1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
21 #include <trace/events/f2fs.h>
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
31 * Check whether the given nid is within node id range.
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
39 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
47 struct f2fs_nm_info *nm_i = NM_I(sbi);
48 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
50 unsigned long avail_ram;
51 unsigned long mem_size = 0;
59 /* only uses low memory */
60 avail_ram = val.totalram - val.totalhigh;
63 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
65 if (type == FREE_NIDS) {
66 mem_size = (nm_i->nid_cnt[FREE_NID] *
67 sizeof(struct free_nid)) >> PAGE_SHIFT;
68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 } else if (type == NAT_ENTRIES) {
70 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 if (excess_cached_nats(sbi))
75 } else if (type == DIRTY_DENTS) {
76 if (sbi->sb->s_bdi->wb.dirty_exceeded)
78 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 } else if (type == INO_ENTRIES) {
83 for (i = 0; i < MAX_INO_ENTRY; i++)
84 mem_size += sbi->im[i].ino_num *
85 sizeof(struct ino_entry);
86 mem_size >>= PAGE_SHIFT;
87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89 enum extent_type etype = type == READ_EXTENT_CACHE ?
90 EX_READ : EX_BLOCK_AGE;
91 struct extent_tree_info *eti = &sbi->extent_tree[etype];
93 mem_size = (atomic_read(&eti->total_ext_tree) *
94 sizeof(struct extent_tree) +
95 atomic_read(&eti->total_ext_node) *
96 sizeof(struct extent_node)) >> PAGE_SHIFT;
97 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98 } else if (type == DISCARD_CACHE) {
99 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102 } else if (type == COMPRESS_PAGE) {
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104 unsigned long free_ram = val.freeram;
107 * free memory is lower than watermark or cached page count
108 * exceed threshold, deny caching compress page.
110 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111 (COMPRESS_MAPPING(sbi)->nrpages <
112 free_ram * sbi->compress_percent / 100);
117 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
123 static void clear_node_page_dirty(struct page *page)
125 if (PageDirty(page)) {
126 f2fs_clear_page_cache_dirty_tag(page);
127 clear_page_dirty_for_io(page);
128 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
130 ClearPageUptodate(page);
133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
135 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
140 struct page *src_page;
141 struct page *dst_page;
145 struct f2fs_nm_info *nm_i = NM_I(sbi);
147 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
149 /* get current nat block page with lock */
150 src_page = get_current_nat_page(sbi, nid);
151 if (IS_ERR(src_page))
153 dst_page = f2fs_grab_meta_page(sbi, dst_off);
154 f2fs_bug_on(sbi, PageDirty(src_page));
156 src_addr = page_address(src_page);
157 dst_addr = page_address(dst_page);
158 memcpy(dst_addr, src_addr, PAGE_SIZE);
159 set_page_dirty(dst_page);
160 f2fs_put_page(src_page, 1);
162 set_to_next_nat(nm_i, nid);
167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168 nid_t nid, bool no_fail)
170 struct nat_entry *new;
172 new = f2fs_kmem_cache_alloc(nat_entry_slab,
173 GFP_F2FS_ZERO, no_fail, sbi);
175 nat_set_nid(new, nid);
181 static void __free_nat_entry(struct nat_entry *e)
183 kmem_cache_free(nat_entry_slab, e);
186 /* must be locked by nat_tree_lock */
187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
191 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
196 node_info_from_raw_nat(&ne->ni, raw_ne);
198 spin_lock(&nm_i->nat_list_lock);
199 list_add_tail(&ne->list, &nm_i->nat_entries);
200 spin_unlock(&nm_i->nat_list_lock);
202 nm_i->nat_cnt[TOTAL_NAT]++;
203 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
209 struct nat_entry *ne;
211 ne = radix_tree_lookup(&nm_i->nat_root, n);
213 /* for recent accessed nat entry, move it to tail of lru list */
214 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215 spin_lock(&nm_i->nat_list_lock);
216 if (!list_empty(&ne->list))
217 list_move_tail(&ne->list, &nm_i->nat_entries);
218 spin_unlock(&nm_i->nat_list_lock);
224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225 nid_t start, unsigned int nr, struct nat_entry **ep)
227 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
232 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233 nm_i->nat_cnt[TOTAL_NAT]--;
234 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239 struct nat_entry *ne)
241 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242 struct nat_entry_set *head;
244 head = radix_tree_lookup(&nm_i->nat_set_root, set);
246 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247 GFP_NOFS, true, NULL);
249 INIT_LIST_HEAD(&head->entry_list);
250 INIT_LIST_HEAD(&head->set_list);
253 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259 struct nat_entry *ne)
261 struct nat_entry_set *head;
262 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
265 head = __grab_nat_entry_set(nm_i, ne);
268 * update entry_cnt in below condition:
269 * 1. update NEW_ADDR to valid block address;
270 * 2. update old block address to new one;
272 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273 !get_nat_flag(ne, IS_DIRTY)))
276 set_nat_flag(ne, IS_PREALLOC, new_ne);
278 if (get_nat_flag(ne, IS_DIRTY))
281 nm_i->nat_cnt[DIRTY_NAT]++;
282 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283 set_nat_flag(ne, IS_DIRTY, true);
285 spin_lock(&nm_i->nat_list_lock);
287 list_del_init(&ne->list);
289 list_move_tail(&ne->list, &head->entry_list);
290 spin_unlock(&nm_i->nat_list_lock);
293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294 struct nat_entry_set *set, struct nat_entry *ne)
296 spin_lock(&nm_i->nat_list_lock);
297 list_move_tail(&ne->list, &nm_i->nat_entries);
298 spin_unlock(&nm_i->nat_list_lock);
300 set_nat_flag(ne, IS_DIRTY, false);
302 nm_i->nat_cnt[DIRTY_NAT]--;
303 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307 nid_t start, unsigned int nr, struct nat_entry_set **ep)
309 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
315 return NODE_MAPPING(sbi) == page->mapping &&
316 IS_DNODE(page) && is_cold_node(page);
319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
321 spin_lock_init(&sbi->fsync_node_lock);
322 INIT_LIST_HEAD(&sbi->fsync_node_list);
323 sbi->fsync_seg_id = 0;
324 sbi->fsync_node_num = 0;
327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
330 struct fsync_node_entry *fn;
334 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335 GFP_NOFS, true, NULL);
339 INIT_LIST_HEAD(&fn->list);
341 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342 list_add_tail(&fn->list, &sbi->fsync_node_list);
343 fn->seq_id = sbi->fsync_seg_id++;
345 sbi->fsync_node_num++;
346 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
353 struct fsync_node_entry *fn;
356 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358 if (fn->page == page) {
360 sbi->fsync_node_num--;
361 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362 kmem_cache_free(fsync_node_entry_slab, fn);
367 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
375 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376 sbi->fsync_seg_id = 0;
377 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
382 struct f2fs_nm_info *nm_i = NM_I(sbi);
386 f2fs_down_read(&nm_i->nat_tree_lock);
387 e = __lookup_nat_cache(nm_i, nid);
389 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390 !get_nat_flag(e, HAS_FSYNCED_INODE))
393 f2fs_up_read(&nm_i->nat_tree_lock);
397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
399 struct f2fs_nm_info *nm_i = NM_I(sbi);
403 f2fs_down_read(&nm_i->nat_tree_lock);
404 e = __lookup_nat_cache(nm_i, nid);
405 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
407 f2fs_up_read(&nm_i->nat_tree_lock);
411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
413 struct f2fs_nm_info *nm_i = NM_I(sbi);
415 bool need_update = true;
417 f2fs_down_read(&nm_i->nat_tree_lock);
418 e = __lookup_nat_cache(nm_i, ino);
419 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420 (get_nat_flag(e, IS_CHECKPOINTED) ||
421 get_nat_flag(e, HAS_FSYNCED_INODE)))
423 f2fs_up_read(&nm_i->nat_tree_lock);
427 /* must be locked by nat_tree_lock */
428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429 struct f2fs_nat_entry *ne)
431 struct f2fs_nm_info *nm_i = NM_I(sbi);
432 struct nat_entry *new, *e;
434 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
438 new = __alloc_nat_entry(sbi, nid, false);
442 f2fs_down_write(&nm_i->nat_tree_lock);
443 e = __lookup_nat_cache(nm_i, nid);
445 e = __init_nat_entry(nm_i, new, ne, false);
447 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448 nat_get_blkaddr(e) !=
449 le32_to_cpu(ne->block_addr) ||
450 nat_get_version(e) != ne->version);
451 f2fs_up_write(&nm_i->nat_tree_lock);
453 __free_nat_entry(new);
456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457 block_t new_blkaddr, bool fsync_done)
459 struct f2fs_nm_info *nm_i = NM_I(sbi);
461 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
463 f2fs_down_write(&nm_i->nat_tree_lock);
464 e = __lookup_nat_cache(nm_i, ni->nid);
466 e = __init_nat_entry(nm_i, new, NULL, true);
467 copy_node_info(&e->ni, ni);
468 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469 } else if (new_blkaddr == NEW_ADDR) {
471 * when nid is reallocated,
472 * previous nat entry can be remained in nat cache.
473 * So, reinitialize it with new information.
475 copy_node_info(&e->ni, ni);
476 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
478 /* let's free early to reduce memory consumption */
480 __free_nat_entry(new);
483 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485 new_blkaddr == NULL_ADDR);
486 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487 new_blkaddr == NEW_ADDR);
488 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489 new_blkaddr == NEW_ADDR);
491 /* increment version no as node is removed */
492 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493 unsigned char version = nat_get_version(e);
495 nat_set_version(e, inc_node_version(version));
499 nat_set_blkaddr(e, new_blkaddr);
500 if (!__is_valid_data_blkaddr(new_blkaddr))
501 set_nat_flag(e, IS_CHECKPOINTED, false);
502 __set_nat_cache_dirty(nm_i, e);
504 /* update fsync_mark if its inode nat entry is still alive */
505 if (ni->nid != ni->ino)
506 e = __lookup_nat_cache(nm_i, ni->ino);
508 if (fsync_done && ni->nid == ni->ino)
509 set_nat_flag(e, HAS_FSYNCED_INODE, true);
510 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
512 f2fs_up_write(&nm_i->nat_tree_lock);
515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
517 struct f2fs_nm_info *nm_i = NM_I(sbi);
520 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
523 spin_lock(&nm_i->nat_list_lock);
525 struct nat_entry *ne;
527 if (list_empty(&nm_i->nat_entries))
530 ne = list_first_entry(&nm_i->nat_entries,
531 struct nat_entry, list);
533 spin_unlock(&nm_i->nat_list_lock);
535 __del_from_nat_cache(nm_i, ne);
538 spin_lock(&nm_i->nat_list_lock);
540 spin_unlock(&nm_i->nat_list_lock);
542 f2fs_up_write(&nm_i->nat_tree_lock);
543 return nr - nr_shrink;
546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547 struct node_info *ni, bool checkpoint_context)
549 struct f2fs_nm_info *nm_i = NM_I(sbi);
550 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551 struct f2fs_journal *journal = curseg->journal;
552 nid_t start_nid = START_NID(nid);
553 struct f2fs_nat_block *nat_blk;
554 struct page *page = NULL;
555 struct f2fs_nat_entry ne;
563 /* Check nat cache */
564 f2fs_down_read(&nm_i->nat_tree_lock);
565 e = __lookup_nat_cache(nm_i, nid);
567 ni->ino = nat_get_ino(e);
568 ni->blk_addr = nat_get_blkaddr(e);
569 ni->version = nat_get_version(e);
570 f2fs_up_read(&nm_i->nat_tree_lock);
575 * Check current segment summary by trying to grab journal_rwsem first.
576 * This sem is on the critical path on the checkpoint requiring the above
577 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
578 * while not bothering checkpoint.
580 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
581 down_read(&curseg->journal_rwsem);
582 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
583 !down_read_trylock(&curseg->journal_rwsem)) {
584 f2fs_up_read(&nm_i->nat_tree_lock);
588 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
590 ne = nat_in_journal(journal, i);
591 node_info_from_raw_nat(ni, &ne);
593 up_read(&curseg->journal_rwsem);
595 f2fs_up_read(&nm_i->nat_tree_lock);
599 /* Fill node_info from nat page */
600 index = current_nat_addr(sbi, nid);
601 f2fs_up_read(&nm_i->nat_tree_lock);
603 page = f2fs_get_meta_page(sbi, index);
605 return PTR_ERR(page);
607 nat_blk = (struct f2fs_nat_block *)page_address(page);
608 ne = nat_blk->entries[nid - start_nid];
609 node_info_from_raw_nat(ni, &ne);
610 f2fs_put_page(page, 1);
612 blkaddr = le32_to_cpu(ne.block_addr);
613 if (__is_valid_data_blkaddr(blkaddr) &&
614 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
617 /* cache nat entry */
618 cache_nat_entry(sbi, nid, &ne);
623 * readahead MAX_RA_NODE number of node pages.
625 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
627 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
628 struct blk_plug plug;
632 blk_start_plug(&plug);
634 /* Then, try readahead for siblings of the desired node */
636 end = min(end, (int)NIDS_PER_BLOCK);
637 for (i = start; i < end; i++) {
638 nid = get_nid(parent, i, false);
639 f2fs_ra_node_page(sbi, nid);
642 blk_finish_plug(&plug);
645 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
647 const long direct_index = ADDRS_PER_INODE(dn->inode);
648 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
649 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
650 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
651 int cur_level = dn->cur_level;
652 int max_level = dn->max_level;
658 while (max_level-- > cur_level)
659 skipped_unit *= NIDS_PER_BLOCK;
661 switch (dn->max_level) {
663 base += 2 * indirect_blks;
666 base += 2 * direct_blks;
669 base += direct_index;
672 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
675 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
679 * The maximum depth is four.
680 * Offset[0] will have raw inode offset.
682 static int get_node_path(struct inode *inode, long block,
683 int offset[4], unsigned int noffset[4])
685 const long direct_index = ADDRS_PER_INODE(inode);
686 const long direct_blks = ADDRS_PER_BLOCK(inode);
687 const long dptrs_per_blk = NIDS_PER_BLOCK;
688 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
689 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
695 if (block < direct_index) {
699 block -= direct_index;
700 if (block < direct_blks) {
701 offset[n++] = NODE_DIR1_BLOCK;
707 block -= direct_blks;
708 if (block < direct_blks) {
709 offset[n++] = NODE_DIR2_BLOCK;
715 block -= direct_blks;
716 if (block < indirect_blks) {
717 offset[n++] = NODE_IND1_BLOCK;
719 offset[n++] = block / direct_blks;
720 noffset[n] = 4 + offset[n - 1];
721 offset[n] = block % direct_blks;
725 block -= indirect_blks;
726 if (block < indirect_blks) {
727 offset[n++] = NODE_IND2_BLOCK;
728 noffset[n] = 4 + dptrs_per_blk;
729 offset[n++] = block / direct_blks;
730 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
731 offset[n] = block % direct_blks;
735 block -= indirect_blks;
736 if (block < dindirect_blks) {
737 offset[n++] = NODE_DIND_BLOCK;
738 noffset[n] = 5 + (dptrs_per_blk * 2);
739 offset[n++] = block / indirect_blks;
740 noffset[n] = 6 + (dptrs_per_blk * 2) +
741 offset[n - 1] * (dptrs_per_blk + 1);
742 offset[n++] = (block / direct_blks) % dptrs_per_blk;
743 noffset[n] = 7 + (dptrs_per_blk * 2) +
744 offset[n - 2] * (dptrs_per_blk + 1) +
746 offset[n] = block % direct_blks;
757 * Caller should call f2fs_put_dnode(dn).
758 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
759 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
761 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
763 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
764 struct page *npage[4];
765 struct page *parent = NULL;
767 unsigned int noffset[4];
772 level = get_node_path(dn->inode, index, offset, noffset);
776 nids[0] = dn->inode->i_ino;
777 npage[0] = dn->inode_page;
780 npage[0] = f2fs_get_node_page(sbi, nids[0]);
781 if (IS_ERR(npage[0]))
782 return PTR_ERR(npage[0]);
785 /* if inline_data is set, should not report any block indices */
786 if (f2fs_has_inline_data(dn->inode) && index) {
788 f2fs_put_page(npage[0], 1);
794 nids[1] = get_nid(parent, offset[0], true);
795 dn->inode_page = npage[0];
796 dn->inode_page_locked = true;
798 /* get indirect or direct nodes */
799 for (i = 1; i <= level; i++) {
802 if (!nids[i] && mode == ALLOC_NODE) {
804 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
810 npage[i] = f2fs_new_node_page(dn, noffset[i]);
811 if (IS_ERR(npage[i])) {
812 f2fs_alloc_nid_failed(sbi, nids[i]);
813 err = PTR_ERR(npage[i]);
817 set_nid(parent, offset[i - 1], nids[i], i == 1);
818 f2fs_alloc_nid_done(sbi, nids[i]);
820 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
821 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
822 if (IS_ERR(npage[i])) {
823 err = PTR_ERR(npage[i]);
829 dn->inode_page_locked = false;
832 f2fs_put_page(parent, 1);
836 npage[i] = f2fs_get_node_page(sbi, nids[i]);
837 if (IS_ERR(npage[i])) {
838 err = PTR_ERR(npage[i]);
839 f2fs_put_page(npage[0], 0);
845 nids[i + 1] = get_nid(parent, offset[i], false);
848 dn->nid = nids[level];
849 dn->ofs_in_node = offset[level];
850 dn->node_page = npage[level];
851 dn->data_blkaddr = f2fs_data_blkaddr(dn);
853 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
854 f2fs_sb_has_readonly(sbi)) {
855 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
856 unsigned int ofs_in_node = dn->ofs_in_node;
857 pgoff_t fofs = index;
861 /* should align fofs and ofs_in_node to cluster_size */
862 if (fofs % cluster_size) {
863 fofs = round_down(fofs, cluster_size);
864 ofs_in_node = round_down(ofs_in_node, cluster_size);
867 c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node);
871 blkaddr = data_blkaddr(dn->inode, dn->node_page, ofs_in_node);
872 if (blkaddr == COMPRESS_ADDR)
873 blkaddr = data_blkaddr(dn->inode, dn->node_page,
876 f2fs_update_read_extent_tree_range_compressed(dn->inode,
877 fofs, blkaddr, cluster_size, c_len);
883 f2fs_put_page(parent, 1);
885 f2fs_put_page(npage[0], 0);
887 dn->inode_page = NULL;
888 dn->node_page = NULL;
889 if (err == -ENOENT) {
891 dn->max_level = level;
892 dn->ofs_in_node = offset[level];
897 static int truncate_node(struct dnode_of_data *dn)
899 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
904 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
908 /* Deallocate node address */
909 f2fs_invalidate_blocks(sbi, ni.blk_addr);
910 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
911 set_node_addr(sbi, &ni, NULL_ADDR, false);
913 if (dn->nid == dn->inode->i_ino) {
914 f2fs_remove_orphan_inode(sbi, dn->nid);
915 dec_valid_inode_count(sbi);
916 f2fs_inode_synced(dn->inode);
919 clear_node_page_dirty(dn->node_page);
920 set_sbi_flag(sbi, SBI_IS_DIRTY);
922 index = dn->node_page->index;
923 f2fs_put_page(dn->node_page, 1);
925 invalidate_mapping_pages(NODE_MAPPING(sbi),
928 dn->node_page = NULL;
929 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
934 static int truncate_dnode(struct dnode_of_data *dn)
936 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
943 /* get direct node */
944 page = f2fs_get_node_page(sbi, dn->nid);
945 if (PTR_ERR(page) == -ENOENT)
947 else if (IS_ERR(page))
948 return PTR_ERR(page);
950 if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) {
951 f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
952 dn->inode->i_ino, dn->nid, ino_of_node(page));
953 set_sbi_flag(sbi, SBI_NEED_FSCK);
954 f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
955 f2fs_put_page(page, 1);
956 return -EFSCORRUPTED;
959 /* Make dnode_of_data for parameter */
960 dn->node_page = page;
962 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
963 err = truncate_node(dn);
965 f2fs_put_page(page, 1);
972 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
975 struct dnode_of_data rdn = *dn;
977 struct f2fs_node *rn;
979 unsigned int child_nofs;
984 return NIDS_PER_BLOCK + 1;
986 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
988 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
990 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
991 return PTR_ERR(page);
994 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
996 rn = F2FS_NODE(page);
998 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
999 child_nid = le32_to_cpu(rn->in.nid[i]);
1002 rdn.nid = child_nid;
1003 ret = truncate_dnode(&rdn);
1006 if (set_nid(page, i, 0, false))
1007 dn->node_changed = true;
1010 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1011 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1012 child_nid = le32_to_cpu(rn->in.nid[i]);
1013 if (child_nid == 0) {
1014 child_nofs += NIDS_PER_BLOCK + 1;
1017 rdn.nid = child_nid;
1018 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1019 if (ret == (NIDS_PER_BLOCK + 1)) {
1020 if (set_nid(page, i, 0, false))
1021 dn->node_changed = true;
1023 } else if (ret < 0 && ret != -ENOENT) {
1031 /* remove current indirect node */
1032 dn->node_page = page;
1033 ret = truncate_node(dn);
1038 f2fs_put_page(page, 1);
1040 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1044 f2fs_put_page(page, 1);
1045 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1049 static int truncate_partial_nodes(struct dnode_of_data *dn,
1050 struct f2fs_inode *ri, int *offset, int depth)
1052 struct page *pages[2];
1057 int idx = depth - 2;
1059 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1063 /* get indirect nodes in the path */
1064 for (i = 0; i < idx + 1; i++) {
1065 /* reference count'll be increased */
1066 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1067 if (IS_ERR(pages[i])) {
1068 err = PTR_ERR(pages[i]);
1072 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1075 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1077 /* free direct nodes linked to a partial indirect node */
1078 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1079 child_nid = get_nid(pages[idx], i, false);
1082 dn->nid = child_nid;
1083 err = truncate_dnode(dn);
1086 if (set_nid(pages[idx], i, 0, false))
1087 dn->node_changed = true;
1090 if (offset[idx + 1] == 0) {
1091 dn->node_page = pages[idx];
1093 err = truncate_node(dn);
1097 f2fs_put_page(pages[idx], 1);
1100 offset[idx + 1] = 0;
1103 for (i = idx; i >= 0; i--)
1104 f2fs_put_page(pages[i], 1);
1106 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1112 * All the block addresses of data and nodes should be nullified.
1114 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1116 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1117 int err = 0, cont = 1;
1118 int level, offset[4], noffset[4];
1119 unsigned int nofs = 0;
1120 struct f2fs_inode *ri;
1121 struct dnode_of_data dn;
1124 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1126 level = get_node_path(inode, from, offset, noffset);
1128 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1132 page = f2fs_get_node_page(sbi, inode->i_ino);
1134 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1135 return PTR_ERR(page);
1138 set_new_dnode(&dn, inode, page, NULL, 0);
1141 ri = F2FS_INODE(page);
1149 if (!offset[level - 1])
1151 err = truncate_partial_nodes(&dn, ri, offset, level);
1152 if (err < 0 && err != -ENOENT)
1154 nofs += 1 + NIDS_PER_BLOCK;
1157 nofs = 5 + 2 * NIDS_PER_BLOCK;
1158 if (!offset[level - 1])
1160 err = truncate_partial_nodes(&dn, ri, offset, level);
1161 if (err < 0 && err != -ENOENT)
1170 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1171 switch (offset[0]) {
1172 case NODE_DIR1_BLOCK:
1173 case NODE_DIR2_BLOCK:
1174 err = truncate_dnode(&dn);
1177 case NODE_IND1_BLOCK:
1178 case NODE_IND2_BLOCK:
1179 err = truncate_nodes(&dn, nofs, offset[1], 2);
1182 case NODE_DIND_BLOCK:
1183 err = truncate_nodes(&dn, nofs, offset[1], 3);
1190 if (err == -ENOENT) {
1191 set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK);
1192 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1193 f2fs_err_ratelimited(sbi,
1194 "truncate node fail, ino:%lu, nid:%u, "
1195 "offset[0]:%d, offset[1]:%d, nofs:%d",
1196 inode->i_ino, dn.nid, offset[0],
1202 if (offset[1] == 0 &&
1203 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1205 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1206 f2fs_wait_on_page_writeback(page, NODE, true, true);
1207 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1208 set_page_dirty(page);
1216 f2fs_put_page(page, 0);
1217 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1218 return err > 0 ? 0 : err;
1221 /* caller must lock inode page */
1222 int f2fs_truncate_xattr_node(struct inode *inode)
1224 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1225 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1226 struct dnode_of_data dn;
1233 npage = f2fs_get_node_page(sbi, nid);
1235 return PTR_ERR(npage);
1237 set_new_dnode(&dn, inode, NULL, npage, nid);
1238 err = truncate_node(&dn);
1240 f2fs_put_page(npage, 1);
1244 f2fs_i_xnid_write(inode, 0);
1250 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1253 int f2fs_remove_inode_page(struct inode *inode)
1255 struct dnode_of_data dn;
1258 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1259 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1263 err = f2fs_truncate_xattr_node(inode);
1265 f2fs_put_dnode(&dn);
1269 /* remove potential inline_data blocks */
1270 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1271 S_ISLNK(inode->i_mode))
1272 f2fs_truncate_data_blocks_range(&dn, 1);
1274 /* 0 is possible, after f2fs_new_inode() has failed */
1275 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1276 f2fs_put_dnode(&dn);
1280 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1281 f2fs_warn(F2FS_I_SB(inode),
1282 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1283 inode->i_ino, (unsigned long long)inode->i_blocks);
1284 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1287 /* will put inode & node pages */
1288 err = truncate_node(&dn);
1290 f2fs_put_dnode(&dn);
1296 struct page *f2fs_new_inode_page(struct inode *inode)
1298 struct dnode_of_data dn;
1300 /* allocate inode page for new inode */
1301 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1303 /* caller should f2fs_put_page(page, 1); */
1304 return f2fs_new_node_page(&dn, 0);
1307 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1309 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1310 struct node_info new_ni;
1314 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1315 return ERR_PTR(-EPERM);
1317 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1319 return ERR_PTR(-ENOMEM);
1321 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1324 #ifdef CONFIG_F2FS_CHECK_FS
1325 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1327 dec_valid_node_count(sbi, dn->inode, !ofs);
1330 if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1331 err = -EFSCORRUPTED;
1332 dec_valid_node_count(sbi, dn->inode, !ofs);
1333 set_sbi_flag(sbi, SBI_NEED_FSCK);
1334 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1338 new_ni.nid = dn->nid;
1339 new_ni.ino = dn->inode->i_ino;
1340 new_ni.blk_addr = NULL_ADDR;
1343 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1345 f2fs_wait_on_page_writeback(page, NODE, true, true);
1346 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1347 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1348 if (!PageUptodate(page))
1349 SetPageUptodate(page);
1350 if (set_page_dirty(page))
1351 dn->node_changed = true;
1353 if (f2fs_has_xattr_block(ofs))
1354 f2fs_i_xnid_write(dn->inode, dn->nid);
1357 inc_valid_inode_count(sbi);
1360 clear_node_page_dirty(page);
1361 f2fs_put_page(page, 1);
1362 return ERR_PTR(err);
1366 * Caller should do after getting the following values.
1367 * 0: f2fs_put_page(page, 0)
1368 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1370 static int read_node_page(struct page *page, blk_opf_t op_flags)
1372 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1373 struct node_info ni;
1374 struct f2fs_io_info fio = {
1378 .op_flags = op_flags,
1380 .encrypted_page = NULL,
1384 if (PageUptodate(page)) {
1385 if (!f2fs_inode_chksum_verify(sbi, page)) {
1386 ClearPageUptodate(page);
1392 err = f2fs_get_node_info(sbi, page->index, &ni, false);
1396 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1397 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1398 ClearPageUptodate(page);
1402 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1404 err = f2fs_submit_page_bio(&fio);
1407 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1413 * Readahead a node page
1415 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1422 if (f2fs_check_nid_range(sbi, nid))
1425 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1429 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1433 err = read_node_page(apage, REQ_RAHEAD);
1434 f2fs_put_page(apage, err ? 1 : 0);
1437 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1438 struct page *parent, int start)
1444 return ERR_PTR(-ENOENT);
1445 if (f2fs_check_nid_range(sbi, nid))
1446 return ERR_PTR(-EINVAL);
1448 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1450 return ERR_PTR(-ENOMEM);
1452 err = read_node_page(page, 0);
1455 } else if (err == LOCKED_PAGE) {
1461 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1465 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1466 f2fs_put_page(page, 1);
1470 if (unlikely(!PageUptodate(page))) {
1475 if (!f2fs_inode_chksum_verify(sbi, page)) {
1480 if (likely(nid == nid_of_node(page)))
1483 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1484 nid, nid_of_node(page), ino_of_node(page),
1485 ofs_of_node(page), cpver_of_node(page),
1486 next_blkaddr_of_node(page));
1487 set_sbi_flag(sbi, SBI_NEED_FSCK);
1488 f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1489 err = -EFSCORRUPTED;
1491 ClearPageUptodate(page);
1493 /* ENOENT comes from read_node_page which is not an error. */
1495 f2fs_handle_page_eio(sbi, page->index, NODE);
1496 f2fs_put_page(page, 1);
1497 return ERR_PTR(err);
1500 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1502 return __get_node_page(sbi, nid, NULL, 0);
1505 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1507 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1508 nid_t nid = get_nid(parent, start, false);
1510 return __get_node_page(sbi, nid, parent, start);
1513 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1515 struct inode *inode;
1519 /* should flush inline_data before evict_inode */
1520 inode = ilookup(sbi->sb, ino);
1524 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1525 FGP_LOCK|FGP_NOWAIT, 0);
1529 if (!PageUptodate(page))
1532 if (!PageDirty(page))
1535 if (!clear_page_dirty_for_io(page))
1538 ret = f2fs_write_inline_data(inode, page);
1539 inode_dec_dirty_pages(inode);
1540 f2fs_remove_dirty_inode(inode);
1542 set_page_dirty(page);
1544 f2fs_put_page(page, 1);
1549 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1552 struct folio_batch fbatch;
1553 struct page *last_page = NULL;
1556 folio_batch_init(&fbatch);
1559 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1560 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1564 for (i = 0; i < nr_folios; i++) {
1565 struct page *page = &fbatch.folios[i]->page;
1567 if (unlikely(f2fs_cp_error(sbi))) {
1568 f2fs_put_page(last_page, 0);
1569 folio_batch_release(&fbatch);
1570 return ERR_PTR(-EIO);
1573 if (!IS_DNODE(page) || !is_cold_node(page))
1575 if (ino_of_node(page) != ino)
1580 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1585 if (ino_of_node(page) != ino)
1586 goto continue_unlock;
1588 if (!PageDirty(page)) {
1589 /* someone wrote it for us */
1590 goto continue_unlock;
1594 f2fs_put_page(last_page, 0);
1600 folio_batch_release(&fbatch);
1606 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1607 struct writeback_control *wbc, bool do_balance,
1608 enum iostat_type io_type, unsigned int *seq_id)
1610 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1612 struct node_info ni;
1613 struct f2fs_io_info fio = {
1615 .ino = ino_of_node(page),
1618 .op_flags = wbc_to_write_flags(wbc),
1620 .encrypted_page = NULL,
1627 trace_f2fs_writepage(page_folio(page), NODE);
1629 if (unlikely(f2fs_cp_error(sbi))) {
1630 /* keep node pages in remount-ro mode */
1631 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1633 ClearPageUptodate(page);
1634 dec_page_count(sbi, F2FS_DIRTY_NODES);
1639 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1642 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1643 wbc->sync_mode == WB_SYNC_NONE &&
1644 IS_DNODE(page) && is_cold_node(page))
1647 /* get old block addr of this node page */
1648 nid = nid_of_node(page);
1649 f2fs_bug_on(sbi, page->index != nid);
1651 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1654 if (wbc->for_reclaim) {
1655 if (!f2fs_down_read_trylock(&sbi->node_write))
1658 f2fs_down_read(&sbi->node_write);
1661 /* This page is already truncated */
1662 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1663 ClearPageUptodate(page);
1664 dec_page_count(sbi, F2FS_DIRTY_NODES);
1665 f2fs_up_read(&sbi->node_write);
1670 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1671 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1672 DATA_GENERIC_ENHANCE)) {
1673 f2fs_up_read(&sbi->node_write);
1677 if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1678 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1680 /* should add to global list before clearing PAGECACHE status */
1681 if (f2fs_in_warm_node_list(sbi, page)) {
1682 seq = f2fs_add_fsync_node_entry(sbi, page);
1687 set_page_writeback(page);
1689 fio.old_blkaddr = ni.blk_addr;
1690 f2fs_do_write_node_page(nid, &fio);
1691 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1692 dec_page_count(sbi, F2FS_DIRTY_NODES);
1693 f2fs_up_read(&sbi->node_write);
1695 if (wbc->for_reclaim) {
1696 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1702 if (unlikely(f2fs_cp_error(sbi))) {
1703 f2fs_submit_merged_write(sbi, NODE);
1707 *submitted = fio.submitted;
1710 f2fs_balance_fs(sbi, false);
1714 redirty_page_for_writepage(wbc, page);
1715 return AOP_WRITEPAGE_ACTIVATE;
1718 int f2fs_move_node_page(struct page *node_page, int gc_type)
1722 if (gc_type == FG_GC) {
1723 struct writeback_control wbc = {
1724 .sync_mode = WB_SYNC_ALL,
1729 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1731 set_page_dirty(node_page);
1733 if (!clear_page_dirty_for_io(node_page)) {
1738 if (__write_node_page(node_page, false, NULL,
1739 &wbc, false, FS_GC_NODE_IO, NULL)) {
1741 unlock_page(node_page);
1745 /* set page dirty and write it */
1746 if (!folio_test_writeback(page_folio(node_page)))
1747 set_page_dirty(node_page);
1750 unlock_page(node_page);
1752 f2fs_put_page(node_page, 0);
1756 static int f2fs_write_node_page(struct page *page,
1757 struct writeback_control *wbc)
1759 return __write_node_page(page, false, NULL, wbc, false,
1763 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1764 struct writeback_control *wbc, bool atomic,
1765 unsigned int *seq_id)
1768 struct folio_batch fbatch;
1770 struct page *last_page = NULL;
1771 bool marked = false;
1772 nid_t ino = inode->i_ino;
1777 last_page = last_fsync_dnode(sbi, ino);
1778 if (IS_ERR_OR_NULL(last_page))
1779 return PTR_ERR_OR_ZERO(last_page);
1782 folio_batch_init(&fbatch);
1785 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1786 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1790 for (i = 0; i < nr_folios; i++) {
1791 struct page *page = &fbatch.folios[i]->page;
1792 bool submitted = false;
1794 if (unlikely(f2fs_cp_error(sbi))) {
1795 f2fs_put_page(last_page, 0);
1796 folio_batch_release(&fbatch);
1801 if (!IS_DNODE(page) || !is_cold_node(page))
1803 if (ino_of_node(page) != ino)
1808 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1813 if (ino_of_node(page) != ino)
1814 goto continue_unlock;
1816 if (!PageDirty(page) && page != last_page) {
1817 /* someone wrote it for us */
1818 goto continue_unlock;
1821 f2fs_wait_on_page_writeback(page, NODE, true, true);
1823 set_fsync_mark(page, 0);
1824 set_dentry_mark(page, 0);
1826 if (!atomic || page == last_page) {
1827 set_fsync_mark(page, 1);
1828 percpu_counter_inc(&sbi->rf_node_block_count);
1829 if (IS_INODE(page)) {
1830 if (is_inode_flag_set(inode,
1832 f2fs_update_inode(inode, page);
1833 set_dentry_mark(page,
1834 f2fs_need_dentry_mark(sbi, ino));
1836 /* may be written by other thread */
1837 if (!PageDirty(page))
1838 set_page_dirty(page);
1841 if (!clear_page_dirty_for_io(page))
1842 goto continue_unlock;
1844 ret = __write_node_page(page, atomic &&
1846 &submitted, wbc, true,
1847 FS_NODE_IO, seq_id);
1850 f2fs_put_page(last_page, 0);
1852 } else if (submitted) {
1856 if (page == last_page) {
1857 f2fs_put_page(page, 0);
1862 folio_batch_release(&fbatch);
1868 if (!ret && atomic && !marked) {
1869 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1870 ino, last_page->index);
1871 lock_page(last_page);
1872 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1873 set_page_dirty(last_page);
1874 unlock_page(last_page);
1879 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1880 return ret ? -EIO : 0;
1883 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1885 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1888 if (inode->i_ino != ino)
1891 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1894 spin_lock(&sbi->inode_lock[DIRTY_META]);
1895 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1896 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1901 inode = igrab(inode);
1907 static bool flush_dirty_inode(struct page *page)
1909 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1910 struct inode *inode;
1911 nid_t ino = ino_of_node(page);
1913 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1917 f2fs_update_inode(inode, page);
1924 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1927 struct folio_batch fbatch;
1930 folio_batch_init(&fbatch);
1932 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1933 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1937 for (i = 0; i < nr_folios; i++) {
1938 struct page *page = &fbatch.folios[i]->page;
1940 if (!IS_INODE(page))
1945 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1951 if (!PageDirty(page)) {
1952 /* someone wrote it for us */
1953 goto continue_unlock;
1956 /* flush inline_data, if it's async context. */
1957 if (page_private_inline(page)) {
1958 clear_page_private_inline(page);
1960 flush_inline_data(sbi, ino_of_node(page));
1965 folio_batch_release(&fbatch);
1970 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1971 struct writeback_control *wbc,
1972 bool do_balance, enum iostat_type io_type)
1975 struct folio_batch fbatch;
1979 int nr_folios, done = 0;
1981 folio_batch_init(&fbatch);
1986 while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
1987 &index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1991 for (i = 0; i < nr_folios; i++) {
1992 struct page *page = &fbatch.folios[i]->page;
1993 bool submitted = false;
1995 /* give a priority to WB_SYNC threads */
1996 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1997 wbc->sync_mode == WB_SYNC_NONE) {
2003 * flushing sequence with step:
2008 if (step == 0 && IS_DNODE(page))
2010 if (step == 1 && (!IS_DNODE(page) ||
2011 is_cold_node(page)))
2013 if (step == 2 && (!IS_DNODE(page) ||
2014 !is_cold_node(page)))
2017 if (wbc->sync_mode == WB_SYNC_ALL)
2019 else if (!trylock_page(page))
2022 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
2028 if (!PageDirty(page)) {
2029 /* someone wrote it for us */
2030 goto continue_unlock;
2033 /* flush inline_data/inode, if it's async context. */
2037 /* flush inline_data */
2038 if (page_private_inline(page)) {
2039 clear_page_private_inline(page);
2041 flush_inline_data(sbi, ino_of_node(page));
2045 /* flush dirty inode */
2046 if (IS_INODE(page) && flush_dirty_inode(page))
2049 f2fs_wait_on_page_writeback(page, NODE, true, true);
2051 if (!clear_page_dirty_for_io(page))
2052 goto continue_unlock;
2054 set_fsync_mark(page, 0);
2055 set_dentry_mark(page, 0);
2057 ret = __write_node_page(page, false, &submitted,
2058 wbc, do_balance, io_type, NULL);
2064 if (--wbc->nr_to_write == 0)
2067 folio_batch_release(&fbatch);
2070 if (wbc->nr_to_write == 0) {
2077 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2078 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2085 f2fs_submit_merged_write(sbi, NODE);
2087 if (unlikely(f2fs_cp_error(sbi)))
2092 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2093 unsigned int seq_id)
2095 struct fsync_node_entry *fn;
2097 struct list_head *head = &sbi->fsync_node_list;
2098 unsigned long flags;
2099 unsigned int cur_seq_id = 0;
2101 while (seq_id && cur_seq_id < seq_id) {
2102 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2103 if (list_empty(head)) {
2104 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2107 fn = list_first_entry(head, struct fsync_node_entry, list);
2108 if (fn->seq_id > seq_id) {
2109 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2112 cur_seq_id = fn->seq_id;
2115 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2117 f2fs_wait_on_page_writeback(page, NODE, true, false);
2122 return filemap_check_errors(NODE_MAPPING(sbi));
2125 static int f2fs_write_node_pages(struct address_space *mapping,
2126 struct writeback_control *wbc)
2128 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2129 struct blk_plug plug;
2132 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2135 /* balancing f2fs's metadata in background */
2136 f2fs_balance_fs_bg(sbi, true);
2138 /* collect a number of dirty node pages and write together */
2139 if (wbc->sync_mode != WB_SYNC_ALL &&
2140 get_pages(sbi, F2FS_DIRTY_NODES) <
2141 nr_pages_to_skip(sbi, NODE))
2144 if (wbc->sync_mode == WB_SYNC_ALL)
2145 atomic_inc(&sbi->wb_sync_req[NODE]);
2146 else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2147 /* to avoid potential deadlock */
2149 blk_finish_plug(current->plug);
2153 trace_f2fs_writepages(mapping->host, wbc, NODE);
2155 diff = nr_pages_to_write(sbi, NODE, wbc);
2156 blk_start_plug(&plug);
2157 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2158 blk_finish_plug(&plug);
2159 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2161 if (wbc->sync_mode == WB_SYNC_ALL)
2162 atomic_dec(&sbi->wb_sync_req[NODE]);
2166 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2167 trace_f2fs_writepages(mapping->host, wbc, NODE);
2171 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2172 struct folio *folio)
2174 trace_f2fs_set_page_dirty(folio, NODE);
2176 if (!folio_test_uptodate(folio))
2177 folio_mark_uptodate(folio);
2178 #ifdef CONFIG_F2FS_CHECK_FS
2179 if (IS_INODE(&folio->page))
2180 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2182 if (filemap_dirty_folio(mapping, folio)) {
2183 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2184 set_page_private_reference(&folio->page);
2191 * Structure of the f2fs node operations
2193 const struct address_space_operations f2fs_node_aops = {
2194 .writepage = f2fs_write_node_page,
2195 .writepages = f2fs_write_node_pages,
2196 .dirty_folio = f2fs_dirty_node_folio,
2197 .invalidate_folio = f2fs_invalidate_folio,
2198 .release_folio = f2fs_release_folio,
2199 .migrate_folio = filemap_migrate_folio,
2202 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2205 return radix_tree_lookup(&nm_i->free_nid_root, n);
2208 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2211 struct f2fs_nm_info *nm_i = NM_I(sbi);
2212 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2217 nm_i->nid_cnt[FREE_NID]++;
2218 list_add_tail(&i->list, &nm_i->free_nid_list);
2222 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2223 struct free_nid *i, enum nid_state state)
2225 struct f2fs_nm_info *nm_i = NM_I(sbi);
2227 f2fs_bug_on(sbi, state != i->state);
2228 nm_i->nid_cnt[state]--;
2229 if (state == FREE_NID)
2231 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2234 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2235 enum nid_state org_state, enum nid_state dst_state)
2237 struct f2fs_nm_info *nm_i = NM_I(sbi);
2239 f2fs_bug_on(sbi, org_state != i->state);
2240 i->state = dst_state;
2241 nm_i->nid_cnt[org_state]--;
2242 nm_i->nid_cnt[dst_state]++;
2244 switch (dst_state) {
2249 list_add_tail(&i->list, &nm_i->free_nid_list);
2256 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2258 struct f2fs_nm_info *nm_i = NM_I(sbi);
2262 f2fs_down_read(&nm_i->nat_tree_lock);
2263 for (i = 0; i < nm_i->nat_blocks; i++) {
2264 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2269 f2fs_up_read(&nm_i->nat_tree_lock);
2274 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2275 bool set, bool build)
2277 struct f2fs_nm_info *nm_i = NM_I(sbi);
2278 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2279 unsigned int nid_ofs = nid - START_NID(nid);
2281 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2285 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2287 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2288 nm_i->free_nid_count[nat_ofs]++;
2290 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2292 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2294 nm_i->free_nid_count[nat_ofs]--;
2298 /* return if the nid is recognized as free */
2299 static bool add_free_nid(struct f2fs_sb_info *sbi,
2300 nid_t nid, bool build, bool update)
2302 struct f2fs_nm_info *nm_i = NM_I(sbi);
2303 struct free_nid *i, *e;
2304 struct nat_entry *ne;
2308 /* 0 nid should not be used */
2309 if (unlikely(nid == 0))
2312 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2315 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2317 i->state = FREE_NID;
2319 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2321 spin_lock(&nm_i->nid_list_lock);
2329 * - __insert_nid_to_list(PREALLOC_NID)
2330 * - f2fs_balance_fs_bg
2331 * - f2fs_build_free_nids
2332 * - __f2fs_build_free_nids
2335 * - __lookup_nat_cache
2337 * - f2fs_init_inode_metadata
2338 * - f2fs_new_inode_page
2339 * - f2fs_new_node_page
2341 * - f2fs_alloc_nid_done
2342 * - __remove_nid_from_list(PREALLOC_NID)
2343 * - __insert_nid_to_list(FREE_NID)
2345 ne = __lookup_nat_cache(nm_i, nid);
2346 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2347 nat_get_blkaddr(ne) != NULL_ADDR))
2350 e = __lookup_free_nid_list(nm_i, nid);
2352 if (e->state == FREE_NID)
2358 err = __insert_free_nid(sbi, i);
2361 update_free_nid_bitmap(sbi, nid, ret, build);
2363 nm_i->available_nids++;
2365 spin_unlock(&nm_i->nid_list_lock);
2366 radix_tree_preload_end();
2369 kmem_cache_free(free_nid_slab, i);
2373 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2375 struct f2fs_nm_info *nm_i = NM_I(sbi);
2377 bool need_free = false;
2379 spin_lock(&nm_i->nid_list_lock);
2380 i = __lookup_free_nid_list(nm_i, nid);
2381 if (i && i->state == FREE_NID) {
2382 __remove_free_nid(sbi, i, FREE_NID);
2385 spin_unlock(&nm_i->nid_list_lock);
2388 kmem_cache_free(free_nid_slab, i);
2391 static int scan_nat_page(struct f2fs_sb_info *sbi,
2392 struct page *nat_page, nid_t start_nid)
2394 struct f2fs_nm_info *nm_i = NM_I(sbi);
2395 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2397 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2400 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2402 i = start_nid % NAT_ENTRY_PER_BLOCK;
2404 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2405 if (unlikely(start_nid >= nm_i->max_nid))
2408 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2410 if (blk_addr == NEW_ADDR)
2411 return -EFSCORRUPTED;
2413 if (blk_addr == NULL_ADDR) {
2414 add_free_nid(sbi, start_nid, true, true);
2416 spin_lock(&NM_I(sbi)->nid_list_lock);
2417 update_free_nid_bitmap(sbi, start_nid, false, true);
2418 spin_unlock(&NM_I(sbi)->nid_list_lock);
2425 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2427 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2428 struct f2fs_journal *journal = curseg->journal;
2431 down_read(&curseg->journal_rwsem);
2432 for (i = 0; i < nats_in_cursum(journal); i++) {
2436 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2437 nid = le32_to_cpu(nid_in_journal(journal, i));
2438 if (addr == NULL_ADDR)
2439 add_free_nid(sbi, nid, true, false);
2441 remove_free_nid(sbi, nid);
2443 up_read(&curseg->journal_rwsem);
2446 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2448 struct f2fs_nm_info *nm_i = NM_I(sbi);
2449 unsigned int i, idx;
2452 f2fs_down_read(&nm_i->nat_tree_lock);
2454 for (i = 0; i < nm_i->nat_blocks; i++) {
2455 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2457 if (!nm_i->free_nid_count[i])
2459 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2460 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2461 NAT_ENTRY_PER_BLOCK, idx);
2462 if (idx >= NAT_ENTRY_PER_BLOCK)
2465 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2466 add_free_nid(sbi, nid, true, false);
2468 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2473 scan_curseg_cache(sbi);
2475 f2fs_up_read(&nm_i->nat_tree_lock);
2478 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2479 bool sync, bool mount)
2481 struct f2fs_nm_info *nm_i = NM_I(sbi);
2483 nid_t nid = nm_i->next_scan_nid;
2485 if (unlikely(nid >= nm_i->max_nid))
2488 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2489 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2491 /* Enough entries */
2492 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2495 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2499 /* try to find free nids in free_nid_bitmap */
2500 scan_free_nid_bits(sbi);
2502 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2506 /* readahead nat pages to be scanned */
2507 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2510 f2fs_down_read(&nm_i->nat_tree_lock);
2513 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2514 nm_i->nat_block_bitmap)) {
2515 struct page *page = get_current_nat_page(sbi, nid);
2518 ret = PTR_ERR(page);
2520 ret = scan_nat_page(sbi, page, nid);
2521 f2fs_put_page(page, 1);
2525 f2fs_up_read(&nm_i->nat_tree_lock);
2527 if (ret == -EFSCORRUPTED) {
2528 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2529 set_sbi_flag(sbi, SBI_NEED_FSCK);
2530 f2fs_handle_error(sbi,
2531 ERROR_INCONSISTENT_NAT);
2538 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2539 if (unlikely(nid >= nm_i->max_nid))
2542 if (++i >= FREE_NID_PAGES)
2546 /* go to the next free nat pages to find free nids abundantly */
2547 nm_i->next_scan_nid = nid;
2549 /* find free nids from current sum_pages */
2550 scan_curseg_cache(sbi);
2552 f2fs_up_read(&nm_i->nat_tree_lock);
2554 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2555 nm_i->ra_nid_pages, META_NAT, false);
2560 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2564 mutex_lock(&NM_I(sbi)->build_lock);
2565 ret = __f2fs_build_free_nids(sbi, sync, mount);
2566 mutex_unlock(&NM_I(sbi)->build_lock);
2572 * If this function returns success, caller can obtain a new nid
2573 * from second parameter of this function.
2574 * The returned nid could be used ino as well as nid when inode is created.
2576 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2578 struct f2fs_nm_info *nm_i = NM_I(sbi);
2579 struct free_nid *i = NULL;
2581 if (time_to_inject(sbi, FAULT_ALLOC_NID))
2584 spin_lock(&nm_i->nid_list_lock);
2586 if (unlikely(nm_i->available_nids == 0)) {
2587 spin_unlock(&nm_i->nid_list_lock);
2591 /* We should not use stale free nids created by f2fs_build_free_nids */
2592 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2593 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2594 i = list_first_entry(&nm_i->free_nid_list,
2595 struct free_nid, list);
2598 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2599 nm_i->available_nids--;
2601 update_free_nid_bitmap(sbi, *nid, false, false);
2603 spin_unlock(&nm_i->nid_list_lock);
2606 spin_unlock(&nm_i->nid_list_lock);
2608 /* Let's scan nat pages and its caches to get free nids */
2609 if (!f2fs_build_free_nids(sbi, true, false))
2615 * f2fs_alloc_nid() should be called prior to this function.
2617 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2619 struct f2fs_nm_info *nm_i = NM_I(sbi);
2622 spin_lock(&nm_i->nid_list_lock);
2623 i = __lookup_free_nid_list(nm_i, nid);
2624 f2fs_bug_on(sbi, !i);
2625 __remove_free_nid(sbi, i, PREALLOC_NID);
2626 spin_unlock(&nm_i->nid_list_lock);
2628 kmem_cache_free(free_nid_slab, i);
2632 * f2fs_alloc_nid() should be called prior to this function.
2634 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2636 struct f2fs_nm_info *nm_i = NM_I(sbi);
2638 bool need_free = false;
2643 spin_lock(&nm_i->nid_list_lock);
2644 i = __lookup_free_nid_list(nm_i, nid);
2645 f2fs_bug_on(sbi, !i);
2647 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2648 __remove_free_nid(sbi, i, PREALLOC_NID);
2651 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2654 nm_i->available_nids++;
2656 update_free_nid_bitmap(sbi, nid, true, false);
2658 spin_unlock(&nm_i->nid_list_lock);
2661 kmem_cache_free(free_nid_slab, i);
2664 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2666 struct f2fs_nm_info *nm_i = NM_I(sbi);
2669 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2672 if (!mutex_trylock(&nm_i->build_lock))
2675 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2676 struct free_nid *i, *next;
2677 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2679 spin_lock(&nm_i->nid_list_lock);
2680 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2681 if (!nr_shrink || !batch ||
2682 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2684 __remove_free_nid(sbi, i, FREE_NID);
2685 kmem_cache_free(free_nid_slab, i);
2689 spin_unlock(&nm_i->nid_list_lock);
2692 mutex_unlock(&nm_i->build_lock);
2694 return nr - nr_shrink;
2697 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2699 void *src_addr, *dst_addr;
2702 struct f2fs_inode *ri;
2704 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2706 return PTR_ERR(ipage);
2708 ri = F2FS_INODE(page);
2709 if (ri->i_inline & F2FS_INLINE_XATTR) {
2710 if (!f2fs_has_inline_xattr(inode)) {
2711 set_inode_flag(inode, FI_INLINE_XATTR);
2712 stat_inc_inline_xattr(inode);
2715 if (f2fs_has_inline_xattr(inode)) {
2716 stat_dec_inline_xattr(inode);
2717 clear_inode_flag(inode, FI_INLINE_XATTR);
2722 dst_addr = inline_xattr_addr(inode, ipage);
2723 src_addr = inline_xattr_addr(inode, page);
2724 inline_size = inline_xattr_size(inode);
2726 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2727 memcpy(dst_addr, src_addr, inline_size);
2729 f2fs_update_inode(inode, ipage);
2730 f2fs_put_page(ipage, 1);
2734 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2736 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2737 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2739 struct dnode_of_data dn;
2740 struct node_info ni;
2747 /* 1: invalidate the previous xattr nid */
2748 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2752 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2753 dec_valid_node_count(sbi, inode, false);
2754 set_node_addr(sbi, &ni, NULL_ADDR, false);
2757 /* 2: update xattr nid in inode */
2758 if (!f2fs_alloc_nid(sbi, &new_xnid))
2761 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2762 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2763 if (IS_ERR(xpage)) {
2764 f2fs_alloc_nid_failed(sbi, new_xnid);
2765 return PTR_ERR(xpage);
2768 f2fs_alloc_nid_done(sbi, new_xnid);
2769 f2fs_update_inode_page(inode);
2771 /* 3: update and set xattr node page dirty */
2773 memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
2774 VALID_XATTR_BLOCK_SIZE);
2775 set_page_dirty(xpage);
2777 f2fs_put_page(xpage, 1);
2782 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2784 struct f2fs_inode *src, *dst;
2785 nid_t ino = ino_of_node(page);
2786 struct node_info old_ni, new_ni;
2790 err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2794 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2797 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2799 memalloc_retry_wait(GFP_NOFS);
2803 /* Should not use this inode from free nid list */
2804 remove_free_nid(sbi, ino);
2806 if (!PageUptodate(ipage))
2807 SetPageUptodate(ipage);
2808 fill_node_footer(ipage, ino, ino, 0, true);
2809 set_cold_node(ipage, false);
2811 src = F2FS_INODE(page);
2812 dst = F2FS_INODE(ipage);
2814 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2816 dst->i_blocks = cpu_to_le64(1);
2817 dst->i_links = cpu_to_le32(1);
2818 dst->i_xattr_nid = 0;
2819 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2820 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2821 dst->i_extra_isize = src->i_extra_isize;
2823 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2824 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2825 i_inline_xattr_size))
2826 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2828 if (f2fs_sb_has_project_quota(sbi) &&
2829 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2831 dst->i_projid = src->i_projid;
2833 if (f2fs_sb_has_inode_crtime(sbi) &&
2834 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2836 dst->i_crtime = src->i_crtime;
2837 dst->i_crtime_nsec = src->i_crtime_nsec;
2844 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2846 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2847 inc_valid_inode_count(sbi);
2848 set_page_dirty(ipage);
2849 f2fs_put_page(ipage, 1);
2853 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2854 unsigned int segno, struct f2fs_summary_block *sum)
2856 struct f2fs_node *rn;
2857 struct f2fs_summary *sum_entry;
2859 int i, idx, last_offset, nrpages;
2861 /* scan the node segment */
2862 last_offset = BLKS_PER_SEG(sbi);
2863 addr = START_BLOCK(sbi, segno);
2864 sum_entry = &sum->entries[0];
2866 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2867 nrpages = bio_max_segs(last_offset - i);
2869 /* readahead node pages */
2870 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2872 for (idx = addr; idx < addr + nrpages; idx++) {
2873 struct page *page = f2fs_get_tmp_page(sbi, idx);
2876 return PTR_ERR(page);
2878 rn = F2FS_NODE(page);
2879 sum_entry->nid = rn->footer.nid;
2880 sum_entry->version = 0;
2881 sum_entry->ofs_in_node = 0;
2883 f2fs_put_page(page, 1);
2886 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2892 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2894 struct f2fs_nm_info *nm_i = NM_I(sbi);
2895 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2896 struct f2fs_journal *journal = curseg->journal;
2899 down_write(&curseg->journal_rwsem);
2900 for (i = 0; i < nats_in_cursum(journal); i++) {
2901 struct nat_entry *ne;
2902 struct f2fs_nat_entry raw_ne;
2903 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2905 if (f2fs_check_nid_range(sbi, nid))
2908 raw_ne = nat_in_journal(journal, i);
2910 ne = __lookup_nat_cache(nm_i, nid);
2912 ne = __alloc_nat_entry(sbi, nid, true);
2913 __init_nat_entry(nm_i, ne, &raw_ne, true);
2917 * if a free nat in journal has not been used after last
2918 * checkpoint, we should remove it from available nids,
2919 * since later we will add it again.
2921 if (!get_nat_flag(ne, IS_DIRTY) &&
2922 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2923 spin_lock(&nm_i->nid_list_lock);
2924 nm_i->available_nids--;
2925 spin_unlock(&nm_i->nid_list_lock);
2928 __set_nat_cache_dirty(nm_i, ne);
2930 update_nats_in_cursum(journal, -i);
2931 up_write(&curseg->journal_rwsem);
2934 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2935 struct list_head *head, int max)
2937 struct nat_entry_set *cur;
2939 if (nes->entry_cnt >= max)
2942 list_for_each_entry(cur, head, set_list) {
2943 if (cur->entry_cnt >= nes->entry_cnt) {
2944 list_add(&nes->set_list, cur->set_list.prev);
2949 list_add_tail(&nes->set_list, head);
2952 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2956 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2957 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2961 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2962 if (valid == NAT_ENTRY_PER_BLOCK)
2963 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2965 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2968 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2971 struct f2fs_nm_info *nm_i = NM_I(sbi);
2972 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2973 struct f2fs_nat_block *nat_blk = page_address(page);
2977 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2980 if (nat_index == 0) {
2984 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2985 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2989 __update_nat_bits(nm_i, nat_index, valid);
2992 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2994 struct f2fs_nm_info *nm_i = NM_I(sbi);
2995 unsigned int nat_ofs;
2997 f2fs_down_read(&nm_i->nat_tree_lock);
2999 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
3000 unsigned int valid = 0, nid_ofs = 0;
3002 /* handle nid zero due to it should never be used */
3003 if (unlikely(nat_ofs == 0)) {
3008 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
3009 if (!test_bit_le(nid_ofs,
3010 nm_i->free_nid_bitmap[nat_ofs]))
3014 __update_nat_bits(nm_i, nat_ofs, valid);
3017 f2fs_up_read(&nm_i->nat_tree_lock);
3020 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
3021 struct nat_entry_set *set, struct cp_control *cpc)
3023 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3024 struct f2fs_journal *journal = curseg->journal;
3025 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
3026 bool to_journal = true;
3027 struct f2fs_nat_block *nat_blk;
3028 struct nat_entry *ne, *cur;
3029 struct page *page = NULL;
3032 * there are two steps to flush nat entries:
3033 * #1, flush nat entries to journal in current hot data summary block.
3034 * #2, flush nat entries to nat page.
3036 if ((cpc->reason & CP_UMOUNT) ||
3037 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3041 down_write(&curseg->journal_rwsem);
3043 page = get_next_nat_page(sbi, start_nid);
3045 return PTR_ERR(page);
3047 nat_blk = page_address(page);
3048 f2fs_bug_on(sbi, !nat_blk);
3051 /* flush dirty nats in nat entry set */
3052 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3053 struct f2fs_nat_entry *raw_ne;
3054 nid_t nid = nat_get_nid(ne);
3057 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3060 offset = f2fs_lookup_journal_in_cursum(journal,
3061 NAT_JOURNAL, nid, 1);
3062 f2fs_bug_on(sbi, offset < 0);
3063 raw_ne = &nat_in_journal(journal, offset);
3064 nid_in_journal(journal, offset) = cpu_to_le32(nid);
3066 raw_ne = &nat_blk->entries[nid - start_nid];
3068 raw_nat_from_node_info(raw_ne, &ne->ni);
3070 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3071 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3072 add_free_nid(sbi, nid, false, true);
3074 spin_lock(&NM_I(sbi)->nid_list_lock);
3075 update_free_nid_bitmap(sbi, nid, false, false);
3076 spin_unlock(&NM_I(sbi)->nid_list_lock);
3081 up_write(&curseg->journal_rwsem);
3083 update_nat_bits(sbi, start_nid, page);
3084 f2fs_put_page(page, 1);
3087 /* Allow dirty nats by node block allocation in write_begin */
3088 if (!set->entry_cnt) {
3089 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3090 kmem_cache_free(nat_entry_set_slab, set);
3096 * This function is called during the checkpointing process.
3098 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3100 struct f2fs_nm_info *nm_i = NM_I(sbi);
3101 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3102 struct f2fs_journal *journal = curseg->journal;
3103 struct nat_entry_set *setvec[NAT_VEC_SIZE];
3104 struct nat_entry_set *set, *tmp;
3111 * during unmount, let's flush nat_bits before checking
3112 * nat_cnt[DIRTY_NAT].
3114 if (cpc->reason & CP_UMOUNT) {
3115 f2fs_down_write(&nm_i->nat_tree_lock);
3116 remove_nats_in_journal(sbi);
3117 f2fs_up_write(&nm_i->nat_tree_lock);
3120 if (!nm_i->nat_cnt[DIRTY_NAT])
3123 f2fs_down_write(&nm_i->nat_tree_lock);
3126 * if there are no enough space in journal to store dirty nat
3127 * entries, remove all entries from journal and merge them
3128 * into nat entry set.
3130 if (cpc->reason & CP_UMOUNT ||
3131 !__has_cursum_space(journal,
3132 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3133 remove_nats_in_journal(sbi);
3135 while ((found = __gang_lookup_nat_set(nm_i,
3136 set_idx, NAT_VEC_SIZE, setvec))) {
3139 set_idx = setvec[found - 1]->set + 1;
3140 for (idx = 0; idx < found; idx++)
3141 __adjust_nat_entry_set(setvec[idx], &sets,
3142 MAX_NAT_JENTRIES(journal));
3145 /* flush dirty nats in nat entry set */
3146 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3147 err = __flush_nat_entry_set(sbi, set, cpc);
3152 f2fs_up_write(&nm_i->nat_tree_lock);
3153 /* Allow dirty nats by node block allocation in write_begin */
3158 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3160 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3161 struct f2fs_nm_info *nm_i = NM_I(sbi);
3162 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3164 __u64 cp_ver = cur_cp_version(ckpt);
3165 block_t nat_bits_addr;
3167 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3168 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3169 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3170 if (!nm_i->nat_bits)
3173 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3174 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3176 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3179 nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) -
3180 nm_i->nat_bits_blocks;
3181 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3184 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3186 return PTR_ERR(page);
3188 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3189 page_address(page), F2FS_BLKSIZE);
3190 f2fs_put_page(page, 1);
3193 cp_ver |= (cur_cp_crc(ckpt) << 32);
3194 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3195 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3196 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3197 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3201 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3205 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3207 struct f2fs_nm_info *nm_i = NM_I(sbi);
3209 nid_t nid, last_nid;
3211 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3214 for (i = 0; i < nm_i->nat_blocks; i++) {
3215 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3216 if (i >= nm_i->nat_blocks)
3219 __set_bit_le(i, nm_i->nat_block_bitmap);
3221 nid = i * NAT_ENTRY_PER_BLOCK;
3222 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3224 spin_lock(&NM_I(sbi)->nid_list_lock);
3225 for (; nid < last_nid; nid++)
3226 update_free_nid_bitmap(sbi, nid, true, true);
3227 spin_unlock(&NM_I(sbi)->nid_list_lock);
3230 for (i = 0; i < nm_i->nat_blocks; i++) {
3231 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3232 if (i >= nm_i->nat_blocks)
3235 __set_bit_le(i, nm_i->nat_block_bitmap);
3239 static int init_node_manager(struct f2fs_sb_info *sbi)
3241 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3242 struct f2fs_nm_info *nm_i = NM_I(sbi);
3243 unsigned char *version_bitmap;
3244 unsigned int nat_segs;
3247 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3249 /* segment_count_nat includes pair segment so divide to 2. */
3250 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3251 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3252 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3254 /* not used nids: 0, node, meta, (and root counted as valid node) */
3255 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3256 F2FS_RESERVED_NODE_NUM;
3257 nm_i->nid_cnt[FREE_NID] = 0;
3258 nm_i->nid_cnt[PREALLOC_NID] = 0;
3259 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3260 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3261 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3262 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3264 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3265 INIT_LIST_HEAD(&nm_i->free_nid_list);
3266 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3267 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3268 INIT_LIST_HEAD(&nm_i->nat_entries);
3269 spin_lock_init(&nm_i->nat_list_lock);
3271 mutex_init(&nm_i->build_lock);
3272 spin_lock_init(&nm_i->nid_list_lock);
3273 init_f2fs_rwsem(&nm_i->nat_tree_lock);
3275 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3276 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3277 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3278 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3280 if (!nm_i->nat_bitmap)
3283 err = __get_nat_bitmaps(sbi);
3287 #ifdef CONFIG_F2FS_CHECK_FS
3288 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3290 if (!nm_i->nat_bitmap_mir)
3297 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3299 struct f2fs_nm_info *nm_i = NM_I(sbi);
3302 nm_i->free_nid_bitmap =
3303 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3306 if (!nm_i->free_nid_bitmap)
3309 for (i = 0; i < nm_i->nat_blocks; i++) {
3310 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3311 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3312 if (!nm_i->free_nid_bitmap[i])
3316 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3318 if (!nm_i->nat_block_bitmap)
3321 nm_i->free_nid_count =
3322 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3325 if (!nm_i->free_nid_count)
3330 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3334 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3339 err = init_node_manager(sbi);
3343 err = init_free_nid_cache(sbi);
3347 /* load free nid status from nat_bits table */
3348 load_free_nid_bitmap(sbi);
3350 return f2fs_build_free_nids(sbi, true, true);
3353 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3355 struct f2fs_nm_info *nm_i = NM_I(sbi);
3356 struct free_nid *i, *next_i;
3357 void *vec[NAT_VEC_SIZE];
3358 struct nat_entry **natvec = (struct nat_entry **)vec;
3359 struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3366 /* destroy free nid list */
3367 spin_lock(&nm_i->nid_list_lock);
3368 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3369 __remove_free_nid(sbi, i, FREE_NID);
3370 spin_unlock(&nm_i->nid_list_lock);
3371 kmem_cache_free(free_nid_slab, i);
3372 spin_lock(&nm_i->nid_list_lock);
3374 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3375 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3376 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3377 spin_unlock(&nm_i->nid_list_lock);
3379 /* destroy nat cache */
3380 f2fs_down_write(&nm_i->nat_tree_lock);
3381 while ((found = __gang_lookup_nat_cache(nm_i,
3382 nid, NAT_VEC_SIZE, natvec))) {
3385 nid = nat_get_nid(natvec[found - 1]) + 1;
3386 for (idx = 0; idx < found; idx++) {
3387 spin_lock(&nm_i->nat_list_lock);
3388 list_del(&natvec[idx]->list);
3389 spin_unlock(&nm_i->nat_list_lock);
3391 __del_from_nat_cache(nm_i, natvec[idx]);
3394 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3396 /* destroy nat set cache */
3398 memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3399 while ((found = __gang_lookup_nat_set(nm_i,
3400 nid, NAT_VEC_SIZE, setvec))) {
3403 nid = setvec[found - 1]->set + 1;
3404 for (idx = 0; idx < found; idx++) {
3405 /* entry_cnt is not zero, when cp_error was occurred */
3406 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3407 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3408 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3411 f2fs_up_write(&nm_i->nat_tree_lock);
3413 kvfree(nm_i->nat_block_bitmap);
3414 if (nm_i->free_nid_bitmap) {
3417 for (i = 0; i < nm_i->nat_blocks; i++)
3418 kvfree(nm_i->free_nid_bitmap[i]);
3419 kvfree(nm_i->free_nid_bitmap);
3421 kvfree(nm_i->free_nid_count);
3423 kvfree(nm_i->nat_bitmap);
3424 kvfree(nm_i->nat_bits);
3425 #ifdef CONFIG_F2FS_CHECK_FS
3426 kvfree(nm_i->nat_bitmap_mir);
3428 sbi->nm_info = NULL;
3432 int __init f2fs_create_node_manager_caches(void)
3434 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3435 sizeof(struct nat_entry));
3436 if (!nat_entry_slab)
3439 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3440 sizeof(struct free_nid));
3442 goto destroy_nat_entry;
3444 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3445 sizeof(struct nat_entry_set));
3446 if (!nat_entry_set_slab)
3447 goto destroy_free_nid;
3449 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3450 sizeof(struct fsync_node_entry));
3451 if (!fsync_node_entry_slab)
3452 goto destroy_nat_entry_set;
3455 destroy_nat_entry_set:
3456 kmem_cache_destroy(nat_entry_set_slab);
3458 kmem_cache_destroy(free_nid_slab);
3460 kmem_cache_destroy(nat_entry_slab);
3465 void f2fs_destroy_node_manager_caches(void)
3467 kmem_cache_destroy(fsync_node_entry_slab);
3468 kmem_cache_destroy(nat_entry_set_slab);
3469 kmem_cache_destroy(free_nid_slab);
3470 kmem_cache_destroy(nat_entry_slab);