parity *sparity = bio->bi_private;
2947         struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2948
2949         if (bio->bi_status)
2950                 bitmap_or(&sparity->ebitmap, &sparity->ebitmap,
2951                           &sparity->dbitmap, sparity->nsectors);
2952
2953         bio_put(bio);
2954
2955         INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker);
2956         queue_work(fs_info->scrub_parity_workers, &sparity->work);
2957 }
2958
2959 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2960 {
2961         struct scrub_ctx *sctx = sparity->sctx;
2962         struct btrfs_fs_info *fs_info = sctx->fs_info;
2963         struct bio *bio;
2964         struct btrfs_raid_bio *rbio;
2965         struct btrfs_io_context *bioc = NULL;
2966         u64 length;
2967         int ret;
2968
2969         if (!bitmap_andnot(&sparity->dbitmap, &sparity->dbitmap,
2970                            &sparity->ebitmap, sparity->nsectors))
2971                 goto out;
2972
2973         length = sparity->logic_end - sparity->logic_start;
2974
2975         btrfs_bio_counter_inc_blocked(fs_info);
2976         ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2977                                &length, &bioc);
2978         if (ret || !bioc || !bioc->raid_map)
2979                 goto bioc_out;
2980
2981         bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2982         bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2983         bio->bi_private = sparity;
2984         bio->bi_end_io = scrub_parity_bio_endio;
2985
2986         rbio = raid56_parity_alloc_scrub_rbio(bio, bioc,
2987                                               sparity->scrub_dev,
2988                                               &sparity->dbitmap,
2989                                               sparity->nsectors);
2990         btrfs_put_bioc(bioc);
2991         if (!rbio)
2992                 goto rbio_out;
2993
2994         scrub_pending_bio_inc(sctx);
2995         raid56_parity_submit_scrub_rbio(rbio);
2996         return;
2997
2998 rbio_out:
2999         bio_put(bio);
3000 bioc_out:
3001         btrfs_bio_counter_dec(fs_info);
3002         bitmap_or(&sparity->ebitmap, &sparity->ebitmap, &sparity->dbitmap,
3003                   sparity->nsectors);
3004         spin_lock(&sctx->stat_lock);
3005         sctx->stat.malloc_errors++;
3006         spin_unlock(&sctx->stat_lock);
3007 out:
3008         scrub_free_parity(sparity);
3009 }
3010
3011 static void scrub_parity_get(struct scrub_parity *sparity)
3012 {
3013         refcount_inc(&sparity->refs);
3014 }
3015
3016 static void scrub_parity_put(struct scrub_parity *sparity)
3017 {
3018         if (!refcount_dec_and_test(&sparity->refs))
3019                 return;
3020
3021         scrub_parity_check_and_repair(sparity);
3022 }
3023
3024 /*
3025  * Return 0 if the extent item range covers any byte of the range.
3026  * Return <0 if the extent item is before @search_start.
3027  * Return >0 if the extent item is after @start_start + @search_len.
3028  */
3029 static int compare_extent_item_range(struct btrfs_path *path,
3030                                      u64 search_start, u64 search_len)
3031 {
3032         struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
3033         u64 len;
3034         struct btrfs_key key;
3035
3036         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3037         ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
3038                key.type == BTRFS_METADATA_ITEM_KEY);
3039         if (key.type == BTRFS_METADATA_ITEM_KEY)
3040                 len = fs_info->nodesize;
3041         else
3042                 len = key.offset;
3043
3044         if (key.objectid + len <= search_start)
3045                 return -1;
3046         if (key.objectid >= search_start + search_len)
3047                 return 1;
3048         return 0;
3049 }
3050
3051 /*
3052  * Locate one extent item which covers any byte in range
3053  * [@search_start, @search_start + @search_length)
3054  *
3055  * If the path is not initialized, we will initialize the search by doing
3056  * a btrfs_search_slot().
3057  * If the path is already initialized, we will use the path as the initial
3058  * slot, to avoid duplicated btrfs_search_slot() calls.
3059  *
3060  * NOTE: If an extent item starts before @search_start, we will still
3061  * return the extent item. This is for data extent crossing stripe boundary.
3062  *
3063  * Return 0 if we found such extent item, and @path will point to the extent item.
3064  * Return >0 if no such extent item can be found, and @path will be released.
3065  * Return <0 if hit fatal error, and @path will be released.
3066  */
3067 static int find_first_extent_item(struct btrfs_root *extent_root,
3068                                   struct btrfs_path *path,
3069                                   u64 search_start, u64 search_len)
3070 {
3071         struct btrfs_fs_info *fs_info = extent_root->fs_info;
3072         struct btrfs_key key;
3073         int ret;
3074
3075         /* Continue using the existing path */
3076         if (path->nodes[0])
3077                 goto search_forward;
3078
3079         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3080                 key.type = BTRFS_METADATA_ITEM_KEY;
3081         else
3082                 key.type = BTRFS_EXTENT_ITEM_KEY;
3083         key.objectid = search_start;
3084         key.offset = (u64)-1;
3085
3086         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3087         if (ret < 0)
3088                 return ret;
3089
3090         ASSERT(ret > 0);
3091         /*
3092          * Here we intentionally pass 0 as @min_objectid, as there could be
3093          * an extent item starting before @search_start.
3094          */
3095         ret = btrfs_previous_extent_item(extent_root, path, 0);
3096         if (ret < 0)
3097                 return ret;
3098         /*
3099          * No matter whether we have found an extent item, the next loop will
3100          * properly do every check on the key.
3101          */
3102 search_forward:
3103         while (true) {
3104                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3105                 if (key.objectid >= search_start + search_len)
3106                         break;
3107                 if (key.type != BTRFS_METADATA_ITEM_KEY &&
3108                     key.type != BTRFS_EXTENT_ITEM_KEY)
3109                         goto next;
3110
3111                 ret = compare_extent_item_range(path, search_start, search_len);
3112                 if (ret == 0)
3113                         return ret;
3114                 if (ret > 0)
3115                         break;
3116 next:
3117                 path->slots[0]++;
3118                 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3119                         ret = btrfs_next_leaf(extent_root, path);
3120                         if (ret) {
3121                                 /* Either no more item or fatal error */
3122                                 btrfs_release_path(path);
3123                                 return ret;
3124                         }
3125                 }
3126         }
3127         btrfs_release_path(path);
3128         return 1;
3129 }
3130
3131 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
3132                             u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
3133 {
3134         struct btrfs_key key;
3135         struct btrfs_extent_item *ei;
3136
3137         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3138         ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
3139                key.type == BTRFS_EXTENT_ITEM_KEY);
3140         *extent_start_ret = key.objectid;
3141         if (key.type == BTRFS_METADATA_ITEM_KEY)
3142                 *size_ret = path->nodes[0]->fs_info->nodesize;
3143         else
3144                 *size_ret = key.offset;
3145         ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
3146         *flags_ret = btrfs_extent_flags(path->nodes[0], ei);
3147         *generation_ret = btrfs_extent_generation(path->nodes[0], ei);
3148 }
3149
3150 static bool does_range_cross_boundary(u64 extent_start, u64 extent_len,
3151                                       u64 boundary_start, u64 boudary_len)
3152 {
3153         return (extent_start < boundary_start &&
3154                 extent_start + extent_len > boundary_start) ||
3155                (extent_start < boundary_start + boudary_len &&
3156                 extent_start + extent_len > boundary_start + boudary_len);
3157 }
3158
3159 static int scrub_raid56_data_stripe_for_parity(struct scrub_ctx *sctx,
3160                                                struct scrub_parity *sparity,
3161                                                struct map_lookup *map,
3162                                                struct btrfs_device *sdev,
3163                                                struct btrfs_path *path,
3164                                                u64 logical)
3165 {
3166         struct btrfs_fs_info *fs_info = sctx->fs_info;
3167         struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
3168         struct btrfs_root *csum_root = btrfs_csum_root(fs_info, logical);
3169         u64 cur_logical = logical;
3170         int ret;
3171
3172         ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
3173
3174         /* Path must not be populated */
3175         ASSERT(!path->nodes[0]);
3176
3177         while (cur_logical < logical + map->stripe_len) {
3178                 struct btrfs_io_context *bioc = NULL;
3179                 struct btrfs_device *extent_dev;
3180                 u64 extent_start;
3181                 u64 extent_size;
3182                 u64 mapped_length;
3183                 u64 extent_flags;
3184                 u64 extent_gen;
3185                 u64 extent_physical;
3186                 u64 extent_mirror_num;
3187
3188                 ret = find_first_extent_item(extent_root, path, cur_logical,
3189                                              logical + map->stripe_len - cur_logical);
3190                 /* No more extent item in this data stripe */
3191                 if (ret > 0) {
3192                         ret = 0;
3193                         break;
3194                 }
3195                 if (ret < 0)
3196                         break;
3197                 get_extent_info(path, &extent_start, &extent_size, &extent_flags,
3198                                 &extent_gen);
3199
3200                 /* Metadata should not cross stripe boundaries */
3201                 if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3202                     does_range_cross_boundary(extent_start, extent_size,
3203                                               logical, map->stripe_len)) {
3204                         btrfs_err(fs_info,
3205         "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3206                                   extent_start, logical);
3207                         spin_lock(&sctx->stat_lock);
3208                         sctx->stat.uncorrectable_errors++;
3209                         spin_unlock(&sctx->stat_lock);
3210                         cur_logical += extent_size;
3211                         continue;
3212                 }
3213
3214                 /* Skip hole range which doesn't have any extent */
3215                 cur_logical = max(extent_start, cur_logical);
3216
3217                 /* Truncate the range inside this data stripe */
3218                 extent_size = min(extent_start + extent_size,
3219                                   logical + map->stripe_len) - cur_logical;
3220                 extent_start = cur_logical;
3221                 ASSERT(extent_size <= U32_MAX);
3222
3223                 scrub_parity_mark_sectors_data(sparity, extent_start, extent_size);
3224
3225                 mapped_length = extent_size;
3226                 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_start,
3227                                       &mapped_length, &bioc, 0);
3228                 if (!ret && (!bioc || mapped_length < extent_size))
3229                         ret = -EIO;
3230                 if (ret) {
3231                         btrfs_put_bioc(bioc);
3232                         scrub_parity_mark_sectors_error(sparity, extent_start,
3233                                                         extent_size);
3234                         break;
3235                 }
3236                 extent_physical = bioc->stripes[0].physical;
3237                 extent_mirror_num = bioc->mirror_num;
3238                 extent_dev = bioc->stripes[0].dev;
3239                 btrfs_put_bioc(bioc);
3240
3241                 ret = btrfs_lookup_csums_list(csum_root, extent_start,
3242                                               extent_start + extent_size - 1,
3243                                               &sctx->csum_list, 1, false);
3244                 if (ret) {
3245                         scrub_parity_mark_sectors_error(sparity, extent_start,
3246                                                         extent_size);
3247                         break;
3248                 }
3249
3250                 ret = scrub_extent_for_parity(sparity, extent_start,
3251                                               extent_size, extent_physical,
3252                                               extent_dev, extent_flags,
3253                                               extent_gen, extent_mirror_num);
3254                 scrub_free_csums(sctx);
3255
3256                 if (ret) {
3257                         scrub_parity_mark_sectors_error(sparity, extent_start,
3258                                                         extent_size);
3259                         break;
3260                 }
3261
3262                 cond_resched();
3263                 cur_logical += extent_size;
3264         }
3265         btrfs_release_path(path);
3266         return ret;
3267 }
3268
3269 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
3270                                                   struct map_lookup *map,
3271                                                   struct btrfs_device *sdev,
3272                                                   u64 logic_start,
3273                                                   u64 logic_end)
3274 {
3275         struct btrfs_fs_info *fs_info = sctx->fs_info;
3276         struct btrfs_path *path;
3277         u64 cur_logical;
3278         int ret;
3279         struct scrub_parity *sparity;
3280         int nsectors;
3281
3282         path = btrfs_alloc_path();
3283         if (!path) {
3284                 spin_lock(&sctx->stat_lock);
3285                 sctx->stat.malloc_errors++;
3286                 spin_unlock(&sctx->stat_lock);
3287                 return -ENOMEM;
3288         }
3289         path->search_commit_root = 1;
3290         path->skip_locking = 1;
3291
3292         ASSERT(map->stripe_len <= U32_MAX);
3293         nsectors = map->stripe_len >> fs_info->sectorsize_bits;
3294         ASSERT(nsectors <= BITS_PER_LONG);
3295         sparity = kzalloc(sizeof(struct scrub_parity), GFP_NOFS);
3296         if (!sparity) {
3297                 spin_lock(&sctx->stat_lock);
3298                 sctx->stat.malloc_errors++;
3299                 spin_unlock(&sctx->stat_lock);
3300                 btrfs_free_path(path);
3301                 return -ENOMEM;
3302         }
3303
3304         ASSERT(map->stripe_len <= U32_MAX);
3305         sparity->stripe_len = map->stripe_len;
3306         sparity->nsectors = nsectors;
3307         sparity->sctx = sctx;
3308         sparity->scrub_dev = sdev;
3309         sparity->logic_start = logic_start;
3310         sparity->logic_end = logic_end;
3311         refcount_set(&sparity->refs, 1);
3312         INIT_LIST_HEAD(&sparity->sectors_list);
3313
3314         ret = 0;
3315         for (cur_logical = logic_start; cur_logical < logic_end;
3316              cur_logical += map->stripe_len) {
3317                 ret = scrub_raid56_data_stripe_for_parity(sctx, sparity, map,
3318                                                           sdev, path, cur_logical);
3319                 if (ret < 0)
3320                         break;
3321         }
3322
3323         scrub_parity_put(sparity);
3324         scrub_submit(sctx);
3325         mutex_lock(&sctx->wr_lock);
3326         scrub_wr_submit(sctx);
3327         mutex_unlock(&sctx->wr_lock);
3328
3329         btrfs_free_path(path);
3330         return ret < 0 ? ret : 0;
3331 }
3332
3333 static void sync_replace_for_zoned(struct scrub_ctx *sctx)
3334 {
3335         if (!btrfs_is_zoned(sctx->fs_info))
3336                 return;
3337
3338         sctx->flush_all_writes = true;
3339         scrub_submit(sctx);
3340         mutex_lock(&sctx->wr_lock);
3341         scrub_wr_submit(sctx);
3342         mutex_unlock(&sctx->wr_lock);
3343
3344         wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3345 }
3346
3347 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
3348                                         u64 physical, u64 physical_end)
3349 {
3350         struct btrfs_fs_info *fs_info = sctx->fs_info;
3351         int ret = 0;
3352
3353         if (!btrfs_is_zoned(fs_info))
3354                 return 0;
3355
3356         wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3357
3358         mutex_lock(&sctx->wr_lock);
3359         if (sctx->write_pointer < physical_end) {
3360                 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
3361                                                     physical,
3362                                                     sctx->write_pointer);
3363                 if (ret)
3364                         btrfs_err(fs_info,
3365                                   "zoned: failed to recover write pointer");
3366         }
3367         mutex_unlock(&sctx->wr_lock);
3368         btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
3369
3370         return ret;
3371 }
3372
3373 /*
3374  * Scrub one range which can only has simple mirror based profile.
3375  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
3376  *  RAID0/RAID10).
3377  *
3378  * Since we may need to handle a subset of block group, we need @logical_start
3379  * and @logical_length parameter.
3380  */
3381 static int scrub_simple_mirror(struct scrub_ctx *sctx,
3382                                struct btrfs_root *extent_root,
3383                                struct btrfs_root *csum_root,
3384                                struct btrfs_block_group *bg,
3385                                struct map_lookup *map,
3386                                u64 logical_start, u64 logical_length,
3387                                struct btrfs_device *device,
3388                                u64 physical, int mirror_num)
3389 {
3390         struct btrfs_fs_info *fs_info = sctx->fs_info;
3391         const u64 logical_end = logical_start + logical_length;
3392         /* An artificial limit, inherit from old scrub behavior */
3393         const u32 max_length = SZ_64K;
3394         struct btrfs_path path = { 0 };
3395         u64 cur_logical = logical_start;
3396         int ret;
3397
3398         /* The range must be inside the bg */
3399         ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
3400
3401         path.search_commit_root = 1;
3402         path.skip_locking = 1;
3403         /* Go through each extent items inside the logical range */
3404         while (cur_logical < logical_end) {
3405                 u64 extent_start;
3406                 u64 extent_len;
3407                 u64 extent_flags;
3408                 u64 extent_gen;
3409                 u64 scrub_len;
3410
3411                 /* Canceled? */
3412                 if (atomic_read(&fs_info->scrub_cancel_req) ||
3413                     atomic_read(&sctx->cancel_req)) {
3414                         ret = -ECANCELED;
3415                         break;
3416                 }
3417                 /* Paused? */
3418                 if (atomic_read(&fs_info->scrub_pause_req)) {
3419                         /* Push queued extents */
3420                         sctx->flush_all_writes = true;
3421                         scrub_submit(sctx);
3422                         mutex_lock(&sctx->wr_lock);
3423                         scrub_wr_submit(sctx);
3424                         mutex_unlock(&sctx->wr_lock);
3425                         wait_event(sctx->list_wait,
3426                                    atomic_read(&sctx->bios_in_flight) == 0);
3427                         sctx->flush_all_writes = false;
3428                         scrub_blocked_if_needed(fs_info);
3429                 }
3430                 /* Block group removed? */
3431                 spin_lock(&bg->lock);
3432                 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
3433                         spin_unlock(&bg->lock);
3434                         ret = 0;
3435                         break;
3436                 }
3437                 spin_unlock(&bg->lock);
3438
3439                 ret = find_first_extent_item(extent_root, &path, cur_logical,
3440                                              logical_end - cur_logical);
3441                 if (ret > 0) {
3442                         /* No more extent, just update the accounting */
3443                         sctx->stat.last_physical = physical + logical_length;
3444                         ret = 0;
3445                         break;
3446                 }
3447                 if (ret < 0)
3448                         break;
3449                 get_extent_info(&path, &extent_start, &extent_len,
3450                                 &extent_flags, &extent_gen);
3451                 /* Skip hole range which doesn't have any extent */
3452                 cur_logical = max(extent_start, cur_logical);
3453
3454                 /*
3455                  * Scrub len has three limits:
3456                  * - Extent size limit
3457                  * - Scrub range limit
3458                  *   This is especially imporatant for RAID0/RAID10 to reuse
3459                  *   this function
3460                  * - Max scrub size limit
3461                  */
3462                 scrub_len = min(min(extent_start + extent_len,
3463                                     logical_end), cur_logical + max_length) -
3464                             cur_logical;
3465
3466                 if (extent_flags & BTRFS_EXTENT_FLAG_DATA) {
3467                         ret = btrfs_lookup_csums_list(csum_root, cur_logical,
3468                                         cur_logical + scrub_len - 1,
3469                                         &sctx->csum_list, 1, false);
3470                         if (ret)
3471                                 break;
3472                 }
3473                 if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3474                     does_range_cross_boundary(extent_start, extent_len,
3475                                               logical_start, logical_length)) {
3476                         btrfs_err(fs_info,
3477 "scrub: tree block %llu spanning boundaries, ignored. boundary=[%llu, %llu)",
3478                                   extent_start, logical_start, logical_end);
3479                         spin_lock(&sctx->stat_lock);
3480                         sctx->stat.uncorrectable_errors++;
3481                         spin_unlock(&sctx->stat_lock);
3482                         cur_logical += scrub_len;
3483                         continue;
3484                 }
3485                 ret = scrub_extent(sctx, map, cur_logical, scrub_len,
3486                                    cur_logical - logical_start + physical,
3487                                    device, extent_flags, extent_gen,
3488                                    mirror_num);
3489                 scrub_free_csums(sctx);
3490                 if (ret)
3491                         break;
3492                 if (sctx->is_dev_replace)
3493                         sync_replace_for_zoned(sctx);
3494                 cur_logical += scrub_len;
3495                 /* Don't hold CPU for too long time */
3496                 cond_resched();
3497         }
3498         btrfs_release_path(&path);
3499         return ret;
3500 }
3501
3502 /* Calculate the full stripe length for simple stripe based profiles */
3503 static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
3504 {
3505         ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3506                             BTRFS_BLOCK_GROUP_RAID10));
3507
3508         return map->num_stripes / map->sub_stripes * map->stripe_len;
3509 }
3510
3511 /* Get the logical bytenr for the stripe */
3512 static u64 simple_stripe_get_logical(struct map_lookup *map,
3513                                      struct btrfs_block_group *bg,
3514                                      int stripe_index)
3515 {
3516         ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3517                             BTRFS_BLOCK_GROUP_RAID10));
3518         ASSERT(stripe_index < map->num_stripes);
3519
3520         /*
3521          * (stripe_index / sub_stripes) gives how many data stripes we need to
3522          * skip.
3523          */
3524         return (stripe_index / map->sub_stripes) * map->stripe_len + bg->start;
3525 }
3526
3527 /* Get the mirror number for the stripe */
3528 static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
3529 {
3530         ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3531                             BTRFS_BLOCK_GROUP_RAID10));
3532         ASSERT(stripe_index < map->num_stripes);
3533
3534         /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
3535         return stripe_index % map->sub_stripes + 1;
3536 }
3537
3538 static int scrub_simple_stripe(struct scrub_ctx *sctx,
3539                                struct btrfs_root *extent_root,
3540                                struct btrfs_root *csum_root,
3541                                struct btrfs_block_group *bg,
3542                                struct map_lookup *map,
3543                                struct btrfs_device *device,
3544                                int stripe_index)
3545 {
3546         const u64 logical_increment = simple_stripe_full_stripe_len(map);
3547         const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
3548         const u64 orig_physical = map->stripes[stripe_index].physical;
3549         const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
3550         u64 cur_logical = orig_logical;
3551         u64 cur_physical = orig_physical;
3552         int ret = 0;
3553
3554         while (cur_logical < bg->start + bg->length) {
3555                 /*
3556                  * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
3557                  * just RAID1, so we can reuse scrub_simple_mirror() to scrub
3558                  * this stripe.
3559                  */
3560                 ret = scrub_simple_mirror(sctx, extent_root, csum_root, bg, map,
3561                                           cur_logical, map->stripe_len, device,
3562                                           cur_physical, mirror_num);
3563                 if (ret)
3564                         return ret;
3565                 /* Skip to next stripe which belongs to the target device */
3566                 cur_logical += logical_increment;
3567                 /* For physical offset, we just go to next stripe */
3568                 cur_physical += map->stripe_len;
3569         }
3570         return ret;
3571 }
3572
3573 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3574                                            struct btrfs_block_group *bg,
3575                                            struct extent_map *em,
3576                                            struct btrfs_device *scrub_dev,
3577                                            int stripe_index)
3578 {
3579         struct btrfs_path *path;
3580         struct btrfs_fs_info *fs_info = sctx->fs_info;
3581         struct btrfs_root *root;
3582         struct btrfs_root *csum_root;
3583         struct blk_plug plug;
3584         struct map_lookup *map = em->map_lookup;
3585         const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3586         const u64 chunk_logical = bg->start;
3587         int ret;
3588         u64 physical = map->stripes[stripe_index].physical;
3589         const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
3590         const u64 physical_end = physical + dev_stripe_len;
3591         u64 logical;
3592         u64 logic_end;
3593         /* The logical increment after finishing one stripe */
3594         u64 increment;
3595         /* Offset inside the chunk */
3596         u64 offset;
3597         u64 stripe_logical;
3598         u64 stripe_end;
3599         int stop_loop = 0;
3600
3601         path = btrfs_alloc_path();
3602         if (!path)
3603                 return -ENOMEM;
3604
3605         /*
3606          * work on commit root. The related disk blocks are static as
3607          * long as COW is applied. This means, it is save to rewrite
3608          * them to repair disk errors without any race conditions
3609          */
3610         path->search_commit_root = 1;
3611         path->skip_locking = 1;
3612         path->reada = READA_FORWARD;
3613
3614         wait_event(sctx->list_wait,
3615                    atomic_read(&sctx->bios_in_flight) == 0);
3616         scrub_blocked_if_needed(fs_info);
3617
3618         root = btrfs_extent_root(fs_info, bg->start);
3619         csum_root = btrfs_csum_root(fs_info, bg->start);
3620
3621         /*
3622          * collect all data csums for the stripe to avoid seeking during
3623          * the scrub. This might currently (crc32) end up to be about 1MB
3624          */
3625         blk_start_plug(&plug);
3626
3627         if (sctx->is_dev_replace &&
3628             btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
3629                 mutex_lock(&sctx->wr_lock);
3630                 sctx->write_pointer = physical;
3631                 mutex_unlock(&sctx->wr_lock);
3632                 sctx->flush_all_writes = true;
3633         }
3634
3635         /*
3636          * There used to be a big double loop to handle all profiles using the
3637          * same routine, which grows larger and more gross over time.
3638          *
3639          * So here we handle each profile differently, so simpler profiles
3640          * have simpler scrubbing function.
3641          */
3642         if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
3643                          BTRFS_BLOCK_GROUP_RAID56_MASK))) {
3644                 /*
3645                  * Above check rules out all complex profile, the remaining
3646                  * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
3647                  * mirrored duplication without stripe.
3648                  *
3649                  * Only @physical and @mirror_num needs to calculated using
3650                  * @stripe_index.
3651                  */
3652                 ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
3653                                 bg->start, bg->length, scrub_dev,
3654                                 map->stripes[stripe_index].physical,
3655                                 stripe_index + 1);
3656                 offset = 0;
3657                 goto out;
3658         }
3659         if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3660                 ret = scrub_simple_stripe(sctx, root, csum_root, bg, map,
3661                                           scrub_dev, stripe_index);
3662                 offset = map->stripe_len * (stripe_index / map->sub_stripes);
3663                 goto out;
3664         }
3665
3666         /* Only RAID56 goes through the old code */
3667         ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
3668         ret = 0;
3669
3670         /* Calculate the logical end of the stripe */
3671         get_raid56_logic_offset(physical_end, stripe_index,
3672                                 map, &logic_end, NULL);
3673         logic_end += chunk_logical;
3674
3675         /* Initialize @offset in case we need to go to out: label */
3676         get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
3677         increment = map->stripe_len * nr_data_stripes(map);
3678
3679         /*
3680          * Due to the rotation, for RAID56 it's better to iterate each stripe
3681          * using their physical offset.
3682          */
3683         while (physical < physical_end) {
3684                 ret = get_raid56_logic_offset(physical, stripe_index, map,
3685                                               &logical, &stripe_logical);
3686                 logical += chunk_logical;
3687                 if (ret) {
3688                         /* it is parity strip */
3689                         stripe_logical += chunk_logical;
3690                         stripe_end = stripe_logical + increment;
3691                         ret = scrub_raid56_parity(sctx, map, scrub_dev,
3692                                                   stripe_logical,
3693                                                   stripe_end);
3694                         if (ret)
3695                                 goto out;
3696                         goto next;
3697                 }
3698
3699                 /*
3700                  * Now we're at a data stripe, scrub each extents in the range.
3701                  *
3702                  * At this stage, if we ignore the repair part, inside each data
3703                  * stripe it is no different than SINGLE profile.
3704                  * We can reuse scrub_simple_mirror() here, as the repair part
3705                  * is still based on @mirror_num.
3706                  */
3707                 ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
3708                                           logical, map->stripe_len,
3709                                           scrub_dev, physical, 1);
3710                 if (ret < 0)
3711                         goto out;
3712 next:
3713                 logical += increment;
3714                 physical += map->stripe_len;
3715                 spin_lock(&sctx->stat_lock);
3716                 if (stop_loop)
3717                         sctx->stat.last_physical =
3718                                 map->stripes[stripe_index].physical + dev_stripe_len;
3719                 else
3720                         sctx->stat.last_physical = physical;
3721                 spin_unlock(&sctx->stat_lock);
3722                 if (stop_loop)
3723                         break;
3724         }
3725 out:
3726         /* push queued extents */
3727         scrub_submit(sctx);
3728         mutex_lock(&sctx->wr_lock);
3729         scrub_wr_submit(sctx);
3730         mutex_unlock(&sctx->wr_lock);
3731
3732         blk_finish_plug(&plug);
3733         btrfs_free_path(path);
3734
3735         if (sctx->is_dev_replace && ret >= 0) {
3736                 int ret2;
3737
3738                 ret2 = sync_write_pointer_for_zoned(sctx,
3739                                 chunk_logical + offset,
3740                                 map->stripes[stripe_index].physical,
3741                                 physical_end);
3742                 if (ret2)
3743                         ret = ret2;
3744         }
3745
3746         return ret < 0 ? ret : 0;
3747 }
3748
3749 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3750                                           struct btrfs_block_group *bg,
3751                                           struct btrfs_device *scrub_dev,
3752                                           u64 dev_offset,
3753                                           u64 dev_extent_len)
3754 {
3755         struct btrfs_fs_info *fs_info = sctx->fs_info;
3756         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3757         struct map_lookup *map;
3758         struct extent_map *em;
3759         int i;
3760         int ret = 0;
3761
3762         read_lock(&map_tree->lock);
3763         em = lookup_extent_mapping(map_tree, bg->start, bg->length);
3764         read_unlock(&map_tree->lock);
3765
3766         if (!em) {
3767                 /*
3768                  * Might have been an unused block group deleted by the cleaner
3769                  * kthread or relocation.
3770                  */
3771                 spin_lock(&bg->lock);
3772                 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
3773                         ret = -EINVAL;
3774                 spin_unlock(&bg->lock);
3775
3776                 return ret;
3777         }
3778         if (em->start != bg->start)
3779                 goto out;
3780         if (em->len < dev_extent_len)
3781                 goto out;
3782
3783         map = em->map_lookup;
3784         for (i = 0; i < map->num_stripes; ++i) {
3785                 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3786                     map->stripes[i].physical == dev_offset) {
3787                         ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
3788                         if (ret)
3789                                 goto out;
3790                 }
3791         }
3792 out:
3793         free_extent_map(em);
3794
3795         return ret;
3796 }
3797
3798 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
3799                                           struct btrfs_block_group *cache)
3800 {
3801         struct btrfs_fs_info *fs_info = cache->fs_info;
3802         struct btrfs_trans_handle *trans;
3803
3804         if (!btrfs_is_zoned(fs_info))
3805                 return 0;
3806
3807         btrfs_wait_block_group_reservations(cache);
3808         btrfs_wait_nocow_writers(cache);
3809         btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
3810
3811         trans = btrfs_join_transaction(root);
3812         if (IS_ERR(trans))
3813                 return PTR_ERR(trans);
3814         return btrfs_commit_transaction(trans);
3815 }
3816
3817 static noinline_for_stack
3818 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3819                            struct btrfs_device *scrub_dev, u64 start, u64 end)
3820 {
3821         struct btrfs_dev_extent *dev_extent = NULL;
3822         struct btrfs_path *path;
3823         struct btrfs_fs_info *fs_info = sctx->fs_info;
3824         struct btrfs_root *root = fs_info->dev_root;
3825         u64 chunk_offset;
3826         int ret = 0;
3827         int ro_set;
3828         int slot;
3829         struct extent_buffer *l;
3830         struct btrfs_key key;
3831         struct btrfs_key found_key;
3832         struct btrfs_block_group *cache;
3833         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3834
3835         path = btrfs_alloc_path();
3836         if (!path)
3837                 return -ENOMEM;
3838
3839         path->reada = READA_FORWARD;
3840         path->search_commit_root = 1;
3841         path->skip_locking = 1;
3842
3843         key.objectid = scrub_dev->devid;
3844         key.offset = 0ull;
3845         key.type = BTRFS_DEV_EXTENT_KEY;
3846
3847         while (1) {
3848                 u64 dev_extent_len;
3849
3850                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3851                 if (ret < 0)
3852                         break;
3853                 if (ret > 0) {
3854                         if (path->slots[0] >=
3855                             btrfs_header_nritems(path->nodes[0])) {
3856                                 ret = btrfs_next_leaf(root, path);
3857                                 if (ret < 0)
3858                                         break;
3859                                 if (ret > 0) {
3860                                         ret = 0;
3861                                         break;
3862                                 }
3863                         } else {
3864                                 ret = 0;
3865                         }
3866                 }
3867
3868                 l = path->nodes[0];
3869                 slot = path->slots[0];
3870
3871                 btrfs_item_key_to_cpu(l, &found_key, slot);
3872
3873                 if (found_key.objectid != scrub_dev->devid)
3874                         break;
3875
3876                 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3877                         break;
3878
3879                 if (found_key.offset >= end)
3880                         break;
3881
3882                 if (found_key.offset < key.offset)
3883                         break;
3884
3885                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3886                 dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
3887
3888                 if (found_key.offset + dev_extent_len <= start)
3889                         goto skip;
3890
3891                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3892
3893                 /*
3894                  * get a reference on the corresponding block group to prevent
3895                  * the chunk from going away while we scrub it
3896                  */
3897                 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3898
3899                 /* some chunks are removed but not committed to disk yet,
3900                  * continue scrubbing */
3901                 if (!cache)
3902                         goto skip;
3903
3904                 ASSERT(cache->start <= chunk_offset);
3905                 /*
3906                  * We are using the commit root to search for device extents, so
3907                  * that means we could have found a device extent item from a
3908                  * block group that was deleted in the current transaction. The
3909                  * logical start offset of the deleted block group, stored at
3910                  * @chunk_offset, might be part of the logical address range of
3911                  * a new block group (which uses different physical extents).
3912                  * In this case btrfs_lookup_block_group() has returned the new
3913                  * block group, and its start address is less than @chunk_offset.
3914                  *
3915                  * We skip such new block groups, because it's pointless to
3916                  * process them, as we won't find their extents because we search
3917                  * for them using the commit root of the extent tree. For a device
3918                  * replace it's also fine to skip it, we won't miss copying them
3919                  * to the target device because we have the write duplication
3920                  * setup through the regular write path (by btrfs_map_block()),
3921                  * and we have committed a transaction when we started the device
3922                  * replace, right after setting up the device replace state.
3923                  */
3924                 if (cache->start < chunk_offset) {
3925                         btrfs_put_block_group(cache);
3926                         goto skip;
3927                 }
3928
3929                 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
3930                         if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
3931                                 btrfs_put_block_group(cache);
3932                                 goto skip;
3933                         }
3934                 }
3935
3936                 /*
3937                  * Make sure that while we are scrubbing the corresponding block
3938                  * group doesn't get its logical address and its device extents
3939                  * reused for another block group, which can possibly be of a
3940                  * different type and different profile. We do this to prevent
3941                  * false error detections and crashes due to bogus attempts to
3942                  * repair extents.
3943                  */
3944                 spin_lock(&cache->lock);
3945                 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
3946                         spin_unlock(&cache->lock);
3947                         btrfs_put_block_group(cache);
3948                         goto skip;
3949                 }
3950                 btrfs_freeze_block_group(cache);
3951                 spin_unlock(&cache->lock);
3952
3953                 /*
3954                  * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3955                  * to avoid deadlock caused by:
3956                  * btrfs_inc_block_group_ro()
3957                  * -> btrfs_wait_for_commit()
3958                  * -> btrfs_commit_transaction()
3959                  * -> btrfs_scrub_pause()
3960                  */
3961                 scrub_pause_on(fs_info);
3962
3963                 /*
3964                  * Don't do chunk preallocation for scrub.
3965                  *
3966                  * This is especially important for SYSTEM bgs, or we can hit
3967                  * -EFBIG from btrfs_finish_chunk_alloc() like:
3968                  * 1. The only SYSTEM bg is marked RO.
3969                  *    Since SYSTEM bg is small, that's pretty common.
3970                  * 2. New SYSTEM bg will be allocated
3971                  *    Due to regular version will allocate new chunk.
3972                  * 3. New SYSTEM bg is empty and will get cleaned up
3973                  *    Before cleanup really happens, it's marked RO again.
3974                  * 4. Empty SYSTEM bg get scrubbed
3975                  *    We go back to 2.
3976                  *
3977                  * This can easily boost the amount of SYSTEM chunks if cleaner
3978                  * thread can't be triggered fast enough, and use up all space
3979                  * of btrfs_super_block::sys_chunk_array
3980                  *
3981                  * While for dev replace, we need to try our best to mark block
3982                  * group RO, to prevent race between:
3983                  * - Write duplication
3984                  *   Contains latest data
3985                  * - Scrub copy
3986                  *   Contains data from commit tree
3987                  *
3988                  * If target block group is not marked RO, nocow writes can
3989                  * be overwritten by scrub copy, causing data corruption.
3990                  * So for dev-replace, it's not allowed to continue if a block
3991                  * group is not RO.
3992                  */
3993                 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3994                 if (!ret && sctx->is_dev_replace) {
3995                         ret = finish_extent_writes_for_zoned(root, cache);
3996                         if (ret) {
3997                                 btrfs_dec_block_group_ro(cache);
3998                                 scrub_pause_off(fs_info);
3999                                 btrfs_put_block_group(cache);
4000                                 break;
4001                         }
4002                 }
4003
4004                 if (ret == 0) {
4005                         ro_set = 1;
4006                 } else if (ret == -ENOSPC && !sctx->is_dev_replace) {
4007                         /*
4008                          * btrfs_inc_block_group_ro return -ENOSPC when it
4009                          * failed in creating new chunk for metadata.
4010                          * It is not a problem for scrub, because
4011                          * metadata are always cowed, and our scrub paused
4012                          * commit_transactions.
4013                          */
4014                         ro_set = 0;
4015                 } else if (ret == -ETXTBSY) {
4016                         btrfs_warn(fs_info,
4017                    "skipping scrub of block group %llu due to active swapfile",
4018                                    cache->start);
4019                         scrub_pause_off(fs_info);
4020                         ret = 0;
4021                         goto skip_unfreeze;
4022                 } else {
4023                         btrfs_warn(fs_info,
4024                                    "failed setting block group ro: %d", ret);
4025                         btrfs_unfreeze_block_group(cache);
4026                         btrfs_put_block_group(cache);
4027                         scrub_pause_off(fs_info);
4028                         break;
4029                 }
4030
4031                 /*
4032                  * Now the target block is marked RO, wait for nocow writes to
4033                  * finish before dev-replace.
4034                  * COW is fine, as COW never overwrites extents in commit tree.
4035                  */
4036                 if (sctx->is_dev_replace) {
4037                         btrfs_wait_nocow_writers(cache);
4038                         btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
4039                                         cache->length);
4040                 }
4041
4042                 scrub_pause_off(fs_info);
4043                 down_write(&dev_replace->rwsem);
4044                 dev_replace->cursor_right = found_key.offset + dev_extent_len;
4045                 dev_replace->cursor_left = found_key.offset;
4046                 dev_replace->item_needs_writeback = 1;
4047                 up_write(&dev_replace->rwsem);
4048
4049                 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
4050                                   dev_extent_len);
4051
4052                 /*
4053                  * flush, submit all pending read and write bios, afterwards
4054                  * wait for them.
4055                  * Note that in the dev replace case, a read request causes
4056                  * write requests that are submitted in the read completion
4057                  * worker. Therefore in the current situation, it is required
4058                  * that all write requests are flushed, so that all read and
4059                  * write requests are really completed when bios_in_flight
4060                  * changes to 0.
4061                  */
4062                 sctx->flush_all_writes = true;
4063                 scrub_submit(sctx);
4064                 mutex_lock(&sctx->wr_lock);
4065                 scrub_wr_submit(sctx);
4066                 mutex_unlock(&sctx->wr_lock);
4067
4068                 wait_event(sctx->list_wait,
4069                            atomic_read(&sctx->bios_in_flight) == 0);
4070
4071                 scrub_pause_on(fs_info);
4072
4073                 /*
4074                  * must be called before we decrease @scrub_paused.
4075                  * make sure we don't block transaction commit while
4076                  * we are waiting pending workers finished.
4077                  */
4078                 wait_event(sctx->list_wait,
4079                            atomic_read(&sctx->workers_pending) == 0);
4080                 sctx->flush_all_writes = false;
4081
4082                 scrub_pause_off(fs_info);
4083
4084                 if (sctx->is_dev_replace &&
4085                     !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
4086                                                       cache, found_key.offset))
4087                         ro_set = 0;
4088
4089                 down_write(&dev_replace->rwsem);
4090                 dev_replace->cursor_left = dev_replace->cursor_right;
4091                 dev_replace->item_needs_writeback = 1;
4092                 up_write(&dev_replace->rwsem);
4093
4094                 if (ro_set)
4095                         btrfs_dec_block_group_ro(cache);
4096
4097                 /*
4098                  * We might have prevented the cleaner kthread from deleting
4099                  * this block group if it was already unused because we raced
4100                  * and set it to RO mode first. So add it back to the unused
4101                  * list, otherwise it might not ever be deleted unless a manual
4102                  * balance is triggered or it becomes used and unused again.
4103                  */
4104                 spin_lock(&cache->lock);
4105                 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
4106                     !cache->ro && cache->reserved == 0 && cache->used == 0) {
4107                         spin_unlock(&cache->lock);
4108                         if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
4109                                 btrfs_discard_queue_work(&fs_info->discard_ctl,
4110                                                          cache);
4111                         else
4112                                 btrfs_mark_bg_unused(cache);
4113                 } else {
4114                         spin_unlock(&cache->lock);
4115                 }
4116 skip_unfreeze:
4117                 btrfs_unfreeze_block_group(cache);
4118                 btrfs_put_block_group(cache);
4119                 if (ret)
4120                         break;
4121                 if (sctx->is_dev_replace &&
4122                     atomic64_read(&dev_replace->num_write_errors) > 0) {
4123                         ret = -EIO;
4124                         break;
4125                 }
4126                 if (sctx->stat.malloc_errors > 0) {
4127                         ret = -ENOMEM;
4128                         break;
4129                 }
4130 skip:
4131                 key.offset = found_key.offset + dev_extent_len;
4132                 btrfs_release_path(path);
4133         }
4134
4135         btrfs_free_path(path);
4136
4137         return ret;
4138 }
4139
4140 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
4141                                            struct btrfs_device *scrub_dev)
4142 {
4143         int     i;
4144         u64     bytenr;
4145         u64     gen;
4146         int     ret;
4147         struct btrfs_fs_info *fs_info = sctx->fs_info;
4148
4149         if (BTRFS_FS_ERROR(fs_info))
4150                 return -EROFS;
4151
4152         /* Seed devices of a new filesystem has their own generation. */
4153         if (scrub_dev->fs_devices != fs_info->fs_devices)
4154                 gen = scrub_dev->generation;
4155         else
4156                 gen = fs_info->last_trans_committed;
4157
4158         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
4159                 bytenr = btrfs_sb_offset(i);
4160                 if (bytenr + BTRFS_SUPER_INFO_SIZE >
4161                     scrub_dev->commit_total_bytes)
4162                         break;
4163                 if (!btrfs_check_super_location(scrub_dev, bytenr))
4164                         continue;
4165
4166                 ret = scrub_sectors(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4167                                     scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4168                                     NULL, bytenr);
4169                 if (ret)
4170                         return ret;
4171         }
4172         wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4173
4174         return 0;
4175 }
4176
4177 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
4178 {
4179         if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
4180                                         &fs_info->scrub_lock)) {
4181                 struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
4182                 struct workqueue_struct *scrub_wr_comp =
4183                                                 fs_info->scrub_wr_completion_workers;
4184                 struct workqueue_struct *scrub_parity =
4185                                                 fs_info->scrub_parity_workers;
4186
4187                 fs_info->scrub_workers = NULL;
4188                 fs_info->scrub_wr_completion_workers = NULL;
4189                 fs_info->scrub_parity_workers = NULL;
4190                 mutex_unlock(&fs_info->scrub_lock);
4191
4192                 if (scrub_workers)
4193                         destroy_workqueue(scrub_workers);
4194                 if (scrub_wr_comp)
4195                         destroy_workqueue(scrub_wr_comp);
4196                 if (scrub_parity)
4197                         destroy_workqueue(scrub_parity);
4198         }
4199 }
4200
4201 /*
4202  * get a reference count on fs_info->scrub_workers. start worker if necessary
4203  */
4204 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4205                                                 int is_dev_replace)
4206 {
4207         struct workqueue_struct *scrub_workers = NULL;
4208         struct workqueue_struct *scrub_wr_comp = NULL;
4209         struct workqueue_struct *scrub_parity = NULL;
4210         unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4211         int max_active = fs_info->thread_pool_size;
4212         int ret = -ENOMEM;
4213
4214         if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
4215                 return 0;
4216
4217         scrub_workers = alloc_workqueue("btrfs-scrub", flags,
4218                                         is_dev_replace ? 1 : max_active);
4219         if (!scrub_workers)
4220                 goto fail_scrub_workers;
4221
4222         scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active);
4223         if (!scrub_wr_comp)
4224                 goto fail_scrub_wr_completion_workers;
4225
4226         scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active);
4227         if (!scrub_parity)
4228                 goto fail_scrub_parity_workers;
4229
4230         mutex_lock(&fs_info->scrub_lock);
4231         if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
4232                 ASSERT(fs_info->scrub_workers == NULL &&
4233                        fs_info->scrub_wr_completion_workers == NULL &&
4234                        fs_info->scrub_parity_workers == NULL);
4235                 fs_info->scrub_workers = scrub_workers;
4236                 fs_info->scrub_wr_completion_workers = scrub_wr_comp;
4237                 fs_info->scrub_parity_workers = scrub_parity;
4238                 refcount_set(&fs_info->scrub_workers_refcnt, 1);
4239                 mutex_unlock(&fs_info->scrub_lock);
4240                 return 0;
4241         }
4242         /* Other thread raced in and created the workers for us */
4243         refcount_inc(&fs_info->scrub_workers_refcnt);
4244         mutex_unlock(&fs_info->scrub_lock);
4245
4246         ret = 0;
4247         destroy_workqueue(scrub_parity);
4248 fail_scrub_parity_workers:
4249         destroy_workqueue(scrub_wr_comp);
4250 fail_scrub_wr_completion_workers:
4251         destroy_workqueue(scrub_workers);
4252 fail_scrub_workers:
4253         return ret;
4254 }
4255
4256 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4257                     u64 end, struct btrfs_scrub_progress *progress,
4258                     int readonly, int is_dev_replace)
4259 {
4260         struct btrfs_dev_lookup_args args = { .devid = devid };
4261         struct scrub_ctx *sctx;
4262         int ret;
4263         struct btrfs_device *dev;
4264         unsigned int nofs_flag;
4265         bool need_commit = false;
4266
4267         if (btrfs_fs_closing(fs_info))
4268                 return -EAGAIN;
4269
4270         /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
4271         ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
4272
4273         /*
4274          * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
4275          * value (max nodesize / min sectorsize), thus nodesize should always
4276          * be fine.
4277          */
4278         ASSERT(fs_info->nodesize <=
4279                SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
4280
4281         /* Allocate outside of device_list_mutex */
4282         sctx = scrub_setup_ctx(fs_info, is_dev_replace);
4283         if (IS_ERR(sctx))
4284                 return PTR_ERR(sctx);
4285
4286         ret = scrub_workers_get(fs_info, is_dev_replace);
4287         if (ret)
4288                 goto out_free_ctx;
4289
4290         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4291         dev = btrfs_find_device(fs_info->fs_devices, &args);
4292         if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4293                      !is_dev_replace)) {
4294                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4295                 ret = -ENODEV;
4296                 goto out;
4297         }
4298
4299         if (!is_dev_replace && !readonly &&
4300             !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4301                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4302                 btrfs_err_in_rcu(fs_info,
4303                         "scrub on devid %llu: filesystem on %s is not writable",
4304                                  devid, btrfs_dev_name(dev));
4305                 ret = -EROFS;
4306                 goto out;
4307         }
4308
4309         mutex_lock(&fs_info->scrub_lock);
4310         if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4311             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4312                 mutex_unlock(&fs_info->scrub_lock);
4313                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4314                 ret = -EIO;
4315                 goto out;
4316         }
4317
4318         down_read(&fs_info->dev_replace.rwsem);
4319         if (dev->scrub_ctx ||
4320             (!is_dev_replace &&
4321              btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4322                 up_read(&fs_info->dev_replace.rwsem);
4323                 mutex_unlock(&fs_info->scrub_lock);
4324                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4325                 ret = -EINPROGRESS;
4326                 goto out;
4327         }
4328         up_read(&fs_info->dev_replace.rwsem);
4329
4330         sctx->readonly = readonly;
4331         dev->scrub_ctx = sctx;
4332         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4333
4334         /*
4335          * checking @scrub_pause_req here, we can avoid
4336          * race between committing transaction and scrubbing.
4337          */
4338         __scrub_blocked_if_needed(fs_info);
4339         atomic_inc(&fs_info->scrubs_running);
4340         mutex_unlock(&fs_info->scrub_lock);
4341
4342         /*
4343          * In order to avoid deadlock with reclaim when there is a transaction
4344          * trying to pause scrub, make sure we use GFP_NOFS for all the
4345          * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
4346          * invoked by our callees. The pausing request is done when the
4347          * transaction commit starts, and it blocks the transaction until scrub
4348          * is paused (done at specific points at scrub_stripe() or right above
4349          * before incrementing fs_info->scrubs_running).
4350          */
4351         nofs_flag = memalloc_nofs_save();
4352         if (!is_dev_replace) {
4353                 u64 old_super_errors;
4354
4355                 spin_lock(&sctx->stat_lock);
4356                 old_super_errors = sctx->stat.super_errors;
4357                 spin_unlock(&sctx->stat_lock);
4358
4359                 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4360                 /*
4361                  * by holding device list mutex, we can
4362                  * kick off writing super in log tree sync.
4363                  */
4364                 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4365                 ret = scrub_supers(sctx, dev);
4366                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4367
4368                 spin_lock(&sctx->stat_lock);
4369                 /*
4370                  * Super block errors found, but we can not commit transaction
4371                  * at current context, since btrfs_commit_transaction() needs
4372                  * to pause the current running scrub (hold by ourselves).
4373                  */
4374                 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
4375                         need_commit = true;
4376                 spin_unlock(&sctx->stat_lock);
4377         }
4378
4379         if (!ret)
4380                 ret = scrub_enumerate_chunks(sctx, dev, start, end);
4381         memalloc_nofs_restore(nofs_flag);
4382
4383         wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4384         atomic_dec(&fs_info->scrubs_running);
4385         wake_up(&fs_info->scrub_pause_wait);
4386
4387         wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4388
4389         if (progress)
4390                 memcpy(progress, &sctx->stat, sizeof(*progress));
4391
4392         if (!is_dev_replace)
4393                 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
4394                         ret ? "not finished" : "finished", devid, ret);
4395
4396         mutex_lock(&fs_info->scrub_lock);
4397         dev->scrub_ctx = NULL;
4398         mutex_unlock(&fs_info->scrub_lock);
4399
4400         scrub_workers_put(fs_info);
4401         scrub_put_ctx(sctx);
4402
4403         /*
4404          * We found some super block errors before, now try to force a
4405          * transaction commit, as scrub has finished.
4406          */
4407         if (need_commit) {
4408                 struct btrfs_trans_handle *trans;
4409
4410                 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4411                 if (IS_ERR(trans)) {
4412                         ret = PTR_ERR(trans);
4413                         btrfs_err(fs_info,
4414         "scrub: failed to start transaction to fix super block errors: %d", ret);
4415                         return ret;
4416                 }
4417                 ret = btrfs_commit_transaction(trans);
4418                 if (ret < 0)
4419                         btrfs_err(fs_info,
4420         "scrub: failed to commit transaction to fix super block errors: %d", ret);
4421         }
4422         return ret;
4423 out:
4424         scrub_workers_put(fs_info);
4425 out_free_ctx:
4426         scrub_free_ctx(sctx);
4427
4428         return ret;
4429 }
4430
4431 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4432 {
4433         mutex_lock(&fs_info->scrub_lock);
4434         atomic_inc(&fs_info->scrub_pause_req);
4435         while (atomic_read(&fs_info->scrubs_paused) !=
4436                atomic_read(&fs_info->scrubs_running)) {
4437                 mutex_unlock(&fs_info->scrub_lock);
4438                 wait_event(fs_info->scrub_pause_wait,
4439                            atomic_read(&fs_info->scrubs_paused) ==
4440                            atomic_read(&fs_info->scrubs_running));
4441                 mutex_lock(&fs_info->scrub_lock);
4442         }
4443         mutex_unlock(&fs_info->scrub_lock);
4444 }
4445
4446 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4447 {
4448         atomic_dec(&fs_info->scrub_pause_req);
4449         wake_up(&fs_info->scrub_pause_wait);
4450 }
4451
4452 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4453 {
4454         mutex_lock(&fs_info->scrub_lock);
4455         if (!atomic_read(&fs_info->scrubs_running)) {
4456                 mutex_unlock(&fs_info->scrub_lock);
4457                 return -ENOTCONN;
4458         }
4459
4460         atomic_inc(&fs_info->scrub_cancel_req);
4461         while (atomic_read(&fs_info->scrubs_running)) {
4462                 mutex_unlock(&fs_info->scrub_lock);
4463                 wait_event(fs_info->scrub_pause_wait,
4464                            atomic_read(&fs_info->scrubs_running) == 0);
4465                 mutex_lock(&fs_info->scrub_lock);
4466         }
4467         atomic_dec(&fs_info->scrub_cancel_req);
4468         mutex_unlock(&fs_info->scrub_lock);
4469
4470         return 0;
4471 }
4472
4473 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4474 {
4475         struct btrfs_fs_info *fs_info = dev->fs_info;
4476         struct scrub_ctx *sctx;
4477
4478         mutex_lock(&fs_info->scrub_lock);
4479         sctx = dev->scrub_ctx;
4480         if (!sctx) {
4481                 mutex_unlock(&fs_info->scrub_lock);
4482                 return -ENOTCONN;
4483         }
4484         atomic_inc(&sctx->cancel_req);
4485         while (dev->scrub_ctx) {
4486                 mutex_unlock(&fs_info->scrub_lock);
4487                 wait_event(fs_info->scrub_pause_wait,
4488                            dev->scrub_ctx == NULL);
4489                 mutex_lock(&fs_info->scrub_lock);
4490         }
4491         mutex_unlock(&fs_info->scrub_lock);
4492
4493         return 0;
4494 }
4495
4496 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4497                          struct btrfs_scrub_progress *progress)
4498 {
4499         struct btrfs_dev_lookup_args args = { .devid = devid };
4500         struct btrfs_device *dev;
4501         struct scrub_ctx *sctx = NULL;
4502
4503         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4504         dev = btrfs_find_device(fs_info->fs_devices, &args);
4505         if (dev)
4506                 sctx = dev->scrub_ctx;
4507         if (sctx)
4508                 memcpy(progress, &sctx->stat, sizeof(*progress));
4509         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4510
4511         return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4512 }
4513
4514 static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
4515                                  u64 extent_logical, u32 extent_len,
4516                                  u64 *extent_physical,
4517                                  struct btrfs_device **extent_dev,
4518                                  int *extent_mirror_num)
4519 {
4520         u64 mapped_length;
4521         struct btrfs_io_context *bioc = NULL;
4522         int ret;
4523
4524         mapped_length = extent_len;
4525         ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4526                               &mapped_length, &bioc, 0);
4527         if (ret || !bioc || mapped_length < extent_len ||
4528             !bioc->stripes[0].dev->bdev) {
4529                 btrfs_put_bioc(bioc);
4530                 return;
4531         }
4532
4533         *extent_physical = bioc->stripes[0].physical;
4534         *extent_mirror_num = bioc->mirror_num;
4535         *extent_dev = bioc->stripes[0].dev;
4536         btrfs_put_bioc(bioc);
4537 }
This page took 0.292803 seconds and 4 git commands to generate.