1 #include <linux/moduleloader.h>
2 #include <linux/workqueue.h>
3 #include <linux/netdevice.h>
4 #include <linux/filter.h>
6 #include <linux/cache.h>
7 #include <linux/if_vlan.h>
9 #include <asm/cacheflush.h>
10 #include <asm/ptrace.h>
12 #include "bpf_jit_64.h"
14 int bpf_jit_enable __read_mostly;
16 static inline bool is_simm13(unsigned int value)
18 return value + 0x1000 < 0x2000;
21 static inline bool is_simm10(unsigned int value)
23 return value + 0x200 < 0x400;
26 static inline bool is_simm5(unsigned int value)
28 return value + 0x10 < 0x20;
31 static inline bool is_sethi(unsigned int value)
33 return (value & ~0x3fffff) == 0;
36 static void bpf_flush_icache(void *start_, void *end_)
38 /* Cheetah's I-cache is fully coherent. */
39 if (tlb_type == spitfire) {
40 unsigned long start = (unsigned long) start_;
41 unsigned long end = (unsigned long) end_;
44 end = (end + 7UL) & ~7UL;
52 #define SEEN_DATAREF 1 /* might call external helpers */
53 #define SEEN_XREG 2 /* ebx is used */
54 #define SEEN_MEM 4 /* use mem[] for temporary storage */
56 #define S13(X) ((X) & 0x1fff)
57 #define S5(X) ((X) & 0x1f)
58 #define IMMED 0x00002000
59 #define RD(X) ((X) << 25)
60 #define RS1(X) ((X) << 14)
62 #define OP(X) ((X) << 30)
63 #define OP2(X) ((X) << 22)
64 #define OP3(X) ((X) << 19)
65 #define COND(X) (((X) & 0xf) << 25)
66 #define CBCOND(X) (((X) & 0x1f) << 25)
68 #define F2(X, Y) (OP(X) | OP2(Y))
69 #define F3(X, Y) (OP(X) | OP3(Y))
70 #define ASI(X) (((X) & 0xff) << 5)
72 #define CONDN COND(0x0)
73 #define CONDE COND(0x1)
74 #define CONDLE COND(0x2)
75 #define CONDL COND(0x3)
76 #define CONDLEU COND(0x4)
77 #define CONDCS COND(0x5)
78 #define CONDNEG COND(0x6)
79 #define CONDVC COND(0x7)
80 #define CONDA COND(0x8)
81 #define CONDNE COND(0x9)
82 #define CONDG COND(0xa)
83 #define CONDGE COND(0xb)
84 #define CONDGU COND(0xc)
85 #define CONDCC COND(0xd)
86 #define CONDPOS COND(0xe)
87 #define CONDVS COND(0xf)
89 #define CONDGEU CONDCC
92 #define WDISP22(X) (((X) >> 2) & 0x3fffff)
93 #define WDISP19(X) (((X) >> 2) & 0x7ffff)
95 /* The 10-bit branch displacement for CBCOND is split into two fields */
96 static u32 WDISP10(u32 off)
98 u32 ret = ((off >> 2) & 0xff) << 5;
100 ret |= ((off >> (2 + 8)) & 0x03) << 19;
105 #define CBCONDE CBCOND(0x09)
106 #define CBCONDLE CBCOND(0x0a)
107 #define CBCONDL CBCOND(0x0b)
108 #define CBCONDLEU CBCOND(0x0c)
109 #define CBCONDCS CBCOND(0x0d)
110 #define CBCONDN CBCOND(0x0e)
111 #define CBCONDVS CBCOND(0x0f)
112 #define CBCONDNE CBCOND(0x19)
113 #define CBCONDG CBCOND(0x1a)
114 #define CBCONDGE CBCOND(0x1b)
115 #define CBCONDGU CBCOND(0x1c)
116 #define CBCONDCC CBCOND(0x1d)
117 #define CBCONDPOS CBCOND(0x1e)
118 #define CBCONDVC CBCOND(0x1f)
120 #define CBCONDGEU CBCONDCC
121 #define CBCONDLU CBCONDCS
123 #define ANNUL (1 << 29)
124 #define XCC (1 << 21)
126 #define BRANCH (F2(0, 1) | XCC)
127 #define CBCOND_OP (F2(0, 3) | XCC)
129 #define BA (BRANCH | CONDA)
130 #define BG (BRANCH | CONDG)
131 #define BGU (BRANCH | CONDGU)
132 #define BLEU (BRANCH | CONDLEU)
133 #define BGE (BRANCH | CONDGE)
134 #define BGEU (BRANCH | CONDGEU)
135 #define BLU (BRANCH | CONDLU)
136 #define BE (BRANCH | CONDE)
137 #define BNE (BRANCH | CONDNE)
139 #define SETHI(K, REG) \
140 (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
141 #define OR_LO(K, REG) \
142 (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
144 #define ADD F3(2, 0x00)
145 #define AND F3(2, 0x01)
146 #define ANDCC F3(2, 0x11)
147 #define OR F3(2, 0x02)
148 #define XOR F3(2, 0x03)
149 #define SUB F3(2, 0x04)
150 #define SUBCC F3(2, 0x14)
151 #define MUL F3(2, 0x0a)
152 #define MULX F3(2, 0x09)
153 #define UDIVX F3(2, 0x0d)
154 #define DIV F3(2, 0x0e)
155 #define SLL F3(2, 0x25)
156 #define SLLX (F3(2, 0x25)|(1<<12))
157 #define SRA F3(2, 0x27)
158 #define SRAX (F3(2, 0x27)|(1<<12))
159 #define SRL F3(2, 0x26)
160 #define SRLX (F3(2, 0x26)|(1<<12))
161 #define JMPL F3(2, 0x38)
162 #define SAVE F3(2, 0x3c)
163 #define RESTORE F3(2, 0x3d)
165 #define BR F2(0, 0x01)
166 #define RD_Y F3(2, 0x28)
167 #define WR_Y F3(2, 0x30)
169 #define LD32 F3(3, 0x00)
170 #define LD8 F3(3, 0x01)
171 #define LD16 F3(3, 0x02)
172 #define LD64 F3(3, 0x0b)
173 #define LD64A F3(3, 0x1b)
174 #define ST8 F3(3, 0x05)
175 #define ST16 F3(3, 0x06)
176 #define ST32 F3(3, 0x04)
177 #define ST64 F3(3, 0x0e)
179 #define CAS F3(3, 0x3c)
180 #define CASX F3(3, 0x3e)
183 #define BASE_STACKFRAME 176
185 #define LD32I (LD32 | IMMED)
186 #define LD8I (LD8 | IMMED)
187 #define LD16I (LD16 | IMMED)
188 #define LD64I (LD64 | IMMED)
189 #define LDPTRI (LDPTR | IMMED)
190 #define ST32I (ST32 | IMMED)
193 struct bpf_prog *prog;
194 unsigned int *offset;
201 bool saw_frame_pointer;
207 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
208 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
209 #define SKB_HLEN_REG (MAX_BPF_JIT_REG + 2)
210 #define SKB_DATA_REG (MAX_BPF_JIT_REG + 3)
211 #define TMP_REG_3 (MAX_BPF_JIT_REG + 4)
213 /* Map BPF registers to SPARC registers */
214 static const int bpf2sparc[] = {
215 /* return value from in-kernel function, and exit value from eBPF */
218 /* arguments from eBPF program to in-kernel function */
225 /* callee saved registers that in-kernel function will preserve */
231 /* read-only frame pointer to access stack */
236 /* temporary register for internal BPF JIT */
245 static void emit(const u32 insn, struct jit_ctx *ctx)
247 if (ctx->image != NULL)
248 ctx->image[ctx->idx] = insn;
253 static void emit_call(u32 *func, struct jit_ctx *ctx)
255 if (ctx->image != NULL) {
256 void *here = &ctx->image[ctx->idx];
259 off = (void *)func - here;
260 ctx->image[ctx->idx] = CALL | ((off >> 2) & 0x3fffffff);
265 static void emit_nop(struct jit_ctx *ctx)
267 emit(SETHI(0, G0), ctx);
270 static void emit_reg_move(u32 from, u32 to, struct jit_ctx *ctx)
272 emit(OR | RS1(G0) | RS2(from) | RD(to), ctx);
275 /* Emit 32-bit constant, zero extended. */
276 static void emit_set_const(s32 K, u32 reg, struct jit_ctx *ctx)
278 emit(SETHI(K, reg), ctx);
279 emit(OR_LO(K, reg), ctx);
282 /* Emit 32-bit constant, sign extended. */
283 static void emit_set_const_sext(s32 K, u32 reg, struct jit_ctx *ctx)
286 emit(SETHI(K, reg), ctx);
287 emit(OR_LO(K, reg), ctx);
289 u32 hbits = ~(u32) K;
290 u32 lbits = -0x400 | (u32) K;
292 emit(SETHI(hbits, reg), ctx);
293 emit(XOR | IMMED | RS1(reg) | S13(lbits) | RD(reg), ctx);
297 static void emit_alu(u32 opcode, u32 src, u32 dst, struct jit_ctx *ctx)
299 emit(opcode | RS1(dst) | RS2(src) | RD(dst), ctx);
302 static void emit_alu3(u32 opcode, u32 a, u32 b, u32 c, struct jit_ctx *ctx)
304 emit(opcode | RS1(a) | RS2(b) | RD(c), ctx);
307 static void emit_alu_K(unsigned int opcode, unsigned int dst, unsigned int imm,
310 bool small_immed = is_simm13(imm);
311 unsigned int insn = opcode;
313 insn |= RS1(dst) | RD(dst);
315 emit(insn | IMMED | S13(imm), ctx);
317 unsigned int tmp = bpf2sparc[TMP_REG_1];
319 ctx->tmp_1_used = true;
321 emit_set_const_sext(imm, tmp, ctx);
322 emit(insn | RS2(tmp), ctx);
326 static void emit_alu3_K(unsigned int opcode, unsigned int src, unsigned int imm,
327 unsigned int dst, struct jit_ctx *ctx)
329 bool small_immed = is_simm13(imm);
330 unsigned int insn = opcode;
332 insn |= RS1(src) | RD(dst);
334 emit(insn | IMMED | S13(imm), ctx);
336 unsigned int tmp = bpf2sparc[TMP_REG_1];
338 ctx->tmp_1_used = true;
340 emit_set_const_sext(imm, tmp, ctx);
341 emit(insn | RS2(tmp), ctx);
345 static void emit_loadimm32(s32 K, unsigned int dest, struct jit_ctx *ctx)
347 if (K >= 0 && is_simm13(K)) {
348 /* or %g0, K, DEST */
349 emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
351 emit_set_const(K, dest, ctx);
355 static void emit_loadimm(s32 K, unsigned int dest, struct jit_ctx *ctx)
358 /* or %g0, K, DEST */
359 emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
361 emit_set_const(K, dest, ctx);
365 static void emit_loadimm_sext(s32 K, unsigned int dest, struct jit_ctx *ctx)
368 /* or %g0, K, DEST */
369 emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
371 emit_set_const_sext(K, dest, ctx);
375 static void analyze_64bit_constant(u32 high_bits, u32 low_bits,
376 int *hbsp, int *lbsp, int *abbasp)
378 int lowest_bit_set, highest_bit_set, all_bits_between_are_set;
381 lowest_bit_set = highest_bit_set = -1;
384 if ((lowest_bit_set == -1) && ((low_bits >> i) & 1))
386 if ((highest_bit_set == -1) && ((high_bits >> (32 - i - 1)) & 1))
387 highest_bit_set = (64 - i - 1);
388 } while (++i < 32 && (highest_bit_set == -1 ||
389 lowest_bit_set == -1));
393 if (lowest_bit_set == -1 && ((high_bits >> i) & 1))
394 lowest_bit_set = i + 32;
395 if (highest_bit_set == -1 &&
396 ((low_bits >> (32 - i - 1)) & 1))
397 highest_bit_set = 32 - i - 1;
398 } while (++i < 32 && (highest_bit_set == -1 ||
399 lowest_bit_set == -1));
402 all_bits_between_are_set = 1;
403 for (i = lowest_bit_set; i <= highest_bit_set; i++) {
405 if ((low_bits & (1 << i)) != 0)
408 if ((high_bits & (1 << (i - 32))) != 0)
411 all_bits_between_are_set = 0;
414 *hbsp = highest_bit_set;
415 *lbsp = lowest_bit_set;
416 *abbasp = all_bits_between_are_set;
419 static unsigned long create_simple_focus_bits(unsigned long high_bits,
420 unsigned long low_bits,
421 int lowest_bit_set, int shift)
425 if (lowest_bit_set < 32) {
426 lo = (low_bits >> lowest_bit_set) << shift;
427 hi = ((high_bits << (32 - lowest_bit_set)) << shift);
430 hi = ((high_bits >> (lowest_bit_set - 32)) << shift);
435 static bool const64_is_2insns(unsigned long high_bits,
436 unsigned long low_bits)
438 int highest_bit_set, lowest_bit_set, all_bits_between_are_set;
440 if (high_bits == 0 || high_bits == 0xffffffff)
443 analyze_64bit_constant(high_bits, low_bits,
444 &highest_bit_set, &lowest_bit_set,
445 &all_bits_between_are_set);
447 if ((highest_bit_set == 63 || lowest_bit_set == 0) &&
448 all_bits_between_are_set != 0)
451 if (highest_bit_set - lowest_bit_set < 21)
457 static void sparc_emit_set_const64_quick2(unsigned long high_bits,
458 unsigned long low_imm,
460 int shift_count, struct jit_ctx *ctx)
462 emit_loadimm32(high_bits, dest, ctx);
464 /* Now shift it up into place. */
465 emit_alu_K(SLLX, dest, shift_count, ctx);
467 /* If there is a low immediate part piece, finish up by
468 * putting that in as well.
471 emit(OR | IMMED | RS1(dest) | S13(low_imm) | RD(dest), ctx);
474 static void emit_loadimm64(u64 K, unsigned int dest, struct jit_ctx *ctx)
476 int all_bits_between_are_set, lowest_bit_set, highest_bit_set;
477 unsigned int tmp = bpf2sparc[TMP_REG_1];
478 u32 low_bits = (K & 0xffffffff);
479 u32 high_bits = (K >> 32);
481 /* These two tests also take care of all of the one
484 if (high_bits == 0xffffffff && (low_bits & 0x80000000))
485 return emit_loadimm_sext(K, dest, ctx);
486 if (high_bits == 0x00000000)
487 return emit_loadimm32(K, dest, ctx);
489 analyze_64bit_constant(high_bits, low_bits, &highest_bit_set,
490 &lowest_bit_set, &all_bits_between_are_set);
493 * sllx %reg, shift, %reg
495 * srlx %reg, shift, %reg
496 * 3) mov some_small_const, %reg
497 * sllx %reg, shift, %reg
499 if (((highest_bit_set == 63 || lowest_bit_set == 0) &&
500 all_bits_between_are_set != 0) ||
501 ((highest_bit_set - lowest_bit_set) < 12)) {
502 int shift = lowest_bit_set;
505 if ((highest_bit_set != 63 && lowest_bit_set != 0) ||
506 all_bits_between_are_set == 0) {
508 create_simple_focus_bits(high_bits, low_bits,
510 } else if (lowest_bit_set == 0)
511 shift = -(63 - highest_bit_set);
513 emit(OR | IMMED | RS1(G0) | S13(the_const) | RD(dest), ctx);
515 emit_alu_K(SLLX, dest, shift, ctx);
517 emit_alu_K(SRLX, dest, -shift, ctx);
522 /* Now a range of 22 or less bits set somewhere.
523 * 1) sethi %hi(focus_bits), %reg
524 * sllx %reg, shift, %reg
525 * 2) sethi %hi(focus_bits), %reg
526 * srlx %reg, shift, %reg
528 if ((highest_bit_set - lowest_bit_set) < 21) {
529 unsigned long focus_bits =
530 create_simple_focus_bits(high_bits, low_bits,
533 emit(SETHI(focus_bits, dest), ctx);
535 /* If lowest_bit_set == 10 then a sethi alone could
538 if (lowest_bit_set < 10)
539 emit_alu_K(SRLX, dest, 10 - lowest_bit_set, ctx);
540 else if (lowest_bit_set > 10)
541 emit_alu_K(SLLX, dest, lowest_bit_set - 10, ctx);
545 /* Ok, now 3 instruction sequences. */
547 emit_loadimm32(high_bits, dest, ctx);
548 emit_alu_K(SLLX, dest, 32, ctx);
552 /* We may be able to do something quick
553 * when the constant is negated, so try that.
555 if (const64_is_2insns((~high_bits) & 0xffffffff,
556 (~low_bits) & 0xfffffc00)) {
557 /* NOTE: The trailing bits get XOR'd so we need the
558 * non-negated bits, not the negated ones.
560 unsigned long trailing_bits = low_bits & 0x3ff;
562 if ((((~high_bits) & 0xffffffff) == 0 &&
563 ((~low_bits) & 0x80000000) == 0) ||
564 (((~high_bits) & 0xffffffff) == 0xffffffff &&
565 ((~low_bits) & 0x80000000) != 0)) {
566 unsigned long fast_int = (~low_bits & 0xffffffff);
568 if ((is_sethi(fast_int) &&
569 (~high_bits & 0xffffffff) == 0)) {
570 emit(SETHI(fast_int, dest), ctx);
571 } else if (is_simm13(fast_int)) {
572 emit(OR | IMMED | RS1(G0) | S13(fast_int) | RD(dest), ctx);
574 emit_loadimm64(fast_int, dest, ctx);
577 u64 n = ((~low_bits) & 0xfffffc00) |
578 (((unsigned long)((~high_bits) & 0xffffffff))<<32);
579 emit_loadimm64(n, dest, ctx);
582 low_bits = -0x400 | trailing_bits;
584 emit(XOR | IMMED | RS1(dest) | S13(low_bits) | RD(dest), ctx);
588 /* 1) sethi %hi(xxx), %reg
589 * or %reg, %lo(xxx), %reg
590 * sllx %reg, yyy, %reg
592 if ((highest_bit_set - lowest_bit_set) < 32) {
593 unsigned long focus_bits =
594 create_simple_focus_bits(high_bits, low_bits,
597 /* So what we know is that the set bits straddle the
598 * middle of the 64-bit word.
600 sparc_emit_set_const64_quick2(focus_bits, 0, dest,
601 lowest_bit_set, ctx);
605 /* 1) sethi %hi(high_bits), %reg
606 * or %reg, %lo(high_bits), %reg
607 * sllx %reg, 32, %reg
608 * or %reg, low_bits, %reg
610 if (is_simm13(low_bits) && ((int)low_bits > 0)) {
611 sparc_emit_set_const64_quick2(high_bits, low_bits,
616 /* Oh well, we tried... Do a full 64-bit decomposition. */
617 ctx->tmp_1_used = true;
619 emit_loadimm32(high_bits, tmp, ctx);
620 emit_loadimm32(low_bits, dest, ctx);
621 emit_alu_K(SLLX, tmp, 32, ctx);
622 emit(OR | RS1(dest) | RS2(tmp) | RD(dest), ctx);
625 static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int to_idx,
628 unsigned int off = to_idx - from_idx;
631 emit(br_opc | WDISP19(off << 2), ctx);
633 emit(br_opc | WDISP22(off << 2), ctx);
636 static void emit_cbcond(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
637 const u8 dst, const u8 src, struct jit_ctx *ctx)
639 unsigned int off = to_idx - from_idx;
641 emit(cb_opc | WDISP10(off << 2) | RS1(dst) | RS2(src), ctx);
644 static void emit_cbcondi(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
645 const u8 dst, s32 imm, struct jit_ctx *ctx)
647 unsigned int off = to_idx - from_idx;
649 emit(cb_opc | IMMED | WDISP10(off << 2) | RS1(dst) | S5(imm), ctx);
652 #define emit_read_y(REG, CTX) emit(RD_Y | RD(REG), CTX)
653 #define emit_write_y(REG, CTX) emit(WR_Y | IMMED | RS1(REG) | S13(0), CTX)
655 #define emit_cmp(R1, R2, CTX) \
656 emit(SUBCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
658 #define emit_cmpi(R1, IMM, CTX) \
659 emit(SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
661 #define emit_btst(R1, R2, CTX) \
662 emit(ANDCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
664 #define emit_btsti(R1, IMM, CTX) \
665 emit(ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
667 static int emit_compare_and_branch(const u8 code, const u8 dst, u8 src,
668 const s32 imm, bool is_imm, int branch_dst,
671 bool use_cbcond = (sparc64_elf_hwcap & AV_SPARC_CBCOND) != 0;
672 const u8 tmp = bpf2sparc[TMP_REG_1];
674 branch_dst = ctx->offset[branch_dst];
676 if (!is_simm10(branch_dst - ctx->idx) ||
677 BPF_OP(code) == BPF_JSET)
686 } else if (!is_simm13(imm)) {
690 ctx->tmp_1_used = true;
691 emit_loadimm_sext(imm, tmp, ctx);
700 if (BPF_OP(code) == BPF_JSET) {
702 emit_btsti(dst, imm, ctx);
704 emit_btst(dst, src, ctx);
707 emit_cmpi(dst, imm, ctx);
709 emit_cmp(dst, src, ctx);
711 switch (BPF_OP(code)) {
732 /* Make sure we dont leak kernel information to the
737 emit_branch(br_opcode, ctx->idx, branch_dst, ctx);
742 switch (BPF_OP(code)) {
744 cbcond_opcode = CBCONDE;
747 cbcond_opcode = CBCONDGU;
750 cbcond_opcode = CBCONDGEU;
753 cbcond_opcode = CBCONDNE;
756 cbcond_opcode = CBCONDG;
759 cbcond_opcode = CBCONDGE;
762 /* Make sure we dont leak kernel information to the
767 cbcond_opcode |= CBCOND_OP;
769 emit_cbcondi(cbcond_opcode, ctx->idx, branch_dst,
772 emit_cbcond(cbcond_opcode, ctx->idx, branch_dst,
778 static void load_skb_regs(struct jit_ctx *ctx, u8 r_skb)
780 const u8 r_headlen = bpf2sparc[SKB_HLEN_REG];
781 const u8 r_data = bpf2sparc[SKB_DATA_REG];
782 const u8 r_tmp = bpf2sparc[TMP_REG_1];
785 off = offsetof(struct sk_buff, len);
786 emit(LD32I | RS1(r_skb) | S13(off) | RD(r_headlen), ctx);
788 off = offsetof(struct sk_buff, data_len);
789 emit(LD32I | RS1(r_skb) | S13(off) | RD(r_tmp), ctx);
791 emit(SUB | RS1(r_headlen) | RS2(r_tmp) | RD(r_headlen), ctx);
793 off = offsetof(struct sk_buff, data);
794 emit(LDPTRI | RS1(r_skb) | S13(off) | RD(r_data), ctx);
797 /* Just skip the save instruction and the ctx register move. */
798 #define BPF_TAILCALL_PROLOGUE_SKIP 16
799 #define BPF_TAILCALL_CNT_SP_OFF (STACK_BIAS + 128)
801 static void build_prologue(struct jit_ctx *ctx)
803 s32 stack_needed = BASE_STACKFRAME;
805 if (ctx->saw_frame_pointer || ctx->saw_tail_call)
806 stack_needed += MAX_BPF_STACK;
808 if (ctx->saw_tail_call)
811 /* save %sp, -176, %sp */
812 emit(SAVE | IMMED | RS1(SP) | S13(-stack_needed) | RD(SP), ctx);
814 /* tail_call_cnt = 0 */
815 if (ctx->saw_tail_call) {
816 u32 off = BPF_TAILCALL_CNT_SP_OFF;
818 emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(G0), ctx);
822 if (ctx->saw_frame_pointer) {
823 const u8 vfp = bpf2sparc[BPF_REG_FP];
825 emit(ADD | IMMED | RS1(FP) | S13(STACK_BIAS) | RD(vfp), ctx);
828 emit_reg_move(I0, O0, ctx);
829 /* If you add anything here, adjust BPF_TAILCALL_PROLOGUE_SKIP above. */
831 if (ctx->saw_ld_abs_ind)
832 load_skb_regs(ctx, bpf2sparc[BPF_REG_1]);
835 static void build_epilogue(struct jit_ctx *ctx)
837 ctx->epilogue_offset = ctx->idx;
839 /* ret (jmpl %i7 + 8, %g0) */
840 emit(JMPL | IMMED | RS1(I7) | S13(8) | RD(G0), ctx);
842 /* restore %i5, %g0, %o0 */
843 emit(RESTORE | RS1(bpf2sparc[BPF_REG_0]) | RS2(G0) | RD(O0), ctx);
846 static void emit_tail_call(struct jit_ctx *ctx)
848 const u8 bpf_array = bpf2sparc[BPF_REG_2];
849 const u8 bpf_index = bpf2sparc[BPF_REG_3];
850 const u8 tmp = bpf2sparc[TMP_REG_1];
853 ctx->saw_tail_call = true;
855 off = offsetof(struct bpf_array, map.max_entries);
856 emit(LD32 | IMMED | RS1(bpf_array) | S13(off) | RD(tmp), ctx);
857 emit_cmp(bpf_index, tmp, ctx);
859 emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET1, ctx);
862 off = BPF_TAILCALL_CNT_SP_OFF;
863 emit(LD32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
864 emit_cmpi(tmp, MAX_TAIL_CALL_CNT, ctx);
866 emit_branch(BGU, ctx->idx, ctx->idx + OFFSET2, ctx);
869 emit_alu_K(ADD, tmp, 1, ctx);
870 off = BPF_TAILCALL_CNT_SP_OFF;
871 emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
873 emit_alu3_K(SLL, bpf_index, 3, tmp, ctx);
874 emit_alu(ADD, bpf_array, tmp, ctx);
875 off = offsetof(struct bpf_array, ptrs);
876 emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
878 emit_cmpi(tmp, 0, ctx);
880 emit_branch(BE, ctx->idx, ctx->idx + OFFSET3, ctx);
883 off = offsetof(struct bpf_prog, bpf_func);
884 emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
886 off = BPF_TAILCALL_PROLOGUE_SKIP;
887 emit(JMPL | IMMED | RS1(tmp) | S13(off) | RD(G0), ctx);
891 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
893 const u8 code = insn->code;
894 const u8 dst = bpf2sparc[insn->dst_reg];
895 const u8 src = bpf2sparc[insn->src_reg];
896 const int i = insn - ctx->prog->insnsi;
897 const s16 off = insn->off;
898 const s32 imm = insn->imm;
901 if (insn->src_reg == BPF_REG_FP)
902 ctx->saw_frame_pointer = true;
906 case BPF_ALU | BPF_MOV | BPF_X:
907 emit_alu3_K(SRL, src, 0, dst, ctx);
909 case BPF_ALU64 | BPF_MOV | BPF_X:
910 emit_reg_move(src, dst, ctx);
912 /* dst = dst OP src */
913 case BPF_ALU | BPF_ADD | BPF_X:
914 case BPF_ALU64 | BPF_ADD | BPF_X:
915 emit_alu(ADD, src, dst, ctx);
917 case BPF_ALU | BPF_SUB | BPF_X:
918 case BPF_ALU64 | BPF_SUB | BPF_X:
919 emit_alu(SUB, src, dst, ctx);
921 case BPF_ALU | BPF_AND | BPF_X:
922 case BPF_ALU64 | BPF_AND | BPF_X:
923 emit_alu(AND, src, dst, ctx);
925 case BPF_ALU | BPF_OR | BPF_X:
926 case BPF_ALU64 | BPF_OR | BPF_X:
927 emit_alu(OR, src, dst, ctx);
929 case BPF_ALU | BPF_XOR | BPF_X:
930 case BPF_ALU64 | BPF_XOR | BPF_X:
931 emit_alu(XOR, src, dst, ctx);
933 case BPF_ALU | BPF_MUL | BPF_X:
934 emit_alu(MUL, src, dst, ctx);
936 case BPF_ALU64 | BPF_MUL | BPF_X:
937 emit_alu(MULX, src, dst, ctx);
939 case BPF_ALU | BPF_DIV | BPF_X:
940 emit_cmp(src, G0, ctx);
941 emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
942 emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);
944 emit_write_y(G0, ctx);
945 emit_alu(DIV, src, dst, ctx);
948 case BPF_ALU64 | BPF_DIV | BPF_X:
949 emit_cmp(src, G0, ctx);
950 emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
951 emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);
953 emit_alu(UDIVX, src, dst, ctx);
956 case BPF_ALU | BPF_MOD | BPF_X: {
957 const u8 tmp = bpf2sparc[TMP_REG_1];
959 ctx->tmp_1_used = true;
961 emit_cmp(src, G0, ctx);
962 emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
963 emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);
965 emit_write_y(G0, ctx);
966 emit_alu3(DIV, dst, src, tmp, ctx);
967 emit_alu3(MULX, tmp, src, tmp, ctx);
968 emit_alu3(SUB, dst, tmp, dst, ctx);
971 case BPF_ALU64 | BPF_MOD | BPF_X: {
972 const u8 tmp = bpf2sparc[TMP_REG_1];
974 ctx->tmp_1_used = true;
976 emit_cmp(src, G0, ctx);
977 emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
978 emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);
980 emit_alu3(UDIVX, dst, src, tmp, ctx);
981 emit_alu3(MULX, tmp, src, tmp, ctx);
982 emit_alu3(SUB, dst, tmp, dst, ctx);
985 case BPF_ALU | BPF_LSH | BPF_X:
986 emit_alu(SLL, src, dst, ctx);
988 case BPF_ALU64 | BPF_LSH | BPF_X:
989 emit_alu(SLLX, src, dst, ctx);
991 case BPF_ALU | BPF_RSH | BPF_X:
992 emit_alu(SRL, src, dst, ctx);
994 case BPF_ALU64 | BPF_RSH | BPF_X:
995 emit_alu(SRLX, src, dst, ctx);
997 case BPF_ALU | BPF_ARSH | BPF_X:
998 emit_alu(SRA, src, dst, ctx);
1000 case BPF_ALU64 | BPF_ARSH | BPF_X:
1001 emit_alu(SRAX, src, dst, ctx);
1005 case BPF_ALU | BPF_NEG:
1006 case BPF_ALU64 | BPF_NEG:
1007 emit(SUB | RS1(0) | RS2(dst) | RD(dst), ctx);
1008 goto do_alu32_trunc;
1010 case BPF_ALU | BPF_END | BPF_FROM_BE:
1013 emit_alu_K(SLL, dst, 16, ctx);
1014 emit_alu_K(SRL, dst, 16, ctx);
1017 emit_alu_K(SRL, dst, 0, ctx);
1026 /* dst = BSWAP##imm(dst) */
1027 case BPF_ALU | BPF_END | BPF_FROM_LE: {
1028 const u8 tmp = bpf2sparc[TMP_REG_1];
1029 const u8 tmp2 = bpf2sparc[TMP_REG_2];
1031 ctx->tmp_1_used = true;
1034 emit_alu3_K(AND, dst, 0xff, tmp, ctx);
1035 emit_alu3_K(SRL, dst, 8, dst, ctx);
1036 emit_alu3_K(AND, dst, 0xff, dst, ctx);
1037 emit_alu3_K(SLL, tmp, 8, tmp, ctx);
1038 emit_alu(OR, tmp, dst, ctx);
1042 ctx->tmp_2_used = true;
1043 emit_alu3_K(SRL, dst, 24, tmp, ctx); /* tmp = dst >> 24 */
1044 emit_alu3_K(SRL, dst, 16, tmp2, ctx); /* tmp2 = dst >> 16 */
1045 emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
1046 emit_alu3_K(SLL, tmp2, 8, tmp2, ctx); /* tmp2 = tmp2 << 8 */
1047 emit_alu(OR, tmp2, tmp, ctx); /* tmp = tmp | tmp2 */
1048 emit_alu3_K(SRL, dst, 8, tmp2, ctx); /* tmp2 = dst >> 8 */
1049 emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
1050 emit_alu3_K(SLL, tmp2, 16, tmp2, ctx); /* tmp2 = tmp2 << 16 */
1051 emit_alu(OR, tmp2, tmp, ctx); /* tmp = tmp | tmp2 */
1052 emit_alu3_K(AND, dst, 0xff, dst, ctx); /* dst = dst & 0xff */
1053 emit_alu3_K(SLL, dst, 24, dst, ctx); /* dst = dst << 24 */
1054 emit_alu(OR, tmp, dst, ctx); /* dst = dst | tmp */
1058 emit_alu3_K(ADD, SP, STACK_BIAS + 128, tmp, ctx);
1059 emit(ST64 | RS1(tmp) | RS2(G0) | RD(dst), ctx);
1060 emit(LD64A | ASI(ASI_PL) | RS1(tmp) | RS2(G0) | RD(dst), ctx);
1066 case BPF_ALU | BPF_MOV | BPF_K:
1067 emit_loadimm32(imm, dst, ctx);
1069 case BPF_ALU64 | BPF_MOV | BPF_K:
1070 emit_loadimm_sext(imm, dst, ctx);
1072 /* dst = dst OP imm */
1073 case BPF_ALU | BPF_ADD | BPF_K:
1074 case BPF_ALU64 | BPF_ADD | BPF_K:
1075 emit_alu_K(ADD, dst, imm, ctx);
1076 goto do_alu32_trunc;
1077 case BPF_ALU | BPF_SUB | BPF_K:
1078 case BPF_ALU64 | BPF_SUB | BPF_K:
1079 emit_alu_K(SUB, dst, imm, ctx);
1080 goto do_alu32_trunc;
1081 case BPF_ALU | BPF_AND | BPF_K:
1082 case BPF_ALU64 | BPF_AND | BPF_K:
1083 emit_alu_K(AND, dst, imm, ctx);
1084 goto do_alu32_trunc;
1085 case BPF_ALU | BPF_OR | BPF_K:
1086 case BPF_ALU64 | BPF_OR | BPF_K:
1087 emit_alu_K(OR, dst, imm, ctx);
1088 goto do_alu32_trunc;
1089 case BPF_ALU | BPF_XOR | BPF_K:
1090 case BPF_ALU64 | BPF_XOR | BPF_K:
1091 emit_alu_K(XOR, dst, imm, ctx);
1092 goto do_alu32_trunc;
1093 case BPF_ALU | BPF_MUL | BPF_K:
1094 emit_alu_K(MUL, dst, imm, ctx);
1095 goto do_alu32_trunc;
1096 case BPF_ALU64 | BPF_MUL | BPF_K:
1097 emit_alu_K(MULX, dst, imm, ctx);
1099 case BPF_ALU | BPF_DIV | BPF_K:
1103 emit_write_y(G0, ctx);
1104 emit_alu_K(DIV, dst, imm, ctx);
1105 goto do_alu32_trunc;
1106 case BPF_ALU64 | BPF_DIV | BPF_K:
1110 emit_alu_K(UDIVX, dst, imm, ctx);
1112 case BPF_ALU64 | BPF_MOD | BPF_K:
1113 case BPF_ALU | BPF_MOD | BPF_K: {
1114 const u8 tmp = bpf2sparc[TMP_REG_2];
1120 div = (BPF_CLASS(code) == BPF_ALU64) ? UDIVX : DIV;
1122 ctx->tmp_2_used = true;
1124 if (BPF_CLASS(code) != BPF_ALU64)
1125 emit_write_y(G0, ctx);
1126 if (is_simm13(imm)) {
1127 emit(div | IMMED | RS1(dst) | S13(imm) | RD(tmp), ctx);
1128 emit(MULX | IMMED | RS1(tmp) | S13(imm) | RD(tmp), ctx);
1129 emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
1131 const u8 tmp1 = bpf2sparc[TMP_REG_1];
1133 ctx->tmp_1_used = true;
1135 emit_set_const_sext(imm, tmp1, ctx);
1136 emit(div | RS1(dst) | RS2(tmp1) | RD(tmp), ctx);
1137 emit(MULX | RS1(tmp) | RS2(tmp1) | RD(tmp), ctx);
1138 emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
1140 goto do_alu32_trunc;
1142 case BPF_ALU | BPF_LSH | BPF_K:
1143 emit_alu_K(SLL, dst, imm, ctx);
1144 goto do_alu32_trunc;
1145 case BPF_ALU64 | BPF_LSH | BPF_K:
1146 emit_alu_K(SLLX, dst, imm, ctx);
1148 case BPF_ALU | BPF_RSH | BPF_K:
1149 emit_alu_K(SRL, dst, imm, ctx);
1151 case BPF_ALU64 | BPF_RSH | BPF_K:
1152 emit_alu_K(SRLX, dst, imm, ctx);
1154 case BPF_ALU | BPF_ARSH | BPF_K:
1155 emit_alu_K(SRA, dst, imm, ctx);
1156 goto do_alu32_trunc;
1157 case BPF_ALU64 | BPF_ARSH | BPF_K:
1158 emit_alu_K(SRAX, dst, imm, ctx);
1162 if (BPF_CLASS(code) == BPF_ALU)
1163 emit_alu_K(SRL, dst, 0, ctx);
1167 case BPF_JMP | BPF_JA:
1168 emit_branch(BA, ctx->idx, ctx->offset[i + off], ctx);
1171 /* IF (dst COND src) JUMP off */
1172 case BPF_JMP | BPF_JEQ | BPF_X:
1173 case BPF_JMP | BPF_JGT | BPF_X:
1174 case BPF_JMP | BPF_JGE | BPF_X:
1175 case BPF_JMP | BPF_JNE | BPF_X:
1176 case BPF_JMP | BPF_JSGT | BPF_X:
1177 case BPF_JMP | BPF_JSGE | BPF_X:
1178 case BPF_JMP | BPF_JSET | BPF_X: {
1181 err = emit_compare_and_branch(code, dst, src, 0, false, i + off, ctx);
1186 /* IF (dst COND imm) JUMP off */
1187 case BPF_JMP | BPF_JEQ | BPF_K:
1188 case BPF_JMP | BPF_JGT | BPF_K:
1189 case BPF_JMP | BPF_JGE | BPF_K:
1190 case BPF_JMP | BPF_JNE | BPF_K:
1191 case BPF_JMP | BPF_JSGT | BPF_K:
1192 case BPF_JMP | BPF_JSGE | BPF_K:
1193 case BPF_JMP | BPF_JSET | BPF_K: {
1196 err = emit_compare_and_branch(code, dst, 0, imm, true, i + off, ctx);
1203 case BPF_JMP | BPF_CALL:
1205 u8 *func = ((u8 *)__bpf_call_base) + imm;
1207 ctx->saw_call = true;
1209 emit_call((u32 *)func, ctx);
1212 emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
1214 if (bpf_helper_changes_pkt_data(func) && ctx->saw_ld_abs_ind)
1215 load_skb_regs(ctx, bpf2sparc[BPF_REG_6]);
1220 case BPF_JMP | BPF_CALL |BPF_X:
1221 emit_tail_call(ctx);
1224 /* function return */
1225 case BPF_JMP | BPF_EXIT:
1226 /* Optimization: when last instruction is EXIT,
1227 simply fallthrough to epilogue. */
1228 if (i == ctx->prog->len - 1)
1230 emit_branch(BA, ctx->idx, ctx->epilogue_offset, ctx);
1235 case BPF_LD | BPF_IMM | BPF_DW:
1237 const struct bpf_insn insn1 = insn[1];
1240 imm64 = (u64)insn1.imm << 32 | (u32)imm;
1241 emit_loadimm64(imm64, dst, ctx);
1246 /* LDX: dst = *(size *)(src + off) */
1247 case BPF_LDX | BPF_MEM | BPF_W:
1248 case BPF_LDX | BPF_MEM | BPF_H:
1249 case BPF_LDX | BPF_MEM | BPF_B:
1250 case BPF_LDX | BPF_MEM | BPF_DW: {
1251 const u8 tmp = bpf2sparc[TMP_REG_1];
1252 u32 opcode = 0, rs2;
1254 ctx->tmp_1_used = true;
1255 switch (BPF_SIZE(code)) {
1270 if (is_simm13(off)) {
1274 emit_loadimm(off, tmp, ctx);
1277 emit(opcode | RS1(src) | rs2 | RD(dst), ctx);
1280 /* ST: *(size *)(dst + off) = imm */
1281 case BPF_ST | BPF_MEM | BPF_W:
1282 case BPF_ST | BPF_MEM | BPF_H:
1283 case BPF_ST | BPF_MEM | BPF_B:
1284 case BPF_ST | BPF_MEM | BPF_DW: {
1285 const u8 tmp = bpf2sparc[TMP_REG_1];
1286 const u8 tmp2 = bpf2sparc[TMP_REG_2];
1287 u32 opcode = 0, rs2;
1289 ctx->tmp_2_used = true;
1290 emit_loadimm(imm, tmp2, ctx);
1292 switch (BPF_SIZE(code)) {
1307 if (is_simm13(off)) {
1311 ctx->tmp_1_used = true;
1312 emit_loadimm(off, tmp, ctx);
1315 emit(opcode | RS1(dst) | rs2 | RD(tmp2), ctx);
1319 /* STX: *(size *)(dst + off) = src */
1320 case BPF_STX | BPF_MEM | BPF_W:
1321 case BPF_STX | BPF_MEM | BPF_H:
1322 case BPF_STX | BPF_MEM | BPF_B:
1323 case BPF_STX | BPF_MEM | BPF_DW: {
1324 const u8 tmp = bpf2sparc[TMP_REG_1];
1325 u32 opcode = 0, rs2;
1327 switch (BPF_SIZE(code)) {
1341 if (is_simm13(off)) {
1345 ctx->tmp_1_used = true;
1346 emit_loadimm(off, tmp, ctx);
1349 emit(opcode | RS1(dst) | rs2 | RD(src), ctx);
1353 /* STX XADD: lock *(u32 *)(dst + off) += src */
1354 case BPF_STX | BPF_XADD | BPF_W: {
1355 const u8 tmp = bpf2sparc[TMP_REG_1];
1356 const u8 tmp2 = bpf2sparc[TMP_REG_2];
1357 const u8 tmp3 = bpf2sparc[TMP_REG_3];
1359 ctx->tmp_1_used = true;
1360 ctx->tmp_2_used = true;
1361 ctx->tmp_3_used = true;
1362 emit_loadimm(off, tmp, ctx);
1363 emit_alu3(ADD, dst, tmp, tmp, ctx);
1365 emit(LD32 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
1366 emit_alu3(ADD, tmp2, src, tmp3, ctx);
1367 emit(CAS | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
1368 emit_cmp(tmp2, tmp3, ctx);
1369 emit_branch(BNE, 4, 0, ctx);
1373 /* STX XADD: lock *(u64 *)(dst + off) += src */
1374 case BPF_STX | BPF_XADD | BPF_DW: {
1375 const u8 tmp = bpf2sparc[TMP_REG_1];
1376 const u8 tmp2 = bpf2sparc[TMP_REG_2];
1377 const u8 tmp3 = bpf2sparc[TMP_REG_3];
1379 ctx->tmp_1_used = true;
1380 ctx->tmp_2_used = true;
1381 ctx->tmp_3_used = true;
1382 emit_loadimm(off, tmp, ctx);
1383 emit_alu3(ADD, dst, tmp, tmp, ctx);
1385 emit(LD64 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
1386 emit_alu3(ADD, tmp2, src, tmp3, ctx);
1387 emit(CASX | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
1388 emit_cmp(tmp2, tmp3, ctx);
1389 emit_branch(BNE, 4, 0, ctx);
1393 #define CHOOSE_LOAD_FUNC(K, func) \
1394 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
1396 /* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + imm)) */
1397 case BPF_LD | BPF_ABS | BPF_W:
1398 func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_word);
1400 case BPF_LD | BPF_ABS | BPF_H:
1401 func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_half);
1403 case BPF_LD | BPF_ABS | BPF_B:
1404 func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_byte);
1406 /* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + src + imm)) */
1407 case BPF_LD | BPF_IND | BPF_W:
1408 func = bpf_jit_load_word;
1410 case BPF_LD | BPF_IND | BPF_H:
1411 func = bpf_jit_load_half;
1414 case BPF_LD | BPF_IND | BPF_B:
1415 func = bpf_jit_load_byte;
1417 ctx->saw_ld_abs_ind = true;
1419 emit_reg_move(bpf2sparc[BPF_REG_6], O0, ctx);
1420 emit_loadimm(imm, O1, ctx);
1422 if (BPF_MODE(code) == BPF_IND)
1423 emit_alu(ADD, src, O1, ctx);
1425 emit_call(func, ctx);
1426 emit_alu_K(SRA, O1, 0, ctx);
1428 emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
1432 pr_err_once("unknown opcode %02x\n", code);
1439 static int build_body(struct jit_ctx *ctx)
1441 const struct bpf_prog *prog = ctx->prog;
1444 for (i = 0; i < prog->len; i++) {
1445 const struct bpf_insn *insn = &prog->insnsi[i];
1448 ret = build_insn(insn, ctx);
1449 ctx->offset[i] = ctx->idx;
1461 static void jit_fill_hole(void *area, unsigned int size)
1464 /* We are guaranteed to have aligned memory. */
1465 for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
1466 *ptr++ = 0x91d02005; /* ta 5 */
1469 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1471 struct bpf_prog *tmp, *orig_prog = prog;
1472 struct bpf_binary_header *header;
1473 bool tmp_blinded = false;
1479 if (!bpf_jit_enable)
1482 tmp = bpf_jit_blind_constants(prog);
1483 /* If blinding was requested and we failed during blinding,
1484 * we must fall back to the interpreter.
1493 memset(&ctx, 0, sizeof(ctx));
1496 ctx.offset = kcalloc(prog->len, sizeof(unsigned int), GFP_KERNEL);
1497 if (ctx.offset == NULL) {
1502 /* Fake pass to detect features used, and get an accurate assessment
1503 * of what the final image size will be.
1505 if (build_body(&ctx)) {
1509 build_prologue(&ctx);
1510 build_epilogue(&ctx);
1512 /* Now we know the actual image size. */
1513 image_size = sizeof(u32) * ctx.idx;
1514 header = bpf_jit_binary_alloc(image_size, &image_ptr,
1515 sizeof(u32), jit_fill_hole);
1516 if (header == NULL) {
1521 ctx.image = (u32 *)image_ptr;
1523 for (pass = 1; pass < 3; pass++) {
1526 build_prologue(&ctx);
1528 if (build_body(&ctx)) {
1529 bpf_jit_binary_free(header);
1534 build_epilogue(&ctx);
1536 if (bpf_jit_enable > 1)
1537 pr_info("Pass %d: shrink = %d, seen = [%c%c%c%c%c%c%c]\n", pass,
1538 image_size - (ctx.idx * 4),
1539 ctx.tmp_1_used ? '1' : ' ',
1540 ctx.tmp_2_used ? '2' : ' ',
1541 ctx.tmp_3_used ? '3' : ' ',
1542 ctx.saw_ld_abs_ind ? 'L' : ' ',
1543 ctx.saw_frame_pointer ? 'F' : ' ',
1544 ctx.saw_call ? 'C' : ' ',
1545 ctx.saw_tail_call ? 'T' : ' ');
1548 if (bpf_jit_enable > 1)
1549 bpf_jit_dump(prog->len, image_size, pass, ctx.image);
1551 bpf_flush_icache(header, (u8 *)header + (header->pages * PAGE_SIZE));
1553 bpf_jit_binary_lock_ro(header);
1555 prog->bpf_func = (void *)ctx.image;
1562 bpf_jit_prog_release_other(prog, prog == orig_prog ?