2 * Copyright © 2008-2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
30 #include <linux/log2.h>
33 #include <drm/i915_drm.h>
36 #include "i915_gem_render_state.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
40 /* Rough estimate of the typical request size, performing a flush,
41 * set-context and then emitting the batch.
43 #define LEGACY_REQUEST_SIZE 200
45 static unsigned int __intel_ring_space(unsigned int head,
50 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
51 * same cacheline, the Head Pointer must not be greater than the Tail
54 GEM_BUG_ON(!is_power_of_2(size));
55 return (head - tail - CACHELINE_BYTES) & (size - 1);
58 unsigned int intel_ring_update_space(struct intel_ring *ring)
62 space = __intel_ring_space(ring->head, ring->emit, ring->size);
69 gen2_render_ring_flush(struct i915_request *rq, u32 mode)
75 if (mode & EMIT_INVALIDATE)
78 cs = intel_ring_begin(rq, 2);
84 intel_ring_advance(rq, cs);
90 gen4_render_ring_flush(struct i915_request *rq, u32 mode)
97 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
98 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
99 * also flushed at 2d versus 3d pipeline switches.
103 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
104 * MI_READ_FLUSH is set, and is always flushed on 965.
106 * I915_GEM_DOMAIN_COMMAND may not exist?
108 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
109 * invalidated when MI_EXE_FLUSH is set.
111 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
112 * invalidated with every MI_FLUSH.
116 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
117 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
118 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
119 * are flushed at any MI_FLUSH.
123 if (mode & EMIT_INVALIDATE) {
125 if (IS_G4X(rq->i915) || IS_GEN5(rq->i915))
126 cmd |= MI_INVALIDATE_ISP;
129 cs = intel_ring_begin(rq, 2);
135 intel_ring_advance(rq, cs);
141 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
142 * implementing two workarounds on gen6. From section 1.4.7.1
143 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
145 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
146 * produced by non-pipelined state commands), software needs to first
147 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
150 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
151 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
153 * And the workaround for these two requires this workaround first:
155 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
156 * BEFORE the pipe-control with a post-sync op and no write-cache
159 * And this last workaround is tricky because of the requirements on
160 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
163 * "1 of the following must also be set:
164 * - Render Target Cache Flush Enable ([12] of DW1)
165 * - Depth Cache Flush Enable ([0] of DW1)
166 * - Stall at Pixel Scoreboard ([1] of DW1)
167 * - Depth Stall ([13] of DW1)
168 * - Post-Sync Operation ([13] of DW1)
169 * - Notify Enable ([8] of DW1)"
171 * The cache flushes require the workaround flush that triggered this
172 * one, so we can't use it. Depth stall would trigger the same.
173 * Post-sync nonzero is what triggered this second workaround, so we
174 * can't use that one either. Notify enable is IRQs, which aren't
175 * really our business. That leaves only stall at scoreboard.
178 intel_emit_post_sync_nonzero_flush(struct i915_request *rq)
181 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
184 cs = intel_ring_begin(rq, 6);
188 *cs++ = GFX_OP_PIPE_CONTROL(5);
189 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
190 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
191 *cs++ = 0; /* low dword */
192 *cs++ = 0; /* high dword */
194 intel_ring_advance(rq, cs);
196 cs = intel_ring_begin(rq, 6);
200 *cs++ = GFX_OP_PIPE_CONTROL(5);
201 *cs++ = PIPE_CONTROL_QW_WRITE;
202 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
206 intel_ring_advance(rq, cs);
212 gen6_render_ring_flush(struct i915_request *rq, u32 mode)
215 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
219 /* Force SNB workarounds for PIPE_CONTROL flushes */
220 ret = intel_emit_post_sync_nonzero_flush(rq);
224 /* Just flush everything. Experiments have shown that reducing the
225 * number of bits based on the write domains has little performance
228 if (mode & EMIT_FLUSH) {
229 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
230 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
232 * Ensure that any following seqno writes only happen
233 * when the render cache is indeed flushed.
235 flags |= PIPE_CONTROL_CS_STALL;
237 if (mode & EMIT_INVALIDATE) {
238 flags |= PIPE_CONTROL_TLB_INVALIDATE;
239 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
240 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
242 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
243 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
245 * TLB invalidate requires a post-sync write.
247 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
250 cs = intel_ring_begin(rq, 4);
254 *cs++ = GFX_OP_PIPE_CONTROL(4);
256 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
258 intel_ring_advance(rq, cs);
264 gen7_render_ring_cs_stall_wa(struct i915_request *rq)
268 cs = intel_ring_begin(rq, 4);
272 *cs++ = GFX_OP_PIPE_CONTROL(4);
273 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
276 intel_ring_advance(rq, cs);
282 gen7_render_ring_flush(struct i915_request *rq, u32 mode)
285 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
289 * Ensure that any following seqno writes only happen when the render
290 * cache is indeed flushed.
292 * Workaround: 4th PIPE_CONTROL command (except the ones with only
293 * read-cache invalidate bits set) must have the CS_STALL bit set. We
294 * don't try to be clever and just set it unconditionally.
296 flags |= PIPE_CONTROL_CS_STALL;
298 /* Just flush everything. Experiments have shown that reducing the
299 * number of bits based on the write domains has little performance
302 if (mode & EMIT_FLUSH) {
303 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
304 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
305 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
306 flags |= PIPE_CONTROL_FLUSH_ENABLE;
308 if (mode & EMIT_INVALIDATE) {
309 flags |= PIPE_CONTROL_TLB_INVALIDATE;
310 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
311 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
312 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
313 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
314 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
315 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
317 * TLB invalidate requires a post-sync write.
319 flags |= PIPE_CONTROL_QW_WRITE;
320 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
322 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
324 /* Workaround: we must issue a pipe_control with CS-stall bit
325 * set before a pipe_control command that has the state cache
326 * invalidate bit set. */
327 gen7_render_ring_cs_stall_wa(rq);
330 cs = intel_ring_begin(rq, 4);
334 *cs++ = GFX_OP_PIPE_CONTROL(4);
336 *cs++ = scratch_addr;
338 intel_ring_advance(rq, cs);
343 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
345 struct drm_i915_private *dev_priv = engine->i915;
348 addr = dev_priv->status_page_dmah->busaddr;
349 if (INTEL_GEN(dev_priv) >= 4)
350 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
351 I915_WRITE(HWS_PGA, addr);
354 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
356 struct drm_i915_private *dev_priv = engine->i915;
359 /* The ring status page addresses are no longer next to the rest of
360 * the ring registers as of gen7.
362 if (IS_GEN7(dev_priv)) {
363 switch (engine->id) {
365 * No more rings exist on Gen7. Default case is only to shut up
366 * gcc switch check warning.
369 GEM_BUG_ON(engine->id);
371 mmio = RENDER_HWS_PGA_GEN7;
374 mmio = BLT_HWS_PGA_GEN7;
377 mmio = BSD_HWS_PGA_GEN7;
380 mmio = VEBOX_HWS_PGA_GEN7;
383 } else if (IS_GEN6(dev_priv)) {
384 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
386 mmio = RING_HWS_PGA(engine->mmio_base);
389 if (INTEL_GEN(dev_priv) >= 6)
390 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
392 I915_WRITE(mmio, engine->status_page.ggtt_offset);
395 /* Flush the TLB for this page */
396 if (IS_GEN(dev_priv, 6, 7)) {
397 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
399 /* ring should be idle before issuing a sync flush*/
400 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
403 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
405 if (intel_wait_for_register(dev_priv,
406 reg, INSTPM_SYNC_FLUSH, 0,
408 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
413 static bool stop_ring(struct intel_engine_cs *engine)
415 struct drm_i915_private *dev_priv = engine->i915;
417 if (INTEL_GEN(dev_priv) > 2) {
418 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
419 if (intel_wait_for_register(dev_priv,
420 RING_MI_MODE(engine->mmio_base),
424 DRM_ERROR("%s : timed out trying to stop ring\n",
426 /* Sometimes we observe that the idle flag is not
427 * set even though the ring is empty. So double
428 * check before giving up.
430 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
435 I915_WRITE_HEAD(engine, I915_READ_TAIL(engine));
437 I915_WRITE_HEAD(engine, 0);
438 I915_WRITE_TAIL(engine, 0);
440 /* The ring must be empty before it is disabled */
441 I915_WRITE_CTL(engine, 0);
443 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
446 static int init_ring_common(struct intel_engine_cs *engine)
448 struct drm_i915_private *dev_priv = engine->i915;
449 struct intel_ring *ring = engine->buffer;
452 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
454 if (!stop_ring(engine)) {
455 /* G45 ring initialization often fails to reset head to zero */
456 DRM_DEBUG_DRIVER("%s head not reset to zero "
457 "ctl %08x head %08x tail %08x start %08x\n",
459 I915_READ_CTL(engine),
460 I915_READ_HEAD(engine),
461 I915_READ_TAIL(engine),
462 I915_READ_START(engine));
464 if (!stop_ring(engine)) {
465 DRM_ERROR("failed to set %s head to zero "
466 "ctl %08x head %08x tail %08x start %08x\n",
468 I915_READ_CTL(engine),
469 I915_READ_HEAD(engine),
470 I915_READ_TAIL(engine),
471 I915_READ_START(engine));
477 if (HWS_NEEDS_PHYSICAL(dev_priv))
478 ring_setup_phys_status_page(engine);
480 intel_ring_setup_status_page(engine);
482 intel_engine_reset_breadcrumbs(engine);
484 /* Enforce ordering by reading HEAD register back */
485 I915_READ_HEAD(engine);
487 /* Initialize the ring. This must happen _after_ we've cleared the ring
488 * registers with the above sequence (the readback of the HEAD registers
489 * also enforces ordering), otherwise the hw might lose the new ring
490 * register values. */
491 I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
493 /* WaClearRingBufHeadRegAtInit:ctg,elk */
494 if (I915_READ_HEAD(engine))
495 DRM_DEBUG_DRIVER("%s initialization failed [head=%08x], fudging\n",
496 engine->name, I915_READ_HEAD(engine));
498 intel_ring_update_space(ring);
499 I915_WRITE_HEAD(engine, ring->head);
500 I915_WRITE_TAIL(engine, ring->tail);
501 (void)I915_READ_TAIL(engine);
503 I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
505 /* If the head is still not zero, the ring is dead */
506 if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
507 RING_VALID, RING_VALID,
509 DRM_ERROR("%s initialization failed "
510 "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
512 I915_READ_CTL(engine),
513 I915_READ_CTL(engine) & RING_VALID,
514 I915_READ_HEAD(engine), ring->head,
515 I915_READ_TAIL(engine), ring->tail,
516 I915_READ_START(engine),
517 i915_ggtt_offset(ring->vma));
522 intel_engine_init_hangcheck(engine);
524 if (INTEL_GEN(dev_priv) > 2)
525 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
528 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
533 static void reset_ring_common(struct intel_engine_cs *engine,
534 struct i915_request *request)
537 * RC6 must be prevented until the reset is complete and the engine
538 * reinitialised. If it occurs in the middle of this sequence, the
539 * state written to/loaded from the power context is ill-defined (e.g.
540 * the PP_BASE_DIR may be lost).
542 assert_forcewakes_active(engine->i915, FORCEWAKE_ALL);
545 * Try to restore the logical GPU state to match the continuation
546 * of the request queue. If we skip the context/PD restore, then
547 * the next request may try to execute assuming that its context
548 * is valid and loaded on the GPU and so may try to access invalid
549 * memory, prompting repeated GPU hangs.
551 * If the request was guilty, we still restore the logical state
552 * in case the next request requires it (e.g. the aliasing ppgtt),
553 * but skip over the hung batch.
555 * If the request was innocent, we try to replay the request with
556 * the restored context.
559 struct drm_i915_private *dev_priv = request->i915;
560 struct intel_context *ce = &request->ctx->engine[engine->id];
561 struct i915_hw_ppgtt *ppgtt;
565 i915_ggtt_offset(ce->state) |
566 BIT(8) /* must be set! */ |
567 CCID_EXTENDED_STATE_SAVE |
568 CCID_EXTENDED_STATE_RESTORE |
572 ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
574 u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;
576 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
577 I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);
579 /* Wait for the PD reload to complete */
580 if (intel_wait_for_register(dev_priv,
581 RING_PP_DIR_BASE(engine),
584 DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
586 ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
589 /* If the rq hung, jump to its breadcrumb and skip the batch */
590 if (request->fence.error == -EIO)
591 request->ring->head = request->postfix;
593 engine->legacy_active_context = NULL;
594 engine->legacy_active_ppgtt = NULL;
598 static int intel_rcs_ctx_init(struct i915_request *rq)
602 ret = intel_ring_workarounds_emit(rq);
606 ret = i915_gem_render_state_emit(rq);
613 static int init_render_ring(struct intel_engine_cs *engine)
615 struct drm_i915_private *dev_priv = engine->i915;
616 int ret = init_ring_common(engine);
620 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
621 if (IS_GEN(dev_priv, 4, 6))
622 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
624 /* We need to disable the AsyncFlip performance optimisations in order
625 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
626 * programmed to '1' on all products.
628 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
630 if (IS_GEN(dev_priv, 6, 7))
631 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
633 /* Required for the hardware to program scanline values for waiting */
634 /* WaEnableFlushTlbInvalidationMode:snb */
635 if (IS_GEN6(dev_priv))
637 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
639 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
640 if (IS_GEN7(dev_priv))
641 I915_WRITE(GFX_MODE_GEN7,
642 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
643 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
645 if (IS_GEN6(dev_priv)) {
646 /* From the Sandybridge PRM, volume 1 part 3, page 24:
647 * "If this bit is set, STCunit will have LRA as replacement
648 * policy. [...] This bit must be reset. LRA replacement
649 * policy is not supported."
651 I915_WRITE(CACHE_MODE_0,
652 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
655 if (IS_GEN(dev_priv, 6, 7))
656 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
658 if (INTEL_GEN(dev_priv) >= 6)
659 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
661 return init_workarounds_ring(engine);
664 static u32 *gen6_signal(struct i915_request *rq, u32 *cs)
666 struct drm_i915_private *dev_priv = rq->i915;
667 struct intel_engine_cs *engine;
668 enum intel_engine_id id;
671 for_each_engine(engine, dev_priv, id) {
674 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
677 mbox_reg = rq->engine->semaphore.mbox.signal[engine->hw_id];
678 if (i915_mmio_reg_valid(mbox_reg)) {
679 *cs++ = MI_LOAD_REGISTER_IMM(1);
680 *cs++ = i915_mmio_reg_offset(mbox_reg);
681 *cs++ = rq->global_seqno;
691 static void cancel_requests(struct intel_engine_cs *engine)
693 struct i915_request *request;
696 spin_lock_irqsave(&engine->timeline->lock, flags);
698 /* Mark all submitted requests as skipped. */
699 list_for_each_entry(request, &engine->timeline->requests, link) {
700 GEM_BUG_ON(!request->global_seqno);
701 if (!i915_request_completed(request))
702 dma_fence_set_error(&request->fence, -EIO);
704 /* Remaining _unready_ requests will be nop'ed when submitted */
706 spin_unlock_irqrestore(&engine->timeline->lock, flags);
709 static void i9xx_submit_request(struct i915_request *request)
711 struct drm_i915_private *dev_priv = request->i915;
713 i915_request_submit(request);
715 I915_WRITE_TAIL(request->engine,
716 intel_ring_set_tail(request->ring, request->tail));
719 static void i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
721 *cs++ = MI_STORE_DWORD_INDEX;
722 *cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
723 *cs++ = rq->global_seqno;
724 *cs++ = MI_USER_INTERRUPT;
726 rq->tail = intel_ring_offset(rq, cs);
727 assert_ring_tail_valid(rq->ring, rq->tail);
730 static const int i9xx_emit_breadcrumb_sz = 4;
732 static void gen6_sema_emit_breadcrumb(struct i915_request *rq, u32 *cs)
734 return i9xx_emit_breadcrumb(rq, rq->engine->semaphore.signal(rq, cs));
738 gen6_ring_sync_to(struct i915_request *rq, struct i915_request *signal)
740 u32 dw1 = MI_SEMAPHORE_MBOX |
741 MI_SEMAPHORE_COMPARE |
742 MI_SEMAPHORE_REGISTER;
743 u32 wait_mbox = signal->engine->semaphore.mbox.wait[rq->engine->hw_id];
746 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
748 cs = intel_ring_begin(rq, 4);
752 *cs++ = dw1 | wait_mbox;
753 /* Throughout all of the GEM code, seqno passed implies our current
754 * seqno is >= the last seqno executed. However for hardware the
755 * comparison is strictly greater than.
757 *cs++ = signal->global_seqno - 1;
760 intel_ring_advance(rq, cs);
766 gen5_seqno_barrier(struct intel_engine_cs *engine)
768 /* MI_STORE are internally buffered by the GPU and not flushed
769 * either by MI_FLUSH or SyncFlush or any other combination of
772 * "Only the submission of the store operation is guaranteed.
773 * The write result will be complete (coherent) some time later
774 * (this is practically a finite period but there is no guaranteed
777 * Empirically, we observe that we need a delay of at least 75us to
778 * be sure that the seqno write is visible by the CPU.
780 usleep_range(125, 250);
784 gen6_seqno_barrier(struct intel_engine_cs *engine)
786 struct drm_i915_private *dev_priv = engine->i915;
788 /* Workaround to force correct ordering between irq and seqno writes on
789 * ivb (and maybe also on snb) by reading from a CS register (like
790 * ACTHD) before reading the status page.
792 * Note that this effectively stalls the read by the time it takes to
793 * do a memory transaction, which more or less ensures that the write
794 * from the GPU has sufficient time to invalidate the CPU cacheline.
795 * Alternatively we could delay the interrupt from the CS ring to give
796 * the write time to land, but that would incur a delay after every
797 * batch i.e. much more frequent than a delay when waiting for the
798 * interrupt (with the same net latency).
800 * Also note that to prevent whole machine hangs on gen7, we have to
801 * take the spinlock to guard against concurrent cacheline access.
803 spin_lock_irq(&dev_priv->uncore.lock);
804 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
805 spin_unlock_irq(&dev_priv->uncore.lock);
809 gen5_irq_enable(struct intel_engine_cs *engine)
811 gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
815 gen5_irq_disable(struct intel_engine_cs *engine)
817 gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
821 i9xx_irq_enable(struct intel_engine_cs *engine)
823 struct drm_i915_private *dev_priv = engine->i915;
825 dev_priv->irq_mask &= ~engine->irq_enable_mask;
826 I915_WRITE(IMR, dev_priv->irq_mask);
827 POSTING_READ_FW(RING_IMR(engine->mmio_base));
831 i9xx_irq_disable(struct intel_engine_cs *engine)
833 struct drm_i915_private *dev_priv = engine->i915;
835 dev_priv->irq_mask |= engine->irq_enable_mask;
836 I915_WRITE(IMR, dev_priv->irq_mask);
840 i8xx_irq_enable(struct intel_engine_cs *engine)
842 struct drm_i915_private *dev_priv = engine->i915;
844 dev_priv->irq_mask &= ~engine->irq_enable_mask;
845 I915_WRITE16(IMR, dev_priv->irq_mask);
846 POSTING_READ16(RING_IMR(engine->mmio_base));
850 i8xx_irq_disable(struct intel_engine_cs *engine)
852 struct drm_i915_private *dev_priv = engine->i915;
854 dev_priv->irq_mask |= engine->irq_enable_mask;
855 I915_WRITE16(IMR, dev_priv->irq_mask);
859 bsd_ring_flush(struct i915_request *rq, u32 mode)
863 cs = intel_ring_begin(rq, 2);
869 intel_ring_advance(rq, cs);
874 gen6_irq_enable(struct intel_engine_cs *engine)
876 struct drm_i915_private *dev_priv = engine->i915;
878 I915_WRITE_IMR(engine,
879 ~(engine->irq_enable_mask |
880 engine->irq_keep_mask));
881 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
885 gen6_irq_disable(struct intel_engine_cs *engine)
887 struct drm_i915_private *dev_priv = engine->i915;
889 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
890 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
894 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
896 struct drm_i915_private *dev_priv = engine->i915;
898 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
899 gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
903 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
905 struct drm_i915_private *dev_priv = engine->i915;
907 I915_WRITE_IMR(engine, ~0);
908 gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
912 i965_emit_bb_start(struct i915_request *rq,
913 u64 offset, u32 length,
914 unsigned int dispatch_flags)
918 cs = intel_ring_begin(rq, 2);
922 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
923 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
925 intel_ring_advance(rq, cs);
930 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
931 #define I830_BATCH_LIMIT (256*1024)
932 #define I830_TLB_ENTRIES (2)
933 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
935 i830_emit_bb_start(struct i915_request *rq,
937 unsigned int dispatch_flags)
939 u32 *cs, cs_offset = i915_ggtt_offset(rq->engine->scratch);
941 cs = intel_ring_begin(rq, 6);
945 /* Evict the invalid PTE TLBs */
946 *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
947 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
948 *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
952 intel_ring_advance(rq, cs);
954 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
955 if (len > I830_BATCH_LIMIT)
958 cs = intel_ring_begin(rq, 6 + 2);
962 /* Blit the batch (which has now all relocs applied) to the
963 * stable batch scratch bo area (so that the CS never
964 * stumbles over its tlb invalidation bug) ...
966 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
967 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
968 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
975 intel_ring_advance(rq, cs);
977 /* ... and execute it. */
981 cs = intel_ring_begin(rq, 2);
985 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
986 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
987 MI_BATCH_NON_SECURE);
988 intel_ring_advance(rq, cs);
994 i915_emit_bb_start(struct i915_request *rq,
996 unsigned int dispatch_flags)
1000 cs = intel_ring_begin(rq, 2);
1004 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1005 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1006 MI_BATCH_NON_SECURE);
1007 intel_ring_advance(rq, cs);
1014 int intel_ring_pin(struct intel_ring *ring,
1015 struct drm_i915_private *i915,
1016 unsigned int offset_bias)
1018 enum i915_map_type map = HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
1019 struct i915_vma *vma = ring->vma;
1024 GEM_BUG_ON(ring->vaddr);
1029 flags |= PIN_OFFSET_BIAS | offset_bias;
1030 if (vma->obj->stolen)
1031 flags |= PIN_MAPPABLE;
1033 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1034 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1035 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1037 ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1042 ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1046 if (i915_vma_is_map_and_fenceable(vma))
1047 addr = (void __force *)i915_vma_pin_iomap(vma);
1049 addr = i915_gem_object_pin_map(vma->obj, map);
1053 vma->obj->pin_global++;
1059 i915_vma_unpin(vma);
1060 return PTR_ERR(addr);
1063 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1065 GEM_BUG_ON(!list_empty(&ring->request_list));
1069 intel_ring_update_space(ring);
1072 void intel_ring_unpin(struct intel_ring *ring)
1074 GEM_BUG_ON(!ring->vma);
1075 GEM_BUG_ON(!ring->vaddr);
1077 /* Discard any unused bytes beyond that submitted to hw. */
1078 intel_ring_reset(ring, ring->tail);
1080 if (i915_vma_is_map_and_fenceable(ring->vma))
1081 i915_vma_unpin_iomap(ring->vma);
1083 i915_gem_object_unpin_map(ring->vma->obj);
1086 ring->vma->obj->pin_global--;
1087 i915_vma_unpin(ring->vma);
1090 static struct i915_vma *
1091 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1093 struct drm_i915_gem_object *obj;
1094 struct i915_vma *vma;
1096 obj = i915_gem_object_create_stolen(dev_priv, size);
1098 obj = i915_gem_object_create_internal(dev_priv, size);
1100 return ERR_CAST(obj);
1102 /* mark ring buffers as read-only from GPU side by default */
1105 vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1112 i915_gem_object_put(obj);
1117 intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1119 struct intel_ring *ring;
1120 struct i915_vma *vma;
1122 GEM_BUG_ON(!is_power_of_2(size));
1123 GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1125 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1127 return ERR_PTR(-ENOMEM);
1129 INIT_LIST_HEAD(&ring->request_list);
1132 /* Workaround an erratum on the i830 which causes a hang if
1133 * the TAIL pointer points to within the last 2 cachelines
1136 ring->effective_size = size;
1137 if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1138 ring->effective_size -= 2 * CACHELINE_BYTES;
1140 intel_ring_update_space(ring);
1142 vma = intel_ring_create_vma(engine->i915, size);
1145 return ERR_CAST(vma);
1153 intel_ring_free(struct intel_ring *ring)
1155 struct drm_i915_gem_object *obj = ring->vma->obj;
1157 i915_vma_close(ring->vma);
1158 __i915_gem_object_release_unless_active(obj);
1163 static int context_pin(struct i915_gem_context *ctx)
1165 struct i915_vma *vma = ctx->engine[RCS].state;
1169 * Clear this page out of any CPU caches for coherent swap-in/out.
1170 * We only want to do this on the first bind so that we do not stall
1171 * on an active context (which by nature is already on the GPU).
1173 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1174 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1179 return i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
1180 PIN_GLOBAL | PIN_HIGH);
1183 static struct i915_vma *
1184 alloc_context_vma(struct intel_engine_cs *engine)
1186 struct drm_i915_private *i915 = engine->i915;
1187 struct drm_i915_gem_object *obj;
1188 struct i915_vma *vma;
1191 obj = i915_gem_object_create(i915, engine->context_size);
1193 return ERR_CAST(obj);
1195 if (engine->default_state) {
1196 void *defaults, *vaddr;
1198 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1199 if (IS_ERR(vaddr)) {
1200 err = PTR_ERR(vaddr);
1204 defaults = i915_gem_object_pin_map(engine->default_state,
1206 if (IS_ERR(defaults)) {
1207 err = PTR_ERR(defaults);
1211 memcpy(vaddr, defaults, engine->context_size);
1213 i915_gem_object_unpin_map(engine->default_state);
1214 i915_gem_object_unpin_map(obj);
1218 * Try to make the context utilize L3 as well as LLC.
1220 * On VLV we don't have L3 controls in the PTEs so we
1221 * shouldn't touch the cache level, especially as that
1222 * would make the object snooped which might have a
1223 * negative performance impact.
1225 * Snooping is required on non-llc platforms in execlist
1226 * mode, but since all GGTT accesses use PAT entry 0 we
1227 * get snooping anyway regardless of cache_level.
1229 * This is only applicable for Ivy Bridge devices since
1230 * later platforms don't have L3 control bits in the PTE.
1232 if (IS_IVYBRIDGE(i915)) {
1233 /* Ignore any error, regard it as a simple optimisation */
1234 i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
1237 vma = i915_vma_instance(obj, &i915->ggtt.base, NULL);
1246 i915_gem_object_unpin_map(obj);
1248 i915_gem_object_put(obj);
1249 return ERR_PTR(err);
1252 static struct intel_ring *
1253 intel_ring_context_pin(struct intel_engine_cs *engine,
1254 struct i915_gem_context *ctx)
1256 struct intel_context *ce = &ctx->engine[engine->id];
1259 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1261 if (likely(ce->pin_count++))
1263 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1265 if (!ce->state && engine->context_size) {
1266 struct i915_vma *vma;
1268 vma = alloc_context_vma(engine);
1278 ret = context_pin(ctx);
1282 ce->state->obj->pin_global++;
1285 i915_gem_context_get(ctx);
1288 /* One ringbuffer to rule them all */
1289 return engine->buffer;
1293 return ERR_PTR(ret);
1296 static void intel_ring_context_unpin(struct intel_engine_cs *engine,
1297 struct i915_gem_context *ctx)
1299 struct intel_context *ce = &ctx->engine[engine->id];
1301 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1302 GEM_BUG_ON(ce->pin_count == 0);
1304 if (--ce->pin_count)
1308 ce->state->obj->pin_global--;
1309 i915_vma_unpin(ce->state);
1312 i915_gem_context_put(ctx);
1315 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1317 struct intel_ring *ring;
1320 intel_engine_setup_common(engine);
1322 err = intel_engine_init_common(engine);
1326 ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
1328 err = PTR_ERR(ring);
1332 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1333 err = intel_ring_pin(ring, engine->i915, I915_GTT_PAGE_SIZE);
1337 GEM_BUG_ON(engine->buffer);
1338 engine->buffer = ring;
1343 intel_ring_free(ring);
1345 intel_engine_cleanup_common(engine);
1349 void intel_engine_cleanup(struct intel_engine_cs *engine)
1351 struct drm_i915_private *dev_priv = engine->i915;
1353 WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1354 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
1356 intel_ring_unpin(engine->buffer);
1357 intel_ring_free(engine->buffer);
1359 if (engine->cleanup)
1360 engine->cleanup(engine);
1362 intel_engine_cleanup_common(engine);
1364 dev_priv->engine[engine->id] = NULL;
1368 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1370 struct intel_engine_cs *engine;
1371 enum intel_engine_id id;
1373 /* Restart from the beginning of the rings for convenience */
1374 for_each_engine(engine, dev_priv, id)
1375 intel_ring_reset(engine->buffer, 0);
1378 static inline int mi_set_context(struct i915_request *rq, u32 flags)
1380 struct drm_i915_private *i915 = rq->i915;
1381 struct intel_engine_cs *engine = rq->engine;
1382 enum intel_engine_id id;
1383 const int num_rings =
1384 /* Use an extended w/a on gen7 if signalling from other rings */
1385 (HAS_LEGACY_SEMAPHORES(i915) && IS_GEN7(i915)) ?
1386 INTEL_INFO(i915)->num_rings - 1 :
1391 flags |= MI_MM_SPACE_GTT;
1392 if (IS_HASWELL(i915))
1393 /* These flags are for resource streamer on HSW+ */
1394 flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
1396 flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;
1400 len += 2 + (num_rings ? 4*num_rings + 6 : 0);
1402 cs = intel_ring_begin(rq, len);
1406 /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1407 if (IS_GEN7(i915)) {
1408 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1410 struct intel_engine_cs *signaller;
1412 *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1413 for_each_engine(signaller, i915, id) {
1414 if (signaller == engine)
1417 *cs++ = i915_mmio_reg_offset(
1418 RING_PSMI_CTL(signaller->mmio_base));
1419 *cs++ = _MASKED_BIT_ENABLE(
1420 GEN6_PSMI_SLEEP_MSG_DISABLE);
1426 *cs++ = MI_SET_CONTEXT;
1427 *cs++ = i915_ggtt_offset(rq->ctx->engine[RCS].state) | flags;
1429 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1430 * WaMiSetContext_Hang:snb,ivb,vlv
1434 if (IS_GEN7(i915)) {
1436 struct intel_engine_cs *signaller;
1437 i915_reg_t last_reg = {}; /* keep gcc quiet */
1439 *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1440 for_each_engine(signaller, i915, id) {
1441 if (signaller == engine)
1444 last_reg = RING_PSMI_CTL(signaller->mmio_base);
1445 *cs++ = i915_mmio_reg_offset(last_reg);
1446 *cs++ = _MASKED_BIT_DISABLE(
1447 GEN6_PSMI_SLEEP_MSG_DISABLE);
1450 /* Insert a delay before the next switch! */
1451 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1452 *cs++ = i915_mmio_reg_offset(last_reg);
1453 *cs++ = i915_ggtt_offset(engine->scratch);
1456 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1459 intel_ring_advance(rq, cs);
1464 static int remap_l3(struct i915_request *rq, int slice)
1466 u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1472 cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1477 * Note: We do not worry about the concurrent register cacheline hang
1478 * here because no other code should access these registers other than
1479 * at initialization time.
1481 *cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1482 for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1483 *cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1484 *cs++ = remap_info[i];
1487 intel_ring_advance(rq, cs);
1492 static int switch_context(struct i915_request *rq)
1494 struct intel_engine_cs *engine = rq->engine;
1495 struct i915_gem_context *to_ctx = rq->ctx;
1496 struct i915_hw_ppgtt *to_mm =
1497 to_ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
1498 struct i915_gem_context *from_ctx = engine->legacy_active_context;
1499 struct i915_hw_ppgtt *from_mm = engine->legacy_active_ppgtt;
1503 lockdep_assert_held(&rq->i915->drm.struct_mutex);
1504 GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1506 if (to_mm != from_mm ||
1507 (to_mm && intel_engine_flag(engine) & to_mm->pd_dirty_rings)) {
1508 trace_switch_mm(engine, to_ctx);
1509 ret = to_mm->switch_mm(to_mm, rq);
1513 to_mm->pd_dirty_rings &= ~intel_engine_flag(engine);
1514 engine->legacy_active_ppgtt = to_mm;
1515 hw_flags = MI_FORCE_RESTORE;
1518 if (to_ctx->engine[engine->id].state &&
1519 (to_ctx != from_ctx || hw_flags & MI_FORCE_RESTORE)) {
1520 GEM_BUG_ON(engine->id != RCS);
1523 * The kernel context(s) is treated as pure scratch and is not
1524 * expected to retain any state (as we sacrifice it during
1525 * suspend and on resume it may be corrupted). This is ok,
1526 * as nothing actually executes using the kernel context; it
1527 * is purely used for flushing user contexts.
1529 if (i915_gem_context_is_kernel(to_ctx))
1530 hw_flags = MI_RESTORE_INHIBIT;
1532 ret = mi_set_context(rq, hw_flags);
1536 engine->legacy_active_context = to_ctx;
1539 if (to_ctx->remap_slice) {
1540 for (i = 0; i < MAX_L3_SLICES; i++) {
1541 if (!(to_ctx->remap_slice & BIT(i)))
1544 ret = remap_l3(rq, i);
1549 to_ctx->remap_slice = 0;
1555 engine->legacy_active_context = from_ctx;
1557 engine->legacy_active_ppgtt = from_mm;
1562 static int ring_request_alloc(struct i915_request *request)
1566 GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);
1568 /* Flush enough space to reduce the likelihood of waiting after
1569 * we start building the request - in which case we will just
1570 * have to repeat work.
1572 request->reserved_space += LEGACY_REQUEST_SIZE;
1574 ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1578 ret = switch_context(request);
1582 request->reserved_space -= LEGACY_REQUEST_SIZE;
1586 static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1588 struct i915_request *target;
1591 lockdep_assert_held(&ring->vma->vm->i915->drm.struct_mutex);
1593 if (intel_ring_update_space(ring) >= bytes)
1596 list_for_each_entry(target, &ring->request_list, ring_link) {
1597 /* Would completion of this request free enough space? */
1598 if (bytes <= __intel_ring_space(target->postfix,
1599 ring->emit, ring->size))
1603 if (WARN_ON(&target->ring_link == &ring->request_list))
1606 timeout = i915_request_wait(target,
1607 I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1608 MAX_SCHEDULE_TIMEOUT);
1612 i915_request_retire_upto(target);
1614 intel_ring_update_space(ring);
1615 GEM_BUG_ON(ring->space < bytes);
1619 int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes)
1621 GEM_BUG_ON(bytes > ring->effective_size);
1622 if (unlikely(bytes > ring->effective_size - ring->emit))
1623 bytes += ring->size - ring->emit;
1625 if (unlikely(bytes > ring->space)) {
1626 int ret = wait_for_space(ring, bytes);
1631 GEM_BUG_ON(ring->space < bytes);
1635 u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
1637 struct intel_ring *ring = rq->ring;
1638 const unsigned int remain_usable = ring->effective_size - ring->emit;
1639 const unsigned int bytes = num_dwords * sizeof(u32);
1640 unsigned int need_wrap = 0;
1641 unsigned int total_bytes;
1644 /* Packets must be qword aligned. */
1645 GEM_BUG_ON(num_dwords & 1);
1647 total_bytes = bytes + rq->reserved_space;
1648 GEM_BUG_ON(total_bytes > ring->effective_size);
1650 if (unlikely(total_bytes > remain_usable)) {
1651 const int remain_actual = ring->size - ring->emit;
1653 if (bytes > remain_usable) {
1655 * Not enough space for the basic request. So need to
1656 * flush out the remainder and then wait for
1659 total_bytes += remain_actual;
1660 need_wrap = remain_actual | 1;
1663 * The base request will fit but the reserved space
1664 * falls off the end. So we don't need an immediate
1665 * wrap and only need to effectively wait for the
1666 * reserved size from the start of ringbuffer.
1668 total_bytes = rq->reserved_space + remain_actual;
1672 if (unlikely(total_bytes > ring->space)) {
1676 * Space is reserved in the ringbuffer for finalising the
1677 * request, as that cannot be allowed to fail. During request
1678 * finalisation, reserved_space is set to 0 to stop the
1679 * overallocation and the assumption is that then we never need
1680 * to wait (which has the risk of failing with EINTR).
1682 * See also i915_request_alloc() and i915_request_add().
1684 GEM_BUG_ON(!rq->reserved_space);
1686 ret = wait_for_space(ring, total_bytes);
1688 return ERR_PTR(ret);
1691 if (unlikely(need_wrap)) {
1693 GEM_BUG_ON(need_wrap > ring->space);
1694 GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1696 /* Fill the tail with MI_NOOP */
1697 memset(ring->vaddr + ring->emit, 0, need_wrap);
1699 ring->space -= need_wrap;
1702 GEM_BUG_ON(ring->emit > ring->size - bytes);
1703 GEM_BUG_ON(ring->space < bytes);
1704 cs = ring->vaddr + ring->emit;
1705 GEM_DEBUG_EXEC(memset(cs, POISON_INUSE, bytes));
1706 ring->emit += bytes;
1707 ring->space -= bytes;
1712 /* Align the ring tail to a cacheline boundary */
1713 int intel_ring_cacheline_align(struct i915_request *rq)
1715 int num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
1718 if (num_dwords == 0)
1721 num_dwords = CACHELINE_BYTES / sizeof(u32) - num_dwords;
1722 cs = intel_ring_begin(rq, num_dwords);
1726 while (num_dwords--)
1729 intel_ring_advance(rq, cs);
1734 static void gen6_bsd_submit_request(struct i915_request *request)
1736 struct drm_i915_private *dev_priv = request->i915;
1738 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1740 /* Every tail move must follow the sequence below */
1742 /* Disable notification that the ring is IDLE. The GT
1743 * will then assume that it is busy and bring it out of rc6.
1745 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1746 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1748 /* Clear the context id. Here be magic! */
1749 I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1751 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1752 if (__intel_wait_for_register_fw(dev_priv,
1753 GEN6_BSD_SLEEP_PSMI_CONTROL,
1754 GEN6_BSD_SLEEP_INDICATOR,
1757 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1759 /* Now that the ring is fully powered up, update the tail */
1760 i9xx_submit_request(request);
1762 /* Let the ring send IDLE messages to the GT again,
1763 * and so let it sleep to conserve power when idle.
1765 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1766 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1768 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1771 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
1775 cs = intel_ring_begin(rq, 4);
1781 /* We always require a command barrier so that subsequent
1782 * commands, such as breadcrumb interrupts, are strictly ordered
1783 * wrt the contents of the write cache being flushed to memory
1784 * (and thus being coherent from the CPU).
1786 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1789 * Bspec vol 1c.5 - video engine command streamer:
1790 * "If ENABLED, all TLBs will be invalidated once the flush
1791 * operation is complete. This bit is only valid when the
1792 * Post-Sync Operation field is a value of 1h or 3h."
1794 if (mode & EMIT_INVALIDATE)
1795 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1798 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1801 intel_ring_advance(rq, cs);
1806 hsw_emit_bb_start(struct i915_request *rq,
1807 u64 offset, u32 len,
1808 unsigned int dispatch_flags)
1812 cs = intel_ring_begin(rq, 2);
1816 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1817 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
1818 (dispatch_flags & I915_DISPATCH_RS ?
1819 MI_BATCH_RESOURCE_STREAMER : 0);
1820 /* bit0-7 is the length on GEN6+ */
1822 intel_ring_advance(rq, cs);
1828 gen6_emit_bb_start(struct i915_request *rq,
1829 u64 offset, u32 len,
1830 unsigned int dispatch_flags)
1834 cs = intel_ring_begin(rq, 2);
1838 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1839 0 : MI_BATCH_NON_SECURE_I965);
1840 /* bit0-7 is the length on GEN6+ */
1842 intel_ring_advance(rq, cs);
1847 /* Blitter support (SandyBridge+) */
1849 static int gen6_ring_flush(struct i915_request *rq, u32 mode)
1853 cs = intel_ring_begin(rq, 4);
1859 /* We always require a command barrier so that subsequent
1860 * commands, such as breadcrumb interrupts, are strictly ordered
1861 * wrt the contents of the write cache being flushed to memory
1862 * (and thus being coherent from the CPU).
1864 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1867 * Bspec vol 1c.3 - blitter engine command streamer:
1868 * "If ENABLED, all TLBs will be invalidated once the flush
1869 * operation is complete. This bit is only valid when the
1870 * Post-Sync Operation field is a value of 1h or 3h."
1872 if (mode & EMIT_INVALIDATE)
1873 cmd |= MI_INVALIDATE_TLB;
1875 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1878 intel_ring_advance(rq, cs);
1883 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
1884 struct intel_engine_cs *engine)
1888 if (!HAS_LEGACY_SEMAPHORES(dev_priv))
1891 GEM_BUG_ON(INTEL_GEN(dev_priv) < 6);
1892 engine->semaphore.sync_to = gen6_ring_sync_to;
1893 engine->semaphore.signal = gen6_signal;
1896 * The current semaphore is only applied on pre-gen8
1897 * platform. And there is no VCS2 ring on the pre-gen8
1898 * platform. So the semaphore between RCS and VCS2 is
1899 * initialized as INVALID.
1901 for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
1902 static const struct {
1904 i915_reg_t mbox_reg;
1905 } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
1907 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
1908 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
1909 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
1912 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
1913 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
1914 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
1917 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
1918 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
1919 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
1922 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
1923 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
1924 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
1928 i915_reg_t mbox_reg;
1930 if (i == engine->hw_id) {
1931 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
1932 mbox_reg = GEN6_NOSYNC;
1934 wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
1935 mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
1938 engine->semaphore.mbox.wait[i] = wait_mbox;
1939 engine->semaphore.mbox.signal[i] = mbox_reg;
1943 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
1944 struct intel_engine_cs *engine)
1946 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
1948 if (INTEL_GEN(dev_priv) >= 6) {
1949 engine->irq_enable = gen6_irq_enable;
1950 engine->irq_disable = gen6_irq_disable;
1951 engine->irq_seqno_barrier = gen6_seqno_barrier;
1952 } else if (INTEL_GEN(dev_priv) >= 5) {
1953 engine->irq_enable = gen5_irq_enable;
1954 engine->irq_disable = gen5_irq_disable;
1955 engine->irq_seqno_barrier = gen5_seqno_barrier;
1956 } else if (INTEL_GEN(dev_priv) >= 3) {
1957 engine->irq_enable = i9xx_irq_enable;
1958 engine->irq_disable = i9xx_irq_disable;
1960 engine->irq_enable = i8xx_irq_enable;
1961 engine->irq_disable = i8xx_irq_disable;
1965 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
1967 engine->submit_request = i9xx_submit_request;
1968 engine->cancel_requests = cancel_requests;
1970 engine->park = NULL;
1971 engine->unpark = NULL;
1974 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
1976 i9xx_set_default_submission(engine);
1977 engine->submit_request = gen6_bsd_submit_request;
1980 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
1981 struct intel_engine_cs *engine)
1983 /* gen8+ are only supported with execlists */
1984 GEM_BUG_ON(INTEL_GEN(dev_priv) >= 8);
1986 intel_ring_init_irq(dev_priv, engine);
1987 intel_ring_init_semaphores(dev_priv, engine);
1989 engine->init_hw = init_ring_common;
1990 engine->reset_hw = reset_ring_common;
1992 engine->context_pin = intel_ring_context_pin;
1993 engine->context_unpin = intel_ring_context_unpin;
1995 engine->request_alloc = ring_request_alloc;
1997 engine->emit_breadcrumb = i9xx_emit_breadcrumb;
1998 engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
1999 if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
2002 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2004 num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2005 engine->emit_breadcrumb_sz += num_rings * 3;
2007 engine->emit_breadcrumb_sz++;
2010 engine->set_default_submission = i9xx_set_default_submission;
2012 if (INTEL_GEN(dev_priv) >= 6)
2013 engine->emit_bb_start = gen6_emit_bb_start;
2014 else if (INTEL_GEN(dev_priv) >= 4)
2015 engine->emit_bb_start = i965_emit_bb_start;
2016 else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2017 engine->emit_bb_start = i830_emit_bb_start;
2019 engine->emit_bb_start = i915_emit_bb_start;
2022 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2024 struct drm_i915_private *dev_priv = engine->i915;
2027 intel_ring_default_vfuncs(dev_priv, engine);
2029 if (HAS_L3_DPF(dev_priv))
2030 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2032 if (INTEL_GEN(dev_priv) >= 6) {
2033 engine->init_context = intel_rcs_ctx_init;
2034 engine->emit_flush = gen7_render_ring_flush;
2035 if (IS_GEN6(dev_priv))
2036 engine->emit_flush = gen6_render_ring_flush;
2037 } else if (IS_GEN5(dev_priv)) {
2038 engine->emit_flush = gen4_render_ring_flush;
2040 if (INTEL_GEN(dev_priv) < 4)
2041 engine->emit_flush = gen2_render_ring_flush;
2043 engine->emit_flush = gen4_render_ring_flush;
2044 engine->irq_enable_mask = I915_USER_INTERRUPT;
2047 if (IS_HASWELL(dev_priv))
2048 engine->emit_bb_start = hsw_emit_bb_start;
2050 engine->init_hw = init_render_ring;
2052 ret = intel_init_ring_buffer(engine);
2056 if (INTEL_GEN(dev_priv) >= 6) {
2057 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2060 } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2061 ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2069 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2071 struct drm_i915_private *dev_priv = engine->i915;
2073 intel_ring_default_vfuncs(dev_priv, engine);
2075 if (INTEL_GEN(dev_priv) >= 6) {
2076 /* gen6 bsd needs a special wa for tail updates */
2077 if (IS_GEN6(dev_priv))
2078 engine->set_default_submission = gen6_bsd_set_default_submission;
2079 engine->emit_flush = gen6_bsd_ring_flush;
2080 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2082 engine->mmio_base = BSD_RING_BASE;
2083 engine->emit_flush = bsd_ring_flush;
2084 if (IS_GEN5(dev_priv))
2085 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2087 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2090 return intel_init_ring_buffer(engine);
2093 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2095 struct drm_i915_private *dev_priv = engine->i915;
2097 intel_ring_default_vfuncs(dev_priv, engine);
2099 engine->emit_flush = gen6_ring_flush;
2100 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2102 return intel_init_ring_buffer(engine);
2105 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2107 struct drm_i915_private *dev_priv = engine->i915;
2109 intel_ring_default_vfuncs(dev_priv, engine);
2111 engine->emit_flush = gen6_ring_flush;
2112 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2113 engine->irq_enable = hsw_vebox_irq_enable;
2114 engine->irq_disable = hsw_vebox_irq_disable;
2116 return intel_init_ring_buffer(engine);