1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
77 #include <trace/events/kmem.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
84 #include <asm/tlbflush.h>
88 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
89 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
92 #ifndef CONFIG_NEED_MULTIPLE_NODES
93 /* use the per-pgdat data instead for discontigmem - mbligh */
94 unsigned long max_mapnr;
95 EXPORT_SYMBOL(max_mapnr);
98 EXPORT_SYMBOL(mem_map);
102 * A number of key systems in x86 including ioremap() rely on the assumption
103 * that high_memory defines the upper bound on direct map memory, then end
104 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
105 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
109 EXPORT_SYMBOL(high_memory);
112 * Randomize the address space (stacks, mmaps, brk, etc.).
114 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
115 * as ancient (libc5 based) binaries can segfault. )
117 int randomize_va_space __read_mostly =
118 #ifdef CONFIG_COMPAT_BRK
124 #ifndef arch_faults_on_old_pte
125 static inline bool arch_faults_on_old_pte(void)
128 * Those arches which don't have hw access flag feature need to
129 * implement their own helper. By default, "true" means pagefault
130 * will be hit on old pte.
136 static int __init disable_randmaps(char *s)
138 randomize_va_space = 0;
141 __setup("norandmaps", disable_randmaps);
143 unsigned long zero_pfn __read_mostly;
144 EXPORT_SYMBOL(zero_pfn);
146 unsigned long highest_memmap_pfn __read_mostly;
149 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
151 static int __init init_zero_pfn(void)
153 zero_pfn = page_to_pfn(ZERO_PAGE(0));
156 core_initcall(init_zero_pfn);
158 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
160 trace_rss_stat(mm, member, count);
163 #if defined(SPLIT_RSS_COUNTING)
165 void sync_mm_rss(struct mm_struct *mm)
169 for (i = 0; i < NR_MM_COUNTERS; i++) {
170 if (current->rss_stat.count[i]) {
171 add_mm_counter(mm, i, current->rss_stat.count[i]);
172 current->rss_stat.count[i] = 0;
175 current->rss_stat.events = 0;
178 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
180 struct task_struct *task = current;
182 if (likely(task->mm == mm))
183 task->rss_stat.count[member] += val;
185 add_mm_counter(mm, member, val);
187 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
188 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
190 /* sync counter once per 64 page faults */
191 #define TASK_RSS_EVENTS_THRESH (64)
192 static void check_sync_rss_stat(struct task_struct *task)
194 if (unlikely(task != current))
196 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
197 sync_mm_rss(task->mm);
199 #else /* SPLIT_RSS_COUNTING */
201 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
202 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
204 static void check_sync_rss_stat(struct task_struct *task)
208 #endif /* SPLIT_RSS_COUNTING */
211 * Note: this doesn't free the actual pages themselves. That
212 * has been handled earlier when unmapping all the memory regions.
214 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
217 pgtable_t token = pmd_pgtable(*pmd);
219 pte_free_tlb(tlb, token, addr);
220 mm_dec_nr_ptes(tlb->mm);
223 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
224 unsigned long addr, unsigned long end,
225 unsigned long floor, unsigned long ceiling)
232 pmd = pmd_offset(pud, addr);
234 next = pmd_addr_end(addr, end);
235 if (pmd_none_or_clear_bad(pmd))
237 free_pte_range(tlb, pmd, addr);
238 } while (pmd++, addr = next, addr != end);
248 if (end - 1 > ceiling - 1)
251 pmd = pmd_offset(pud, start);
253 pmd_free_tlb(tlb, pmd, start);
254 mm_dec_nr_pmds(tlb->mm);
257 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
258 unsigned long addr, unsigned long end,
259 unsigned long floor, unsigned long ceiling)
266 pud = pud_offset(p4d, addr);
268 next = pud_addr_end(addr, end);
269 if (pud_none_or_clear_bad(pud))
271 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
272 } while (pud++, addr = next, addr != end);
282 if (end - 1 > ceiling - 1)
285 pud = pud_offset(p4d, start);
287 pud_free_tlb(tlb, pud, start);
288 mm_dec_nr_puds(tlb->mm);
291 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
292 unsigned long addr, unsigned long end,
293 unsigned long floor, unsigned long ceiling)
300 p4d = p4d_offset(pgd, addr);
302 next = p4d_addr_end(addr, end);
303 if (p4d_none_or_clear_bad(p4d))
305 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
306 } while (p4d++, addr = next, addr != end);
312 ceiling &= PGDIR_MASK;
316 if (end - 1 > ceiling - 1)
319 p4d = p4d_offset(pgd, start);
321 p4d_free_tlb(tlb, p4d, start);
325 * This function frees user-level page tables of a process.
327 void free_pgd_range(struct mmu_gather *tlb,
328 unsigned long addr, unsigned long end,
329 unsigned long floor, unsigned long ceiling)
335 * The next few lines have given us lots of grief...
337 * Why are we testing PMD* at this top level? Because often
338 * there will be no work to do at all, and we'd prefer not to
339 * go all the way down to the bottom just to discover that.
341 * Why all these "- 1"s? Because 0 represents both the bottom
342 * of the address space and the top of it (using -1 for the
343 * top wouldn't help much: the masks would do the wrong thing).
344 * The rule is that addr 0 and floor 0 refer to the bottom of
345 * the address space, but end 0 and ceiling 0 refer to the top
346 * Comparisons need to use "end - 1" and "ceiling - 1" (though
347 * that end 0 case should be mythical).
349 * Wherever addr is brought up or ceiling brought down, we must
350 * be careful to reject "the opposite 0" before it confuses the
351 * subsequent tests. But what about where end is brought down
352 * by PMD_SIZE below? no, end can't go down to 0 there.
354 * Whereas we round start (addr) and ceiling down, by different
355 * masks at different levels, in order to test whether a table
356 * now has no other vmas using it, so can be freed, we don't
357 * bother to round floor or end up - the tests don't need that.
371 if (end - 1 > ceiling - 1)
376 * We add page table cache pages with PAGE_SIZE,
377 * (see pte_free_tlb()), flush the tlb if we need
379 tlb_change_page_size(tlb, PAGE_SIZE);
380 pgd = pgd_offset(tlb->mm, addr);
382 next = pgd_addr_end(addr, end);
383 if (pgd_none_or_clear_bad(pgd))
385 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
386 } while (pgd++, addr = next, addr != end);
389 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
390 unsigned long floor, unsigned long ceiling)
393 struct vm_area_struct *next = vma->vm_next;
394 unsigned long addr = vma->vm_start;
397 * Hide vma from rmap and truncate_pagecache before freeing
400 unlink_anon_vmas(vma);
401 unlink_file_vma(vma);
403 if (is_vm_hugetlb_page(vma)) {
404 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
405 floor, next ? next->vm_start : ceiling);
408 * Optimization: gather nearby vmas into one call down
410 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
411 && !is_vm_hugetlb_page(next)) {
414 unlink_anon_vmas(vma);
415 unlink_file_vma(vma);
417 free_pgd_range(tlb, addr, vma->vm_end,
418 floor, next ? next->vm_start : ceiling);
424 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
427 pgtable_t new = pte_alloc_one(mm);
432 * Ensure all pte setup (eg. pte page lock and page clearing) are
433 * visible before the pte is made visible to other CPUs by being
434 * put into page tables.
436 * The other side of the story is the pointer chasing in the page
437 * table walking code (when walking the page table without locking;
438 * ie. most of the time). Fortunately, these data accesses consist
439 * of a chain of data-dependent loads, meaning most CPUs (alpha
440 * being the notable exception) will already guarantee loads are
441 * seen in-order. See the alpha page table accessors for the
442 * smp_rmb() barriers in page table walking code.
444 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
446 ptl = pmd_lock(mm, pmd);
447 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
449 pmd_populate(mm, pmd, new);
458 int __pte_alloc_kernel(pmd_t *pmd)
460 pte_t *new = pte_alloc_one_kernel(&init_mm);
464 smp_wmb(); /* See comment in __pte_alloc */
466 spin_lock(&init_mm.page_table_lock);
467 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
468 pmd_populate_kernel(&init_mm, pmd, new);
471 spin_unlock(&init_mm.page_table_lock);
473 pte_free_kernel(&init_mm, new);
477 static inline void init_rss_vec(int *rss)
479 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
482 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
486 if (current->mm == mm)
488 for (i = 0; i < NR_MM_COUNTERS; i++)
490 add_mm_counter(mm, i, rss[i]);
494 * This function is called to print an error when a bad pte
495 * is found. For example, we might have a PFN-mapped pte in
496 * a region that doesn't allow it.
498 * The calling function must still handle the error.
500 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
501 pte_t pte, struct page *page)
503 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
504 p4d_t *p4d = p4d_offset(pgd, addr);
505 pud_t *pud = pud_offset(p4d, addr);
506 pmd_t *pmd = pmd_offset(pud, addr);
507 struct address_space *mapping;
509 static unsigned long resume;
510 static unsigned long nr_shown;
511 static unsigned long nr_unshown;
514 * Allow a burst of 60 reports, then keep quiet for that minute;
515 * or allow a steady drip of one report per second.
517 if (nr_shown == 60) {
518 if (time_before(jiffies, resume)) {
523 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
530 resume = jiffies + 60 * HZ;
532 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
533 index = linear_page_index(vma, addr);
535 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
537 (long long)pte_val(pte), (long long)pmd_val(*pmd));
539 dump_page(page, "bad pte");
540 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
541 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
542 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
544 vma->vm_ops ? vma->vm_ops->fault : NULL,
545 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
546 mapping ? mapping->a_ops->readpage : NULL);
548 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
552 * vm_normal_page -- This function gets the "struct page" associated with a pte.
554 * "Special" mappings do not wish to be associated with a "struct page" (either
555 * it doesn't exist, or it exists but they don't want to touch it). In this
556 * case, NULL is returned here. "Normal" mappings do have a struct page.
558 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
559 * pte bit, in which case this function is trivial. Secondly, an architecture
560 * may not have a spare pte bit, which requires a more complicated scheme,
563 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
564 * special mapping (even if there are underlying and valid "struct pages").
565 * COWed pages of a VM_PFNMAP are always normal.
567 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
568 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
569 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
570 * mapping will always honor the rule
572 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
574 * And for normal mappings this is false.
576 * This restricts such mappings to be a linear translation from virtual address
577 * to pfn. To get around this restriction, we allow arbitrary mappings so long
578 * as the vma is not a COW mapping; in that case, we know that all ptes are
579 * special (because none can have been COWed).
582 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
584 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
585 * page" backing, however the difference is that _all_ pages with a struct
586 * page (that is, those where pfn_valid is true) are refcounted and considered
587 * normal pages by the VM. The disadvantage is that pages are refcounted
588 * (which can be slower and simply not an option for some PFNMAP users). The
589 * advantage is that we don't have to follow the strict linearity rule of
590 * PFNMAP mappings in order to support COWable mappings.
593 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
596 unsigned long pfn = pte_pfn(pte);
598 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
599 if (likely(!pte_special(pte)))
601 if (vma->vm_ops && vma->vm_ops->find_special_page)
602 return vma->vm_ops->find_special_page(vma, addr);
603 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
605 if (is_zero_pfn(pfn))
610 print_bad_pte(vma, addr, pte, NULL);
614 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
616 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
617 if (vma->vm_flags & VM_MIXEDMAP) {
623 off = (addr - vma->vm_start) >> PAGE_SHIFT;
624 if (pfn == vma->vm_pgoff + off)
626 if (!is_cow_mapping(vma->vm_flags))
631 if (is_zero_pfn(pfn))
635 if (unlikely(pfn > highest_memmap_pfn)) {
636 print_bad_pte(vma, addr, pte, NULL);
641 * NOTE! We still have PageReserved() pages in the page tables.
642 * eg. VDSO mappings can cause them to exist.
645 return pfn_to_page(pfn);
648 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
649 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
652 unsigned long pfn = pmd_pfn(pmd);
655 * There is no pmd_special() but there may be special pmds, e.g.
656 * in a direct-access (dax) mapping, so let's just replicate the
657 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
659 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
660 if (vma->vm_flags & VM_MIXEDMAP) {
666 off = (addr - vma->vm_start) >> PAGE_SHIFT;
667 if (pfn == vma->vm_pgoff + off)
669 if (!is_cow_mapping(vma->vm_flags))
676 if (is_huge_zero_pmd(pmd))
678 if (unlikely(pfn > highest_memmap_pfn))
682 * NOTE! We still have PageReserved() pages in the page tables.
683 * eg. VDSO mappings can cause them to exist.
686 return pfn_to_page(pfn);
691 * copy one vm_area from one task to the other. Assumes the page tables
692 * already present in the new task to be cleared in the whole range
693 * covered by this vma.
696 static inline unsigned long
697 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
698 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
699 unsigned long addr, int *rss)
701 unsigned long vm_flags = vma->vm_flags;
702 pte_t pte = *src_pte;
705 /* pte contains position in swap or file, so copy. */
706 if (unlikely(!pte_present(pte))) {
707 swp_entry_t entry = pte_to_swp_entry(pte);
709 if (likely(!non_swap_entry(entry))) {
710 if (swap_duplicate(entry) < 0)
713 /* make sure dst_mm is on swapoff's mmlist. */
714 if (unlikely(list_empty(&dst_mm->mmlist))) {
715 spin_lock(&mmlist_lock);
716 if (list_empty(&dst_mm->mmlist))
717 list_add(&dst_mm->mmlist,
719 spin_unlock(&mmlist_lock);
722 } else if (is_migration_entry(entry)) {
723 page = migration_entry_to_page(entry);
725 rss[mm_counter(page)]++;
727 if (is_write_migration_entry(entry) &&
728 is_cow_mapping(vm_flags)) {
730 * COW mappings require pages in both
731 * parent and child to be set to read.
733 make_migration_entry_read(&entry);
734 pte = swp_entry_to_pte(entry);
735 if (pte_swp_soft_dirty(*src_pte))
736 pte = pte_swp_mksoft_dirty(pte);
737 if (pte_swp_uffd_wp(*src_pte))
738 pte = pte_swp_mkuffd_wp(pte);
739 set_pte_at(src_mm, addr, src_pte, pte);
741 } else if (is_device_private_entry(entry)) {
742 page = device_private_entry_to_page(entry);
745 * Update rss count even for unaddressable pages, as
746 * they should treated just like normal pages in this
749 * We will likely want to have some new rss counters
750 * for unaddressable pages, at some point. But for now
751 * keep things as they are.
754 rss[mm_counter(page)]++;
755 page_dup_rmap(page, false);
758 * We do not preserve soft-dirty information, because so
759 * far, checkpoint/restore is the only feature that
760 * requires that. And checkpoint/restore does not work
761 * when a device driver is involved (you cannot easily
762 * save and restore device driver state).
764 if (is_write_device_private_entry(entry) &&
765 is_cow_mapping(vm_flags)) {
766 make_device_private_entry_read(&entry);
767 pte = swp_entry_to_pte(entry);
768 if (pte_swp_uffd_wp(*src_pte))
769 pte = pte_swp_mkuffd_wp(pte);
770 set_pte_at(src_mm, addr, src_pte, pte);
777 * If it's a COW mapping, write protect it both
778 * in the parent and the child
780 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
781 ptep_set_wrprotect(src_mm, addr, src_pte);
782 pte = pte_wrprotect(pte);
786 * If it's a shared mapping, mark it clean in
789 if (vm_flags & VM_SHARED)
790 pte = pte_mkclean(pte);
791 pte = pte_mkold(pte);
794 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
795 * does not have the VM_UFFD_WP, which means that the uffd
796 * fork event is not enabled.
798 if (!(vm_flags & VM_UFFD_WP))
799 pte = pte_clear_uffd_wp(pte);
801 page = vm_normal_page(vma, addr, pte);
804 page_dup_rmap(page, false);
805 rss[mm_counter(page)]++;
809 set_pte_at(dst_mm, addr, dst_pte, pte);
813 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
814 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
815 unsigned long addr, unsigned long end)
817 pte_t *orig_src_pte, *orig_dst_pte;
818 pte_t *src_pte, *dst_pte;
819 spinlock_t *src_ptl, *dst_ptl;
821 int rss[NR_MM_COUNTERS];
822 swp_entry_t entry = (swp_entry_t){0};
827 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
830 src_pte = pte_offset_map(src_pmd, addr);
831 src_ptl = pte_lockptr(src_mm, src_pmd);
832 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
833 orig_src_pte = src_pte;
834 orig_dst_pte = dst_pte;
835 arch_enter_lazy_mmu_mode();
839 * We are holding two locks at this point - either of them
840 * could generate latencies in another task on another CPU.
842 if (progress >= 32) {
844 if (need_resched() ||
845 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
848 if (pte_none(*src_pte)) {
852 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
857 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
859 arch_leave_lazy_mmu_mode();
860 spin_unlock(src_ptl);
861 pte_unmap(orig_src_pte);
862 add_mm_rss_vec(dst_mm, rss);
863 pte_unmap_unlock(orig_dst_pte, dst_ptl);
867 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
876 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
877 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
878 unsigned long addr, unsigned long end)
880 pmd_t *src_pmd, *dst_pmd;
883 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
886 src_pmd = pmd_offset(src_pud, addr);
888 next = pmd_addr_end(addr, end);
889 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
890 || pmd_devmap(*src_pmd)) {
892 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
893 err = copy_huge_pmd(dst_mm, src_mm,
894 dst_pmd, src_pmd, addr, vma);
901 if (pmd_none_or_clear_bad(src_pmd))
903 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
906 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
910 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
911 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
912 unsigned long addr, unsigned long end)
914 pud_t *src_pud, *dst_pud;
917 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
920 src_pud = pud_offset(src_p4d, addr);
922 next = pud_addr_end(addr, end);
923 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
926 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
927 err = copy_huge_pud(dst_mm, src_mm,
928 dst_pud, src_pud, addr, vma);
935 if (pud_none_or_clear_bad(src_pud))
937 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
940 } while (dst_pud++, src_pud++, addr = next, addr != end);
944 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
945 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
946 unsigned long addr, unsigned long end)
948 p4d_t *src_p4d, *dst_p4d;
951 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
954 src_p4d = p4d_offset(src_pgd, addr);
956 next = p4d_addr_end(addr, end);
957 if (p4d_none_or_clear_bad(src_p4d))
959 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
962 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
966 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
967 struct vm_area_struct *vma)
969 pgd_t *src_pgd, *dst_pgd;
971 unsigned long addr = vma->vm_start;
972 unsigned long end = vma->vm_end;
973 struct mmu_notifier_range range;
978 * Don't copy ptes where a page fault will fill them correctly.
979 * Fork becomes much lighter when there are big shared or private
980 * readonly mappings. The tradeoff is that copy_page_range is more
981 * efficient than faulting.
983 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
987 if (is_vm_hugetlb_page(vma))
988 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
990 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
992 * We do not free on error cases below as remove_vma
993 * gets called on error from higher level routine
995 ret = track_pfn_copy(vma);
1001 * We need to invalidate the secondary MMU mappings only when
1002 * there could be a permission downgrade on the ptes of the
1003 * parent mm. And a permission downgrade will only happen if
1004 * is_cow_mapping() returns true.
1006 is_cow = is_cow_mapping(vma->vm_flags);
1009 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1010 0, vma, src_mm, addr, end);
1011 mmu_notifier_invalidate_range_start(&range);
1015 dst_pgd = pgd_offset(dst_mm, addr);
1016 src_pgd = pgd_offset(src_mm, addr);
1018 next = pgd_addr_end(addr, end);
1019 if (pgd_none_or_clear_bad(src_pgd))
1021 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1022 vma, addr, next))) {
1026 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1029 mmu_notifier_invalidate_range_end(&range);
1033 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1034 struct vm_area_struct *vma, pmd_t *pmd,
1035 unsigned long addr, unsigned long end,
1036 struct zap_details *details)
1038 struct mm_struct *mm = tlb->mm;
1039 int force_flush = 0;
1040 int rss[NR_MM_COUNTERS];
1046 tlb_change_page_size(tlb, PAGE_SIZE);
1049 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1051 flush_tlb_batched_pending(mm);
1052 arch_enter_lazy_mmu_mode();
1055 if (pte_none(ptent))
1061 if (pte_present(ptent)) {
1064 page = vm_normal_page(vma, addr, ptent);
1065 if (unlikely(details) && page) {
1067 * unmap_shared_mapping_pages() wants to
1068 * invalidate cache without truncating:
1069 * unmap shared but keep private pages.
1071 if (details->check_mapping &&
1072 details->check_mapping != page_rmapping(page))
1075 ptent = ptep_get_and_clear_full(mm, addr, pte,
1077 tlb_remove_tlb_entry(tlb, pte, addr);
1078 if (unlikely(!page))
1081 if (!PageAnon(page)) {
1082 if (pte_dirty(ptent)) {
1084 set_page_dirty(page);
1086 if (pte_young(ptent) &&
1087 likely(!(vma->vm_flags & VM_SEQ_READ)))
1088 mark_page_accessed(page);
1090 rss[mm_counter(page)]--;
1091 page_remove_rmap(page, false);
1092 if (unlikely(page_mapcount(page) < 0))
1093 print_bad_pte(vma, addr, ptent, page);
1094 if (unlikely(__tlb_remove_page(tlb, page))) {
1102 entry = pte_to_swp_entry(ptent);
1103 if (is_device_private_entry(entry)) {
1104 struct page *page = device_private_entry_to_page(entry);
1106 if (unlikely(details && details->check_mapping)) {
1108 * unmap_shared_mapping_pages() wants to
1109 * invalidate cache without truncating:
1110 * unmap shared but keep private pages.
1112 if (details->check_mapping !=
1113 page_rmapping(page))
1117 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1118 rss[mm_counter(page)]--;
1119 page_remove_rmap(page, false);
1124 /* If details->check_mapping, we leave swap entries. */
1125 if (unlikely(details))
1128 if (!non_swap_entry(entry))
1130 else if (is_migration_entry(entry)) {
1133 page = migration_entry_to_page(entry);
1134 rss[mm_counter(page)]--;
1136 if (unlikely(!free_swap_and_cache(entry)))
1137 print_bad_pte(vma, addr, ptent, NULL);
1138 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1139 } while (pte++, addr += PAGE_SIZE, addr != end);
1141 add_mm_rss_vec(mm, rss);
1142 arch_leave_lazy_mmu_mode();
1144 /* Do the actual TLB flush before dropping ptl */
1146 tlb_flush_mmu_tlbonly(tlb);
1147 pte_unmap_unlock(start_pte, ptl);
1150 * If we forced a TLB flush (either due to running out of
1151 * batch buffers or because we needed to flush dirty TLB
1152 * entries before releasing the ptl), free the batched
1153 * memory too. Restart if we didn't do everything.
1168 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1169 struct vm_area_struct *vma, pud_t *pud,
1170 unsigned long addr, unsigned long end,
1171 struct zap_details *details)
1176 pmd = pmd_offset(pud, addr);
1178 next = pmd_addr_end(addr, end);
1179 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1180 if (next - addr != HPAGE_PMD_SIZE)
1181 __split_huge_pmd(vma, pmd, addr, false, NULL);
1182 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1187 * Here there can be other concurrent MADV_DONTNEED or
1188 * trans huge page faults running, and if the pmd is
1189 * none or trans huge it can change under us. This is
1190 * because MADV_DONTNEED holds the mmap_lock in read
1193 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1195 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1198 } while (pmd++, addr = next, addr != end);
1203 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1204 struct vm_area_struct *vma, p4d_t *p4d,
1205 unsigned long addr, unsigned long end,
1206 struct zap_details *details)
1211 pud = pud_offset(p4d, addr);
1213 next = pud_addr_end(addr, end);
1214 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1215 if (next - addr != HPAGE_PUD_SIZE) {
1216 mmap_assert_locked(tlb->mm);
1217 split_huge_pud(vma, pud, addr);
1218 } else if (zap_huge_pud(tlb, vma, pud, addr))
1222 if (pud_none_or_clear_bad(pud))
1224 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1227 } while (pud++, addr = next, addr != end);
1232 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1233 struct vm_area_struct *vma, pgd_t *pgd,
1234 unsigned long addr, unsigned long end,
1235 struct zap_details *details)
1240 p4d = p4d_offset(pgd, addr);
1242 next = p4d_addr_end(addr, end);
1243 if (p4d_none_or_clear_bad(p4d))
1245 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1246 } while (p4d++, addr = next, addr != end);
1251 void unmap_page_range(struct mmu_gather *tlb,
1252 struct vm_area_struct *vma,
1253 unsigned long addr, unsigned long end,
1254 struct zap_details *details)
1259 BUG_ON(addr >= end);
1260 tlb_start_vma(tlb, vma);
1261 pgd = pgd_offset(vma->vm_mm, addr);
1263 next = pgd_addr_end(addr, end);
1264 if (pgd_none_or_clear_bad(pgd))
1266 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1267 } while (pgd++, addr = next, addr != end);
1268 tlb_end_vma(tlb, vma);
1272 static void unmap_single_vma(struct mmu_gather *tlb,
1273 struct vm_area_struct *vma, unsigned long start_addr,
1274 unsigned long end_addr,
1275 struct zap_details *details)
1277 unsigned long start = max(vma->vm_start, start_addr);
1280 if (start >= vma->vm_end)
1282 end = min(vma->vm_end, end_addr);
1283 if (end <= vma->vm_start)
1287 uprobe_munmap(vma, start, end);
1289 if (unlikely(vma->vm_flags & VM_PFNMAP))
1290 untrack_pfn(vma, 0, 0);
1293 if (unlikely(is_vm_hugetlb_page(vma))) {
1295 * It is undesirable to test vma->vm_file as it
1296 * should be non-null for valid hugetlb area.
1297 * However, vm_file will be NULL in the error
1298 * cleanup path of mmap_region. When
1299 * hugetlbfs ->mmap method fails,
1300 * mmap_region() nullifies vma->vm_file
1301 * before calling this function to clean up.
1302 * Since no pte has actually been setup, it is
1303 * safe to do nothing in this case.
1306 i_mmap_lock_write(vma->vm_file->f_mapping);
1307 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1308 i_mmap_unlock_write(vma->vm_file->f_mapping);
1311 unmap_page_range(tlb, vma, start, end, details);
1316 * unmap_vmas - unmap a range of memory covered by a list of vma's
1317 * @tlb: address of the caller's struct mmu_gather
1318 * @vma: the starting vma
1319 * @start_addr: virtual address at which to start unmapping
1320 * @end_addr: virtual address at which to end unmapping
1322 * Unmap all pages in the vma list.
1324 * Only addresses between `start' and `end' will be unmapped.
1326 * The VMA list must be sorted in ascending virtual address order.
1328 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1329 * range after unmap_vmas() returns. So the only responsibility here is to
1330 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1331 * drops the lock and schedules.
1333 void unmap_vmas(struct mmu_gather *tlb,
1334 struct vm_area_struct *vma, unsigned long start_addr,
1335 unsigned long end_addr)
1337 struct mmu_notifier_range range;
1339 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1340 start_addr, end_addr);
1341 mmu_notifier_invalidate_range_start(&range);
1342 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1343 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1344 mmu_notifier_invalidate_range_end(&range);
1348 * zap_page_range - remove user pages in a given range
1349 * @vma: vm_area_struct holding the applicable pages
1350 * @start: starting address of pages to zap
1351 * @size: number of bytes to zap
1353 * Caller must protect the VMA list
1355 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1358 struct mmu_notifier_range range;
1359 struct mmu_gather tlb;
1362 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1363 start, start + size);
1364 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1365 update_hiwater_rss(vma->vm_mm);
1366 mmu_notifier_invalidate_range_start(&range);
1367 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1368 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1369 mmu_notifier_invalidate_range_end(&range);
1370 tlb_finish_mmu(&tlb, start, range.end);
1374 * zap_page_range_single - remove user pages in a given range
1375 * @vma: vm_area_struct holding the applicable pages
1376 * @address: starting address of pages to zap
1377 * @size: number of bytes to zap
1378 * @details: details of shared cache invalidation
1380 * The range must fit into one VMA.
1382 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1383 unsigned long size, struct zap_details *details)
1385 struct mmu_notifier_range range;
1386 struct mmu_gather tlb;
1389 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1390 address, address + size);
1391 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1392 update_hiwater_rss(vma->vm_mm);
1393 mmu_notifier_invalidate_range_start(&range);
1394 unmap_single_vma(&tlb, vma, address, range.end, details);
1395 mmu_notifier_invalidate_range_end(&range);
1396 tlb_finish_mmu(&tlb, address, range.end);
1400 * zap_vma_ptes - remove ptes mapping the vma
1401 * @vma: vm_area_struct holding ptes to be zapped
1402 * @address: starting address of pages to zap
1403 * @size: number of bytes to zap
1405 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1407 * The entire address range must be fully contained within the vma.
1410 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1413 if (address < vma->vm_start || address + size > vma->vm_end ||
1414 !(vma->vm_flags & VM_PFNMAP))
1417 zap_page_range_single(vma, address, size, NULL);
1419 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1421 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1428 pgd = pgd_offset(mm, addr);
1429 p4d = p4d_alloc(mm, pgd, addr);
1432 pud = pud_alloc(mm, p4d, addr);
1435 pmd = pmd_alloc(mm, pud, addr);
1439 VM_BUG_ON(pmd_trans_huge(*pmd));
1443 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1446 pmd_t *pmd = walk_to_pmd(mm, addr);
1450 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1453 static int validate_page_before_insert(struct page *page)
1455 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1457 flush_dcache_page(page);
1461 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1462 unsigned long addr, struct page *page, pgprot_t prot)
1464 if (!pte_none(*pte))
1466 /* Ok, finally just insert the thing.. */
1468 inc_mm_counter_fast(mm, mm_counter_file(page));
1469 page_add_file_rmap(page, false);
1470 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1475 * This is the old fallback for page remapping.
1477 * For historical reasons, it only allows reserved pages. Only
1478 * old drivers should use this, and they needed to mark their
1479 * pages reserved for the old functions anyway.
1481 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1482 struct page *page, pgprot_t prot)
1484 struct mm_struct *mm = vma->vm_mm;
1489 retval = validate_page_before_insert(page);
1493 pte = get_locked_pte(mm, addr, &ptl);
1496 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1497 pte_unmap_unlock(pte, ptl);
1503 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1504 unsigned long addr, struct page *page, pgprot_t prot)
1508 if (!page_count(page))
1510 err = validate_page_before_insert(page);
1513 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1516 /* insert_pages() amortizes the cost of spinlock operations
1517 * when inserting pages in a loop. Arch *must* define pte_index.
1519 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1520 struct page **pages, unsigned long *num, pgprot_t prot)
1523 pte_t *start_pte, *pte;
1524 spinlock_t *pte_lock;
1525 struct mm_struct *const mm = vma->vm_mm;
1526 unsigned long curr_page_idx = 0;
1527 unsigned long remaining_pages_total = *num;
1528 unsigned long pages_to_write_in_pmd;
1532 pmd = walk_to_pmd(mm, addr);
1536 pages_to_write_in_pmd = min_t(unsigned long,
1537 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1539 /* Allocate the PTE if necessary; takes PMD lock once only. */
1541 if (pte_alloc(mm, pmd))
1544 while (pages_to_write_in_pmd) {
1546 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1548 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1549 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1550 int err = insert_page_in_batch_locked(mm, pte,
1551 addr, pages[curr_page_idx], prot);
1552 if (unlikely(err)) {
1553 pte_unmap_unlock(start_pte, pte_lock);
1555 remaining_pages_total -= pte_idx;
1561 pte_unmap_unlock(start_pte, pte_lock);
1562 pages_to_write_in_pmd -= batch_size;
1563 remaining_pages_total -= batch_size;
1565 if (remaining_pages_total)
1569 *num = remaining_pages_total;
1572 #endif /* ifdef pte_index */
1575 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1576 * @vma: user vma to map to
1577 * @addr: target start user address of these pages
1578 * @pages: source kernel pages
1579 * @num: in: number of pages to map. out: number of pages that were *not*
1580 * mapped. (0 means all pages were successfully mapped).
1582 * Preferred over vm_insert_page() when inserting multiple pages.
1584 * In case of error, we may have mapped a subset of the provided
1585 * pages. It is the caller's responsibility to account for this case.
1587 * The same restrictions apply as in vm_insert_page().
1589 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1590 struct page **pages, unsigned long *num)
1593 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1595 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1597 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1598 BUG_ON(mmap_read_trylock(vma->vm_mm));
1599 BUG_ON(vma->vm_flags & VM_PFNMAP);
1600 vma->vm_flags |= VM_MIXEDMAP;
1602 /* Defer page refcount checking till we're about to map that page. */
1603 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1605 unsigned long idx = 0, pgcount = *num;
1608 for (; idx < pgcount; ++idx) {
1609 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1613 *num = pgcount - idx;
1615 #endif /* ifdef pte_index */
1617 EXPORT_SYMBOL(vm_insert_pages);
1620 * vm_insert_page - insert single page into user vma
1621 * @vma: user vma to map to
1622 * @addr: target user address of this page
1623 * @page: source kernel page
1625 * This allows drivers to insert individual pages they've allocated
1628 * The page has to be a nice clean _individual_ kernel allocation.
1629 * If you allocate a compound page, you need to have marked it as
1630 * such (__GFP_COMP), or manually just split the page up yourself
1631 * (see split_page()).
1633 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1634 * took an arbitrary page protection parameter. This doesn't allow
1635 * that. Your vma protection will have to be set up correctly, which
1636 * means that if you want a shared writable mapping, you'd better
1637 * ask for a shared writable mapping!
1639 * The page does not need to be reserved.
1641 * Usually this function is called from f_op->mmap() handler
1642 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1643 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1644 * function from other places, for example from page-fault handler.
1646 * Return: %0 on success, negative error code otherwise.
1648 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1651 if (addr < vma->vm_start || addr >= vma->vm_end)
1653 if (!page_count(page))
1655 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1656 BUG_ON(mmap_read_trylock(vma->vm_mm));
1657 BUG_ON(vma->vm_flags & VM_PFNMAP);
1658 vma->vm_flags |= VM_MIXEDMAP;
1660 return insert_page(vma, addr, page, vma->vm_page_prot);
1662 EXPORT_SYMBOL(vm_insert_page);
1665 * __vm_map_pages - maps range of kernel pages into user vma
1666 * @vma: user vma to map to
1667 * @pages: pointer to array of source kernel pages
1668 * @num: number of pages in page array
1669 * @offset: user's requested vm_pgoff
1671 * This allows drivers to map range of kernel pages into a user vma.
1673 * Return: 0 on success and error code otherwise.
1675 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1676 unsigned long num, unsigned long offset)
1678 unsigned long count = vma_pages(vma);
1679 unsigned long uaddr = vma->vm_start;
1682 /* Fail if the user requested offset is beyond the end of the object */
1686 /* Fail if the user requested size exceeds available object size */
1687 if (count > num - offset)
1690 for (i = 0; i < count; i++) {
1691 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1701 * vm_map_pages - maps range of kernel pages starts with non zero offset
1702 * @vma: user vma to map to
1703 * @pages: pointer to array of source kernel pages
1704 * @num: number of pages in page array
1706 * Maps an object consisting of @num pages, catering for the user's
1707 * requested vm_pgoff
1709 * If we fail to insert any page into the vma, the function will return
1710 * immediately leaving any previously inserted pages present. Callers
1711 * from the mmap handler may immediately return the error as their caller
1712 * will destroy the vma, removing any successfully inserted pages. Other
1713 * callers should make their own arrangements for calling unmap_region().
1715 * Context: Process context. Called by mmap handlers.
1716 * Return: 0 on success and error code otherwise.
1718 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1721 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1723 EXPORT_SYMBOL(vm_map_pages);
1726 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1727 * @vma: user vma to map to
1728 * @pages: pointer to array of source kernel pages
1729 * @num: number of pages in page array
1731 * Similar to vm_map_pages(), except that it explicitly sets the offset
1732 * to 0. This function is intended for the drivers that did not consider
1735 * Context: Process context. Called by mmap handlers.
1736 * Return: 0 on success and error code otherwise.
1738 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1741 return __vm_map_pages(vma, pages, num, 0);
1743 EXPORT_SYMBOL(vm_map_pages_zero);
1745 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1746 pfn_t pfn, pgprot_t prot, bool mkwrite)
1748 struct mm_struct *mm = vma->vm_mm;
1752 pte = get_locked_pte(mm, addr, &ptl);
1754 return VM_FAULT_OOM;
1755 if (!pte_none(*pte)) {
1758 * For read faults on private mappings the PFN passed
1759 * in may not match the PFN we have mapped if the
1760 * mapped PFN is a writeable COW page. In the mkwrite
1761 * case we are creating a writable PTE for a shared
1762 * mapping and we expect the PFNs to match. If they
1763 * don't match, we are likely racing with block
1764 * allocation and mapping invalidation so just skip the
1767 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1768 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1771 entry = pte_mkyoung(*pte);
1772 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1773 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1774 update_mmu_cache(vma, addr, pte);
1779 /* Ok, finally just insert the thing.. */
1780 if (pfn_t_devmap(pfn))
1781 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1783 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1786 entry = pte_mkyoung(entry);
1787 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1790 set_pte_at(mm, addr, pte, entry);
1791 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1794 pte_unmap_unlock(pte, ptl);
1795 return VM_FAULT_NOPAGE;
1799 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1800 * @vma: user vma to map to
1801 * @addr: target user address of this page
1802 * @pfn: source kernel pfn
1803 * @pgprot: pgprot flags for the inserted page
1805 * This is exactly like vmf_insert_pfn(), except that it allows drivers
1806 * to override pgprot on a per-page basis.
1808 * This only makes sense for IO mappings, and it makes no sense for
1809 * COW mappings. In general, using multiple vmas is preferable;
1810 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1813 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1814 * a value of @pgprot different from that of @vma->vm_page_prot.
1816 * Context: Process context. May allocate using %GFP_KERNEL.
1817 * Return: vm_fault_t value.
1819 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1820 unsigned long pfn, pgprot_t pgprot)
1823 * Technically, architectures with pte_special can avoid all these
1824 * restrictions (same for remap_pfn_range). However we would like
1825 * consistency in testing and feature parity among all, so we should
1826 * try to keep these invariants in place for everybody.
1828 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1829 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1830 (VM_PFNMAP|VM_MIXEDMAP));
1831 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1832 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1834 if (addr < vma->vm_start || addr >= vma->vm_end)
1835 return VM_FAULT_SIGBUS;
1837 if (!pfn_modify_allowed(pfn, pgprot))
1838 return VM_FAULT_SIGBUS;
1840 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1842 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1845 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1848 * vmf_insert_pfn - insert single pfn into user vma
1849 * @vma: user vma to map to
1850 * @addr: target user address of this page
1851 * @pfn: source kernel pfn
1853 * Similar to vm_insert_page, this allows drivers to insert individual pages
1854 * they've allocated into a user vma. Same comments apply.
1856 * This function should only be called from a vm_ops->fault handler, and
1857 * in that case the handler should return the result of this function.
1859 * vma cannot be a COW mapping.
1861 * As this is called only for pages that do not currently exist, we
1862 * do not need to flush old virtual caches or the TLB.
1864 * Context: Process context. May allocate using %GFP_KERNEL.
1865 * Return: vm_fault_t value.
1867 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1870 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1872 EXPORT_SYMBOL(vmf_insert_pfn);
1874 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1876 /* these checks mirror the abort conditions in vm_normal_page */
1877 if (vma->vm_flags & VM_MIXEDMAP)
1879 if (pfn_t_devmap(pfn))
1881 if (pfn_t_special(pfn))
1883 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1888 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1889 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1894 BUG_ON(!vm_mixed_ok(vma, pfn));
1896 if (addr < vma->vm_start || addr >= vma->vm_end)
1897 return VM_FAULT_SIGBUS;
1899 track_pfn_insert(vma, &pgprot, pfn);
1901 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1902 return VM_FAULT_SIGBUS;
1905 * If we don't have pte special, then we have to use the pfn_valid()
1906 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1907 * refcount the page if pfn_valid is true (hence insert_page rather
1908 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1909 * without pte special, it would there be refcounted as a normal page.
1911 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1912 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1916 * At this point we are committed to insert_page()
1917 * regardless of whether the caller specified flags that
1918 * result in pfn_t_has_page() == false.
1920 page = pfn_to_page(pfn_t_to_pfn(pfn));
1921 err = insert_page(vma, addr, page, pgprot);
1923 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1927 return VM_FAULT_OOM;
1928 if (err < 0 && err != -EBUSY)
1929 return VM_FAULT_SIGBUS;
1931 return VM_FAULT_NOPAGE;
1935 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1936 * @vma: user vma to map to
1937 * @addr: target user address of this page
1938 * @pfn: source kernel pfn
1939 * @pgprot: pgprot flags for the inserted page
1941 * This is exactly like vmf_insert_mixed(), except that it allows drivers
1942 * to override pgprot on a per-page basis.
1944 * Typically this function should be used by drivers to set caching- and
1945 * encryption bits different than those of @vma->vm_page_prot, because
1946 * the caching- or encryption mode may not be known at mmap() time.
1947 * This is ok as long as @vma->vm_page_prot is not used by the core vm
1948 * to set caching and encryption bits for those vmas (except for COW pages).
1949 * This is ensured by core vm only modifying these page table entries using
1950 * functions that don't touch caching- or encryption bits, using pte_modify()
1951 * if needed. (See for example mprotect()).
1952 * Also when new page-table entries are created, this is only done using the
1953 * fault() callback, and never using the value of vma->vm_page_prot,
1954 * except for page-table entries that point to anonymous pages as the result
1957 * Context: Process context. May allocate using %GFP_KERNEL.
1958 * Return: vm_fault_t value.
1960 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1961 pfn_t pfn, pgprot_t pgprot)
1963 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1965 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1967 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1970 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1972 EXPORT_SYMBOL(vmf_insert_mixed);
1975 * If the insertion of PTE failed because someone else already added a
1976 * different entry in the mean time, we treat that as success as we assume
1977 * the same entry was actually inserted.
1979 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1980 unsigned long addr, pfn_t pfn)
1982 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1984 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1987 * maps a range of physical memory into the requested pages. the old
1988 * mappings are removed. any references to nonexistent pages results
1989 * in null mappings (currently treated as "copy-on-access")
1991 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1992 unsigned long addr, unsigned long end,
1993 unsigned long pfn, pgprot_t prot)
1999 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2002 arch_enter_lazy_mmu_mode();
2004 BUG_ON(!pte_none(*pte));
2005 if (!pfn_modify_allowed(pfn, prot)) {
2009 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2011 } while (pte++, addr += PAGE_SIZE, addr != end);
2012 arch_leave_lazy_mmu_mode();
2013 pte_unmap_unlock(pte - 1, ptl);
2017 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2018 unsigned long addr, unsigned long end,
2019 unsigned long pfn, pgprot_t prot)
2025 pfn -= addr >> PAGE_SHIFT;
2026 pmd = pmd_alloc(mm, pud, addr);
2029 VM_BUG_ON(pmd_trans_huge(*pmd));
2031 next = pmd_addr_end(addr, end);
2032 err = remap_pte_range(mm, pmd, addr, next,
2033 pfn + (addr >> PAGE_SHIFT), prot);
2036 } while (pmd++, addr = next, addr != end);
2040 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2041 unsigned long addr, unsigned long end,
2042 unsigned long pfn, pgprot_t prot)
2048 pfn -= addr >> PAGE_SHIFT;
2049 pud = pud_alloc(mm, p4d, addr);
2053 next = pud_addr_end(addr, end);
2054 err = remap_pmd_range(mm, pud, addr, next,
2055 pfn + (addr >> PAGE_SHIFT), prot);
2058 } while (pud++, addr = next, addr != end);
2062 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2063 unsigned long addr, unsigned long end,
2064 unsigned long pfn, pgprot_t prot)
2070 pfn -= addr >> PAGE_SHIFT;
2071 p4d = p4d_alloc(mm, pgd, addr);
2075 next = p4d_addr_end(addr, end);
2076 err = remap_pud_range(mm, p4d, addr, next,
2077 pfn + (addr >> PAGE_SHIFT), prot);
2080 } while (p4d++, addr = next, addr != end);
2085 * remap_pfn_range - remap kernel memory to userspace
2086 * @vma: user vma to map to
2087 * @addr: target page aligned user address to start at
2088 * @pfn: page frame number of kernel physical memory address
2089 * @size: size of mapping area
2090 * @prot: page protection flags for this mapping
2092 * Note: this is only safe if the mm semaphore is held when called.
2094 * Return: %0 on success, negative error code otherwise.
2096 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2097 unsigned long pfn, unsigned long size, pgprot_t prot)
2101 unsigned long end = addr + PAGE_ALIGN(size);
2102 struct mm_struct *mm = vma->vm_mm;
2103 unsigned long remap_pfn = pfn;
2106 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2110 * Physically remapped pages are special. Tell the
2111 * rest of the world about it:
2112 * VM_IO tells people not to look at these pages
2113 * (accesses can have side effects).
2114 * VM_PFNMAP tells the core MM that the base pages are just
2115 * raw PFN mappings, and do not have a "struct page" associated
2118 * Disable vma merging and expanding with mremap().
2120 * Omit vma from core dump, even when VM_IO turned off.
2122 * There's a horrible special case to handle copy-on-write
2123 * behaviour that some programs depend on. We mark the "original"
2124 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2125 * See vm_normal_page() for details.
2127 if (is_cow_mapping(vma->vm_flags)) {
2128 if (addr != vma->vm_start || end != vma->vm_end)
2130 vma->vm_pgoff = pfn;
2133 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2137 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2139 BUG_ON(addr >= end);
2140 pfn -= addr >> PAGE_SHIFT;
2141 pgd = pgd_offset(mm, addr);
2142 flush_cache_range(vma, addr, end);
2144 next = pgd_addr_end(addr, end);
2145 err = remap_p4d_range(mm, pgd, addr, next,
2146 pfn + (addr >> PAGE_SHIFT), prot);
2149 } while (pgd++, addr = next, addr != end);
2152 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2156 EXPORT_SYMBOL(remap_pfn_range);
2159 * vm_iomap_memory - remap memory to userspace
2160 * @vma: user vma to map to
2161 * @start: start of the physical memory to be mapped
2162 * @len: size of area
2164 * This is a simplified io_remap_pfn_range() for common driver use. The
2165 * driver just needs to give us the physical memory range to be mapped,
2166 * we'll figure out the rest from the vma information.
2168 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2169 * whatever write-combining details or similar.
2171 * Return: %0 on success, negative error code otherwise.
2173 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2175 unsigned long vm_len, pfn, pages;
2177 /* Check that the physical memory area passed in looks valid */
2178 if (start + len < start)
2181 * You *really* shouldn't map things that aren't page-aligned,
2182 * but we've historically allowed it because IO memory might
2183 * just have smaller alignment.
2185 len += start & ~PAGE_MASK;
2186 pfn = start >> PAGE_SHIFT;
2187 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2188 if (pfn + pages < pfn)
2191 /* We start the mapping 'vm_pgoff' pages into the area */
2192 if (vma->vm_pgoff > pages)
2194 pfn += vma->vm_pgoff;
2195 pages -= vma->vm_pgoff;
2197 /* Can we fit all of the mapping? */
2198 vm_len = vma->vm_end - vma->vm_start;
2199 if (vm_len >> PAGE_SHIFT > pages)
2202 /* Ok, let it rip */
2203 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2205 EXPORT_SYMBOL(vm_iomap_memory);
2207 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2208 unsigned long addr, unsigned long end,
2209 pte_fn_t fn, void *data, bool create)
2216 pte = (mm == &init_mm) ?
2217 pte_alloc_kernel(pmd, addr) :
2218 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2222 pte = (mm == &init_mm) ?
2223 pte_offset_kernel(pmd, addr) :
2224 pte_offset_map_lock(mm, pmd, addr, &ptl);
2227 BUG_ON(pmd_huge(*pmd));
2229 arch_enter_lazy_mmu_mode();
2232 if (create || !pte_none(*pte)) {
2233 err = fn(pte++, addr, data);
2237 } while (addr += PAGE_SIZE, addr != end);
2239 arch_leave_lazy_mmu_mode();
2242 pte_unmap_unlock(pte-1, ptl);
2246 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2247 unsigned long addr, unsigned long end,
2248 pte_fn_t fn, void *data, bool create)
2254 BUG_ON(pud_huge(*pud));
2257 pmd = pmd_alloc(mm, pud, addr);
2261 pmd = pmd_offset(pud, addr);
2264 next = pmd_addr_end(addr, end);
2265 if (create || !pmd_none_or_clear_bad(pmd)) {
2266 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2271 } while (pmd++, addr = next, addr != end);
2275 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2276 unsigned long addr, unsigned long end,
2277 pte_fn_t fn, void *data, bool create)
2284 pud = pud_alloc(mm, p4d, addr);
2288 pud = pud_offset(p4d, addr);
2291 next = pud_addr_end(addr, end);
2292 if (create || !pud_none_or_clear_bad(pud)) {
2293 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2298 } while (pud++, addr = next, addr != end);
2302 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2303 unsigned long addr, unsigned long end,
2304 pte_fn_t fn, void *data, bool create)
2311 p4d = p4d_alloc(mm, pgd, addr);
2315 p4d = p4d_offset(pgd, addr);
2318 next = p4d_addr_end(addr, end);
2319 if (create || !p4d_none_or_clear_bad(p4d)) {
2320 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2325 } while (p4d++, addr = next, addr != end);
2329 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2330 unsigned long size, pte_fn_t fn,
2331 void *data, bool create)
2335 unsigned long end = addr + size;
2338 if (WARN_ON(addr >= end))
2341 pgd = pgd_offset(mm, addr);
2343 next = pgd_addr_end(addr, end);
2344 if (!create && pgd_none_or_clear_bad(pgd))
2346 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2349 } while (pgd++, addr = next, addr != end);
2355 * Scan a region of virtual memory, filling in page tables as necessary
2356 * and calling a provided function on each leaf page table.
2358 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2359 unsigned long size, pte_fn_t fn, void *data)
2361 return __apply_to_page_range(mm, addr, size, fn, data, true);
2363 EXPORT_SYMBOL_GPL(apply_to_page_range);
2366 * Scan a region of virtual memory, calling a provided function on
2367 * each leaf page table where it exists.
2369 * Unlike apply_to_page_range, this does _not_ fill in page tables
2370 * where they are absent.
2372 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2373 unsigned long size, pte_fn_t fn, void *data)
2375 return __apply_to_page_range(mm, addr, size, fn, data, false);
2377 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2380 * handle_pte_fault chooses page fault handler according to an entry which was
2381 * read non-atomically. Before making any commitment, on those architectures
2382 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2383 * parts, do_swap_page must check under lock before unmapping the pte and
2384 * proceeding (but do_wp_page is only called after already making such a check;
2385 * and do_anonymous_page can safely check later on).
2387 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2388 pte_t *page_table, pte_t orig_pte)
2391 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2392 if (sizeof(pte_t) > sizeof(unsigned long)) {
2393 spinlock_t *ptl = pte_lockptr(mm, pmd);
2395 same = pte_same(*page_table, orig_pte);
2399 pte_unmap(page_table);
2403 static inline bool cow_user_page(struct page *dst, struct page *src,
2404 struct vm_fault *vmf)
2409 bool locked = false;
2410 struct vm_area_struct *vma = vmf->vma;
2411 struct mm_struct *mm = vma->vm_mm;
2412 unsigned long addr = vmf->address;
2415 copy_user_highpage(dst, src, addr, vma);
2420 * If the source page was a PFN mapping, we don't have
2421 * a "struct page" for it. We do a best-effort copy by
2422 * just copying from the original user address. If that
2423 * fails, we just zero-fill it. Live with it.
2425 kaddr = kmap_atomic(dst);
2426 uaddr = (void __user *)(addr & PAGE_MASK);
2429 * On architectures with software "accessed" bits, we would
2430 * take a double page fault, so mark it accessed here.
2432 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2435 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2437 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2439 * Other thread has already handled the fault
2440 * and update local tlb only
2442 update_mmu_tlb(vma, addr, vmf->pte);
2447 entry = pte_mkyoung(vmf->orig_pte);
2448 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2449 update_mmu_cache(vma, addr, vmf->pte);
2453 * This really shouldn't fail, because the page is there
2454 * in the page tables. But it might just be unreadable,
2455 * in which case we just give up and fill the result with
2458 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2462 /* Re-validate under PTL if the page is still mapped */
2463 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2465 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2466 /* The PTE changed under us, update local tlb */
2467 update_mmu_tlb(vma, addr, vmf->pte);
2473 * The same page can be mapped back since last copy attempt.
2474 * Try to copy again under PTL.
2476 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2478 * Give a warn in case there can be some obscure
2491 pte_unmap_unlock(vmf->pte, vmf->ptl);
2492 kunmap_atomic(kaddr);
2493 flush_dcache_page(dst);
2498 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2500 struct file *vm_file = vma->vm_file;
2503 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2506 * Special mappings (e.g. VDSO) do not have any file so fake
2507 * a default GFP_KERNEL for them.
2513 * Notify the address space that the page is about to become writable so that
2514 * it can prohibit this or wait for the page to get into an appropriate state.
2516 * We do this without the lock held, so that it can sleep if it needs to.
2518 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2521 struct page *page = vmf->page;
2522 unsigned int old_flags = vmf->flags;
2524 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2526 if (vmf->vma->vm_file &&
2527 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2528 return VM_FAULT_SIGBUS;
2530 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2531 /* Restore original flags so that caller is not surprised */
2532 vmf->flags = old_flags;
2533 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2535 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2537 if (!page->mapping) {
2539 return 0; /* retry */
2541 ret |= VM_FAULT_LOCKED;
2543 VM_BUG_ON_PAGE(!PageLocked(page), page);
2548 * Handle dirtying of a page in shared file mapping on a write fault.
2550 * The function expects the page to be locked and unlocks it.
2552 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2554 struct vm_area_struct *vma = vmf->vma;
2555 struct address_space *mapping;
2556 struct page *page = vmf->page;
2558 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2560 dirtied = set_page_dirty(page);
2561 VM_BUG_ON_PAGE(PageAnon(page), page);
2563 * Take a local copy of the address_space - page.mapping may be zeroed
2564 * by truncate after unlock_page(). The address_space itself remains
2565 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2566 * release semantics to prevent the compiler from undoing this copying.
2568 mapping = page_rmapping(page);
2572 file_update_time(vma->vm_file);
2575 * Throttle page dirtying rate down to writeback speed.
2577 * mapping may be NULL here because some device drivers do not
2578 * set page.mapping but still dirty their pages
2580 * Drop the mmap_lock before waiting on IO, if we can. The file
2581 * is pinning the mapping, as per above.
2583 if ((dirtied || page_mkwrite) && mapping) {
2586 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2587 balance_dirty_pages_ratelimited(mapping);
2590 return VM_FAULT_RETRY;
2598 * Handle write page faults for pages that can be reused in the current vma
2600 * This can happen either due to the mapping being with the VM_SHARED flag,
2601 * or due to us being the last reference standing to the page. In either
2602 * case, all we need to do here is to mark the page as writable and update
2603 * any related book-keeping.
2605 static inline void wp_page_reuse(struct vm_fault *vmf)
2606 __releases(vmf->ptl)
2608 struct vm_area_struct *vma = vmf->vma;
2609 struct page *page = vmf->page;
2612 * Clear the pages cpupid information as the existing
2613 * information potentially belongs to a now completely
2614 * unrelated process.
2617 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2619 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2620 entry = pte_mkyoung(vmf->orig_pte);
2621 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2622 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2623 update_mmu_cache(vma, vmf->address, vmf->pte);
2624 pte_unmap_unlock(vmf->pte, vmf->ptl);
2628 * Handle the case of a page which we actually need to copy to a new page.
2630 * Called with mmap_lock locked and the old page referenced, but
2631 * without the ptl held.
2633 * High level logic flow:
2635 * - Allocate a page, copy the content of the old page to the new one.
2636 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2637 * - Take the PTL. If the pte changed, bail out and release the allocated page
2638 * - If the pte is still the way we remember it, update the page table and all
2639 * relevant references. This includes dropping the reference the page-table
2640 * held to the old page, as well as updating the rmap.
2641 * - In any case, unlock the PTL and drop the reference we took to the old page.
2643 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2645 struct vm_area_struct *vma = vmf->vma;
2646 struct mm_struct *mm = vma->vm_mm;
2647 struct page *old_page = vmf->page;
2648 struct page *new_page = NULL;
2650 int page_copied = 0;
2651 struct mmu_notifier_range range;
2653 if (unlikely(anon_vma_prepare(vma)))
2656 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2657 new_page = alloc_zeroed_user_highpage_movable(vma,
2662 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2667 if (!cow_user_page(new_page, old_page, vmf)) {
2669 * COW failed, if the fault was solved by other,
2670 * it's fine. If not, userspace would re-fault on
2671 * the same address and we will handle the fault
2672 * from the second attempt.
2681 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2683 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2685 __SetPageUptodate(new_page);
2687 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2688 vmf->address & PAGE_MASK,
2689 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2690 mmu_notifier_invalidate_range_start(&range);
2693 * Re-check the pte - we dropped the lock
2695 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2696 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2698 if (!PageAnon(old_page)) {
2699 dec_mm_counter_fast(mm,
2700 mm_counter_file(old_page));
2701 inc_mm_counter_fast(mm, MM_ANONPAGES);
2704 inc_mm_counter_fast(mm, MM_ANONPAGES);
2706 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2707 entry = mk_pte(new_page, vma->vm_page_prot);
2708 entry = pte_sw_mkyoung(entry);
2709 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2711 * Clear the pte entry and flush it first, before updating the
2712 * pte with the new entry. This will avoid a race condition
2713 * seen in the presence of one thread doing SMC and another
2716 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2717 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2718 lru_cache_add_inactive_or_unevictable(new_page, vma);
2720 * We call the notify macro here because, when using secondary
2721 * mmu page tables (such as kvm shadow page tables), we want the
2722 * new page to be mapped directly into the secondary page table.
2724 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2725 update_mmu_cache(vma, vmf->address, vmf->pte);
2728 * Only after switching the pte to the new page may
2729 * we remove the mapcount here. Otherwise another
2730 * process may come and find the rmap count decremented
2731 * before the pte is switched to the new page, and
2732 * "reuse" the old page writing into it while our pte
2733 * here still points into it and can be read by other
2736 * The critical issue is to order this
2737 * page_remove_rmap with the ptp_clear_flush above.
2738 * Those stores are ordered by (if nothing else,)
2739 * the barrier present in the atomic_add_negative
2740 * in page_remove_rmap.
2742 * Then the TLB flush in ptep_clear_flush ensures that
2743 * no process can access the old page before the
2744 * decremented mapcount is visible. And the old page
2745 * cannot be reused until after the decremented
2746 * mapcount is visible. So transitively, TLBs to
2747 * old page will be flushed before it can be reused.
2749 page_remove_rmap(old_page, false);
2752 /* Free the old page.. */
2753 new_page = old_page;
2756 update_mmu_tlb(vma, vmf->address, vmf->pte);
2762 pte_unmap_unlock(vmf->pte, vmf->ptl);
2764 * No need to double call mmu_notifier->invalidate_range() callback as
2765 * the above ptep_clear_flush_notify() did already call it.
2767 mmu_notifier_invalidate_range_only_end(&range);
2770 * Don't let another task, with possibly unlocked vma,
2771 * keep the mlocked page.
2773 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2774 lock_page(old_page); /* LRU manipulation */
2775 if (PageMlocked(old_page))
2776 munlock_vma_page(old_page);
2777 unlock_page(old_page);
2781 return page_copied ? VM_FAULT_WRITE : 0;
2787 return VM_FAULT_OOM;
2791 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2792 * writeable once the page is prepared
2794 * @vmf: structure describing the fault
2796 * This function handles all that is needed to finish a write page fault in a
2797 * shared mapping due to PTE being read-only once the mapped page is prepared.
2798 * It handles locking of PTE and modifying it.
2800 * The function expects the page to be locked or other protection against
2801 * concurrent faults / writeback (such as DAX radix tree locks).
2803 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2804 * we acquired PTE lock.
2806 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2808 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2809 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2812 * We might have raced with another page fault while we released the
2813 * pte_offset_map_lock.
2815 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2816 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2817 pte_unmap_unlock(vmf->pte, vmf->ptl);
2818 return VM_FAULT_NOPAGE;
2825 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2828 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2830 struct vm_area_struct *vma = vmf->vma;
2832 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2835 pte_unmap_unlock(vmf->pte, vmf->ptl);
2836 vmf->flags |= FAULT_FLAG_MKWRITE;
2837 ret = vma->vm_ops->pfn_mkwrite(vmf);
2838 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2840 return finish_mkwrite_fault(vmf);
2843 return VM_FAULT_WRITE;
2846 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2847 __releases(vmf->ptl)
2849 struct vm_area_struct *vma = vmf->vma;
2850 vm_fault_t ret = VM_FAULT_WRITE;
2852 get_page(vmf->page);
2854 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2857 pte_unmap_unlock(vmf->pte, vmf->ptl);
2858 tmp = do_page_mkwrite(vmf);
2859 if (unlikely(!tmp || (tmp &
2860 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2861 put_page(vmf->page);
2864 tmp = finish_mkwrite_fault(vmf);
2865 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2866 unlock_page(vmf->page);
2867 put_page(vmf->page);
2872 lock_page(vmf->page);
2874 ret |= fault_dirty_shared_page(vmf);
2875 put_page(vmf->page);
2881 * This routine handles present pages, when users try to write
2882 * to a shared page. It is done by copying the page to a new address
2883 * and decrementing the shared-page counter for the old page.
2885 * Note that this routine assumes that the protection checks have been
2886 * done by the caller (the low-level page fault routine in most cases).
2887 * Thus we can safely just mark it writable once we've done any necessary
2890 * We also mark the page dirty at this point even though the page will
2891 * change only once the write actually happens. This avoids a few races,
2892 * and potentially makes it more efficient.
2894 * We enter with non-exclusive mmap_lock (to exclude vma changes,
2895 * but allow concurrent faults), with pte both mapped and locked.
2896 * We return with mmap_lock still held, but pte unmapped and unlocked.
2898 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2899 __releases(vmf->ptl)
2901 struct vm_area_struct *vma = vmf->vma;
2903 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
2904 pte_unmap_unlock(vmf->pte, vmf->ptl);
2905 return handle_userfault(vmf, VM_UFFD_WP);
2908 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2911 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2914 * We should not cow pages in a shared writeable mapping.
2915 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2917 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2918 (VM_WRITE|VM_SHARED))
2919 return wp_pfn_shared(vmf);
2921 pte_unmap_unlock(vmf->pte, vmf->ptl);
2922 return wp_page_copy(vmf);
2926 * Take out anonymous pages first, anonymous shared vmas are
2927 * not dirty accountable.
2929 if (PageAnon(vmf->page)) {
2930 int total_map_swapcount;
2931 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2932 page_count(vmf->page) != 1))
2934 if (!trylock_page(vmf->page)) {
2935 get_page(vmf->page);
2936 pte_unmap_unlock(vmf->pte, vmf->ptl);
2937 lock_page(vmf->page);
2938 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2939 vmf->address, &vmf->ptl);
2940 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2941 update_mmu_tlb(vma, vmf->address, vmf->pte);
2942 unlock_page(vmf->page);
2943 pte_unmap_unlock(vmf->pte, vmf->ptl);
2944 put_page(vmf->page);
2947 put_page(vmf->page);
2949 if (PageKsm(vmf->page)) {
2950 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2952 unlock_page(vmf->page);
2956 return VM_FAULT_WRITE;
2958 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2959 if (total_map_swapcount == 1) {
2961 * The page is all ours. Move it to
2962 * our anon_vma so the rmap code will
2963 * not search our parent or siblings.
2964 * Protected against the rmap code by
2967 page_move_anon_rmap(vmf->page, vma);
2969 unlock_page(vmf->page);
2971 return VM_FAULT_WRITE;
2973 unlock_page(vmf->page);
2974 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2975 (VM_WRITE|VM_SHARED))) {
2976 return wp_page_shared(vmf);
2980 * Ok, we need to copy. Oh, well..
2982 get_page(vmf->page);
2984 pte_unmap_unlock(vmf->pte, vmf->ptl);
2985 return wp_page_copy(vmf);
2988 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2989 unsigned long start_addr, unsigned long end_addr,
2990 struct zap_details *details)
2992 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2995 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2996 struct zap_details *details)
2998 struct vm_area_struct *vma;
2999 pgoff_t vba, vea, zba, zea;
3001 vma_interval_tree_foreach(vma, root,
3002 details->first_index, details->last_index) {
3004 vba = vma->vm_pgoff;
3005 vea = vba + vma_pages(vma) - 1;
3006 zba = details->first_index;
3009 zea = details->last_index;
3013 unmap_mapping_range_vma(vma,
3014 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3015 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3021 * unmap_mapping_pages() - Unmap pages from processes.
3022 * @mapping: The address space containing pages to be unmapped.
3023 * @start: Index of first page to be unmapped.
3024 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3025 * @even_cows: Whether to unmap even private COWed pages.
3027 * Unmap the pages in this address space from any userspace process which
3028 * has them mmaped. Generally, you want to remove COWed pages as well when
3029 * a file is being truncated, but not when invalidating pages from the page
3032 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3033 pgoff_t nr, bool even_cows)
3035 struct zap_details details = { };
3037 details.check_mapping = even_cows ? NULL : mapping;
3038 details.first_index = start;
3039 details.last_index = start + nr - 1;
3040 if (details.last_index < details.first_index)
3041 details.last_index = ULONG_MAX;
3043 i_mmap_lock_write(mapping);
3044 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3045 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3046 i_mmap_unlock_write(mapping);
3050 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3051 * address_space corresponding to the specified byte range in the underlying
3054 * @mapping: the address space containing mmaps to be unmapped.
3055 * @holebegin: byte in first page to unmap, relative to the start of
3056 * the underlying file. This will be rounded down to a PAGE_SIZE
3057 * boundary. Note that this is different from truncate_pagecache(), which
3058 * must keep the partial page. In contrast, we must get rid of
3060 * @holelen: size of prospective hole in bytes. This will be rounded
3061 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3063 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3064 * but 0 when invalidating pagecache, don't throw away private data.
3066 void unmap_mapping_range(struct address_space *mapping,
3067 loff_t const holebegin, loff_t const holelen, int even_cows)
3069 pgoff_t hba = holebegin >> PAGE_SHIFT;
3070 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3072 /* Check for overflow. */
3073 if (sizeof(holelen) > sizeof(hlen)) {
3075 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3076 if (holeend & ~(long long)ULONG_MAX)
3077 hlen = ULONG_MAX - hba + 1;
3080 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3082 EXPORT_SYMBOL(unmap_mapping_range);
3085 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3086 * but allow concurrent faults), and pte mapped but not yet locked.
3087 * We return with pte unmapped and unlocked.
3089 * We return with the mmap_lock locked or unlocked in the same cases
3090 * as does filemap_fault().
3092 vm_fault_t do_swap_page(struct vm_fault *vmf)
3094 struct vm_area_struct *vma = vmf->vma;
3095 struct page *page = NULL, *swapcache;
3101 void *shadow = NULL;
3103 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3106 entry = pte_to_swp_entry(vmf->orig_pte);
3107 if (unlikely(non_swap_entry(entry))) {
3108 if (is_migration_entry(entry)) {
3109 migration_entry_wait(vma->vm_mm, vmf->pmd,
3111 } else if (is_device_private_entry(entry)) {
3112 vmf->page = device_private_entry_to_page(entry);
3113 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3114 } else if (is_hwpoison_entry(entry)) {
3115 ret = VM_FAULT_HWPOISON;
3117 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3118 ret = VM_FAULT_SIGBUS;
3124 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3125 page = lookup_swap_cache(entry, vma, vmf->address);
3129 struct swap_info_struct *si = swp_swap_info(entry);
3131 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3132 __swap_count(entry) == 1) {
3133 /* skip swapcache */
3134 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3139 __SetPageLocked(page);
3140 __SetPageSwapBacked(page);
3141 set_page_private(page, entry.val);
3143 /* Tell memcg to use swap ownership records */
3144 SetPageSwapCache(page);
3145 err = mem_cgroup_charge(page, vma->vm_mm,
3147 ClearPageSwapCache(page);
3153 shadow = get_shadow_from_swap_cache(entry);
3155 workingset_refault(page, shadow);
3157 lru_cache_add(page);
3158 swap_readpage(page, true);
3161 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3168 * Back out if somebody else faulted in this pte
3169 * while we released the pte lock.
3171 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3172 vmf->address, &vmf->ptl);
3173 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3175 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3179 /* Had to read the page from swap area: Major fault */
3180 ret = VM_FAULT_MAJOR;
3181 count_vm_event(PGMAJFAULT);
3182 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3183 } else if (PageHWPoison(page)) {
3185 * hwpoisoned dirty swapcache pages are kept for killing
3186 * owner processes (which may be unknown at hwpoison time)
3188 ret = VM_FAULT_HWPOISON;
3189 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3193 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3195 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3197 ret |= VM_FAULT_RETRY;
3202 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3203 * release the swapcache from under us. The page pin, and pte_same
3204 * test below, are not enough to exclude that. Even if it is still
3205 * swapcache, we need to check that the page's swap has not changed.
3207 if (unlikely((!PageSwapCache(page) ||
3208 page_private(page) != entry.val)) && swapcache)
3211 page = ksm_might_need_to_copy(page, vma, vmf->address);
3212 if (unlikely(!page)) {
3218 cgroup_throttle_swaprate(page, GFP_KERNEL);
3221 * Back out if somebody else already faulted in this pte.
3223 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3225 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3228 if (unlikely(!PageUptodate(page))) {
3229 ret = VM_FAULT_SIGBUS;
3234 * The page isn't present yet, go ahead with the fault.
3236 * Be careful about the sequence of operations here.
3237 * To get its accounting right, reuse_swap_page() must be called
3238 * while the page is counted on swap but not yet in mapcount i.e.
3239 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3240 * must be called after the swap_free(), or it will never succeed.
3243 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3244 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3245 pte = mk_pte(page, vma->vm_page_prot);
3246 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3247 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3248 vmf->flags &= ~FAULT_FLAG_WRITE;
3249 ret |= VM_FAULT_WRITE;
3250 exclusive = RMAP_EXCLUSIVE;
3252 flush_icache_page(vma, page);
3253 if (pte_swp_soft_dirty(vmf->orig_pte))
3254 pte = pte_mksoft_dirty(pte);
3255 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3256 pte = pte_mkuffd_wp(pte);
3257 pte = pte_wrprotect(pte);
3259 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3260 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3261 vmf->orig_pte = pte;
3263 /* ksm created a completely new copy */
3264 if (unlikely(page != swapcache && swapcache)) {
3265 page_add_new_anon_rmap(page, vma, vmf->address, false);
3266 lru_cache_add_inactive_or_unevictable(page, vma);
3268 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3272 if (mem_cgroup_swap_full(page) ||
3273 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3274 try_to_free_swap(page);
3276 if (page != swapcache && swapcache) {
3278 * Hold the lock to avoid the swap entry to be reused
3279 * until we take the PT lock for the pte_same() check
3280 * (to avoid false positives from pte_same). For
3281 * further safety release the lock after the swap_free
3282 * so that the swap count won't change under a
3283 * parallel locked swapcache.
3285 unlock_page(swapcache);
3286 put_page(swapcache);
3289 if (vmf->flags & FAULT_FLAG_WRITE) {
3290 ret |= do_wp_page(vmf);
3291 if (ret & VM_FAULT_ERROR)
3292 ret &= VM_FAULT_ERROR;
3296 /* No need to invalidate - it was non-present before */
3297 update_mmu_cache(vma, vmf->address, vmf->pte);
3299 pte_unmap_unlock(vmf->pte, vmf->ptl);
3303 pte_unmap_unlock(vmf->pte, vmf->ptl);
3308 if (page != swapcache && swapcache) {
3309 unlock_page(swapcache);
3310 put_page(swapcache);
3316 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3317 * but allow concurrent faults), and pte mapped but not yet locked.
3318 * We return with mmap_lock still held, but pte unmapped and unlocked.
3320 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3322 struct vm_area_struct *vma = vmf->vma;
3327 /* File mapping without ->vm_ops ? */
3328 if (vma->vm_flags & VM_SHARED)
3329 return VM_FAULT_SIGBUS;
3332 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3333 * pte_offset_map() on pmds where a huge pmd might be created
3334 * from a different thread.
3336 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3337 * parallel threads are excluded by other means.
3339 * Here we only have mmap_read_lock(mm).
3341 if (pte_alloc(vma->vm_mm, vmf->pmd))
3342 return VM_FAULT_OOM;
3344 /* See the comment in pte_alloc_one_map() */
3345 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3348 /* Use the zero-page for reads */
3349 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3350 !mm_forbids_zeropage(vma->vm_mm)) {
3351 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3352 vma->vm_page_prot));
3353 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3354 vmf->address, &vmf->ptl);
3355 if (!pte_none(*vmf->pte)) {
3356 update_mmu_tlb(vma, vmf->address, vmf->pte);
3359 ret = check_stable_address_space(vma->vm_mm);
3362 /* Deliver the page fault to userland, check inside PT lock */
3363 if (userfaultfd_missing(vma)) {
3364 pte_unmap_unlock(vmf->pte, vmf->ptl);
3365 return handle_userfault(vmf, VM_UFFD_MISSING);
3370 /* Allocate our own private page. */
3371 if (unlikely(anon_vma_prepare(vma)))
3373 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3377 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3379 cgroup_throttle_swaprate(page, GFP_KERNEL);
3382 * The memory barrier inside __SetPageUptodate makes sure that
3383 * preceding stores to the page contents become visible before
3384 * the set_pte_at() write.
3386 __SetPageUptodate(page);
3388 entry = mk_pte(page, vma->vm_page_prot);
3389 entry = pte_sw_mkyoung(entry);
3390 if (vma->vm_flags & VM_WRITE)
3391 entry = pte_mkwrite(pte_mkdirty(entry));
3393 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3395 if (!pte_none(*vmf->pte)) {
3396 update_mmu_cache(vma, vmf->address, vmf->pte);
3400 ret = check_stable_address_space(vma->vm_mm);
3404 /* Deliver the page fault to userland, check inside PT lock */
3405 if (userfaultfd_missing(vma)) {
3406 pte_unmap_unlock(vmf->pte, vmf->ptl);
3408 return handle_userfault(vmf, VM_UFFD_MISSING);
3411 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3412 page_add_new_anon_rmap(page, vma, vmf->address, false);
3413 lru_cache_add_inactive_or_unevictable(page, vma);
3415 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3417 /* No need to invalidate - it was non-present before */
3418 update_mmu_cache(vma, vmf->address, vmf->pte);
3420 pte_unmap_unlock(vmf->pte, vmf->ptl);
3428 return VM_FAULT_OOM;
3432 * The mmap_lock must have been held on entry, and may have been
3433 * released depending on flags and vma->vm_ops->fault() return value.
3434 * See filemap_fault() and __lock_page_retry().
3436 static vm_fault_t __do_fault(struct vm_fault *vmf)
3438 struct vm_area_struct *vma = vmf->vma;
3442 * Preallocate pte before we take page_lock because this might lead to
3443 * deadlocks for memcg reclaim which waits for pages under writeback:
3445 * SetPageWriteback(A)
3451 * wait_on_page_writeback(A)
3452 * SetPageWriteback(B)
3454 * # flush A, B to clear the writeback
3456 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3457 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3458 if (!vmf->prealloc_pte)
3459 return VM_FAULT_OOM;
3460 smp_wmb(); /* See comment in __pte_alloc() */
3463 ret = vma->vm_ops->fault(vmf);
3464 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3465 VM_FAULT_DONE_COW)))
3468 if (unlikely(PageHWPoison(vmf->page))) {
3469 if (ret & VM_FAULT_LOCKED)
3470 unlock_page(vmf->page);
3471 put_page(vmf->page);
3473 return VM_FAULT_HWPOISON;
3476 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3477 lock_page(vmf->page);
3479 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3485 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3486 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3487 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3488 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3490 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3492 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3495 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3497 struct vm_area_struct *vma = vmf->vma;
3499 if (!pmd_none(*vmf->pmd))
3501 if (vmf->prealloc_pte) {
3502 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3503 if (unlikely(!pmd_none(*vmf->pmd))) {
3504 spin_unlock(vmf->ptl);
3508 mm_inc_nr_ptes(vma->vm_mm);
3509 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3510 spin_unlock(vmf->ptl);
3511 vmf->prealloc_pte = NULL;
3512 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3513 return VM_FAULT_OOM;
3517 * If a huge pmd materialized under us just retry later. Use
3518 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3519 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3520 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3521 * running immediately after a huge pmd fault in a different thread of
3522 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3523 * All we have to ensure is that it is a regular pmd that we can walk
3524 * with pte_offset_map() and we can do that through an atomic read in
3525 * C, which is what pmd_trans_unstable() provides.
3527 if (pmd_devmap_trans_unstable(vmf->pmd))
3528 return VM_FAULT_NOPAGE;
3531 * At this point we know that our vmf->pmd points to a page of ptes
3532 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3533 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3534 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3535 * be valid and we will re-check to make sure the vmf->pte isn't
3536 * pte_none() under vmf->ptl protection when we return to
3539 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3544 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3545 static void deposit_prealloc_pte(struct vm_fault *vmf)
3547 struct vm_area_struct *vma = vmf->vma;
3549 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3551 * We are going to consume the prealloc table,
3552 * count that as nr_ptes.
3554 mm_inc_nr_ptes(vma->vm_mm);
3555 vmf->prealloc_pte = NULL;
3558 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3560 struct vm_area_struct *vma = vmf->vma;
3561 bool write = vmf->flags & FAULT_FLAG_WRITE;
3562 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3567 if (!transhuge_vma_suitable(vma, haddr))
3568 return VM_FAULT_FALLBACK;
3570 ret = VM_FAULT_FALLBACK;
3571 page = compound_head(page);
3574 * Archs like ppc64 need additonal space to store information
3575 * related to pte entry. Use the preallocated table for that.
3577 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3578 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3579 if (!vmf->prealloc_pte)
3580 return VM_FAULT_OOM;
3581 smp_wmb(); /* See comment in __pte_alloc() */
3584 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3585 if (unlikely(!pmd_none(*vmf->pmd)))
3588 for (i = 0; i < HPAGE_PMD_NR; i++)
3589 flush_icache_page(vma, page + i);
3591 entry = mk_huge_pmd(page, vma->vm_page_prot);
3593 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3595 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3596 page_add_file_rmap(page, true);
3598 * deposit and withdraw with pmd lock held
3600 if (arch_needs_pgtable_deposit())
3601 deposit_prealloc_pte(vmf);
3603 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3605 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3607 /* fault is handled */
3609 count_vm_event(THP_FILE_MAPPED);
3611 spin_unlock(vmf->ptl);
3615 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3623 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3624 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3626 * @vmf: fault environment
3627 * @page: page to map
3629 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3632 * Target users are page handler itself and implementations of
3633 * vm_ops->map_pages.
3635 * Return: %0 on success, %VM_FAULT_ code in case of error.
3637 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3639 struct vm_area_struct *vma = vmf->vma;
3640 bool write = vmf->flags & FAULT_FLAG_WRITE;
3644 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3645 ret = do_set_pmd(vmf, page);
3646 if (ret != VM_FAULT_FALLBACK)
3651 ret = pte_alloc_one_map(vmf);
3656 /* Re-check under ptl */
3657 if (unlikely(!pte_none(*vmf->pte))) {
3658 update_mmu_tlb(vma, vmf->address, vmf->pte);
3659 return VM_FAULT_NOPAGE;
3662 flush_icache_page(vma, page);
3663 entry = mk_pte(page, vma->vm_page_prot);
3664 entry = pte_sw_mkyoung(entry);
3666 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3667 /* copy-on-write page */
3668 if (write && !(vma->vm_flags & VM_SHARED)) {
3669 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3670 page_add_new_anon_rmap(page, vma, vmf->address, false);
3671 lru_cache_add_inactive_or_unevictable(page, vma);
3673 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3674 page_add_file_rmap(page, false);
3676 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3678 /* no need to invalidate: a not-present page won't be cached */
3679 update_mmu_cache(vma, vmf->address, vmf->pte);
3686 * finish_fault - finish page fault once we have prepared the page to fault
3688 * @vmf: structure describing the fault
3690 * This function handles all that is needed to finish a page fault once the
3691 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3692 * given page, adds reverse page mapping, handles memcg charges and LRU
3695 * The function expects the page to be locked and on success it consumes a
3696 * reference of a page being mapped (for the PTE which maps it).
3698 * Return: %0 on success, %VM_FAULT_ code in case of error.
3700 vm_fault_t finish_fault(struct vm_fault *vmf)
3705 /* Did we COW the page? */
3706 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3707 !(vmf->vma->vm_flags & VM_SHARED))
3708 page = vmf->cow_page;
3713 * check even for read faults because we might have lost our CoWed
3716 if (!(vmf->vma->vm_flags & VM_SHARED))
3717 ret = check_stable_address_space(vmf->vma->vm_mm);
3719 ret = alloc_set_pte(vmf, page);
3721 pte_unmap_unlock(vmf->pte, vmf->ptl);
3725 static unsigned long fault_around_bytes __read_mostly =
3726 rounddown_pow_of_two(65536);
3728 #ifdef CONFIG_DEBUG_FS
3729 static int fault_around_bytes_get(void *data, u64 *val)
3731 *val = fault_around_bytes;
3736 * fault_around_bytes must be rounded down to the nearest page order as it's
3737 * what do_fault_around() expects to see.
3739 static int fault_around_bytes_set(void *data, u64 val)
3741 if (val / PAGE_SIZE > PTRS_PER_PTE)
3743 if (val > PAGE_SIZE)
3744 fault_around_bytes = rounddown_pow_of_two(val);
3746 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3749 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3750 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3752 static int __init fault_around_debugfs(void)
3754 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3755 &fault_around_bytes_fops);
3758 late_initcall(fault_around_debugfs);
3762 * do_fault_around() tries to map few pages around the fault address. The hope
3763 * is that the pages will be needed soon and this will lower the number of
3766 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3767 * not ready to be mapped: not up-to-date, locked, etc.
3769 * This function is called with the page table lock taken. In the split ptlock
3770 * case the page table lock only protects only those entries which belong to
3771 * the page table corresponding to the fault address.
3773 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3776 * fault_around_bytes defines how many bytes we'll try to map.
3777 * do_fault_around() expects it to be set to a power of two less than or equal
3780 * The virtual address of the area that we map is naturally aligned to
3781 * fault_around_bytes rounded down to the machine page size
3782 * (and therefore to page order). This way it's easier to guarantee
3783 * that we don't cross page table boundaries.
3785 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3787 unsigned long address = vmf->address, nr_pages, mask;
3788 pgoff_t start_pgoff = vmf->pgoff;
3793 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3794 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3796 vmf->address = max(address & mask, vmf->vma->vm_start);
3797 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3801 * end_pgoff is either the end of the page table, the end of
3802 * the vma or nr_pages from start_pgoff, depending what is nearest.
3804 end_pgoff = start_pgoff -
3805 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3807 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3808 start_pgoff + nr_pages - 1);
3810 if (pmd_none(*vmf->pmd)) {
3811 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3812 if (!vmf->prealloc_pte)
3814 smp_wmb(); /* See comment in __pte_alloc() */
3817 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3819 /* Huge page is mapped? Page fault is solved */
3820 if (pmd_trans_huge(*vmf->pmd)) {
3821 ret = VM_FAULT_NOPAGE;
3825 /* ->map_pages() haven't done anything useful. Cold page cache? */
3829 /* check if the page fault is solved */
3830 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3831 if (!pte_none(*vmf->pte))
3832 ret = VM_FAULT_NOPAGE;
3833 pte_unmap_unlock(vmf->pte, vmf->ptl);
3835 vmf->address = address;
3840 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3842 struct vm_area_struct *vma = vmf->vma;
3846 * Let's call ->map_pages() first and use ->fault() as fallback
3847 * if page by the offset is not ready to be mapped (cold cache or
3850 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3851 ret = do_fault_around(vmf);
3856 ret = __do_fault(vmf);
3857 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3860 ret |= finish_fault(vmf);
3861 unlock_page(vmf->page);
3862 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3863 put_page(vmf->page);
3867 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3869 struct vm_area_struct *vma = vmf->vma;
3872 if (unlikely(anon_vma_prepare(vma)))
3873 return VM_FAULT_OOM;
3875 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3877 return VM_FAULT_OOM;
3879 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
3880 put_page(vmf->cow_page);
3881 return VM_FAULT_OOM;
3883 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
3885 ret = __do_fault(vmf);
3886 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3888 if (ret & VM_FAULT_DONE_COW)
3891 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3892 __SetPageUptodate(vmf->cow_page);
3894 ret |= finish_fault(vmf);
3895 unlock_page(vmf->page);
3896 put_page(vmf->page);
3897 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3901 put_page(vmf->cow_page);
3905 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3907 struct vm_area_struct *vma = vmf->vma;
3908 vm_fault_t ret, tmp;
3910 ret = __do_fault(vmf);
3911 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3915 * Check if the backing address space wants to know that the page is
3916 * about to become writable
3918 if (vma->vm_ops->page_mkwrite) {
3919 unlock_page(vmf->page);
3920 tmp = do_page_mkwrite(vmf);
3921 if (unlikely(!tmp ||
3922 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3923 put_page(vmf->page);
3928 ret |= finish_fault(vmf);
3929 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3931 unlock_page(vmf->page);
3932 put_page(vmf->page);
3936 ret |= fault_dirty_shared_page(vmf);
3941 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3942 * but allow concurrent faults).
3943 * The mmap_lock may have been released depending on flags and our
3944 * return value. See filemap_fault() and __lock_page_or_retry().
3945 * If mmap_lock is released, vma may become invalid (for example
3946 * by other thread calling munmap()).
3948 static vm_fault_t do_fault(struct vm_fault *vmf)
3950 struct vm_area_struct *vma = vmf->vma;
3951 struct mm_struct *vm_mm = vma->vm_mm;
3955 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3957 if (!vma->vm_ops->fault) {
3959 * If we find a migration pmd entry or a none pmd entry, which
3960 * should never happen, return SIGBUS
3962 if (unlikely(!pmd_present(*vmf->pmd)))
3963 ret = VM_FAULT_SIGBUS;
3965 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3970 * Make sure this is not a temporary clearing of pte
3971 * by holding ptl and checking again. A R/M/W update
3972 * of pte involves: take ptl, clearing the pte so that
3973 * we don't have concurrent modification by hardware
3974 * followed by an update.
3976 if (unlikely(pte_none(*vmf->pte)))
3977 ret = VM_FAULT_SIGBUS;
3979 ret = VM_FAULT_NOPAGE;
3981 pte_unmap_unlock(vmf->pte, vmf->ptl);
3983 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3984 ret = do_read_fault(vmf);
3985 else if (!(vma->vm_flags & VM_SHARED))
3986 ret = do_cow_fault(vmf);
3988 ret = do_shared_fault(vmf);
3990 /* preallocated pagetable is unused: free it */
3991 if (vmf->prealloc_pte) {
3992 pte_free(vm_mm, vmf->prealloc_pte);
3993 vmf->prealloc_pte = NULL;
3998 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3999 unsigned long addr, int page_nid,
4004 count_vm_numa_event(NUMA_HINT_FAULTS);
4005 if (page_nid == numa_node_id()) {
4006 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4007 *flags |= TNF_FAULT_LOCAL;
4010 return mpol_misplaced(page, vma, addr);
4013 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4015 struct vm_area_struct *vma = vmf->vma;
4016 struct page *page = NULL;
4017 int page_nid = NUMA_NO_NODE;
4020 bool migrated = false;
4022 bool was_writable = pte_savedwrite(vmf->orig_pte);
4026 * The "pte" at this point cannot be used safely without
4027 * validation through pte_unmap_same(). It's of NUMA type but
4028 * the pfn may be screwed if the read is non atomic.
4030 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4031 spin_lock(vmf->ptl);
4032 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4033 pte_unmap_unlock(vmf->pte, vmf->ptl);
4038 * Make it present again, Depending on how arch implementes non
4039 * accessible ptes, some can allow access by kernel mode.
4041 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4042 pte = pte_modify(old_pte, vma->vm_page_prot);
4043 pte = pte_mkyoung(pte);
4045 pte = pte_mkwrite(pte);
4046 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4047 update_mmu_cache(vma, vmf->address, vmf->pte);
4049 page = vm_normal_page(vma, vmf->address, pte);
4051 pte_unmap_unlock(vmf->pte, vmf->ptl);
4055 /* TODO: handle PTE-mapped THP */
4056 if (PageCompound(page)) {
4057 pte_unmap_unlock(vmf->pte, vmf->ptl);
4062 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4063 * much anyway since they can be in shared cache state. This misses
4064 * the case where a mapping is writable but the process never writes
4065 * to it but pte_write gets cleared during protection updates and
4066 * pte_dirty has unpredictable behaviour between PTE scan updates,
4067 * background writeback, dirty balancing and application behaviour.
4069 if (!pte_write(pte))
4070 flags |= TNF_NO_GROUP;
4073 * Flag if the page is shared between multiple address spaces. This
4074 * is later used when determining whether to group tasks together
4076 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4077 flags |= TNF_SHARED;
4079 last_cpupid = page_cpupid_last(page);
4080 page_nid = page_to_nid(page);
4081 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4083 pte_unmap_unlock(vmf->pte, vmf->ptl);
4084 if (target_nid == NUMA_NO_NODE) {
4089 /* Migrate to the requested node */
4090 migrated = migrate_misplaced_page(page, vma, target_nid);
4092 page_nid = target_nid;
4093 flags |= TNF_MIGRATED;
4095 flags |= TNF_MIGRATE_FAIL;
4098 if (page_nid != NUMA_NO_NODE)
4099 task_numa_fault(last_cpupid, page_nid, 1, flags);
4103 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4105 if (vma_is_anonymous(vmf->vma))
4106 return do_huge_pmd_anonymous_page(vmf);
4107 if (vmf->vma->vm_ops->huge_fault)
4108 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4109 return VM_FAULT_FALLBACK;
4112 /* `inline' is required to avoid gcc 4.1.2 build error */
4113 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4115 if (vma_is_anonymous(vmf->vma)) {
4116 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4117 return handle_userfault(vmf, VM_UFFD_WP);
4118 return do_huge_pmd_wp_page(vmf, orig_pmd);
4120 if (vmf->vma->vm_ops->huge_fault) {
4121 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4123 if (!(ret & VM_FAULT_FALLBACK))
4127 /* COW or write-notify handled on pte level: split pmd. */
4128 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4130 return VM_FAULT_FALLBACK;
4133 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4135 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4136 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4137 /* No support for anonymous transparent PUD pages yet */
4138 if (vma_is_anonymous(vmf->vma))
4140 if (vmf->vma->vm_ops->huge_fault) {
4141 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4143 if (!(ret & VM_FAULT_FALLBACK))
4147 /* COW or write-notify not handled on PUD level: split pud.*/
4148 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4149 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4150 return VM_FAULT_FALLBACK;
4153 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4155 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4156 /* No support for anonymous transparent PUD pages yet */
4157 if (vma_is_anonymous(vmf->vma))
4158 return VM_FAULT_FALLBACK;
4159 if (vmf->vma->vm_ops->huge_fault)
4160 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4161 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4162 return VM_FAULT_FALLBACK;
4166 * These routines also need to handle stuff like marking pages dirty
4167 * and/or accessed for architectures that don't do it in hardware (most
4168 * RISC architectures). The early dirtying is also good on the i386.
4170 * There is also a hook called "update_mmu_cache()" that architectures
4171 * with external mmu caches can use to update those (ie the Sparc or
4172 * PowerPC hashed page tables that act as extended TLBs).
4174 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4175 * concurrent faults).
4177 * The mmap_lock may have been released depending on flags and our return value.
4178 * See filemap_fault() and __lock_page_or_retry().
4180 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4184 if (unlikely(pmd_none(*vmf->pmd))) {
4186 * Leave __pte_alloc() until later: because vm_ops->fault may
4187 * want to allocate huge page, and if we expose page table
4188 * for an instant, it will be difficult to retract from
4189 * concurrent faults and from rmap lookups.
4193 /* See comment in pte_alloc_one_map() */
4194 if (pmd_devmap_trans_unstable(vmf->pmd))
4197 * A regular pmd is established and it can't morph into a huge
4198 * pmd from under us anymore at this point because we hold the
4199 * mmap_lock read mode and khugepaged takes it in write mode.
4200 * So now it's safe to run pte_offset_map().
4202 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4203 vmf->orig_pte = *vmf->pte;
4206 * some architectures can have larger ptes than wordsize,
4207 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4208 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4209 * accesses. The code below just needs a consistent view
4210 * for the ifs and we later double check anyway with the
4211 * ptl lock held. So here a barrier will do.
4214 if (pte_none(vmf->orig_pte)) {
4215 pte_unmap(vmf->pte);
4221 if (vma_is_anonymous(vmf->vma))
4222 return do_anonymous_page(vmf);
4224 return do_fault(vmf);
4227 if (!pte_present(vmf->orig_pte))
4228 return do_swap_page(vmf);
4230 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4231 return do_numa_page(vmf);
4233 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4234 spin_lock(vmf->ptl);
4235 entry = vmf->orig_pte;
4236 if (unlikely(!pte_same(*vmf->pte, entry))) {
4237 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4240 if (vmf->flags & FAULT_FLAG_WRITE) {
4241 if (!pte_write(entry))
4242 return do_wp_page(vmf);
4243 entry = pte_mkdirty(entry);
4245 entry = pte_mkyoung(entry);
4246 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4247 vmf->flags & FAULT_FLAG_WRITE)) {
4248 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4251 * This is needed only for protection faults but the arch code
4252 * is not yet telling us if this is a protection fault or not.
4253 * This still avoids useless tlb flushes for .text page faults
4256 if (vmf->flags & FAULT_FLAG_WRITE)
4257 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4260 pte_unmap_unlock(vmf->pte, vmf->ptl);
4265 * By the time we get here, we already hold the mm semaphore
4267 * The mmap_lock may have been released depending on flags and our
4268 * return value. See filemap_fault() and __lock_page_or_retry().
4270 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4271 unsigned long address, unsigned int flags)
4273 struct vm_fault vmf = {
4275 .address = address & PAGE_MASK,
4277 .pgoff = linear_page_index(vma, address),
4278 .gfp_mask = __get_fault_gfp_mask(vma),
4280 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4281 struct mm_struct *mm = vma->vm_mm;
4286 pgd = pgd_offset(mm, address);
4287 p4d = p4d_alloc(mm, pgd, address);
4289 return VM_FAULT_OOM;
4291 vmf.pud = pud_alloc(mm, p4d, address);
4293 return VM_FAULT_OOM;
4295 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4296 ret = create_huge_pud(&vmf);
4297 if (!(ret & VM_FAULT_FALLBACK))
4300 pud_t orig_pud = *vmf.pud;
4303 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4305 /* NUMA case for anonymous PUDs would go here */
4307 if (dirty && !pud_write(orig_pud)) {
4308 ret = wp_huge_pud(&vmf, orig_pud);
4309 if (!(ret & VM_FAULT_FALLBACK))
4312 huge_pud_set_accessed(&vmf, orig_pud);
4318 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4320 return VM_FAULT_OOM;
4322 /* Huge pud page fault raced with pmd_alloc? */
4323 if (pud_trans_unstable(vmf.pud))
4326 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4327 ret = create_huge_pmd(&vmf);
4328 if (!(ret & VM_FAULT_FALLBACK))
4331 pmd_t orig_pmd = *vmf.pmd;
4334 if (unlikely(is_swap_pmd(orig_pmd))) {
4335 VM_BUG_ON(thp_migration_supported() &&
4336 !is_pmd_migration_entry(orig_pmd));
4337 if (is_pmd_migration_entry(orig_pmd))
4338 pmd_migration_entry_wait(mm, vmf.pmd);
4341 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4342 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4343 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4345 if (dirty && !pmd_write(orig_pmd)) {
4346 ret = wp_huge_pmd(&vmf, orig_pmd);
4347 if (!(ret & VM_FAULT_FALLBACK))
4350 huge_pmd_set_accessed(&vmf, orig_pmd);
4356 return handle_pte_fault(&vmf);
4360 * mm_account_fault - Do page fault accountings
4362 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4363 * of perf event counters, but we'll still do the per-task accounting to
4364 * the task who triggered this page fault.
4365 * @address: the faulted address.
4366 * @flags: the fault flags.
4367 * @ret: the fault retcode.
4369 * This will take care of most of the page fault accountings. Meanwhile, it
4370 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4371 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4372 * still be in per-arch page fault handlers at the entry of page fault.
4374 static inline void mm_account_fault(struct pt_regs *regs,
4375 unsigned long address, unsigned int flags,
4381 * We don't do accounting for some specific faults:
4383 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4384 * includes arch_vma_access_permitted() failing before reaching here.
4385 * So this is not a "this many hardware page faults" counter. We
4386 * should use the hw profiling for that.
4388 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4389 * once they're completed.
4391 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4395 * We define the fault as a major fault when the final successful fault
4396 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4397 * handle it immediately previously).
4399 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4407 * If the fault is done for GUP, regs will be NULL. We only do the
4408 * accounting for the per thread fault counters who triggered the
4409 * fault, and we skip the perf event updates.
4415 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4417 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4421 * By the time we get here, we already hold the mm semaphore
4423 * The mmap_lock may have been released depending on flags and our
4424 * return value. See filemap_fault() and __lock_page_or_retry().
4426 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4427 unsigned int flags, struct pt_regs *regs)
4431 __set_current_state(TASK_RUNNING);
4433 count_vm_event(PGFAULT);
4434 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4436 /* do counter updates before entering really critical section. */
4437 check_sync_rss_stat(current);
4439 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4440 flags & FAULT_FLAG_INSTRUCTION,
4441 flags & FAULT_FLAG_REMOTE))
4442 return VM_FAULT_SIGSEGV;
4445 * Enable the memcg OOM handling for faults triggered in user
4446 * space. Kernel faults are handled more gracefully.
4448 if (flags & FAULT_FLAG_USER)
4449 mem_cgroup_enter_user_fault();
4451 if (unlikely(is_vm_hugetlb_page(vma)))
4452 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4454 ret = __handle_mm_fault(vma, address, flags);
4456 if (flags & FAULT_FLAG_USER) {
4457 mem_cgroup_exit_user_fault();
4459 * The task may have entered a memcg OOM situation but
4460 * if the allocation error was handled gracefully (no
4461 * VM_FAULT_OOM), there is no need to kill anything.
4462 * Just clean up the OOM state peacefully.
4464 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4465 mem_cgroup_oom_synchronize(false);
4468 mm_account_fault(regs, address, flags, ret);
4472 EXPORT_SYMBOL_GPL(handle_mm_fault);
4474 #ifndef __PAGETABLE_P4D_FOLDED
4476 * Allocate p4d page table.
4477 * We've already handled the fast-path in-line.
4479 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4481 p4d_t *new = p4d_alloc_one(mm, address);
4485 smp_wmb(); /* See comment in __pte_alloc */
4487 spin_lock(&mm->page_table_lock);
4488 if (pgd_present(*pgd)) /* Another has populated it */
4491 pgd_populate(mm, pgd, new);
4492 spin_unlock(&mm->page_table_lock);
4495 #endif /* __PAGETABLE_P4D_FOLDED */
4497 #ifndef __PAGETABLE_PUD_FOLDED
4499 * Allocate page upper directory.
4500 * We've already handled the fast-path in-line.
4502 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4504 pud_t *new = pud_alloc_one(mm, address);
4508 smp_wmb(); /* See comment in __pte_alloc */
4510 spin_lock(&mm->page_table_lock);
4511 if (!p4d_present(*p4d)) {
4513 p4d_populate(mm, p4d, new);
4514 } else /* Another has populated it */
4516 spin_unlock(&mm->page_table_lock);
4519 #endif /* __PAGETABLE_PUD_FOLDED */
4521 #ifndef __PAGETABLE_PMD_FOLDED
4523 * Allocate page middle directory.
4524 * We've already handled the fast-path in-line.
4526 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4529 pmd_t *new = pmd_alloc_one(mm, address);
4533 smp_wmb(); /* See comment in __pte_alloc */
4535 ptl = pud_lock(mm, pud);
4536 if (!pud_present(*pud)) {
4538 pud_populate(mm, pud, new);
4539 } else /* Another has populated it */
4544 #endif /* __PAGETABLE_PMD_FOLDED */
4546 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4547 struct mmu_notifier_range *range,
4548 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4556 pgd = pgd_offset(mm, address);
4557 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4560 p4d = p4d_offset(pgd, address);
4561 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4564 pud = pud_offset(p4d, address);
4565 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4568 pmd = pmd_offset(pud, address);
4569 VM_BUG_ON(pmd_trans_huge(*pmd));
4571 if (pmd_huge(*pmd)) {
4576 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4577 NULL, mm, address & PMD_MASK,
4578 (address & PMD_MASK) + PMD_SIZE);
4579 mmu_notifier_invalidate_range_start(range);
4581 *ptlp = pmd_lock(mm, pmd);
4582 if (pmd_huge(*pmd)) {
4588 mmu_notifier_invalidate_range_end(range);
4591 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4595 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4596 address & PAGE_MASK,
4597 (address & PAGE_MASK) + PAGE_SIZE);
4598 mmu_notifier_invalidate_range_start(range);
4600 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4601 if (!pte_present(*ptep))
4606 pte_unmap_unlock(ptep, *ptlp);
4608 mmu_notifier_invalidate_range_end(range);
4613 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4614 pte_t **ptepp, spinlock_t **ptlp)
4618 /* (void) is needed to make gcc happy */
4619 (void) __cond_lock(*ptlp,
4620 !(res = __follow_pte_pmd(mm, address, NULL,
4621 ptepp, NULL, ptlp)));
4625 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4626 struct mmu_notifier_range *range,
4627 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4631 /* (void) is needed to make gcc happy */
4632 (void) __cond_lock(*ptlp,
4633 !(res = __follow_pte_pmd(mm, address, range,
4634 ptepp, pmdpp, ptlp)));
4637 EXPORT_SYMBOL(follow_pte_pmd);
4640 * follow_pfn - look up PFN at a user virtual address
4641 * @vma: memory mapping
4642 * @address: user virtual address
4643 * @pfn: location to store found PFN
4645 * Only IO mappings and raw PFN mappings are allowed.
4647 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4649 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4656 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4659 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4662 *pfn = pte_pfn(*ptep);
4663 pte_unmap_unlock(ptep, ptl);
4666 EXPORT_SYMBOL(follow_pfn);
4668 #ifdef CONFIG_HAVE_IOREMAP_PROT
4669 int follow_phys(struct vm_area_struct *vma,
4670 unsigned long address, unsigned int flags,
4671 unsigned long *prot, resource_size_t *phys)
4677 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4680 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4684 if ((flags & FOLL_WRITE) && !pte_write(pte))
4687 *prot = pgprot_val(pte_pgprot(pte));
4688 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4692 pte_unmap_unlock(ptep, ptl);
4697 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4698 void *buf, int len, int write)
4700 resource_size_t phys_addr;
4701 unsigned long prot = 0;
4702 void __iomem *maddr;
4703 int offset = addr & (PAGE_SIZE-1);
4705 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4708 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4713 memcpy_toio(maddr + offset, buf, len);
4715 memcpy_fromio(buf, maddr + offset, len);
4720 EXPORT_SYMBOL_GPL(generic_access_phys);
4724 * Access another process' address space as given in mm. If non-NULL, use the
4725 * given task for page fault accounting.
4727 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4728 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4730 struct vm_area_struct *vma;
4731 void *old_buf = buf;
4732 int write = gup_flags & FOLL_WRITE;
4734 if (mmap_read_lock_killable(mm))
4737 /* ignore errors, just check how much was successfully transferred */
4739 int bytes, ret, offset;
4741 struct page *page = NULL;
4743 ret = get_user_pages_remote(mm, addr, 1,
4744 gup_flags, &page, &vma, NULL);
4746 #ifndef CONFIG_HAVE_IOREMAP_PROT
4750 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4751 * we can access using slightly different code.
4753 vma = find_vma(mm, addr);
4754 if (!vma || vma->vm_start > addr)
4756 if (vma->vm_ops && vma->vm_ops->access)
4757 ret = vma->vm_ops->access(vma, addr, buf,
4765 offset = addr & (PAGE_SIZE-1);
4766 if (bytes > PAGE_SIZE-offset)
4767 bytes = PAGE_SIZE-offset;
4771 copy_to_user_page(vma, page, addr,
4772 maddr + offset, buf, bytes);
4773 set_page_dirty_lock(page);
4775 copy_from_user_page(vma, page, addr,
4776 buf, maddr + offset, bytes);
4785 mmap_read_unlock(mm);
4787 return buf - old_buf;
4791 * access_remote_vm - access another process' address space
4792 * @mm: the mm_struct of the target address space
4793 * @addr: start address to access
4794 * @buf: source or destination buffer
4795 * @len: number of bytes to transfer
4796 * @gup_flags: flags modifying lookup behaviour
4798 * The caller must hold a reference on @mm.
4800 * Return: number of bytes copied from source to destination.
4802 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4803 void *buf, int len, unsigned int gup_flags)
4805 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4809 * Access another process' address space.
4810 * Source/target buffer must be kernel space,
4811 * Do not walk the page table directly, use get_user_pages
4813 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4814 void *buf, int len, unsigned int gup_flags)
4816 struct mm_struct *mm;
4819 mm = get_task_mm(tsk);
4823 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4829 EXPORT_SYMBOL_GPL(access_process_vm);
4832 * Print the name of a VMA.
4834 void print_vma_addr(char *prefix, unsigned long ip)
4836 struct mm_struct *mm = current->mm;
4837 struct vm_area_struct *vma;
4840 * we might be running from an atomic context so we cannot sleep
4842 if (!mmap_read_trylock(mm))
4845 vma = find_vma(mm, ip);
4846 if (vma && vma->vm_file) {
4847 struct file *f = vma->vm_file;
4848 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4852 p = file_path(f, buf, PAGE_SIZE);
4855 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4857 vma->vm_end - vma->vm_start);
4858 free_page((unsigned long)buf);
4861 mmap_read_unlock(mm);
4864 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4865 void __might_fault(const char *file, int line)
4868 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4869 * holding the mmap_lock, this is safe because kernel memory doesn't
4870 * get paged out, therefore we'll never actually fault, and the
4871 * below annotations will generate false positives.
4873 if (uaccess_kernel())
4875 if (pagefault_disabled())
4877 __might_sleep(file, line, 0);
4878 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4880 might_lock_read(¤t->mm->mmap_lock);
4883 EXPORT_SYMBOL(__might_fault);
4886 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4888 * Process all subpages of the specified huge page with the specified
4889 * operation. The target subpage will be processed last to keep its
4892 static inline void process_huge_page(
4893 unsigned long addr_hint, unsigned int pages_per_huge_page,
4894 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4898 unsigned long addr = addr_hint &
4899 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4901 /* Process target subpage last to keep its cache lines hot */
4903 n = (addr_hint - addr) / PAGE_SIZE;
4904 if (2 * n <= pages_per_huge_page) {
4905 /* If target subpage in first half of huge page */
4908 /* Process subpages at the end of huge page */
4909 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4911 process_subpage(addr + i * PAGE_SIZE, i, arg);
4914 /* If target subpage in second half of huge page */
4915 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4916 l = pages_per_huge_page - n;
4917 /* Process subpages at the begin of huge page */
4918 for (i = 0; i < base; i++) {
4920 process_subpage(addr + i * PAGE_SIZE, i, arg);
4924 * Process remaining subpages in left-right-left-right pattern
4925 * towards the target subpage
4927 for (i = 0; i < l; i++) {
4928 int left_idx = base + i;
4929 int right_idx = base + 2 * l - 1 - i;
4932 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4934 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4938 static void clear_gigantic_page(struct page *page,
4940 unsigned int pages_per_huge_page)
4943 struct page *p = page;
4946 for (i = 0; i < pages_per_huge_page;
4947 i++, p = mem_map_next(p, page, i)) {
4949 clear_user_highpage(p, addr + i * PAGE_SIZE);
4953 static void clear_subpage(unsigned long addr, int idx, void *arg)
4955 struct page *page = arg;
4957 clear_user_highpage(page + idx, addr);
4960 void clear_huge_page(struct page *page,
4961 unsigned long addr_hint, unsigned int pages_per_huge_page)
4963 unsigned long addr = addr_hint &
4964 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4966 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4967 clear_gigantic_page(page, addr, pages_per_huge_page);
4971 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4974 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4976 struct vm_area_struct *vma,
4977 unsigned int pages_per_huge_page)
4980 struct page *dst_base = dst;
4981 struct page *src_base = src;
4983 for (i = 0; i < pages_per_huge_page; ) {
4985 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4988 dst = mem_map_next(dst, dst_base, i);
4989 src = mem_map_next(src, src_base, i);
4993 struct copy_subpage_arg {
4996 struct vm_area_struct *vma;
4999 static void copy_subpage(unsigned long addr, int idx, void *arg)
5001 struct copy_subpage_arg *copy_arg = arg;
5003 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5004 addr, copy_arg->vma);
5007 void copy_user_huge_page(struct page *dst, struct page *src,
5008 unsigned long addr_hint, struct vm_area_struct *vma,
5009 unsigned int pages_per_huge_page)
5011 unsigned long addr = addr_hint &
5012 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5013 struct copy_subpage_arg arg = {
5019 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5020 copy_user_gigantic_page(dst, src, addr, vma,
5021 pages_per_huge_page);
5025 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5028 long copy_huge_page_from_user(struct page *dst_page,
5029 const void __user *usr_src,
5030 unsigned int pages_per_huge_page,
5031 bool allow_pagefault)
5033 void *src = (void *)usr_src;
5035 unsigned long i, rc = 0;
5036 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5038 for (i = 0; i < pages_per_huge_page; i++) {
5039 if (allow_pagefault)
5040 page_kaddr = kmap(dst_page + i);
5042 page_kaddr = kmap_atomic(dst_page + i);
5043 rc = copy_from_user(page_kaddr,
5044 (const void __user *)(src + i * PAGE_SIZE),
5046 if (allow_pagefault)
5047 kunmap(dst_page + i);
5049 kunmap_atomic(page_kaddr);
5051 ret_val -= (PAGE_SIZE - rc);
5059 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5061 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5063 static struct kmem_cache *page_ptl_cachep;
5065 void __init ptlock_cache_init(void)
5067 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5071 bool ptlock_alloc(struct page *page)
5075 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5082 void ptlock_free(struct page *page)
5084 kmem_cache_free(page_ptl_cachep, page->ptl);