1 // SPDX-License-Identifier: GPL-2.0
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
50 #include <linux/sched/signal.h>
52 #include <linux/file.h>
53 #include <linux/fdtable.h>
55 #include <linux/mman.h>
56 #include <linux/mmu_context.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/workqueue.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
65 #include <net/af_unix.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
74 #include <uapi/linux/io_uring.h>
78 #define IORING_MAX_ENTRIES 4096
79 #define IORING_MAX_FIXED_FILES 1024
82 u32 head ____cacheline_aligned_in_smp;
83 u32 tail ____cacheline_aligned_in_smp;
87 * This data is shared with the application through the mmap at offset
90 * The offsets to the member fields are published through struct
91 * io_sqring_offsets when calling io_uring_setup.
95 * Head and tail offsets into the ring; the offsets need to be
96 * masked to get valid indices.
98 * The kernel controls head and the application controls tail.
102 * Bitmask to apply to head and tail offsets (constant, equals
106 /* Ring size (constant, power of 2) */
109 * Number of invalid entries dropped by the kernel due to
110 * invalid index stored in array
112 * Written by the kernel, shouldn't be modified by the
113 * application (i.e. get number of "new events" by comparing to
116 * After a new SQ head value was read by the application this
117 * counter includes all submissions that were dropped reaching
118 * the new SQ head (and possibly more).
124 * Written by the kernel, shouldn't be modified by the
127 * The application needs a full memory barrier before checking
128 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
132 * Ring buffer of indices into array of io_uring_sqe, which is
133 * mmapped by the application using the IORING_OFF_SQES offset.
135 * This indirection could e.g. be used to assign fixed
136 * io_uring_sqe entries to operations and only submit them to
137 * the queue when needed.
139 * The kernel modifies neither the indices array nor the entries
146 * This data is shared with the application through the mmap at offset
147 * IORING_OFF_CQ_RING.
149 * The offsets to the member fields are published through struct
150 * io_cqring_offsets when calling io_uring_setup.
154 * Head and tail offsets into the ring; the offsets need to be
155 * masked to get valid indices.
157 * The application controls head and the kernel tail.
161 * Bitmask to apply to head and tail offsets (constant, equals
165 /* Ring size (constant, power of 2) */
168 * Number of completion events lost because the queue was full;
169 * this should be avoided by the application by making sure
170 * there are not more requests pending thatn there is space in
171 * the completion queue.
173 * Written by the kernel, shouldn't be modified by the
174 * application (i.e. get number of "new events" by comparing to
177 * As completion events come in out of order this counter is not
178 * ordered with any other data.
182 * Ring buffer of completion events.
184 * The kernel writes completion events fresh every time they are
185 * produced, so the application is allowed to modify pending
188 struct io_uring_cqe cqes[];
191 struct io_mapped_ubuf {
194 struct bio_vec *bvec;
195 unsigned int nr_bvecs;
201 struct list_head list;
210 struct percpu_ref refs;
211 } ____cacheline_aligned_in_smp;
219 struct io_sq_ring *sq_ring;
220 unsigned cached_sq_head;
223 unsigned sq_thread_idle;
224 struct io_uring_sqe *sq_sqes;
226 struct list_head defer_list;
227 } ____cacheline_aligned_in_smp;
230 struct workqueue_struct *sqo_wq;
231 struct task_struct *sqo_thread; /* if using sq thread polling */
232 struct mm_struct *sqo_mm;
233 wait_queue_head_t sqo_wait;
234 struct completion sqo_thread_started;
238 struct io_cq_ring *cq_ring;
239 unsigned cached_cq_tail;
242 struct wait_queue_head cq_wait;
243 struct fasync_struct *cq_fasync;
244 struct eventfd_ctx *cq_ev_fd;
245 } ____cacheline_aligned_in_smp;
248 * If used, fixed file set. Writers must ensure that ->refs is dead,
249 * readers must ensure that ->refs is alive as long as the file* is
250 * used. Only updated through io_uring_register(2).
252 struct file **user_files;
253 unsigned nr_user_files;
255 /* if used, fixed mapped user buffers */
256 unsigned nr_user_bufs;
257 struct io_mapped_ubuf *user_bufs;
259 struct user_struct *user;
261 struct completion ctx_done;
264 struct mutex uring_lock;
265 wait_queue_head_t wait;
266 } ____cacheline_aligned_in_smp;
269 spinlock_t completion_lock;
270 bool poll_multi_file;
272 * ->poll_list is protected by the ctx->uring_lock for
273 * io_uring instances that don't use IORING_SETUP_SQPOLL.
274 * For SQPOLL, only the single threaded io_sq_thread() will
275 * manipulate the list, hence no extra locking is needed there.
277 struct list_head poll_list;
278 struct list_head cancel_list;
279 } ____cacheline_aligned_in_smp;
281 struct async_list pending_async[2];
283 #if defined(CONFIG_UNIX)
284 struct socket *ring_sock;
289 const struct io_uring_sqe *sqe;
290 unsigned short index;
293 bool needs_fixed_file;
297 * First field must be the file pointer in all the
298 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
300 struct io_poll_iocb {
302 struct wait_queue_head *head;
306 struct wait_queue_entry wait;
310 * NOTE! Each of the iocb union members has the file pointer
311 * as the first entry in their struct definition. So you can
312 * access the file pointer through any of the sub-structs,
313 * or directly as just 'ki_filp' in this struct.
319 struct io_poll_iocb poll;
322 struct sqe_submit submit;
324 struct io_ring_ctx *ctx;
325 struct list_head list;
326 struct list_head link_list;
329 #define REQ_F_NOWAIT 1 /* must not punt to workers */
330 #define REQ_F_IOPOLL_COMPLETED 2 /* polled IO has completed */
331 #define REQ_F_FIXED_FILE 4 /* ctx owns file */
332 #define REQ_F_SEQ_PREV 8 /* sequential with previous */
333 #define REQ_F_IO_DRAIN 16 /* drain existing IO first */
334 #define REQ_F_IO_DRAINED 32 /* drain done */
335 #define REQ_F_LINK 64 /* linked sqes */
336 #define REQ_F_LINK_DONE 128 /* linked sqes done */
337 #define REQ_F_FAIL_LINK 256 /* fail rest of links */
342 struct work_struct work;
345 #define IO_PLUG_THRESHOLD 2
346 #define IO_IOPOLL_BATCH 8
348 struct io_submit_state {
349 struct blk_plug plug;
352 * io_kiocb alloc cache
354 void *reqs[IO_IOPOLL_BATCH];
355 unsigned int free_reqs;
356 unsigned int cur_req;
359 * File reference cache
363 unsigned int has_refs;
364 unsigned int used_refs;
365 unsigned int ios_left;
368 static void io_sq_wq_submit_work(struct work_struct *work);
370 static struct kmem_cache *req_cachep;
372 static const struct file_operations io_uring_fops;
374 struct sock *io_uring_get_socket(struct file *file)
376 #if defined(CONFIG_UNIX)
377 if (file->f_op == &io_uring_fops) {
378 struct io_ring_ctx *ctx = file->private_data;
380 return ctx->ring_sock->sk;
385 EXPORT_SYMBOL(io_uring_get_socket);
387 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
389 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
391 complete(&ctx->ctx_done);
394 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
396 struct io_ring_ctx *ctx;
399 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
403 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
404 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) {
409 ctx->flags = p->flags;
410 init_waitqueue_head(&ctx->cq_wait);
411 init_completion(&ctx->ctx_done);
412 init_completion(&ctx->sqo_thread_started);
413 mutex_init(&ctx->uring_lock);
414 init_waitqueue_head(&ctx->wait);
415 for (i = 0; i < ARRAY_SIZE(ctx->pending_async); i++) {
416 spin_lock_init(&ctx->pending_async[i].lock);
417 INIT_LIST_HEAD(&ctx->pending_async[i].list);
418 atomic_set(&ctx->pending_async[i].cnt, 0);
420 spin_lock_init(&ctx->completion_lock);
421 INIT_LIST_HEAD(&ctx->poll_list);
422 INIT_LIST_HEAD(&ctx->cancel_list);
423 INIT_LIST_HEAD(&ctx->defer_list);
427 static inline bool io_sequence_defer(struct io_ring_ctx *ctx,
428 struct io_kiocb *req)
430 if ((req->flags & (REQ_F_IO_DRAIN|REQ_F_IO_DRAINED)) != REQ_F_IO_DRAIN)
433 return req->sequence != ctx->cached_cq_tail + ctx->sq_ring->dropped;
436 static struct io_kiocb *io_get_deferred_req(struct io_ring_ctx *ctx)
438 struct io_kiocb *req;
440 if (list_empty(&ctx->defer_list))
443 req = list_first_entry(&ctx->defer_list, struct io_kiocb, list);
444 if (!io_sequence_defer(ctx, req)) {
445 list_del_init(&req->list);
452 static void __io_commit_cqring(struct io_ring_ctx *ctx)
454 struct io_cq_ring *ring = ctx->cq_ring;
456 if (ctx->cached_cq_tail != READ_ONCE(ring->r.tail)) {
457 /* order cqe stores with ring update */
458 smp_store_release(&ring->r.tail, ctx->cached_cq_tail);
460 if (wq_has_sleeper(&ctx->cq_wait)) {
461 wake_up_interruptible(&ctx->cq_wait);
462 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
467 static void io_commit_cqring(struct io_ring_ctx *ctx)
469 struct io_kiocb *req;
471 __io_commit_cqring(ctx);
473 while ((req = io_get_deferred_req(ctx)) != NULL) {
474 req->flags |= REQ_F_IO_DRAINED;
475 queue_work(ctx->sqo_wq, &req->work);
479 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
481 struct io_cq_ring *ring = ctx->cq_ring;
484 tail = ctx->cached_cq_tail;
486 * writes to the cq entry need to come after reading head; the
487 * control dependency is enough as we're using WRITE_ONCE to
490 if (tail - READ_ONCE(ring->r.head) == ring->ring_entries)
493 ctx->cached_cq_tail++;
494 return &ring->cqes[tail & ctx->cq_mask];
497 static void io_cqring_fill_event(struct io_ring_ctx *ctx, u64 ki_user_data,
500 struct io_uring_cqe *cqe;
503 * If we can't get a cq entry, userspace overflowed the
504 * submission (by quite a lot). Increment the overflow count in
507 cqe = io_get_cqring(ctx);
509 WRITE_ONCE(cqe->user_data, ki_user_data);
510 WRITE_ONCE(cqe->res, res);
511 WRITE_ONCE(cqe->flags, 0);
513 unsigned overflow = READ_ONCE(ctx->cq_ring->overflow);
515 WRITE_ONCE(ctx->cq_ring->overflow, overflow + 1);
519 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
521 if (waitqueue_active(&ctx->wait))
523 if (waitqueue_active(&ctx->sqo_wait))
524 wake_up(&ctx->sqo_wait);
526 eventfd_signal(ctx->cq_ev_fd, 1);
529 static void io_cqring_add_event(struct io_ring_ctx *ctx, u64 user_data,
534 spin_lock_irqsave(&ctx->completion_lock, flags);
535 io_cqring_fill_event(ctx, user_data, res);
536 io_commit_cqring(ctx);
537 spin_unlock_irqrestore(&ctx->completion_lock, flags);
539 io_cqring_ev_posted(ctx);
542 static void io_ring_drop_ctx_refs(struct io_ring_ctx *ctx, unsigned refs)
544 percpu_ref_put_many(&ctx->refs, refs);
546 if (waitqueue_active(&ctx->wait))
550 static struct io_kiocb *io_get_req(struct io_ring_ctx *ctx,
551 struct io_submit_state *state)
553 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
554 struct io_kiocb *req;
556 if (!percpu_ref_tryget(&ctx->refs))
560 req = kmem_cache_alloc(req_cachep, gfp);
563 } else if (!state->free_reqs) {
567 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
568 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
571 * Bulk alloc is all-or-nothing. If we fail to get a batch,
572 * retry single alloc to be on the safe side.
574 if (unlikely(ret <= 0)) {
575 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
580 state->free_reqs = ret - 1;
582 req = state->reqs[0];
584 req = state->reqs[state->cur_req];
592 /* one is dropped after submission, the other at completion */
593 refcount_set(&req->refs, 2);
597 io_ring_drop_ctx_refs(ctx, 1);
601 static void io_free_req_many(struct io_ring_ctx *ctx, void **reqs, int *nr)
604 kmem_cache_free_bulk(req_cachep, *nr, reqs);
605 io_ring_drop_ctx_refs(ctx, *nr);
610 static void __io_free_req(struct io_kiocb *req)
612 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
614 io_ring_drop_ctx_refs(req->ctx, 1);
615 kmem_cache_free(req_cachep, req);
618 static void io_req_link_next(struct io_kiocb *req)
620 struct io_kiocb *nxt;
623 * The list should never be empty when we are called here. But could
624 * potentially happen if the chain is messed up, check to be on the
627 nxt = list_first_entry_or_null(&req->link_list, struct io_kiocb, list);
629 list_del(&nxt->list);
630 if (!list_empty(&req->link_list)) {
631 INIT_LIST_HEAD(&nxt->link_list);
632 list_splice(&req->link_list, &nxt->link_list);
633 nxt->flags |= REQ_F_LINK;
636 nxt->flags |= REQ_F_LINK_DONE;
637 INIT_WORK(&nxt->work, io_sq_wq_submit_work);
638 queue_work(req->ctx->sqo_wq, &nxt->work);
643 * Called if REQ_F_LINK is set, and we fail the head request
645 static void io_fail_links(struct io_kiocb *req)
647 struct io_kiocb *link;
649 while (!list_empty(&req->link_list)) {
650 link = list_first_entry(&req->link_list, struct io_kiocb, list);
651 list_del(&link->list);
653 io_cqring_add_event(req->ctx, link->user_data, -ECANCELED);
658 static void io_free_req(struct io_kiocb *req)
661 * If LINK is set, we have dependent requests in this chain. If we
662 * didn't fail this request, queue the first one up, moving any other
663 * dependencies to the next request. In case of failure, fail the rest
666 if (req->flags & REQ_F_LINK) {
667 if (req->flags & REQ_F_FAIL_LINK)
670 io_req_link_next(req);
676 static void io_put_req(struct io_kiocb *req)
678 if (refcount_dec_and_test(&req->refs))
683 * Find and free completed poll iocbs
685 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
686 struct list_head *done)
688 void *reqs[IO_IOPOLL_BATCH];
689 struct io_kiocb *req;
693 while (!list_empty(done)) {
694 req = list_first_entry(done, struct io_kiocb, list);
695 list_del(&req->list);
697 io_cqring_fill_event(ctx, req->user_data, req->result);
700 if (refcount_dec_and_test(&req->refs)) {
701 /* If we're not using fixed files, we have to pair the
702 * completion part with the file put. Use regular
703 * completions for those, only batch free for fixed
704 * file and non-linked commands.
706 if ((req->flags & (REQ_F_FIXED_FILE|REQ_F_LINK)) ==
708 reqs[to_free++] = req;
709 if (to_free == ARRAY_SIZE(reqs))
710 io_free_req_many(ctx, reqs, &to_free);
717 io_commit_cqring(ctx);
718 io_free_req_many(ctx, reqs, &to_free);
721 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
724 struct io_kiocb *req, *tmp;
730 * Only spin for completions if we don't have multiple devices hanging
731 * off our complete list, and we're under the requested amount.
733 spin = !ctx->poll_multi_file && *nr_events < min;
736 list_for_each_entry_safe(req, tmp, &ctx->poll_list, list) {
737 struct kiocb *kiocb = &req->rw;
740 * Move completed entries to our local list. If we find a
741 * request that requires polling, break out and complete
742 * the done list first, if we have entries there.
744 if (req->flags & REQ_F_IOPOLL_COMPLETED) {
745 list_move_tail(&req->list, &done);
748 if (!list_empty(&done))
751 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
760 if (!list_empty(&done))
761 io_iopoll_complete(ctx, nr_events, &done);
767 * Poll for a mininum of 'min' events. Note that if min == 0 we consider that a
768 * non-spinning poll check - we'll still enter the driver poll loop, but only
769 * as a non-spinning completion check.
771 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
774 while (!list_empty(&ctx->poll_list)) {
777 ret = io_do_iopoll(ctx, nr_events, min);
780 if (!min || *nr_events >= min)
788 * We can't just wait for polled events to come to us, we have to actively
789 * find and complete them.
791 static void io_iopoll_reap_events(struct io_ring_ctx *ctx)
793 if (!(ctx->flags & IORING_SETUP_IOPOLL))
796 mutex_lock(&ctx->uring_lock);
797 while (!list_empty(&ctx->poll_list)) {
798 unsigned int nr_events = 0;
800 io_iopoll_getevents(ctx, &nr_events, 1);
802 mutex_unlock(&ctx->uring_lock);
805 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
813 if (*nr_events < min)
814 tmin = min - *nr_events;
816 ret = io_iopoll_getevents(ctx, nr_events, tmin);
820 } while (min && !*nr_events && !need_resched());
825 static void kiocb_end_write(struct kiocb *kiocb)
827 if (kiocb->ki_flags & IOCB_WRITE) {
828 struct inode *inode = file_inode(kiocb->ki_filp);
831 * Tell lockdep we inherited freeze protection from submission
834 if (S_ISREG(inode->i_mode))
835 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
836 file_end_write(kiocb->ki_filp);
840 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
842 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
844 kiocb_end_write(kiocb);
846 if ((req->flags & REQ_F_LINK) && res != req->result)
847 req->flags |= REQ_F_FAIL_LINK;
848 io_cqring_add_event(req->ctx, req->user_data, res);
852 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
854 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
856 kiocb_end_write(kiocb);
858 if ((req->flags & REQ_F_LINK) && res != req->result)
859 req->flags |= REQ_F_FAIL_LINK;
862 req->flags |= REQ_F_IOPOLL_COMPLETED;
866 * After the iocb has been issued, it's safe to be found on the poll list.
867 * Adding the kiocb to the list AFTER submission ensures that we don't
868 * find it from a io_iopoll_getevents() thread before the issuer is done
869 * accessing the kiocb cookie.
871 static void io_iopoll_req_issued(struct io_kiocb *req)
873 struct io_ring_ctx *ctx = req->ctx;
876 * Track whether we have multiple files in our lists. This will impact
877 * how we do polling eventually, not spinning if we're on potentially
880 if (list_empty(&ctx->poll_list)) {
881 ctx->poll_multi_file = false;
882 } else if (!ctx->poll_multi_file) {
883 struct io_kiocb *list_req;
885 list_req = list_first_entry(&ctx->poll_list, struct io_kiocb,
887 if (list_req->rw.ki_filp != req->rw.ki_filp)
888 ctx->poll_multi_file = true;
892 * For fast devices, IO may have already completed. If it has, add
893 * it to the front so we find it first.
895 if (req->flags & REQ_F_IOPOLL_COMPLETED)
896 list_add(&req->list, &ctx->poll_list);
898 list_add_tail(&req->list, &ctx->poll_list);
901 static void io_file_put(struct io_submit_state *state)
904 int diff = state->has_refs - state->used_refs;
907 fput_many(state->file, diff);
913 * Get as many references to a file as we have IOs left in this submission,
914 * assuming most submissions are for one file, or at least that each file
915 * has more than one submission.
917 static struct file *io_file_get(struct io_submit_state *state, int fd)
923 if (state->fd == fd) {
930 state->file = fget_many(fd, state->ios_left);
935 state->has_refs = state->ios_left;
936 state->used_refs = 1;
942 * If we tracked the file through the SCM inflight mechanism, we could support
943 * any file. For now, just ensure that anything potentially problematic is done
946 static bool io_file_supports_async(struct file *file)
948 umode_t mode = file_inode(file)->i_mode;
950 if (S_ISBLK(mode) || S_ISCHR(mode))
952 if (S_ISREG(mode) && file->f_op != &io_uring_fops)
958 static int io_prep_rw(struct io_kiocb *req, const struct sqe_submit *s,
961 const struct io_uring_sqe *sqe = s->sqe;
962 struct io_ring_ctx *ctx = req->ctx;
963 struct kiocb *kiocb = &req->rw;
970 if (force_nonblock && !io_file_supports_async(req->file))
971 force_nonblock = false;
973 kiocb->ki_pos = READ_ONCE(sqe->off);
974 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
975 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
977 ioprio = READ_ONCE(sqe->ioprio);
979 ret = ioprio_check_cap(ioprio);
983 kiocb->ki_ioprio = ioprio;
985 kiocb->ki_ioprio = get_current_ioprio();
987 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
991 /* don't allow async punt if RWF_NOWAIT was requested */
992 if (kiocb->ki_flags & IOCB_NOWAIT)
993 req->flags |= REQ_F_NOWAIT;
996 kiocb->ki_flags |= IOCB_NOWAIT;
998 if (ctx->flags & IORING_SETUP_IOPOLL) {
999 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
1000 !kiocb->ki_filp->f_op->iopoll)
1003 kiocb->ki_flags |= IOCB_HIPRI;
1004 kiocb->ki_complete = io_complete_rw_iopoll;
1006 if (kiocb->ki_flags & IOCB_HIPRI)
1008 kiocb->ki_complete = io_complete_rw;
1013 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
1019 case -ERESTARTNOINTR:
1020 case -ERESTARTNOHAND:
1021 case -ERESTART_RESTARTBLOCK:
1023 * We can't just restart the syscall, since previously
1024 * submitted sqes may already be in progress. Just fail this
1030 kiocb->ki_complete(kiocb, ret, 0);
1034 static int io_import_fixed(struct io_ring_ctx *ctx, int rw,
1035 const struct io_uring_sqe *sqe,
1036 struct iov_iter *iter)
1038 size_t len = READ_ONCE(sqe->len);
1039 struct io_mapped_ubuf *imu;
1040 unsigned index, buf_index;
1044 /* attempt to use fixed buffers without having provided iovecs */
1045 if (unlikely(!ctx->user_bufs))
1048 buf_index = READ_ONCE(sqe->buf_index);
1049 if (unlikely(buf_index >= ctx->nr_user_bufs))
1052 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
1053 imu = &ctx->user_bufs[index];
1054 buf_addr = READ_ONCE(sqe->addr);
1057 if (buf_addr + len < buf_addr)
1059 /* not inside the mapped region */
1060 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
1064 * May not be a start of buffer, set size appropriately
1065 * and advance us to the beginning.
1067 offset = buf_addr - imu->ubuf;
1068 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
1070 iov_iter_advance(iter, offset);
1074 static ssize_t io_import_iovec(struct io_ring_ctx *ctx, int rw,
1075 const struct sqe_submit *s, struct iovec **iovec,
1076 struct iov_iter *iter)
1078 const struct io_uring_sqe *sqe = s->sqe;
1079 void __user *buf = u64_to_user_ptr(READ_ONCE(sqe->addr));
1080 size_t sqe_len = READ_ONCE(sqe->len);
1084 * We're reading ->opcode for the second time, but the first read
1085 * doesn't care whether it's _FIXED or not, so it doesn't matter
1086 * whether ->opcode changes concurrently. The first read does care
1087 * about whether it is a READ or a WRITE, so we don't trust this read
1088 * for that purpose and instead let the caller pass in the read/write
1091 opcode = READ_ONCE(sqe->opcode);
1092 if (opcode == IORING_OP_READ_FIXED ||
1093 opcode == IORING_OP_WRITE_FIXED) {
1094 ssize_t ret = io_import_fixed(ctx, rw, sqe, iter);
1102 #ifdef CONFIG_COMPAT
1104 return compat_import_iovec(rw, buf, sqe_len, UIO_FASTIOV,
1108 return import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter);
1112 * Make a note of the last file/offset/direction we punted to async
1113 * context. We'll use this information to see if we can piggy back a
1114 * sequential request onto the previous one, if it's still hasn't been
1115 * completed by the async worker.
1117 static void io_async_list_note(int rw, struct io_kiocb *req, size_t len)
1119 struct async_list *async_list = &req->ctx->pending_async[rw];
1120 struct kiocb *kiocb = &req->rw;
1121 struct file *filp = kiocb->ki_filp;
1122 off_t io_end = kiocb->ki_pos + len;
1124 if (filp == async_list->file && kiocb->ki_pos == async_list->io_end) {
1125 unsigned long max_pages;
1127 /* Use 8x RA size as a decent limiter for both reads/writes */
1128 max_pages = filp->f_ra.ra_pages;
1130 max_pages = VM_READAHEAD_PAGES;
1133 /* If max pages are exceeded, reset the state */
1135 if (async_list->io_pages + len <= max_pages) {
1136 req->flags |= REQ_F_SEQ_PREV;
1137 async_list->io_pages += len;
1140 async_list->io_pages = 0;
1144 /* New file? Reset state. */
1145 if (async_list->file != filp) {
1146 async_list->io_pages = 0;
1147 async_list->file = filp;
1149 async_list->io_end = io_end;
1152 static int io_read(struct io_kiocb *req, const struct sqe_submit *s,
1153 bool force_nonblock)
1155 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1156 struct kiocb *kiocb = &req->rw;
1157 struct iov_iter iter;
1160 ssize_t read_size, ret;
1162 ret = io_prep_rw(req, s, force_nonblock);
1165 file = kiocb->ki_filp;
1167 if (unlikely(!(file->f_mode & FMODE_READ)))
1169 if (unlikely(!file->f_op->read_iter))
1172 ret = io_import_iovec(req->ctx, READ, s, &iovec, &iter);
1177 if (req->flags & REQ_F_LINK)
1178 req->result = read_size;
1180 iov_count = iov_iter_count(&iter);
1181 ret = rw_verify_area(READ, file, &kiocb->ki_pos, iov_count);
1185 ret2 = call_read_iter(file, kiocb, &iter);
1187 * In case of a short read, punt to async. This can happen
1188 * if we have data partially cached. Alternatively we can
1189 * return the short read, in which case the application will
1190 * need to issue another SQE and wait for it. That SQE will
1191 * need async punt anyway, so it's more efficient to do it
1194 if (force_nonblock && ret2 > 0 && ret2 < read_size)
1196 /* Catch -EAGAIN return for forced non-blocking submission */
1197 if (!force_nonblock || ret2 != -EAGAIN) {
1198 io_rw_done(kiocb, ret2);
1201 * If ->needs_lock is true, we're already in async
1205 io_async_list_note(READ, req, iov_count);
1213 static int io_write(struct io_kiocb *req, const struct sqe_submit *s,
1214 bool force_nonblock)
1216 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1217 struct kiocb *kiocb = &req->rw;
1218 struct iov_iter iter;
1223 ret = io_prep_rw(req, s, force_nonblock);
1227 file = kiocb->ki_filp;
1228 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1230 if (unlikely(!file->f_op->write_iter))
1233 ret = io_import_iovec(req->ctx, WRITE, s, &iovec, &iter);
1237 if (req->flags & REQ_F_LINK)
1240 iov_count = iov_iter_count(&iter);
1243 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT)) {
1244 /* If ->needs_lock is true, we're already in async context. */
1246 io_async_list_note(WRITE, req, iov_count);
1250 ret = rw_verify_area(WRITE, file, &kiocb->ki_pos, iov_count);
1255 * Open-code file_start_write here to grab freeze protection,
1256 * which will be released by another thread in
1257 * io_complete_rw(). Fool lockdep by telling it the lock got
1258 * released so that it doesn't complain about the held lock when
1259 * we return to userspace.
1261 if (S_ISREG(file_inode(file)->i_mode)) {
1262 __sb_start_write(file_inode(file)->i_sb,
1263 SB_FREEZE_WRITE, true);
1264 __sb_writers_release(file_inode(file)->i_sb,
1267 kiocb->ki_flags |= IOCB_WRITE;
1269 ret2 = call_write_iter(file, kiocb, &iter);
1270 if (!force_nonblock || ret2 != -EAGAIN) {
1271 io_rw_done(kiocb, ret2);
1274 * If ->needs_lock is true, we're already in async
1278 io_async_list_note(WRITE, req, iov_count);
1288 * IORING_OP_NOP just posts a completion event, nothing else.
1290 static int io_nop(struct io_kiocb *req, u64 user_data)
1292 struct io_ring_ctx *ctx = req->ctx;
1295 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1298 io_cqring_add_event(ctx, user_data, err);
1303 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1305 struct io_ring_ctx *ctx = req->ctx;
1310 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1312 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
1318 static int io_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1319 bool force_nonblock)
1321 loff_t sqe_off = READ_ONCE(sqe->off);
1322 loff_t sqe_len = READ_ONCE(sqe->len);
1323 loff_t end = sqe_off + sqe_len;
1324 unsigned fsync_flags;
1327 fsync_flags = READ_ONCE(sqe->fsync_flags);
1328 if (unlikely(fsync_flags & ~IORING_FSYNC_DATASYNC))
1331 ret = io_prep_fsync(req, sqe);
1335 /* fsync always requires a blocking context */
1339 ret = vfs_fsync_range(req->rw.ki_filp, sqe_off,
1340 end > 0 ? end : LLONG_MAX,
1341 fsync_flags & IORING_FSYNC_DATASYNC);
1343 if (ret < 0 && (req->flags & REQ_F_LINK))
1344 req->flags |= REQ_F_FAIL_LINK;
1345 io_cqring_add_event(req->ctx, sqe->user_data, ret);
1350 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1352 struct io_ring_ctx *ctx = req->ctx;
1358 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1360 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
1366 static int io_sync_file_range(struct io_kiocb *req,
1367 const struct io_uring_sqe *sqe,
1368 bool force_nonblock)
1375 ret = io_prep_sfr(req, sqe);
1379 /* sync_file_range always requires a blocking context */
1383 sqe_off = READ_ONCE(sqe->off);
1384 sqe_len = READ_ONCE(sqe->len);
1385 flags = READ_ONCE(sqe->sync_range_flags);
1387 ret = sync_file_range(req->rw.ki_filp, sqe_off, sqe_len, flags);
1389 if (ret < 0 && (req->flags & REQ_F_LINK))
1390 req->flags |= REQ_F_FAIL_LINK;
1391 io_cqring_add_event(req->ctx, sqe->user_data, ret);
1396 #if defined(CONFIG_NET)
1397 static int io_send_recvmsg(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1398 bool force_nonblock,
1399 long (*fn)(struct socket *, struct user_msghdr __user *,
1402 struct socket *sock;
1405 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1408 sock = sock_from_file(req->file, &ret);
1410 struct user_msghdr __user *msg;
1413 flags = READ_ONCE(sqe->msg_flags);
1414 if (flags & MSG_DONTWAIT)
1415 req->flags |= REQ_F_NOWAIT;
1416 else if (force_nonblock)
1417 flags |= MSG_DONTWAIT;
1419 msg = (struct user_msghdr __user *) (unsigned long)
1420 READ_ONCE(sqe->addr);
1422 ret = fn(sock, msg, flags);
1423 if (force_nonblock && ret == -EAGAIN)
1427 io_cqring_add_event(req->ctx, sqe->user_data, ret);
1433 static int io_sendmsg(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1434 bool force_nonblock)
1436 #if defined(CONFIG_NET)
1437 return io_send_recvmsg(req, sqe, force_nonblock, __sys_sendmsg_sock);
1443 static int io_recvmsg(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1444 bool force_nonblock)
1446 #if defined(CONFIG_NET)
1447 return io_send_recvmsg(req, sqe, force_nonblock, __sys_recvmsg_sock);
1453 static void io_poll_remove_one(struct io_kiocb *req)
1455 struct io_poll_iocb *poll = &req->poll;
1457 spin_lock(&poll->head->lock);
1458 WRITE_ONCE(poll->canceled, true);
1459 if (!list_empty(&poll->wait.entry)) {
1460 list_del_init(&poll->wait.entry);
1461 queue_work(req->ctx->sqo_wq, &req->work);
1463 spin_unlock(&poll->head->lock);
1465 list_del_init(&req->list);
1468 static void io_poll_remove_all(struct io_ring_ctx *ctx)
1470 struct io_kiocb *req;
1472 spin_lock_irq(&ctx->completion_lock);
1473 while (!list_empty(&ctx->cancel_list)) {
1474 req = list_first_entry(&ctx->cancel_list, struct io_kiocb,list);
1475 io_poll_remove_one(req);
1477 spin_unlock_irq(&ctx->completion_lock);
1481 * Find a running poll command that matches one specified in sqe->addr,
1482 * and remove it if found.
1484 static int io_poll_remove(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1486 struct io_ring_ctx *ctx = req->ctx;
1487 struct io_kiocb *poll_req, *next;
1490 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1492 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
1496 spin_lock_irq(&ctx->completion_lock);
1497 list_for_each_entry_safe(poll_req, next, &ctx->cancel_list, list) {
1498 if (READ_ONCE(sqe->addr) == poll_req->user_data) {
1499 io_poll_remove_one(poll_req);
1504 spin_unlock_irq(&ctx->completion_lock);
1506 io_cqring_add_event(req->ctx, sqe->user_data, ret);
1511 static void io_poll_complete(struct io_ring_ctx *ctx, struct io_kiocb *req,
1514 req->poll.done = true;
1515 io_cqring_fill_event(ctx, req->user_data, mangle_poll(mask));
1516 io_commit_cqring(ctx);
1519 static void io_poll_complete_work(struct work_struct *work)
1521 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1522 struct io_poll_iocb *poll = &req->poll;
1523 struct poll_table_struct pt = { ._key = poll->events };
1524 struct io_ring_ctx *ctx = req->ctx;
1527 if (!READ_ONCE(poll->canceled))
1528 mask = vfs_poll(poll->file, &pt) & poll->events;
1531 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1532 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1533 * synchronize with them. In the cancellation case the list_del_init
1534 * itself is not actually needed, but harmless so we keep it in to
1535 * avoid further branches in the fast path.
1537 spin_lock_irq(&ctx->completion_lock);
1538 if (!mask && !READ_ONCE(poll->canceled)) {
1539 add_wait_queue(poll->head, &poll->wait);
1540 spin_unlock_irq(&ctx->completion_lock);
1543 list_del_init(&req->list);
1544 io_poll_complete(ctx, req, mask);
1545 spin_unlock_irq(&ctx->completion_lock);
1547 io_cqring_ev_posted(ctx);
1551 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1554 struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb,
1556 struct io_kiocb *req = container_of(poll, struct io_kiocb, poll);
1557 struct io_ring_ctx *ctx = req->ctx;
1558 __poll_t mask = key_to_poll(key);
1559 unsigned long flags;
1561 /* for instances that support it check for an event match first: */
1562 if (mask && !(mask & poll->events))
1565 list_del_init(&poll->wait.entry);
1567 if (mask && spin_trylock_irqsave(&ctx->completion_lock, flags)) {
1568 list_del(&req->list);
1569 io_poll_complete(ctx, req, mask);
1570 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1572 io_cqring_ev_posted(ctx);
1575 queue_work(ctx->sqo_wq, &req->work);
1581 struct io_poll_table {
1582 struct poll_table_struct pt;
1583 struct io_kiocb *req;
1587 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1588 struct poll_table_struct *p)
1590 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
1592 if (unlikely(pt->req->poll.head)) {
1593 pt->error = -EINVAL;
1598 pt->req->poll.head = head;
1599 add_wait_queue(head, &pt->req->poll.wait);
1602 static int io_poll_add(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1604 struct io_poll_iocb *poll = &req->poll;
1605 struct io_ring_ctx *ctx = req->ctx;
1606 struct io_poll_table ipt;
1607 bool cancel = false;
1611 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1613 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
1618 INIT_WORK(&req->work, io_poll_complete_work);
1619 events = READ_ONCE(sqe->poll_events);
1620 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP;
1624 poll->canceled = false;
1626 ipt.pt._qproc = io_poll_queue_proc;
1627 ipt.pt._key = poll->events;
1629 ipt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1631 /* initialized the list so that we can do list_empty checks */
1632 INIT_LIST_HEAD(&poll->wait.entry);
1633 init_waitqueue_func_entry(&poll->wait, io_poll_wake);
1635 mask = vfs_poll(poll->file, &ipt.pt) & poll->events;
1637 spin_lock_irq(&ctx->completion_lock);
1638 if (likely(poll->head)) {
1639 spin_lock(&poll->head->lock);
1640 if (unlikely(list_empty(&poll->wait.entry))) {
1646 if (mask || ipt.error)
1647 list_del_init(&poll->wait.entry);
1649 WRITE_ONCE(poll->canceled, true);
1650 else if (!poll->done) /* actually waiting for an event */
1651 list_add_tail(&req->list, &ctx->cancel_list);
1652 spin_unlock(&poll->head->lock);
1654 if (mask) { /* no async, we'd stolen it */
1656 io_poll_complete(ctx, req, mask);
1658 spin_unlock_irq(&ctx->completion_lock);
1661 io_cqring_ev_posted(ctx);
1667 static int io_req_defer(struct io_ring_ctx *ctx, struct io_kiocb *req,
1668 const struct io_uring_sqe *sqe)
1670 struct io_uring_sqe *sqe_copy;
1672 if (!io_sequence_defer(ctx, req) && list_empty(&ctx->defer_list))
1675 sqe_copy = kmalloc(sizeof(*sqe_copy), GFP_KERNEL);
1679 spin_lock_irq(&ctx->completion_lock);
1680 if (!io_sequence_defer(ctx, req) && list_empty(&ctx->defer_list)) {
1681 spin_unlock_irq(&ctx->completion_lock);
1686 memcpy(sqe_copy, sqe, sizeof(*sqe_copy));
1687 req->submit.sqe = sqe_copy;
1689 INIT_WORK(&req->work, io_sq_wq_submit_work);
1690 list_add_tail(&req->list, &ctx->defer_list);
1691 spin_unlock_irq(&ctx->completion_lock);
1692 return -EIOCBQUEUED;
1695 static int __io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
1696 const struct sqe_submit *s, bool force_nonblock)
1700 req->user_data = READ_ONCE(s->sqe->user_data);
1702 if (unlikely(s->index >= ctx->sq_entries))
1705 opcode = READ_ONCE(s->sqe->opcode);
1708 ret = io_nop(req, req->user_data);
1710 case IORING_OP_READV:
1711 if (unlikely(s->sqe->buf_index))
1713 ret = io_read(req, s, force_nonblock);
1715 case IORING_OP_WRITEV:
1716 if (unlikely(s->sqe->buf_index))
1718 ret = io_write(req, s, force_nonblock);
1720 case IORING_OP_READ_FIXED:
1721 ret = io_read(req, s, force_nonblock);
1723 case IORING_OP_WRITE_FIXED:
1724 ret = io_write(req, s, force_nonblock);
1726 case IORING_OP_FSYNC:
1727 ret = io_fsync(req, s->sqe, force_nonblock);
1729 case IORING_OP_POLL_ADD:
1730 ret = io_poll_add(req, s->sqe);
1732 case IORING_OP_POLL_REMOVE:
1733 ret = io_poll_remove(req, s->sqe);
1735 case IORING_OP_SYNC_FILE_RANGE:
1736 ret = io_sync_file_range(req, s->sqe, force_nonblock);
1738 case IORING_OP_SENDMSG:
1739 ret = io_sendmsg(req, s->sqe, force_nonblock);
1741 case IORING_OP_RECVMSG:
1742 ret = io_recvmsg(req, s->sqe, force_nonblock);
1752 if (ctx->flags & IORING_SETUP_IOPOLL) {
1753 if (req->result == -EAGAIN)
1756 /* workqueue context doesn't hold uring_lock, grab it now */
1758 mutex_lock(&ctx->uring_lock);
1759 io_iopoll_req_issued(req);
1761 mutex_unlock(&ctx->uring_lock);
1767 static struct async_list *io_async_list_from_sqe(struct io_ring_ctx *ctx,
1768 const struct io_uring_sqe *sqe)
1770 switch (sqe->opcode) {
1771 case IORING_OP_READV:
1772 case IORING_OP_READ_FIXED:
1773 return &ctx->pending_async[READ];
1774 case IORING_OP_WRITEV:
1775 case IORING_OP_WRITE_FIXED:
1776 return &ctx->pending_async[WRITE];
1782 static inline bool io_sqe_needs_user(const struct io_uring_sqe *sqe)
1784 u8 opcode = READ_ONCE(sqe->opcode);
1786 return !(opcode == IORING_OP_READ_FIXED ||
1787 opcode == IORING_OP_WRITE_FIXED);
1790 static void io_sq_wq_submit_work(struct work_struct *work)
1792 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1793 struct io_ring_ctx *ctx = req->ctx;
1794 struct mm_struct *cur_mm = NULL;
1795 struct async_list *async_list;
1796 LIST_HEAD(req_list);
1797 mm_segment_t old_fs;
1800 async_list = io_async_list_from_sqe(ctx, req->submit.sqe);
1803 struct sqe_submit *s = &req->submit;
1804 const struct io_uring_sqe *sqe = s->sqe;
1806 /* Ensure we clear previously set non-block flag */
1807 req->rw.ki_flags &= ~IOCB_NOWAIT;
1810 if (io_sqe_needs_user(sqe) && !cur_mm) {
1811 if (!mmget_not_zero(ctx->sqo_mm)) {
1814 cur_mm = ctx->sqo_mm;
1822 s->has_user = cur_mm != NULL;
1823 s->needs_lock = true;
1825 ret = __io_submit_sqe(ctx, req, s, false);
1827 * We can get EAGAIN for polled IO even though
1828 * we're forcing a sync submission from here,
1829 * since we can't wait for request slots on the
1838 /* drop submission reference */
1842 io_cqring_add_event(ctx, sqe->user_data, ret);
1846 /* async context always use a copy of the sqe */
1849 /* req from defer and link list needn't decrease async cnt */
1850 if (req->flags & (REQ_F_IO_DRAINED | REQ_F_LINK_DONE))
1855 if (!list_empty(&req_list)) {
1856 req = list_first_entry(&req_list, struct io_kiocb,
1858 list_del(&req->list);
1861 if (list_empty(&async_list->list))
1865 spin_lock(&async_list->lock);
1866 if (list_empty(&async_list->list)) {
1867 spin_unlock(&async_list->lock);
1870 list_splice_init(&async_list->list, &req_list);
1871 spin_unlock(&async_list->lock);
1873 req = list_first_entry(&req_list, struct io_kiocb, list);
1874 list_del(&req->list);
1878 * Rare case of racing with a submitter. If we find the count has
1879 * dropped to zero AND we have pending work items, then restart
1880 * the processing. This is a tiny race window.
1883 ret = atomic_dec_return(&async_list->cnt);
1884 while (!ret && !list_empty(&async_list->list)) {
1885 spin_lock(&async_list->lock);
1886 atomic_inc(&async_list->cnt);
1887 list_splice_init(&async_list->list, &req_list);
1888 spin_unlock(&async_list->lock);
1890 if (!list_empty(&req_list)) {
1891 req = list_first_entry(&req_list,
1892 struct io_kiocb, list);
1893 list_del(&req->list);
1896 ret = atomic_dec_return(&async_list->cnt);
1909 * See if we can piggy back onto previously submitted work, that is still
1910 * running. We currently only allow this if the new request is sequential
1911 * to the previous one we punted.
1913 static bool io_add_to_prev_work(struct async_list *list, struct io_kiocb *req)
1919 if (!(req->flags & REQ_F_SEQ_PREV))
1921 if (!atomic_read(&list->cnt))
1925 spin_lock(&list->lock);
1926 list_add_tail(&req->list, &list->list);
1928 * Ensure we see a simultaneous modification from io_sq_wq_submit_work()
1931 if (!atomic_read(&list->cnt)) {
1932 list_del_init(&req->list);
1935 spin_unlock(&list->lock);
1939 static bool io_op_needs_file(const struct io_uring_sqe *sqe)
1941 int op = READ_ONCE(sqe->opcode);
1945 case IORING_OP_POLL_REMOVE:
1952 static int io_req_set_file(struct io_ring_ctx *ctx, const struct sqe_submit *s,
1953 struct io_submit_state *state, struct io_kiocb *req)
1958 flags = READ_ONCE(s->sqe->flags);
1959 fd = READ_ONCE(s->sqe->fd);
1961 if (flags & IOSQE_IO_DRAIN) {
1962 req->flags |= REQ_F_IO_DRAIN;
1963 req->sequence = ctx->cached_sq_head - 1;
1966 if (!io_op_needs_file(s->sqe))
1969 if (flags & IOSQE_FIXED_FILE) {
1970 if (unlikely(!ctx->user_files ||
1971 (unsigned) fd >= ctx->nr_user_files))
1973 req->file = ctx->user_files[fd];
1974 req->flags |= REQ_F_FIXED_FILE;
1976 if (s->needs_fixed_file)
1978 req->file = io_file_get(state, fd);
1979 if (unlikely(!req->file))
1986 static int io_queue_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
1987 struct sqe_submit *s)
1991 ret = __io_submit_sqe(ctx, req, s, true);
1992 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
1993 struct io_uring_sqe *sqe_copy;
1995 sqe_copy = kmalloc(sizeof(*sqe_copy), GFP_KERNEL);
1997 struct async_list *list;
1999 memcpy(sqe_copy, s->sqe, sizeof(*sqe_copy));
2002 memcpy(&req->submit, s, sizeof(*s));
2003 list = io_async_list_from_sqe(ctx, s->sqe);
2004 if (!io_add_to_prev_work(list, req)) {
2006 atomic_inc(&list->cnt);
2007 INIT_WORK(&req->work, io_sq_wq_submit_work);
2008 queue_work(ctx->sqo_wq, &req->work);
2012 * Queued up for async execution, worker will release
2013 * submit reference when the iocb is actually submitted.
2019 /* drop submission reference */
2022 /* and drop final reference, if we failed */
2024 io_cqring_add_event(ctx, req->user_data, ret);
2025 if (req->flags & REQ_F_LINK)
2026 req->flags |= REQ_F_FAIL_LINK;
2033 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK)
2035 static void io_submit_sqe(struct io_ring_ctx *ctx, struct sqe_submit *s,
2036 struct io_submit_state *state, struct io_kiocb **link)
2038 struct io_uring_sqe *sqe_copy;
2039 struct io_kiocb *req;
2042 /* enforce forwards compatibility on users */
2043 if (unlikely(s->sqe->flags & ~SQE_VALID_FLAGS)) {
2048 req = io_get_req(ctx, state);
2049 if (unlikely(!req)) {
2054 ret = io_req_set_file(ctx, s, state, req);
2055 if (unlikely(ret)) {
2059 io_cqring_add_event(ctx, s->sqe->user_data, ret);
2063 ret = io_req_defer(ctx, req, s->sqe);
2065 if (ret != -EIOCBQUEUED)
2071 * If we already have a head request, queue this one for async
2072 * submittal once the head completes. If we don't have a head but
2073 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2074 * submitted sync once the chain is complete. If none of those
2075 * conditions are true (normal request), then just queue it.
2078 struct io_kiocb *prev = *link;
2080 sqe_copy = kmemdup(s->sqe, sizeof(*sqe_copy), GFP_KERNEL);
2087 memcpy(&req->submit, s, sizeof(*s));
2088 list_add_tail(&req->list, &prev->link_list);
2089 } else if (s->sqe->flags & IOSQE_IO_LINK) {
2090 req->flags |= REQ_F_LINK;
2092 memcpy(&req->submit, s, sizeof(*s));
2093 INIT_LIST_HEAD(&req->link_list);
2096 io_queue_sqe(ctx, req, s);
2101 * Batched submission is done, ensure local IO is flushed out.
2103 static void io_submit_state_end(struct io_submit_state *state)
2105 blk_finish_plug(&state->plug);
2107 if (state->free_reqs)
2108 kmem_cache_free_bulk(req_cachep, state->free_reqs,
2109 &state->reqs[state->cur_req]);
2113 * Start submission side cache.
2115 static void io_submit_state_start(struct io_submit_state *state,
2116 struct io_ring_ctx *ctx, unsigned max_ios)
2118 blk_start_plug(&state->plug);
2119 state->free_reqs = 0;
2121 state->ios_left = max_ios;
2124 static void io_commit_sqring(struct io_ring_ctx *ctx)
2126 struct io_sq_ring *ring = ctx->sq_ring;
2128 if (ctx->cached_sq_head != READ_ONCE(ring->r.head)) {
2130 * Ensure any loads from the SQEs are done at this point,
2131 * since once we write the new head, the application could
2132 * write new data to them.
2134 smp_store_release(&ring->r.head, ctx->cached_sq_head);
2139 * Fetch an sqe, if one is available. Note that s->sqe will point to memory
2140 * that is mapped by userspace. This means that care needs to be taken to
2141 * ensure that reads are stable, as we cannot rely on userspace always
2142 * being a good citizen. If members of the sqe are validated and then later
2143 * used, it's important that those reads are done through READ_ONCE() to
2144 * prevent a re-load down the line.
2146 static bool io_get_sqring(struct io_ring_ctx *ctx, struct sqe_submit *s)
2148 struct io_sq_ring *ring = ctx->sq_ring;
2152 * The cached sq head (or cq tail) serves two purposes:
2154 * 1) allows us to batch the cost of updating the user visible
2156 * 2) allows the kernel side to track the head on its own, even
2157 * though the application is the one updating it.
2159 head = ctx->cached_sq_head;
2160 /* make sure SQ entry isn't read before tail */
2161 if (head == smp_load_acquire(&ring->r.tail))
2164 head = READ_ONCE(ring->array[head & ctx->sq_mask]);
2165 if (head < ctx->sq_entries) {
2167 s->sqe = &ctx->sq_sqes[head];
2168 ctx->cached_sq_head++;
2172 /* drop invalid entries */
2173 ctx->cached_sq_head++;
2178 static int io_submit_sqes(struct io_ring_ctx *ctx, struct sqe_submit *sqes,
2179 unsigned int nr, bool has_user, bool mm_fault)
2181 struct io_submit_state state, *statep = NULL;
2182 struct io_kiocb *link = NULL;
2183 bool prev_was_link = false;
2184 int i, submitted = 0;
2186 if (nr > IO_PLUG_THRESHOLD) {
2187 io_submit_state_start(&state, ctx, nr);
2191 for (i = 0; i < nr; i++) {
2193 * If previous wasn't linked and we have a linked command,
2194 * that's the end of the chain. Submit the previous link.
2196 if (!prev_was_link && link) {
2197 io_queue_sqe(ctx, link, &link->submit);
2200 prev_was_link = (sqes[i].sqe->flags & IOSQE_IO_LINK) != 0;
2202 if (unlikely(mm_fault)) {
2203 io_cqring_add_event(ctx, sqes[i].sqe->user_data,
2206 sqes[i].has_user = has_user;
2207 sqes[i].needs_lock = true;
2208 sqes[i].needs_fixed_file = true;
2209 io_submit_sqe(ctx, &sqes[i], statep, &link);
2215 io_queue_sqe(ctx, link, &link->submit);
2217 io_submit_state_end(&state);
2222 static int io_sq_thread(void *data)
2224 struct sqe_submit sqes[IO_IOPOLL_BATCH];
2225 struct io_ring_ctx *ctx = data;
2226 struct mm_struct *cur_mm = NULL;
2227 mm_segment_t old_fs;
2230 unsigned long timeout;
2232 complete(&ctx->sqo_thread_started);
2237 timeout = inflight = 0;
2238 while (!kthread_should_park()) {
2239 bool all_fixed, mm_fault = false;
2243 unsigned nr_events = 0;
2245 if (ctx->flags & IORING_SETUP_IOPOLL) {
2247 * We disallow the app entering submit/complete
2248 * with polling, but we still need to lock the
2249 * ring to prevent racing with polled issue
2250 * that got punted to a workqueue.
2252 mutex_lock(&ctx->uring_lock);
2253 io_iopoll_check(ctx, &nr_events, 0);
2254 mutex_unlock(&ctx->uring_lock);
2257 * Normal IO, just pretend everything completed.
2258 * We don't have to poll completions for that.
2260 nr_events = inflight;
2263 inflight -= nr_events;
2265 timeout = jiffies + ctx->sq_thread_idle;
2268 if (!io_get_sqring(ctx, &sqes[0])) {
2270 * We're polling. If we're within the defined idle
2271 * period, then let us spin without work before going
2274 if (inflight || !time_after(jiffies, timeout)) {
2280 * Drop cur_mm before scheduling, we can't hold it for
2281 * long periods (or over schedule()). Do this before
2282 * adding ourselves to the waitqueue, as the unuse/drop
2291 prepare_to_wait(&ctx->sqo_wait, &wait,
2292 TASK_INTERRUPTIBLE);
2294 /* Tell userspace we may need a wakeup call */
2295 ctx->sq_ring->flags |= IORING_SQ_NEED_WAKEUP;
2296 /* make sure to read SQ tail after writing flags */
2299 if (!io_get_sqring(ctx, &sqes[0])) {
2300 if (kthread_should_park()) {
2301 finish_wait(&ctx->sqo_wait, &wait);
2304 if (signal_pending(current))
2305 flush_signals(current);
2307 finish_wait(&ctx->sqo_wait, &wait);
2309 ctx->sq_ring->flags &= ~IORING_SQ_NEED_WAKEUP;
2312 finish_wait(&ctx->sqo_wait, &wait);
2314 ctx->sq_ring->flags &= ~IORING_SQ_NEED_WAKEUP;
2320 if (all_fixed && io_sqe_needs_user(sqes[i].sqe))
2324 if (i == ARRAY_SIZE(sqes))
2326 } while (io_get_sqring(ctx, &sqes[i]));
2328 /* Unless all new commands are FIXED regions, grab mm */
2329 if (!all_fixed && !cur_mm) {
2330 mm_fault = !mmget_not_zero(ctx->sqo_mm);
2332 use_mm(ctx->sqo_mm);
2333 cur_mm = ctx->sqo_mm;
2337 inflight += io_submit_sqes(ctx, sqes, i, cur_mm != NULL,
2340 /* Commit SQ ring head once we've consumed all SQEs */
2341 io_commit_sqring(ctx);
2355 static int io_ring_submit(struct io_ring_ctx *ctx, unsigned int to_submit)
2357 struct io_submit_state state, *statep = NULL;
2358 struct io_kiocb *link = NULL;
2359 bool prev_was_link = false;
2362 if (to_submit > IO_PLUG_THRESHOLD) {
2363 io_submit_state_start(&state, ctx, to_submit);
2367 for (i = 0; i < to_submit; i++) {
2368 struct sqe_submit s;
2370 if (!io_get_sqring(ctx, &s))
2374 * If previous wasn't linked and we have a linked command,
2375 * that's the end of the chain. Submit the previous link.
2377 if (!prev_was_link && link) {
2378 io_queue_sqe(ctx, link, &link->submit);
2381 prev_was_link = (s.sqe->flags & IOSQE_IO_LINK) != 0;
2384 s.needs_lock = false;
2385 s.needs_fixed_file = false;
2387 io_submit_sqe(ctx, &s, statep, &link);
2389 io_commit_sqring(ctx);
2392 io_queue_sqe(ctx, link, &link->submit);
2394 io_submit_state_end(statep);
2399 static unsigned io_cqring_events(struct io_cq_ring *ring)
2401 /* See comment at the top of this file */
2403 return READ_ONCE(ring->r.tail) - READ_ONCE(ring->r.head);
2407 * Wait until events become available, if we don't already have some. The
2408 * application must reap them itself, as they reside on the shared cq ring.
2410 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2411 const sigset_t __user *sig, size_t sigsz)
2413 struct io_cq_ring *ring = ctx->cq_ring;
2414 sigset_t ksigmask, sigsaved;
2417 if (io_cqring_events(ring) >= min_events)
2421 #ifdef CONFIG_COMPAT
2422 if (in_compat_syscall())
2423 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2424 &ksigmask, &sigsaved, sigsz);
2427 ret = set_user_sigmask(sig, &ksigmask,
2434 ret = wait_event_interruptible(ctx->wait, io_cqring_events(ring) >= min_events);
2437 restore_user_sigmask(sig, &sigsaved, ret == -ERESTARTSYS);
2439 if (ret == -ERESTARTSYS)
2442 return READ_ONCE(ring->r.head) == READ_ONCE(ring->r.tail) ? ret : 0;
2445 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
2447 #if defined(CONFIG_UNIX)
2448 if (ctx->ring_sock) {
2449 struct sock *sock = ctx->ring_sock->sk;
2450 struct sk_buff *skb;
2452 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
2458 for (i = 0; i < ctx->nr_user_files; i++)
2459 fput(ctx->user_files[i]);
2463 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
2465 if (!ctx->user_files)
2468 __io_sqe_files_unregister(ctx);
2469 kfree(ctx->user_files);
2470 ctx->user_files = NULL;
2471 ctx->nr_user_files = 0;
2475 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
2477 if (ctx->sqo_thread) {
2478 wait_for_completion(&ctx->sqo_thread_started);
2480 * The park is a bit of a work-around, without it we get
2481 * warning spews on shutdown with SQPOLL set and affinity
2482 * set to a single CPU.
2484 kthread_park(ctx->sqo_thread);
2485 kthread_stop(ctx->sqo_thread);
2486 ctx->sqo_thread = NULL;
2490 static void io_finish_async(struct io_ring_ctx *ctx)
2492 io_sq_thread_stop(ctx);
2495 destroy_workqueue(ctx->sqo_wq);
2500 #if defined(CONFIG_UNIX)
2501 static void io_destruct_skb(struct sk_buff *skb)
2503 struct io_ring_ctx *ctx = skb->sk->sk_user_data;
2505 io_finish_async(ctx);
2506 unix_destruct_scm(skb);
2510 * Ensure the UNIX gc is aware of our file set, so we are certain that
2511 * the io_uring can be safely unregistered on process exit, even if we have
2512 * loops in the file referencing.
2514 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
2516 struct sock *sk = ctx->ring_sock->sk;
2517 struct scm_fp_list *fpl;
2518 struct sk_buff *skb;
2521 if (!capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) {
2522 unsigned long inflight = ctx->user->unix_inflight + nr;
2524 if (inflight > task_rlimit(current, RLIMIT_NOFILE))
2528 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
2532 skb = alloc_skb(0, GFP_KERNEL);
2539 skb->destructor = io_destruct_skb;
2541 fpl->user = get_uid(ctx->user);
2542 for (i = 0; i < nr; i++) {
2543 fpl->fp[i] = get_file(ctx->user_files[i + offset]);
2544 unix_inflight(fpl->user, fpl->fp[i]);
2547 fpl->max = fpl->count = nr;
2548 UNIXCB(skb).fp = fpl;
2549 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2550 skb_queue_head(&sk->sk_receive_queue, skb);
2552 for (i = 0; i < nr; i++)
2559 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
2560 * causes regular reference counting to break down. We rely on the UNIX
2561 * garbage collection to take care of this problem for us.
2563 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
2565 unsigned left, total;
2569 left = ctx->nr_user_files;
2571 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
2573 ret = __io_sqe_files_scm(ctx, this_files, total);
2577 total += this_files;
2583 while (total < ctx->nr_user_files) {
2584 fput(ctx->user_files[total]);
2591 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
2597 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
2600 __s32 __user *fds = (__s32 __user *) arg;
2604 if (ctx->user_files)
2608 if (nr_args > IORING_MAX_FIXED_FILES)
2611 ctx->user_files = kcalloc(nr_args, sizeof(struct file *), GFP_KERNEL);
2612 if (!ctx->user_files)
2615 for (i = 0; i < nr_args; i++) {
2617 if (copy_from_user(&fd, &fds[i], sizeof(fd)))
2620 ctx->user_files[i] = fget(fd);
2623 if (!ctx->user_files[i])
2626 * Don't allow io_uring instances to be registered. If UNIX
2627 * isn't enabled, then this causes a reference cycle and this
2628 * instance can never get freed. If UNIX is enabled we'll
2629 * handle it just fine, but there's still no point in allowing
2630 * a ring fd as it doesn't support regular read/write anyway.
2632 if (ctx->user_files[i]->f_op == &io_uring_fops) {
2633 fput(ctx->user_files[i]);
2636 ctx->nr_user_files++;
2641 for (i = 0; i < ctx->nr_user_files; i++)
2642 fput(ctx->user_files[i]);
2644 kfree(ctx->user_files);
2645 ctx->user_files = NULL;
2646 ctx->nr_user_files = 0;
2650 ret = io_sqe_files_scm(ctx);
2652 io_sqe_files_unregister(ctx);
2657 static int io_sq_offload_start(struct io_ring_ctx *ctx,
2658 struct io_uring_params *p)
2662 init_waitqueue_head(&ctx->sqo_wait);
2663 mmgrab(current->mm);
2664 ctx->sqo_mm = current->mm;
2666 if (ctx->flags & IORING_SETUP_SQPOLL) {
2668 if (!capable(CAP_SYS_ADMIN))
2671 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
2672 if (!ctx->sq_thread_idle)
2673 ctx->sq_thread_idle = HZ;
2675 if (p->flags & IORING_SETUP_SQ_AFF) {
2676 int cpu = p->sq_thread_cpu;
2679 if (cpu >= nr_cpu_ids)
2681 if (!cpu_online(cpu))
2684 ctx->sqo_thread = kthread_create_on_cpu(io_sq_thread,
2688 ctx->sqo_thread = kthread_create(io_sq_thread, ctx,
2691 if (IS_ERR(ctx->sqo_thread)) {
2692 ret = PTR_ERR(ctx->sqo_thread);
2693 ctx->sqo_thread = NULL;
2696 wake_up_process(ctx->sqo_thread);
2697 } else if (p->flags & IORING_SETUP_SQ_AFF) {
2698 /* Can't have SQ_AFF without SQPOLL */
2703 /* Do QD, or 2 * CPUS, whatever is smallest */
2704 ctx->sqo_wq = alloc_workqueue("io_ring-wq", WQ_UNBOUND | WQ_FREEZABLE,
2705 min(ctx->sq_entries - 1, 2 * num_online_cpus()));
2713 io_sq_thread_stop(ctx);
2714 mmdrop(ctx->sqo_mm);
2719 static void io_unaccount_mem(struct user_struct *user, unsigned long nr_pages)
2721 atomic_long_sub(nr_pages, &user->locked_vm);
2724 static int io_account_mem(struct user_struct *user, unsigned long nr_pages)
2726 unsigned long page_limit, cur_pages, new_pages;
2728 /* Don't allow more pages than we can safely lock */
2729 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
2732 cur_pages = atomic_long_read(&user->locked_vm);
2733 new_pages = cur_pages + nr_pages;
2734 if (new_pages > page_limit)
2736 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
2737 new_pages) != cur_pages);
2742 static void io_mem_free(void *ptr)
2749 page = virt_to_head_page(ptr);
2750 if (put_page_testzero(page))
2751 free_compound_page(page);
2754 static void *io_mem_alloc(size_t size)
2756 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
2759 return (void *) __get_free_pages(gfp_flags, get_order(size));
2762 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
2764 struct io_sq_ring *sq_ring;
2765 struct io_cq_ring *cq_ring;
2768 bytes = struct_size(sq_ring, array, sq_entries);
2769 bytes += array_size(sizeof(struct io_uring_sqe), sq_entries);
2770 bytes += struct_size(cq_ring, cqes, cq_entries);
2772 return (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
2775 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
2779 if (!ctx->user_bufs)
2782 for (i = 0; i < ctx->nr_user_bufs; i++) {
2783 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
2785 for (j = 0; j < imu->nr_bvecs; j++)
2786 put_page(imu->bvec[j].bv_page);
2788 if (ctx->account_mem)
2789 io_unaccount_mem(ctx->user, imu->nr_bvecs);
2794 kfree(ctx->user_bufs);
2795 ctx->user_bufs = NULL;
2796 ctx->nr_user_bufs = 0;
2800 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
2801 void __user *arg, unsigned index)
2803 struct iovec __user *src;
2805 #ifdef CONFIG_COMPAT
2807 struct compat_iovec __user *ciovs;
2808 struct compat_iovec ciov;
2810 ciovs = (struct compat_iovec __user *) arg;
2811 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
2814 dst->iov_base = (void __user *) (unsigned long) ciov.iov_base;
2815 dst->iov_len = ciov.iov_len;
2819 src = (struct iovec __user *) arg;
2820 if (copy_from_user(dst, &src[index], sizeof(*dst)))
2825 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
2828 struct vm_area_struct **vmas = NULL;
2829 struct page **pages = NULL;
2830 int i, j, got_pages = 0;
2835 if (!nr_args || nr_args > UIO_MAXIOV)
2838 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
2840 if (!ctx->user_bufs)
2843 for (i = 0; i < nr_args; i++) {
2844 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
2845 unsigned long off, start, end, ubuf;
2850 ret = io_copy_iov(ctx, &iov, arg, i);
2855 * Don't impose further limits on the size and buffer
2856 * constraints here, we'll -EINVAL later when IO is
2857 * submitted if they are wrong.
2860 if (!iov.iov_base || !iov.iov_len)
2863 /* arbitrary limit, but we need something */
2864 if (iov.iov_len > SZ_1G)
2867 ubuf = (unsigned long) iov.iov_base;
2868 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2869 start = ubuf >> PAGE_SHIFT;
2870 nr_pages = end - start;
2872 if (ctx->account_mem) {
2873 ret = io_account_mem(ctx->user, nr_pages);
2879 if (!pages || nr_pages > got_pages) {
2882 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
2884 vmas = kvmalloc_array(nr_pages,
2885 sizeof(struct vm_area_struct *),
2887 if (!pages || !vmas) {
2889 if (ctx->account_mem)
2890 io_unaccount_mem(ctx->user, nr_pages);
2893 got_pages = nr_pages;
2896 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
2900 if (ctx->account_mem)
2901 io_unaccount_mem(ctx->user, nr_pages);
2906 down_read(¤t->mm->mmap_sem);
2907 pret = get_user_pages(ubuf, nr_pages,
2908 FOLL_WRITE | FOLL_LONGTERM,
2910 if (pret == nr_pages) {
2911 /* don't support file backed memory */
2912 for (j = 0; j < nr_pages; j++) {
2913 struct vm_area_struct *vma = vmas[j];
2916 !is_file_hugepages(vma->vm_file)) {
2922 ret = pret < 0 ? pret : -EFAULT;
2924 up_read(¤t->mm->mmap_sem);
2927 * if we did partial map, or found file backed vmas,
2928 * release any pages we did get
2931 for (j = 0; j < pret; j++)
2934 if (ctx->account_mem)
2935 io_unaccount_mem(ctx->user, nr_pages);
2940 off = ubuf & ~PAGE_MASK;
2942 for (j = 0; j < nr_pages; j++) {
2945 vec_len = min_t(size_t, size, PAGE_SIZE - off);
2946 imu->bvec[j].bv_page = pages[j];
2947 imu->bvec[j].bv_len = vec_len;
2948 imu->bvec[j].bv_offset = off;
2952 /* store original address for later verification */
2954 imu->len = iov.iov_len;
2955 imu->nr_bvecs = nr_pages;
2957 ctx->nr_user_bufs++;
2965 io_sqe_buffer_unregister(ctx);
2969 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
2971 __s32 __user *fds = arg;
2977 if (copy_from_user(&fd, fds, sizeof(*fds)))
2980 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
2981 if (IS_ERR(ctx->cq_ev_fd)) {
2982 int ret = PTR_ERR(ctx->cq_ev_fd);
2983 ctx->cq_ev_fd = NULL;
2990 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2992 if (ctx->cq_ev_fd) {
2993 eventfd_ctx_put(ctx->cq_ev_fd);
2994 ctx->cq_ev_fd = NULL;
3001 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
3003 io_finish_async(ctx);
3005 mmdrop(ctx->sqo_mm);
3007 io_iopoll_reap_events(ctx);
3008 io_sqe_buffer_unregister(ctx);
3009 io_sqe_files_unregister(ctx);
3010 io_eventfd_unregister(ctx);
3012 #if defined(CONFIG_UNIX)
3013 if (ctx->ring_sock) {
3014 ctx->ring_sock->file = NULL; /* so that iput() is called */
3015 sock_release(ctx->ring_sock);
3019 io_mem_free(ctx->sq_ring);
3020 io_mem_free(ctx->sq_sqes);
3021 io_mem_free(ctx->cq_ring);
3023 percpu_ref_exit(&ctx->refs);
3024 if (ctx->account_mem)
3025 io_unaccount_mem(ctx->user,
3026 ring_pages(ctx->sq_entries, ctx->cq_entries));
3027 free_uid(ctx->user);
3031 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
3033 struct io_ring_ctx *ctx = file->private_data;
3036 poll_wait(file, &ctx->cq_wait, wait);
3038 * synchronizes with barrier from wq_has_sleeper call in
3042 if (READ_ONCE(ctx->sq_ring->r.tail) - ctx->cached_sq_head !=
3043 ctx->sq_ring->ring_entries)
3044 mask |= EPOLLOUT | EPOLLWRNORM;
3045 if (READ_ONCE(ctx->cq_ring->r.head) != ctx->cached_cq_tail)
3046 mask |= EPOLLIN | EPOLLRDNORM;
3051 static int io_uring_fasync(int fd, struct file *file, int on)
3053 struct io_ring_ctx *ctx = file->private_data;
3055 return fasync_helper(fd, file, on, &ctx->cq_fasync);
3058 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3060 mutex_lock(&ctx->uring_lock);
3061 percpu_ref_kill(&ctx->refs);
3062 mutex_unlock(&ctx->uring_lock);
3064 io_poll_remove_all(ctx);
3065 io_iopoll_reap_events(ctx);
3066 wait_for_completion(&ctx->ctx_done);
3067 io_ring_ctx_free(ctx);
3070 static int io_uring_release(struct inode *inode, struct file *file)
3072 struct io_ring_ctx *ctx = file->private_data;
3074 file->private_data = NULL;
3075 io_ring_ctx_wait_and_kill(ctx);
3079 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3081 loff_t offset = (loff_t) vma->vm_pgoff << PAGE_SHIFT;
3082 unsigned long sz = vma->vm_end - vma->vm_start;
3083 struct io_ring_ctx *ctx = file->private_data;
3089 case IORING_OFF_SQ_RING:
3092 case IORING_OFF_SQES:
3095 case IORING_OFF_CQ_RING:
3102 page = virt_to_head_page(ptr);
3103 if (sz > (PAGE_SIZE << compound_order(page)))
3106 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3107 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3110 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3111 u32, min_complete, u32, flags, const sigset_t __user *, sig,
3114 struct io_ring_ctx *ctx;
3119 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP))
3127 if (f.file->f_op != &io_uring_fops)
3131 ctx = f.file->private_data;
3132 if (!percpu_ref_tryget(&ctx->refs))
3136 * For SQ polling, the thread will do all submissions and completions.
3137 * Just return the requested submit count, and wake the thread if
3140 if (ctx->flags & IORING_SETUP_SQPOLL) {
3141 if (flags & IORING_ENTER_SQ_WAKEUP)
3142 wake_up(&ctx->sqo_wait);
3143 submitted = to_submit;
3149 to_submit = min(to_submit, ctx->sq_entries);
3151 mutex_lock(&ctx->uring_lock);
3152 submitted = io_ring_submit(ctx, to_submit);
3153 mutex_unlock(&ctx->uring_lock);
3155 if (flags & IORING_ENTER_GETEVENTS) {
3156 unsigned nr_events = 0;
3158 min_complete = min(min_complete, ctx->cq_entries);
3160 if (ctx->flags & IORING_SETUP_IOPOLL) {
3161 mutex_lock(&ctx->uring_lock);
3162 ret = io_iopoll_check(ctx, &nr_events, min_complete);
3163 mutex_unlock(&ctx->uring_lock);
3165 ret = io_cqring_wait(ctx, min_complete, sig, sigsz);
3170 io_ring_drop_ctx_refs(ctx, 1);
3173 return submitted ? submitted : ret;
3176 static const struct file_operations io_uring_fops = {
3177 .release = io_uring_release,
3178 .mmap = io_uring_mmap,
3179 .poll = io_uring_poll,
3180 .fasync = io_uring_fasync,
3183 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3184 struct io_uring_params *p)
3186 struct io_sq_ring *sq_ring;
3187 struct io_cq_ring *cq_ring;
3190 sq_ring = io_mem_alloc(struct_size(sq_ring, array, p->sq_entries));
3194 ctx->sq_ring = sq_ring;
3195 sq_ring->ring_mask = p->sq_entries - 1;
3196 sq_ring->ring_entries = p->sq_entries;
3197 ctx->sq_mask = sq_ring->ring_mask;
3198 ctx->sq_entries = sq_ring->ring_entries;
3200 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3201 if (size == SIZE_MAX)
3204 ctx->sq_sqes = io_mem_alloc(size);
3208 cq_ring = io_mem_alloc(struct_size(cq_ring, cqes, p->cq_entries));
3212 ctx->cq_ring = cq_ring;
3213 cq_ring->ring_mask = p->cq_entries - 1;
3214 cq_ring->ring_entries = p->cq_entries;
3215 ctx->cq_mask = cq_ring->ring_mask;
3216 ctx->cq_entries = cq_ring->ring_entries;
3221 * Allocate an anonymous fd, this is what constitutes the application
3222 * visible backing of an io_uring instance. The application mmaps this
3223 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3224 * we have to tie this fd to a socket for file garbage collection purposes.
3226 static int io_uring_get_fd(struct io_ring_ctx *ctx)
3231 #if defined(CONFIG_UNIX)
3232 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3238 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3242 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
3243 O_RDWR | O_CLOEXEC);
3246 ret = PTR_ERR(file);
3250 #if defined(CONFIG_UNIX)
3251 ctx->ring_sock->file = file;
3252 ctx->ring_sock->sk->sk_user_data = ctx;
3254 fd_install(ret, file);
3257 #if defined(CONFIG_UNIX)
3258 sock_release(ctx->ring_sock);
3259 ctx->ring_sock = NULL;
3264 static int io_uring_create(unsigned entries, struct io_uring_params *p)
3266 struct user_struct *user = NULL;
3267 struct io_ring_ctx *ctx;
3271 if (!entries || entries > IORING_MAX_ENTRIES)
3275 * Use twice as many entries for the CQ ring. It's possible for the
3276 * application to drive a higher depth than the size of the SQ ring,
3277 * since the sqes are only used at submission time. This allows for
3278 * some flexibility in overcommitting a bit.
3280 p->sq_entries = roundup_pow_of_two(entries);
3281 p->cq_entries = 2 * p->sq_entries;
3283 user = get_uid(current_user());
3284 account_mem = !capable(CAP_IPC_LOCK);
3287 ret = io_account_mem(user,
3288 ring_pages(p->sq_entries, p->cq_entries));
3295 ctx = io_ring_ctx_alloc(p);
3298 io_unaccount_mem(user, ring_pages(p->sq_entries,
3303 ctx->compat = in_compat_syscall();
3304 ctx->account_mem = account_mem;
3307 ret = io_allocate_scq_urings(ctx, p);
3311 ret = io_sq_offload_start(ctx, p);
3315 ret = io_uring_get_fd(ctx);
3319 memset(&p->sq_off, 0, sizeof(p->sq_off));
3320 p->sq_off.head = offsetof(struct io_sq_ring, r.head);
3321 p->sq_off.tail = offsetof(struct io_sq_ring, r.tail);
3322 p->sq_off.ring_mask = offsetof(struct io_sq_ring, ring_mask);
3323 p->sq_off.ring_entries = offsetof(struct io_sq_ring, ring_entries);
3324 p->sq_off.flags = offsetof(struct io_sq_ring, flags);
3325 p->sq_off.dropped = offsetof(struct io_sq_ring, dropped);
3326 p->sq_off.array = offsetof(struct io_sq_ring, array);
3328 memset(&p->cq_off, 0, sizeof(p->cq_off));
3329 p->cq_off.head = offsetof(struct io_cq_ring, r.head);
3330 p->cq_off.tail = offsetof(struct io_cq_ring, r.tail);
3331 p->cq_off.ring_mask = offsetof(struct io_cq_ring, ring_mask);
3332 p->cq_off.ring_entries = offsetof(struct io_cq_ring, ring_entries);
3333 p->cq_off.overflow = offsetof(struct io_cq_ring, overflow);
3334 p->cq_off.cqes = offsetof(struct io_cq_ring, cqes);
3337 io_ring_ctx_wait_and_kill(ctx);
3342 * Sets up an aio uring context, and returns the fd. Applications asks for a
3343 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3344 * params structure passed in.
3346 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3348 struct io_uring_params p;
3352 if (copy_from_user(&p, params, sizeof(p)))
3354 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3359 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3360 IORING_SETUP_SQ_AFF))
3363 ret = io_uring_create(entries, &p);
3367 if (copy_to_user(params, &p, sizeof(p)))
3373 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3374 struct io_uring_params __user *, params)
3376 return io_uring_setup(entries, params);
3379 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
3380 void __user *arg, unsigned nr_args)
3381 __releases(ctx->uring_lock)
3382 __acquires(ctx->uring_lock)
3387 * We're inside the ring mutex, if the ref is already dying, then
3388 * someone else killed the ctx or is already going through
3389 * io_uring_register().
3391 if (percpu_ref_is_dying(&ctx->refs))
3394 percpu_ref_kill(&ctx->refs);
3397 * Drop uring mutex before waiting for references to exit. If another
3398 * thread is currently inside io_uring_enter() it might need to grab
3399 * the uring_lock to make progress. If we hold it here across the drain
3400 * wait, then we can deadlock. It's safe to drop the mutex here, since
3401 * no new references will come in after we've killed the percpu ref.
3403 mutex_unlock(&ctx->uring_lock);
3404 wait_for_completion(&ctx->ctx_done);
3405 mutex_lock(&ctx->uring_lock);
3408 case IORING_REGISTER_BUFFERS:
3409 ret = io_sqe_buffer_register(ctx, arg, nr_args);
3411 case IORING_UNREGISTER_BUFFERS:
3415 ret = io_sqe_buffer_unregister(ctx);
3417 case IORING_REGISTER_FILES:
3418 ret = io_sqe_files_register(ctx, arg, nr_args);
3420 case IORING_UNREGISTER_FILES:
3424 ret = io_sqe_files_unregister(ctx);
3426 case IORING_REGISTER_EVENTFD:
3430 ret = io_eventfd_register(ctx, arg);
3432 case IORING_UNREGISTER_EVENTFD:
3436 ret = io_eventfd_unregister(ctx);
3443 /* bring the ctx back to life */
3444 reinit_completion(&ctx->ctx_done);
3445 percpu_ref_reinit(&ctx->refs);
3449 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
3450 void __user *, arg, unsigned int, nr_args)
3452 struct io_ring_ctx *ctx;
3461 if (f.file->f_op != &io_uring_fops)
3464 ctx = f.file->private_data;
3466 mutex_lock(&ctx->uring_lock);
3467 ret = __io_uring_register(ctx, opcode, arg, nr_args);
3468 mutex_unlock(&ctx->uring_lock);
3474 static int __init io_uring_init(void)
3476 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
3479 __initcall(io_uring_init);