1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET3 Protocol independent device support routines.
5 * Derived from the non IP parts of dev.c 1.0.19
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
47 * Rudi Cilibrasi : Pass the right thing to
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
104 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 #include <linux/pm_runtime.h>
150 #include <linux/prandom.h>
152 #include "net-sysfs.h"
154 #define MAX_GRO_SKBS 8
156 /* This should be increased if a protocol with a bigger head is added. */
157 #define GRO_MAX_HEAD (MAX_HEADER + 128)
159 static DEFINE_SPINLOCK(ptype_lock);
160 static DEFINE_SPINLOCK(offload_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly; /* Taps */
163 static struct list_head offload_base __read_mostly;
165 static int netif_rx_internal(struct sk_buff *skb);
166 static int call_netdevice_notifiers_info(unsigned long val,
167 struct netdev_notifier_info *info);
168 static int call_netdevice_notifiers_extack(unsigned long val,
169 struct net_device *dev,
170 struct netlink_ext_ack *extack);
171 static struct napi_struct *napi_by_id(unsigned int napi_id);
174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
179 * Writers must hold the rtnl semaphore while they loop through the
180 * dev_base_head list, and hold dev_base_lock for writing when they do the
181 * actual updates. This allows pure readers to access the list even
182 * while a writer is preparing to update it.
184 * To put it another way, dev_base_lock is held for writing only to
185 * protect against pure readers; the rtnl semaphore provides the
186 * protection against other writers.
188 * See, for example usages, register_netdevice() and
189 * unregister_netdevice(), which must be called with the rtnl
192 DEFINE_RWLOCK(dev_base_lock);
193 EXPORT_SYMBOL(dev_base_lock);
195 static DEFINE_MUTEX(ifalias_mutex);
197 /* protects napi_hash addition/deletion and napi_gen_id */
198 static DEFINE_SPINLOCK(napi_hash_lock);
200 static unsigned int napi_gen_id = NR_CPUS;
201 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
203 static DECLARE_RWSEM(devnet_rename_sem);
205 static inline void dev_base_seq_inc(struct net *net)
207 while (++net->dev_base_seq == 0)
211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
213 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
215 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
220 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 static inline void rps_lock(struct softnet_data *sd)
226 spin_lock(&sd->input_pkt_queue.lock);
230 static inline void rps_unlock(struct softnet_data *sd)
233 spin_unlock(&sd->input_pkt_queue.lock);
237 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240 struct netdev_name_node *name_node;
242 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245 INIT_HLIST_NODE(&name_node->hlist);
246 name_node->dev = dev;
247 name_node->name = name;
251 static struct netdev_name_node *
252 netdev_name_node_head_alloc(struct net_device *dev)
254 struct netdev_name_node *name_node;
256 name_node = netdev_name_node_alloc(dev, dev->name);
259 INIT_LIST_HEAD(&name_node->list);
263 static void netdev_name_node_free(struct netdev_name_node *name_node)
268 static void netdev_name_node_add(struct net *net,
269 struct netdev_name_node *name_node)
271 hlist_add_head_rcu(&name_node->hlist,
272 dev_name_hash(net, name_node->name));
275 static void netdev_name_node_del(struct netdev_name_node *name_node)
277 hlist_del_rcu(&name_node->hlist);
280 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283 struct hlist_head *head = dev_name_hash(net, name);
284 struct netdev_name_node *name_node;
286 hlist_for_each_entry(name_node, head, hlist)
287 if (!strcmp(name_node->name, name))
292 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295 struct hlist_head *head = dev_name_hash(net, name);
296 struct netdev_name_node *name_node;
298 hlist_for_each_entry_rcu(name_node, head, hlist)
299 if (!strcmp(name_node->name, name))
304 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
306 struct netdev_name_node *name_node;
307 struct net *net = dev_net(dev);
309 name_node = netdev_name_node_lookup(net, name);
312 name_node = netdev_name_node_alloc(dev, name);
315 netdev_name_node_add(net, name_node);
316 /* The node that holds dev->name acts as a head of per-device list. */
317 list_add_tail(&name_node->list, &dev->name_node->list);
321 EXPORT_SYMBOL(netdev_name_node_alt_create);
323 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
325 list_del(&name_node->list);
326 netdev_name_node_del(name_node);
327 kfree(name_node->name);
328 netdev_name_node_free(name_node);
331 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
333 struct netdev_name_node *name_node;
334 struct net *net = dev_net(dev);
336 name_node = netdev_name_node_lookup(net, name);
339 /* lookup might have found our primary name or a name belonging
342 if (name_node == dev->name_node || name_node->dev != dev)
345 __netdev_name_node_alt_destroy(name_node);
349 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
351 static void netdev_name_node_alt_flush(struct net_device *dev)
353 struct netdev_name_node *name_node, *tmp;
355 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356 __netdev_name_node_alt_destroy(name_node);
359 /* Device list insertion */
360 static void list_netdevice(struct net_device *dev)
362 struct net *net = dev_net(dev);
366 write_lock_bh(&dev_base_lock);
367 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
368 netdev_name_node_add(net, dev->name_node);
369 hlist_add_head_rcu(&dev->index_hlist,
370 dev_index_hash(net, dev->ifindex));
371 write_unlock_bh(&dev_base_lock);
373 dev_base_seq_inc(net);
376 /* Device list removal
377 * caller must respect a RCU grace period before freeing/reusing dev
379 static void unlist_netdevice(struct net_device *dev)
383 /* Unlink dev from the device chain */
384 write_lock_bh(&dev_base_lock);
385 list_del_rcu(&dev->dev_list);
386 netdev_name_node_del(dev->name_node);
387 hlist_del_rcu(&dev->index_hlist);
388 write_unlock_bh(&dev_base_lock);
390 dev_base_seq_inc(dev_net(dev));
397 static RAW_NOTIFIER_HEAD(netdev_chain);
400 * Device drivers call our routines to queue packets here. We empty the
401 * queue in the local softnet handler.
404 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
405 EXPORT_PER_CPU_SYMBOL(softnet_data);
407 #ifdef CONFIG_LOCKDEP
409 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410 * according to dev->type
412 static const unsigned short netdev_lock_type[] = {
413 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
429 static const char *const netdev_lock_name[] = {
430 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
446 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
447 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
449 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
453 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454 if (netdev_lock_type[i] == dev_type)
456 /* the last key is used by default */
457 return ARRAY_SIZE(netdev_lock_type) - 1;
460 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461 unsigned short dev_type)
465 i = netdev_lock_pos(dev_type);
466 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467 netdev_lock_name[i]);
470 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
474 i = netdev_lock_pos(dev->type);
475 lockdep_set_class_and_name(&dev->addr_list_lock,
476 &netdev_addr_lock_key[i],
477 netdev_lock_name[i]);
480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481 unsigned short dev_type)
485 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
490 /*******************************************************************************
492 * Protocol management and registration routines
494 *******************************************************************************/
498 * Add a protocol ID to the list. Now that the input handler is
499 * smarter we can dispense with all the messy stuff that used to be
502 * BEWARE!!! Protocol handlers, mangling input packets,
503 * MUST BE last in hash buckets and checking protocol handlers
504 * MUST start from promiscuous ptype_all chain in net_bh.
505 * It is true now, do not change it.
506 * Explanation follows: if protocol handler, mangling packet, will
507 * be the first on list, it is not able to sense, that packet
508 * is cloned and should be copied-on-write, so that it will
509 * change it and subsequent readers will get broken packet.
513 static inline struct list_head *ptype_head(const struct packet_type *pt)
515 if (pt->type == htons(ETH_P_ALL))
516 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
518 return pt->dev ? &pt->dev->ptype_specific :
519 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
523 * dev_add_pack - add packet handler
524 * @pt: packet type declaration
526 * Add a protocol handler to the networking stack. The passed &packet_type
527 * is linked into kernel lists and may not be freed until it has been
528 * removed from the kernel lists.
530 * This call does not sleep therefore it can not
531 * guarantee all CPU's that are in middle of receiving packets
532 * will see the new packet type (until the next received packet).
535 void dev_add_pack(struct packet_type *pt)
537 struct list_head *head = ptype_head(pt);
539 spin_lock(&ptype_lock);
540 list_add_rcu(&pt->list, head);
541 spin_unlock(&ptype_lock);
543 EXPORT_SYMBOL(dev_add_pack);
546 * __dev_remove_pack - remove packet handler
547 * @pt: packet type declaration
549 * Remove a protocol handler that was previously added to the kernel
550 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
551 * from the kernel lists and can be freed or reused once this function
554 * The packet type might still be in use by receivers
555 * and must not be freed until after all the CPU's have gone
556 * through a quiescent state.
558 void __dev_remove_pack(struct packet_type *pt)
560 struct list_head *head = ptype_head(pt);
561 struct packet_type *pt1;
563 spin_lock(&ptype_lock);
565 list_for_each_entry(pt1, head, list) {
567 list_del_rcu(&pt->list);
572 pr_warn("dev_remove_pack: %p not found\n", pt);
574 spin_unlock(&ptype_lock);
576 EXPORT_SYMBOL(__dev_remove_pack);
579 * dev_remove_pack - remove packet handler
580 * @pt: packet type declaration
582 * Remove a protocol handler that was previously added to the kernel
583 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
584 * from the kernel lists and can be freed or reused once this function
587 * This call sleeps to guarantee that no CPU is looking at the packet
590 void dev_remove_pack(struct packet_type *pt)
592 __dev_remove_pack(pt);
596 EXPORT_SYMBOL(dev_remove_pack);
600 * dev_add_offload - register offload handlers
601 * @po: protocol offload declaration
603 * Add protocol offload handlers to the networking stack. The passed
604 * &proto_offload is linked into kernel lists and may not be freed until
605 * it has been removed from the kernel lists.
607 * This call does not sleep therefore it can not
608 * guarantee all CPU's that are in middle of receiving packets
609 * will see the new offload handlers (until the next received packet).
611 void dev_add_offload(struct packet_offload *po)
613 struct packet_offload *elem;
615 spin_lock(&offload_lock);
616 list_for_each_entry(elem, &offload_base, list) {
617 if (po->priority < elem->priority)
620 list_add_rcu(&po->list, elem->list.prev);
621 spin_unlock(&offload_lock);
623 EXPORT_SYMBOL(dev_add_offload);
626 * __dev_remove_offload - remove offload handler
627 * @po: packet offload declaration
629 * Remove a protocol offload handler that was previously added to the
630 * kernel offload handlers by dev_add_offload(). The passed &offload_type
631 * is removed from the kernel lists and can be freed or reused once this
634 * The packet type might still be in use by receivers
635 * and must not be freed until after all the CPU's have gone
636 * through a quiescent state.
638 static void __dev_remove_offload(struct packet_offload *po)
640 struct list_head *head = &offload_base;
641 struct packet_offload *po1;
643 spin_lock(&offload_lock);
645 list_for_each_entry(po1, head, list) {
647 list_del_rcu(&po->list);
652 pr_warn("dev_remove_offload: %p not found\n", po);
654 spin_unlock(&offload_lock);
658 * dev_remove_offload - remove packet offload handler
659 * @po: packet offload declaration
661 * Remove a packet offload handler that was previously added to the kernel
662 * offload handlers by dev_add_offload(). The passed &offload_type is
663 * removed from the kernel lists and can be freed or reused once this
666 * This call sleeps to guarantee that no CPU is looking at the packet
669 void dev_remove_offload(struct packet_offload *po)
671 __dev_remove_offload(po);
675 EXPORT_SYMBOL(dev_remove_offload);
677 /******************************************************************************
679 * Device Boot-time Settings Routines
681 ******************************************************************************/
683 /* Boot time configuration table */
684 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
687 * netdev_boot_setup_add - add new setup entry
688 * @name: name of the device
689 * @map: configured settings for the device
691 * Adds new setup entry to the dev_boot_setup list. The function
692 * returns 0 on error and 1 on success. This is a generic routine to
695 static int netdev_boot_setup_add(char *name, struct ifmap *map)
697 struct netdev_boot_setup *s;
701 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703 memset(s[i].name, 0, sizeof(s[i].name));
704 strlcpy(s[i].name, name, IFNAMSIZ);
705 memcpy(&s[i].map, map, sizeof(s[i].map));
710 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
714 * netdev_boot_setup_check - check boot time settings
715 * @dev: the netdevice
717 * Check boot time settings for the device.
718 * The found settings are set for the device to be used
719 * later in the device probing.
720 * Returns 0 if no settings found, 1 if they are.
722 int netdev_boot_setup_check(struct net_device *dev)
724 struct netdev_boot_setup *s = dev_boot_setup;
727 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
729 !strcmp(dev->name, s[i].name)) {
730 dev->irq = s[i].map.irq;
731 dev->base_addr = s[i].map.base_addr;
732 dev->mem_start = s[i].map.mem_start;
733 dev->mem_end = s[i].map.mem_end;
739 EXPORT_SYMBOL(netdev_boot_setup_check);
743 * netdev_boot_base - get address from boot time settings
744 * @prefix: prefix for network device
745 * @unit: id for network device
747 * Check boot time settings for the base address of device.
748 * The found settings are set for the device to be used
749 * later in the device probing.
750 * Returns 0 if no settings found.
752 unsigned long netdev_boot_base(const char *prefix, int unit)
754 const struct netdev_boot_setup *s = dev_boot_setup;
758 sprintf(name, "%s%d", prefix, unit);
761 * If device already registered then return base of 1
762 * to indicate not to probe for this interface
764 if (__dev_get_by_name(&init_net, name))
767 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768 if (!strcmp(name, s[i].name))
769 return s[i].map.base_addr;
774 * Saves at boot time configured settings for any netdevice.
776 int __init netdev_boot_setup(char *str)
781 str = get_options(str, ARRAY_SIZE(ints), ints);
786 memset(&map, 0, sizeof(map));
790 map.base_addr = ints[2];
792 map.mem_start = ints[3];
794 map.mem_end = ints[4];
796 /* Add new entry to the list */
797 return netdev_boot_setup_add(str, &map);
800 __setup("netdev=", netdev_boot_setup);
802 /*******************************************************************************
804 * Device Interface Subroutines
806 *******************************************************************************/
809 * dev_get_iflink - get 'iflink' value of a interface
810 * @dev: targeted interface
812 * Indicates the ifindex the interface is linked to.
813 * Physical interfaces have the same 'ifindex' and 'iflink' values.
816 int dev_get_iflink(const struct net_device *dev)
818 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819 return dev->netdev_ops->ndo_get_iflink(dev);
823 EXPORT_SYMBOL(dev_get_iflink);
826 * dev_fill_metadata_dst - Retrieve tunnel egress information.
827 * @dev: targeted interface
830 * For better visibility of tunnel traffic OVS needs to retrieve
831 * egress tunnel information for a packet. Following API allows
832 * user to get this info.
834 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
836 struct ip_tunnel_info *info;
838 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
841 info = skb_tunnel_info_unclone(skb);
844 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
847 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
849 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
851 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
853 int k = stack->num_paths++;
855 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
858 return &stack->path[k];
861 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
862 struct net_device_path_stack *stack)
864 const struct net_device *last_dev;
865 struct net_device_path_ctx ctx = {
869 struct net_device_path *path;
872 stack->num_paths = 0;
873 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
875 path = dev_fwd_path(stack);
879 memset(path, 0, sizeof(struct net_device_path));
880 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
884 if (WARN_ON_ONCE(last_dev == ctx.dev))
887 path = dev_fwd_path(stack);
890 path->type = DEV_PATH_ETHERNET;
895 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
898 * __dev_get_by_name - find a device by its name
899 * @net: the applicable net namespace
900 * @name: name to find
902 * Find an interface by name. Must be called under RTNL semaphore
903 * or @dev_base_lock. If the name is found a pointer to the device
904 * is returned. If the name is not found then %NULL is returned. The
905 * reference counters are not incremented so the caller must be
906 * careful with locks.
909 struct net_device *__dev_get_by_name(struct net *net, const char *name)
911 struct netdev_name_node *node_name;
913 node_name = netdev_name_node_lookup(net, name);
914 return node_name ? node_name->dev : NULL;
916 EXPORT_SYMBOL(__dev_get_by_name);
919 * dev_get_by_name_rcu - find a device by its name
920 * @net: the applicable net namespace
921 * @name: name to find
923 * Find an interface by name.
924 * If the name is found a pointer to the device is returned.
925 * If the name is not found then %NULL is returned.
926 * The reference counters are not incremented so the caller must be
927 * careful with locks. The caller must hold RCU lock.
930 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
932 struct netdev_name_node *node_name;
934 node_name = netdev_name_node_lookup_rcu(net, name);
935 return node_name ? node_name->dev : NULL;
937 EXPORT_SYMBOL(dev_get_by_name_rcu);
940 * dev_get_by_name - find a device by its name
941 * @net: the applicable net namespace
942 * @name: name to find
944 * Find an interface by name. This can be called from any
945 * context and does its own locking. The returned handle has
946 * the usage count incremented and the caller must use dev_put() to
947 * release it when it is no longer needed. %NULL is returned if no
948 * matching device is found.
951 struct net_device *dev_get_by_name(struct net *net, const char *name)
953 struct net_device *dev;
956 dev = dev_get_by_name_rcu(net, name);
962 EXPORT_SYMBOL(dev_get_by_name);
965 * __dev_get_by_index - find a device by its ifindex
966 * @net: the applicable net namespace
967 * @ifindex: index of device
969 * Search for an interface by index. Returns %NULL if the device
970 * is not found or a pointer to the device. The device has not
971 * had its reference counter increased so the caller must be careful
972 * about locking. The caller must hold either the RTNL semaphore
976 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
978 struct net_device *dev;
979 struct hlist_head *head = dev_index_hash(net, ifindex);
981 hlist_for_each_entry(dev, head, index_hlist)
982 if (dev->ifindex == ifindex)
987 EXPORT_SYMBOL(__dev_get_by_index);
990 * dev_get_by_index_rcu - find a device by its ifindex
991 * @net: the applicable net namespace
992 * @ifindex: index of device
994 * Search for an interface by index. Returns %NULL if the device
995 * is not found or a pointer to the device. The device has not
996 * had its reference counter increased so the caller must be careful
997 * about locking. The caller must hold RCU lock.
1000 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
1002 struct net_device *dev;
1003 struct hlist_head *head = dev_index_hash(net, ifindex);
1005 hlist_for_each_entry_rcu(dev, head, index_hlist)
1006 if (dev->ifindex == ifindex)
1011 EXPORT_SYMBOL(dev_get_by_index_rcu);
1015 * dev_get_by_index - find a device by its ifindex
1016 * @net: the applicable net namespace
1017 * @ifindex: index of device
1019 * Search for an interface by index. Returns NULL if the device
1020 * is not found or a pointer to the device. The device returned has
1021 * had a reference added and the pointer is safe until the user calls
1022 * dev_put to indicate they have finished with it.
1025 struct net_device *dev_get_by_index(struct net *net, int ifindex)
1027 struct net_device *dev;
1030 dev = dev_get_by_index_rcu(net, ifindex);
1036 EXPORT_SYMBOL(dev_get_by_index);
1039 * dev_get_by_napi_id - find a device by napi_id
1040 * @napi_id: ID of the NAPI struct
1042 * Search for an interface by NAPI ID. Returns %NULL if the device
1043 * is not found or a pointer to the device. The device has not had
1044 * its reference counter increased so the caller must be careful
1045 * about locking. The caller must hold RCU lock.
1048 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1050 struct napi_struct *napi;
1052 WARN_ON_ONCE(!rcu_read_lock_held());
1054 if (napi_id < MIN_NAPI_ID)
1057 napi = napi_by_id(napi_id);
1059 return napi ? napi->dev : NULL;
1061 EXPORT_SYMBOL(dev_get_by_napi_id);
1064 * netdev_get_name - get a netdevice name, knowing its ifindex.
1065 * @net: network namespace
1066 * @name: a pointer to the buffer where the name will be stored.
1067 * @ifindex: the ifindex of the interface to get the name from.
1069 int netdev_get_name(struct net *net, char *name, int ifindex)
1071 struct net_device *dev;
1074 down_read(&devnet_rename_sem);
1077 dev = dev_get_by_index_rcu(net, ifindex);
1083 strcpy(name, dev->name);
1088 up_read(&devnet_rename_sem);
1093 * dev_getbyhwaddr_rcu - find a device by its hardware address
1094 * @net: the applicable net namespace
1095 * @type: media type of device
1096 * @ha: hardware address
1098 * Search for an interface by MAC address. Returns NULL if the device
1099 * is not found or a pointer to the device.
1100 * The caller must hold RCU or RTNL.
1101 * The returned device has not had its ref count increased
1102 * and the caller must therefore be careful about locking
1106 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1109 struct net_device *dev;
1111 for_each_netdev_rcu(net, dev)
1112 if (dev->type == type &&
1113 !memcmp(dev->dev_addr, ha, dev->addr_len))
1118 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1120 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1122 struct net_device *dev, *ret = NULL;
1125 for_each_netdev_rcu(net, dev)
1126 if (dev->type == type) {
1134 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1137 * __dev_get_by_flags - find any device with given flags
1138 * @net: the applicable net namespace
1139 * @if_flags: IFF_* values
1140 * @mask: bitmask of bits in if_flags to check
1142 * Search for any interface with the given flags. Returns NULL if a device
1143 * is not found or a pointer to the device. Must be called inside
1144 * rtnl_lock(), and result refcount is unchanged.
1147 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1148 unsigned short mask)
1150 struct net_device *dev, *ret;
1155 for_each_netdev(net, dev) {
1156 if (((dev->flags ^ if_flags) & mask) == 0) {
1163 EXPORT_SYMBOL(__dev_get_by_flags);
1166 * dev_valid_name - check if name is okay for network device
1167 * @name: name string
1169 * Network device names need to be valid file names to
1170 * allow sysfs to work. We also disallow any kind of
1173 bool dev_valid_name(const char *name)
1177 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1179 if (!strcmp(name, ".") || !strcmp(name, ".."))
1183 if (*name == '/' || *name == ':' || isspace(*name))
1189 EXPORT_SYMBOL(dev_valid_name);
1192 * __dev_alloc_name - allocate a name for a device
1193 * @net: network namespace to allocate the device name in
1194 * @name: name format string
1195 * @buf: scratch buffer and result name string
1197 * Passed a format string - eg "lt%d" it will try and find a suitable
1198 * id. It scans list of devices to build up a free map, then chooses
1199 * the first empty slot. The caller must hold the dev_base or rtnl lock
1200 * while allocating the name and adding the device in order to avoid
1202 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1203 * Returns the number of the unit assigned or a negative errno code.
1206 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1210 const int max_netdevices = 8*PAGE_SIZE;
1211 unsigned long *inuse;
1212 struct net_device *d;
1214 if (!dev_valid_name(name))
1217 p = strchr(name, '%');
1220 * Verify the string as this thing may have come from
1221 * the user. There must be either one "%d" and no other "%"
1224 if (p[1] != 'd' || strchr(p + 2, '%'))
1227 /* Use one page as a bit array of possible slots */
1228 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1232 for_each_netdev(net, d) {
1233 struct netdev_name_node *name_node;
1234 list_for_each_entry(name_node, &d->name_node->list, list) {
1235 if (!sscanf(name_node->name, name, &i))
1237 if (i < 0 || i >= max_netdevices)
1240 /* avoid cases where sscanf is not exact inverse of printf */
1241 snprintf(buf, IFNAMSIZ, name, i);
1242 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1245 if (!sscanf(d->name, name, &i))
1247 if (i < 0 || i >= max_netdevices)
1250 /* avoid cases where sscanf is not exact inverse of printf */
1251 snprintf(buf, IFNAMSIZ, name, i);
1252 if (!strncmp(buf, d->name, IFNAMSIZ))
1256 i = find_first_zero_bit(inuse, max_netdevices);
1257 free_page((unsigned long) inuse);
1260 snprintf(buf, IFNAMSIZ, name, i);
1261 if (!__dev_get_by_name(net, buf))
1264 /* It is possible to run out of possible slots
1265 * when the name is long and there isn't enough space left
1266 * for the digits, or if all bits are used.
1271 static int dev_alloc_name_ns(struct net *net,
1272 struct net_device *dev,
1279 ret = __dev_alloc_name(net, name, buf);
1281 strlcpy(dev->name, buf, IFNAMSIZ);
1286 * dev_alloc_name - allocate a name for a device
1288 * @name: name format string
1290 * Passed a format string - eg "lt%d" it will try and find a suitable
1291 * id. It scans list of devices to build up a free map, then chooses
1292 * the first empty slot. The caller must hold the dev_base or rtnl lock
1293 * while allocating the name and adding the device in order to avoid
1295 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1296 * Returns the number of the unit assigned or a negative errno code.
1299 int dev_alloc_name(struct net_device *dev, const char *name)
1301 return dev_alloc_name_ns(dev_net(dev), dev, name);
1303 EXPORT_SYMBOL(dev_alloc_name);
1305 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1310 if (!dev_valid_name(name))
1313 if (strchr(name, '%'))
1314 return dev_alloc_name_ns(net, dev, name);
1315 else if (__dev_get_by_name(net, name))
1317 else if (dev->name != name)
1318 strlcpy(dev->name, name, IFNAMSIZ);
1324 * dev_change_name - change name of a device
1326 * @newname: name (or format string) must be at least IFNAMSIZ
1328 * Change name of a device, can pass format strings "eth%d".
1331 int dev_change_name(struct net_device *dev, const char *newname)
1333 unsigned char old_assign_type;
1334 char oldname[IFNAMSIZ];
1340 BUG_ON(!dev_net(dev));
1344 /* Some auto-enslaved devices e.g. failover slaves are
1345 * special, as userspace might rename the device after
1346 * the interface had been brought up and running since
1347 * the point kernel initiated auto-enslavement. Allow
1348 * live name change even when these slave devices are
1351 * Typically, users of these auto-enslaving devices
1352 * don't actually care about slave name change, as
1353 * they are supposed to operate on master interface
1356 if (dev->flags & IFF_UP &&
1357 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1360 down_write(&devnet_rename_sem);
1362 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1363 up_write(&devnet_rename_sem);
1367 memcpy(oldname, dev->name, IFNAMSIZ);
1369 err = dev_get_valid_name(net, dev, newname);
1371 up_write(&devnet_rename_sem);
1375 if (oldname[0] && !strchr(oldname, '%'))
1376 netdev_info(dev, "renamed from %s\n", oldname);
1378 old_assign_type = dev->name_assign_type;
1379 dev->name_assign_type = NET_NAME_RENAMED;
1382 ret = device_rename(&dev->dev, dev->name);
1384 memcpy(dev->name, oldname, IFNAMSIZ);
1385 dev->name_assign_type = old_assign_type;
1386 up_write(&devnet_rename_sem);
1390 up_write(&devnet_rename_sem);
1392 netdev_adjacent_rename_links(dev, oldname);
1394 write_lock_bh(&dev_base_lock);
1395 netdev_name_node_del(dev->name_node);
1396 write_unlock_bh(&dev_base_lock);
1400 write_lock_bh(&dev_base_lock);
1401 netdev_name_node_add(net, dev->name_node);
1402 write_unlock_bh(&dev_base_lock);
1404 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1405 ret = notifier_to_errno(ret);
1408 /* err >= 0 after dev_alloc_name() or stores the first errno */
1411 down_write(&devnet_rename_sem);
1412 memcpy(dev->name, oldname, IFNAMSIZ);
1413 memcpy(oldname, newname, IFNAMSIZ);
1414 dev->name_assign_type = old_assign_type;
1415 old_assign_type = NET_NAME_RENAMED;
1418 pr_err("%s: name change rollback failed: %d\n",
1427 * dev_set_alias - change ifalias of a device
1429 * @alias: name up to IFALIASZ
1430 * @len: limit of bytes to copy from info
1432 * Set ifalias for a device,
1434 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1436 struct dev_ifalias *new_alias = NULL;
1438 if (len >= IFALIASZ)
1442 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1446 memcpy(new_alias->ifalias, alias, len);
1447 new_alias->ifalias[len] = 0;
1450 mutex_lock(&ifalias_mutex);
1451 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1452 mutex_is_locked(&ifalias_mutex));
1453 mutex_unlock(&ifalias_mutex);
1456 kfree_rcu(new_alias, rcuhead);
1460 EXPORT_SYMBOL(dev_set_alias);
1463 * dev_get_alias - get ifalias of a device
1465 * @name: buffer to store name of ifalias
1466 * @len: size of buffer
1468 * get ifalias for a device. Caller must make sure dev cannot go
1469 * away, e.g. rcu read lock or own a reference count to device.
1471 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1473 const struct dev_ifalias *alias;
1477 alias = rcu_dereference(dev->ifalias);
1479 ret = snprintf(name, len, "%s", alias->ifalias);
1486 * netdev_features_change - device changes features
1487 * @dev: device to cause notification
1489 * Called to indicate a device has changed features.
1491 void netdev_features_change(struct net_device *dev)
1493 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1495 EXPORT_SYMBOL(netdev_features_change);
1498 * netdev_state_change - device changes state
1499 * @dev: device to cause notification
1501 * Called to indicate a device has changed state. This function calls
1502 * the notifier chains for netdev_chain and sends a NEWLINK message
1503 * to the routing socket.
1505 void netdev_state_change(struct net_device *dev)
1507 if (dev->flags & IFF_UP) {
1508 struct netdev_notifier_change_info change_info = {
1512 call_netdevice_notifiers_info(NETDEV_CHANGE,
1514 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1517 EXPORT_SYMBOL(netdev_state_change);
1520 * __netdev_notify_peers - notify network peers about existence of @dev,
1521 * to be called when rtnl lock is already held.
1522 * @dev: network device
1524 * Generate traffic such that interested network peers are aware of
1525 * @dev, such as by generating a gratuitous ARP. This may be used when
1526 * a device wants to inform the rest of the network about some sort of
1527 * reconfiguration such as a failover event or virtual machine
1530 void __netdev_notify_peers(struct net_device *dev)
1533 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1534 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1536 EXPORT_SYMBOL(__netdev_notify_peers);
1539 * netdev_notify_peers - notify network peers about existence of @dev
1540 * @dev: network device
1542 * Generate traffic such that interested network peers are aware of
1543 * @dev, such as by generating a gratuitous ARP. This may be used when
1544 * a device wants to inform the rest of the network about some sort of
1545 * reconfiguration such as a failover event or virtual machine
1548 void netdev_notify_peers(struct net_device *dev)
1551 __netdev_notify_peers(dev);
1554 EXPORT_SYMBOL(netdev_notify_peers);
1556 static int napi_threaded_poll(void *data);
1558 static int napi_kthread_create(struct napi_struct *n)
1562 /* Create and wake up the kthread once to put it in
1563 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1564 * warning and work with loadavg.
1566 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1567 n->dev->name, n->napi_id);
1568 if (IS_ERR(n->thread)) {
1569 err = PTR_ERR(n->thread);
1570 pr_err("kthread_run failed with err %d\n", err);
1577 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1579 const struct net_device_ops *ops = dev->netdev_ops;
1584 if (!netif_device_present(dev)) {
1585 /* may be detached because parent is runtime-suspended */
1586 if (dev->dev.parent)
1587 pm_runtime_resume(dev->dev.parent);
1588 if (!netif_device_present(dev))
1592 /* Block netpoll from trying to do any rx path servicing.
1593 * If we don't do this there is a chance ndo_poll_controller
1594 * or ndo_poll may be running while we open the device
1596 netpoll_poll_disable(dev);
1598 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1599 ret = notifier_to_errno(ret);
1603 set_bit(__LINK_STATE_START, &dev->state);
1605 if (ops->ndo_validate_addr)
1606 ret = ops->ndo_validate_addr(dev);
1608 if (!ret && ops->ndo_open)
1609 ret = ops->ndo_open(dev);
1611 netpoll_poll_enable(dev);
1614 clear_bit(__LINK_STATE_START, &dev->state);
1616 dev->flags |= IFF_UP;
1617 dev_set_rx_mode(dev);
1619 add_device_randomness(dev->dev_addr, dev->addr_len);
1626 * dev_open - prepare an interface for use.
1627 * @dev: device to open
1628 * @extack: netlink extended ack
1630 * Takes a device from down to up state. The device's private open
1631 * function is invoked and then the multicast lists are loaded. Finally
1632 * the device is moved into the up state and a %NETDEV_UP message is
1633 * sent to the netdev notifier chain.
1635 * Calling this function on an active interface is a nop. On a failure
1636 * a negative errno code is returned.
1638 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1642 if (dev->flags & IFF_UP)
1645 ret = __dev_open(dev, extack);
1649 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1650 call_netdevice_notifiers(NETDEV_UP, dev);
1654 EXPORT_SYMBOL(dev_open);
1656 static void __dev_close_many(struct list_head *head)
1658 struct net_device *dev;
1663 list_for_each_entry(dev, head, close_list) {
1664 /* Temporarily disable netpoll until the interface is down */
1665 netpoll_poll_disable(dev);
1667 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1669 clear_bit(__LINK_STATE_START, &dev->state);
1671 /* Synchronize to scheduled poll. We cannot touch poll list, it
1672 * can be even on different cpu. So just clear netif_running().
1674 * dev->stop() will invoke napi_disable() on all of it's
1675 * napi_struct instances on this device.
1677 smp_mb__after_atomic(); /* Commit netif_running(). */
1680 dev_deactivate_many(head);
1682 list_for_each_entry(dev, head, close_list) {
1683 const struct net_device_ops *ops = dev->netdev_ops;
1686 * Call the device specific close. This cannot fail.
1687 * Only if device is UP
1689 * We allow it to be called even after a DETACH hot-plug
1695 dev->flags &= ~IFF_UP;
1696 netpoll_poll_enable(dev);
1700 static void __dev_close(struct net_device *dev)
1704 list_add(&dev->close_list, &single);
1705 __dev_close_many(&single);
1709 void dev_close_many(struct list_head *head, bool unlink)
1711 struct net_device *dev, *tmp;
1713 /* Remove the devices that don't need to be closed */
1714 list_for_each_entry_safe(dev, tmp, head, close_list)
1715 if (!(dev->flags & IFF_UP))
1716 list_del_init(&dev->close_list);
1718 __dev_close_many(head);
1720 list_for_each_entry_safe(dev, tmp, head, close_list) {
1721 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1722 call_netdevice_notifiers(NETDEV_DOWN, dev);
1724 list_del_init(&dev->close_list);
1727 EXPORT_SYMBOL(dev_close_many);
1730 * dev_close - shutdown an interface.
1731 * @dev: device to shutdown
1733 * This function moves an active device into down state. A
1734 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1735 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1738 void dev_close(struct net_device *dev)
1740 if (dev->flags & IFF_UP) {
1743 list_add(&dev->close_list, &single);
1744 dev_close_many(&single, true);
1748 EXPORT_SYMBOL(dev_close);
1752 * dev_disable_lro - disable Large Receive Offload on a device
1755 * Disable Large Receive Offload (LRO) on a net device. Must be
1756 * called under RTNL. This is needed if received packets may be
1757 * forwarded to another interface.
1759 void dev_disable_lro(struct net_device *dev)
1761 struct net_device *lower_dev;
1762 struct list_head *iter;
1764 dev->wanted_features &= ~NETIF_F_LRO;
1765 netdev_update_features(dev);
1767 if (unlikely(dev->features & NETIF_F_LRO))
1768 netdev_WARN(dev, "failed to disable LRO!\n");
1770 netdev_for_each_lower_dev(dev, lower_dev, iter)
1771 dev_disable_lro(lower_dev);
1773 EXPORT_SYMBOL(dev_disable_lro);
1776 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1779 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1780 * called under RTNL. This is needed if Generic XDP is installed on
1783 static void dev_disable_gro_hw(struct net_device *dev)
1785 dev->wanted_features &= ~NETIF_F_GRO_HW;
1786 netdev_update_features(dev);
1788 if (unlikely(dev->features & NETIF_F_GRO_HW))
1789 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1792 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1795 case NETDEV_##val: \
1796 return "NETDEV_" __stringify(val);
1798 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1799 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1800 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1801 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1802 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1803 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1804 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1805 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1806 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1810 return "UNKNOWN_NETDEV_EVENT";
1812 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1814 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1815 struct net_device *dev)
1817 struct netdev_notifier_info info = {
1821 return nb->notifier_call(nb, val, &info);
1824 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1825 struct net_device *dev)
1829 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1830 err = notifier_to_errno(err);
1834 if (!(dev->flags & IFF_UP))
1837 call_netdevice_notifier(nb, NETDEV_UP, dev);
1841 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1842 struct net_device *dev)
1844 if (dev->flags & IFF_UP) {
1845 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1847 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1849 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1852 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1855 struct net_device *dev;
1858 for_each_netdev(net, dev) {
1859 err = call_netdevice_register_notifiers(nb, dev);
1866 for_each_netdev_continue_reverse(net, dev)
1867 call_netdevice_unregister_notifiers(nb, dev);
1871 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1874 struct net_device *dev;
1876 for_each_netdev(net, dev)
1877 call_netdevice_unregister_notifiers(nb, dev);
1880 static int dev_boot_phase = 1;
1883 * register_netdevice_notifier - register a network notifier block
1886 * Register a notifier to be called when network device events occur.
1887 * The notifier passed is linked into the kernel structures and must
1888 * not be reused until it has been unregistered. A negative errno code
1889 * is returned on a failure.
1891 * When registered all registration and up events are replayed
1892 * to the new notifier to allow device to have a race free
1893 * view of the network device list.
1896 int register_netdevice_notifier(struct notifier_block *nb)
1901 /* Close race with setup_net() and cleanup_net() */
1902 down_write(&pernet_ops_rwsem);
1904 err = raw_notifier_chain_register(&netdev_chain, nb);
1910 err = call_netdevice_register_net_notifiers(nb, net);
1917 up_write(&pernet_ops_rwsem);
1921 for_each_net_continue_reverse(net)
1922 call_netdevice_unregister_net_notifiers(nb, net);
1924 raw_notifier_chain_unregister(&netdev_chain, nb);
1927 EXPORT_SYMBOL(register_netdevice_notifier);
1930 * unregister_netdevice_notifier - unregister a network notifier block
1933 * Unregister a notifier previously registered by
1934 * register_netdevice_notifier(). The notifier is unlinked into the
1935 * kernel structures and may then be reused. A negative errno code
1936 * is returned on a failure.
1938 * After unregistering unregister and down device events are synthesized
1939 * for all devices on the device list to the removed notifier to remove
1940 * the need for special case cleanup code.
1943 int unregister_netdevice_notifier(struct notifier_block *nb)
1948 /* Close race with setup_net() and cleanup_net() */
1949 down_write(&pernet_ops_rwsem);
1951 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1956 call_netdevice_unregister_net_notifiers(nb, net);
1960 up_write(&pernet_ops_rwsem);
1963 EXPORT_SYMBOL(unregister_netdevice_notifier);
1965 static int __register_netdevice_notifier_net(struct net *net,
1966 struct notifier_block *nb,
1967 bool ignore_call_fail)
1971 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1977 err = call_netdevice_register_net_notifiers(nb, net);
1978 if (err && !ignore_call_fail)
1979 goto chain_unregister;
1984 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1988 static int __unregister_netdevice_notifier_net(struct net *net,
1989 struct notifier_block *nb)
1993 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1997 call_netdevice_unregister_net_notifiers(nb, net);
2002 * register_netdevice_notifier_net - register a per-netns network notifier block
2003 * @net: network namespace
2006 * Register a notifier to be called when network device events occur.
2007 * The notifier passed is linked into the kernel structures and must
2008 * not be reused until it has been unregistered. A negative errno code
2009 * is returned on a failure.
2011 * When registered all registration and up events are replayed
2012 * to the new notifier to allow device to have a race free
2013 * view of the network device list.
2016 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2021 err = __register_netdevice_notifier_net(net, nb, false);
2025 EXPORT_SYMBOL(register_netdevice_notifier_net);
2028 * unregister_netdevice_notifier_net - unregister a per-netns
2029 * network notifier block
2030 * @net: network namespace
2033 * Unregister a notifier previously registered by
2034 * register_netdevice_notifier(). The notifier is unlinked into the
2035 * kernel structures and may then be reused. A negative errno code
2036 * is returned on a failure.
2038 * After unregistering unregister and down device events are synthesized
2039 * for all devices on the device list to the removed notifier to remove
2040 * the need for special case cleanup code.
2043 int unregister_netdevice_notifier_net(struct net *net,
2044 struct notifier_block *nb)
2049 err = __unregister_netdevice_notifier_net(net, nb);
2053 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2055 int register_netdevice_notifier_dev_net(struct net_device *dev,
2056 struct notifier_block *nb,
2057 struct netdev_net_notifier *nn)
2062 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2065 list_add(&nn->list, &dev->net_notifier_list);
2070 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2072 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2073 struct notifier_block *nb,
2074 struct netdev_net_notifier *nn)
2079 list_del(&nn->list);
2080 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2084 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2086 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2089 struct netdev_net_notifier *nn;
2091 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2092 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2093 __register_netdevice_notifier_net(net, nn->nb, true);
2098 * call_netdevice_notifiers_info - call all network notifier blocks
2099 * @val: value passed unmodified to notifier function
2100 * @info: notifier information data
2102 * Call all network notifier blocks. Parameters and return value
2103 * are as for raw_notifier_call_chain().
2106 static int call_netdevice_notifiers_info(unsigned long val,
2107 struct netdev_notifier_info *info)
2109 struct net *net = dev_net(info->dev);
2114 /* Run per-netns notifier block chain first, then run the global one.
2115 * Hopefully, one day, the global one is going to be removed after
2116 * all notifier block registrators get converted to be per-netns.
2118 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2119 if (ret & NOTIFY_STOP_MASK)
2121 return raw_notifier_call_chain(&netdev_chain, val, info);
2124 static int call_netdevice_notifiers_extack(unsigned long val,
2125 struct net_device *dev,
2126 struct netlink_ext_ack *extack)
2128 struct netdev_notifier_info info = {
2133 return call_netdevice_notifiers_info(val, &info);
2137 * call_netdevice_notifiers - call all network notifier blocks
2138 * @val: value passed unmodified to notifier function
2139 * @dev: net_device pointer passed unmodified to notifier function
2141 * Call all network notifier blocks. Parameters and return value
2142 * are as for raw_notifier_call_chain().
2145 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2147 return call_netdevice_notifiers_extack(val, dev, NULL);
2149 EXPORT_SYMBOL(call_netdevice_notifiers);
2152 * call_netdevice_notifiers_mtu - call all network notifier blocks
2153 * @val: value passed unmodified to notifier function
2154 * @dev: net_device pointer passed unmodified to notifier function
2155 * @arg: additional u32 argument passed to the notifier function
2157 * Call all network notifier blocks. Parameters and return value
2158 * are as for raw_notifier_call_chain().
2160 static int call_netdevice_notifiers_mtu(unsigned long val,
2161 struct net_device *dev, u32 arg)
2163 struct netdev_notifier_info_ext info = {
2168 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2170 return call_netdevice_notifiers_info(val, &info.info);
2173 #ifdef CONFIG_NET_INGRESS
2174 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2176 void net_inc_ingress_queue(void)
2178 static_branch_inc(&ingress_needed_key);
2180 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2182 void net_dec_ingress_queue(void)
2184 static_branch_dec(&ingress_needed_key);
2186 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2189 #ifdef CONFIG_NET_EGRESS
2190 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2192 void net_inc_egress_queue(void)
2194 static_branch_inc(&egress_needed_key);
2196 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2198 void net_dec_egress_queue(void)
2200 static_branch_dec(&egress_needed_key);
2202 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2205 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2206 #ifdef CONFIG_JUMP_LABEL
2207 static atomic_t netstamp_needed_deferred;
2208 static atomic_t netstamp_wanted;
2209 static void netstamp_clear(struct work_struct *work)
2211 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2214 wanted = atomic_add_return(deferred, &netstamp_wanted);
2216 static_branch_enable(&netstamp_needed_key);
2218 static_branch_disable(&netstamp_needed_key);
2220 static DECLARE_WORK(netstamp_work, netstamp_clear);
2223 void net_enable_timestamp(void)
2225 #ifdef CONFIG_JUMP_LABEL
2229 wanted = atomic_read(&netstamp_wanted);
2232 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2235 atomic_inc(&netstamp_needed_deferred);
2236 schedule_work(&netstamp_work);
2238 static_branch_inc(&netstamp_needed_key);
2241 EXPORT_SYMBOL(net_enable_timestamp);
2243 void net_disable_timestamp(void)
2245 #ifdef CONFIG_JUMP_LABEL
2249 wanted = atomic_read(&netstamp_wanted);
2252 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2255 atomic_dec(&netstamp_needed_deferred);
2256 schedule_work(&netstamp_work);
2258 static_branch_dec(&netstamp_needed_key);
2261 EXPORT_SYMBOL(net_disable_timestamp);
2263 static inline void net_timestamp_set(struct sk_buff *skb)
2266 if (static_branch_unlikely(&netstamp_needed_key))
2267 __net_timestamp(skb);
2270 #define net_timestamp_check(COND, SKB) \
2271 if (static_branch_unlikely(&netstamp_needed_key)) { \
2272 if ((COND) && !(SKB)->tstamp) \
2273 __net_timestamp(SKB); \
2276 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2278 return __is_skb_forwardable(dev, skb, true);
2280 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2282 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2285 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2288 skb->protocol = eth_type_trans(skb, dev);
2289 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2295 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2297 return __dev_forward_skb2(dev, skb, true);
2299 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2302 * dev_forward_skb - loopback an skb to another netif
2304 * @dev: destination network device
2305 * @skb: buffer to forward
2308 * NET_RX_SUCCESS (no congestion)
2309 * NET_RX_DROP (packet was dropped, but freed)
2311 * dev_forward_skb can be used for injecting an skb from the
2312 * start_xmit function of one device into the receive queue
2313 * of another device.
2315 * The receiving device may be in another namespace, so
2316 * we have to clear all information in the skb that could
2317 * impact namespace isolation.
2319 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2321 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2323 EXPORT_SYMBOL_GPL(dev_forward_skb);
2325 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2327 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2330 static inline int deliver_skb(struct sk_buff *skb,
2331 struct packet_type *pt_prev,
2332 struct net_device *orig_dev)
2334 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2336 refcount_inc(&skb->users);
2337 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2340 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2341 struct packet_type **pt,
2342 struct net_device *orig_dev,
2344 struct list_head *ptype_list)
2346 struct packet_type *ptype, *pt_prev = *pt;
2348 list_for_each_entry_rcu(ptype, ptype_list, list) {
2349 if (ptype->type != type)
2352 deliver_skb(skb, pt_prev, orig_dev);
2358 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2360 if (!ptype->af_packet_priv || !skb->sk)
2363 if (ptype->id_match)
2364 return ptype->id_match(ptype, skb->sk);
2365 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2372 * dev_nit_active - return true if any network interface taps are in use
2374 * @dev: network device to check for the presence of taps
2376 bool dev_nit_active(struct net_device *dev)
2378 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2380 EXPORT_SYMBOL_GPL(dev_nit_active);
2383 * Support routine. Sends outgoing frames to any network
2384 * taps currently in use.
2387 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2389 struct packet_type *ptype;
2390 struct sk_buff *skb2 = NULL;
2391 struct packet_type *pt_prev = NULL;
2392 struct list_head *ptype_list = &ptype_all;
2396 list_for_each_entry_rcu(ptype, ptype_list, list) {
2397 if (ptype->ignore_outgoing)
2400 /* Never send packets back to the socket
2403 if (skb_loop_sk(ptype, skb))
2407 deliver_skb(skb2, pt_prev, skb->dev);
2412 /* need to clone skb, done only once */
2413 skb2 = skb_clone(skb, GFP_ATOMIC);
2417 net_timestamp_set(skb2);
2419 /* skb->nh should be correctly
2420 * set by sender, so that the second statement is
2421 * just protection against buggy protocols.
2423 skb_reset_mac_header(skb2);
2425 if (skb_network_header(skb2) < skb2->data ||
2426 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2427 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2428 ntohs(skb2->protocol),
2430 skb_reset_network_header(skb2);
2433 skb2->transport_header = skb2->network_header;
2434 skb2->pkt_type = PACKET_OUTGOING;
2438 if (ptype_list == &ptype_all) {
2439 ptype_list = &dev->ptype_all;
2444 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2445 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2451 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2454 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2455 * @dev: Network device
2456 * @txq: number of queues available
2458 * If real_num_tx_queues is changed the tc mappings may no longer be
2459 * valid. To resolve this verify the tc mapping remains valid and if
2460 * not NULL the mapping. With no priorities mapping to this
2461 * offset/count pair it will no longer be used. In the worst case TC0
2462 * is invalid nothing can be done so disable priority mappings. If is
2463 * expected that drivers will fix this mapping if they can before
2464 * calling netif_set_real_num_tx_queues.
2466 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2469 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2471 /* If TC0 is invalidated disable TC mapping */
2472 if (tc->offset + tc->count > txq) {
2473 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2478 /* Invalidated prio to tc mappings set to TC0 */
2479 for (i = 1; i < TC_BITMASK + 1; i++) {
2480 int q = netdev_get_prio_tc_map(dev, i);
2482 tc = &dev->tc_to_txq[q];
2483 if (tc->offset + tc->count > txq) {
2484 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2486 netdev_set_prio_tc_map(dev, i, 0);
2491 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2494 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2497 /* walk through the TCs and see if it falls into any of them */
2498 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2499 if ((txq - tc->offset) < tc->count)
2503 /* didn't find it, just return -1 to indicate no match */
2509 EXPORT_SYMBOL(netdev_txq_to_tc);
2512 static struct static_key xps_needed __read_mostly;
2513 static struct static_key xps_rxqs_needed __read_mostly;
2514 static DEFINE_MUTEX(xps_map_mutex);
2515 #define xmap_dereference(P) \
2516 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2518 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2519 struct xps_dev_maps *old_maps, int tci, u16 index)
2521 struct xps_map *map = NULL;
2525 map = xmap_dereference(dev_maps->attr_map[tci]);
2529 for (pos = map->len; pos--;) {
2530 if (map->queues[pos] != index)
2534 map->queues[pos] = map->queues[--map->len];
2539 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2540 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2541 kfree_rcu(map, rcu);
2548 static bool remove_xps_queue_cpu(struct net_device *dev,
2549 struct xps_dev_maps *dev_maps,
2550 int cpu, u16 offset, u16 count)
2552 int num_tc = dev_maps->num_tc;
2553 bool active = false;
2556 for (tci = cpu * num_tc; num_tc--; tci++) {
2559 for (i = count, j = offset; i--; j++) {
2560 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2570 static void reset_xps_maps(struct net_device *dev,
2571 struct xps_dev_maps *dev_maps,
2572 enum xps_map_type type)
2574 static_key_slow_dec_cpuslocked(&xps_needed);
2575 if (type == XPS_RXQS)
2576 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2578 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2580 kfree_rcu(dev_maps, rcu);
2583 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2584 u16 offset, u16 count)
2586 struct xps_dev_maps *dev_maps;
2587 bool active = false;
2590 dev_maps = xmap_dereference(dev->xps_maps[type]);
2594 for (j = 0; j < dev_maps->nr_ids; j++)
2595 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2597 reset_xps_maps(dev, dev_maps, type);
2599 if (type == XPS_CPUS) {
2600 for (i = offset + (count - 1); count--; i--)
2601 netdev_queue_numa_node_write(
2602 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2606 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2609 if (!static_key_false(&xps_needed))
2613 mutex_lock(&xps_map_mutex);
2615 if (static_key_false(&xps_rxqs_needed))
2616 clean_xps_maps(dev, XPS_RXQS, offset, count);
2618 clean_xps_maps(dev, XPS_CPUS, offset, count);
2620 mutex_unlock(&xps_map_mutex);
2624 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2626 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2629 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2630 u16 index, bool is_rxqs_map)
2632 struct xps_map *new_map;
2633 int alloc_len = XPS_MIN_MAP_ALLOC;
2636 for (pos = 0; map && pos < map->len; pos++) {
2637 if (map->queues[pos] != index)
2642 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2644 if (pos < map->alloc_len)
2647 alloc_len = map->alloc_len * 2;
2650 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2654 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2656 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2657 cpu_to_node(attr_index));
2661 for (i = 0; i < pos; i++)
2662 new_map->queues[i] = map->queues[i];
2663 new_map->alloc_len = alloc_len;
2669 /* Copy xps maps at a given index */
2670 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2671 struct xps_dev_maps *new_dev_maps, int index,
2672 int tc, bool skip_tc)
2674 int i, tci = index * dev_maps->num_tc;
2675 struct xps_map *map;
2677 /* copy maps belonging to foreign traffic classes */
2678 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2679 if (i == tc && skip_tc)
2682 /* fill in the new device map from the old device map */
2683 map = xmap_dereference(dev_maps->attr_map[tci]);
2684 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2688 /* Must be called under cpus_read_lock */
2689 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2690 u16 index, enum xps_map_type type)
2692 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2693 const unsigned long *online_mask = NULL;
2694 bool active = false, copy = false;
2695 int i, j, tci, numa_node_id = -2;
2696 int maps_sz, num_tc = 1, tc = 0;
2697 struct xps_map *map, *new_map;
2698 unsigned int nr_ids;
2701 /* Do not allow XPS on subordinate device directly */
2702 num_tc = dev->num_tc;
2706 /* If queue belongs to subordinate dev use its map */
2707 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2709 tc = netdev_txq_to_tc(dev, index);
2714 mutex_lock(&xps_map_mutex);
2716 dev_maps = xmap_dereference(dev->xps_maps[type]);
2717 if (type == XPS_RXQS) {
2718 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2719 nr_ids = dev->num_rx_queues;
2721 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2722 if (num_possible_cpus() > 1)
2723 online_mask = cpumask_bits(cpu_online_mask);
2724 nr_ids = nr_cpu_ids;
2727 if (maps_sz < L1_CACHE_BYTES)
2728 maps_sz = L1_CACHE_BYTES;
2730 /* The old dev_maps could be larger or smaller than the one we're
2731 * setting up now, as dev->num_tc or nr_ids could have been updated in
2732 * between. We could try to be smart, but let's be safe instead and only
2733 * copy foreign traffic classes if the two map sizes match.
2736 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2739 /* allocate memory for queue storage */
2740 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2742 if (!new_dev_maps) {
2743 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2744 if (!new_dev_maps) {
2745 mutex_unlock(&xps_map_mutex);
2749 new_dev_maps->nr_ids = nr_ids;
2750 new_dev_maps->num_tc = num_tc;
2753 tci = j * num_tc + tc;
2754 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2756 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2760 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2764 goto out_no_new_maps;
2767 /* Increment static keys at most once per type */
2768 static_key_slow_inc_cpuslocked(&xps_needed);
2769 if (type == XPS_RXQS)
2770 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2773 for (j = 0; j < nr_ids; j++) {
2774 bool skip_tc = false;
2776 tci = j * num_tc + tc;
2777 if (netif_attr_test_mask(j, mask, nr_ids) &&
2778 netif_attr_test_online(j, online_mask, nr_ids)) {
2779 /* add tx-queue to CPU/rx-queue maps */
2784 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2785 while ((pos < map->len) && (map->queues[pos] != index))
2788 if (pos == map->len)
2789 map->queues[map->len++] = index;
2791 if (type == XPS_CPUS) {
2792 if (numa_node_id == -2)
2793 numa_node_id = cpu_to_node(j);
2794 else if (numa_node_id != cpu_to_node(j))
2801 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2805 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2807 /* Cleanup old maps */
2809 goto out_no_old_maps;
2811 for (j = 0; j < dev_maps->nr_ids; j++) {
2812 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2813 map = xmap_dereference(dev_maps->attr_map[tci]);
2818 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2823 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2824 kfree_rcu(map, rcu);
2828 old_dev_maps = dev_maps;
2831 dev_maps = new_dev_maps;
2835 if (type == XPS_CPUS)
2836 /* update Tx queue numa node */
2837 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2838 (numa_node_id >= 0) ?
2839 numa_node_id : NUMA_NO_NODE);
2844 /* removes tx-queue from unused CPUs/rx-queues */
2845 for (j = 0; j < dev_maps->nr_ids; j++) {
2846 tci = j * dev_maps->num_tc;
2848 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2850 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2851 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2854 active |= remove_xps_queue(dev_maps,
2855 copy ? old_dev_maps : NULL,
2861 kfree_rcu(old_dev_maps, rcu);
2863 /* free map if not active */
2865 reset_xps_maps(dev, dev_maps, type);
2868 mutex_unlock(&xps_map_mutex);
2872 /* remove any maps that we added */
2873 for (j = 0; j < nr_ids; j++) {
2874 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2875 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2877 xmap_dereference(dev_maps->attr_map[tci]) :
2879 if (new_map && new_map != map)
2884 mutex_unlock(&xps_map_mutex);
2886 kfree(new_dev_maps);
2889 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2891 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2897 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2902 EXPORT_SYMBOL(netif_set_xps_queue);
2905 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2907 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2909 /* Unbind any subordinate channels */
2910 while (txq-- != &dev->_tx[0]) {
2912 netdev_unbind_sb_channel(dev, txq->sb_dev);
2916 void netdev_reset_tc(struct net_device *dev)
2919 netif_reset_xps_queues_gt(dev, 0);
2921 netdev_unbind_all_sb_channels(dev);
2923 /* Reset TC configuration of device */
2925 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2926 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2928 EXPORT_SYMBOL(netdev_reset_tc);
2930 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2932 if (tc >= dev->num_tc)
2936 netif_reset_xps_queues(dev, offset, count);
2938 dev->tc_to_txq[tc].count = count;
2939 dev->tc_to_txq[tc].offset = offset;
2942 EXPORT_SYMBOL(netdev_set_tc_queue);
2944 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2946 if (num_tc > TC_MAX_QUEUE)
2950 netif_reset_xps_queues_gt(dev, 0);
2952 netdev_unbind_all_sb_channels(dev);
2954 dev->num_tc = num_tc;
2957 EXPORT_SYMBOL(netdev_set_num_tc);
2959 void netdev_unbind_sb_channel(struct net_device *dev,
2960 struct net_device *sb_dev)
2962 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2965 netif_reset_xps_queues_gt(sb_dev, 0);
2967 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2968 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2970 while (txq-- != &dev->_tx[0]) {
2971 if (txq->sb_dev == sb_dev)
2975 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2977 int netdev_bind_sb_channel_queue(struct net_device *dev,
2978 struct net_device *sb_dev,
2979 u8 tc, u16 count, u16 offset)
2981 /* Make certain the sb_dev and dev are already configured */
2982 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2985 /* We cannot hand out queues we don't have */
2986 if ((offset + count) > dev->real_num_tx_queues)
2989 /* Record the mapping */
2990 sb_dev->tc_to_txq[tc].count = count;
2991 sb_dev->tc_to_txq[tc].offset = offset;
2993 /* Provide a way for Tx queue to find the tc_to_txq map or
2994 * XPS map for itself.
2997 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3001 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3003 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3005 /* Do not use a multiqueue device to represent a subordinate channel */
3006 if (netif_is_multiqueue(dev))
3009 /* We allow channels 1 - 32767 to be used for subordinate channels.
3010 * Channel 0 is meant to be "native" mode and used only to represent
3011 * the main root device. We allow writing 0 to reset the device back
3012 * to normal mode after being used as a subordinate channel.
3014 if (channel > S16_MAX)
3017 dev->num_tc = -channel;
3021 EXPORT_SYMBOL(netdev_set_sb_channel);
3024 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3025 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3027 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3032 disabling = txq < dev->real_num_tx_queues;
3034 if (txq < 1 || txq > dev->num_tx_queues)
3037 if (dev->reg_state == NETREG_REGISTERED ||
3038 dev->reg_state == NETREG_UNREGISTERING) {
3041 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3047 netif_setup_tc(dev, txq);
3049 dev->real_num_tx_queues = txq;
3053 qdisc_reset_all_tx_gt(dev, txq);
3055 netif_reset_xps_queues_gt(dev, txq);
3059 dev->real_num_tx_queues = txq;
3064 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3068 * netif_set_real_num_rx_queues - set actual number of RX queues used
3069 * @dev: Network device
3070 * @rxq: Actual number of RX queues
3072 * This must be called either with the rtnl_lock held or before
3073 * registration of the net device. Returns 0 on success, or a
3074 * negative error code. If called before registration, it always
3077 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3081 if (rxq < 1 || rxq > dev->num_rx_queues)
3084 if (dev->reg_state == NETREG_REGISTERED) {
3087 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3093 dev->real_num_rx_queues = rxq;
3096 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3100 * netif_get_num_default_rss_queues - default number of RSS queues
3102 * This routine should set an upper limit on the number of RSS queues
3103 * used by default by multiqueue devices.
3105 int netif_get_num_default_rss_queues(void)
3107 return is_kdump_kernel() ?
3108 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3110 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3112 static void __netif_reschedule(struct Qdisc *q)
3114 struct softnet_data *sd;
3115 unsigned long flags;
3117 local_irq_save(flags);
3118 sd = this_cpu_ptr(&softnet_data);
3119 q->next_sched = NULL;
3120 *sd->output_queue_tailp = q;
3121 sd->output_queue_tailp = &q->next_sched;
3122 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3123 local_irq_restore(flags);
3126 void __netif_schedule(struct Qdisc *q)
3128 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3129 __netif_reschedule(q);
3131 EXPORT_SYMBOL(__netif_schedule);
3133 struct dev_kfree_skb_cb {
3134 enum skb_free_reason reason;
3137 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3139 return (struct dev_kfree_skb_cb *)skb->cb;
3142 void netif_schedule_queue(struct netdev_queue *txq)
3145 if (!netif_xmit_stopped(txq)) {
3146 struct Qdisc *q = rcu_dereference(txq->qdisc);
3148 __netif_schedule(q);
3152 EXPORT_SYMBOL(netif_schedule_queue);
3154 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3156 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3160 q = rcu_dereference(dev_queue->qdisc);
3161 __netif_schedule(q);
3165 EXPORT_SYMBOL(netif_tx_wake_queue);
3167 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3169 unsigned long flags;
3174 if (likely(refcount_read(&skb->users) == 1)) {
3176 refcount_set(&skb->users, 0);
3177 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3180 get_kfree_skb_cb(skb)->reason = reason;
3181 local_irq_save(flags);
3182 skb->next = __this_cpu_read(softnet_data.completion_queue);
3183 __this_cpu_write(softnet_data.completion_queue, skb);
3184 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3185 local_irq_restore(flags);
3187 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3189 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3191 if (in_irq() || irqs_disabled())
3192 __dev_kfree_skb_irq(skb, reason);
3196 EXPORT_SYMBOL(__dev_kfree_skb_any);
3200 * netif_device_detach - mark device as removed
3201 * @dev: network device
3203 * Mark device as removed from system and therefore no longer available.
3205 void netif_device_detach(struct net_device *dev)
3207 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3208 netif_running(dev)) {
3209 netif_tx_stop_all_queues(dev);
3212 EXPORT_SYMBOL(netif_device_detach);
3215 * netif_device_attach - mark device as attached
3216 * @dev: network device
3218 * Mark device as attached from system and restart if needed.
3220 void netif_device_attach(struct net_device *dev)
3222 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3223 netif_running(dev)) {
3224 netif_tx_wake_all_queues(dev);
3225 __netdev_watchdog_up(dev);
3228 EXPORT_SYMBOL(netif_device_attach);
3231 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3232 * to be used as a distribution range.
3234 static u16 skb_tx_hash(const struct net_device *dev,
3235 const struct net_device *sb_dev,
3236 struct sk_buff *skb)
3240 u16 qcount = dev->real_num_tx_queues;
3243 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3245 qoffset = sb_dev->tc_to_txq[tc].offset;
3246 qcount = sb_dev->tc_to_txq[tc].count;
3249 if (skb_rx_queue_recorded(skb)) {
3250 hash = skb_get_rx_queue(skb);
3251 if (hash >= qoffset)
3253 while (unlikely(hash >= qcount))
3255 return hash + qoffset;
3258 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3261 static void skb_warn_bad_offload(const struct sk_buff *skb)
3263 static const netdev_features_t null_features;
3264 struct net_device *dev = skb->dev;
3265 const char *name = "";
3267 if (!net_ratelimit())
3271 if (dev->dev.parent)
3272 name = dev_driver_string(dev->dev.parent);
3274 name = netdev_name(dev);
3276 skb_dump(KERN_WARNING, skb, false);
3277 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3278 name, dev ? &dev->features : &null_features,
3279 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3283 * Invalidate hardware checksum when packet is to be mangled, and
3284 * complete checksum manually on outgoing path.
3286 int skb_checksum_help(struct sk_buff *skb)
3289 int ret = 0, offset;
3291 if (skb->ip_summed == CHECKSUM_COMPLETE)
3292 goto out_set_summed;
3294 if (unlikely(skb_is_gso(skb))) {
3295 skb_warn_bad_offload(skb);
3299 /* Before computing a checksum, we should make sure no frag could
3300 * be modified by an external entity : checksum could be wrong.
3302 if (skb_has_shared_frag(skb)) {
3303 ret = __skb_linearize(skb);
3308 offset = skb_checksum_start_offset(skb);
3309 BUG_ON(offset >= skb_headlen(skb));
3310 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3312 offset += skb->csum_offset;
3313 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3315 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3319 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3321 skb->ip_summed = CHECKSUM_NONE;
3325 EXPORT_SYMBOL(skb_checksum_help);
3327 int skb_crc32c_csum_help(struct sk_buff *skb)
3330 int ret = 0, offset, start;
3332 if (skb->ip_summed != CHECKSUM_PARTIAL)
3335 if (unlikely(skb_is_gso(skb)))
3338 /* Before computing a checksum, we should make sure no frag could
3339 * be modified by an external entity : checksum could be wrong.
3341 if (unlikely(skb_has_shared_frag(skb))) {
3342 ret = __skb_linearize(skb);
3346 start = skb_checksum_start_offset(skb);
3347 offset = start + offsetof(struct sctphdr, checksum);
3348 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3353 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3357 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3358 skb->len - start, ~(__u32)0,
3360 *(__le32 *)(skb->data + offset) = crc32c_csum;
3361 skb->ip_summed = CHECKSUM_NONE;
3362 skb->csum_not_inet = 0;
3367 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3369 __be16 type = skb->protocol;
3371 /* Tunnel gso handlers can set protocol to ethernet. */
3372 if (type == htons(ETH_P_TEB)) {
3375 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3378 eth = (struct ethhdr *)skb->data;
3379 type = eth->h_proto;
3382 return __vlan_get_protocol(skb, type, depth);
3386 * skb_mac_gso_segment - mac layer segmentation handler.
3387 * @skb: buffer to segment
3388 * @features: features for the output path (see dev->features)
3390 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3391 netdev_features_t features)
3393 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3394 struct packet_offload *ptype;
3395 int vlan_depth = skb->mac_len;
3396 __be16 type = skb_network_protocol(skb, &vlan_depth);
3398 if (unlikely(!type))
3399 return ERR_PTR(-EINVAL);
3401 __skb_pull(skb, vlan_depth);
3404 list_for_each_entry_rcu(ptype, &offload_base, list) {
3405 if (ptype->type == type && ptype->callbacks.gso_segment) {
3406 segs = ptype->callbacks.gso_segment(skb, features);
3412 __skb_push(skb, skb->data - skb_mac_header(skb));
3416 EXPORT_SYMBOL(skb_mac_gso_segment);
3419 /* openvswitch calls this on rx path, so we need a different check.
3421 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3424 return skb->ip_summed != CHECKSUM_PARTIAL &&
3425 skb->ip_summed != CHECKSUM_UNNECESSARY;
3427 return skb->ip_summed == CHECKSUM_NONE;
3431 * __skb_gso_segment - Perform segmentation on skb.
3432 * @skb: buffer to segment
3433 * @features: features for the output path (see dev->features)
3434 * @tx_path: whether it is called in TX path
3436 * This function segments the given skb and returns a list of segments.
3438 * It may return NULL if the skb requires no segmentation. This is
3439 * only possible when GSO is used for verifying header integrity.
3441 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3443 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3444 netdev_features_t features, bool tx_path)
3446 struct sk_buff *segs;
3448 if (unlikely(skb_needs_check(skb, tx_path))) {
3451 /* We're going to init ->check field in TCP or UDP header */
3452 err = skb_cow_head(skb, 0);
3454 return ERR_PTR(err);
3457 /* Only report GSO partial support if it will enable us to
3458 * support segmentation on this frame without needing additional
3461 if (features & NETIF_F_GSO_PARTIAL) {
3462 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3463 struct net_device *dev = skb->dev;
3465 partial_features |= dev->features & dev->gso_partial_features;
3466 if (!skb_gso_ok(skb, features | partial_features))
3467 features &= ~NETIF_F_GSO_PARTIAL;
3470 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3471 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3473 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3474 SKB_GSO_CB(skb)->encap_level = 0;
3476 skb_reset_mac_header(skb);
3477 skb_reset_mac_len(skb);
3479 segs = skb_mac_gso_segment(skb, features);
3481 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3482 skb_warn_bad_offload(skb);
3486 EXPORT_SYMBOL(__skb_gso_segment);
3488 /* Take action when hardware reception checksum errors are detected. */
3490 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3492 if (net_ratelimit()) {
3493 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3494 skb_dump(KERN_ERR, skb, true);
3498 EXPORT_SYMBOL(netdev_rx_csum_fault);
3501 /* XXX: check that highmem exists at all on the given machine. */
3502 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3504 #ifdef CONFIG_HIGHMEM
3507 if (!(dev->features & NETIF_F_HIGHDMA)) {
3508 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3509 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3511 if (PageHighMem(skb_frag_page(frag)))
3519 /* If MPLS offload request, verify we are testing hardware MPLS features
3520 * instead of standard features for the netdev.
3522 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3523 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3524 netdev_features_t features,
3527 if (eth_p_mpls(type))
3528 features &= skb->dev->mpls_features;
3533 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3534 netdev_features_t features,
3541 static netdev_features_t harmonize_features(struct sk_buff *skb,
3542 netdev_features_t features)
3546 type = skb_network_protocol(skb, NULL);
3547 features = net_mpls_features(skb, features, type);
3549 if (skb->ip_summed != CHECKSUM_NONE &&
3550 !can_checksum_protocol(features, type)) {
3551 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3553 if (illegal_highdma(skb->dev, skb))
3554 features &= ~NETIF_F_SG;
3559 netdev_features_t passthru_features_check(struct sk_buff *skb,
3560 struct net_device *dev,
3561 netdev_features_t features)
3565 EXPORT_SYMBOL(passthru_features_check);
3567 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3568 struct net_device *dev,
3569 netdev_features_t features)
3571 return vlan_features_check(skb, features);
3574 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3575 struct net_device *dev,
3576 netdev_features_t features)
3578 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3580 if (gso_segs > dev->gso_max_segs)
3581 return features & ~NETIF_F_GSO_MASK;
3583 if (!skb_shinfo(skb)->gso_type) {
3584 skb_warn_bad_offload(skb);
3585 return features & ~NETIF_F_GSO_MASK;
3588 /* Support for GSO partial features requires software
3589 * intervention before we can actually process the packets
3590 * so we need to strip support for any partial features now
3591 * and we can pull them back in after we have partially
3592 * segmented the frame.
3594 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3595 features &= ~dev->gso_partial_features;
3597 /* Make sure to clear the IPv4 ID mangling feature if the
3598 * IPv4 header has the potential to be fragmented.
3600 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3601 struct iphdr *iph = skb->encapsulation ?
3602 inner_ip_hdr(skb) : ip_hdr(skb);
3604 if (!(iph->frag_off & htons(IP_DF)))
3605 features &= ~NETIF_F_TSO_MANGLEID;
3611 netdev_features_t netif_skb_features(struct sk_buff *skb)
3613 struct net_device *dev = skb->dev;
3614 netdev_features_t features = dev->features;
3616 if (skb_is_gso(skb))
3617 features = gso_features_check(skb, dev, features);
3619 /* If encapsulation offload request, verify we are testing
3620 * hardware encapsulation features instead of standard
3621 * features for the netdev
3623 if (skb->encapsulation)
3624 features &= dev->hw_enc_features;
3626 if (skb_vlan_tagged(skb))
3627 features = netdev_intersect_features(features,
3628 dev->vlan_features |
3629 NETIF_F_HW_VLAN_CTAG_TX |
3630 NETIF_F_HW_VLAN_STAG_TX);
3632 if (dev->netdev_ops->ndo_features_check)
3633 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3636 features &= dflt_features_check(skb, dev, features);
3638 return harmonize_features(skb, features);
3640 EXPORT_SYMBOL(netif_skb_features);
3642 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3643 struct netdev_queue *txq, bool more)
3648 if (dev_nit_active(dev))
3649 dev_queue_xmit_nit(skb, dev);
3652 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3653 trace_net_dev_start_xmit(skb, dev);
3654 rc = netdev_start_xmit(skb, dev, txq, more);
3655 trace_net_dev_xmit(skb, rc, dev, len);
3660 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3661 struct netdev_queue *txq, int *ret)
3663 struct sk_buff *skb = first;
3664 int rc = NETDEV_TX_OK;
3667 struct sk_buff *next = skb->next;
3669 skb_mark_not_on_list(skb);
3670 rc = xmit_one(skb, dev, txq, next != NULL);
3671 if (unlikely(!dev_xmit_complete(rc))) {
3677 if (netif_tx_queue_stopped(txq) && skb) {
3678 rc = NETDEV_TX_BUSY;
3688 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3689 netdev_features_t features)
3691 if (skb_vlan_tag_present(skb) &&
3692 !vlan_hw_offload_capable(features, skb->vlan_proto))
3693 skb = __vlan_hwaccel_push_inside(skb);
3697 int skb_csum_hwoffload_help(struct sk_buff *skb,
3698 const netdev_features_t features)
3700 if (unlikely(skb_csum_is_sctp(skb)))
3701 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3702 skb_crc32c_csum_help(skb);
3704 if (features & NETIF_F_HW_CSUM)
3707 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3708 switch (skb->csum_offset) {
3709 case offsetof(struct tcphdr, check):
3710 case offsetof(struct udphdr, check):
3715 return skb_checksum_help(skb);
3717 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3719 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3721 netdev_features_t features;
3723 features = netif_skb_features(skb);
3724 skb = validate_xmit_vlan(skb, features);
3728 skb = sk_validate_xmit_skb(skb, dev);
3732 if (netif_needs_gso(skb, features)) {
3733 struct sk_buff *segs;
3735 segs = skb_gso_segment(skb, features);
3743 if (skb_needs_linearize(skb, features) &&
3744 __skb_linearize(skb))
3747 /* If packet is not checksummed and device does not
3748 * support checksumming for this protocol, complete
3749 * checksumming here.
3751 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3752 if (skb->encapsulation)
3753 skb_set_inner_transport_header(skb,
3754 skb_checksum_start_offset(skb));
3756 skb_set_transport_header(skb,
3757 skb_checksum_start_offset(skb));
3758 if (skb_csum_hwoffload_help(skb, features))
3763 skb = validate_xmit_xfrm(skb, features, again);
3770 atomic_long_inc(&dev->tx_dropped);
3774 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3776 struct sk_buff *next, *head = NULL, *tail;
3778 for (; skb != NULL; skb = next) {
3780 skb_mark_not_on_list(skb);
3782 /* in case skb wont be segmented, point to itself */
3785 skb = validate_xmit_skb(skb, dev, again);
3793 /* If skb was segmented, skb->prev points to
3794 * the last segment. If not, it still contains skb.
3800 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3802 static void qdisc_pkt_len_init(struct sk_buff *skb)
3804 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3806 qdisc_skb_cb(skb)->pkt_len = skb->len;
3808 /* To get more precise estimation of bytes sent on wire,
3809 * we add to pkt_len the headers size of all segments
3811 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3812 unsigned int hdr_len;
3813 u16 gso_segs = shinfo->gso_segs;
3815 /* mac layer + network layer */
3816 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3818 /* + transport layer */
3819 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3820 const struct tcphdr *th;
3821 struct tcphdr _tcphdr;
3823 th = skb_header_pointer(skb, skb_transport_offset(skb),
3824 sizeof(_tcphdr), &_tcphdr);
3826 hdr_len += __tcp_hdrlen(th);
3828 struct udphdr _udphdr;
3830 if (skb_header_pointer(skb, skb_transport_offset(skb),
3831 sizeof(_udphdr), &_udphdr))
3832 hdr_len += sizeof(struct udphdr);
3835 if (shinfo->gso_type & SKB_GSO_DODGY)
3836 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3839 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3843 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3844 struct net_device *dev,
3845 struct netdev_queue *txq)
3847 spinlock_t *root_lock = qdisc_lock(q);
3848 struct sk_buff *to_free = NULL;
3852 qdisc_calculate_pkt_len(skb, q);
3854 if (q->flags & TCQ_F_NOLOCK) {
3855 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3856 if (likely(!netif_xmit_frozen_or_stopped(txq)))
3859 if (unlikely(to_free))
3860 kfree_skb_list(to_free);
3865 * Heuristic to force contended enqueues to serialize on a
3866 * separate lock before trying to get qdisc main lock.
3867 * This permits qdisc->running owner to get the lock more
3868 * often and dequeue packets faster.
3870 contended = qdisc_is_running(q);
3871 if (unlikely(contended))
3872 spin_lock(&q->busylock);
3874 spin_lock(root_lock);
3875 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3876 __qdisc_drop(skb, &to_free);
3878 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3879 qdisc_run_begin(q)) {
3881 * This is a work-conserving queue; there are no old skbs
3882 * waiting to be sent out; and the qdisc is not running -
3883 * xmit the skb directly.
3886 qdisc_bstats_update(q, skb);
3888 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3889 if (unlikely(contended)) {
3890 spin_unlock(&q->busylock);
3897 rc = NET_XMIT_SUCCESS;
3899 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3900 if (qdisc_run_begin(q)) {
3901 if (unlikely(contended)) {
3902 spin_unlock(&q->busylock);
3909 spin_unlock(root_lock);
3910 if (unlikely(to_free))
3911 kfree_skb_list(to_free);
3912 if (unlikely(contended))
3913 spin_unlock(&q->busylock);
3917 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3918 static void skb_update_prio(struct sk_buff *skb)
3920 const struct netprio_map *map;
3921 const struct sock *sk;
3922 unsigned int prioidx;
3926 map = rcu_dereference_bh(skb->dev->priomap);
3929 sk = skb_to_full_sk(skb);
3933 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3935 if (prioidx < map->priomap_len)
3936 skb->priority = map->priomap[prioidx];
3939 #define skb_update_prio(skb)
3943 * dev_loopback_xmit - loop back @skb
3944 * @net: network namespace this loopback is happening in
3945 * @sk: sk needed to be a netfilter okfn
3946 * @skb: buffer to transmit
3948 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3950 skb_reset_mac_header(skb);
3951 __skb_pull(skb, skb_network_offset(skb));
3952 skb->pkt_type = PACKET_LOOPBACK;
3953 skb->ip_summed = CHECKSUM_UNNECESSARY;
3954 WARN_ON(!skb_dst(skb));
3959 EXPORT_SYMBOL(dev_loopback_xmit);
3961 #ifdef CONFIG_NET_EGRESS
3962 static struct sk_buff *
3963 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3965 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3966 struct tcf_result cl_res;
3971 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3972 qdisc_skb_cb(skb)->mru = 0;
3973 qdisc_skb_cb(skb)->post_ct = false;
3974 mini_qdisc_bstats_cpu_update(miniq, skb);
3976 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3978 case TC_ACT_RECLASSIFY:
3979 skb->tc_index = TC_H_MIN(cl_res.classid);
3982 mini_qdisc_qstats_cpu_drop(miniq);
3983 *ret = NET_XMIT_DROP;
3989 *ret = NET_XMIT_SUCCESS;
3992 case TC_ACT_REDIRECT:
3993 /* No need to push/pop skb's mac_header here on egress! */
3994 skb_do_redirect(skb);
3995 *ret = NET_XMIT_SUCCESS;
4003 #endif /* CONFIG_NET_EGRESS */
4006 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4007 struct xps_dev_maps *dev_maps, unsigned int tci)
4009 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4010 struct xps_map *map;
4011 int queue_index = -1;
4013 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4016 tci *= dev_maps->num_tc;
4019 map = rcu_dereference(dev_maps->attr_map[tci]);
4022 queue_index = map->queues[0];
4024 queue_index = map->queues[reciprocal_scale(
4025 skb_get_hash(skb), map->len)];
4026 if (unlikely(queue_index >= dev->real_num_tx_queues))
4033 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4034 struct sk_buff *skb)
4037 struct xps_dev_maps *dev_maps;
4038 struct sock *sk = skb->sk;
4039 int queue_index = -1;
4041 if (!static_key_false(&xps_needed))
4045 if (!static_key_false(&xps_rxqs_needed))
4048 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4050 int tci = sk_rx_queue_get(sk);
4053 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4058 if (queue_index < 0) {
4059 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4061 unsigned int tci = skb->sender_cpu - 1;
4063 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4075 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4076 struct net_device *sb_dev)
4080 EXPORT_SYMBOL(dev_pick_tx_zero);
4082 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4083 struct net_device *sb_dev)
4085 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4087 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4089 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4090 struct net_device *sb_dev)
4092 struct sock *sk = skb->sk;
4093 int queue_index = sk_tx_queue_get(sk);
4095 sb_dev = sb_dev ? : dev;
4097 if (queue_index < 0 || skb->ooo_okay ||
4098 queue_index >= dev->real_num_tx_queues) {
4099 int new_index = get_xps_queue(dev, sb_dev, skb);
4102 new_index = skb_tx_hash(dev, sb_dev, skb);
4104 if (queue_index != new_index && sk &&
4106 rcu_access_pointer(sk->sk_dst_cache))
4107 sk_tx_queue_set(sk, new_index);
4109 queue_index = new_index;
4114 EXPORT_SYMBOL(netdev_pick_tx);
4116 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4117 struct sk_buff *skb,
4118 struct net_device *sb_dev)
4120 int queue_index = 0;
4123 u32 sender_cpu = skb->sender_cpu - 1;
4125 if (sender_cpu >= (u32)NR_CPUS)
4126 skb->sender_cpu = raw_smp_processor_id() + 1;
4129 if (dev->real_num_tx_queues != 1) {
4130 const struct net_device_ops *ops = dev->netdev_ops;
4132 if (ops->ndo_select_queue)
4133 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4135 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4137 queue_index = netdev_cap_txqueue(dev, queue_index);
4140 skb_set_queue_mapping(skb, queue_index);
4141 return netdev_get_tx_queue(dev, queue_index);
4145 * __dev_queue_xmit - transmit a buffer
4146 * @skb: buffer to transmit
4147 * @sb_dev: suboordinate device used for L2 forwarding offload
4149 * Queue a buffer for transmission to a network device. The caller must
4150 * have set the device and priority and built the buffer before calling
4151 * this function. The function can be called from an interrupt.
4153 * A negative errno code is returned on a failure. A success does not
4154 * guarantee the frame will be transmitted as it may be dropped due
4155 * to congestion or traffic shaping.
4157 * -----------------------------------------------------------------------------------
4158 * I notice this method can also return errors from the queue disciplines,
4159 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4162 * Regardless of the return value, the skb is consumed, so it is currently
4163 * difficult to retry a send to this method. (You can bump the ref count
4164 * before sending to hold a reference for retry if you are careful.)
4166 * When calling this method, interrupts MUST be enabled. This is because
4167 * the BH enable code must have IRQs enabled so that it will not deadlock.
4170 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4172 struct net_device *dev = skb->dev;
4173 struct netdev_queue *txq;
4178 skb_reset_mac_header(skb);
4180 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4181 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4183 /* Disable soft irqs for various locks below. Also
4184 * stops preemption for RCU.
4188 skb_update_prio(skb);
4190 qdisc_pkt_len_init(skb);
4191 #ifdef CONFIG_NET_CLS_ACT
4192 skb->tc_at_ingress = 0;
4193 # ifdef CONFIG_NET_EGRESS
4194 if (static_branch_unlikely(&egress_needed_key)) {
4195 skb = sch_handle_egress(skb, &rc, dev);
4201 /* If device/qdisc don't need skb->dst, release it right now while
4202 * its hot in this cpu cache.
4204 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4209 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4210 q = rcu_dereference_bh(txq->qdisc);
4212 trace_net_dev_queue(skb);
4214 rc = __dev_xmit_skb(skb, q, dev, txq);
4218 /* The device has no queue. Common case for software devices:
4219 * loopback, all the sorts of tunnels...
4221 * Really, it is unlikely that netif_tx_lock protection is necessary
4222 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4224 * However, it is possible, that they rely on protection
4227 * Check this and shot the lock. It is not prone from deadlocks.
4228 *Either shot noqueue qdisc, it is even simpler 8)
4230 if (dev->flags & IFF_UP) {
4231 int cpu = smp_processor_id(); /* ok because BHs are off */
4233 if (txq->xmit_lock_owner != cpu) {
4234 if (dev_xmit_recursion())
4235 goto recursion_alert;
4237 skb = validate_xmit_skb(skb, dev, &again);
4241 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4242 HARD_TX_LOCK(dev, txq, cpu);
4244 if (!netif_xmit_stopped(txq)) {
4245 dev_xmit_recursion_inc();
4246 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4247 dev_xmit_recursion_dec();
4248 if (dev_xmit_complete(rc)) {
4249 HARD_TX_UNLOCK(dev, txq);
4253 HARD_TX_UNLOCK(dev, txq);
4254 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4257 /* Recursion is detected! It is possible,
4261 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4267 rcu_read_unlock_bh();
4269 atomic_long_inc(&dev->tx_dropped);
4270 kfree_skb_list(skb);
4273 rcu_read_unlock_bh();
4277 int dev_queue_xmit(struct sk_buff *skb)
4279 return __dev_queue_xmit(skb, NULL);
4281 EXPORT_SYMBOL(dev_queue_xmit);
4283 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4285 return __dev_queue_xmit(skb, sb_dev);
4287 EXPORT_SYMBOL(dev_queue_xmit_accel);
4289 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4291 struct net_device *dev = skb->dev;
4292 struct sk_buff *orig_skb = skb;
4293 struct netdev_queue *txq;
4294 int ret = NETDEV_TX_BUSY;
4297 if (unlikely(!netif_running(dev) ||
4298 !netif_carrier_ok(dev)))
4301 skb = validate_xmit_skb_list(skb, dev, &again);
4302 if (skb != orig_skb)
4305 skb_set_queue_mapping(skb, queue_id);
4306 txq = skb_get_tx_queue(dev, skb);
4307 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4311 dev_xmit_recursion_inc();
4312 HARD_TX_LOCK(dev, txq, smp_processor_id());
4313 if (!netif_xmit_frozen_or_drv_stopped(txq))
4314 ret = netdev_start_xmit(skb, dev, txq, false);
4315 HARD_TX_UNLOCK(dev, txq);
4316 dev_xmit_recursion_dec();
4321 atomic_long_inc(&dev->tx_dropped);
4322 kfree_skb_list(skb);
4323 return NET_XMIT_DROP;
4325 EXPORT_SYMBOL(__dev_direct_xmit);
4327 /*************************************************************************
4329 *************************************************************************/
4331 int netdev_max_backlog __read_mostly = 1000;
4332 EXPORT_SYMBOL(netdev_max_backlog);
4334 int netdev_tstamp_prequeue __read_mostly = 1;
4335 int netdev_budget __read_mostly = 300;
4336 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4337 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4338 int weight_p __read_mostly = 64; /* old backlog weight */
4339 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4340 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4341 int dev_rx_weight __read_mostly = 64;
4342 int dev_tx_weight __read_mostly = 64;
4343 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4344 int gro_normal_batch __read_mostly = 8;
4346 /* Called with irq disabled */
4347 static inline void ____napi_schedule(struct softnet_data *sd,
4348 struct napi_struct *napi)
4350 struct task_struct *thread;
4352 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4353 /* Paired with smp_mb__before_atomic() in
4354 * napi_enable()/dev_set_threaded().
4355 * Use READ_ONCE() to guarantee a complete
4356 * read on napi->thread. Only call
4357 * wake_up_process() when it's not NULL.
4359 thread = READ_ONCE(napi->thread);
4361 /* Avoid doing set_bit() if the thread is in
4362 * INTERRUPTIBLE state, cause napi_thread_wait()
4363 * makes sure to proceed with napi polling
4364 * if the thread is explicitly woken from here.
4366 if (READ_ONCE(thread->state) != TASK_INTERRUPTIBLE)
4367 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4368 wake_up_process(thread);
4373 list_add_tail(&napi->poll_list, &sd->poll_list);
4374 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4379 /* One global table that all flow-based protocols share. */
4380 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4381 EXPORT_SYMBOL(rps_sock_flow_table);
4382 u32 rps_cpu_mask __read_mostly;
4383 EXPORT_SYMBOL(rps_cpu_mask);
4385 struct static_key_false rps_needed __read_mostly;
4386 EXPORT_SYMBOL(rps_needed);
4387 struct static_key_false rfs_needed __read_mostly;
4388 EXPORT_SYMBOL(rfs_needed);
4390 static struct rps_dev_flow *
4391 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4392 struct rps_dev_flow *rflow, u16 next_cpu)
4394 if (next_cpu < nr_cpu_ids) {
4395 #ifdef CONFIG_RFS_ACCEL
4396 struct netdev_rx_queue *rxqueue;
4397 struct rps_dev_flow_table *flow_table;
4398 struct rps_dev_flow *old_rflow;
4403 /* Should we steer this flow to a different hardware queue? */
4404 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4405 !(dev->features & NETIF_F_NTUPLE))
4407 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4408 if (rxq_index == skb_get_rx_queue(skb))
4411 rxqueue = dev->_rx + rxq_index;
4412 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4415 flow_id = skb_get_hash(skb) & flow_table->mask;
4416 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4417 rxq_index, flow_id);
4421 rflow = &flow_table->flows[flow_id];
4423 if (old_rflow->filter == rflow->filter)
4424 old_rflow->filter = RPS_NO_FILTER;
4428 per_cpu(softnet_data, next_cpu).input_queue_head;
4431 rflow->cpu = next_cpu;
4436 * get_rps_cpu is called from netif_receive_skb and returns the target
4437 * CPU from the RPS map of the receiving queue for a given skb.
4438 * rcu_read_lock must be held on entry.
4440 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4441 struct rps_dev_flow **rflowp)
4443 const struct rps_sock_flow_table *sock_flow_table;
4444 struct netdev_rx_queue *rxqueue = dev->_rx;
4445 struct rps_dev_flow_table *flow_table;
4446 struct rps_map *map;
4451 if (skb_rx_queue_recorded(skb)) {
4452 u16 index = skb_get_rx_queue(skb);
4454 if (unlikely(index >= dev->real_num_rx_queues)) {
4455 WARN_ONCE(dev->real_num_rx_queues > 1,
4456 "%s received packet on queue %u, but number "
4457 "of RX queues is %u\n",
4458 dev->name, index, dev->real_num_rx_queues);
4464 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4466 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4467 map = rcu_dereference(rxqueue->rps_map);
4468 if (!flow_table && !map)
4471 skb_reset_network_header(skb);
4472 hash = skb_get_hash(skb);
4476 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4477 if (flow_table && sock_flow_table) {
4478 struct rps_dev_flow *rflow;
4482 /* First check into global flow table if there is a match */
4483 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4484 if ((ident ^ hash) & ~rps_cpu_mask)
4487 next_cpu = ident & rps_cpu_mask;
4489 /* OK, now we know there is a match,
4490 * we can look at the local (per receive queue) flow table
4492 rflow = &flow_table->flows[hash & flow_table->mask];
4496 * If the desired CPU (where last recvmsg was done) is
4497 * different from current CPU (one in the rx-queue flow
4498 * table entry), switch if one of the following holds:
4499 * - Current CPU is unset (>= nr_cpu_ids).
4500 * - Current CPU is offline.
4501 * - The current CPU's queue tail has advanced beyond the
4502 * last packet that was enqueued using this table entry.
4503 * This guarantees that all previous packets for the flow
4504 * have been dequeued, thus preserving in order delivery.
4506 if (unlikely(tcpu != next_cpu) &&
4507 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4508 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4509 rflow->last_qtail)) >= 0)) {
4511 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4514 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4524 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4525 if (cpu_online(tcpu)) {
4535 #ifdef CONFIG_RFS_ACCEL
4538 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4539 * @dev: Device on which the filter was set
4540 * @rxq_index: RX queue index
4541 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4542 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4544 * Drivers that implement ndo_rx_flow_steer() should periodically call
4545 * this function for each installed filter and remove the filters for
4546 * which it returns %true.
4548 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4549 u32 flow_id, u16 filter_id)
4551 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4552 struct rps_dev_flow_table *flow_table;
4553 struct rps_dev_flow *rflow;
4558 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4559 if (flow_table && flow_id <= flow_table->mask) {
4560 rflow = &flow_table->flows[flow_id];
4561 cpu = READ_ONCE(rflow->cpu);
4562 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4563 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4564 rflow->last_qtail) <
4565 (int)(10 * flow_table->mask)))
4571 EXPORT_SYMBOL(rps_may_expire_flow);
4573 #endif /* CONFIG_RFS_ACCEL */
4575 /* Called from hardirq (IPI) context */
4576 static void rps_trigger_softirq(void *data)
4578 struct softnet_data *sd = data;
4580 ____napi_schedule(sd, &sd->backlog);
4584 #endif /* CONFIG_RPS */
4587 * Check if this softnet_data structure is another cpu one
4588 * If yes, queue it to our IPI list and return 1
4591 static int rps_ipi_queued(struct softnet_data *sd)
4594 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4597 sd->rps_ipi_next = mysd->rps_ipi_list;
4598 mysd->rps_ipi_list = sd;
4600 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4603 #endif /* CONFIG_RPS */
4607 #ifdef CONFIG_NET_FLOW_LIMIT
4608 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4611 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4613 #ifdef CONFIG_NET_FLOW_LIMIT
4614 struct sd_flow_limit *fl;
4615 struct softnet_data *sd;
4616 unsigned int old_flow, new_flow;
4618 if (qlen < (netdev_max_backlog >> 1))
4621 sd = this_cpu_ptr(&softnet_data);
4624 fl = rcu_dereference(sd->flow_limit);
4626 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4627 old_flow = fl->history[fl->history_head];
4628 fl->history[fl->history_head] = new_flow;
4631 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4633 if (likely(fl->buckets[old_flow]))
4634 fl->buckets[old_flow]--;
4636 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4648 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4649 * queue (may be a remote CPU queue).
4651 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4652 unsigned int *qtail)
4654 struct softnet_data *sd;
4655 unsigned long flags;
4658 sd = &per_cpu(softnet_data, cpu);
4660 local_irq_save(flags);
4663 if (!netif_running(skb->dev))
4665 qlen = skb_queue_len(&sd->input_pkt_queue);
4666 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4669 __skb_queue_tail(&sd->input_pkt_queue, skb);
4670 input_queue_tail_incr_save(sd, qtail);
4672 local_irq_restore(flags);
4673 return NET_RX_SUCCESS;
4676 /* Schedule NAPI for backlog device
4677 * We can use non atomic operation since we own the queue lock
4679 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4680 if (!rps_ipi_queued(sd))
4681 ____napi_schedule(sd, &sd->backlog);
4690 local_irq_restore(flags);
4692 atomic_long_inc(&skb->dev->rx_dropped);
4697 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4699 struct net_device *dev = skb->dev;
4700 struct netdev_rx_queue *rxqueue;
4704 if (skb_rx_queue_recorded(skb)) {
4705 u16 index = skb_get_rx_queue(skb);
4707 if (unlikely(index >= dev->real_num_rx_queues)) {
4708 WARN_ONCE(dev->real_num_rx_queues > 1,
4709 "%s received packet on queue %u, but number "
4710 "of RX queues is %u\n",
4711 dev->name, index, dev->real_num_rx_queues);
4713 return rxqueue; /* Return first rxqueue */
4720 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4721 struct xdp_buff *xdp,
4722 struct bpf_prog *xdp_prog)
4724 void *orig_data, *orig_data_end, *hard_start;
4725 struct netdev_rx_queue *rxqueue;
4726 u32 metalen, act = XDP_DROP;
4727 bool orig_bcast, orig_host;
4728 u32 mac_len, frame_sz;
4729 __be16 orig_eth_type;
4733 /* Reinjected packets coming from act_mirred or similar should
4734 * not get XDP generic processing.
4736 if (skb_is_redirected(skb))
4739 /* XDP packets must be linear and must have sufficient headroom
4740 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4741 * native XDP provides, thus we need to do it here as well.
4743 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4744 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4745 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4746 int troom = skb->tail + skb->data_len - skb->end;
4748 /* In case we have to go down the path and also linearize,
4749 * then lets do the pskb_expand_head() work just once here.
4751 if (pskb_expand_head(skb,
4752 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4753 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4755 if (skb_linearize(skb))
4759 /* The XDP program wants to see the packet starting at the MAC
4762 mac_len = skb->data - skb_mac_header(skb);
4763 hard_start = skb->data - skb_headroom(skb);
4765 /* SKB "head" area always have tailroom for skb_shared_info */
4766 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4767 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4769 rxqueue = netif_get_rxqueue(skb);
4770 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4771 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4772 skb_headlen(skb) + mac_len, true);
4774 orig_data_end = xdp->data_end;
4775 orig_data = xdp->data;
4776 eth = (struct ethhdr *)xdp->data;
4777 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4778 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4779 orig_eth_type = eth->h_proto;
4781 act = bpf_prog_run_xdp(xdp_prog, xdp);
4783 /* check if bpf_xdp_adjust_head was used */
4784 off = xdp->data - orig_data;
4787 __skb_pull(skb, off);
4789 __skb_push(skb, -off);
4791 skb->mac_header += off;
4792 skb_reset_network_header(skb);
4795 /* check if bpf_xdp_adjust_tail was used */
4796 off = xdp->data_end - orig_data_end;
4798 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4799 skb->len += off; /* positive on grow, negative on shrink */
4802 /* check if XDP changed eth hdr such SKB needs update */
4803 eth = (struct ethhdr *)xdp->data;
4804 if ((orig_eth_type != eth->h_proto) ||
4805 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4806 skb->dev->dev_addr)) ||
4807 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4808 __skb_push(skb, ETH_HLEN);
4809 skb->pkt_type = PACKET_HOST;
4810 skb->protocol = eth_type_trans(skb, skb->dev);
4816 __skb_push(skb, mac_len);
4819 metalen = xdp->data - xdp->data_meta;
4821 skb_metadata_set(skb, metalen);
4824 bpf_warn_invalid_xdp_action(act);
4827 trace_xdp_exception(skb->dev, xdp_prog, act);
4838 /* When doing generic XDP we have to bypass the qdisc layer and the
4839 * network taps in order to match in-driver-XDP behavior.
4841 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4843 struct net_device *dev = skb->dev;
4844 struct netdev_queue *txq;
4845 bool free_skb = true;
4848 txq = netdev_core_pick_tx(dev, skb, NULL);
4849 cpu = smp_processor_id();
4850 HARD_TX_LOCK(dev, txq, cpu);
4851 if (!netif_xmit_stopped(txq)) {
4852 rc = netdev_start_xmit(skb, dev, txq, 0);
4853 if (dev_xmit_complete(rc))
4856 HARD_TX_UNLOCK(dev, txq);
4858 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4863 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4865 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4868 struct xdp_buff xdp;
4872 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4873 if (act != XDP_PASS) {
4876 err = xdp_do_generic_redirect(skb->dev, skb,
4882 generic_xdp_tx(skb, xdp_prog);
4893 EXPORT_SYMBOL_GPL(do_xdp_generic);
4895 static int netif_rx_internal(struct sk_buff *skb)
4899 net_timestamp_check(netdev_tstamp_prequeue, skb);
4901 trace_netif_rx(skb);
4904 if (static_branch_unlikely(&rps_needed)) {
4905 struct rps_dev_flow voidflow, *rflow = &voidflow;
4911 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4913 cpu = smp_processor_id();
4915 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4924 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4931 * netif_rx - post buffer to the network code
4932 * @skb: buffer to post
4934 * This function receives a packet from a device driver and queues it for
4935 * the upper (protocol) levels to process. It always succeeds. The buffer
4936 * may be dropped during processing for congestion control or by the
4940 * NET_RX_SUCCESS (no congestion)
4941 * NET_RX_DROP (packet was dropped)
4945 int netif_rx(struct sk_buff *skb)
4949 trace_netif_rx_entry(skb);
4951 ret = netif_rx_internal(skb);
4952 trace_netif_rx_exit(ret);
4956 EXPORT_SYMBOL(netif_rx);
4958 int netif_rx_ni(struct sk_buff *skb)
4962 trace_netif_rx_ni_entry(skb);
4965 err = netif_rx_internal(skb);
4966 if (local_softirq_pending())
4969 trace_netif_rx_ni_exit(err);
4973 EXPORT_SYMBOL(netif_rx_ni);
4975 int netif_rx_any_context(struct sk_buff *skb)
4978 * If invoked from contexts which do not invoke bottom half
4979 * processing either at return from interrupt or when softrqs are
4980 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4984 return netif_rx(skb);
4986 return netif_rx_ni(skb);
4988 EXPORT_SYMBOL(netif_rx_any_context);
4990 static __latent_entropy void net_tx_action(struct softirq_action *h)
4992 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4994 if (sd->completion_queue) {
4995 struct sk_buff *clist;
4997 local_irq_disable();
4998 clist = sd->completion_queue;
4999 sd->completion_queue = NULL;
5003 struct sk_buff *skb = clist;
5005 clist = clist->next;
5007 WARN_ON(refcount_read(&skb->users));
5008 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5009 trace_consume_skb(skb);
5011 trace_kfree_skb(skb, net_tx_action);
5013 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5016 __kfree_skb_defer(skb);
5020 if (sd->output_queue) {
5023 local_irq_disable();
5024 head = sd->output_queue;
5025 sd->output_queue = NULL;
5026 sd->output_queue_tailp = &sd->output_queue;
5032 struct Qdisc *q = head;
5033 spinlock_t *root_lock = NULL;
5035 head = head->next_sched;
5037 /* We need to make sure head->next_sched is read
5038 * before clearing __QDISC_STATE_SCHED
5040 smp_mb__before_atomic();
5042 if (!(q->flags & TCQ_F_NOLOCK)) {
5043 root_lock = qdisc_lock(q);
5044 spin_lock(root_lock);
5045 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5047 /* There is a synchronize_net() between
5048 * STATE_DEACTIVATED flag being set and
5049 * qdisc_reset()/some_qdisc_is_busy() in
5050 * dev_deactivate(), so we can safely bail out
5051 * early here to avoid data race between
5052 * qdisc_deactivate() and some_qdisc_is_busy()
5053 * for lockless qdisc.
5055 clear_bit(__QDISC_STATE_SCHED, &q->state);
5059 clear_bit(__QDISC_STATE_SCHED, &q->state);
5062 spin_unlock(root_lock);
5068 xfrm_dev_backlog(sd);
5071 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5072 /* This hook is defined here for ATM LANE */
5073 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5074 unsigned char *addr) __read_mostly;
5075 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5078 static inline struct sk_buff *
5079 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5080 struct net_device *orig_dev, bool *another)
5082 #ifdef CONFIG_NET_CLS_ACT
5083 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5084 struct tcf_result cl_res;
5086 /* If there's at least one ingress present somewhere (so
5087 * we get here via enabled static key), remaining devices
5088 * that are not configured with an ingress qdisc will bail
5095 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5099 qdisc_skb_cb(skb)->pkt_len = skb->len;
5100 qdisc_skb_cb(skb)->mru = 0;
5101 qdisc_skb_cb(skb)->post_ct = false;
5102 skb->tc_at_ingress = 1;
5103 mini_qdisc_bstats_cpu_update(miniq, skb);
5105 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5108 case TC_ACT_RECLASSIFY:
5109 skb->tc_index = TC_H_MIN(cl_res.classid);
5112 mini_qdisc_qstats_cpu_drop(miniq);
5120 case TC_ACT_REDIRECT:
5121 /* skb_mac_header check was done by cls/act_bpf, so
5122 * we can safely push the L2 header back before
5123 * redirecting to another netdev
5125 __skb_push(skb, skb->mac_len);
5126 if (skb_do_redirect(skb) == -EAGAIN) {
5127 __skb_pull(skb, skb->mac_len);
5132 case TC_ACT_CONSUMED:
5137 #endif /* CONFIG_NET_CLS_ACT */
5142 * netdev_is_rx_handler_busy - check if receive handler is registered
5143 * @dev: device to check
5145 * Check if a receive handler is already registered for a given device.
5146 * Return true if there one.
5148 * The caller must hold the rtnl_mutex.
5150 bool netdev_is_rx_handler_busy(struct net_device *dev)
5153 return dev && rtnl_dereference(dev->rx_handler);
5155 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5158 * netdev_rx_handler_register - register receive handler
5159 * @dev: device to register a handler for
5160 * @rx_handler: receive handler to register
5161 * @rx_handler_data: data pointer that is used by rx handler
5163 * Register a receive handler for a device. This handler will then be
5164 * called from __netif_receive_skb. A negative errno code is returned
5167 * The caller must hold the rtnl_mutex.
5169 * For a general description of rx_handler, see enum rx_handler_result.
5171 int netdev_rx_handler_register(struct net_device *dev,
5172 rx_handler_func_t *rx_handler,
5173 void *rx_handler_data)
5175 if (netdev_is_rx_handler_busy(dev))
5178 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5181 /* Note: rx_handler_data must be set before rx_handler */
5182 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5183 rcu_assign_pointer(dev->rx_handler, rx_handler);
5187 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5190 * netdev_rx_handler_unregister - unregister receive handler
5191 * @dev: device to unregister a handler from
5193 * Unregister a receive handler from a device.
5195 * The caller must hold the rtnl_mutex.
5197 void netdev_rx_handler_unregister(struct net_device *dev)
5201 RCU_INIT_POINTER(dev->rx_handler, NULL);
5202 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5203 * section has a guarantee to see a non NULL rx_handler_data
5207 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5209 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5212 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5213 * the special handling of PFMEMALLOC skbs.
5215 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5217 switch (skb->protocol) {
5218 case htons(ETH_P_ARP):
5219 case htons(ETH_P_IP):
5220 case htons(ETH_P_IPV6):
5221 case htons(ETH_P_8021Q):
5222 case htons(ETH_P_8021AD):
5229 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5230 int *ret, struct net_device *orig_dev)
5232 if (nf_hook_ingress_active(skb)) {
5236 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5241 ingress_retval = nf_hook_ingress(skb);
5243 return ingress_retval;
5248 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5249 struct packet_type **ppt_prev)
5251 struct packet_type *ptype, *pt_prev;
5252 rx_handler_func_t *rx_handler;
5253 struct sk_buff *skb = *pskb;
5254 struct net_device *orig_dev;
5255 bool deliver_exact = false;
5256 int ret = NET_RX_DROP;
5259 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5261 trace_netif_receive_skb(skb);
5263 orig_dev = skb->dev;
5265 skb_reset_network_header(skb);
5266 if (!skb_transport_header_was_set(skb))
5267 skb_reset_transport_header(skb);
5268 skb_reset_mac_len(skb);
5273 skb->skb_iif = skb->dev->ifindex;
5275 __this_cpu_inc(softnet_data.processed);
5277 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5281 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5284 if (ret2 != XDP_PASS) {
5288 skb_reset_mac_len(skb);
5291 if (eth_type_vlan(skb->protocol)) {
5292 skb = skb_vlan_untag(skb);
5297 if (skb_skip_tc_classify(skb))
5303 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5305 ret = deliver_skb(skb, pt_prev, orig_dev);
5309 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5311 ret = deliver_skb(skb, pt_prev, orig_dev);
5316 #ifdef CONFIG_NET_INGRESS
5317 if (static_branch_unlikely(&ingress_needed_key)) {
5318 bool another = false;
5320 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5327 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5331 skb_reset_redirect(skb);
5333 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5336 if (skb_vlan_tag_present(skb)) {
5338 ret = deliver_skb(skb, pt_prev, orig_dev);
5341 if (vlan_do_receive(&skb))
5343 else if (unlikely(!skb))
5347 rx_handler = rcu_dereference(skb->dev->rx_handler);
5350 ret = deliver_skb(skb, pt_prev, orig_dev);
5353 switch (rx_handler(&skb)) {
5354 case RX_HANDLER_CONSUMED:
5355 ret = NET_RX_SUCCESS;
5357 case RX_HANDLER_ANOTHER:
5359 case RX_HANDLER_EXACT:
5360 deliver_exact = true;
5362 case RX_HANDLER_PASS:
5369 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5371 if (skb_vlan_tag_get_id(skb)) {
5372 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5375 skb->pkt_type = PACKET_OTHERHOST;
5376 } else if (eth_type_vlan(skb->protocol)) {
5377 /* Outer header is 802.1P with vlan 0, inner header is
5378 * 802.1Q or 802.1AD and vlan_do_receive() above could
5379 * not find vlan dev for vlan id 0.
5381 __vlan_hwaccel_clear_tag(skb);
5382 skb = skb_vlan_untag(skb);
5385 if (vlan_do_receive(&skb))
5386 /* After stripping off 802.1P header with vlan 0
5387 * vlan dev is found for inner header.
5390 else if (unlikely(!skb))
5393 /* We have stripped outer 802.1P vlan 0 header.
5394 * But could not find vlan dev.
5395 * check again for vlan id to set OTHERHOST.
5399 /* Note: we might in the future use prio bits
5400 * and set skb->priority like in vlan_do_receive()
5401 * For the time being, just ignore Priority Code Point
5403 __vlan_hwaccel_clear_tag(skb);
5406 type = skb->protocol;
5408 /* deliver only exact match when indicated */
5409 if (likely(!deliver_exact)) {
5410 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5411 &ptype_base[ntohs(type) &
5415 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5416 &orig_dev->ptype_specific);
5418 if (unlikely(skb->dev != orig_dev)) {
5419 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5420 &skb->dev->ptype_specific);
5424 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5426 *ppt_prev = pt_prev;
5430 atomic_long_inc(&skb->dev->rx_dropped);
5432 atomic_long_inc(&skb->dev->rx_nohandler);
5434 /* Jamal, now you will not able to escape explaining
5435 * me how you were going to use this. :-)
5441 /* The invariant here is that if *ppt_prev is not NULL
5442 * then skb should also be non-NULL.
5444 * Apparently *ppt_prev assignment above holds this invariant due to
5445 * skb dereferencing near it.
5451 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5453 struct net_device *orig_dev = skb->dev;
5454 struct packet_type *pt_prev = NULL;
5457 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5459 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5460 skb->dev, pt_prev, orig_dev);
5465 * netif_receive_skb_core - special purpose version of netif_receive_skb
5466 * @skb: buffer to process
5468 * More direct receive version of netif_receive_skb(). It should
5469 * only be used by callers that have a need to skip RPS and Generic XDP.
5470 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5472 * This function may only be called from softirq context and interrupts
5473 * should be enabled.
5475 * Return values (usually ignored):
5476 * NET_RX_SUCCESS: no congestion
5477 * NET_RX_DROP: packet was dropped
5479 int netif_receive_skb_core(struct sk_buff *skb)
5484 ret = __netif_receive_skb_one_core(skb, false);
5489 EXPORT_SYMBOL(netif_receive_skb_core);
5491 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5492 struct packet_type *pt_prev,
5493 struct net_device *orig_dev)
5495 struct sk_buff *skb, *next;
5499 if (list_empty(head))
5501 if (pt_prev->list_func != NULL)
5502 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5503 ip_list_rcv, head, pt_prev, orig_dev);
5505 list_for_each_entry_safe(skb, next, head, list) {
5506 skb_list_del_init(skb);
5507 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5511 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5513 /* Fast-path assumptions:
5514 * - There is no RX handler.
5515 * - Only one packet_type matches.
5516 * If either of these fails, we will end up doing some per-packet
5517 * processing in-line, then handling the 'last ptype' for the whole
5518 * sublist. This can't cause out-of-order delivery to any single ptype,
5519 * because the 'last ptype' must be constant across the sublist, and all
5520 * other ptypes are handled per-packet.
5522 /* Current (common) ptype of sublist */
5523 struct packet_type *pt_curr = NULL;
5524 /* Current (common) orig_dev of sublist */
5525 struct net_device *od_curr = NULL;
5526 struct list_head sublist;
5527 struct sk_buff *skb, *next;
5529 INIT_LIST_HEAD(&sublist);
5530 list_for_each_entry_safe(skb, next, head, list) {
5531 struct net_device *orig_dev = skb->dev;
5532 struct packet_type *pt_prev = NULL;
5534 skb_list_del_init(skb);
5535 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5538 if (pt_curr != pt_prev || od_curr != orig_dev) {
5539 /* dispatch old sublist */
5540 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5541 /* start new sublist */
5542 INIT_LIST_HEAD(&sublist);
5546 list_add_tail(&skb->list, &sublist);
5549 /* dispatch final sublist */
5550 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5553 static int __netif_receive_skb(struct sk_buff *skb)
5557 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5558 unsigned int noreclaim_flag;
5561 * PFMEMALLOC skbs are special, they should
5562 * - be delivered to SOCK_MEMALLOC sockets only
5563 * - stay away from userspace
5564 * - have bounded memory usage
5566 * Use PF_MEMALLOC as this saves us from propagating the allocation
5567 * context down to all allocation sites.
5569 noreclaim_flag = memalloc_noreclaim_save();
5570 ret = __netif_receive_skb_one_core(skb, true);
5571 memalloc_noreclaim_restore(noreclaim_flag);
5573 ret = __netif_receive_skb_one_core(skb, false);
5578 static void __netif_receive_skb_list(struct list_head *head)
5580 unsigned long noreclaim_flag = 0;
5581 struct sk_buff *skb, *next;
5582 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5584 list_for_each_entry_safe(skb, next, head, list) {
5585 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5586 struct list_head sublist;
5588 /* Handle the previous sublist */
5589 list_cut_before(&sublist, head, &skb->list);
5590 if (!list_empty(&sublist))
5591 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5592 pfmemalloc = !pfmemalloc;
5593 /* See comments in __netif_receive_skb */
5595 noreclaim_flag = memalloc_noreclaim_save();
5597 memalloc_noreclaim_restore(noreclaim_flag);
5600 /* Handle the remaining sublist */
5601 if (!list_empty(head))
5602 __netif_receive_skb_list_core(head, pfmemalloc);
5603 /* Restore pflags */
5605 memalloc_noreclaim_restore(noreclaim_flag);
5608 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5610 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5611 struct bpf_prog *new = xdp->prog;
5617 mutex_lock(&new->aux->used_maps_mutex);
5619 /* generic XDP does not work with DEVMAPs that can
5620 * have a bpf_prog installed on an entry
5622 for (i = 0; i < new->aux->used_map_cnt; i++) {
5623 if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5624 cpu_map_prog_allowed(new->aux->used_maps[i])) {
5625 mutex_unlock(&new->aux->used_maps_mutex);
5630 mutex_unlock(&new->aux->used_maps_mutex);
5633 switch (xdp->command) {
5634 case XDP_SETUP_PROG:
5635 rcu_assign_pointer(dev->xdp_prog, new);
5640 static_branch_dec(&generic_xdp_needed_key);
5641 } else if (new && !old) {
5642 static_branch_inc(&generic_xdp_needed_key);
5643 dev_disable_lro(dev);
5644 dev_disable_gro_hw(dev);
5656 static int netif_receive_skb_internal(struct sk_buff *skb)
5660 net_timestamp_check(netdev_tstamp_prequeue, skb);
5662 if (skb_defer_rx_timestamp(skb))
5663 return NET_RX_SUCCESS;
5667 if (static_branch_unlikely(&rps_needed)) {
5668 struct rps_dev_flow voidflow, *rflow = &voidflow;
5669 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5672 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5678 ret = __netif_receive_skb(skb);
5683 static void netif_receive_skb_list_internal(struct list_head *head)
5685 struct sk_buff *skb, *next;
5686 struct list_head sublist;
5688 INIT_LIST_HEAD(&sublist);
5689 list_for_each_entry_safe(skb, next, head, list) {
5690 net_timestamp_check(netdev_tstamp_prequeue, skb);
5691 skb_list_del_init(skb);
5692 if (!skb_defer_rx_timestamp(skb))
5693 list_add_tail(&skb->list, &sublist);
5695 list_splice_init(&sublist, head);
5699 if (static_branch_unlikely(&rps_needed)) {
5700 list_for_each_entry_safe(skb, next, head, list) {
5701 struct rps_dev_flow voidflow, *rflow = &voidflow;
5702 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5705 /* Will be handled, remove from list */
5706 skb_list_del_init(skb);
5707 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5712 __netif_receive_skb_list(head);
5717 * netif_receive_skb - process receive buffer from network
5718 * @skb: buffer to process
5720 * netif_receive_skb() is the main receive data processing function.
5721 * It always succeeds. The buffer may be dropped during processing
5722 * for congestion control or by the protocol layers.
5724 * This function may only be called from softirq context and interrupts
5725 * should be enabled.
5727 * Return values (usually ignored):
5728 * NET_RX_SUCCESS: no congestion
5729 * NET_RX_DROP: packet was dropped
5731 int netif_receive_skb(struct sk_buff *skb)
5735 trace_netif_receive_skb_entry(skb);
5737 ret = netif_receive_skb_internal(skb);
5738 trace_netif_receive_skb_exit(ret);
5742 EXPORT_SYMBOL(netif_receive_skb);
5745 * netif_receive_skb_list - process many receive buffers from network
5746 * @head: list of skbs to process.
5748 * Since return value of netif_receive_skb() is normally ignored, and
5749 * wouldn't be meaningful for a list, this function returns void.
5751 * This function may only be called from softirq context and interrupts
5752 * should be enabled.
5754 void netif_receive_skb_list(struct list_head *head)
5756 struct sk_buff *skb;
5758 if (list_empty(head))
5760 if (trace_netif_receive_skb_list_entry_enabled()) {
5761 list_for_each_entry(skb, head, list)
5762 trace_netif_receive_skb_list_entry(skb);
5764 netif_receive_skb_list_internal(head);
5765 trace_netif_receive_skb_list_exit(0);
5767 EXPORT_SYMBOL(netif_receive_skb_list);
5769 static DEFINE_PER_CPU(struct work_struct, flush_works);
5771 /* Network device is going away, flush any packets still pending */
5772 static void flush_backlog(struct work_struct *work)
5774 struct sk_buff *skb, *tmp;
5775 struct softnet_data *sd;
5778 sd = this_cpu_ptr(&softnet_data);
5780 local_irq_disable();
5782 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5783 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5784 __skb_unlink(skb, &sd->input_pkt_queue);
5785 dev_kfree_skb_irq(skb);
5786 input_queue_head_incr(sd);
5792 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5793 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5794 __skb_unlink(skb, &sd->process_queue);
5796 input_queue_head_incr(sd);
5802 static bool flush_required(int cpu)
5804 #if IS_ENABLED(CONFIG_RPS)
5805 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5808 local_irq_disable();
5811 /* as insertion into process_queue happens with the rps lock held,
5812 * process_queue access may race only with dequeue
5814 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5815 !skb_queue_empty_lockless(&sd->process_queue);
5821 /* without RPS we can't safely check input_pkt_queue: during a
5822 * concurrent remote skb_queue_splice() we can detect as empty both
5823 * input_pkt_queue and process_queue even if the latter could end-up
5824 * containing a lot of packets.
5829 static void flush_all_backlogs(void)
5831 static cpumask_t flush_cpus;
5834 /* since we are under rtnl lock protection we can use static data
5835 * for the cpumask and avoid allocating on stack the possibly
5842 cpumask_clear(&flush_cpus);
5843 for_each_online_cpu(cpu) {
5844 if (flush_required(cpu)) {
5845 queue_work_on(cpu, system_highpri_wq,
5846 per_cpu_ptr(&flush_works, cpu));
5847 cpumask_set_cpu(cpu, &flush_cpus);
5851 /* we can have in flight packet[s] on the cpus we are not flushing,
5852 * synchronize_net() in unregister_netdevice_many() will take care of
5855 for_each_cpu(cpu, &flush_cpus)
5856 flush_work(per_cpu_ptr(&flush_works, cpu));
5861 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5862 static void gro_normal_list(struct napi_struct *napi)
5864 if (!napi->rx_count)
5866 netif_receive_skb_list_internal(&napi->rx_list);
5867 INIT_LIST_HEAD(&napi->rx_list);
5871 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5872 * pass the whole batch up to the stack.
5874 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5876 list_add_tail(&skb->list, &napi->rx_list);
5877 napi->rx_count += segs;
5878 if (napi->rx_count >= gro_normal_batch)
5879 gro_normal_list(napi);
5882 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5884 struct packet_offload *ptype;
5885 __be16 type = skb->protocol;
5886 struct list_head *head = &offload_base;
5889 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5891 if (NAPI_GRO_CB(skb)->count == 1) {
5892 skb_shinfo(skb)->gso_size = 0;
5897 list_for_each_entry_rcu(ptype, head, list) {
5898 if (ptype->type != type || !ptype->callbacks.gro_complete)
5901 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5902 ipv6_gro_complete, inet_gro_complete,
5909 WARN_ON(&ptype->list == head);
5911 return NET_RX_SUCCESS;
5915 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5916 return NET_RX_SUCCESS;
5919 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5922 struct list_head *head = &napi->gro_hash[index].list;
5923 struct sk_buff *skb, *p;
5925 list_for_each_entry_safe_reverse(skb, p, head, list) {
5926 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5928 skb_list_del_init(skb);
5929 napi_gro_complete(napi, skb);
5930 napi->gro_hash[index].count--;
5933 if (!napi->gro_hash[index].count)
5934 __clear_bit(index, &napi->gro_bitmask);
5937 /* napi->gro_hash[].list contains packets ordered by age.
5938 * youngest packets at the head of it.
5939 * Complete skbs in reverse order to reduce latencies.
5941 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5943 unsigned long bitmask = napi->gro_bitmask;
5944 unsigned int i, base = ~0U;
5946 while ((i = ffs(bitmask)) != 0) {
5949 __napi_gro_flush_chain(napi, base, flush_old);
5952 EXPORT_SYMBOL(napi_gro_flush);
5954 static void gro_list_prepare(const struct list_head *head,
5955 const struct sk_buff *skb)
5957 unsigned int maclen = skb->dev->hard_header_len;
5958 u32 hash = skb_get_hash_raw(skb);
5961 list_for_each_entry(p, head, list) {
5962 unsigned long diffs;
5964 NAPI_GRO_CB(p)->flush = 0;
5966 if (hash != skb_get_hash_raw(p)) {
5967 NAPI_GRO_CB(p)->same_flow = 0;
5971 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5972 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5973 if (skb_vlan_tag_present(p))
5974 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5975 diffs |= skb_metadata_dst_cmp(p, skb);
5976 diffs |= skb_metadata_differs(p, skb);
5977 if (maclen == ETH_HLEN)
5978 diffs |= compare_ether_header(skb_mac_header(p),
5979 skb_mac_header(skb));
5981 diffs = memcmp(skb_mac_header(p),
5982 skb_mac_header(skb),
5984 NAPI_GRO_CB(p)->same_flow = !diffs;
5988 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5990 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5991 const skb_frag_t *frag0 = &pinfo->frags[0];
5993 NAPI_GRO_CB(skb)->data_offset = 0;
5994 NAPI_GRO_CB(skb)->frag0 = NULL;
5995 NAPI_GRO_CB(skb)->frag0_len = 0;
5997 if (!skb_headlen(skb) && pinfo->nr_frags &&
5998 !PageHighMem(skb_frag_page(frag0)) &&
5999 (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6000 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6001 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6002 skb_frag_size(frag0),
6003 skb->end - skb->tail);
6007 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6009 struct skb_shared_info *pinfo = skb_shinfo(skb);
6011 BUG_ON(skb->end - skb->tail < grow);
6013 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6015 skb->data_len -= grow;
6018 skb_frag_off_add(&pinfo->frags[0], grow);
6019 skb_frag_size_sub(&pinfo->frags[0], grow);
6021 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6022 skb_frag_unref(skb, 0);
6023 memmove(pinfo->frags, pinfo->frags + 1,
6024 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6028 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6030 struct sk_buff *oldest;
6032 oldest = list_last_entry(head, struct sk_buff, list);
6034 /* We are called with head length >= MAX_GRO_SKBS, so this is
6037 if (WARN_ON_ONCE(!oldest))
6040 /* Do not adjust napi->gro_hash[].count, caller is adding a new
6043 skb_list_del_init(oldest);
6044 napi_gro_complete(napi, oldest);
6047 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6049 u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6050 struct gro_list *gro_list = &napi->gro_hash[bucket];
6051 struct list_head *head = &offload_base;
6052 struct packet_offload *ptype;
6053 __be16 type = skb->protocol;
6054 struct sk_buff *pp = NULL;
6055 enum gro_result ret;
6059 if (netif_elide_gro(skb->dev))
6062 gro_list_prepare(&gro_list->list, skb);
6065 list_for_each_entry_rcu(ptype, head, list) {
6066 if (ptype->type != type || !ptype->callbacks.gro_receive)
6069 skb_set_network_header(skb, skb_gro_offset(skb));
6070 skb_reset_mac_len(skb);
6071 NAPI_GRO_CB(skb)->same_flow = 0;
6072 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6073 NAPI_GRO_CB(skb)->free = 0;
6074 NAPI_GRO_CB(skb)->encap_mark = 0;
6075 NAPI_GRO_CB(skb)->recursion_counter = 0;
6076 NAPI_GRO_CB(skb)->is_fou = 0;
6077 NAPI_GRO_CB(skb)->is_atomic = 1;
6078 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6080 /* Setup for GRO checksum validation */
6081 switch (skb->ip_summed) {
6082 case CHECKSUM_COMPLETE:
6083 NAPI_GRO_CB(skb)->csum = skb->csum;
6084 NAPI_GRO_CB(skb)->csum_valid = 1;
6085 NAPI_GRO_CB(skb)->csum_cnt = 0;
6087 case CHECKSUM_UNNECESSARY:
6088 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6089 NAPI_GRO_CB(skb)->csum_valid = 0;
6092 NAPI_GRO_CB(skb)->csum_cnt = 0;
6093 NAPI_GRO_CB(skb)->csum_valid = 0;
6096 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6097 ipv6_gro_receive, inet_gro_receive,
6098 &gro_list->list, skb);
6103 if (&ptype->list == head)
6106 if (PTR_ERR(pp) == -EINPROGRESS) {
6111 same_flow = NAPI_GRO_CB(skb)->same_flow;
6112 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6115 skb_list_del_init(pp);
6116 napi_gro_complete(napi, pp);
6123 if (NAPI_GRO_CB(skb)->flush)
6126 if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6127 gro_flush_oldest(napi, &gro_list->list);
6131 NAPI_GRO_CB(skb)->count = 1;
6132 NAPI_GRO_CB(skb)->age = jiffies;
6133 NAPI_GRO_CB(skb)->last = skb;
6134 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6135 list_add(&skb->list, &gro_list->list);
6139 grow = skb_gro_offset(skb) - skb_headlen(skb);
6141 gro_pull_from_frag0(skb, grow);
6143 if (gro_list->count) {
6144 if (!test_bit(bucket, &napi->gro_bitmask))
6145 __set_bit(bucket, &napi->gro_bitmask);
6146 } else if (test_bit(bucket, &napi->gro_bitmask)) {
6147 __clear_bit(bucket, &napi->gro_bitmask);
6157 struct packet_offload *gro_find_receive_by_type(__be16 type)
6159 struct list_head *offload_head = &offload_base;
6160 struct packet_offload *ptype;
6162 list_for_each_entry_rcu(ptype, offload_head, list) {
6163 if (ptype->type != type || !ptype->callbacks.gro_receive)
6169 EXPORT_SYMBOL(gro_find_receive_by_type);
6171 struct packet_offload *gro_find_complete_by_type(__be16 type)
6173 struct list_head *offload_head = &offload_base;
6174 struct packet_offload *ptype;
6176 list_for_each_entry_rcu(ptype, offload_head, list) {
6177 if (ptype->type != type || !ptype->callbacks.gro_complete)
6183 EXPORT_SYMBOL(gro_find_complete_by_type);
6185 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6186 struct sk_buff *skb,
6191 gro_normal_one(napi, skb, 1);
6194 case GRO_MERGED_FREE:
6195 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6196 napi_skb_free_stolen_head(skb);
6198 __kfree_skb_defer(skb);
6210 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6214 skb_mark_napi_id(skb, napi);
6215 trace_napi_gro_receive_entry(skb);
6217 skb_gro_reset_offset(skb, 0);
6219 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6220 trace_napi_gro_receive_exit(ret);
6224 EXPORT_SYMBOL(napi_gro_receive);
6226 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6228 if (unlikely(skb->pfmemalloc)) {
6232 __skb_pull(skb, skb_headlen(skb));
6233 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6234 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6235 __vlan_hwaccel_clear_tag(skb);
6236 skb->dev = napi->dev;
6239 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6240 skb->pkt_type = PACKET_HOST;
6242 skb->encapsulation = 0;
6243 skb_shinfo(skb)->gso_type = 0;
6244 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6250 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6252 struct sk_buff *skb = napi->skb;
6255 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6258 skb_mark_napi_id(skb, napi);
6263 EXPORT_SYMBOL(napi_get_frags);
6265 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6266 struct sk_buff *skb,
6272 __skb_push(skb, ETH_HLEN);
6273 skb->protocol = eth_type_trans(skb, skb->dev);
6274 if (ret == GRO_NORMAL)
6275 gro_normal_one(napi, skb, 1);
6278 case GRO_MERGED_FREE:
6279 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6280 napi_skb_free_stolen_head(skb);
6282 napi_reuse_skb(napi, skb);
6293 /* Upper GRO stack assumes network header starts at gro_offset=0
6294 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6295 * We copy ethernet header into skb->data to have a common layout.
6297 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6299 struct sk_buff *skb = napi->skb;
6300 const struct ethhdr *eth;
6301 unsigned int hlen = sizeof(*eth);
6305 skb_reset_mac_header(skb);
6306 skb_gro_reset_offset(skb, hlen);
6308 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6309 eth = skb_gro_header_slow(skb, hlen, 0);
6310 if (unlikely(!eth)) {
6311 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6312 __func__, napi->dev->name);
6313 napi_reuse_skb(napi, skb);
6317 eth = (const struct ethhdr *)skb->data;
6318 gro_pull_from_frag0(skb, hlen);
6319 NAPI_GRO_CB(skb)->frag0 += hlen;
6320 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6322 __skb_pull(skb, hlen);
6325 * This works because the only protocols we care about don't require
6327 * We'll fix it up properly in napi_frags_finish()
6329 skb->protocol = eth->h_proto;
6334 gro_result_t napi_gro_frags(struct napi_struct *napi)
6337 struct sk_buff *skb = napi_frags_skb(napi);
6339 trace_napi_gro_frags_entry(skb);
6341 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6342 trace_napi_gro_frags_exit(ret);
6346 EXPORT_SYMBOL(napi_gro_frags);
6348 /* Compute the checksum from gro_offset and return the folded value
6349 * after adding in any pseudo checksum.
6351 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6356 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6358 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6359 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6360 /* See comments in __skb_checksum_complete(). */
6362 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6363 !skb->csum_complete_sw)
6364 netdev_rx_csum_fault(skb->dev, skb);
6367 NAPI_GRO_CB(skb)->csum = wsum;
6368 NAPI_GRO_CB(skb)->csum_valid = 1;
6372 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6374 static void net_rps_send_ipi(struct softnet_data *remsd)
6378 struct softnet_data *next = remsd->rps_ipi_next;
6380 if (cpu_online(remsd->cpu))
6381 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6388 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6389 * Note: called with local irq disabled, but exits with local irq enabled.
6391 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6394 struct softnet_data *remsd = sd->rps_ipi_list;
6397 sd->rps_ipi_list = NULL;
6401 /* Send pending IPI's to kick RPS processing on remote cpus. */
6402 net_rps_send_ipi(remsd);
6408 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6411 return sd->rps_ipi_list != NULL;
6417 static int process_backlog(struct napi_struct *napi, int quota)
6419 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6423 /* Check if we have pending ipi, its better to send them now,
6424 * not waiting net_rx_action() end.
6426 if (sd_has_rps_ipi_waiting(sd)) {
6427 local_irq_disable();
6428 net_rps_action_and_irq_enable(sd);
6431 napi->weight = dev_rx_weight;
6433 struct sk_buff *skb;
6435 while ((skb = __skb_dequeue(&sd->process_queue))) {
6437 __netif_receive_skb(skb);
6439 input_queue_head_incr(sd);
6440 if (++work >= quota)
6445 local_irq_disable();
6447 if (skb_queue_empty(&sd->input_pkt_queue)) {
6449 * Inline a custom version of __napi_complete().
6450 * only current cpu owns and manipulates this napi,
6451 * and NAPI_STATE_SCHED is the only possible flag set
6453 * We can use a plain write instead of clear_bit(),
6454 * and we dont need an smp_mb() memory barrier.
6459 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6460 &sd->process_queue);
6470 * __napi_schedule - schedule for receive
6471 * @n: entry to schedule
6473 * The entry's receive function will be scheduled to run.
6474 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6476 void __napi_schedule(struct napi_struct *n)
6478 unsigned long flags;
6480 local_irq_save(flags);
6481 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6482 local_irq_restore(flags);
6484 EXPORT_SYMBOL(__napi_schedule);
6487 * napi_schedule_prep - check if napi can be scheduled
6490 * Test if NAPI routine is already running, and if not mark
6491 * it as running. This is used as a condition variable to
6492 * insure only one NAPI poll instance runs. We also make
6493 * sure there is no pending NAPI disable.
6495 bool napi_schedule_prep(struct napi_struct *n)
6497 unsigned long val, new;
6500 val = READ_ONCE(n->state);
6501 if (unlikely(val & NAPIF_STATE_DISABLE))
6503 new = val | NAPIF_STATE_SCHED;
6505 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6506 * This was suggested by Alexander Duyck, as compiler
6507 * emits better code than :
6508 * if (val & NAPIF_STATE_SCHED)
6509 * new |= NAPIF_STATE_MISSED;
6511 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6513 } while (cmpxchg(&n->state, val, new) != val);
6515 return !(val & NAPIF_STATE_SCHED);
6517 EXPORT_SYMBOL(napi_schedule_prep);
6520 * __napi_schedule_irqoff - schedule for receive
6521 * @n: entry to schedule
6523 * Variant of __napi_schedule() assuming hard irqs are masked.
6525 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6526 * because the interrupt disabled assumption might not be true
6527 * due to force-threaded interrupts and spinlock substitution.
6529 void __napi_schedule_irqoff(struct napi_struct *n)
6531 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6532 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6536 EXPORT_SYMBOL(__napi_schedule_irqoff);
6538 bool napi_complete_done(struct napi_struct *n, int work_done)
6540 unsigned long flags, val, new, timeout = 0;
6544 * 1) Don't let napi dequeue from the cpu poll list
6545 * just in case its running on a different cpu.
6546 * 2) If we are busy polling, do nothing here, we have
6547 * the guarantee we will be called later.
6549 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6550 NAPIF_STATE_IN_BUSY_POLL)))
6555 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6556 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6558 if (n->defer_hard_irqs_count > 0) {
6559 n->defer_hard_irqs_count--;
6560 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6564 if (n->gro_bitmask) {
6565 /* When the NAPI instance uses a timeout and keeps postponing
6566 * it, we need to bound somehow the time packets are kept in
6569 napi_gro_flush(n, !!timeout);
6574 if (unlikely(!list_empty(&n->poll_list))) {
6575 /* If n->poll_list is not empty, we need to mask irqs */
6576 local_irq_save(flags);
6577 list_del_init(&n->poll_list);
6578 local_irq_restore(flags);
6582 val = READ_ONCE(n->state);
6584 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6586 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6587 NAPIF_STATE_SCHED_THREADED |
6588 NAPIF_STATE_PREFER_BUSY_POLL);
6590 /* If STATE_MISSED was set, leave STATE_SCHED set,
6591 * because we will call napi->poll() one more time.
6592 * This C code was suggested by Alexander Duyck to help gcc.
6594 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6596 } while (cmpxchg(&n->state, val, new) != val);
6598 if (unlikely(val & NAPIF_STATE_MISSED)) {
6604 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6605 HRTIMER_MODE_REL_PINNED);
6608 EXPORT_SYMBOL(napi_complete_done);
6610 /* must be called under rcu_read_lock(), as we dont take a reference */
6611 static struct napi_struct *napi_by_id(unsigned int napi_id)
6613 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6614 struct napi_struct *napi;
6616 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6617 if (napi->napi_id == napi_id)
6623 #if defined(CONFIG_NET_RX_BUSY_POLL)
6625 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6627 if (!skip_schedule) {
6628 gro_normal_list(napi);
6629 __napi_schedule(napi);
6633 if (napi->gro_bitmask) {
6634 /* flush too old packets
6635 * If HZ < 1000, flush all packets.
6637 napi_gro_flush(napi, HZ >= 1000);
6640 gro_normal_list(napi);
6641 clear_bit(NAPI_STATE_SCHED, &napi->state);
6644 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6647 bool skip_schedule = false;
6648 unsigned long timeout;
6651 /* Busy polling means there is a high chance device driver hard irq
6652 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6653 * set in napi_schedule_prep().
6654 * Since we are about to call napi->poll() once more, we can safely
6655 * clear NAPI_STATE_MISSED.
6657 * Note: x86 could use a single "lock and ..." instruction
6658 * to perform these two clear_bit()
6660 clear_bit(NAPI_STATE_MISSED, &napi->state);
6661 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6665 if (prefer_busy_poll) {
6666 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6667 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6668 if (napi->defer_hard_irqs_count && timeout) {
6669 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6670 skip_schedule = true;
6674 /* All we really want here is to re-enable device interrupts.
6675 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6677 rc = napi->poll(napi, budget);
6678 /* We can't gro_normal_list() here, because napi->poll() might have
6679 * rearmed the napi (napi_complete_done()) in which case it could
6680 * already be running on another CPU.
6682 trace_napi_poll(napi, rc, budget);
6683 netpoll_poll_unlock(have_poll_lock);
6685 __busy_poll_stop(napi, skip_schedule);
6689 void napi_busy_loop(unsigned int napi_id,
6690 bool (*loop_end)(void *, unsigned long),
6691 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6693 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6694 int (*napi_poll)(struct napi_struct *napi, int budget);
6695 void *have_poll_lock = NULL;
6696 struct napi_struct *napi;
6703 napi = napi_by_id(napi_id);
6713 unsigned long val = READ_ONCE(napi->state);
6715 /* If multiple threads are competing for this napi,
6716 * we avoid dirtying napi->state as much as we can.
6718 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6719 NAPIF_STATE_IN_BUSY_POLL)) {
6720 if (prefer_busy_poll)
6721 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6724 if (cmpxchg(&napi->state, val,
6725 val | NAPIF_STATE_IN_BUSY_POLL |
6726 NAPIF_STATE_SCHED) != val) {
6727 if (prefer_busy_poll)
6728 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6731 have_poll_lock = netpoll_poll_lock(napi);
6732 napi_poll = napi->poll;
6734 work = napi_poll(napi, budget);
6735 trace_napi_poll(napi, work, budget);
6736 gro_normal_list(napi);
6739 __NET_ADD_STATS(dev_net(napi->dev),
6740 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6743 if (!loop_end || loop_end(loop_end_arg, start_time))
6746 if (unlikely(need_resched())) {
6748 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6752 if (loop_end(loop_end_arg, start_time))
6759 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6764 EXPORT_SYMBOL(napi_busy_loop);
6766 #endif /* CONFIG_NET_RX_BUSY_POLL */
6768 static void napi_hash_add(struct napi_struct *napi)
6770 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6773 spin_lock(&napi_hash_lock);
6775 /* 0..NR_CPUS range is reserved for sender_cpu use */
6777 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6778 napi_gen_id = MIN_NAPI_ID;
6779 } while (napi_by_id(napi_gen_id));
6780 napi->napi_id = napi_gen_id;
6782 hlist_add_head_rcu(&napi->napi_hash_node,
6783 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6785 spin_unlock(&napi_hash_lock);
6788 /* Warning : caller is responsible to make sure rcu grace period
6789 * is respected before freeing memory containing @napi
6791 static void napi_hash_del(struct napi_struct *napi)
6793 spin_lock(&napi_hash_lock);
6795 hlist_del_init_rcu(&napi->napi_hash_node);
6797 spin_unlock(&napi_hash_lock);
6800 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6802 struct napi_struct *napi;
6804 napi = container_of(timer, struct napi_struct, timer);
6806 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6807 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6809 if (!napi_disable_pending(napi) &&
6810 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6811 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6812 __napi_schedule_irqoff(napi);
6815 return HRTIMER_NORESTART;
6818 static void init_gro_hash(struct napi_struct *napi)
6822 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6823 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6824 napi->gro_hash[i].count = 0;
6826 napi->gro_bitmask = 0;
6829 int dev_set_threaded(struct net_device *dev, bool threaded)
6831 struct napi_struct *napi;
6834 if (dev->threaded == threaded)
6838 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6839 if (!napi->thread) {
6840 err = napi_kthread_create(napi);
6849 dev->threaded = threaded;
6851 /* Make sure kthread is created before THREADED bit
6854 smp_mb__before_atomic();
6856 /* Setting/unsetting threaded mode on a napi might not immediately
6857 * take effect, if the current napi instance is actively being
6858 * polled. In this case, the switch between threaded mode and
6859 * softirq mode will happen in the next round of napi_schedule().
6860 * This should not cause hiccups/stalls to the live traffic.
6862 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6864 set_bit(NAPI_STATE_THREADED, &napi->state);
6866 clear_bit(NAPI_STATE_THREADED, &napi->state);
6871 EXPORT_SYMBOL(dev_set_threaded);
6873 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6874 int (*poll)(struct napi_struct *, int), int weight)
6876 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6879 INIT_LIST_HEAD(&napi->poll_list);
6880 INIT_HLIST_NODE(&napi->napi_hash_node);
6881 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6882 napi->timer.function = napi_watchdog;
6883 init_gro_hash(napi);
6885 INIT_LIST_HEAD(&napi->rx_list);
6888 if (weight > NAPI_POLL_WEIGHT)
6889 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6891 napi->weight = weight;
6893 #ifdef CONFIG_NETPOLL
6894 napi->poll_owner = -1;
6896 set_bit(NAPI_STATE_SCHED, &napi->state);
6897 set_bit(NAPI_STATE_NPSVC, &napi->state);
6898 list_add_rcu(&napi->dev_list, &dev->napi_list);
6899 napi_hash_add(napi);
6900 /* Create kthread for this napi if dev->threaded is set.
6901 * Clear dev->threaded if kthread creation failed so that
6902 * threaded mode will not be enabled in napi_enable().
6904 if (dev->threaded && napi_kthread_create(napi))
6907 EXPORT_SYMBOL(netif_napi_add);
6909 void napi_disable(struct napi_struct *n)
6912 set_bit(NAPI_STATE_DISABLE, &n->state);
6914 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6916 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6919 hrtimer_cancel(&n->timer);
6921 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6922 clear_bit(NAPI_STATE_DISABLE, &n->state);
6923 clear_bit(NAPI_STATE_THREADED, &n->state);
6925 EXPORT_SYMBOL(napi_disable);
6928 * napi_enable - enable NAPI scheduling
6931 * Resume NAPI from being scheduled on this context.
6932 * Must be paired with napi_disable.
6934 void napi_enable(struct napi_struct *n)
6936 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6937 smp_mb__before_atomic();
6938 clear_bit(NAPI_STATE_SCHED, &n->state);
6939 clear_bit(NAPI_STATE_NPSVC, &n->state);
6940 if (n->dev->threaded && n->thread)
6941 set_bit(NAPI_STATE_THREADED, &n->state);
6943 EXPORT_SYMBOL(napi_enable);
6945 static void flush_gro_hash(struct napi_struct *napi)
6949 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6950 struct sk_buff *skb, *n;
6952 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6954 napi->gro_hash[i].count = 0;
6958 /* Must be called in process context */
6959 void __netif_napi_del(struct napi_struct *napi)
6961 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6964 napi_hash_del(napi);
6965 list_del_rcu(&napi->dev_list);
6966 napi_free_frags(napi);
6968 flush_gro_hash(napi);
6969 napi->gro_bitmask = 0;
6972 kthread_stop(napi->thread);
6973 napi->thread = NULL;
6976 EXPORT_SYMBOL(__netif_napi_del);
6978 static int __napi_poll(struct napi_struct *n, bool *repoll)
6984 /* This NAPI_STATE_SCHED test is for avoiding a race
6985 * with netpoll's poll_napi(). Only the entity which
6986 * obtains the lock and sees NAPI_STATE_SCHED set will
6987 * actually make the ->poll() call. Therefore we avoid
6988 * accidentally calling ->poll() when NAPI is not scheduled.
6991 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6992 work = n->poll(n, weight);
6993 trace_napi_poll(n, work, weight);
6996 if (unlikely(work > weight))
6997 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6998 n->poll, work, weight);
7000 if (likely(work < weight))
7003 /* Drivers must not modify the NAPI state if they
7004 * consume the entire weight. In such cases this code
7005 * still "owns" the NAPI instance and therefore can
7006 * move the instance around on the list at-will.
7008 if (unlikely(napi_disable_pending(n))) {
7013 /* The NAPI context has more processing work, but busy-polling
7014 * is preferred. Exit early.
7016 if (napi_prefer_busy_poll(n)) {
7017 if (napi_complete_done(n, work)) {
7018 /* If timeout is not set, we need to make sure
7019 * that the NAPI is re-scheduled.
7026 if (n->gro_bitmask) {
7027 /* flush too old packets
7028 * If HZ < 1000, flush all packets.
7030 napi_gro_flush(n, HZ >= 1000);
7035 /* Some drivers may have called napi_schedule
7036 * prior to exhausting their budget.
7038 if (unlikely(!list_empty(&n->poll_list))) {
7039 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7040 n->dev ? n->dev->name : "backlog");
7049 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7051 bool do_repoll = false;
7055 list_del_init(&n->poll_list);
7057 have = netpoll_poll_lock(n);
7059 work = __napi_poll(n, &do_repoll);
7062 list_add_tail(&n->poll_list, repoll);
7064 netpoll_poll_unlock(have);
7069 static int napi_thread_wait(struct napi_struct *napi)
7073 set_current_state(TASK_INTERRUPTIBLE);
7075 while (!kthread_should_stop()) {
7076 /* Testing SCHED_THREADED bit here to make sure the current
7077 * kthread owns this napi and could poll on this napi.
7078 * Testing SCHED bit is not enough because SCHED bit might be
7079 * set by some other busy poll thread or by napi_disable().
7081 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7082 WARN_ON(!list_empty(&napi->poll_list));
7083 __set_current_state(TASK_RUNNING);
7088 /* woken being true indicates this thread owns this napi. */
7090 set_current_state(TASK_INTERRUPTIBLE);
7092 __set_current_state(TASK_RUNNING);
7097 static int napi_threaded_poll(void *data)
7099 struct napi_struct *napi = data;
7102 while (!napi_thread_wait(napi)) {
7104 bool repoll = false;
7108 have = netpoll_poll_lock(napi);
7109 __napi_poll(napi, &repoll);
7110 netpoll_poll_unlock(have);
7123 static __latent_entropy void net_rx_action(struct softirq_action *h)
7125 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7126 unsigned long time_limit = jiffies +
7127 usecs_to_jiffies(netdev_budget_usecs);
7128 int budget = netdev_budget;
7132 local_irq_disable();
7133 list_splice_init(&sd->poll_list, &list);
7137 struct napi_struct *n;
7139 if (list_empty(&list)) {
7140 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7145 n = list_first_entry(&list, struct napi_struct, poll_list);
7146 budget -= napi_poll(n, &repoll);
7148 /* If softirq window is exhausted then punt.
7149 * Allow this to run for 2 jiffies since which will allow
7150 * an average latency of 1.5/HZ.
7152 if (unlikely(budget <= 0 ||
7153 time_after_eq(jiffies, time_limit))) {
7159 local_irq_disable();
7161 list_splice_tail_init(&sd->poll_list, &list);
7162 list_splice_tail(&repoll, &list);
7163 list_splice(&list, &sd->poll_list);
7164 if (!list_empty(&sd->poll_list))
7165 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7167 net_rps_action_and_irq_enable(sd);
7170 struct netdev_adjacent {
7171 struct net_device *dev;
7173 /* upper master flag, there can only be one master device per list */
7176 /* lookup ignore flag */
7179 /* counter for the number of times this device was added to us */
7182 /* private field for the users */
7185 struct list_head list;
7186 struct rcu_head rcu;
7189 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7190 struct list_head *adj_list)
7192 struct netdev_adjacent *adj;
7194 list_for_each_entry(adj, adj_list, list) {
7195 if (adj->dev == adj_dev)
7201 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7202 struct netdev_nested_priv *priv)
7204 struct net_device *dev = (struct net_device *)priv->data;
7206 return upper_dev == dev;
7210 * netdev_has_upper_dev - Check if device is linked to an upper device
7212 * @upper_dev: upper device to check
7214 * Find out if a device is linked to specified upper device and return true
7215 * in case it is. Note that this checks only immediate upper device,
7216 * not through a complete stack of devices. The caller must hold the RTNL lock.
7218 bool netdev_has_upper_dev(struct net_device *dev,
7219 struct net_device *upper_dev)
7221 struct netdev_nested_priv priv = {
7222 .data = (void *)upper_dev,
7227 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7230 EXPORT_SYMBOL(netdev_has_upper_dev);
7233 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7235 * @upper_dev: upper device to check
7237 * Find out if a device is linked to specified upper device and return true
7238 * in case it is. Note that this checks the entire upper device chain.
7239 * The caller must hold rcu lock.
7242 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7243 struct net_device *upper_dev)
7245 struct netdev_nested_priv priv = {
7246 .data = (void *)upper_dev,
7249 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7252 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7255 * netdev_has_any_upper_dev - Check if device is linked to some device
7258 * Find out if a device is linked to an upper device and return true in case
7259 * it is. The caller must hold the RTNL lock.
7261 bool netdev_has_any_upper_dev(struct net_device *dev)
7265 return !list_empty(&dev->adj_list.upper);
7267 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7270 * netdev_master_upper_dev_get - Get master upper device
7273 * Find a master upper device and return pointer to it or NULL in case
7274 * it's not there. The caller must hold the RTNL lock.
7276 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7278 struct netdev_adjacent *upper;
7282 if (list_empty(&dev->adj_list.upper))
7285 upper = list_first_entry(&dev->adj_list.upper,
7286 struct netdev_adjacent, list);
7287 if (likely(upper->master))
7291 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7293 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7295 struct netdev_adjacent *upper;
7299 if (list_empty(&dev->adj_list.upper))
7302 upper = list_first_entry(&dev->adj_list.upper,
7303 struct netdev_adjacent, list);
7304 if (likely(upper->master) && !upper->ignore)
7310 * netdev_has_any_lower_dev - Check if device is linked to some device
7313 * Find out if a device is linked to a lower device and return true in case
7314 * it is. The caller must hold the RTNL lock.
7316 static bool netdev_has_any_lower_dev(struct net_device *dev)
7320 return !list_empty(&dev->adj_list.lower);
7323 void *netdev_adjacent_get_private(struct list_head *adj_list)
7325 struct netdev_adjacent *adj;
7327 adj = list_entry(adj_list, struct netdev_adjacent, list);
7329 return adj->private;
7331 EXPORT_SYMBOL(netdev_adjacent_get_private);
7334 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7336 * @iter: list_head ** of the current position
7338 * Gets the next device from the dev's upper list, starting from iter
7339 * position. The caller must hold RCU read lock.
7341 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7342 struct list_head **iter)
7344 struct netdev_adjacent *upper;
7346 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7348 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7350 if (&upper->list == &dev->adj_list.upper)
7353 *iter = &upper->list;
7357 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7359 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7360 struct list_head **iter,
7363 struct netdev_adjacent *upper;
7365 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7367 if (&upper->list == &dev->adj_list.upper)
7370 *iter = &upper->list;
7371 *ignore = upper->ignore;
7376 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7377 struct list_head **iter)
7379 struct netdev_adjacent *upper;
7381 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7383 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7385 if (&upper->list == &dev->adj_list.upper)
7388 *iter = &upper->list;
7393 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7394 int (*fn)(struct net_device *dev,
7395 struct netdev_nested_priv *priv),
7396 struct netdev_nested_priv *priv)
7398 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7399 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7404 iter = &dev->adj_list.upper;
7408 ret = fn(now, priv);
7415 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7422 niter = &udev->adj_list.upper;
7423 dev_stack[cur] = now;
7424 iter_stack[cur++] = iter;
7431 next = dev_stack[--cur];
7432 niter = iter_stack[cur];
7442 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7443 int (*fn)(struct net_device *dev,
7444 struct netdev_nested_priv *priv),
7445 struct netdev_nested_priv *priv)
7447 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7448 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7452 iter = &dev->adj_list.upper;
7456 ret = fn(now, priv);
7463 udev = netdev_next_upper_dev_rcu(now, &iter);
7468 niter = &udev->adj_list.upper;
7469 dev_stack[cur] = now;
7470 iter_stack[cur++] = iter;
7477 next = dev_stack[--cur];
7478 niter = iter_stack[cur];
7487 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7489 static bool __netdev_has_upper_dev(struct net_device *dev,
7490 struct net_device *upper_dev)
7492 struct netdev_nested_priv priv = {
7494 .data = (void *)upper_dev,
7499 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7504 * netdev_lower_get_next_private - Get the next ->private from the
7505 * lower neighbour list
7507 * @iter: list_head ** of the current position
7509 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7510 * list, starting from iter position. The caller must hold either hold the
7511 * RTNL lock or its own locking that guarantees that the neighbour lower
7512 * list will remain unchanged.
7514 void *netdev_lower_get_next_private(struct net_device *dev,
7515 struct list_head **iter)
7517 struct netdev_adjacent *lower;
7519 lower = list_entry(*iter, struct netdev_adjacent, list);
7521 if (&lower->list == &dev->adj_list.lower)
7524 *iter = lower->list.next;
7526 return lower->private;
7528 EXPORT_SYMBOL(netdev_lower_get_next_private);
7531 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7532 * lower neighbour list, RCU
7535 * @iter: list_head ** of the current position
7537 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7538 * list, starting from iter position. The caller must hold RCU read lock.
7540 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7541 struct list_head **iter)
7543 struct netdev_adjacent *lower;
7545 WARN_ON_ONCE(!rcu_read_lock_held());
7547 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7549 if (&lower->list == &dev->adj_list.lower)
7552 *iter = &lower->list;
7554 return lower->private;
7556 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7559 * netdev_lower_get_next - Get the next device from the lower neighbour
7562 * @iter: list_head ** of the current position
7564 * Gets the next netdev_adjacent from the dev's lower neighbour
7565 * list, starting from iter position. The caller must hold RTNL lock or
7566 * its own locking that guarantees that the neighbour lower
7567 * list will remain unchanged.
7569 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7571 struct netdev_adjacent *lower;
7573 lower = list_entry(*iter, struct netdev_adjacent, list);
7575 if (&lower->list == &dev->adj_list.lower)
7578 *iter = lower->list.next;
7582 EXPORT_SYMBOL(netdev_lower_get_next);
7584 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7585 struct list_head **iter)
7587 struct netdev_adjacent *lower;
7589 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7591 if (&lower->list == &dev->adj_list.lower)
7594 *iter = &lower->list;
7599 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7600 struct list_head **iter,
7603 struct netdev_adjacent *lower;
7605 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7607 if (&lower->list == &dev->adj_list.lower)
7610 *iter = &lower->list;
7611 *ignore = lower->ignore;
7616 int netdev_walk_all_lower_dev(struct net_device *dev,
7617 int (*fn)(struct net_device *dev,
7618 struct netdev_nested_priv *priv),
7619 struct netdev_nested_priv *priv)
7621 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7622 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7626 iter = &dev->adj_list.lower;
7630 ret = fn(now, priv);
7637 ldev = netdev_next_lower_dev(now, &iter);
7642 niter = &ldev->adj_list.lower;
7643 dev_stack[cur] = now;
7644 iter_stack[cur++] = iter;
7651 next = dev_stack[--cur];
7652 niter = iter_stack[cur];
7661 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7663 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7664 int (*fn)(struct net_device *dev,
7665 struct netdev_nested_priv *priv),
7666 struct netdev_nested_priv *priv)
7668 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7669 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7674 iter = &dev->adj_list.lower;
7678 ret = fn(now, priv);
7685 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7692 niter = &ldev->adj_list.lower;
7693 dev_stack[cur] = now;
7694 iter_stack[cur++] = iter;
7701 next = dev_stack[--cur];
7702 niter = iter_stack[cur];
7712 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7713 struct list_head **iter)
7715 struct netdev_adjacent *lower;
7717 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7718 if (&lower->list == &dev->adj_list.lower)
7721 *iter = &lower->list;
7725 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7727 static u8 __netdev_upper_depth(struct net_device *dev)
7729 struct net_device *udev;
7730 struct list_head *iter;
7734 for (iter = &dev->adj_list.upper,
7735 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7737 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7740 if (max_depth < udev->upper_level)
7741 max_depth = udev->upper_level;
7747 static u8 __netdev_lower_depth(struct net_device *dev)
7749 struct net_device *ldev;
7750 struct list_head *iter;
7754 for (iter = &dev->adj_list.lower,
7755 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7757 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7760 if (max_depth < ldev->lower_level)
7761 max_depth = ldev->lower_level;
7767 static int __netdev_update_upper_level(struct net_device *dev,
7768 struct netdev_nested_priv *__unused)
7770 dev->upper_level = __netdev_upper_depth(dev) + 1;
7774 static int __netdev_update_lower_level(struct net_device *dev,
7775 struct netdev_nested_priv *priv)
7777 dev->lower_level = __netdev_lower_depth(dev) + 1;
7779 #ifdef CONFIG_LOCKDEP
7783 if (priv->flags & NESTED_SYNC_IMM)
7784 dev->nested_level = dev->lower_level - 1;
7785 if (priv->flags & NESTED_SYNC_TODO)
7786 net_unlink_todo(dev);
7791 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7792 int (*fn)(struct net_device *dev,
7793 struct netdev_nested_priv *priv),
7794 struct netdev_nested_priv *priv)
7796 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7797 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7801 iter = &dev->adj_list.lower;
7805 ret = fn(now, priv);
7812 ldev = netdev_next_lower_dev_rcu(now, &iter);
7817 niter = &ldev->adj_list.lower;
7818 dev_stack[cur] = now;
7819 iter_stack[cur++] = iter;
7826 next = dev_stack[--cur];
7827 niter = iter_stack[cur];
7836 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7839 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7840 * lower neighbour list, RCU
7844 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7845 * list. The caller must hold RCU read lock.
7847 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7849 struct netdev_adjacent *lower;
7851 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7852 struct netdev_adjacent, list);
7854 return lower->private;
7857 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7860 * netdev_master_upper_dev_get_rcu - Get master upper device
7863 * Find a master upper device and return pointer to it or NULL in case
7864 * it's not there. The caller must hold the RCU read lock.
7866 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7868 struct netdev_adjacent *upper;
7870 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7871 struct netdev_adjacent, list);
7872 if (upper && likely(upper->master))
7876 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7878 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7879 struct net_device *adj_dev,
7880 struct list_head *dev_list)
7882 char linkname[IFNAMSIZ+7];
7884 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7885 "upper_%s" : "lower_%s", adj_dev->name);
7886 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7889 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7891 struct list_head *dev_list)
7893 char linkname[IFNAMSIZ+7];
7895 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7896 "upper_%s" : "lower_%s", name);
7897 sysfs_remove_link(&(dev->dev.kobj), linkname);
7900 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7901 struct net_device *adj_dev,
7902 struct list_head *dev_list)
7904 return (dev_list == &dev->adj_list.upper ||
7905 dev_list == &dev->adj_list.lower) &&
7906 net_eq(dev_net(dev), dev_net(adj_dev));
7909 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7910 struct net_device *adj_dev,
7911 struct list_head *dev_list,
7912 void *private, bool master)
7914 struct netdev_adjacent *adj;
7917 adj = __netdev_find_adj(adj_dev, dev_list);
7921 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7922 dev->name, adj_dev->name, adj->ref_nr);
7927 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7932 adj->master = master;
7934 adj->private = private;
7935 adj->ignore = false;
7938 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7939 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7941 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7942 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7947 /* Ensure that master link is always the first item in list. */
7949 ret = sysfs_create_link(&(dev->dev.kobj),
7950 &(adj_dev->dev.kobj), "master");
7952 goto remove_symlinks;
7954 list_add_rcu(&adj->list, dev_list);
7956 list_add_tail_rcu(&adj->list, dev_list);
7962 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7963 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7971 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7972 struct net_device *adj_dev,
7974 struct list_head *dev_list)
7976 struct netdev_adjacent *adj;
7978 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7979 dev->name, adj_dev->name, ref_nr);
7981 adj = __netdev_find_adj(adj_dev, dev_list);
7984 pr_err("Adjacency does not exist for device %s from %s\n",
7985 dev->name, adj_dev->name);
7990 if (adj->ref_nr > ref_nr) {
7991 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7992 dev->name, adj_dev->name, ref_nr,
7993 adj->ref_nr - ref_nr);
7994 adj->ref_nr -= ref_nr;
7999 sysfs_remove_link(&(dev->dev.kobj), "master");
8001 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8002 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8004 list_del_rcu(&adj->list);
8005 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8006 adj_dev->name, dev->name, adj_dev->name);
8008 kfree_rcu(adj, rcu);
8011 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8012 struct net_device *upper_dev,
8013 struct list_head *up_list,
8014 struct list_head *down_list,
8015 void *private, bool master)
8019 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8024 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8027 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8034 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8035 struct net_device *upper_dev,
8037 struct list_head *up_list,
8038 struct list_head *down_list)
8040 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8041 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8044 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8045 struct net_device *upper_dev,
8046 void *private, bool master)
8048 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8049 &dev->adj_list.upper,
8050 &upper_dev->adj_list.lower,
8054 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8055 struct net_device *upper_dev)
8057 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8058 &dev->adj_list.upper,
8059 &upper_dev->adj_list.lower);
8062 static int __netdev_upper_dev_link(struct net_device *dev,
8063 struct net_device *upper_dev, bool master,
8064 void *upper_priv, void *upper_info,
8065 struct netdev_nested_priv *priv,
8066 struct netlink_ext_ack *extack)
8068 struct netdev_notifier_changeupper_info changeupper_info = {
8073 .upper_dev = upper_dev,
8076 .upper_info = upper_info,
8078 struct net_device *master_dev;
8083 if (dev == upper_dev)
8086 /* To prevent loops, check if dev is not upper device to upper_dev. */
8087 if (__netdev_has_upper_dev(upper_dev, dev))
8090 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8094 if (__netdev_has_upper_dev(dev, upper_dev))
8097 master_dev = __netdev_master_upper_dev_get(dev);
8099 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8102 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8103 &changeupper_info.info);
8104 ret = notifier_to_errno(ret);
8108 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8113 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8114 &changeupper_info.info);
8115 ret = notifier_to_errno(ret);
8119 __netdev_update_upper_level(dev, NULL);
8120 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8122 __netdev_update_lower_level(upper_dev, priv);
8123 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8129 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8135 * netdev_upper_dev_link - Add a link to the upper device
8137 * @upper_dev: new upper device
8138 * @extack: netlink extended ack
8140 * Adds a link to device which is upper to this one. The caller must hold
8141 * the RTNL lock. On a failure a negative errno code is returned.
8142 * On success the reference counts are adjusted and the function
8145 int netdev_upper_dev_link(struct net_device *dev,
8146 struct net_device *upper_dev,
8147 struct netlink_ext_ack *extack)
8149 struct netdev_nested_priv priv = {
8150 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8154 return __netdev_upper_dev_link(dev, upper_dev, false,
8155 NULL, NULL, &priv, extack);
8157 EXPORT_SYMBOL(netdev_upper_dev_link);
8160 * netdev_master_upper_dev_link - Add a master link to the upper device
8162 * @upper_dev: new upper device
8163 * @upper_priv: upper device private
8164 * @upper_info: upper info to be passed down via notifier
8165 * @extack: netlink extended ack
8167 * Adds a link to device which is upper to this one. In this case, only
8168 * one master upper device can be linked, although other non-master devices
8169 * might be linked as well. The caller must hold the RTNL lock.
8170 * On a failure a negative errno code is returned. On success the reference
8171 * counts are adjusted and the function returns zero.
8173 int netdev_master_upper_dev_link(struct net_device *dev,
8174 struct net_device *upper_dev,
8175 void *upper_priv, void *upper_info,
8176 struct netlink_ext_ack *extack)
8178 struct netdev_nested_priv priv = {
8179 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8183 return __netdev_upper_dev_link(dev, upper_dev, true,
8184 upper_priv, upper_info, &priv, extack);
8186 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8188 static void __netdev_upper_dev_unlink(struct net_device *dev,
8189 struct net_device *upper_dev,
8190 struct netdev_nested_priv *priv)
8192 struct netdev_notifier_changeupper_info changeupper_info = {
8196 .upper_dev = upper_dev,
8202 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8204 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8205 &changeupper_info.info);
8207 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8209 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8210 &changeupper_info.info);
8212 __netdev_update_upper_level(dev, NULL);
8213 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8215 __netdev_update_lower_level(upper_dev, priv);
8216 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8221 * netdev_upper_dev_unlink - Removes a link to upper device
8223 * @upper_dev: new upper device
8225 * Removes a link to device which is upper to this one. The caller must hold
8228 void netdev_upper_dev_unlink(struct net_device *dev,
8229 struct net_device *upper_dev)
8231 struct netdev_nested_priv priv = {
8232 .flags = NESTED_SYNC_TODO,
8236 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8238 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8240 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8241 struct net_device *lower_dev,
8244 struct netdev_adjacent *adj;
8246 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8250 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8255 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8256 struct net_device *lower_dev)
8258 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8261 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8262 struct net_device *lower_dev)
8264 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8267 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8268 struct net_device *new_dev,
8269 struct net_device *dev,
8270 struct netlink_ext_ack *extack)
8272 struct netdev_nested_priv priv = {
8281 if (old_dev && new_dev != old_dev)
8282 netdev_adjacent_dev_disable(dev, old_dev);
8283 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8286 if (old_dev && new_dev != old_dev)
8287 netdev_adjacent_dev_enable(dev, old_dev);
8293 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8295 void netdev_adjacent_change_commit(struct net_device *old_dev,
8296 struct net_device *new_dev,
8297 struct net_device *dev)
8299 struct netdev_nested_priv priv = {
8300 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8304 if (!new_dev || !old_dev)
8307 if (new_dev == old_dev)
8310 netdev_adjacent_dev_enable(dev, old_dev);
8311 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8313 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8315 void netdev_adjacent_change_abort(struct net_device *old_dev,
8316 struct net_device *new_dev,
8317 struct net_device *dev)
8319 struct netdev_nested_priv priv = {
8327 if (old_dev && new_dev != old_dev)
8328 netdev_adjacent_dev_enable(dev, old_dev);
8330 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8332 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8335 * netdev_bonding_info_change - Dispatch event about slave change
8337 * @bonding_info: info to dispatch
8339 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8340 * The caller must hold the RTNL lock.
8342 void netdev_bonding_info_change(struct net_device *dev,
8343 struct netdev_bonding_info *bonding_info)
8345 struct netdev_notifier_bonding_info info = {
8349 memcpy(&info.bonding_info, bonding_info,
8350 sizeof(struct netdev_bonding_info));
8351 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8354 EXPORT_SYMBOL(netdev_bonding_info_change);
8357 * netdev_get_xmit_slave - Get the xmit slave of master device
8360 * @all_slaves: assume all the slaves are active
8362 * The reference counters are not incremented so the caller must be
8363 * careful with locks. The caller must hold RCU lock.
8364 * %NULL is returned if no slave is found.
8367 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8368 struct sk_buff *skb,
8371 const struct net_device_ops *ops = dev->netdev_ops;
8373 if (!ops->ndo_get_xmit_slave)
8375 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8377 EXPORT_SYMBOL(netdev_get_xmit_slave);
8379 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8382 const struct net_device_ops *ops = dev->netdev_ops;
8384 if (!ops->ndo_sk_get_lower_dev)
8386 return ops->ndo_sk_get_lower_dev(dev, sk);
8390 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8394 * %NULL is returned if no lower device is found.
8397 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8400 struct net_device *lower;
8402 lower = netdev_sk_get_lower_dev(dev, sk);
8405 lower = netdev_sk_get_lower_dev(dev, sk);
8410 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8412 static void netdev_adjacent_add_links(struct net_device *dev)
8414 struct netdev_adjacent *iter;
8416 struct net *net = dev_net(dev);
8418 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8419 if (!net_eq(net, dev_net(iter->dev)))
8421 netdev_adjacent_sysfs_add(iter->dev, dev,
8422 &iter->dev->adj_list.lower);
8423 netdev_adjacent_sysfs_add(dev, iter->dev,
8424 &dev->adj_list.upper);
8427 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8428 if (!net_eq(net, dev_net(iter->dev)))
8430 netdev_adjacent_sysfs_add(iter->dev, dev,
8431 &iter->dev->adj_list.upper);
8432 netdev_adjacent_sysfs_add(dev, iter->dev,
8433 &dev->adj_list.lower);
8437 static void netdev_adjacent_del_links(struct net_device *dev)
8439 struct netdev_adjacent *iter;
8441 struct net *net = dev_net(dev);
8443 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8444 if (!net_eq(net, dev_net(iter->dev)))
8446 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8447 &iter->dev->adj_list.lower);
8448 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8449 &dev->adj_list.upper);
8452 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8453 if (!net_eq(net, dev_net(iter->dev)))
8455 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8456 &iter->dev->adj_list.upper);
8457 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8458 &dev->adj_list.lower);
8462 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8464 struct netdev_adjacent *iter;
8466 struct net *net = dev_net(dev);
8468 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8469 if (!net_eq(net, dev_net(iter->dev)))
8471 netdev_adjacent_sysfs_del(iter->dev, oldname,
8472 &iter->dev->adj_list.lower);
8473 netdev_adjacent_sysfs_add(iter->dev, dev,
8474 &iter->dev->adj_list.lower);
8477 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8478 if (!net_eq(net, dev_net(iter->dev)))
8480 netdev_adjacent_sysfs_del(iter->dev, oldname,
8481 &iter->dev->adj_list.upper);
8482 netdev_adjacent_sysfs_add(iter->dev, dev,
8483 &iter->dev->adj_list.upper);
8487 void *netdev_lower_dev_get_private(struct net_device *dev,
8488 struct net_device *lower_dev)
8490 struct netdev_adjacent *lower;
8494 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8498 return lower->private;
8500 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8504 * netdev_lower_state_changed - Dispatch event about lower device state change
8505 * @lower_dev: device
8506 * @lower_state_info: state to dispatch
8508 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8509 * The caller must hold the RTNL lock.
8511 void netdev_lower_state_changed(struct net_device *lower_dev,
8512 void *lower_state_info)
8514 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8515 .info.dev = lower_dev,
8519 changelowerstate_info.lower_state_info = lower_state_info;
8520 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8521 &changelowerstate_info.info);
8523 EXPORT_SYMBOL(netdev_lower_state_changed);
8525 static void dev_change_rx_flags(struct net_device *dev, int flags)
8527 const struct net_device_ops *ops = dev->netdev_ops;
8529 if (ops->ndo_change_rx_flags)
8530 ops->ndo_change_rx_flags(dev, flags);
8533 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8535 unsigned int old_flags = dev->flags;
8541 dev->flags |= IFF_PROMISC;
8542 dev->promiscuity += inc;
8543 if (dev->promiscuity == 0) {
8546 * If inc causes overflow, untouch promisc and return error.
8549 dev->flags &= ~IFF_PROMISC;
8551 dev->promiscuity -= inc;
8552 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8557 if (dev->flags != old_flags) {
8558 pr_info("device %s %s promiscuous mode\n",
8560 dev->flags & IFF_PROMISC ? "entered" : "left");
8561 if (audit_enabled) {
8562 current_uid_gid(&uid, &gid);
8563 audit_log(audit_context(), GFP_ATOMIC,
8564 AUDIT_ANOM_PROMISCUOUS,
8565 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8566 dev->name, (dev->flags & IFF_PROMISC),
8567 (old_flags & IFF_PROMISC),
8568 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8569 from_kuid(&init_user_ns, uid),
8570 from_kgid(&init_user_ns, gid),
8571 audit_get_sessionid(current));
8574 dev_change_rx_flags(dev, IFF_PROMISC);
8577 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8582 * dev_set_promiscuity - update promiscuity count on a device
8586 * Add or remove promiscuity from a device. While the count in the device
8587 * remains above zero the interface remains promiscuous. Once it hits zero
8588 * the device reverts back to normal filtering operation. A negative inc
8589 * value is used to drop promiscuity on the device.
8590 * Return 0 if successful or a negative errno code on error.
8592 int dev_set_promiscuity(struct net_device *dev, int inc)
8594 unsigned int old_flags = dev->flags;
8597 err = __dev_set_promiscuity(dev, inc, true);
8600 if (dev->flags != old_flags)
8601 dev_set_rx_mode(dev);
8604 EXPORT_SYMBOL(dev_set_promiscuity);
8606 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8608 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8612 dev->flags |= IFF_ALLMULTI;
8613 dev->allmulti += inc;
8614 if (dev->allmulti == 0) {
8617 * If inc causes overflow, untouch allmulti and return error.
8620 dev->flags &= ~IFF_ALLMULTI;
8622 dev->allmulti -= inc;
8623 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8628 if (dev->flags ^ old_flags) {
8629 dev_change_rx_flags(dev, IFF_ALLMULTI);
8630 dev_set_rx_mode(dev);
8632 __dev_notify_flags(dev, old_flags,
8633 dev->gflags ^ old_gflags);
8639 * dev_set_allmulti - update allmulti count on a device
8643 * Add or remove reception of all multicast frames to a device. While the
8644 * count in the device remains above zero the interface remains listening
8645 * to all interfaces. Once it hits zero the device reverts back to normal
8646 * filtering operation. A negative @inc value is used to drop the counter
8647 * when releasing a resource needing all multicasts.
8648 * Return 0 if successful or a negative errno code on error.
8651 int dev_set_allmulti(struct net_device *dev, int inc)
8653 return __dev_set_allmulti(dev, inc, true);
8655 EXPORT_SYMBOL(dev_set_allmulti);
8658 * Upload unicast and multicast address lists to device and
8659 * configure RX filtering. When the device doesn't support unicast
8660 * filtering it is put in promiscuous mode while unicast addresses
8663 void __dev_set_rx_mode(struct net_device *dev)
8665 const struct net_device_ops *ops = dev->netdev_ops;
8667 /* dev_open will call this function so the list will stay sane. */
8668 if (!(dev->flags&IFF_UP))
8671 if (!netif_device_present(dev))
8674 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8675 /* Unicast addresses changes may only happen under the rtnl,
8676 * therefore calling __dev_set_promiscuity here is safe.
8678 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8679 __dev_set_promiscuity(dev, 1, false);
8680 dev->uc_promisc = true;
8681 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8682 __dev_set_promiscuity(dev, -1, false);
8683 dev->uc_promisc = false;
8687 if (ops->ndo_set_rx_mode)
8688 ops->ndo_set_rx_mode(dev);
8691 void dev_set_rx_mode(struct net_device *dev)
8693 netif_addr_lock_bh(dev);
8694 __dev_set_rx_mode(dev);
8695 netif_addr_unlock_bh(dev);
8699 * dev_get_flags - get flags reported to userspace
8702 * Get the combination of flag bits exported through APIs to userspace.
8704 unsigned int dev_get_flags(const struct net_device *dev)
8708 flags = (dev->flags & ~(IFF_PROMISC |
8713 (dev->gflags & (IFF_PROMISC |
8716 if (netif_running(dev)) {
8717 if (netif_oper_up(dev))
8718 flags |= IFF_RUNNING;
8719 if (netif_carrier_ok(dev))
8720 flags |= IFF_LOWER_UP;
8721 if (netif_dormant(dev))
8722 flags |= IFF_DORMANT;
8727 EXPORT_SYMBOL(dev_get_flags);
8729 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8730 struct netlink_ext_ack *extack)
8732 unsigned int old_flags = dev->flags;
8738 * Set the flags on our device.
8741 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8742 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8744 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8748 * Load in the correct multicast list now the flags have changed.
8751 if ((old_flags ^ flags) & IFF_MULTICAST)
8752 dev_change_rx_flags(dev, IFF_MULTICAST);
8754 dev_set_rx_mode(dev);
8757 * Have we downed the interface. We handle IFF_UP ourselves
8758 * according to user attempts to set it, rather than blindly
8763 if ((old_flags ^ flags) & IFF_UP) {
8764 if (old_flags & IFF_UP)
8767 ret = __dev_open(dev, extack);
8770 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8771 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8772 unsigned int old_flags = dev->flags;
8774 dev->gflags ^= IFF_PROMISC;
8776 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8777 if (dev->flags != old_flags)
8778 dev_set_rx_mode(dev);
8781 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8782 * is important. Some (broken) drivers set IFF_PROMISC, when
8783 * IFF_ALLMULTI is requested not asking us and not reporting.
8785 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8786 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8788 dev->gflags ^= IFF_ALLMULTI;
8789 __dev_set_allmulti(dev, inc, false);
8795 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8796 unsigned int gchanges)
8798 unsigned int changes = dev->flags ^ old_flags;
8801 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8803 if (changes & IFF_UP) {
8804 if (dev->flags & IFF_UP)
8805 call_netdevice_notifiers(NETDEV_UP, dev);
8807 call_netdevice_notifiers(NETDEV_DOWN, dev);
8810 if (dev->flags & IFF_UP &&
8811 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8812 struct netdev_notifier_change_info change_info = {
8816 .flags_changed = changes,
8819 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8824 * dev_change_flags - change device settings
8826 * @flags: device state flags
8827 * @extack: netlink extended ack
8829 * Change settings on device based state flags. The flags are
8830 * in the userspace exported format.
8832 int dev_change_flags(struct net_device *dev, unsigned int flags,
8833 struct netlink_ext_ack *extack)
8836 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8838 ret = __dev_change_flags(dev, flags, extack);
8842 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8843 __dev_notify_flags(dev, old_flags, changes);
8846 EXPORT_SYMBOL(dev_change_flags);
8848 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8850 const struct net_device_ops *ops = dev->netdev_ops;
8852 if (ops->ndo_change_mtu)
8853 return ops->ndo_change_mtu(dev, new_mtu);
8855 /* Pairs with all the lockless reads of dev->mtu in the stack */
8856 WRITE_ONCE(dev->mtu, new_mtu);
8859 EXPORT_SYMBOL(__dev_set_mtu);
8861 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8862 struct netlink_ext_ack *extack)
8864 /* MTU must be positive, and in range */
8865 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8866 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8870 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8871 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8878 * dev_set_mtu_ext - Change maximum transfer unit
8880 * @new_mtu: new transfer unit
8881 * @extack: netlink extended ack
8883 * Change the maximum transfer size of the network device.
8885 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8886 struct netlink_ext_ack *extack)
8890 if (new_mtu == dev->mtu)
8893 err = dev_validate_mtu(dev, new_mtu, extack);
8897 if (!netif_device_present(dev))
8900 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8901 err = notifier_to_errno(err);
8905 orig_mtu = dev->mtu;
8906 err = __dev_set_mtu(dev, new_mtu);
8909 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8911 err = notifier_to_errno(err);
8913 /* setting mtu back and notifying everyone again,
8914 * so that they have a chance to revert changes.
8916 __dev_set_mtu(dev, orig_mtu);
8917 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8924 int dev_set_mtu(struct net_device *dev, int new_mtu)
8926 struct netlink_ext_ack extack;
8929 memset(&extack, 0, sizeof(extack));
8930 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8931 if (err && extack._msg)
8932 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8935 EXPORT_SYMBOL(dev_set_mtu);
8938 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8940 * @new_len: new tx queue length
8942 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8944 unsigned int orig_len = dev->tx_queue_len;
8947 if (new_len != (unsigned int)new_len)
8950 if (new_len != orig_len) {
8951 dev->tx_queue_len = new_len;
8952 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8953 res = notifier_to_errno(res);
8956 res = dev_qdisc_change_tx_queue_len(dev);
8964 netdev_err(dev, "refused to change device tx_queue_len\n");
8965 dev->tx_queue_len = orig_len;
8970 * dev_set_group - Change group this device belongs to
8972 * @new_group: group this device should belong to
8974 void dev_set_group(struct net_device *dev, int new_group)
8976 dev->group = new_group;
8978 EXPORT_SYMBOL(dev_set_group);
8981 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8983 * @addr: new address
8984 * @extack: netlink extended ack
8986 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8987 struct netlink_ext_ack *extack)
8989 struct netdev_notifier_pre_changeaddr_info info = {
8991 .info.extack = extack,
8996 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8997 return notifier_to_errno(rc);
8999 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9002 * dev_set_mac_address - Change Media Access Control Address
9005 * @extack: netlink extended ack
9007 * Change the hardware (MAC) address of the device
9009 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9010 struct netlink_ext_ack *extack)
9012 const struct net_device_ops *ops = dev->netdev_ops;
9015 if (!ops->ndo_set_mac_address)
9017 if (sa->sa_family != dev->type)
9019 if (!netif_device_present(dev))
9021 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9024 err = ops->ndo_set_mac_address(dev, sa);
9027 dev->addr_assign_type = NET_ADDR_SET;
9028 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9029 add_device_randomness(dev->dev_addr, dev->addr_len);
9032 EXPORT_SYMBOL(dev_set_mac_address);
9034 static DECLARE_RWSEM(dev_addr_sem);
9036 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9037 struct netlink_ext_ack *extack)
9041 down_write(&dev_addr_sem);
9042 ret = dev_set_mac_address(dev, sa, extack);
9043 up_write(&dev_addr_sem);
9046 EXPORT_SYMBOL(dev_set_mac_address_user);
9048 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9050 size_t size = sizeof(sa->sa_data);
9051 struct net_device *dev;
9054 down_read(&dev_addr_sem);
9057 dev = dev_get_by_name_rcu(net, dev_name);
9063 memset(sa->sa_data, 0, size);
9065 memcpy(sa->sa_data, dev->dev_addr,
9066 min_t(size_t, size, dev->addr_len));
9067 sa->sa_family = dev->type;
9071 up_read(&dev_addr_sem);
9074 EXPORT_SYMBOL(dev_get_mac_address);
9077 * dev_change_carrier - Change device carrier
9079 * @new_carrier: new value
9081 * Change device carrier
9083 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9085 const struct net_device_ops *ops = dev->netdev_ops;
9087 if (!ops->ndo_change_carrier)
9089 if (!netif_device_present(dev))
9091 return ops->ndo_change_carrier(dev, new_carrier);
9093 EXPORT_SYMBOL(dev_change_carrier);
9096 * dev_get_phys_port_id - Get device physical port ID
9100 * Get device physical port ID
9102 int dev_get_phys_port_id(struct net_device *dev,
9103 struct netdev_phys_item_id *ppid)
9105 const struct net_device_ops *ops = dev->netdev_ops;
9107 if (!ops->ndo_get_phys_port_id)
9109 return ops->ndo_get_phys_port_id(dev, ppid);
9111 EXPORT_SYMBOL(dev_get_phys_port_id);
9114 * dev_get_phys_port_name - Get device physical port name
9117 * @len: limit of bytes to copy to name
9119 * Get device physical port name
9121 int dev_get_phys_port_name(struct net_device *dev,
9122 char *name, size_t len)
9124 const struct net_device_ops *ops = dev->netdev_ops;
9127 if (ops->ndo_get_phys_port_name) {
9128 err = ops->ndo_get_phys_port_name(dev, name, len);
9129 if (err != -EOPNOTSUPP)
9132 return devlink_compat_phys_port_name_get(dev, name, len);
9134 EXPORT_SYMBOL(dev_get_phys_port_name);
9137 * dev_get_port_parent_id - Get the device's port parent identifier
9138 * @dev: network device
9139 * @ppid: pointer to a storage for the port's parent identifier
9140 * @recurse: allow/disallow recursion to lower devices
9142 * Get the devices's port parent identifier
9144 int dev_get_port_parent_id(struct net_device *dev,
9145 struct netdev_phys_item_id *ppid,
9148 const struct net_device_ops *ops = dev->netdev_ops;
9149 struct netdev_phys_item_id first = { };
9150 struct net_device *lower_dev;
9151 struct list_head *iter;
9154 if (ops->ndo_get_port_parent_id) {
9155 err = ops->ndo_get_port_parent_id(dev, ppid);
9156 if (err != -EOPNOTSUPP)
9160 err = devlink_compat_switch_id_get(dev, ppid);
9161 if (!err || err != -EOPNOTSUPP)
9167 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9168 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9173 else if (memcmp(&first, ppid, sizeof(*ppid)))
9179 EXPORT_SYMBOL(dev_get_port_parent_id);
9182 * netdev_port_same_parent_id - Indicate if two network devices have
9183 * the same port parent identifier
9184 * @a: first network device
9185 * @b: second network device
9187 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9189 struct netdev_phys_item_id a_id = { };
9190 struct netdev_phys_item_id b_id = { };
9192 if (dev_get_port_parent_id(a, &a_id, true) ||
9193 dev_get_port_parent_id(b, &b_id, true))
9196 return netdev_phys_item_id_same(&a_id, &b_id);
9198 EXPORT_SYMBOL(netdev_port_same_parent_id);
9201 * dev_change_proto_down - update protocol port state information
9203 * @proto_down: new value
9205 * This info can be used by switch drivers to set the phys state of the
9208 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9210 const struct net_device_ops *ops = dev->netdev_ops;
9212 if (!ops->ndo_change_proto_down)
9214 if (!netif_device_present(dev))
9216 return ops->ndo_change_proto_down(dev, proto_down);
9218 EXPORT_SYMBOL(dev_change_proto_down);
9221 * dev_change_proto_down_generic - generic implementation for
9222 * ndo_change_proto_down that sets carrier according to
9226 * @proto_down: new value
9228 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9231 netif_carrier_off(dev);
9233 netif_carrier_on(dev);
9234 dev->proto_down = proto_down;
9237 EXPORT_SYMBOL(dev_change_proto_down_generic);
9240 * dev_change_proto_down_reason - proto down reason
9243 * @mask: proto down mask
9244 * @value: proto down value
9246 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9252 dev->proto_down_reason = value;
9254 for_each_set_bit(b, &mask, 32) {
9255 if (value & (1 << b))
9256 dev->proto_down_reason |= BIT(b);
9258 dev->proto_down_reason &= ~BIT(b);
9262 EXPORT_SYMBOL(dev_change_proto_down_reason);
9264 struct bpf_xdp_link {
9265 struct bpf_link link;
9266 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9270 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9272 if (flags & XDP_FLAGS_HW_MODE)
9274 if (flags & XDP_FLAGS_DRV_MODE)
9275 return XDP_MODE_DRV;
9276 if (flags & XDP_FLAGS_SKB_MODE)
9277 return XDP_MODE_SKB;
9278 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9281 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9285 return generic_xdp_install;
9288 return dev->netdev_ops->ndo_bpf;
9294 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9295 enum bpf_xdp_mode mode)
9297 return dev->xdp_state[mode].link;
9300 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9301 enum bpf_xdp_mode mode)
9303 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9306 return link->link.prog;
9307 return dev->xdp_state[mode].prog;
9310 static u8 dev_xdp_prog_count(struct net_device *dev)
9315 for (i = 0; i < __MAX_XDP_MODE; i++)
9316 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9321 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9323 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9325 return prog ? prog->aux->id : 0;
9328 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9329 struct bpf_xdp_link *link)
9331 dev->xdp_state[mode].link = link;
9332 dev->xdp_state[mode].prog = NULL;
9335 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9336 struct bpf_prog *prog)
9338 dev->xdp_state[mode].link = NULL;
9339 dev->xdp_state[mode].prog = prog;
9342 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9343 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9344 u32 flags, struct bpf_prog *prog)
9346 struct netdev_bpf xdp;
9349 memset(&xdp, 0, sizeof(xdp));
9350 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9351 xdp.extack = extack;
9355 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9356 * "moved" into driver), so they don't increment it on their own, but
9357 * they do decrement refcnt when program is detached or replaced.
9358 * Given net_device also owns link/prog, we need to bump refcnt here
9359 * to prevent drivers from underflowing it.
9363 err = bpf_op(dev, &xdp);
9370 if (mode != XDP_MODE_HW)
9371 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9376 static void dev_xdp_uninstall(struct net_device *dev)
9378 struct bpf_xdp_link *link;
9379 struct bpf_prog *prog;
9380 enum bpf_xdp_mode mode;
9385 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9386 prog = dev_xdp_prog(dev, mode);
9390 bpf_op = dev_xdp_bpf_op(dev, mode);
9394 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9396 /* auto-detach link from net device */
9397 link = dev_xdp_link(dev, mode);
9403 dev_xdp_set_link(dev, mode, NULL);
9407 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9408 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9409 struct bpf_prog *old_prog, u32 flags)
9411 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9412 struct bpf_prog *cur_prog;
9413 enum bpf_xdp_mode mode;
9419 /* either link or prog attachment, never both */
9420 if (link && (new_prog || old_prog))
9422 /* link supports only XDP mode flags */
9423 if (link && (flags & ~XDP_FLAGS_MODES)) {
9424 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9427 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9428 if (num_modes > 1) {
9429 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9432 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9433 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9434 NL_SET_ERR_MSG(extack,
9435 "More than one program loaded, unset mode is ambiguous");
9438 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9439 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9440 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9444 mode = dev_xdp_mode(dev, flags);
9445 /* can't replace attached link */
9446 if (dev_xdp_link(dev, mode)) {
9447 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9451 cur_prog = dev_xdp_prog(dev, mode);
9452 /* can't replace attached prog with link */
9453 if (link && cur_prog) {
9454 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9457 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9458 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9462 /* put effective new program into new_prog */
9464 new_prog = link->link.prog;
9467 bool offload = mode == XDP_MODE_HW;
9468 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9469 ? XDP_MODE_DRV : XDP_MODE_SKB;
9471 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9472 NL_SET_ERR_MSG(extack, "XDP program already attached");
9475 if (!offload && dev_xdp_prog(dev, other_mode)) {
9476 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9479 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9480 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9483 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9484 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9487 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9488 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9493 /* don't call drivers if the effective program didn't change */
9494 if (new_prog != cur_prog) {
9495 bpf_op = dev_xdp_bpf_op(dev, mode);
9497 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9501 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9507 dev_xdp_set_link(dev, mode, link);
9509 dev_xdp_set_prog(dev, mode, new_prog);
9511 bpf_prog_put(cur_prog);
9516 static int dev_xdp_attach_link(struct net_device *dev,
9517 struct netlink_ext_ack *extack,
9518 struct bpf_xdp_link *link)
9520 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9523 static int dev_xdp_detach_link(struct net_device *dev,
9524 struct netlink_ext_ack *extack,
9525 struct bpf_xdp_link *link)
9527 enum bpf_xdp_mode mode;
9532 mode = dev_xdp_mode(dev, link->flags);
9533 if (dev_xdp_link(dev, mode) != link)
9536 bpf_op = dev_xdp_bpf_op(dev, mode);
9537 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9538 dev_xdp_set_link(dev, mode, NULL);
9542 static void bpf_xdp_link_release(struct bpf_link *link)
9544 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9548 /* if racing with net_device's tear down, xdp_link->dev might be
9549 * already NULL, in which case link was already auto-detached
9551 if (xdp_link->dev) {
9552 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9553 xdp_link->dev = NULL;
9559 static int bpf_xdp_link_detach(struct bpf_link *link)
9561 bpf_xdp_link_release(link);
9565 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9567 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9572 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9573 struct seq_file *seq)
9575 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9580 ifindex = xdp_link->dev->ifindex;
9583 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9586 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9587 struct bpf_link_info *info)
9589 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9594 ifindex = xdp_link->dev->ifindex;
9597 info->xdp.ifindex = ifindex;
9601 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9602 struct bpf_prog *old_prog)
9604 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9605 enum bpf_xdp_mode mode;
9611 /* link might have been auto-released already, so fail */
9612 if (!xdp_link->dev) {
9617 if (old_prog && link->prog != old_prog) {
9621 old_prog = link->prog;
9622 if (old_prog == new_prog) {
9623 /* no-op, don't disturb drivers */
9624 bpf_prog_put(new_prog);
9628 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9629 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9630 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9631 xdp_link->flags, new_prog);
9635 old_prog = xchg(&link->prog, new_prog);
9636 bpf_prog_put(old_prog);
9643 static const struct bpf_link_ops bpf_xdp_link_lops = {
9644 .release = bpf_xdp_link_release,
9645 .dealloc = bpf_xdp_link_dealloc,
9646 .detach = bpf_xdp_link_detach,
9647 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9648 .fill_link_info = bpf_xdp_link_fill_link_info,
9649 .update_prog = bpf_xdp_link_update,
9652 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9654 struct net *net = current->nsproxy->net_ns;
9655 struct bpf_link_primer link_primer;
9656 struct bpf_xdp_link *link;
9657 struct net_device *dev;
9660 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9664 link = kzalloc(sizeof(*link), GFP_USER);
9670 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9672 link->flags = attr->link_create.flags;
9674 err = bpf_link_prime(&link->link, &link_primer);
9681 err = dev_xdp_attach_link(dev, NULL, link);
9685 bpf_link_cleanup(&link_primer);
9689 fd = bpf_link_settle(&link_primer);
9690 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9700 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9702 * @extack: netlink extended ack
9703 * @fd: new program fd or negative value to clear
9704 * @expected_fd: old program fd that userspace expects to replace or clear
9705 * @flags: xdp-related flags
9707 * Set or clear a bpf program for a device
9709 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9710 int fd, int expected_fd, u32 flags)
9712 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9713 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9719 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9720 mode != XDP_MODE_SKB);
9721 if (IS_ERR(new_prog))
9722 return PTR_ERR(new_prog);
9725 if (expected_fd >= 0) {
9726 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9727 mode != XDP_MODE_SKB);
9728 if (IS_ERR(old_prog)) {
9729 err = PTR_ERR(old_prog);
9735 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9738 if (err && new_prog)
9739 bpf_prog_put(new_prog);
9741 bpf_prog_put(old_prog);
9746 * dev_new_index - allocate an ifindex
9747 * @net: the applicable net namespace
9749 * Returns a suitable unique value for a new device interface
9750 * number. The caller must hold the rtnl semaphore or the
9751 * dev_base_lock to be sure it remains unique.
9753 static int dev_new_index(struct net *net)
9755 int ifindex = net->ifindex;
9760 if (!__dev_get_by_index(net, ifindex))
9761 return net->ifindex = ifindex;
9765 /* Delayed registration/unregisteration */
9766 static LIST_HEAD(net_todo_list);
9767 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9769 static void net_set_todo(struct net_device *dev)
9771 list_add_tail(&dev->todo_list, &net_todo_list);
9772 dev_net(dev)->dev_unreg_count++;
9775 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9776 struct net_device *upper, netdev_features_t features)
9778 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9779 netdev_features_t feature;
9782 for_each_netdev_feature(upper_disables, feature_bit) {
9783 feature = __NETIF_F_BIT(feature_bit);
9784 if (!(upper->wanted_features & feature)
9785 && (features & feature)) {
9786 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9787 &feature, upper->name);
9788 features &= ~feature;
9795 static void netdev_sync_lower_features(struct net_device *upper,
9796 struct net_device *lower, netdev_features_t features)
9798 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9799 netdev_features_t feature;
9802 for_each_netdev_feature(upper_disables, feature_bit) {
9803 feature = __NETIF_F_BIT(feature_bit);
9804 if (!(features & feature) && (lower->features & feature)) {
9805 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9806 &feature, lower->name);
9807 lower->wanted_features &= ~feature;
9808 __netdev_update_features(lower);
9810 if (unlikely(lower->features & feature))
9811 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9812 &feature, lower->name);
9814 netdev_features_change(lower);
9819 static netdev_features_t netdev_fix_features(struct net_device *dev,
9820 netdev_features_t features)
9822 /* Fix illegal checksum combinations */
9823 if ((features & NETIF_F_HW_CSUM) &&
9824 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9825 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9826 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9829 /* TSO requires that SG is present as well. */
9830 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9831 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9832 features &= ~NETIF_F_ALL_TSO;
9835 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9836 !(features & NETIF_F_IP_CSUM)) {
9837 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9838 features &= ~NETIF_F_TSO;
9839 features &= ~NETIF_F_TSO_ECN;
9842 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9843 !(features & NETIF_F_IPV6_CSUM)) {
9844 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9845 features &= ~NETIF_F_TSO6;
9848 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9849 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9850 features &= ~NETIF_F_TSO_MANGLEID;
9852 /* TSO ECN requires that TSO is present as well. */
9853 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9854 features &= ~NETIF_F_TSO_ECN;
9856 /* Software GSO depends on SG. */
9857 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9858 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9859 features &= ~NETIF_F_GSO;
9862 /* GSO partial features require GSO partial be set */
9863 if ((features & dev->gso_partial_features) &&
9864 !(features & NETIF_F_GSO_PARTIAL)) {
9866 "Dropping partially supported GSO features since no GSO partial.\n");
9867 features &= ~dev->gso_partial_features;
9870 if (!(features & NETIF_F_RXCSUM)) {
9871 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9872 * successfully merged by hardware must also have the
9873 * checksum verified by hardware. If the user does not
9874 * want to enable RXCSUM, logically, we should disable GRO_HW.
9876 if (features & NETIF_F_GRO_HW) {
9877 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9878 features &= ~NETIF_F_GRO_HW;
9882 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9883 if (features & NETIF_F_RXFCS) {
9884 if (features & NETIF_F_LRO) {
9885 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9886 features &= ~NETIF_F_LRO;
9889 if (features & NETIF_F_GRO_HW) {
9890 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9891 features &= ~NETIF_F_GRO_HW;
9895 if (features & NETIF_F_HW_TLS_TX) {
9896 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9897 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9898 bool hw_csum = features & NETIF_F_HW_CSUM;
9900 if (!ip_csum && !hw_csum) {
9901 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9902 features &= ~NETIF_F_HW_TLS_TX;
9906 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9907 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9908 features &= ~NETIF_F_HW_TLS_RX;
9914 int __netdev_update_features(struct net_device *dev)
9916 struct net_device *upper, *lower;
9917 netdev_features_t features;
9918 struct list_head *iter;
9923 features = netdev_get_wanted_features(dev);
9925 if (dev->netdev_ops->ndo_fix_features)
9926 features = dev->netdev_ops->ndo_fix_features(dev, features);
9928 /* driver might be less strict about feature dependencies */
9929 features = netdev_fix_features(dev, features);
9931 /* some features can't be enabled if they're off on an upper device */
9932 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9933 features = netdev_sync_upper_features(dev, upper, features);
9935 if (dev->features == features)
9938 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9939 &dev->features, &features);
9941 if (dev->netdev_ops->ndo_set_features)
9942 err = dev->netdev_ops->ndo_set_features(dev, features);
9946 if (unlikely(err < 0)) {
9948 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9949 err, &features, &dev->features);
9950 /* return non-0 since some features might have changed and
9951 * it's better to fire a spurious notification than miss it
9957 /* some features must be disabled on lower devices when disabled
9958 * on an upper device (think: bonding master or bridge)
9960 netdev_for_each_lower_dev(dev, lower, iter)
9961 netdev_sync_lower_features(dev, lower, features);
9964 netdev_features_t diff = features ^ dev->features;
9966 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9967 /* udp_tunnel_{get,drop}_rx_info both need
9968 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9969 * device, or they won't do anything.
9970 * Thus we need to update dev->features
9971 * *before* calling udp_tunnel_get_rx_info,
9972 * but *after* calling udp_tunnel_drop_rx_info.
9974 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9975 dev->features = features;
9976 udp_tunnel_get_rx_info(dev);
9978 udp_tunnel_drop_rx_info(dev);
9982 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9983 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9984 dev->features = features;
9985 err |= vlan_get_rx_ctag_filter_info(dev);
9987 vlan_drop_rx_ctag_filter_info(dev);
9991 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9992 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9993 dev->features = features;
9994 err |= vlan_get_rx_stag_filter_info(dev);
9996 vlan_drop_rx_stag_filter_info(dev);
10000 dev->features = features;
10003 return err < 0 ? 0 : 1;
10007 * netdev_update_features - recalculate device features
10008 * @dev: the device to check
10010 * Recalculate dev->features set and send notifications if it
10011 * has changed. Should be called after driver or hardware dependent
10012 * conditions might have changed that influence the features.
10014 void netdev_update_features(struct net_device *dev)
10016 if (__netdev_update_features(dev))
10017 netdev_features_change(dev);
10019 EXPORT_SYMBOL(netdev_update_features);
10022 * netdev_change_features - recalculate device features
10023 * @dev: the device to check
10025 * Recalculate dev->features set and send notifications even
10026 * if they have not changed. Should be called instead of
10027 * netdev_update_features() if also dev->vlan_features might
10028 * have changed to allow the changes to be propagated to stacked
10031 void netdev_change_features(struct net_device *dev)
10033 __netdev_update_features(dev);
10034 netdev_features_change(dev);
10036 EXPORT_SYMBOL(netdev_change_features);
10039 * netif_stacked_transfer_operstate - transfer operstate
10040 * @rootdev: the root or lower level device to transfer state from
10041 * @dev: the device to transfer operstate to
10043 * Transfer operational state from root to device. This is normally
10044 * called when a stacking relationship exists between the root
10045 * device and the device(a leaf device).
10047 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10048 struct net_device *dev)
10050 if (rootdev->operstate == IF_OPER_DORMANT)
10051 netif_dormant_on(dev);
10053 netif_dormant_off(dev);
10055 if (rootdev->operstate == IF_OPER_TESTING)
10056 netif_testing_on(dev);
10058 netif_testing_off(dev);
10060 if (netif_carrier_ok(rootdev))
10061 netif_carrier_on(dev);
10063 netif_carrier_off(dev);
10065 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10067 static int netif_alloc_rx_queues(struct net_device *dev)
10069 unsigned int i, count = dev->num_rx_queues;
10070 struct netdev_rx_queue *rx;
10071 size_t sz = count * sizeof(*rx);
10076 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10082 for (i = 0; i < count; i++) {
10085 /* XDP RX-queue setup */
10086 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10093 /* Rollback successful reg's and free other resources */
10095 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10101 static void netif_free_rx_queues(struct net_device *dev)
10103 unsigned int i, count = dev->num_rx_queues;
10105 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10109 for (i = 0; i < count; i++)
10110 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10115 static void netdev_init_one_queue(struct net_device *dev,
10116 struct netdev_queue *queue, void *_unused)
10118 /* Initialize queue lock */
10119 spin_lock_init(&queue->_xmit_lock);
10120 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10121 queue->xmit_lock_owner = -1;
10122 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10125 dql_init(&queue->dql, HZ);
10129 static void netif_free_tx_queues(struct net_device *dev)
10134 static int netif_alloc_netdev_queues(struct net_device *dev)
10136 unsigned int count = dev->num_tx_queues;
10137 struct netdev_queue *tx;
10138 size_t sz = count * sizeof(*tx);
10140 if (count < 1 || count > 0xffff)
10143 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10149 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10150 spin_lock_init(&dev->tx_global_lock);
10155 void netif_tx_stop_all_queues(struct net_device *dev)
10159 for (i = 0; i < dev->num_tx_queues; i++) {
10160 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10162 netif_tx_stop_queue(txq);
10165 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10168 * register_netdevice - register a network device
10169 * @dev: device to register
10171 * Take a completed network device structure and add it to the kernel
10172 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10173 * chain. 0 is returned on success. A negative errno code is returned
10174 * on a failure to set up the device, or if the name is a duplicate.
10176 * Callers must hold the rtnl semaphore. You may want
10177 * register_netdev() instead of this.
10180 * The locking appears insufficient to guarantee two parallel registers
10181 * will not get the same name.
10184 int register_netdevice(struct net_device *dev)
10187 struct net *net = dev_net(dev);
10189 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10190 NETDEV_FEATURE_COUNT);
10191 BUG_ON(dev_boot_phase);
10196 /* When net_device's are persistent, this will be fatal. */
10197 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10200 ret = ethtool_check_ops(dev->ethtool_ops);
10204 spin_lock_init(&dev->addr_list_lock);
10205 netdev_set_addr_lockdep_class(dev);
10207 ret = dev_get_valid_name(net, dev, dev->name);
10212 dev->name_node = netdev_name_node_head_alloc(dev);
10213 if (!dev->name_node)
10216 /* Init, if this function is available */
10217 if (dev->netdev_ops->ndo_init) {
10218 ret = dev->netdev_ops->ndo_init(dev);
10222 goto err_free_name;
10226 if (((dev->hw_features | dev->features) &
10227 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10228 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10229 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10230 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10237 dev->ifindex = dev_new_index(net);
10238 else if (__dev_get_by_index(net, dev->ifindex))
10241 /* Transfer changeable features to wanted_features and enable
10242 * software offloads (GSO and GRO).
10244 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10245 dev->features |= NETIF_F_SOFT_FEATURES;
10247 if (dev->udp_tunnel_nic_info) {
10248 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10249 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10252 dev->wanted_features = dev->features & dev->hw_features;
10254 if (!(dev->flags & IFF_LOOPBACK))
10255 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10257 /* If IPv4 TCP segmentation offload is supported we should also
10258 * allow the device to enable segmenting the frame with the option
10259 * of ignoring a static IP ID value. This doesn't enable the
10260 * feature itself but allows the user to enable it later.
10262 if (dev->hw_features & NETIF_F_TSO)
10263 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10264 if (dev->vlan_features & NETIF_F_TSO)
10265 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10266 if (dev->mpls_features & NETIF_F_TSO)
10267 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10268 if (dev->hw_enc_features & NETIF_F_TSO)
10269 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10271 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10273 dev->vlan_features |= NETIF_F_HIGHDMA;
10275 /* Make NETIF_F_SG inheritable to tunnel devices.
10277 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10279 /* Make NETIF_F_SG inheritable to MPLS.
10281 dev->mpls_features |= NETIF_F_SG;
10283 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10284 ret = notifier_to_errno(ret);
10288 ret = netdev_register_kobject(dev);
10290 dev->reg_state = NETREG_UNREGISTERED;
10293 dev->reg_state = NETREG_REGISTERED;
10295 __netdev_update_features(dev);
10298 * Default initial state at registry is that the
10299 * device is present.
10302 set_bit(__LINK_STATE_PRESENT, &dev->state);
10304 linkwatch_init_dev(dev);
10306 dev_init_scheduler(dev);
10308 list_netdevice(dev);
10309 add_device_randomness(dev->dev_addr, dev->addr_len);
10311 /* If the device has permanent device address, driver should
10312 * set dev_addr and also addr_assign_type should be set to
10313 * NET_ADDR_PERM (default value).
10315 if (dev->addr_assign_type == NET_ADDR_PERM)
10316 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10318 /* Notify protocols, that a new device appeared. */
10319 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10320 ret = notifier_to_errno(ret);
10322 /* Expect explicit free_netdev() on failure */
10323 dev->needs_free_netdev = false;
10324 unregister_netdevice_queue(dev, NULL);
10328 * Prevent userspace races by waiting until the network
10329 * device is fully setup before sending notifications.
10331 if (!dev->rtnl_link_ops ||
10332 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10333 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10339 if (dev->netdev_ops->ndo_uninit)
10340 dev->netdev_ops->ndo_uninit(dev);
10341 if (dev->priv_destructor)
10342 dev->priv_destructor(dev);
10344 netdev_name_node_free(dev->name_node);
10347 EXPORT_SYMBOL(register_netdevice);
10350 * init_dummy_netdev - init a dummy network device for NAPI
10351 * @dev: device to init
10353 * This takes a network device structure and initialize the minimum
10354 * amount of fields so it can be used to schedule NAPI polls without
10355 * registering a full blown interface. This is to be used by drivers
10356 * that need to tie several hardware interfaces to a single NAPI
10357 * poll scheduler due to HW limitations.
10359 int init_dummy_netdev(struct net_device *dev)
10361 /* Clear everything. Note we don't initialize spinlocks
10362 * are they aren't supposed to be taken by any of the
10363 * NAPI code and this dummy netdev is supposed to be
10364 * only ever used for NAPI polls
10366 memset(dev, 0, sizeof(struct net_device));
10368 /* make sure we BUG if trying to hit standard
10369 * register/unregister code path
10371 dev->reg_state = NETREG_DUMMY;
10373 /* NAPI wants this */
10374 INIT_LIST_HEAD(&dev->napi_list);
10376 /* a dummy interface is started by default */
10377 set_bit(__LINK_STATE_PRESENT, &dev->state);
10378 set_bit(__LINK_STATE_START, &dev->state);
10380 /* napi_busy_loop stats accounting wants this */
10381 dev_net_set(dev, &init_net);
10383 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10384 * because users of this 'device' dont need to change
10390 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10394 * register_netdev - register a network device
10395 * @dev: device to register
10397 * Take a completed network device structure and add it to the kernel
10398 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10399 * chain. 0 is returned on success. A negative errno code is returned
10400 * on a failure to set up the device, or if the name is a duplicate.
10402 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10403 * and expands the device name if you passed a format string to
10406 int register_netdev(struct net_device *dev)
10410 if (rtnl_lock_killable())
10412 err = register_netdevice(dev);
10416 EXPORT_SYMBOL(register_netdev);
10418 int netdev_refcnt_read(const struct net_device *dev)
10420 #ifdef CONFIG_PCPU_DEV_REFCNT
10423 for_each_possible_cpu(i)
10424 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10427 return refcount_read(&dev->dev_refcnt);
10430 EXPORT_SYMBOL(netdev_refcnt_read);
10432 int netdev_unregister_timeout_secs __read_mostly = 10;
10434 #define WAIT_REFS_MIN_MSECS 1
10435 #define WAIT_REFS_MAX_MSECS 250
10437 * netdev_wait_allrefs - wait until all references are gone.
10438 * @dev: target net_device
10440 * This is called when unregistering network devices.
10442 * Any protocol or device that holds a reference should register
10443 * for netdevice notification, and cleanup and put back the
10444 * reference if they receive an UNREGISTER event.
10445 * We can get stuck here if buggy protocols don't correctly
10448 static void netdev_wait_allrefs(struct net_device *dev)
10450 unsigned long rebroadcast_time, warning_time;
10451 int wait = 0, refcnt;
10453 linkwatch_forget_dev(dev);
10455 rebroadcast_time = warning_time = jiffies;
10456 refcnt = netdev_refcnt_read(dev);
10458 while (refcnt != 1) {
10459 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10462 /* Rebroadcast unregister notification */
10463 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10469 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10471 /* We must not have linkwatch events
10472 * pending on unregister. If this
10473 * happens, we simply run the queue
10474 * unscheduled, resulting in a noop
10477 linkwatch_run_queue();
10482 rebroadcast_time = jiffies;
10487 wait = WAIT_REFS_MIN_MSECS;
10490 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10493 refcnt = netdev_refcnt_read(dev);
10496 time_after(jiffies, warning_time +
10497 netdev_unregister_timeout_secs * HZ)) {
10498 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10499 dev->name, refcnt);
10500 warning_time = jiffies;
10505 /* The sequence is:
10509 * register_netdevice(x1);
10510 * register_netdevice(x2);
10512 * unregister_netdevice(y1);
10513 * unregister_netdevice(y2);
10519 * We are invoked by rtnl_unlock().
10520 * This allows us to deal with problems:
10521 * 1) We can delete sysfs objects which invoke hotplug
10522 * without deadlocking with linkwatch via keventd.
10523 * 2) Since we run with the RTNL semaphore not held, we can sleep
10524 * safely in order to wait for the netdev refcnt to drop to zero.
10526 * We must not return until all unregister events added during
10527 * the interval the lock was held have been completed.
10529 void netdev_run_todo(void)
10531 struct list_head list;
10532 #ifdef CONFIG_LOCKDEP
10533 struct list_head unlink_list;
10535 list_replace_init(&net_unlink_list, &unlink_list);
10537 while (!list_empty(&unlink_list)) {
10538 struct net_device *dev = list_first_entry(&unlink_list,
10541 list_del_init(&dev->unlink_list);
10542 dev->nested_level = dev->lower_level - 1;
10546 /* Snapshot list, allow later requests */
10547 list_replace_init(&net_todo_list, &list);
10552 /* Wait for rcu callbacks to finish before next phase */
10553 if (!list_empty(&list))
10556 while (!list_empty(&list)) {
10557 struct net_device *dev
10558 = list_first_entry(&list, struct net_device, todo_list);
10559 list_del(&dev->todo_list);
10561 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10562 pr_err("network todo '%s' but state %d\n",
10563 dev->name, dev->reg_state);
10568 dev->reg_state = NETREG_UNREGISTERED;
10570 netdev_wait_allrefs(dev);
10573 BUG_ON(netdev_refcnt_read(dev) != 1);
10574 BUG_ON(!list_empty(&dev->ptype_all));
10575 BUG_ON(!list_empty(&dev->ptype_specific));
10576 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10577 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10578 #if IS_ENABLED(CONFIG_DECNET)
10579 WARN_ON(dev->dn_ptr);
10581 if (dev->priv_destructor)
10582 dev->priv_destructor(dev);
10583 if (dev->needs_free_netdev)
10586 /* Report a network device has been unregistered */
10588 dev_net(dev)->dev_unreg_count--;
10590 wake_up(&netdev_unregistering_wq);
10592 /* Free network device */
10593 kobject_put(&dev->dev.kobj);
10597 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10598 * all the same fields in the same order as net_device_stats, with only
10599 * the type differing, but rtnl_link_stats64 may have additional fields
10600 * at the end for newer counters.
10602 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10603 const struct net_device_stats *netdev_stats)
10605 #if BITS_PER_LONG == 64
10606 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10607 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10608 /* zero out counters that only exist in rtnl_link_stats64 */
10609 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10610 sizeof(*stats64) - sizeof(*netdev_stats));
10612 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10613 const unsigned long *src = (const unsigned long *)netdev_stats;
10614 u64 *dst = (u64 *)stats64;
10616 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10617 for (i = 0; i < n; i++)
10619 /* zero out counters that only exist in rtnl_link_stats64 */
10620 memset((char *)stats64 + n * sizeof(u64), 0,
10621 sizeof(*stats64) - n * sizeof(u64));
10624 EXPORT_SYMBOL(netdev_stats_to_stats64);
10627 * dev_get_stats - get network device statistics
10628 * @dev: device to get statistics from
10629 * @storage: place to store stats
10631 * Get network statistics from device. Return @storage.
10632 * The device driver may provide its own method by setting
10633 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10634 * otherwise the internal statistics structure is used.
10636 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10637 struct rtnl_link_stats64 *storage)
10639 const struct net_device_ops *ops = dev->netdev_ops;
10641 if (ops->ndo_get_stats64) {
10642 memset(storage, 0, sizeof(*storage));
10643 ops->ndo_get_stats64(dev, storage);
10644 } else if (ops->ndo_get_stats) {
10645 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10647 netdev_stats_to_stats64(storage, &dev->stats);
10649 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10650 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10651 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10654 EXPORT_SYMBOL(dev_get_stats);
10657 * dev_fetch_sw_netstats - get per-cpu network device statistics
10658 * @s: place to store stats
10659 * @netstats: per-cpu network stats to read from
10661 * Read per-cpu network statistics and populate the related fields in @s.
10663 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10664 const struct pcpu_sw_netstats __percpu *netstats)
10668 for_each_possible_cpu(cpu) {
10669 const struct pcpu_sw_netstats *stats;
10670 struct pcpu_sw_netstats tmp;
10671 unsigned int start;
10673 stats = per_cpu_ptr(netstats, cpu);
10675 start = u64_stats_fetch_begin_irq(&stats->syncp);
10676 tmp.rx_packets = stats->rx_packets;
10677 tmp.rx_bytes = stats->rx_bytes;
10678 tmp.tx_packets = stats->tx_packets;
10679 tmp.tx_bytes = stats->tx_bytes;
10680 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10682 s->rx_packets += tmp.rx_packets;
10683 s->rx_bytes += tmp.rx_bytes;
10684 s->tx_packets += tmp.tx_packets;
10685 s->tx_bytes += tmp.tx_bytes;
10688 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10691 * dev_get_tstats64 - ndo_get_stats64 implementation
10692 * @dev: device to get statistics from
10693 * @s: place to store stats
10695 * Populate @s from dev->stats and dev->tstats. Can be used as
10696 * ndo_get_stats64() callback.
10698 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10700 netdev_stats_to_stats64(s, &dev->stats);
10701 dev_fetch_sw_netstats(s, dev->tstats);
10703 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10705 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10707 struct netdev_queue *queue = dev_ingress_queue(dev);
10709 #ifdef CONFIG_NET_CLS_ACT
10712 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10715 netdev_init_one_queue(dev, queue, NULL);
10716 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10717 queue->qdisc_sleeping = &noop_qdisc;
10718 rcu_assign_pointer(dev->ingress_queue, queue);
10723 static const struct ethtool_ops default_ethtool_ops;
10725 void netdev_set_default_ethtool_ops(struct net_device *dev,
10726 const struct ethtool_ops *ops)
10728 if (dev->ethtool_ops == &default_ethtool_ops)
10729 dev->ethtool_ops = ops;
10731 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10733 void netdev_freemem(struct net_device *dev)
10735 char *addr = (char *)dev - dev->padded;
10741 * alloc_netdev_mqs - allocate network device
10742 * @sizeof_priv: size of private data to allocate space for
10743 * @name: device name format string
10744 * @name_assign_type: origin of device name
10745 * @setup: callback to initialize device
10746 * @txqs: the number of TX subqueues to allocate
10747 * @rxqs: the number of RX subqueues to allocate
10749 * Allocates a struct net_device with private data area for driver use
10750 * and performs basic initialization. Also allocates subqueue structs
10751 * for each queue on the device.
10753 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10754 unsigned char name_assign_type,
10755 void (*setup)(struct net_device *),
10756 unsigned int txqs, unsigned int rxqs)
10758 struct net_device *dev;
10759 unsigned int alloc_size;
10760 struct net_device *p;
10762 BUG_ON(strlen(name) >= sizeof(dev->name));
10765 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10770 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10774 alloc_size = sizeof(struct net_device);
10776 /* ensure 32-byte alignment of private area */
10777 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10778 alloc_size += sizeof_priv;
10780 /* ensure 32-byte alignment of whole construct */
10781 alloc_size += NETDEV_ALIGN - 1;
10783 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10787 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10788 dev->padded = (char *)dev - (char *)p;
10790 #ifdef CONFIG_PCPU_DEV_REFCNT
10791 dev->pcpu_refcnt = alloc_percpu(int);
10792 if (!dev->pcpu_refcnt)
10796 refcount_set(&dev->dev_refcnt, 1);
10799 if (dev_addr_init(dev))
10805 dev_net_set(dev, &init_net);
10807 dev->gso_max_size = GSO_MAX_SIZE;
10808 dev->gso_max_segs = GSO_MAX_SEGS;
10809 dev->upper_level = 1;
10810 dev->lower_level = 1;
10811 #ifdef CONFIG_LOCKDEP
10812 dev->nested_level = 0;
10813 INIT_LIST_HEAD(&dev->unlink_list);
10816 INIT_LIST_HEAD(&dev->napi_list);
10817 INIT_LIST_HEAD(&dev->unreg_list);
10818 INIT_LIST_HEAD(&dev->close_list);
10819 INIT_LIST_HEAD(&dev->link_watch_list);
10820 INIT_LIST_HEAD(&dev->adj_list.upper);
10821 INIT_LIST_HEAD(&dev->adj_list.lower);
10822 INIT_LIST_HEAD(&dev->ptype_all);
10823 INIT_LIST_HEAD(&dev->ptype_specific);
10824 INIT_LIST_HEAD(&dev->net_notifier_list);
10825 #ifdef CONFIG_NET_SCHED
10826 hash_init(dev->qdisc_hash);
10828 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10831 if (!dev->tx_queue_len) {
10832 dev->priv_flags |= IFF_NO_QUEUE;
10833 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10836 dev->num_tx_queues = txqs;
10837 dev->real_num_tx_queues = txqs;
10838 if (netif_alloc_netdev_queues(dev))
10841 dev->num_rx_queues = rxqs;
10842 dev->real_num_rx_queues = rxqs;
10843 if (netif_alloc_rx_queues(dev))
10846 strcpy(dev->name, name);
10847 dev->name_assign_type = name_assign_type;
10848 dev->group = INIT_NETDEV_GROUP;
10849 if (!dev->ethtool_ops)
10850 dev->ethtool_ops = &default_ethtool_ops;
10852 nf_hook_ingress_init(dev);
10861 #ifdef CONFIG_PCPU_DEV_REFCNT
10862 free_percpu(dev->pcpu_refcnt);
10865 netdev_freemem(dev);
10868 EXPORT_SYMBOL(alloc_netdev_mqs);
10871 * free_netdev - free network device
10874 * This function does the last stage of destroying an allocated device
10875 * interface. The reference to the device object is released. If this
10876 * is the last reference then it will be freed.Must be called in process
10879 void free_netdev(struct net_device *dev)
10881 struct napi_struct *p, *n;
10885 /* When called immediately after register_netdevice() failed the unwind
10886 * handling may still be dismantling the device. Handle that case by
10887 * deferring the free.
10889 if (dev->reg_state == NETREG_UNREGISTERING) {
10891 dev->needs_free_netdev = true;
10895 netif_free_tx_queues(dev);
10896 netif_free_rx_queues(dev);
10898 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10900 /* Flush device addresses */
10901 dev_addr_flush(dev);
10903 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10906 #ifdef CONFIG_PCPU_DEV_REFCNT
10907 free_percpu(dev->pcpu_refcnt);
10908 dev->pcpu_refcnt = NULL;
10910 free_percpu(dev->xdp_bulkq);
10911 dev->xdp_bulkq = NULL;
10913 /* Compatibility with error handling in drivers */
10914 if (dev->reg_state == NETREG_UNINITIALIZED) {
10915 netdev_freemem(dev);
10919 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10920 dev->reg_state = NETREG_RELEASED;
10922 /* will free via device release */
10923 put_device(&dev->dev);
10925 EXPORT_SYMBOL(free_netdev);
10928 * synchronize_net - Synchronize with packet receive processing
10930 * Wait for packets currently being received to be done.
10931 * Does not block later packets from starting.
10933 void synchronize_net(void)
10936 if (rtnl_is_locked())
10937 synchronize_rcu_expedited();
10941 EXPORT_SYMBOL(synchronize_net);
10944 * unregister_netdevice_queue - remove device from the kernel
10948 * This function shuts down a device interface and removes it
10949 * from the kernel tables.
10950 * If head not NULL, device is queued to be unregistered later.
10952 * Callers must hold the rtnl semaphore. You may want
10953 * unregister_netdev() instead of this.
10956 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10961 list_move_tail(&dev->unreg_list, head);
10965 list_add(&dev->unreg_list, &single);
10966 unregister_netdevice_many(&single);
10969 EXPORT_SYMBOL(unregister_netdevice_queue);
10972 * unregister_netdevice_many - unregister many devices
10973 * @head: list of devices
10975 * Note: As most callers use a stack allocated list_head,
10976 * we force a list_del() to make sure stack wont be corrupted later.
10978 void unregister_netdevice_many(struct list_head *head)
10980 struct net_device *dev, *tmp;
10981 LIST_HEAD(close_head);
10983 BUG_ON(dev_boot_phase);
10986 if (list_empty(head))
10989 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10990 /* Some devices call without registering
10991 * for initialization unwind. Remove those
10992 * devices and proceed with the remaining.
10994 if (dev->reg_state == NETREG_UNINITIALIZED) {
10995 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10999 list_del(&dev->unreg_list);
11002 dev->dismantle = true;
11003 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11006 /* If device is running, close it first. */
11007 list_for_each_entry(dev, head, unreg_list)
11008 list_add_tail(&dev->close_list, &close_head);
11009 dev_close_many(&close_head, true);
11011 list_for_each_entry(dev, head, unreg_list) {
11012 /* And unlink it from device chain. */
11013 unlist_netdevice(dev);
11015 dev->reg_state = NETREG_UNREGISTERING;
11017 flush_all_backlogs();
11021 list_for_each_entry(dev, head, unreg_list) {
11022 struct sk_buff *skb = NULL;
11024 /* Shutdown queueing discipline. */
11027 dev_xdp_uninstall(dev);
11029 /* Notify protocols, that we are about to destroy
11030 * this device. They should clean all the things.
11032 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11034 if (!dev->rtnl_link_ops ||
11035 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11036 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11037 GFP_KERNEL, NULL, 0);
11040 * Flush the unicast and multicast chains
11045 netdev_name_node_alt_flush(dev);
11046 netdev_name_node_free(dev->name_node);
11048 if (dev->netdev_ops->ndo_uninit)
11049 dev->netdev_ops->ndo_uninit(dev);
11052 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11054 /* Notifier chain MUST detach us all upper devices. */
11055 WARN_ON(netdev_has_any_upper_dev(dev));
11056 WARN_ON(netdev_has_any_lower_dev(dev));
11058 /* Remove entries from kobject tree */
11059 netdev_unregister_kobject(dev);
11061 /* Remove XPS queueing entries */
11062 netif_reset_xps_queues_gt(dev, 0);
11068 list_for_each_entry(dev, head, unreg_list) {
11075 EXPORT_SYMBOL(unregister_netdevice_many);
11078 * unregister_netdev - remove device from the kernel
11081 * This function shuts down a device interface and removes it
11082 * from the kernel tables.
11084 * This is just a wrapper for unregister_netdevice that takes
11085 * the rtnl semaphore. In general you want to use this and not
11086 * unregister_netdevice.
11088 void unregister_netdev(struct net_device *dev)
11091 unregister_netdevice(dev);
11094 EXPORT_SYMBOL(unregister_netdev);
11097 * __dev_change_net_namespace - move device to different nethost namespace
11099 * @net: network namespace
11100 * @pat: If not NULL name pattern to try if the current device name
11101 * is already taken in the destination network namespace.
11102 * @new_ifindex: If not zero, specifies device index in the target
11105 * This function shuts down a device interface and moves it
11106 * to a new network namespace. On success 0 is returned, on
11107 * a failure a netagive errno code is returned.
11109 * Callers must hold the rtnl semaphore.
11112 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11113 const char *pat, int new_ifindex)
11115 struct net *net_old = dev_net(dev);
11120 /* Don't allow namespace local devices to be moved. */
11122 if (dev->features & NETIF_F_NETNS_LOCAL)
11125 /* Ensure the device has been registrered */
11126 if (dev->reg_state != NETREG_REGISTERED)
11129 /* Get out if there is nothing todo */
11131 if (net_eq(net_old, net))
11134 /* Pick the destination device name, and ensure
11135 * we can use it in the destination network namespace.
11138 if (__dev_get_by_name(net, dev->name)) {
11139 /* We get here if we can't use the current device name */
11142 err = dev_get_valid_name(net, dev, pat);
11147 /* Check that new_ifindex isn't used yet. */
11149 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11153 * And now a mini version of register_netdevice unregister_netdevice.
11156 /* If device is running close it first. */
11159 /* And unlink it from device chain */
11160 unlist_netdevice(dev);
11164 /* Shutdown queueing discipline. */
11167 /* Notify protocols, that we are about to destroy
11168 * this device. They should clean all the things.
11170 * Note that dev->reg_state stays at NETREG_REGISTERED.
11171 * This is wanted because this way 8021q and macvlan know
11172 * the device is just moving and can keep their slaves up.
11174 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11177 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11178 /* If there is an ifindex conflict assign a new one */
11179 if (!new_ifindex) {
11180 if (__dev_get_by_index(net, dev->ifindex))
11181 new_ifindex = dev_new_index(net);
11183 new_ifindex = dev->ifindex;
11186 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11190 * Flush the unicast and multicast chains
11195 /* Send a netdev-removed uevent to the old namespace */
11196 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11197 netdev_adjacent_del_links(dev);
11199 /* Move per-net netdevice notifiers that are following the netdevice */
11200 move_netdevice_notifiers_dev_net(dev, net);
11202 /* Actually switch the network namespace */
11203 dev_net_set(dev, net);
11204 dev->ifindex = new_ifindex;
11206 /* Send a netdev-add uevent to the new namespace */
11207 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11208 netdev_adjacent_add_links(dev);
11210 /* Fixup kobjects */
11211 err = device_rename(&dev->dev, dev->name);
11214 /* Adapt owner in case owning user namespace of target network
11215 * namespace is different from the original one.
11217 err = netdev_change_owner(dev, net_old, net);
11220 /* Add the device back in the hashes */
11221 list_netdevice(dev);
11223 /* Notify protocols, that a new device appeared. */
11224 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11227 * Prevent userspace races by waiting until the network
11228 * device is fully setup before sending notifications.
11230 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11237 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11239 static int dev_cpu_dead(unsigned int oldcpu)
11241 struct sk_buff **list_skb;
11242 struct sk_buff *skb;
11244 struct softnet_data *sd, *oldsd, *remsd = NULL;
11246 local_irq_disable();
11247 cpu = smp_processor_id();
11248 sd = &per_cpu(softnet_data, cpu);
11249 oldsd = &per_cpu(softnet_data, oldcpu);
11251 /* Find end of our completion_queue. */
11252 list_skb = &sd->completion_queue;
11254 list_skb = &(*list_skb)->next;
11255 /* Append completion queue from offline CPU. */
11256 *list_skb = oldsd->completion_queue;
11257 oldsd->completion_queue = NULL;
11259 /* Append output queue from offline CPU. */
11260 if (oldsd->output_queue) {
11261 *sd->output_queue_tailp = oldsd->output_queue;
11262 sd->output_queue_tailp = oldsd->output_queue_tailp;
11263 oldsd->output_queue = NULL;
11264 oldsd->output_queue_tailp = &oldsd->output_queue;
11266 /* Append NAPI poll list from offline CPU, with one exception :
11267 * process_backlog() must be called by cpu owning percpu backlog.
11268 * We properly handle process_queue & input_pkt_queue later.
11270 while (!list_empty(&oldsd->poll_list)) {
11271 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11272 struct napi_struct,
11275 list_del_init(&napi->poll_list);
11276 if (napi->poll == process_backlog)
11279 ____napi_schedule(sd, napi);
11282 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11283 local_irq_enable();
11286 remsd = oldsd->rps_ipi_list;
11287 oldsd->rps_ipi_list = NULL;
11289 /* send out pending IPI's on offline CPU */
11290 net_rps_send_ipi(remsd);
11292 /* Process offline CPU's input_pkt_queue */
11293 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11295 input_queue_head_incr(oldsd);
11297 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11299 input_queue_head_incr(oldsd);
11306 * netdev_increment_features - increment feature set by one
11307 * @all: current feature set
11308 * @one: new feature set
11309 * @mask: mask feature set
11311 * Computes a new feature set after adding a device with feature set
11312 * @one to the master device with current feature set @all. Will not
11313 * enable anything that is off in @mask. Returns the new feature set.
11315 netdev_features_t netdev_increment_features(netdev_features_t all,
11316 netdev_features_t one, netdev_features_t mask)
11318 if (mask & NETIF_F_HW_CSUM)
11319 mask |= NETIF_F_CSUM_MASK;
11320 mask |= NETIF_F_VLAN_CHALLENGED;
11322 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11323 all &= one | ~NETIF_F_ALL_FOR_ALL;
11325 /* If one device supports hw checksumming, set for all. */
11326 if (all & NETIF_F_HW_CSUM)
11327 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11331 EXPORT_SYMBOL(netdev_increment_features);
11333 static struct hlist_head * __net_init netdev_create_hash(void)
11336 struct hlist_head *hash;
11338 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11340 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11341 INIT_HLIST_HEAD(&hash[i]);
11346 /* Initialize per network namespace state */
11347 static int __net_init netdev_init(struct net *net)
11349 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11350 8 * sizeof_field(struct napi_struct, gro_bitmask));
11352 if (net != &init_net)
11353 INIT_LIST_HEAD(&net->dev_base_head);
11355 net->dev_name_head = netdev_create_hash();
11356 if (net->dev_name_head == NULL)
11359 net->dev_index_head = netdev_create_hash();
11360 if (net->dev_index_head == NULL)
11363 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11368 kfree(net->dev_name_head);
11374 * netdev_drivername - network driver for the device
11375 * @dev: network device
11377 * Determine network driver for device.
11379 const char *netdev_drivername(const struct net_device *dev)
11381 const struct device_driver *driver;
11382 const struct device *parent;
11383 const char *empty = "";
11385 parent = dev->dev.parent;
11389 driver = parent->driver;
11390 if (driver && driver->name)
11391 return driver->name;
11395 static void __netdev_printk(const char *level, const struct net_device *dev,
11396 struct va_format *vaf)
11398 if (dev && dev->dev.parent) {
11399 dev_printk_emit(level[1] - '0',
11402 dev_driver_string(dev->dev.parent),
11403 dev_name(dev->dev.parent),
11404 netdev_name(dev), netdev_reg_state(dev),
11407 printk("%s%s%s: %pV",
11408 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11410 printk("%s(NULL net_device): %pV", level, vaf);
11414 void netdev_printk(const char *level, const struct net_device *dev,
11415 const char *format, ...)
11417 struct va_format vaf;
11420 va_start(args, format);
11425 __netdev_printk(level, dev, &vaf);
11429 EXPORT_SYMBOL(netdev_printk);
11431 #define define_netdev_printk_level(func, level) \
11432 void func(const struct net_device *dev, const char *fmt, ...) \
11434 struct va_format vaf; \
11437 va_start(args, fmt); \
11442 __netdev_printk(level, dev, &vaf); \
11446 EXPORT_SYMBOL(func);
11448 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11449 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11450 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11451 define_netdev_printk_level(netdev_err, KERN_ERR);
11452 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11453 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11454 define_netdev_printk_level(netdev_info, KERN_INFO);
11456 static void __net_exit netdev_exit(struct net *net)
11458 kfree(net->dev_name_head);
11459 kfree(net->dev_index_head);
11460 if (net != &init_net)
11461 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11464 static struct pernet_operations __net_initdata netdev_net_ops = {
11465 .init = netdev_init,
11466 .exit = netdev_exit,
11469 static void __net_exit default_device_exit(struct net *net)
11471 struct net_device *dev, *aux;
11473 * Push all migratable network devices back to the
11474 * initial network namespace
11477 for_each_netdev_safe(net, dev, aux) {
11479 char fb_name[IFNAMSIZ];
11481 /* Ignore unmoveable devices (i.e. loopback) */
11482 if (dev->features & NETIF_F_NETNS_LOCAL)
11485 /* Leave virtual devices for the generic cleanup */
11486 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11489 /* Push remaining network devices to init_net */
11490 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11491 if (__dev_get_by_name(&init_net, fb_name))
11492 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11493 err = dev_change_net_namespace(dev, &init_net, fb_name);
11495 pr_emerg("%s: failed to move %s to init_net: %d\n",
11496 __func__, dev->name, err);
11503 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11505 /* Return with the rtnl_lock held when there are no network
11506 * devices unregistering in any network namespace in net_list.
11509 bool unregistering;
11510 DEFINE_WAIT_FUNC(wait, woken_wake_function);
11512 add_wait_queue(&netdev_unregistering_wq, &wait);
11514 unregistering = false;
11516 list_for_each_entry(net, net_list, exit_list) {
11517 if (net->dev_unreg_count > 0) {
11518 unregistering = true;
11522 if (!unregistering)
11526 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11528 remove_wait_queue(&netdev_unregistering_wq, &wait);
11531 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11533 /* At exit all network devices most be removed from a network
11534 * namespace. Do this in the reverse order of registration.
11535 * Do this across as many network namespaces as possible to
11536 * improve batching efficiency.
11538 struct net_device *dev;
11540 LIST_HEAD(dev_kill_list);
11542 /* To prevent network device cleanup code from dereferencing
11543 * loopback devices or network devices that have been freed
11544 * wait here for all pending unregistrations to complete,
11545 * before unregistring the loopback device and allowing the
11546 * network namespace be freed.
11548 * The netdev todo list containing all network devices
11549 * unregistrations that happen in default_device_exit_batch
11550 * will run in the rtnl_unlock() at the end of
11551 * default_device_exit_batch.
11553 rtnl_lock_unregistering(net_list);
11554 list_for_each_entry(net, net_list, exit_list) {
11555 for_each_netdev_reverse(net, dev) {
11556 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11557 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11559 unregister_netdevice_queue(dev, &dev_kill_list);
11562 unregister_netdevice_many(&dev_kill_list);
11566 static struct pernet_operations __net_initdata default_device_ops = {
11567 .exit = default_device_exit,
11568 .exit_batch = default_device_exit_batch,
11572 * Initialize the DEV module. At boot time this walks the device list and
11573 * unhooks any devices that fail to initialise (normally hardware not
11574 * present) and leaves us with a valid list of present and active devices.
11579 * This is called single threaded during boot, so no need
11580 * to take the rtnl semaphore.
11582 static int __init net_dev_init(void)
11584 int i, rc = -ENOMEM;
11586 BUG_ON(!dev_boot_phase);
11588 if (dev_proc_init())
11591 if (netdev_kobject_init())
11594 INIT_LIST_HEAD(&ptype_all);
11595 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11596 INIT_LIST_HEAD(&ptype_base[i]);
11598 INIT_LIST_HEAD(&offload_base);
11600 if (register_pernet_subsys(&netdev_net_ops))
11604 * Initialise the packet receive queues.
11607 for_each_possible_cpu(i) {
11608 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11609 struct softnet_data *sd = &per_cpu(softnet_data, i);
11611 INIT_WORK(flush, flush_backlog);
11613 skb_queue_head_init(&sd->input_pkt_queue);
11614 skb_queue_head_init(&sd->process_queue);
11615 #ifdef CONFIG_XFRM_OFFLOAD
11616 skb_queue_head_init(&sd->xfrm_backlog);
11618 INIT_LIST_HEAD(&sd->poll_list);
11619 sd->output_queue_tailp = &sd->output_queue;
11621 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11625 init_gro_hash(&sd->backlog);
11626 sd->backlog.poll = process_backlog;
11627 sd->backlog.weight = weight_p;
11630 dev_boot_phase = 0;
11632 /* The loopback device is special if any other network devices
11633 * is present in a network namespace the loopback device must
11634 * be present. Since we now dynamically allocate and free the
11635 * loopback device ensure this invariant is maintained by
11636 * keeping the loopback device as the first device on the
11637 * list of network devices. Ensuring the loopback devices
11638 * is the first device that appears and the last network device
11641 if (register_pernet_device(&loopback_net_ops))
11644 if (register_pernet_device(&default_device_ops))
11647 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11648 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11650 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11651 NULL, dev_cpu_dead);
11658 subsys_initcall(net_dev_init);