]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
Merge tag 'pstore-v4.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <[email protected]>
25  *    Zou Nan hai <[email protected]>
26  *    Xiang Hai hao<[email protected]>
27  *
28  */
29
30 #include <linux/log2.h>
31
32 #include <drm/drmP.h>
33 #include <drm/i915_drm.h>
34
35 #include "i915_drv.h"
36 #include "i915_gem_render_state.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /* Rough estimate of the typical request size, performing a flush,
41  * set-context and then emitting the batch.
42  */
43 #define LEGACY_REQUEST_SIZE 200
44
45 static unsigned int __intel_ring_space(unsigned int head,
46                                        unsigned int tail,
47                                        unsigned int size)
48 {
49         /*
50          * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
51          * same cacheline, the Head Pointer must not be greater than the Tail
52          * Pointer."
53          */
54         GEM_BUG_ON(!is_power_of_2(size));
55         return (head - tail - CACHELINE_BYTES) & (size - 1);
56 }
57
58 unsigned int intel_ring_update_space(struct intel_ring *ring)
59 {
60         unsigned int space;
61
62         space = __intel_ring_space(ring->head, ring->emit, ring->size);
63
64         ring->space = space;
65         return space;
66 }
67
68 static int
69 gen2_render_ring_flush(struct i915_request *rq, u32 mode)
70 {
71         u32 cmd, *cs;
72
73         cmd = MI_FLUSH;
74
75         if (mode & EMIT_INVALIDATE)
76                 cmd |= MI_READ_FLUSH;
77
78         cs = intel_ring_begin(rq, 2);
79         if (IS_ERR(cs))
80                 return PTR_ERR(cs);
81
82         *cs++ = cmd;
83         *cs++ = MI_NOOP;
84         intel_ring_advance(rq, cs);
85
86         return 0;
87 }
88
89 static int
90 gen4_render_ring_flush(struct i915_request *rq, u32 mode)
91 {
92         u32 cmd, *cs;
93
94         /*
95          * read/write caches:
96          *
97          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
98          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
99          * also flushed at 2d versus 3d pipeline switches.
100          *
101          * read-only caches:
102          *
103          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
104          * MI_READ_FLUSH is set, and is always flushed on 965.
105          *
106          * I915_GEM_DOMAIN_COMMAND may not exist?
107          *
108          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
109          * invalidated when MI_EXE_FLUSH is set.
110          *
111          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
112          * invalidated with every MI_FLUSH.
113          *
114          * TLBs:
115          *
116          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
117          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
118          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
119          * are flushed at any MI_FLUSH.
120          */
121
122         cmd = MI_FLUSH;
123         if (mode & EMIT_INVALIDATE) {
124                 cmd |= MI_EXE_FLUSH;
125                 if (IS_G4X(rq->i915) || IS_GEN5(rq->i915))
126                         cmd |= MI_INVALIDATE_ISP;
127         }
128
129         cs = intel_ring_begin(rq, 2);
130         if (IS_ERR(cs))
131                 return PTR_ERR(cs);
132
133         *cs++ = cmd;
134         *cs++ = MI_NOOP;
135         intel_ring_advance(rq, cs);
136
137         return 0;
138 }
139
140 /*
141  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
142  * implementing two workarounds on gen6.  From section 1.4.7.1
143  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
144  *
145  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
146  * produced by non-pipelined state commands), software needs to first
147  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
148  * 0.
149  *
150  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
151  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
152  *
153  * And the workaround for these two requires this workaround first:
154  *
155  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
156  * BEFORE the pipe-control with a post-sync op and no write-cache
157  * flushes.
158  *
159  * And this last workaround is tricky because of the requirements on
160  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
161  * volume 2 part 1:
162  *
163  *     "1 of the following must also be set:
164  *      - Render Target Cache Flush Enable ([12] of DW1)
165  *      - Depth Cache Flush Enable ([0] of DW1)
166  *      - Stall at Pixel Scoreboard ([1] of DW1)
167  *      - Depth Stall ([13] of DW1)
168  *      - Post-Sync Operation ([13] of DW1)
169  *      - Notify Enable ([8] of DW1)"
170  *
171  * The cache flushes require the workaround flush that triggered this
172  * one, so we can't use it.  Depth stall would trigger the same.
173  * Post-sync nonzero is what triggered this second workaround, so we
174  * can't use that one either.  Notify enable is IRQs, which aren't
175  * really our business.  That leaves only stall at scoreboard.
176  */
177 static int
178 intel_emit_post_sync_nonzero_flush(struct i915_request *rq)
179 {
180         u32 scratch_addr =
181                 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
182         u32 *cs;
183
184         cs = intel_ring_begin(rq, 6);
185         if (IS_ERR(cs))
186                 return PTR_ERR(cs);
187
188         *cs++ = GFX_OP_PIPE_CONTROL(5);
189         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
190         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
191         *cs++ = 0; /* low dword */
192         *cs++ = 0; /* high dword */
193         *cs++ = MI_NOOP;
194         intel_ring_advance(rq, cs);
195
196         cs = intel_ring_begin(rq, 6);
197         if (IS_ERR(cs))
198                 return PTR_ERR(cs);
199
200         *cs++ = GFX_OP_PIPE_CONTROL(5);
201         *cs++ = PIPE_CONTROL_QW_WRITE;
202         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
203         *cs++ = 0;
204         *cs++ = 0;
205         *cs++ = MI_NOOP;
206         intel_ring_advance(rq, cs);
207
208         return 0;
209 }
210
211 static int
212 gen6_render_ring_flush(struct i915_request *rq, u32 mode)
213 {
214         u32 scratch_addr =
215                 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
216         u32 *cs, flags = 0;
217         int ret;
218
219         /* Force SNB workarounds for PIPE_CONTROL flushes */
220         ret = intel_emit_post_sync_nonzero_flush(rq);
221         if (ret)
222                 return ret;
223
224         /* Just flush everything.  Experiments have shown that reducing the
225          * number of bits based on the write domains has little performance
226          * impact.
227          */
228         if (mode & EMIT_FLUSH) {
229                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
230                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
231                 /*
232                  * Ensure that any following seqno writes only happen
233                  * when the render cache is indeed flushed.
234                  */
235                 flags |= PIPE_CONTROL_CS_STALL;
236         }
237         if (mode & EMIT_INVALIDATE) {
238                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
239                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
240                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
241                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
242                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
243                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
244                 /*
245                  * TLB invalidate requires a post-sync write.
246                  */
247                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248         }
249
250         cs = intel_ring_begin(rq, 4);
251         if (IS_ERR(cs))
252                 return PTR_ERR(cs);
253
254         *cs++ = GFX_OP_PIPE_CONTROL(4);
255         *cs++ = flags;
256         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
257         *cs++ = 0;
258         intel_ring_advance(rq, cs);
259
260         return 0;
261 }
262
263 static int
264 gen7_render_ring_cs_stall_wa(struct i915_request *rq)
265 {
266         u32 *cs;
267
268         cs = intel_ring_begin(rq, 4);
269         if (IS_ERR(cs))
270                 return PTR_ERR(cs);
271
272         *cs++ = GFX_OP_PIPE_CONTROL(4);
273         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
274         *cs++ = 0;
275         *cs++ = 0;
276         intel_ring_advance(rq, cs);
277
278         return 0;
279 }
280
281 static int
282 gen7_render_ring_flush(struct i915_request *rq, u32 mode)
283 {
284         u32 scratch_addr =
285                 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
286         u32 *cs, flags = 0;
287
288         /*
289          * Ensure that any following seqno writes only happen when the render
290          * cache is indeed flushed.
291          *
292          * Workaround: 4th PIPE_CONTROL command (except the ones with only
293          * read-cache invalidate bits set) must have the CS_STALL bit set. We
294          * don't try to be clever and just set it unconditionally.
295          */
296         flags |= PIPE_CONTROL_CS_STALL;
297
298         /* Just flush everything.  Experiments have shown that reducing the
299          * number of bits based on the write domains has little performance
300          * impact.
301          */
302         if (mode & EMIT_FLUSH) {
303                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
304                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
305                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
306                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
307         }
308         if (mode & EMIT_INVALIDATE) {
309                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
310                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
311                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
312                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
313                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
314                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
315                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
316                 /*
317                  * TLB invalidate requires a post-sync write.
318                  */
319                 flags |= PIPE_CONTROL_QW_WRITE;
320                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
321
322                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
323
324                 /* Workaround: we must issue a pipe_control with CS-stall bit
325                  * set before a pipe_control command that has the state cache
326                  * invalidate bit set. */
327                 gen7_render_ring_cs_stall_wa(rq);
328         }
329
330         cs = intel_ring_begin(rq, 4);
331         if (IS_ERR(cs))
332                 return PTR_ERR(cs);
333
334         *cs++ = GFX_OP_PIPE_CONTROL(4);
335         *cs++ = flags;
336         *cs++ = scratch_addr;
337         *cs++ = 0;
338         intel_ring_advance(rq, cs);
339
340         return 0;
341 }
342
343 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
344 {
345         struct drm_i915_private *dev_priv = engine->i915;
346         u32 addr;
347
348         addr = dev_priv->status_page_dmah->busaddr;
349         if (INTEL_GEN(dev_priv) >= 4)
350                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
351         I915_WRITE(HWS_PGA, addr);
352 }
353
354 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
355 {
356         struct drm_i915_private *dev_priv = engine->i915;
357         i915_reg_t mmio;
358
359         /* The ring status page addresses are no longer next to the rest of
360          * the ring registers as of gen7.
361          */
362         if (IS_GEN7(dev_priv)) {
363                 switch (engine->id) {
364                 /*
365                  * No more rings exist on Gen7. Default case is only to shut up
366                  * gcc switch check warning.
367                  */
368                 default:
369                         GEM_BUG_ON(engine->id);
370                 case RCS:
371                         mmio = RENDER_HWS_PGA_GEN7;
372                         break;
373                 case BCS:
374                         mmio = BLT_HWS_PGA_GEN7;
375                         break;
376                 case VCS:
377                         mmio = BSD_HWS_PGA_GEN7;
378                         break;
379                 case VECS:
380                         mmio = VEBOX_HWS_PGA_GEN7;
381                         break;
382                 }
383         } else if (IS_GEN6(dev_priv)) {
384                 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
385         } else {
386                 mmio = RING_HWS_PGA(engine->mmio_base);
387         }
388
389         if (INTEL_GEN(dev_priv) >= 6)
390                 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
391
392         I915_WRITE(mmio, engine->status_page.ggtt_offset);
393         POSTING_READ(mmio);
394
395         /* Flush the TLB for this page */
396         if (IS_GEN(dev_priv, 6, 7)) {
397                 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
398
399                 /* ring should be idle before issuing a sync flush*/
400                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
401
402                 I915_WRITE(reg,
403                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
404                                               INSTPM_SYNC_FLUSH));
405                 if (intel_wait_for_register(dev_priv,
406                                             reg, INSTPM_SYNC_FLUSH, 0,
407                                             1000))
408                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
409                                   engine->name);
410         }
411 }
412
413 static bool stop_ring(struct intel_engine_cs *engine)
414 {
415         struct drm_i915_private *dev_priv = engine->i915;
416
417         if (INTEL_GEN(dev_priv) > 2) {
418                 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
419                 if (intel_wait_for_register(dev_priv,
420                                             RING_MI_MODE(engine->mmio_base),
421                                             MODE_IDLE,
422                                             MODE_IDLE,
423                                             1000)) {
424                         DRM_ERROR("%s : timed out trying to stop ring\n",
425                                   engine->name);
426                         /* Sometimes we observe that the idle flag is not
427                          * set even though the ring is empty. So double
428                          * check before giving up.
429                          */
430                         if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
431                                 return false;
432                 }
433         }
434
435         I915_WRITE_HEAD(engine, I915_READ_TAIL(engine));
436
437         I915_WRITE_HEAD(engine, 0);
438         I915_WRITE_TAIL(engine, 0);
439
440         /* The ring must be empty before it is disabled */
441         I915_WRITE_CTL(engine, 0);
442
443         return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
444 }
445
446 static int init_ring_common(struct intel_engine_cs *engine)
447 {
448         struct drm_i915_private *dev_priv = engine->i915;
449         struct intel_ring *ring = engine->buffer;
450         int ret = 0;
451
452         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
453
454         if (!stop_ring(engine)) {
455                 /* G45 ring initialization often fails to reset head to zero */
456                 DRM_DEBUG_DRIVER("%s head not reset to zero "
457                                 "ctl %08x head %08x tail %08x start %08x\n",
458                                 engine->name,
459                                 I915_READ_CTL(engine),
460                                 I915_READ_HEAD(engine),
461                                 I915_READ_TAIL(engine),
462                                 I915_READ_START(engine));
463
464                 if (!stop_ring(engine)) {
465                         DRM_ERROR("failed to set %s head to zero "
466                                   "ctl %08x head %08x tail %08x start %08x\n",
467                                   engine->name,
468                                   I915_READ_CTL(engine),
469                                   I915_READ_HEAD(engine),
470                                   I915_READ_TAIL(engine),
471                                   I915_READ_START(engine));
472                         ret = -EIO;
473                         goto out;
474                 }
475         }
476
477         if (HWS_NEEDS_PHYSICAL(dev_priv))
478                 ring_setup_phys_status_page(engine);
479         else
480                 intel_ring_setup_status_page(engine);
481
482         intel_engine_reset_breadcrumbs(engine);
483
484         /* Enforce ordering by reading HEAD register back */
485         I915_READ_HEAD(engine);
486
487         /* Initialize the ring. This must happen _after_ we've cleared the ring
488          * registers with the above sequence (the readback of the HEAD registers
489          * also enforces ordering), otherwise the hw might lose the new ring
490          * register values. */
491         I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
492
493         /* WaClearRingBufHeadRegAtInit:ctg,elk */
494         if (I915_READ_HEAD(engine))
495                 DRM_DEBUG_DRIVER("%s initialization failed [head=%08x], fudging\n",
496                                  engine->name, I915_READ_HEAD(engine));
497
498         intel_ring_update_space(ring);
499         I915_WRITE_HEAD(engine, ring->head);
500         I915_WRITE_TAIL(engine, ring->tail);
501         (void)I915_READ_TAIL(engine);
502
503         I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
504
505         /* If the head is still not zero, the ring is dead */
506         if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
507                                     RING_VALID, RING_VALID,
508                                     50)) {
509                 DRM_ERROR("%s initialization failed "
510                           "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
511                           engine->name,
512                           I915_READ_CTL(engine),
513                           I915_READ_CTL(engine) & RING_VALID,
514                           I915_READ_HEAD(engine), ring->head,
515                           I915_READ_TAIL(engine), ring->tail,
516                           I915_READ_START(engine),
517                           i915_ggtt_offset(ring->vma));
518                 ret = -EIO;
519                 goto out;
520         }
521
522         intel_engine_init_hangcheck(engine);
523
524         if (INTEL_GEN(dev_priv) > 2)
525                 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
526
527 out:
528         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
529
530         return ret;
531 }
532
533 static void reset_ring_common(struct intel_engine_cs *engine,
534                               struct i915_request *request)
535 {
536         /*
537          * RC6 must be prevented until the reset is complete and the engine
538          * reinitialised. If it occurs in the middle of this sequence, the
539          * state written to/loaded from the power context is ill-defined (e.g.
540          * the PP_BASE_DIR may be lost).
541          */
542         assert_forcewakes_active(engine->i915, FORCEWAKE_ALL);
543
544         /*
545          * Try to restore the logical GPU state to match the continuation
546          * of the request queue. If we skip the context/PD restore, then
547          * the next request may try to execute assuming that its context
548          * is valid and loaded on the GPU and so may try to access invalid
549          * memory, prompting repeated GPU hangs.
550          *
551          * If the request was guilty, we still restore the logical state
552          * in case the next request requires it (e.g. the aliasing ppgtt),
553          * but skip over the hung batch.
554          *
555          * If the request was innocent, we try to replay the request with
556          * the restored context.
557          */
558         if (request) {
559                 struct drm_i915_private *dev_priv = request->i915;
560                 struct intel_context *ce = &request->ctx->engine[engine->id];
561                 struct i915_hw_ppgtt *ppgtt;
562
563                 if (ce->state) {
564                         I915_WRITE(CCID,
565                                    i915_ggtt_offset(ce->state) |
566                                    BIT(8) /* must be set! */ |
567                                    CCID_EXTENDED_STATE_SAVE |
568                                    CCID_EXTENDED_STATE_RESTORE |
569                                    CCID_EN);
570                 }
571
572                 ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
573                 if (ppgtt) {
574                         u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;
575
576                         I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
577                         I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);
578
579                         /* Wait for the PD reload to complete */
580                         if (intel_wait_for_register(dev_priv,
581                                                     RING_PP_DIR_BASE(engine),
582                                                     BIT(0), 0,
583                                                     10))
584                                 DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
585
586                         ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
587                 }
588
589                 /* If the rq hung, jump to its breadcrumb and skip the batch */
590                 if (request->fence.error == -EIO)
591                         request->ring->head = request->postfix;
592         } else {
593                 engine->legacy_active_context = NULL;
594                 engine->legacy_active_ppgtt = NULL;
595         }
596 }
597
598 static int intel_rcs_ctx_init(struct i915_request *rq)
599 {
600         int ret;
601
602         ret = intel_ring_workarounds_emit(rq);
603         if (ret != 0)
604                 return ret;
605
606         ret = i915_gem_render_state_emit(rq);
607         if (ret)
608                 return ret;
609
610         return 0;
611 }
612
613 static int init_render_ring(struct intel_engine_cs *engine)
614 {
615         struct drm_i915_private *dev_priv = engine->i915;
616         int ret = init_ring_common(engine);
617         if (ret)
618                 return ret;
619
620         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
621         if (IS_GEN(dev_priv, 4, 6))
622                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
623
624         /* We need to disable the AsyncFlip performance optimisations in order
625          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
626          * programmed to '1' on all products.
627          *
628          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
629          */
630         if (IS_GEN(dev_priv, 6, 7))
631                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
632
633         /* Required for the hardware to program scanline values for waiting */
634         /* WaEnableFlushTlbInvalidationMode:snb */
635         if (IS_GEN6(dev_priv))
636                 I915_WRITE(GFX_MODE,
637                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
638
639         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
640         if (IS_GEN7(dev_priv))
641                 I915_WRITE(GFX_MODE_GEN7,
642                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
643                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
644
645         if (IS_GEN6(dev_priv)) {
646                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
647                  * "If this bit is set, STCunit will have LRA as replacement
648                  *  policy. [...] This bit must be reset.  LRA replacement
649                  *  policy is not supported."
650                  */
651                 I915_WRITE(CACHE_MODE_0,
652                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
653         }
654
655         if (IS_GEN(dev_priv, 6, 7))
656                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
657
658         if (INTEL_GEN(dev_priv) >= 6)
659                 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
660
661         return init_workarounds_ring(engine);
662 }
663
664 static u32 *gen6_signal(struct i915_request *rq, u32 *cs)
665 {
666         struct drm_i915_private *dev_priv = rq->i915;
667         struct intel_engine_cs *engine;
668         enum intel_engine_id id;
669         int num_rings = 0;
670
671         for_each_engine(engine, dev_priv, id) {
672                 i915_reg_t mbox_reg;
673
674                 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
675                         continue;
676
677                 mbox_reg = rq->engine->semaphore.mbox.signal[engine->hw_id];
678                 if (i915_mmio_reg_valid(mbox_reg)) {
679                         *cs++ = MI_LOAD_REGISTER_IMM(1);
680                         *cs++ = i915_mmio_reg_offset(mbox_reg);
681                         *cs++ = rq->global_seqno;
682                         num_rings++;
683                 }
684         }
685         if (num_rings & 1)
686                 *cs++ = MI_NOOP;
687
688         return cs;
689 }
690
691 static void cancel_requests(struct intel_engine_cs *engine)
692 {
693         struct i915_request *request;
694         unsigned long flags;
695
696         spin_lock_irqsave(&engine->timeline->lock, flags);
697
698         /* Mark all submitted requests as skipped. */
699         list_for_each_entry(request, &engine->timeline->requests, link) {
700                 GEM_BUG_ON(!request->global_seqno);
701                 if (!i915_request_completed(request))
702                         dma_fence_set_error(&request->fence, -EIO);
703         }
704         /* Remaining _unready_ requests will be nop'ed when submitted */
705
706         spin_unlock_irqrestore(&engine->timeline->lock, flags);
707 }
708
709 static void i9xx_submit_request(struct i915_request *request)
710 {
711         struct drm_i915_private *dev_priv = request->i915;
712
713         i915_request_submit(request);
714
715         I915_WRITE_TAIL(request->engine,
716                         intel_ring_set_tail(request->ring, request->tail));
717 }
718
719 static void i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
720 {
721         *cs++ = MI_STORE_DWORD_INDEX;
722         *cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
723         *cs++ = rq->global_seqno;
724         *cs++ = MI_USER_INTERRUPT;
725
726         rq->tail = intel_ring_offset(rq, cs);
727         assert_ring_tail_valid(rq->ring, rq->tail);
728 }
729
730 static const int i9xx_emit_breadcrumb_sz = 4;
731
732 static void gen6_sema_emit_breadcrumb(struct i915_request *rq, u32 *cs)
733 {
734         return i9xx_emit_breadcrumb(rq, rq->engine->semaphore.signal(rq, cs));
735 }
736
737 static int
738 gen6_ring_sync_to(struct i915_request *rq, struct i915_request *signal)
739 {
740         u32 dw1 = MI_SEMAPHORE_MBOX |
741                   MI_SEMAPHORE_COMPARE |
742                   MI_SEMAPHORE_REGISTER;
743         u32 wait_mbox = signal->engine->semaphore.mbox.wait[rq->engine->hw_id];
744         u32 *cs;
745
746         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
747
748         cs = intel_ring_begin(rq, 4);
749         if (IS_ERR(cs))
750                 return PTR_ERR(cs);
751
752         *cs++ = dw1 | wait_mbox;
753         /* Throughout all of the GEM code, seqno passed implies our current
754          * seqno is >= the last seqno executed. However for hardware the
755          * comparison is strictly greater than.
756          */
757         *cs++ = signal->global_seqno - 1;
758         *cs++ = 0;
759         *cs++ = MI_NOOP;
760         intel_ring_advance(rq, cs);
761
762         return 0;
763 }
764
765 static void
766 gen5_seqno_barrier(struct intel_engine_cs *engine)
767 {
768         /* MI_STORE are internally buffered by the GPU and not flushed
769          * either by MI_FLUSH or SyncFlush or any other combination of
770          * MI commands.
771          *
772          * "Only the submission of the store operation is guaranteed.
773          * The write result will be complete (coherent) some time later
774          * (this is practically a finite period but there is no guaranteed
775          * latency)."
776          *
777          * Empirically, we observe that we need a delay of at least 75us to
778          * be sure that the seqno write is visible by the CPU.
779          */
780         usleep_range(125, 250);
781 }
782
783 static void
784 gen6_seqno_barrier(struct intel_engine_cs *engine)
785 {
786         struct drm_i915_private *dev_priv = engine->i915;
787
788         /* Workaround to force correct ordering between irq and seqno writes on
789          * ivb (and maybe also on snb) by reading from a CS register (like
790          * ACTHD) before reading the status page.
791          *
792          * Note that this effectively stalls the read by the time it takes to
793          * do a memory transaction, which more or less ensures that the write
794          * from the GPU has sufficient time to invalidate the CPU cacheline.
795          * Alternatively we could delay the interrupt from the CS ring to give
796          * the write time to land, but that would incur a delay after every
797          * batch i.e. much more frequent than a delay when waiting for the
798          * interrupt (with the same net latency).
799          *
800          * Also note that to prevent whole machine hangs on gen7, we have to
801          * take the spinlock to guard against concurrent cacheline access.
802          */
803         spin_lock_irq(&dev_priv->uncore.lock);
804         POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
805         spin_unlock_irq(&dev_priv->uncore.lock);
806 }
807
808 static void
809 gen5_irq_enable(struct intel_engine_cs *engine)
810 {
811         gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
812 }
813
814 static void
815 gen5_irq_disable(struct intel_engine_cs *engine)
816 {
817         gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
818 }
819
820 static void
821 i9xx_irq_enable(struct intel_engine_cs *engine)
822 {
823         struct drm_i915_private *dev_priv = engine->i915;
824
825         dev_priv->irq_mask &= ~engine->irq_enable_mask;
826         I915_WRITE(IMR, dev_priv->irq_mask);
827         POSTING_READ_FW(RING_IMR(engine->mmio_base));
828 }
829
830 static void
831 i9xx_irq_disable(struct intel_engine_cs *engine)
832 {
833         struct drm_i915_private *dev_priv = engine->i915;
834
835         dev_priv->irq_mask |= engine->irq_enable_mask;
836         I915_WRITE(IMR, dev_priv->irq_mask);
837 }
838
839 static void
840 i8xx_irq_enable(struct intel_engine_cs *engine)
841 {
842         struct drm_i915_private *dev_priv = engine->i915;
843
844         dev_priv->irq_mask &= ~engine->irq_enable_mask;
845         I915_WRITE16(IMR, dev_priv->irq_mask);
846         POSTING_READ16(RING_IMR(engine->mmio_base));
847 }
848
849 static void
850 i8xx_irq_disable(struct intel_engine_cs *engine)
851 {
852         struct drm_i915_private *dev_priv = engine->i915;
853
854         dev_priv->irq_mask |= engine->irq_enable_mask;
855         I915_WRITE16(IMR, dev_priv->irq_mask);
856 }
857
858 static int
859 bsd_ring_flush(struct i915_request *rq, u32 mode)
860 {
861         u32 *cs;
862
863         cs = intel_ring_begin(rq, 2);
864         if (IS_ERR(cs))
865                 return PTR_ERR(cs);
866
867         *cs++ = MI_FLUSH;
868         *cs++ = MI_NOOP;
869         intel_ring_advance(rq, cs);
870         return 0;
871 }
872
873 static void
874 gen6_irq_enable(struct intel_engine_cs *engine)
875 {
876         struct drm_i915_private *dev_priv = engine->i915;
877
878         I915_WRITE_IMR(engine,
879                        ~(engine->irq_enable_mask |
880                          engine->irq_keep_mask));
881         gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
882 }
883
884 static void
885 gen6_irq_disable(struct intel_engine_cs *engine)
886 {
887         struct drm_i915_private *dev_priv = engine->i915;
888
889         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
890         gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
891 }
892
893 static void
894 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
895 {
896         struct drm_i915_private *dev_priv = engine->i915;
897
898         I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
899         gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
900 }
901
902 static void
903 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
904 {
905         struct drm_i915_private *dev_priv = engine->i915;
906
907         I915_WRITE_IMR(engine, ~0);
908         gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
909 }
910
911 static int
912 i965_emit_bb_start(struct i915_request *rq,
913                    u64 offset, u32 length,
914                    unsigned int dispatch_flags)
915 {
916         u32 *cs;
917
918         cs = intel_ring_begin(rq, 2);
919         if (IS_ERR(cs))
920                 return PTR_ERR(cs);
921
922         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
923                 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
924         *cs++ = offset;
925         intel_ring_advance(rq, cs);
926
927         return 0;
928 }
929
930 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
931 #define I830_BATCH_LIMIT (256*1024)
932 #define I830_TLB_ENTRIES (2)
933 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
934 static int
935 i830_emit_bb_start(struct i915_request *rq,
936                    u64 offset, u32 len,
937                    unsigned int dispatch_flags)
938 {
939         u32 *cs, cs_offset = i915_ggtt_offset(rq->engine->scratch);
940
941         cs = intel_ring_begin(rq, 6);
942         if (IS_ERR(cs))
943                 return PTR_ERR(cs);
944
945         /* Evict the invalid PTE TLBs */
946         *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
947         *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
948         *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
949         *cs++ = cs_offset;
950         *cs++ = 0xdeadbeef;
951         *cs++ = MI_NOOP;
952         intel_ring_advance(rq, cs);
953
954         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
955                 if (len > I830_BATCH_LIMIT)
956                         return -ENOSPC;
957
958                 cs = intel_ring_begin(rq, 6 + 2);
959                 if (IS_ERR(cs))
960                         return PTR_ERR(cs);
961
962                 /* Blit the batch (which has now all relocs applied) to the
963                  * stable batch scratch bo area (so that the CS never
964                  * stumbles over its tlb invalidation bug) ...
965                  */
966                 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
967                 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
968                 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
969                 *cs++ = cs_offset;
970                 *cs++ = 4096;
971                 *cs++ = offset;
972
973                 *cs++ = MI_FLUSH;
974                 *cs++ = MI_NOOP;
975                 intel_ring_advance(rq, cs);
976
977                 /* ... and execute it. */
978                 offset = cs_offset;
979         }
980
981         cs = intel_ring_begin(rq, 2);
982         if (IS_ERR(cs))
983                 return PTR_ERR(cs);
984
985         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
986         *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
987                 MI_BATCH_NON_SECURE);
988         intel_ring_advance(rq, cs);
989
990         return 0;
991 }
992
993 static int
994 i915_emit_bb_start(struct i915_request *rq,
995                    u64 offset, u32 len,
996                    unsigned int dispatch_flags)
997 {
998         u32 *cs;
999
1000         cs = intel_ring_begin(rq, 2);
1001         if (IS_ERR(cs))
1002                 return PTR_ERR(cs);
1003
1004         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1005         *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1006                 MI_BATCH_NON_SECURE);
1007         intel_ring_advance(rq, cs);
1008
1009         return 0;
1010 }
1011
1012
1013
1014 int intel_ring_pin(struct intel_ring *ring,
1015                    struct drm_i915_private *i915,
1016                    unsigned int offset_bias)
1017 {
1018         enum i915_map_type map = HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
1019         struct i915_vma *vma = ring->vma;
1020         unsigned int flags;
1021         void *addr;
1022         int ret;
1023
1024         GEM_BUG_ON(ring->vaddr);
1025
1026
1027         flags = PIN_GLOBAL;
1028         if (offset_bias)
1029                 flags |= PIN_OFFSET_BIAS | offset_bias;
1030         if (vma->obj->stolen)
1031                 flags |= PIN_MAPPABLE;
1032
1033         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1034                 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1035                         ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1036                 else
1037                         ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1038                 if (unlikely(ret))
1039                         return ret;
1040         }
1041
1042         ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1043         if (unlikely(ret))
1044                 return ret;
1045
1046         if (i915_vma_is_map_and_fenceable(vma))
1047                 addr = (void __force *)i915_vma_pin_iomap(vma);
1048         else
1049                 addr = i915_gem_object_pin_map(vma->obj, map);
1050         if (IS_ERR(addr))
1051                 goto err;
1052
1053         vma->obj->pin_global++;
1054
1055         ring->vaddr = addr;
1056         return 0;
1057
1058 err:
1059         i915_vma_unpin(vma);
1060         return PTR_ERR(addr);
1061 }
1062
1063 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1064 {
1065         GEM_BUG_ON(!list_empty(&ring->request_list));
1066         ring->tail = tail;
1067         ring->head = tail;
1068         ring->emit = tail;
1069         intel_ring_update_space(ring);
1070 }
1071
1072 void intel_ring_unpin(struct intel_ring *ring)
1073 {
1074         GEM_BUG_ON(!ring->vma);
1075         GEM_BUG_ON(!ring->vaddr);
1076
1077         /* Discard any unused bytes beyond that submitted to hw. */
1078         intel_ring_reset(ring, ring->tail);
1079
1080         if (i915_vma_is_map_and_fenceable(ring->vma))
1081                 i915_vma_unpin_iomap(ring->vma);
1082         else
1083                 i915_gem_object_unpin_map(ring->vma->obj);
1084         ring->vaddr = NULL;
1085
1086         ring->vma->obj->pin_global--;
1087         i915_vma_unpin(ring->vma);
1088 }
1089
1090 static struct i915_vma *
1091 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1092 {
1093         struct drm_i915_gem_object *obj;
1094         struct i915_vma *vma;
1095
1096         obj = i915_gem_object_create_stolen(dev_priv, size);
1097         if (!obj)
1098                 obj = i915_gem_object_create_internal(dev_priv, size);
1099         if (IS_ERR(obj))
1100                 return ERR_CAST(obj);
1101
1102         /* mark ring buffers as read-only from GPU side by default */
1103         obj->gt_ro = 1;
1104
1105         vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1106         if (IS_ERR(vma))
1107                 goto err;
1108
1109         return vma;
1110
1111 err:
1112         i915_gem_object_put(obj);
1113         return vma;
1114 }
1115
1116 struct intel_ring *
1117 intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1118 {
1119         struct intel_ring *ring;
1120         struct i915_vma *vma;
1121
1122         GEM_BUG_ON(!is_power_of_2(size));
1123         GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1124
1125         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1126         if (!ring)
1127                 return ERR_PTR(-ENOMEM);
1128
1129         INIT_LIST_HEAD(&ring->request_list);
1130
1131         ring->size = size;
1132         /* Workaround an erratum on the i830 which causes a hang if
1133          * the TAIL pointer points to within the last 2 cachelines
1134          * of the buffer.
1135          */
1136         ring->effective_size = size;
1137         if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1138                 ring->effective_size -= 2 * CACHELINE_BYTES;
1139
1140         intel_ring_update_space(ring);
1141
1142         vma = intel_ring_create_vma(engine->i915, size);
1143         if (IS_ERR(vma)) {
1144                 kfree(ring);
1145                 return ERR_CAST(vma);
1146         }
1147         ring->vma = vma;
1148
1149         return ring;
1150 }
1151
1152 void
1153 intel_ring_free(struct intel_ring *ring)
1154 {
1155         struct drm_i915_gem_object *obj = ring->vma->obj;
1156
1157         i915_vma_close(ring->vma);
1158         __i915_gem_object_release_unless_active(obj);
1159
1160         kfree(ring);
1161 }
1162
1163 static int context_pin(struct i915_gem_context *ctx)
1164 {
1165         struct i915_vma *vma = ctx->engine[RCS].state;
1166         int ret;
1167
1168         /*
1169          * Clear this page out of any CPU caches for coherent swap-in/out.
1170          * We only want to do this on the first bind so that we do not stall
1171          * on an active context (which by nature is already on the GPU).
1172          */
1173         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1174                 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1175                 if (ret)
1176                         return ret;
1177         }
1178
1179         return i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
1180                             PIN_GLOBAL | PIN_HIGH);
1181 }
1182
1183 static struct i915_vma *
1184 alloc_context_vma(struct intel_engine_cs *engine)
1185 {
1186         struct drm_i915_private *i915 = engine->i915;
1187         struct drm_i915_gem_object *obj;
1188         struct i915_vma *vma;
1189         int err;
1190
1191         obj = i915_gem_object_create(i915, engine->context_size);
1192         if (IS_ERR(obj))
1193                 return ERR_CAST(obj);
1194
1195         if (engine->default_state) {
1196                 void *defaults, *vaddr;
1197
1198                 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1199                 if (IS_ERR(vaddr)) {
1200                         err = PTR_ERR(vaddr);
1201                         goto err_obj;
1202                 }
1203
1204                 defaults = i915_gem_object_pin_map(engine->default_state,
1205                                                    I915_MAP_WB);
1206                 if (IS_ERR(defaults)) {
1207                         err = PTR_ERR(defaults);
1208                         goto err_map;
1209                 }
1210
1211                 memcpy(vaddr, defaults, engine->context_size);
1212
1213                 i915_gem_object_unpin_map(engine->default_state);
1214                 i915_gem_object_unpin_map(obj);
1215         }
1216
1217         /*
1218          * Try to make the context utilize L3 as well as LLC.
1219          *
1220          * On VLV we don't have L3 controls in the PTEs so we
1221          * shouldn't touch the cache level, especially as that
1222          * would make the object snooped which might have a
1223          * negative performance impact.
1224          *
1225          * Snooping is required on non-llc platforms in execlist
1226          * mode, but since all GGTT accesses use PAT entry 0 we
1227          * get snooping anyway regardless of cache_level.
1228          *
1229          * This is only applicable for Ivy Bridge devices since
1230          * later platforms don't have L3 control bits in the PTE.
1231          */
1232         if (IS_IVYBRIDGE(i915)) {
1233                 /* Ignore any error, regard it as a simple optimisation */
1234                 i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
1235         }
1236
1237         vma = i915_vma_instance(obj, &i915->ggtt.base, NULL);
1238         if (IS_ERR(vma)) {
1239                 err = PTR_ERR(vma);
1240                 goto err_obj;
1241         }
1242
1243         return vma;
1244
1245 err_map:
1246         i915_gem_object_unpin_map(obj);
1247 err_obj:
1248         i915_gem_object_put(obj);
1249         return ERR_PTR(err);
1250 }
1251
1252 static struct intel_ring *
1253 intel_ring_context_pin(struct intel_engine_cs *engine,
1254                        struct i915_gem_context *ctx)
1255 {
1256         struct intel_context *ce = &ctx->engine[engine->id];
1257         int ret;
1258
1259         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1260
1261         if (likely(ce->pin_count++))
1262                 goto out;
1263         GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1264
1265         if (!ce->state && engine->context_size) {
1266                 struct i915_vma *vma;
1267
1268                 vma = alloc_context_vma(engine);
1269                 if (IS_ERR(vma)) {
1270                         ret = PTR_ERR(vma);
1271                         goto err;
1272                 }
1273
1274                 ce->state = vma;
1275         }
1276
1277         if (ce->state) {
1278                 ret = context_pin(ctx);
1279                 if (ret)
1280                         goto err;
1281
1282                 ce->state->obj->pin_global++;
1283         }
1284
1285         i915_gem_context_get(ctx);
1286
1287 out:
1288         /* One ringbuffer to rule them all */
1289         return engine->buffer;
1290
1291 err:
1292         ce->pin_count = 0;
1293         return ERR_PTR(ret);
1294 }
1295
1296 static void intel_ring_context_unpin(struct intel_engine_cs *engine,
1297                                      struct i915_gem_context *ctx)
1298 {
1299         struct intel_context *ce = &ctx->engine[engine->id];
1300
1301         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1302         GEM_BUG_ON(ce->pin_count == 0);
1303
1304         if (--ce->pin_count)
1305                 return;
1306
1307         if (ce->state) {
1308                 ce->state->obj->pin_global--;
1309                 i915_vma_unpin(ce->state);
1310         }
1311
1312         i915_gem_context_put(ctx);
1313 }
1314
1315 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1316 {
1317         struct intel_ring *ring;
1318         int err;
1319
1320         intel_engine_setup_common(engine);
1321
1322         err = intel_engine_init_common(engine);
1323         if (err)
1324                 goto err;
1325
1326         ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
1327         if (IS_ERR(ring)) {
1328                 err = PTR_ERR(ring);
1329                 goto err;
1330         }
1331
1332         /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1333         err = intel_ring_pin(ring, engine->i915, I915_GTT_PAGE_SIZE);
1334         if (err)
1335                 goto err_ring;
1336
1337         GEM_BUG_ON(engine->buffer);
1338         engine->buffer = ring;
1339
1340         return 0;
1341
1342 err_ring:
1343         intel_ring_free(ring);
1344 err:
1345         intel_engine_cleanup_common(engine);
1346         return err;
1347 }
1348
1349 void intel_engine_cleanup(struct intel_engine_cs *engine)
1350 {
1351         struct drm_i915_private *dev_priv = engine->i915;
1352
1353         WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1354                 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
1355
1356         intel_ring_unpin(engine->buffer);
1357         intel_ring_free(engine->buffer);
1358
1359         if (engine->cleanup)
1360                 engine->cleanup(engine);
1361
1362         intel_engine_cleanup_common(engine);
1363
1364         dev_priv->engine[engine->id] = NULL;
1365         kfree(engine);
1366 }
1367
1368 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1369 {
1370         struct intel_engine_cs *engine;
1371         enum intel_engine_id id;
1372
1373         /* Restart from the beginning of the rings for convenience */
1374         for_each_engine(engine, dev_priv, id)
1375                 intel_ring_reset(engine->buffer, 0);
1376 }
1377
1378 static inline int mi_set_context(struct i915_request *rq, u32 flags)
1379 {
1380         struct drm_i915_private *i915 = rq->i915;
1381         struct intel_engine_cs *engine = rq->engine;
1382         enum intel_engine_id id;
1383         const int num_rings =
1384                 /* Use an extended w/a on gen7 if signalling from other rings */
1385                 (HAS_LEGACY_SEMAPHORES(i915) && IS_GEN7(i915)) ?
1386                 INTEL_INFO(i915)->num_rings - 1 :
1387                 0;
1388         int len;
1389         u32 *cs;
1390
1391         flags |= MI_MM_SPACE_GTT;
1392         if (IS_HASWELL(i915))
1393                 /* These flags are for resource streamer on HSW+ */
1394                 flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
1395         else
1396                 flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;
1397
1398         len = 4;
1399         if (IS_GEN7(i915))
1400                 len += 2 + (num_rings ? 4*num_rings + 6 : 0);
1401
1402         cs = intel_ring_begin(rq, len);
1403         if (IS_ERR(cs))
1404                 return PTR_ERR(cs);
1405
1406         /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1407         if (IS_GEN7(i915)) {
1408                 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1409                 if (num_rings) {
1410                         struct intel_engine_cs *signaller;
1411
1412                         *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1413                         for_each_engine(signaller, i915, id) {
1414                                 if (signaller == engine)
1415                                         continue;
1416
1417                                 *cs++ = i915_mmio_reg_offset(
1418                                            RING_PSMI_CTL(signaller->mmio_base));
1419                                 *cs++ = _MASKED_BIT_ENABLE(
1420                                                 GEN6_PSMI_SLEEP_MSG_DISABLE);
1421                         }
1422                 }
1423         }
1424
1425         *cs++ = MI_NOOP;
1426         *cs++ = MI_SET_CONTEXT;
1427         *cs++ = i915_ggtt_offset(rq->ctx->engine[RCS].state) | flags;
1428         /*
1429          * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1430          * WaMiSetContext_Hang:snb,ivb,vlv
1431          */
1432         *cs++ = MI_NOOP;
1433
1434         if (IS_GEN7(i915)) {
1435                 if (num_rings) {
1436                         struct intel_engine_cs *signaller;
1437                         i915_reg_t last_reg = {}; /* keep gcc quiet */
1438
1439                         *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1440                         for_each_engine(signaller, i915, id) {
1441                                 if (signaller == engine)
1442                                         continue;
1443
1444                                 last_reg = RING_PSMI_CTL(signaller->mmio_base);
1445                                 *cs++ = i915_mmio_reg_offset(last_reg);
1446                                 *cs++ = _MASKED_BIT_DISABLE(
1447                                                 GEN6_PSMI_SLEEP_MSG_DISABLE);
1448                         }
1449
1450                         /* Insert a delay before the next switch! */
1451                         *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1452                         *cs++ = i915_mmio_reg_offset(last_reg);
1453                         *cs++ = i915_ggtt_offset(engine->scratch);
1454                         *cs++ = MI_NOOP;
1455                 }
1456                 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1457         }
1458
1459         intel_ring_advance(rq, cs);
1460
1461         return 0;
1462 }
1463
1464 static int remap_l3(struct i915_request *rq, int slice)
1465 {
1466         u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1467         int i;
1468
1469         if (!remap_info)
1470                 return 0;
1471
1472         cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1473         if (IS_ERR(cs))
1474                 return PTR_ERR(cs);
1475
1476         /*
1477          * Note: We do not worry about the concurrent register cacheline hang
1478          * here because no other code should access these registers other than
1479          * at initialization time.
1480          */
1481         *cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1482         for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1483                 *cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1484                 *cs++ = remap_info[i];
1485         }
1486         *cs++ = MI_NOOP;
1487         intel_ring_advance(rq, cs);
1488
1489         return 0;
1490 }
1491
1492 static int switch_context(struct i915_request *rq)
1493 {
1494         struct intel_engine_cs *engine = rq->engine;
1495         struct i915_gem_context *to_ctx = rq->ctx;
1496         struct i915_hw_ppgtt *to_mm =
1497                 to_ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
1498         struct i915_gem_context *from_ctx = engine->legacy_active_context;
1499         struct i915_hw_ppgtt *from_mm = engine->legacy_active_ppgtt;
1500         u32 hw_flags = 0;
1501         int ret, i;
1502
1503         lockdep_assert_held(&rq->i915->drm.struct_mutex);
1504         GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1505
1506         if (to_mm != from_mm ||
1507             (to_mm && intel_engine_flag(engine) & to_mm->pd_dirty_rings)) {
1508                 trace_switch_mm(engine, to_ctx);
1509                 ret = to_mm->switch_mm(to_mm, rq);
1510                 if (ret)
1511                         goto err;
1512
1513                 to_mm->pd_dirty_rings &= ~intel_engine_flag(engine);
1514                 engine->legacy_active_ppgtt = to_mm;
1515                 hw_flags = MI_FORCE_RESTORE;
1516         }
1517
1518         if (to_ctx->engine[engine->id].state &&
1519             (to_ctx != from_ctx || hw_flags & MI_FORCE_RESTORE)) {
1520                 GEM_BUG_ON(engine->id != RCS);
1521
1522                 /*
1523                  * The kernel context(s) is treated as pure scratch and is not
1524                  * expected to retain any state (as we sacrifice it during
1525                  * suspend and on resume it may be corrupted). This is ok,
1526                  * as nothing actually executes using the kernel context; it
1527                  * is purely used for flushing user contexts.
1528                  */
1529                 if (i915_gem_context_is_kernel(to_ctx))
1530                         hw_flags = MI_RESTORE_INHIBIT;
1531
1532                 ret = mi_set_context(rq, hw_flags);
1533                 if (ret)
1534                         goto err_mm;
1535
1536                 engine->legacy_active_context = to_ctx;
1537         }
1538
1539         if (to_ctx->remap_slice) {
1540                 for (i = 0; i < MAX_L3_SLICES; i++) {
1541                         if (!(to_ctx->remap_slice & BIT(i)))
1542                                 continue;
1543
1544                         ret = remap_l3(rq, i);
1545                         if (ret)
1546                                 goto err_ctx;
1547                 }
1548
1549                 to_ctx->remap_slice = 0;
1550         }
1551
1552         return 0;
1553
1554 err_ctx:
1555         engine->legacy_active_context = from_ctx;
1556 err_mm:
1557         engine->legacy_active_ppgtt = from_mm;
1558 err:
1559         return ret;
1560 }
1561
1562 static int ring_request_alloc(struct i915_request *request)
1563 {
1564         int ret;
1565
1566         GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);
1567
1568         /* Flush enough space to reduce the likelihood of waiting after
1569          * we start building the request - in which case we will just
1570          * have to repeat work.
1571          */
1572         request->reserved_space += LEGACY_REQUEST_SIZE;
1573
1574         ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1575         if (ret)
1576                 return ret;
1577
1578         ret = switch_context(request);
1579         if (ret)
1580                 return ret;
1581
1582         request->reserved_space -= LEGACY_REQUEST_SIZE;
1583         return 0;
1584 }
1585
1586 static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1587 {
1588         struct i915_request *target;
1589         long timeout;
1590
1591         lockdep_assert_held(&ring->vma->vm->i915->drm.struct_mutex);
1592
1593         if (intel_ring_update_space(ring) >= bytes)
1594                 return 0;
1595
1596         list_for_each_entry(target, &ring->request_list, ring_link) {
1597                 /* Would completion of this request free enough space? */
1598                 if (bytes <= __intel_ring_space(target->postfix,
1599                                                 ring->emit, ring->size))
1600                         break;
1601         }
1602
1603         if (WARN_ON(&target->ring_link == &ring->request_list))
1604                 return -ENOSPC;
1605
1606         timeout = i915_request_wait(target,
1607                                     I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1608                                     MAX_SCHEDULE_TIMEOUT);
1609         if (timeout < 0)
1610                 return timeout;
1611
1612         i915_request_retire_upto(target);
1613
1614         intel_ring_update_space(ring);
1615         GEM_BUG_ON(ring->space < bytes);
1616         return 0;
1617 }
1618
1619 int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes)
1620 {
1621         GEM_BUG_ON(bytes > ring->effective_size);
1622         if (unlikely(bytes > ring->effective_size - ring->emit))
1623                 bytes += ring->size - ring->emit;
1624
1625         if (unlikely(bytes > ring->space)) {
1626                 int ret = wait_for_space(ring, bytes);
1627                 if (unlikely(ret))
1628                         return ret;
1629         }
1630
1631         GEM_BUG_ON(ring->space < bytes);
1632         return 0;
1633 }
1634
1635 u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
1636 {
1637         struct intel_ring *ring = rq->ring;
1638         const unsigned int remain_usable = ring->effective_size - ring->emit;
1639         const unsigned int bytes = num_dwords * sizeof(u32);
1640         unsigned int need_wrap = 0;
1641         unsigned int total_bytes;
1642         u32 *cs;
1643
1644         /* Packets must be qword aligned. */
1645         GEM_BUG_ON(num_dwords & 1);
1646
1647         total_bytes = bytes + rq->reserved_space;
1648         GEM_BUG_ON(total_bytes > ring->effective_size);
1649
1650         if (unlikely(total_bytes > remain_usable)) {
1651                 const int remain_actual = ring->size - ring->emit;
1652
1653                 if (bytes > remain_usable) {
1654                         /*
1655                          * Not enough space for the basic request. So need to
1656                          * flush out the remainder and then wait for
1657                          * base + reserved.
1658                          */
1659                         total_bytes += remain_actual;
1660                         need_wrap = remain_actual | 1;
1661                 } else  {
1662                         /*
1663                          * The base request will fit but the reserved space
1664                          * falls off the end. So we don't need an immediate
1665                          * wrap and only need to effectively wait for the
1666                          * reserved size from the start of ringbuffer.
1667                          */
1668                         total_bytes = rq->reserved_space + remain_actual;
1669                 }
1670         }
1671
1672         if (unlikely(total_bytes > ring->space)) {
1673                 int ret;
1674
1675                 /*
1676                  * Space is reserved in the ringbuffer for finalising the
1677                  * request, as that cannot be allowed to fail. During request
1678                  * finalisation, reserved_space is set to 0 to stop the
1679                  * overallocation and the assumption is that then we never need
1680                  * to wait (which has the risk of failing with EINTR).
1681                  *
1682                  * See also i915_request_alloc() and i915_request_add().
1683                  */
1684                 GEM_BUG_ON(!rq->reserved_space);
1685
1686                 ret = wait_for_space(ring, total_bytes);
1687                 if (unlikely(ret))
1688                         return ERR_PTR(ret);
1689         }
1690
1691         if (unlikely(need_wrap)) {
1692                 need_wrap &= ~1;
1693                 GEM_BUG_ON(need_wrap > ring->space);
1694                 GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1695
1696                 /* Fill the tail with MI_NOOP */
1697                 memset(ring->vaddr + ring->emit, 0, need_wrap);
1698                 ring->emit = 0;
1699                 ring->space -= need_wrap;
1700         }
1701
1702         GEM_BUG_ON(ring->emit > ring->size - bytes);
1703         GEM_BUG_ON(ring->space < bytes);
1704         cs = ring->vaddr + ring->emit;
1705         GEM_DEBUG_EXEC(memset(cs, POISON_INUSE, bytes));
1706         ring->emit += bytes;
1707         ring->space -= bytes;
1708
1709         return cs;
1710 }
1711
1712 /* Align the ring tail to a cacheline boundary */
1713 int intel_ring_cacheline_align(struct i915_request *rq)
1714 {
1715         int num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
1716         u32 *cs;
1717
1718         if (num_dwords == 0)
1719                 return 0;
1720
1721         num_dwords = CACHELINE_BYTES / sizeof(u32) - num_dwords;
1722         cs = intel_ring_begin(rq, num_dwords);
1723         if (IS_ERR(cs))
1724                 return PTR_ERR(cs);
1725
1726         while (num_dwords--)
1727                 *cs++ = MI_NOOP;
1728
1729         intel_ring_advance(rq, cs);
1730
1731         return 0;
1732 }
1733
1734 static void gen6_bsd_submit_request(struct i915_request *request)
1735 {
1736         struct drm_i915_private *dev_priv = request->i915;
1737
1738         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1739
1740        /* Every tail move must follow the sequence below */
1741
1742         /* Disable notification that the ring is IDLE. The GT
1743          * will then assume that it is busy and bring it out of rc6.
1744          */
1745         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1746                       _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1747
1748         /* Clear the context id. Here be magic! */
1749         I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1750
1751         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1752         if (__intel_wait_for_register_fw(dev_priv,
1753                                          GEN6_BSD_SLEEP_PSMI_CONTROL,
1754                                          GEN6_BSD_SLEEP_INDICATOR,
1755                                          0,
1756                                          1000, 0, NULL))
1757                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1758
1759         /* Now that the ring is fully powered up, update the tail */
1760         i9xx_submit_request(request);
1761
1762         /* Let the ring send IDLE messages to the GT again,
1763          * and so let it sleep to conserve power when idle.
1764          */
1765         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1766                       _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1767
1768         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1769 }
1770
1771 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
1772 {
1773         u32 cmd, *cs;
1774
1775         cs = intel_ring_begin(rq, 4);
1776         if (IS_ERR(cs))
1777                 return PTR_ERR(cs);
1778
1779         cmd = MI_FLUSH_DW;
1780
1781         /* We always require a command barrier so that subsequent
1782          * commands, such as breadcrumb interrupts, are strictly ordered
1783          * wrt the contents of the write cache being flushed to memory
1784          * (and thus being coherent from the CPU).
1785          */
1786         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1787
1788         /*
1789          * Bspec vol 1c.5 - video engine command streamer:
1790          * "If ENABLED, all TLBs will be invalidated once the flush
1791          * operation is complete. This bit is only valid when the
1792          * Post-Sync Operation field is a value of 1h or 3h."
1793          */
1794         if (mode & EMIT_INVALIDATE)
1795                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1796
1797         *cs++ = cmd;
1798         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1799         *cs++ = 0;
1800         *cs++ = MI_NOOP;
1801         intel_ring_advance(rq, cs);
1802         return 0;
1803 }
1804
1805 static int
1806 hsw_emit_bb_start(struct i915_request *rq,
1807                   u64 offset, u32 len,
1808                   unsigned int dispatch_flags)
1809 {
1810         u32 *cs;
1811
1812         cs = intel_ring_begin(rq, 2);
1813         if (IS_ERR(cs))
1814                 return PTR_ERR(cs);
1815
1816         *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1817                 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
1818                 (dispatch_flags & I915_DISPATCH_RS ?
1819                 MI_BATCH_RESOURCE_STREAMER : 0);
1820         /* bit0-7 is the length on GEN6+ */
1821         *cs++ = offset;
1822         intel_ring_advance(rq, cs);
1823
1824         return 0;
1825 }
1826
1827 static int
1828 gen6_emit_bb_start(struct i915_request *rq,
1829                    u64 offset, u32 len,
1830                    unsigned int dispatch_flags)
1831 {
1832         u32 *cs;
1833
1834         cs = intel_ring_begin(rq, 2);
1835         if (IS_ERR(cs))
1836                 return PTR_ERR(cs);
1837
1838         *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1839                 0 : MI_BATCH_NON_SECURE_I965);
1840         /* bit0-7 is the length on GEN6+ */
1841         *cs++ = offset;
1842         intel_ring_advance(rq, cs);
1843
1844         return 0;
1845 }
1846
1847 /* Blitter support (SandyBridge+) */
1848
1849 static int gen6_ring_flush(struct i915_request *rq, u32 mode)
1850 {
1851         u32 cmd, *cs;
1852
1853         cs = intel_ring_begin(rq, 4);
1854         if (IS_ERR(cs))
1855                 return PTR_ERR(cs);
1856
1857         cmd = MI_FLUSH_DW;
1858
1859         /* We always require a command barrier so that subsequent
1860          * commands, such as breadcrumb interrupts, are strictly ordered
1861          * wrt the contents of the write cache being flushed to memory
1862          * (and thus being coherent from the CPU).
1863          */
1864         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1865
1866         /*
1867          * Bspec vol 1c.3 - blitter engine command streamer:
1868          * "If ENABLED, all TLBs will be invalidated once the flush
1869          * operation is complete. This bit is only valid when the
1870          * Post-Sync Operation field is a value of 1h or 3h."
1871          */
1872         if (mode & EMIT_INVALIDATE)
1873                 cmd |= MI_INVALIDATE_TLB;
1874         *cs++ = cmd;
1875         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1876         *cs++ = 0;
1877         *cs++ = MI_NOOP;
1878         intel_ring_advance(rq, cs);
1879
1880         return 0;
1881 }
1882
1883 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
1884                                        struct intel_engine_cs *engine)
1885 {
1886         int i;
1887
1888         if (!HAS_LEGACY_SEMAPHORES(dev_priv))
1889                 return;
1890
1891         GEM_BUG_ON(INTEL_GEN(dev_priv) < 6);
1892         engine->semaphore.sync_to = gen6_ring_sync_to;
1893         engine->semaphore.signal = gen6_signal;
1894
1895         /*
1896          * The current semaphore is only applied on pre-gen8
1897          * platform.  And there is no VCS2 ring on the pre-gen8
1898          * platform. So the semaphore between RCS and VCS2 is
1899          * initialized as INVALID.
1900          */
1901         for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
1902                 static const struct {
1903                         u32 wait_mbox;
1904                         i915_reg_t mbox_reg;
1905                 } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
1906                         [RCS_HW] = {
1907                                 [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
1908                                 [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
1909                                 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
1910                         },
1911                         [VCS_HW] = {
1912                                 [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
1913                                 [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
1914                                 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
1915                         },
1916                         [BCS_HW] = {
1917                                 [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
1918                                 [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
1919                                 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
1920                         },
1921                         [VECS_HW] = {
1922                                 [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
1923                                 [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
1924                                 [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
1925                         },
1926                 };
1927                 u32 wait_mbox;
1928                 i915_reg_t mbox_reg;
1929
1930                 if (i == engine->hw_id) {
1931                         wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
1932                         mbox_reg = GEN6_NOSYNC;
1933                 } else {
1934                         wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
1935                         mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
1936                 }
1937
1938                 engine->semaphore.mbox.wait[i] = wait_mbox;
1939                 engine->semaphore.mbox.signal[i] = mbox_reg;
1940         }
1941 }
1942
1943 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
1944                                 struct intel_engine_cs *engine)
1945 {
1946         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
1947
1948         if (INTEL_GEN(dev_priv) >= 6) {
1949                 engine->irq_enable = gen6_irq_enable;
1950                 engine->irq_disable = gen6_irq_disable;
1951                 engine->irq_seqno_barrier = gen6_seqno_barrier;
1952         } else if (INTEL_GEN(dev_priv) >= 5) {
1953                 engine->irq_enable = gen5_irq_enable;
1954                 engine->irq_disable = gen5_irq_disable;
1955                 engine->irq_seqno_barrier = gen5_seqno_barrier;
1956         } else if (INTEL_GEN(dev_priv) >= 3) {
1957                 engine->irq_enable = i9xx_irq_enable;
1958                 engine->irq_disable = i9xx_irq_disable;
1959         } else {
1960                 engine->irq_enable = i8xx_irq_enable;
1961                 engine->irq_disable = i8xx_irq_disable;
1962         }
1963 }
1964
1965 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
1966 {
1967         engine->submit_request = i9xx_submit_request;
1968         engine->cancel_requests = cancel_requests;
1969
1970         engine->park = NULL;
1971         engine->unpark = NULL;
1972 }
1973
1974 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
1975 {
1976         i9xx_set_default_submission(engine);
1977         engine->submit_request = gen6_bsd_submit_request;
1978 }
1979
1980 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
1981                                       struct intel_engine_cs *engine)
1982 {
1983         /* gen8+ are only supported with execlists */
1984         GEM_BUG_ON(INTEL_GEN(dev_priv) >= 8);
1985
1986         intel_ring_init_irq(dev_priv, engine);
1987         intel_ring_init_semaphores(dev_priv, engine);
1988
1989         engine->init_hw = init_ring_common;
1990         engine->reset_hw = reset_ring_common;
1991
1992         engine->context_pin = intel_ring_context_pin;
1993         engine->context_unpin = intel_ring_context_unpin;
1994
1995         engine->request_alloc = ring_request_alloc;
1996
1997         engine->emit_breadcrumb = i9xx_emit_breadcrumb;
1998         engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
1999         if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
2000                 int num_rings;
2001
2002                 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2003
2004                 num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2005                 engine->emit_breadcrumb_sz += num_rings * 3;
2006                 if (num_rings & 1)
2007                         engine->emit_breadcrumb_sz++;
2008         }
2009
2010         engine->set_default_submission = i9xx_set_default_submission;
2011
2012         if (INTEL_GEN(dev_priv) >= 6)
2013                 engine->emit_bb_start = gen6_emit_bb_start;
2014         else if (INTEL_GEN(dev_priv) >= 4)
2015                 engine->emit_bb_start = i965_emit_bb_start;
2016         else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2017                 engine->emit_bb_start = i830_emit_bb_start;
2018         else
2019                 engine->emit_bb_start = i915_emit_bb_start;
2020 }
2021
2022 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2023 {
2024         struct drm_i915_private *dev_priv = engine->i915;
2025         int ret;
2026
2027         intel_ring_default_vfuncs(dev_priv, engine);
2028
2029         if (HAS_L3_DPF(dev_priv))
2030                 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2031
2032         if (INTEL_GEN(dev_priv) >= 6) {
2033                 engine->init_context = intel_rcs_ctx_init;
2034                 engine->emit_flush = gen7_render_ring_flush;
2035                 if (IS_GEN6(dev_priv))
2036                         engine->emit_flush = gen6_render_ring_flush;
2037         } else if (IS_GEN5(dev_priv)) {
2038                 engine->emit_flush = gen4_render_ring_flush;
2039         } else {
2040                 if (INTEL_GEN(dev_priv) < 4)
2041                         engine->emit_flush = gen2_render_ring_flush;
2042                 else
2043                         engine->emit_flush = gen4_render_ring_flush;
2044                 engine->irq_enable_mask = I915_USER_INTERRUPT;
2045         }
2046
2047         if (IS_HASWELL(dev_priv))
2048                 engine->emit_bb_start = hsw_emit_bb_start;
2049
2050         engine->init_hw = init_render_ring;
2051
2052         ret = intel_init_ring_buffer(engine);
2053         if (ret)
2054                 return ret;
2055
2056         if (INTEL_GEN(dev_priv) >= 6) {
2057                 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2058                 if (ret)
2059                         return ret;
2060         } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2061                 ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2062                 if (ret)
2063                         return ret;
2064         }
2065
2066         return 0;
2067 }
2068
2069 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2070 {
2071         struct drm_i915_private *dev_priv = engine->i915;
2072
2073         intel_ring_default_vfuncs(dev_priv, engine);
2074
2075         if (INTEL_GEN(dev_priv) >= 6) {
2076                 /* gen6 bsd needs a special wa for tail updates */
2077                 if (IS_GEN6(dev_priv))
2078                         engine->set_default_submission = gen6_bsd_set_default_submission;
2079                 engine->emit_flush = gen6_bsd_ring_flush;
2080                 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2081         } else {
2082                 engine->mmio_base = BSD_RING_BASE;
2083                 engine->emit_flush = bsd_ring_flush;
2084                 if (IS_GEN5(dev_priv))
2085                         engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2086                 else
2087                         engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2088         }
2089
2090         return intel_init_ring_buffer(engine);
2091 }
2092
2093 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2094 {
2095         struct drm_i915_private *dev_priv = engine->i915;
2096
2097         intel_ring_default_vfuncs(dev_priv, engine);
2098
2099         engine->emit_flush = gen6_ring_flush;
2100         engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2101
2102         return intel_init_ring_buffer(engine);
2103 }
2104
2105 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2106 {
2107         struct drm_i915_private *dev_priv = engine->i915;
2108
2109         intel_ring_default_vfuncs(dev_priv, engine);
2110
2111         engine->emit_flush = gen6_ring_flush;
2112         engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2113         engine->irq_enable = hsw_vebox_irq_enable;
2114         engine->irq_disable = hsw_vebox_irq_disable;
2115
2116         return intel_init_ring_buffer(engine);
2117 }
This page took 0.160598 seconds and 4 git commands to generate.