]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/intel_pm.c
Merge tag 'pstore-v4.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <[email protected]>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34 #include <drm/drm_atomic_helper.h>
35
36 /**
37  * DOC: RC6
38  *
39  * RC6 is a special power stage which allows the GPU to enter an very
40  * low-voltage mode when idle, using down to 0V while at this stage.  This
41  * stage is entered automatically when the GPU is idle when RC6 support is
42  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
43  *
44  * There are different RC6 modes available in Intel GPU, which differentiate
45  * among each other with the latency required to enter and leave RC6 and
46  * voltage consumed by the GPU in different states.
47  *
48  * The combination of the following flags define which states GPU is allowed
49  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
50  * RC6pp is deepest RC6. Their support by hardware varies according to the
51  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
52  * which brings the most power savings; deeper states save more power, but
53  * require higher latency to switch to and wake up.
54  */
55
56 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
57 {
58         if (HAS_LLC(dev_priv)) {
59                 /*
60                  * WaCompressedResourceDisplayNewHashMode:skl,kbl
61                  * Display WA #0390: skl,kbl
62                  *
63                  * Must match Sampler, Pixel Back End, and Media. See
64                  * WaCompressedResourceSamplerPbeMediaNewHashMode.
65                  */
66                 I915_WRITE(CHICKEN_PAR1_1,
67                            I915_READ(CHICKEN_PAR1_1) |
68                            SKL_DE_COMPRESSED_HASH_MODE);
69         }
70
71         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
72         I915_WRITE(CHICKEN_PAR1_1,
73                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
74
75         /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
76         I915_WRITE(GEN8_CHICKEN_DCPR_1,
77                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
78
79         /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
80         /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
81         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
82                    DISP_FBC_WM_DIS |
83                    DISP_FBC_MEMORY_WAKE);
84
85         /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
86         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
87                    ILK_DPFC_DISABLE_DUMMY0);
88
89         if (IS_SKYLAKE(dev_priv)) {
90                 /* WaDisableDopClockGating */
91                 I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
92                            & ~GEN7_DOP_CLOCK_GATE_ENABLE);
93         }
94 }
95
96 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
97 {
98         gen9_init_clock_gating(dev_priv);
99
100         /* WaDisableSDEUnitClockGating:bxt */
101         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
102                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
103
104         /*
105          * FIXME:
106          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
107          */
108         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
109                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
110
111         /*
112          * Wa: Backlight PWM may stop in the asserted state, causing backlight
113          * to stay fully on.
114          */
115         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
116                    PWM1_GATING_DIS | PWM2_GATING_DIS);
117 }
118
119 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
120 {
121         gen9_init_clock_gating(dev_priv);
122
123         /*
124          * WaDisablePWMClockGating:glk
125          * Backlight PWM may stop in the asserted state, causing backlight
126          * to stay fully on.
127          */
128         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
129                    PWM1_GATING_DIS | PWM2_GATING_DIS);
130
131         /* WaDDIIOTimeout:glk */
132         if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
133                 u32 val = I915_READ(CHICKEN_MISC_2);
134                 val &= ~(GLK_CL0_PWR_DOWN |
135                          GLK_CL1_PWR_DOWN |
136                          GLK_CL2_PWR_DOWN);
137                 I915_WRITE(CHICKEN_MISC_2, val);
138         }
139
140 }
141
142 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
143 {
144         u32 tmp;
145
146         tmp = I915_READ(CLKCFG);
147
148         switch (tmp & CLKCFG_FSB_MASK) {
149         case CLKCFG_FSB_533:
150                 dev_priv->fsb_freq = 533; /* 133*4 */
151                 break;
152         case CLKCFG_FSB_800:
153                 dev_priv->fsb_freq = 800; /* 200*4 */
154                 break;
155         case CLKCFG_FSB_667:
156                 dev_priv->fsb_freq =  667; /* 167*4 */
157                 break;
158         case CLKCFG_FSB_400:
159                 dev_priv->fsb_freq = 400; /* 100*4 */
160                 break;
161         }
162
163         switch (tmp & CLKCFG_MEM_MASK) {
164         case CLKCFG_MEM_533:
165                 dev_priv->mem_freq = 533;
166                 break;
167         case CLKCFG_MEM_667:
168                 dev_priv->mem_freq = 667;
169                 break;
170         case CLKCFG_MEM_800:
171                 dev_priv->mem_freq = 800;
172                 break;
173         }
174
175         /* detect pineview DDR3 setting */
176         tmp = I915_READ(CSHRDDR3CTL);
177         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
178 }
179
180 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
181 {
182         u16 ddrpll, csipll;
183
184         ddrpll = I915_READ16(DDRMPLL1);
185         csipll = I915_READ16(CSIPLL0);
186
187         switch (ddrpll & 0xff) {
188         case 0xc:
189                 dev_priv->mem_freq = 800;
190                 break;
191         case 0x10:
192                 dev_priv->mem_freq = 1066;
193                 break;
194         case 0x14:
195                 dev_priv->mem_freq = 1333;
196                 break;
197         case 0x18:
198                 dev_priv->mem_freq = 1600;
199                 break;
200         default:
201                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
202                                  ddrpll & 0xff);
203                 dev_priv->mem_freq = 0;
204                 break;
205         }
206
207         dev_priv->ips.r_t = dev_priv->mem_freq;
208
209         switch (csipll & 0x3ff) {
210         case 0x00c:
211                 dev_priv->fsb_freq = 3200;
212                 break;
213         case 0x00e:
214                 dev_priv->fsb_freq = 3733;
215                 break;
216         case 0x010:
217                 dev_priv->fsb_freq = 4266;
218                 break;
219         case 0x012:
220                 dev_priv->fsb_freq = 4800;
221                 break;
222         case 0x014:
223                 dev_priv->fsb_freq = 5333;
224                 break;
225         case 0x016:
226                 dev_priv->fsb_freq = 5866;
227                 break;
228         case 0x018:
229                 dev_priv->fsb_freq = 6400;
230                 break;
231         default:
232                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
233                                  csipll & 0x3ff);
234                 dev_priv->fsb_freq = 0;
235                 break;
236         }
237
238         if (dev_priv->fsb_freq == 3200) {
239                 dev_priv->ips.c_m = 0;
240         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
241                 dev_priv->ips.c_m = 1;
242         } else {
243                 dev_priv->ips.c_m = 2;
244         }
245 }
246
247 static const struct cxsr_latency cxsr_latency_table[] = {
248         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
249         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
250         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
251         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
252         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
253
254         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
255         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
256         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
257         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
258         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
259
260         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
261         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
262         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
263         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
264         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
265
266         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
267         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
268         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
269         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
270         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
271
272         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
273         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
274         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
275         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
276         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
277
278         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
279         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
280         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
281         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
282         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
283 };
284
285 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
286                                                          bool is_ddr3,
287                                                          int fsb,
288                                                          int mem)
289 {
290         const struct cxsr_latency *latency;
291         int i;
292
293         if (fsb == 0 || mem == 0)
294                 return NULL;
295
296         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
297                 latency = &cxsr_latency_table[i];
298                 if (is_desktop == latency->is_desktop &&
299                     is_ddr3 == latency->is_ddr3 &&
300                     fsb == latency->fsb_freq && mem == latency->mem_freq)
301                         return latency;
302         }
303
304         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
305
306         return NULL;
307 }
308
309 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
310 {
311         u32 val;
312
313         mutex_lock(&dev_priv->pcu_lock);
314
315         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
316         if (enable)
317                 val &= ~FORCE_DDR_HIGH_FREQ;
318         else
319                 val |= FORCE_DDR_HIGH_FREQ;
320         val &= ~FORCE_DDR_LOW_FREQ;
321         val |= FORCE_DDR_FREQ_REQ_ACK;
322         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
323
324         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
325                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
326                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
327
328         mutex_unlock(&dev_priv->pcu_lock);
329 }
330
331 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
332 {
333         u32 val;
334
335         mutex_lock(&dev_priv->pcu_lock);
336
337         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
338         if (enable)
339                 val |= DSP_MAXFIFO_PM5_ENABLE;
340         else
341                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
342         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
343
344         mutex_unlock(&dev_priv->pcu_lock);
345 }
346
347 #define FW_WM(value, plane) \
348         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
349
350 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
351 {
352         bool was_enabled;
353         u32 val;
354
355         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
356                 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
357                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
358                 POSTING_READ(FW_BLC_SELF_VLV);
359         } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
360                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
361                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
362                 POSTING_READ(FW_BLC_SELF);
363         } else if (IS_PINEVIEW(dev_priv)) {
364                 val = I915_READ(DSPFW3);
365                 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
366                 if (enable)
367                         val |= PINEVIEW_SELF_REFRESH_EN;
368                 else
369                         val &= ~PINEVIEW_SELF_REFRESH_EN;
370                 I915_WRITE(DSPFW3, val);
371                 POSTING_READ(DSPFW3);
372         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
373                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
374                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
375                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
376                 I915_WRITE(FW_BLC_SELF, val);
377                 POSTING_READ(FW_BLC_SELF);
378         } else if (IS_I915GM(dev_priv)) {
379                 /*
380                  * FIXME can't find a bit like this for 915G, and
381                  * and yet it does have the related watermark in
382                  * FW_BLC_SELF. What's going on?
383                  */
384                 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
385                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
386                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
387                 I915_WRITE(INSTPM, val);
388                 POSTING_READ(INSTPM);
389         } else {
390                 return false;
391         }
392
393         trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
394
395         DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
396                       enableddisabled(enable),
397                       enableddisabled(was_enabled));
398
399         return was_enabled;
400 }
401
402 /**
403  * intel_set_memory_cxsr - Configure CxSR state
404  * @dev_priv: i915 device
405  * @enable: Allow vs. disallow CxSR
406  *
407  * Allow or disallow the system to enter a special CxSR
408  * (C-state self refresh) state. What typically happens in CxSR mode
409  * is that several display FIFOs may get combined into a single larger
410  * FIFO for a particular plane (so called max FIFO mode) to allow the
411  * system to defer memory fetches longer, and the memory will enter
412  * self refresh.
413  *
414  * Note that enabling CxSR does not guarantee that the system enter
415  * this special mode, nor does it guarantee that the system stays
416  * in that mode once entered. So this just allows/disallows the system
417  * to autonomously utilize the CxSR mode. Other factors such as core
418  * C-states will affect when/if the system actually enters/exits the
419  * CxSR mode.
420  *
421  * Note that on VLV/CHV this actually only controls the max FIFO mode,
422  * and the system is free to enter/exit memory self refresh at any time
423  * even when the use of CxSR has been disallowed.
424  *
425  * While the system is actually in the CxSR/max FIFO mode, some plane
426  * control registers will not get latched on vblank. Thus in order to
427  * guarantee the system will respond to changes in the plane registers
428  * we must always disallow CxSR prior to making changes to those registers.
429  * Unfortunately the system will re-evaluate the CxSR conditions at
430  * frame start which happens after vblank start (which is when the plane
431  * registers would get latched), so we can't proceed with the plane update
432  * during the same frame where we disallowed CxSR.
433  *
434  * Certain platforms also have a deeper HPLL SR mode. Fortunately the
435  * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
436  * the hardware w.r.t. HPLL SR when writing to plane registers.
437  * Disallowing just CxSR is sufficient.
438  */
439 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
440 {
441         bool ret;
442
443         mutex_lock(&dev_priv->wm.wm_mutex);
444         ret = _intel_set_memory_cxsr(dev_priv, enable);
445         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
446                 dev_priv->wm.vlv.cxsr = enable;
447         else if (IS_G4X(dev_priv))
448                 dev_priv->wm.g4x.cxsr = enable;
449         mutex_unlock(&dev_priv->wm.wm_mutex);
450
451         return ret;
452 }
453
454 /*
455  * Latency for FIFO fetches is dependent on several factors:
456  *   - memory configuration (speed, channels)
457  *   - chipset
458  *   - current MCH state
459  * It can be fairly high in some situations, so here we assume a fairly
460  * pessimal value.  It's a tradeoff between extra memory fetches (if we
461  * set this value too high, the FIFO will fetch frequently to stay full)
462  * and power consumption (set it too low to save power and we might see
463  * FIFO underruns and display "flicker").
464  *
465  * A value of 5us seems to be a good balance; safe for very low end
466  * platforms but not overly aggressive on lower latency configs.
467  */
468 static const int pessimal_latency_ns = 5000;
469
470 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
471         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
472
473 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
474 {
475         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
476         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
477         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
478         enum pipe pipe = crtc->pipe;
479         int sprite0_start, sprite1_start;
480
481         switch (pipe) {
482                 uint32_t dsparb, dsparb2, dsparb3;
483         case PIPE_A:
484                 dsparb = I915_READ(DSPARB);
485                 dsparb2 = I915_READ(DSPARB2);
486                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
487                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
488                 break;
489         case PIPE_B:
490                 dsparb = I915_READ(DSPARB);
491                 dsparb2 = I915_READ(DSPARB2);
492                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
493                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
494                 break;
495         case PIPE_C:
496                 dsparb2 = I915_READ(DSPARB2);
497                 dsparb3 = I915_READ(DSPARB3);
498                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
499                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
500                 break;
501         default:
502                 MISSING_CASE(pipe);
503                 return;
504         }
505
506         fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
507         fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
508         fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
509         fifo_state->plane[PLANE_CURSOR] = 63;
510 }
511
512 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
513                               enum i9xx_plane_id i9xx_plane)
514 {
515         uint32_t dsparb = I915_READ(DSPARB);
516         int size;
517
518         size = dsparb & 0x7f;
519         if (i9xx_plane == PLANE_B)
520                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
521
522         DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
523                       dsparb, plane_name(i9xx_plane), size);
524
525         return size;
526 }
527
528 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
529                               enum i9xx_plane_id i9xx_plane)
530 {
531         uint32_t dsparb = I915_READ(DSPARB);
532         int size;
533
534         size = dsparb & 0x1ff;
535         if (i9xx_plane == PLANE_B)
536                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
537         size >>= 1; /* Convert to cachelines */
538
539         DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
540                       dsparb, plane_name(i9xx_plane), size);
541
542         return size;
543 }
544
545 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
546                               enum i9xx_plane_id i9xx_plane)
547 {
548         uint32_t dsparb = I915_READ(DSPARB);
549         int size;
550
551         size = dsparb & 0x7f;
552         size >>= 2; /* Convert to cachelines */
553
554         DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
555                       dsparb, plane_name(i9xx_plane), size);
556
557         return size;
558 }
559
560 /* Pineview has different values for various configs */
561 static const struct intel_watermark_params pineview_display_wm = {
562         .fifo_size = PINEVIEW_DISPLAY_FIFO,
563         .max_wm = PINEVIEW_MAX_WM,
564         .default_wm = PINEVIEW_DFT_WM,
565         .guard_size = PINEVIEW_GUARD_WM,
566         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
567 };
568 static const struct intel_watermark_params pineview_display_hplloff_wm = {
569         .fifo_size = PINEVIEW_DISPLAY_FIFO,
570         .max_wm = PINEVIEW_MAX_WM,
571         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
572         .guard_size = PINEVIEW_GUARD_WM,
573         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
574 };
575 static const struct intel_watermark_params pineview_cursor_wm = {
576         .fifo_size = PINEVIEW_CURSOR_FIFO,
577         .max_wm = PINEVIEW_CURSOR_MAX_WM,
578         .default_wm = PINEVIEW_CURSOR_DFT_WM,
579         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
580         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
581 };
582 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
583         .fifo_size = PINEVIEW_CURSOR_FIFO,
584         .max_wm = PINEVIEW_CURSOR_MAX_WM,
585         .default_wm = PINEVIEW_CURSOR_DFT_WM,
586         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
587         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
588 };
589 static const struct intel_watermark_params i965_cursor_wm_info = {
590         .fifo_size = I965_CURSOR_FIFO,
591         .max_wm = I965_CURSOR_MAX_WM,
592         .default_wm = I965_CURSOR_DFT_WM,
593         .guard_size = 2,
594         .cacheline_size = I915_FIFO_LINE_SIZE,
595 };
596 static const struct intel_watermark_params i945_wm_info = {
597         .fifo_size = I945_FIFO_SIZE,
598         .max_wm = I915_MAX_WM,
599         .default_wm = 1,
600         .guard_size = 2,
601         .cacheline_size = I915_FIFO_LINE_SIZE,
602 };
603 static const struct intel_watermark_params i915_wm_info = {
604         .fifo_size = I915_FIFO_SIZE,
605         .max_wm = I915_MAX_WM,
606         .default_wm = 1,
607         .guard_size = 2,
608         .cacheline_size = I915_FIFO_LINE_SIZE,
609 };
610 static const struct intel_watermark_params i830_a_wm_info = {
611         .fifo_size = I855GM_FIFO_SIZE,
612         .max_wm = I915_MAX_WM,
613         .default_wm = 1,
614         .guard_size = 2,
615         .cacheline_size = I830_FIFO_LINE_SIZE,
616 };
617 static const struct intel_watermark_params i830_bc_wm_info = {
618         .fifo_size = I855GM_FIFO_SIZE,
619         .max_wm = I915_MAX_WM/2,
620         .default_wm = 1,
621         .guard_size = 2,
622         .cacheline_size = I830_FIFO_LINE_SIZE,
623 };
624 static const struct intel_watermark_params i845_wm_info = {
625         .fifo_size = I830_FIFO_SIZE,
626         .max_wm = I915_MAX_WM,
627         .default_wm = 1,
628         .guard_size = 2,
629         .cacheline_size = I830_FIFO_LINE_SIZE,
630 };
631
632 /**
633  * intel_wm_method1 - Method 1 / "small buffer" watermark formula
634  * @pixel_rate: Pipe pixel rate in kHz
635  * @cpp: Plane bytes per pixel
636  * @latency: Memory wakeup latency in 0.1us units
637  *
638  * Compute the watermark using the method 1 or "small buffer"
639  * formula. The caller may additonally add extra cachelines
640  * to account for TLB misses and clock crossings.
641  *
642  * This method is concerned with the short term drain rate
643  * of the FIFO, ie. it does not account for blanking periods
644  * which would effectively reduce the average drain rate across
645  * a longer period. The name "small" refers to the fact the
646  * FIFO is relatively small compared to the amount of data
647  * fetched.
648  *
649  * The FIFO level vs. time graph might look something like:
650  *
651  *   |\   |\
652  *   | \  | \
653  * __---__---__ (- plane active, _ blanking)
654  * -> time
655  *
656  * or perhaps like this:
657  *
658  *   |\|\  |\|\
659  * __----__----__ (- plane active, _ blanking)
660  * -> time
661  *
662  * Returns:
663  * The watermark in bytes
664  */
665 static unsigned int intel_wm_method1(unsigned int pixel_rate,
666                                      unsigned int cpp,
667                                      unsigned int latency)
668 {
669         uint64_t ret;
670
671         ret = (uint64_t) pixel_rate * cpp * latency;
672         ret = DIV_ROUND_UP_ULL(ret, 10000);
673
674         return ret;
675 }
676
677 /**
678  * intel_wm_method2 - Method 2 / "large buffer" watermark formula
679  * @pixel_rate: Pipe pixel rate in kHz
680  * @htotal: Pipe horizontal total
681  * @width: Plane width in pixels
682  * @cpp: Plane bytes per pixel
683  * @latency: Memory wakeup latency in 0.1us units
684  *
685  * Compute the watermark using the method 2 or "large buffer"
686  * formula. The caller may additonally add extra cachelines
687  * to account for TLB misses and clock crossings.
688  *
689  * This method is concerned with the long term drain rate
690  * of the FIFO, ie. it does account for blanking periods
691  * which effectively reduce the average drain rate across
692  * a longer period. The name "large" refers to the fact the
693  * FIFO is relatively large compared to the amount of data
694  * fetched.
695  *
696  * The FIFO level vs. time graph might look something like:
697  *
698  *    |\___       |\___
699  *    |    \___   |    \___
700  *    |        \  |        \
701  * __ --__--__--__--__--__--__ (- plane active, _ blanking)
702  * -> time
703  *
704  * Returns:
705  * The watermark in bytes
706  */
707 static unsigned int intel_wm_method2(unsigned int pixel_rate,
708                                      unsigned int htotal,
709                                      unsigned int width,
710                                      unsigned int cpp,
711                                      unsigned int latency)
712 {
713         unsigned int ret;
714
715         /*
716          * FIXME remove once all users are computing
717          * watermarks in the correct place.
718          */
719         if (WARN_ON_ONCE(htotal == 0))
720                 htotal = 1;
721
722         ret = (latency * pixel_rate) / (htotal * 10000);
723         ret = (ret + 1) * width * cpp;
724
725         return ret;
726 }
727
728 /**
729  * intel_calculate_wm - calculate watermark level
730  * @pixel_rate: pixel clock
731  * @wm: chip FIFO params
732  * @fifo_size: size of the FIFO buffer
733  * @cpp: bytes per pixel
734  * @latency_ns: memory latency for the platform
735  *
736  * Calculate the watermark level (the level at which the display plane will
737  * start fetching from memory again).  Each chip has a different display
738  * FIFO size and allocation, so the caller needs to figure that out and pass
739  * in the correct intel_watermark_params structure.
740  *
741  * As the pixel clock runs, the FIFO will be drained at a rate that depends
742  * on the pixel size.  When it reaches the watermark level, it'll start
743  * fetching FIFO line sized based chunks from memory until the FIFO fills
744  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
745  * will occur, and a display engine hang could result.
746  */
747 static unsigned int intel_calculate_wm(int pixel_rate,
748                                        const struct intel_watermark_params *wm,
749                                        int fifo_size, int cpp,
750                                        unsigned int latency_ns)
751 {
752         int entries, wm_size;
753
754         /*
755          * Note: we need to make sure we don't overflow for various clock &
756          * latency values.
757          * clocks go from a few thousand to several hundred thousand.
758          * latency is usually a few thousand
759          */
760         entries = intel_wm_method1(pixel_rate, cpp,
761                                    latency_ns / 100);
762         entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
763                 wm->guard_size;
764         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
765
766         wm_size = fifo_size - entries;
767         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
768
769         /* Don't promote wm_size to unsigned... */
770         if (wm_size > wm->max_wm)
771                 wm_size = wm->max_wm;
772         if (wm_size <= 0)
773                 wm_size = wm->default_wm;
774
775         /*
776          * Bspec seems to indicate that the value shouldn't be lower than
777          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
778          * Lets go for 8 which is the burst size since certain platforms
779          * already use a hardcoded 8 (which is what the spec says should be
780          * done).
781          */
782         if (wm_size <= 8)
783                 wm_size = 8;
784
785         return wm_size;
786 }
787
788 static bool is_disabling(int old, int new, int threshold)
789 {
790         return old >= threshold && new < threshold;
791 }
792
793 static bool is_enabling(int old, int new, int threshold)
794 {
795         return old < threshold && new >= threshold;
796 }
797
798 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
799 {
800         return dev_priv->wm.max_level + 1;
801 }
802
803 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
804                                    const struct intel_plane_state *plane_state)
805 {
806         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
807
808         /* FIXME check the 'enable' instead */
809         if (!crtc_state->base.active)
810                 return false;
811
812         /*
813          * Treat cursor with fb as always visible since cursor updates
814          * can happen faster than the vrefresh rate, and the current
815          * watermark code doesn't handle that correctly. Cursor updates
816          * which set/clear the fb or change the cursor size are going
817          * to get throttled by intel_legacy_cursor_update() to work
818          * around this problem with the watermark code.
819          */
820         if (plane->id == PLANE_CURSOR)
821                 return plane_state->base.fb != NULL;
822         else
823                 return plane_state->base.visible;
824 }
825
826 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
827 {
828         struct intel_crtc *crtc, *enabled = NULL;
829
830         for_each_intel_crtc(&dev_priv->drm, crtc) {
831                 if (intel_crtc_active(crtc)) {
832                         if (enabled)
833                                 return NULL;
834                         enabled = crtc;
835                 }
836         }
837
838         return enabled;
839 }
840
841 static void pineview_update_wm(struct intel_crtc *unused_crtc)
842 {
843         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
844         struct intel_crtc *crtc;
845         const struct cxsr_latency *latency;
846         u32 reg;
847         unsigned int wm;
848
849         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
850                                          dev_priv->is_ddr3,
851                                          dev_priv->fsb_freq,
852                                          dev_priv->mem_freq);
853         if (!latency) {
854                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
855                 intel_set_memory_cxsr(dev_priv, false);
856                 return;
857         }
858
859         crtc = single_enabled_crtc(dev_priv);
860         if (crtc) {
861                 const struct drm_display_mode *adjusted_mode =
862                         &crtc->config->base.adjusted_mode;
863                 const struct drm_framebuffer *fb =
864                         crtc->base.primary->state->fb;
865                 int cpp = fb->format->cpp[0];
866                 int clock = adjusted_mode->crtc_clock;
867
868                 /* Display SR */
869                 wm = intel_calculate_wm(clock, &pineview_display_wm,
870                                         pineview_display_wm.fifo_size,
871                                         cpp, latency->display_sr);
872                 reg = I915_READ(DSPFW1);
873                 reg &= ~DSPFW_SR_MASK;
874                 reg |= FW_WM(wm, SR);
875                 I915_WRITE(DSPFW1, reg);
876                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
877
878                 /* cursor SR */
879                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
880                                         pineview_display_wm.fifo_size,
881                                         4, latency->cursor_sr);
882                 reg = I915_READ(DSPFW3);
883                 reg &= ~DSPFW_CURSOR_SR_MASK;
884                 reg |= FW_WM(wm, CURSOR_SR);
885                 I915_WRITE(DSPFW3, reg);
886
887                 /* Display HPLL off SR */
888                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
889                                         pineview_display_hplloff_wm.fifo_size,
890                                         cpp, latency->display_hpll_disable);
891                 reg = I915_READ(DSPFW3);
892                 reg &= ~DSPFW_HPLL_SR_MASK;
893                 reg |= FW_WM(wm, HPLL_SR);
894                 I915_WRITE(DSPFW3, reg);
895
896                 /* cursor HPLL off SR */
897                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
898                                         pineview_display_hplloff_wm.fifo_size,
899                                         4, latency->cursor_hpll_disable);
900                 reg = I915_READ(DSPFW3);
901                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
902                 reg |= FW_WM(wm, HPLL_CURSOR);
903                 I915_WRITE(DSPFW3, reg);
904                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
905
906                 intel_set_memory_cxsr(dev_priv, true);
907         } else {
908                 intel_set_memory_cxsr(dev_priv, false);
909         }
910 }
911
912 /*
913  * Documentation says:
914  * "If the line size is small, the TLB fetches can get in the way of the
915  *  data fetches, causing some lag in the pixel data return which is not
916  *  accounted for in the above formulas. The following adjustment only
917  *  needs to be applied if eight whole lines fit in the buffer at once.
918  *  The WM is adjusted upwards by the difference between the FIFO size
919  *  and the size of 8 whole lines. This adjustment is always performed
920  *  in the actual pixel depth regardless of whether FBC is enabled or not."
921  */
922 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
923 {
924         int tlb_miss = fifo_size * 64 - width * cpp * 8;
925
926         return max(0, tlb_miss);
927 }
928
929 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
930                                 const struct g4x_wm_values *wm)
931 {
932         enum pipe pipe;
933
934         for_each_pipe(dev_priv, pipe)
935                 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
936
937         I915_WRITE(DSPFW1,
938                    FW_WM(wm->sr.plane, SR) |
939                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
940                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
941                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
942         I915_WRITE(DSPFW2,
943                    (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
944                    FW_WM(wm->sr.fbc, FBC_SR) |
945                    FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
946                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
947                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
948                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
949         I915_WRITE(DSPFW3,
950                    (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
951                    FW_WM(wm->sr.cursor, CURSOR_SR) |
952                    FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
953                    FW_WM(wm->hpll.plane, HPLL_SR));
954
955         POSTING_READ(DSPFW1);
956 }
957
958 #define FW_WM_VLV(value, plane) \
959         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
960
961 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
962                                 const struct vlv_wm_values *wm)
963 {
964         enum pipe pipe;
965
966         for_each_pipe(dev_priv, pipe) {
967                 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
968
969                 I915_WRITE(VLV_DDL(pipe),
970                            (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
971                            (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
972                            (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
973                            (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
974         }
975
976         /*
977          * Zero the (unused) WM1 watermarks, and also clear all the
978          * high order bits so that there are no out of bounds values
979          * present in the registers during the reprogramming.
980          */
981         I915_WRITE(DSPHOWM, 0);
982         I915_WRITE(DSPHOWM1, 0);
983         I915_WRITE(DSPFW4, 0);
984         I915_WRITE(DSPFW5, 0);
985         I915_WRITE(DSPFW6, 0);
986
987         I915_WRITE(DSPFW1,
988                    FW_WM(wm->sr.plane, SR) |
989                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
990                    FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
991                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
992         I915_WRITE(DSPFW2,
993                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
994                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
995                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
996         I915_WRITE(DSPFW3,
997                    FW_WM(wm->sr.cursor, CURSOR_SR));
998
999         if (IS_CHERRYVIEW(dev_priv)) {
1000                 I915_WRITE(DSPFW7_CHV,
1001                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1002                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1003                 I915_WRITE(DSPFW8_CHV,
1004                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1005                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1006                 I915_WRITE(DSPFW9_CHV,
1007                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1008                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1009                 I915_WRITE(DSPHOWM,
1010                            FW_WM(wm->sr.plane >> 9, SR_HI) |
1011                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1012                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1013                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1014                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1015                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1016                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1017                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1018                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1019                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1020         } else {
1021                 I915_WRITE(DSPFW7,
1022                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1023                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1024                 I915_WRITE(DSPHOWM,
1025                            FW_WM(wm->sr.plane >> 9, SR_HI) |
1026                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1027                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1028                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1029                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1030                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1031                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1032         }
1033
1034         POSTING_READ(DSPFW1);
1035 }
1036
1037 #undef FW_WM_VLV
1038
1039 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1040 {
1041         /* all latencies in usec */
1042         dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1043         dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1044         dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1045
1046         dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1047 }
1048
1049 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1050 {
1051         /*
1052          * DSPCNTR[13] supposedly controls whether the
1053          * primary plane can use the FIFO space otherwise
1054          * reserved for the sprite plane. It's not 100% clear
1055          * what the actual FIFO size is, but it looks like we
1056          * can happily set both primary and sprite watermarks
1057          * up to 127 cachelines. So that would seem to mean
1058          * that either DSPCNTR[13] doesn't do anything, or that
1059          * the total FIFO is >= 256 cachelines in size. Either
1060          * way, we don't seem to have to worry about this
1061          * repartitioning as the maximum watermark value the
1062          * register can hold for each plane is lower than the
1063          * minimum FIFO size.
1064          */
1065         switch (plane_id) {
1066         case PLANE_CURSOR:
1067                 return 63;
1068         case PLANE_PRIMARY:
1069                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1070         case PLANE_SPRITE0:
1071                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1072         default:
1073                 MISSING_CASE(plane_id);
1074                 return 0;
1075         }
1076 }
1077
1078 static int g4x_fbc_fifo_size(int level)
1079 {
1080         switch (level) {
1081         case G4X_WM_LEVEL_SR:
1082                 return 7;
1083         case G4X_WM_LEVEL_HPLL:
1084                 return 15;
1085         default:
1086                 MISSING_CASE(level);
1087                 return 0;
1088         }
1089 }
1090
1091 static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1092                                const struct intel_plane_state *plane_state,
1093                                int level)
1094 {
1095         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1096         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1097         const struct drm_display_mode *adjusted_mode =
1098                 &crtc_state->base.adjusted_mode;
1099         unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1100         unsigned int clock, htotal, cpp, width, wm;
1101
1102         if (latency == 0)
1103                 return USHRT_MAX;
1104
1105         if (!intel_wm_plane_visible(crtc_state, plane_state))
1106                 return 0;
1107
1108         /*
1109          * Not 100% sure which way ELK should go here as the
1110          * spec only says CL/CTG should assume 32bpp and BW
1111          * doesn't need to. But as these things followed the
1112          * mobile vs. desktop lines on gen3 as well, let's
1113          * assume ELK doesn't need this.
1114          *
1115          * The spec also fails to list such a restriction for
1116          * the HPLL watermark, which seems a little strange.
1117          * Let's use 32bpp for the HPLL watermark as well.
1118          */
1119         if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1120             level != G4X_WM_LEVEL_NORMAL)
1121                 cpp = 4;
1122         else
1123                 cpp = plane_state->base.fb->format->cpp[0];
1124
1125         clock = adjusted_mode->crtc_clock;
1126         htotal = adjusted_mode->crtc_htotal;
1127
1128         if (plane->id == PLANE_CURSOR)
1129                 width = plane_state->base.crtc_w;
1130         else
1131                 width = drm_rect_width(&plane_state->base.dst);
1132
1133         if (plane->id == PLANE_CURSOR) {
1134                 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1135         } else if (plane->id == PLANE_PRIMARY &&
1136                    level == G4X_WM_LEVEL_NORMAL) {
1137                 wm = intel_wm_method1(clock, cpp, latency);
1138         } else {
1139                 unsigned int small, large;
1140
1141                 small = intel_wm_method1(clock, cpp, latency);
1142                 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1143
1144                 wm = min(small, large);
1145         }
1146
1147         wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1148                               width, cpp);
1149
1150         wm = DIV_ROUND_UP(wm, 64) + 2;
1151
1152         return min_t(unsigned int, wm, USHRT_MAX);
1153 }
1154
1155 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1156                                  int level, enum plane_id plane_id, u16 value)
1157 {
1158         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1159         bool dirty = false;
1160
1161         for (; level < intel_wm_num_levels(dev_priv); level++) {
1162                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1163
1164                 dirty |= raw->plane[plane_id] != value;
1165                 raw->plane[plane_id] = value;
1166         }
1167
1168         return dirty;
1169 }
1170
1171 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1172                                int level, u16 value)
1173 {
1174         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1175         bool dirty = false;
1176
1177         /* NORMAL level doesn't have an FBC watermark */
1178         level = max(level, G4X_WM_LEVEL_SR);
1179
1180         for (; level < intel_wm_num_levels(dev_priv); level++) {
1181                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1182
1183                 dirty |= raw->fbc != value;
1184                 raw->fbc = value;
1185         }
1186
1187         return dirty;
1188 }
1189
1190 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1191                                    const struct intel_plane_state *pstate,
1192                                    uint32_t pri_val);
1193
1194 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1195                                      const struct intel_plane_state *plane_state)
1196 {
1197         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1198         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1199         enum plane_id plane_id = plane->id;
1200         bool dirty = false;
1201         int level;
1202
1203         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1204                 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1205                 if (plane_id == PLANE_PRIMARY)
1206                         dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1207                 goto out;
1208         }
1209
1210         for (level = 0; level < num_levels; level++) {
1211                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1212                 int wm, max_wm;
1213
1214                 wm = g4x_compute_wm(crtc_state, plane_state, level);
1215                 max_wm = g4x_plane_fifo_size(plane_id, level);
1216
1217                 if (wm > max_wm)
1218                         break;
1219
1220                 dirty |= raw->plane[plane_id] != wm;
1221                 raw->plane[plane_id] = wm;
1222
1223                 if (plane_id != PLANE_PRIMARY ||
1224                     level == G4X_WM_LEVEL_NORMAL)
1225                         continue;
1226
1227                 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1228                                         raw->plane[plane_id]);
1229                 max_wm = g4x_fbc_fifo_size(level);
1230
1231                 /*
1232                  * FBC wm is not mandatory as we
1233                  * can always just disable its use.
1234                  */
1235                 if (wm > max_wm)
1236                         wm = USHRT_MAX;
1237
1238                 dirty |= raw->fbc != wm;
1239                 raw->fbc = wm;
1240         }
1241
1242         /* mark watermarks as invalid */
1243         dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1244
1245         if (plane_id == PLANE_PRIMARY)
1246                 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1247
1248  out:
1249         if (dirty) {
1250                 DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1251                               plane->base.name,
1252                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1253                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1254                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1255
1256                 if (plane_id == PLANE_PRIMARY)
1257                         DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1258                                       crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1259                                       crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1260         }
1261
1262         return dirty;
1263 }
1264
1265 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1266                                       enum plane_id plane_id, int level)
1267 {
1268         const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1269
1270         return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1271 }
1272
1273 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1274                                      int level)
1275 {
1276         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1277
1278         if (level > dev_priv->wm.max_level)
1279                 return false;
1280
1281         return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1282                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1283                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1284 }
1285
1286 /* mark all levels starting from 'level' as invalid */
1287 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1288                                struct g4x_wm_state *wm_state, int level)
1289 {
1290         if (level <= G4X_WM_LEVEL_NORMAL) {
1291                 enum plane_id plane_id;
1292
1293                 for_each_plane_id_on_crtc(crtc, plane_id)
1294                         wm_state->wm.plane[plane_id] = USHRT_MAX;
1295         }
1296
1297         if (level <= G4X_WM_LEVEL_SR) {
1298                 wm_state->cxsr = false;
1299                 wm_state->sr.cursor = USHRT_MAX;
1300                 wm_state->sr.plane = USHRT_MAX;
1301                 wm_state->sr.fbc = USHRT_MAX;
1302         }
1303
1304         if (level <= G4X_WM_LEVEL_HPLL) {
1305                 wm_state->hpll_en = false;
1306                 wm_state->hpll.cursor = USHRT_MAX;
1307                 wm_state->hpll.plane = USHRT_MAX;
1308                 wm_state->hpll.fbc = USHRT_MAX;
1309         }
1310 }
1311
1312 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1313 {
1314         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1315         struct intel_atomic_state *state =
1316                 to_intel_atomic_state(crtc_state->base.state);
1317         struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1318         int num_active_planes = hweight32(crtc_state->active_planes &
1319                                           ~BIT(PLANE_CURSOR));
1320         const struct g4x_pipe_wm *raw;
1321         const struct intel_plane_state *old_plane_state;
1322         const struct intel_plane_state *new_plane_state;
1323         struct intel_plane *plane;
1324         enum plane_id plane_id;
1325         int i, level;
1326         unsigned int dirty = 0;
1327
1328         for_each_oldnew_intel_plane_in_state(state, plane,
1329                                              old_plane_state,
1330                                              new_plane_state, i) {
1331                 if (new_plane_state->base.crtc != &crtc->base &&
1332                     old_plane_state->base.crtc != &crtc->base)
1333                         continue;
1334
1335                 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1336                         dirty |= BIT(plane->id);
1337         }
1338
1339         if (!dirty)
1340                 return 0;
1341
1342         level = G4X_WM_LEVEL_NORMAL;
1343         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1344                 goto out;
1345
1346         raw = &crtc_state->wm.g4x.raw[level];
1347         for_each_plane_id_on_crtc(crtc, plane_id)
1348                 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1349
1350         level = G4X_WM_LEVEL_SR;
1351
1352         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1353                 goto out;
1354
1355         raw = &crtc_state->wm.g4x.raw[level];
1356         wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1357         wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1358         wm_state->sr.fbc = raw->fbc;
1359
1360         wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1361
1362         level = G4X_WM_LEVEL_HPLL;
1363
1364         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1365                 goto out;
1366
1367         raw = &crtc_state->wm.g4x.raw[level];
1368         wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1369         wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1370         wm_state->hpll.fbc = raw->fbc;
1371
1372         wm_state->hpll_en = wm_state->cxsr;
1373
1374         level++;
1375
1376  out:
1377         if (level == G4X_WM_LEVEL_NORMAL)
1378                 return -EINVAL;
1379
1380         /* invalidate the higher levels */
1381         g4x_invalidate_wms(crtc, wm_state, level);
1382
1383         /*
1384          * Determine if the FBC watermark(s) can be used. IF
1385          * this isn't the case we prefer to disable the FBC
1386          ( watermark(s) rather than disable the SR/HPLL
1387          * level(s) entirely.
1388          */
1389         wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1390
1391         if (level >= G4X_WM_LEVEL_SR &&
1392             wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1393                 wm_state->fbc_en = false;
1394         else if (level >= G4X_WM_LEVEL_HPLL &&
1395                  wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1396                 wm_state->fbc_en = false;
1397
1398         return 0;
1399 }
1400
1401 static int g4x_compute_intermediate_wm(struct drm_device *dev,
1402                                        struct intel_crtc *crtc,
1403                                        struct intel_crtc_state *new_crtc_state)
1404 {
1405         struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1406         const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1407         struct intel_atomic_state *intel_state =
1408                 to_intel_atomic_state(new_crtc_state->base.state);
1409         const struct intel_crtc_state *old_crtc_state =
1410                 intel_atomic_get_old_crtc_state(intel_state, crtc);
1411         const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1412         enum plane_id plane_id;
1413
1414         if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
1415                 *intermediate = *optimal;
1416
1417                 intermediate->cxsr = false;
1418                 intermediate->hpll_en = false;
1419                 goto out;
1420         }
1421
1422         intermediate->cxsr = optimal->cxsr && active->cxsr &&
1423                 !new_crtc_state->disable_cxsr;
1424         intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1425                 !new_crtc_state->disable_cxsr;
1426         intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1427
1428         for_each_plane_id_on_crtc(crtc, plane_id) {
1429                 intermediate->wm.plane[plane_id] =
1430                         max(optimal->wm.plane[plane_id],
1431                             active->wm.plane[plane_id]);
1432
1433                 WARN_ON(intermediate->wm.plane[plane_id] >
1434                         g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1435         }
1436
1437         intermediate->sr.plane = max(optimal->sr.plane,
1438                                      active->sr.plane);
1439         intermediate->sr.cursor = max(optimal->sr.cursor,
1440                                       active->sr.cursor);
1441         intermediate->sr.fbc = max(optimal->sr.fbc,
1442                                    active->sr.fbc);
1443
1444         intermediate->hpll.plane = max(optimal->hpll.plane,
1445                                        active->hpll.plane);
1446         intermediate->hpll.cursor = max(optimal->hpll.cursor,
1447                                         active->hpll.cursor);
1448         intermediate->hpll.fbc = max(optimal->hpll.fbc,
1449                                      active->hpll.fbc);
1450
1451         WARN_ON((intermediate->sr.plane >
1452                  g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1453                  intermediate->sr.cursor >
1454                  g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1455                 intermediate->cxsr);
1456         WARN_ON((intermediate->sr.plane >
1457                  g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1458                  intermediate->sr.cursor >
1459                  g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1460                 intermediate->hpll_en);
1461
1462         WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1463                 intermediate->fbc_en && intermediate->cxsr);
1464         WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1465                 intermediate->fbc_en && intermediate->hpll_en);
1466
1467 out:
1468         /*
1469          * If our intermediate WM are identical to the final WM, then we can
1470          * omit the post-vblank programming; only update if it's different.
1471          */
1472         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1473                 new_crtc_state->wm.need_postvbl_update = true;
1474
1475         return 0;
1476 }
1477
1478 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1479                          struct g4x_wm_values *wm)
1480 {
1481         struct intel_crtc *crtc;
1482         int num_active_crtcs = 0;
1483
1484         wm->cxsr = true;
1485         wm->hpll_en = true;
1486         wm->fbc_en = true;
1487
1488         for_each_intel_crtc(&dev_priv->drm, crtc) {
1489                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1490
1491                 if (!crtc->active)
1492                         continue;
1493
1494                 if (!wm_state->cxsr)
1495                         wm->cxsr = false;
1496                 if (!wm_state->hpll_en)
1497                         wm->hpll_en = false;
1498                 if (!wm_state->fbc_en)
1499                         wm->fbc_en = false;
1500
1501                 num_active_crtcs++;
1502         }
1503
1504         if (num_active_crtcs != 1) {
1505                 wm->cxsr = false;
1506                 wm->hpll_en = false;
1507                 wm->fbc_en = false;
1508         }
1509
1510         for_each_intel_crtc(&dev_priv->drm, crtc) {
1511                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1512                 enum pipe pipe = crtc->pipe;
1513
1514                 wm->pipe[pipe] = wm_state->wm;
1515                 if (crtc->active && wm->cxsr)
1516                         wm->sr = wm_state->sr;
1517                 if (crtc->active && wm->hpll_en)
1518                         wm->hpll = wm_state->hpll;
1519         }
1520 }
1521
1522 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1523 {
1524         struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1525         struct g4x_wm_values new_wm = {};
1526
1527         g4x_merge_wm(dev_priv, &new_wm);
1528
1529         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1530                 return;
1531
1532         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1533                 _intel_set_memory_cxsr(dev_priv, false);
1534
1535         g4x_write_wm_values(dev_priv, &new_wm);
1536
1537         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1538                 _intel_set_memory_cxsr(dev_priv, true);
1539
1540         *old_wm = new_wm;
1541 }
1542
1543 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1544                                    struct intel_crtc_state *crtc_state)
1545 {
1546         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1547         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1548
1549         mutex_lock(&dev_priv->wm.wm_mutex);
1550         crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1551         g4x_program_watermarks(dev_priv);
1552         mutex_unlock(&dev_priv->wm.wm_mutex);
1553 }
1554
1555 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1556                                     struct intel_crtc_state *crtc_state)
1557 {
1558         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1559         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1560
1561         if (!crtc_state->wm.need_postvbl_update)
1562                 return;
1563
1564         mutex_lock(&dev_priv->wm.wm_mutex);
1565         intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1566         g4x_program_watermarks(dev_priv);
1567         mutex_unlock(&dev_priv->wm.wm_mutex);
1568 }
1569
1570 /* latency must be in 0.1us units. */
1571 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1572                                    unsigned int htotal,
1573                                    unsigned int width,
1574                                    unsigned int cpp,
1575                                    unsigned int latency)
1576 {
1577         unsigned int ret;
1578
1579         ret = intel_wm_method2(pixel_rate, htotal,
1580                                width, cpp, latency);
1581         ret = DIV_ROUND_UP(ret, 64);
1582
1583         return ret;
1584 }
1585
1586 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1587 {
1588         /* all latencies in usec */
1589         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1590
1591         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1592
1593         if (IS_CHERRYVIEW(dev_priv)) {
1594                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1595                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1596
1597                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1598         }
1599 }
1600
1601 static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1602                                      const struct intel_plane_state *plane_state,
1603                                      int level)
1604 {
1605         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1606         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1607         const struct drm_display_mode *adjusted_mode =
1608                 &crtc_state->base.adjusted_mode;
1609         unsigned int clock, htotal, cpp, width, wm;
1610
1611         if (dev_priv->wm.pri_latency[level] == 0)
1612                 return USHRT_MAX;
1613
1614         if (!intel_wm_plane_visible(crtc_state, plane_state))
1615                 return 0;
1616
1617         cpp = plane_state->base.fb->format->cpp[0];
1618         clock = adjusted_mode->crtc_clock;
1619         htotal = adjusted_mode->crtc_htotal;
1620         width = crtc_state->pipe_src_w;
1621
1622         if (plane->id == PLANE_CURSOR) {
1623                 /*
1624                  * FIXME the formula gives values that are
1625                  * too big for the cursor FIFO, and hence we
1626                  * would never be able to use cursors. For
1627                  * now just hardcode the watermark.
1628                  */
1629                 wm = 63;
1630         } else {
1631                 wm = vlv_wm_method2(clock, htotal, width, cpp,
1632                                     dev_priv->wm.pri_latency[level] * 10);
1633         }
1634
1635         return min_t(unsigned int, wm, USHRT_MAX);
1636 }
1637
1638 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1639 {
1640         return (active_planes & (BIT(PLANE_SPRITE0) |
1641                                  BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1642 }
1643
1644 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1645 {
1646         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1647         const struct g4x_pipe_wm *raw =
1648                 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1649         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1650         unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1651         int num_active_planes = hweight32(active_planes);
1652         const int fifo_size = 511;
1653         int fifo_extra, fifo_left = fifo_size;
1654         int sprite0_fifo_extra = 0;
1655         unsigned int total_rate;
1656         enum plane_id plane_id;
1657
1658         /*
1659          * When enabling sprite0 after sprite1 has already been enabled
1660          * we tend to get an underrun unless sprite0 already has some
1661          * FIFO space allcoated. Hence we always allocate at least one
1662          * cacheline for sprite0 whenever sprite1 is enabled.
1663          *
1664          * All other plane enable sequences appear immune to this problem.
1665          */
1666         if (vlv_need_sprite0_fifo_workaround(active_planes))
1667                 sprite0_fifo_extra = 1;
1668
1669         total_rate = raw->plane[PLANE_PRIMARY] +
1670                 raw->plane[PLANE_SPRITE0] +
1671                 raw->plane[PLANE_SPRITE1] +
1672                 sprite0_fifo_extra;
1673
1674         if (total_rate > fifo_size)
1675                 return -EINVAL;
1676
1677         if (total_rate == 0)
1678                 total_rate = 1;
1679
1680         for_each_plane_id_on_crtc(crtc, plane_id) {
1681                 unsigned int rate;
1682
1683                 if ((active_planes & BIT(plane_id)) == 0) {
1684                         fifo_state->plane[plane_id] = 0;
1685                         continue;
1686                 }
1687
1688                 rate = raw->plane[plane_id];
1689                 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1690                 fifo_left -= fifo_state->plane[plane_id];
1691         }
1692
1693         fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1694         fifo_left -= sprite0_fifo_extra;
1695
1696         fifo_state->plane[PLANE_CURSOR] = 63;
1697
1698         fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1699
1700         /* spread the remainder evenly */
1701         for_each_plane_id_on_crtc(crtc, plane_id) {
1702                 int plane_extra;
1703
1704                 if (fifo_left == 0)
1705                         break;
1706
1707                 if ((active_planes & BIT(plane_id)) == 0)
1708                         continue;
1709
1710                 plane_extra = min(fifo_extra, fifo_left);
1711                 fifo_state->plane[plane_id] += plane_extra;
1712                 fifo_left -= plane_extra;
1713         }
1714
1715         WARN_ON(active_planes != 0 && fifo_left != 0);
1716
1717         /* give it all to the first plane if none are active */
1718         if (active_planes == 0) {
1719                 WARN_ON(fifo_left != fifo_size);
1720                 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1721         }
1722
1723         return 0;
1724 }
1725
1726 /* mark all levels starting from 'level' as invalid */
1727 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1728                                struct vlv_wm_state *wm_state, int level)
1729 {
1730         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1731
1732         for (; level < intel_wm_num_levels(dev_priv); level++) {
1733                 enum plane_id plane_id;
1734
1735                 for_each_plane_id_on_crtc(crtc, plane_id)
1736                         wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1737
1738                 wm_state->sr[level].cursor = USHRT_MAX;
1739                 wm_state->sr[level].plane = USHRT_MAX;
1740         }
1741 }
1742
1743 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1744 {
1745         if (wm > fifo_size)
1746                 return USHRT_MAX;
1747         else
1748                 return fifo_size - wm;
1749 }
1750
1751 /*
1752  * Starting from 'level' set all higher
1753  * levels to 'value' in the "raw" watermarks.
1754  */
1755 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1756                                  int level, enum plane_id plane_id, u16 value)
1757 {
1758         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1759         int num_levels = intel_wm_num_levels(dev_priv);
1760         bool dirty = false;
1761
1762         for (; level < num_levels; level++) {
1763                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1764
1765                 dirty |= raw->plane[plane_id] != value;
1766                 raw->plane[plane_id] = value;
1767         }
1768
1769         return dirty;
1770 }
1771
1772 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1773                                      const struct intel_plane_state *plane_state)
1774 {
1775         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1776         enum plane_id plane_id = plane->id;
1777         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1778         int level;
1779         bool dirty = false;
1780
1781         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1782                 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1783                 goto out;
1784         }
1785
1786         for (level = 0; level < num_levels; level++) {
1787                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1788                 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1789                 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1790
1791                 if (wm > max_wm)
1792                         break;
1793
1794                 dirty |= raw->plane[plane_id] != wm;
1795                 raw->plane[plane_id] = wm;
1796         }
1797
1798         /* mark all higher levels as invalid */
1799         dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1800
1801 out:
1802         if (dirty)
1803                 DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1804                               plane->base.name,
1805                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1806                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1807                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1808
1809         return dirty;
1810 }
1811
1812 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1813                                       enum plane_id plane_id, int level)
1814 {
1815         const struct g4x_pipe_wm *raw =
1816                 &crtc_state->wm.vlv.raw[level];
1817         const struct vlv_fifo_state *fifo_state =
1818                 &crtc_state->wm.vlv.fifo_state;
1819
1820         return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1821 }
1822
1823 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1824 {
1825         return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1826                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1827                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1828                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1829 }
1830
1831 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1832 {
1833         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1834         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1835         struct intel_atomic_state *state =
1836                 to_intel_atomic_state(crtc_state->base.state);
1837         struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1838         const struct vlv_fifo_state *fifo_state =
1839                 &crtc_state->wm.vlv.fifo_state;
1840         int num_active_planes = hweight32(crtc_state->active_planes &
1841                                           ~BIT(PLANE_CURSOR));
1842         bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1843         const struct intel_plane_state *old_plane_state;
1844         const struct intel_plane_state *new_plane_state;
1845         struct intel_plane *plane;
1846         enum plane_id plane_id;
1847         int level, ret, i;
1848         unsigned int dirty = 0;
1849
1850         for_each_oldnew_intel_plane_in_state(state, plane,
1851                                              old_plane_state,
1852                                              new_plane_state, i) {
1853                 if (new_plane_state->base.crtc != &crtc->base &&
1854                     old_plane_state->base.crtc != &crtc->base)
1855                         continue;
1856
1857                 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1858                         dirty |= BIT(plane->id);
1859         }
1860
1861         /*
1862          * DSPARB registers may have been reset due to the
1863          * power well being turned off. Make sure we restore
1864          * them to a consistent state even if no primary/sprite
1865          * planes are initially active.
1866          */
1867         if (needs_modeset)
1868                 crtc_state->fifo_changed = true;
1869
1870         if (!dirty)
1871                 return 0;
1872
1873         /* cursor changes don't warrant a FIFO recompute */
1874         if (dirty & ~BIT(PLANE_CURSOR)) {
1875                 const struct intel_crtc_state *old_crtc_state =
1876                         intel_atomic_get_old_crtc_state(state, crtc);
1877                 const struct vlv_fifo_state *old_fifo_state =
1878                         &old_crtc_state->wm.vlv.fifo_state;
1879
1880                 ret = vlv_compute_fifo(crtc_state);
1881                 if (ret)
1882                         return ret;
1883
1884                 if (needs_modeset ||
1885                     memcmp(old_fifo_state, fifo_state,
1886                            sizeof(*fifo_state)) != 0)
1887                         crtc_state->fifo_changed = true;
1888         }
1889
1890         /* initially allow all levels */
1891         wm_state->num_levels = intel_wm_num_levels(dev_priv);
1892         /*
1893          * Note that enabling cxsr with no primary/sprite planes
1894          * enabled can wedge the pipe. Hence we only allow cxsr
1895          * with exactly one enabled primary/sprite plane.
1896          */
1897         wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1898
1899         for (level = 0; level < wm_state->num_levels; level++) {
1900                 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1901                 const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1902
1903                 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1904                         break;
1905
1906                 for_each_plane_id_on_crtc(crtc, plane_id) {
1907                         wm_state->wm[level].plane[plane_id] =
1908                                 vlv_invert_wm_value(raw->plane[plane_id],
1909                                                     fifo_state->plane[plane_id]);
1910                 }
1911
1912                 wm_state->sr[level].plane =
1913                         vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1914                                                  raw->plane[PLANE_SPRITE0],
1915                                                  raw->plane[PLANE_SPRITE1]),
1916                                             sr_fifo_size);
1917
1918                 wm_state->sr[level].cursor =
1919                         vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1920                                             63);
1921         }
1922
1923         if (level == 0)
1924                 return -EINVAL;
1925
1926         /* limit to only levels we can actually handle */
1927         wm_state->num_levels = level;
1928
1929         /* invalidate the higher levels */
1930         vlv_invalidate_wms(crtc, wm_state, level);
1931
1932         return 0;
1933 }
1934
1935 #define VLV_FIFO(plane, value) \
1936         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1937
1938 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1939                                    struct intel_crtc_state *crtc_state)
1940 {
1941         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1942         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1943         const struct vlv_fifo_state *fifo_state =
1944                 &crtc_state->wm.vlv.fifo_state;
1945         int sprite0_start, sprite1_start, fifo_size;
1946
1947         if (!crtc_state->fifo_changed)
1948                 return;
1949
1950         sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1951         sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1952         fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1953
1954         WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1955         WARN_ON(fifo_size != 511);
1956
1957         trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1958
1959         /*
1960          * uncore.lock serves a double purpose here. It allows us to
1961          * use the less expensive I915_{READ,WRITE}_FW() functions, and
1962          * it protects the DSPARB registers from getting clobbered by
1963          * parallel updates from multiple pipes.
1964          *
1965          * intel_pipe_update_start() has already disabled interrupts
1966          * for us, so a plain spin_lock() is sufficient here.
1967          */
1968         spin_lock(&dev_priv->uncore.lock);
1969
1970         switch (crtc->pipe) {
1971                 uint32_t dsparb, dsparb2, dsparb3;
1972         case PIPE_A:
1973                 dsparb = I915_READ_FW(DSPARB);
1974                 dsparb2 = I915_READ_FW(DSPARB2);
1975
1976                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1977                             VLV_FIFO(SPRITEB, 0xff));
1978                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1979                            VLV_FIFO(SPRITEB, sprite1_start));
1980
1981                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1982                              VLV_FIFO(SPRITEB_HI, 0x1));
1983                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1984                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1985
1986                 I915_WRITE_FW(DSPARB, dsparb);
1987                 I915_WRITE_FW(DSPARB2, dsparb2);
1988                 break;
1989         case PIPE_B:
1990                 dsparb = I915_READ_FW(DSPARB);
1991                 dsparb2 = I915_READ_FW(DSPARB2);
1992
1993                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1994                             VLV_FIFO(SPRITED, 0xff));
1995                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1996                            VLV_FIFO(SPRITED, sprite1_start));
1997
1998                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1999                              VLV_FIFO(SPRITED_HI, 0xff));
2000                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2001                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2002
2003                 I915_WRITE_FW(DSPARB, dsparb);
2004                 I915_WRITE_FW(DSPARB2, dsparb2);
2005                 break;
2006         case PIPE_C:
2007                 dsparb3 = I915_READ_FW(DSPARB3);
2008                 dsparb2 = I915_READ_FW(DSPARB2);
2009
2010                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2011                              VLV_FIFO(SPRITEF, 0xff));
2012                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2013                             VLV_FIFO(SPRITEF, sprite1_start));
2014
2015                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2016                              VLV_FIFO(SPRITEF_HI, 0xff));
2017                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2018                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2019
2020                 I915_WRITE_FW(DSPARB3, dsparb3);
2021                 I915_WRITE_FW(DSPARB2, dsparb2);
2022                 break;
2023         default:
2024                 break;
2025         }
2026
2027         POSTING_READ_FW(DSPARB);
2028
2029         spin_unlock(&dev_priv->uncore.lock);
2030 }
2031
2032 #undef VLV_FIFO
2033
2034 static int vlv_compute_intermediate_wm(struct drm_device *dev,
2035                                        struct intel_crtc *crtc,
2036                                        struct intel_crtc_state *new_crtc_state)
2037 {
2038         struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2039         const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2040         struct intel_atomic_state *intel_state =
2041                 to_intel_atomic_state(new_crtc_state->base.state);
2042         const struct intel_crtc_state *old_crtc_state =
2043                 intel_atomic_get_old_crtc_state(intel_state, crtc);
2044         const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2045         int level;
2046
2047         if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
2048                 *intermediate = *optimal;
2049
2050                 intermediate->cxsr = false;
2051                 goto out;
2052         }
2053
2054         intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2055         intermediate->cxsr = optimal->cxsr && active->cxsr &&
2056                 !new_crtc_state->disable_cxsr;
2057
2058         for (level = 0; level < intermediate->num_levels; level++) {
2059                 enum plane_id plane_id;
2060
2061                 for_each_plane_id_on_crtc(crtc, plane_id) {
2062                         intermediate->wm[level].plane[plane_id] =
2063                                 min(optimal->wm[level].plane[plane_id],
2064                                     active->wm[level].plane[plane_id]);
2065                 }
2066
2067                 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2068                                                     active->sr[level].plane);
2069                 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2070                                                      active->sr[level].cursor);
2071         }
2072
2073         vlv_invalidate_wms(crtc, intermediate, level);
2074
2075 out:
2076         /*
2077          * If our intermediate WM are identical to the final WM, then we can
2078          * omit the post-vblank programming; only update if it's different.
2079          */
2080         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2081                 new_crtc_state->wm.need_postvbl_update = true;
2082
2083         return 0;
2084 }
2085
2086 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2087                          struct vlv_wm_values *wm)
2088 {
2089         struct intel_crtc *crtc;
2090         int num_active_crtcs = 0;
2091
2092         wm->level = dev_priv->wm.max_level;
2093         wm->cxsr = true;
2094
2095         for_each_intel_crtc(&dev_priv->drm, crtc) {
2096                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2097
2098                 if (!crtc->active)
2099                         continue;
2100
2101                 if (!wm_state->cxsr)
2102                         wm->cxsr = false;
2103
2104                 num_active_crtcs++;
2105                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2106         }
2107
2108         if (num_active_crtcs != 1)
2109                 wm->cxsr = false;
2110
2111         if (num_active_crtcs > 1)
2112                 wm->level = VLV_WM_LEVEL_PM2;
2113
2114         for_each_intel_crtc(&dev_priv->drm, crtc) {
2115                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2116                 enum pipe pipe = crtc->pipe;
2117
2118                 wm->pipe[pipe] = wm_state->wm[wm->level];
2119                 if (crtc->active && wm->cxsr)
2120                         wm->sr = wm_state->sr[wm->level];
2121
2122                 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2123                 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2124                 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2125                 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2126         }
2127 }
2128
2129 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2130 {
2131         struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2132         struct vlv_wm_values new_wm = {};
2133
2134         vlv_merge_wm(dev_priv, &new_wm);
2135
2136         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2137                 return;
2138
2139         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2140                 chv_set_memory_dvfs(dev_priv, false);
2141
2142         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2143                 chv_set_memory_pm5(dev_priv, false);
2144
2145         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2146                 _intel_set_memory_cxsr(dev_priv, false);
2147
2148         vlv_write_wm_values(dev_priv, &new_wm);
2149
2150         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2151                 _intel_set_memory_cxsr(dev_priv, true);
2152
2153         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2154                 chv_set_memory_pm5(dev_priv, true);
2155
2156         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2157                 chv_set_memory_dvfs(dev_priv, true);
2158
2159         *old_wm = new_wm;
2160 }
2161
2162 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2163                                    struct intel_crtc_state *crtc_state)
2164 {
2165         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2166         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2167
2168         mutex_lock(&dev_priv->wm.wm_mutex);
2169         crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2170         vlv_program_watermarks(dev_priv);
2171         mutex_unlock(&dev_priv->wm.wm_mutex);
2172 }
2173
2174 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2175                                     struct intel_crtc_state *crtc_state)
2176 {
2177         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2178         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2179
2180         if (!crtc_state->wm.need_postvbl_update)
2181                 return;
2182
2183         mutex_lock(&dev_priv->wm.wm_mutex);
2184         intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2185         vlv_program_watermarks(dev_priv);
2186         mutex_unlock(&dev_priv->wm.wm_mutex);
2187 }
2188
2189 static void i965_update_wm(struct intel_crtc *unused_crtc)
2190 {
2191         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2192         struct intel_crtc *crtc;
2193         int srwm = 1;
2194         int cursor_sr = 16;
2195         bool cxsr_enabled;
2196
2197         /* Calc sr entries for one plane configs */
2198         crtc = single_enabled_crtc(dev_priv);
2199         if (crtc) {
2200                 /* self-refresh has much higher latency */
2201                 static const int sr_latency_ns = 12000;
2202                 const struct drm_display_mode *adjusted_mode =
2203                         &crtc->config->base.adjusted_mode;
2204                 const struct drm_framebuffer *fb =
2205                         crtc->base.primary->state->fb;
2206                 int clock = adjusted_mode->crtc_clock;
2207                 int htotal = adjusted_mode->crtc_htotal;
2208                 int hdisplay = crtc->config->pipe_src_w;
2209                 int cpp = fb->format->cpp[0];
2210                 int entries;
2211
2212                 entries = intel_wm_method2(clock, htotal,
2213                                            hdisplay, cpp, sr_latency_ns / 100);
2214                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2215                 srwm = I965_FIFO_SIZE - entries;
2216                 if (srwm < 0)
2217                         srwm = 1;
2218                 srwm &= 0x1ff;
2219                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2220                               entries, srwm);
2221
2222                 entries = intel_wm_method2(clock, htotal,
2223                                            crtc->base.cursor->state->crtc_w, 4,
2224                                            sr_latency_ns / 100);
2225                 entries = DIV_ROUND_UP(entries,
2226                                        i965_cursor_wm_info.cacheline_size) +
2227                         i965_cursor_wm_info.guard_size;
2228
2229                 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2230                 if (cursor_sr > i965_cursor_wm_info.max_wm)
2231                         cursor_sr = i965_cursor_wm_info.max_wm;
2232
2233                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2234                               "cursor %d\n", srwm, cursor_sr);
2235
2236                 cxsr_enabled = true;
2237         } else {
2238                 cxsr_enabled = false;
2239                 /* Turn off self refresh if both pipes are enabled */
2240                 intel_set_memory_cxsr(dev_priv, false);
2241         }
2242
2243         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2244                       srwm);
2245
2246         /* 965 has limitations... */
2247         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2248                    FW_WM(8, CURSORB) |
2249                    FW_WM(8, PLANEB) |
2250                    FW_WM(8, PLANEA));
2251         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2252                    FW_WM(8, PLANEC_OLD));
2253         /* update cursor SR watermark */
2254         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2255
2256         if (cxsr_enabled)
2257                 intel_set_memory_cxsr(dev_priv, true);
2258 }
2259
2260 #undef FW_WM
2261
2262 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2263 {
2264         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2265         const struct intel_watermark_params *wm_info;
2266         uint32_t fwater_lo;
2267         uint32_t fwater_hi;
2268         int cwm, srwm = 1;
2269         int fifo_size;
2270         int planea_wm, planeb_wm;
2271         struct intel_crtc *crtc, *enabled = NULL;
2272
2273         if (IS_I945GM(dev_priv))
2274                 wm_info = &i945_wm_info;
2275         else if (!IS_GEN2(dev_priv))
2276                 wm_info = &i915_wm_info;
2277         else
2278                 wm_info = &i830_a_wm_info;
2279
2280         fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2281         crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2282         if (intel_crtc_active(crtc)) {
2283                 const struct drm_display_mode *adjusted_mode =
2284                         &crtc->config->base.adjusted_mode;
2285                 const struct drm_framebuffer *fb =
2286                         crtc->base.primary->state->fb;
2287                 int cpp;
2288
2289                 if (IS_GEN2(dev_priv))
2290                         cpp = 4;
2291                 else
2292                         cpp = fb->format->cpp[0];
2293
2294                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2295                                                wm_info, fifo_size, cpp,
2296                                                pessimal_latency_ns);
2297                 enabled = crtc;
2298         } else {
2299                 planea_wm = fifo_size - wm_info->guard_size;
2300                 if (planea_wm > (long)wm_info->max_wm)
2301                         planea_wm = wm_info->max_wm;
2302         }
2303
2304         if (IS_GEN2(dev_priv))
2305                 wm_info = &i830_bc_wm_info;
2306
2307         fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2308         crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2309         if (intel_crtc_active(crtc)) {
2310                 const struct drm_display_mode *adjusted_mode =
2311                         &crtc->config->base.adjusted_mode;
2312                 const struct drm_framebuffer *fb =
2313                         crtc->base.primary->state->fb;
2314                 int cpp;
2315
2316                 if (IS_GEN2(dev_priv))
2317                         cpp = 4;
2318                 else
2319                         cpp = fb->format->cpp[0];
2320
2321                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2322                                                wm_info, fifo_size, cpp,
2323                                                pessimal_latency_ns);
2324                 if (enabled == NULL)
2325                         enabled = crtc;
2326                 else
2327                         enabled = NULL;
2328         } else {
2329                 planeb_wm = fifo_size - wm_info->guard_size;
2330                 if (planeb_wm > (long)wm_info->max_wm)
2331                         planeb_wm = wm_info->max_wm;
2332         }
2333
2334         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2335
2336         if (IS_I915GM(dev_priv) && enabled) {
2337                 struct drm_i915_gem_object *obj;
2338
2339                 obj = intel_fb_obj(enabled->base.primary->state->fb);
2340
2341                 /* self-refresh seems busted with untiled */
2342                 if (!i915_gem_object_is_tiled(obj))
2343                         enabled = NULL;
2344         }
2345
2346         /*
2347          * Overlay gets an aggressive default since video jitter is bad.
2348          */
2349         cwm = 2;
2350
2351         /* Play safe and disable self-refresh before adjusting watermarks. */
2352         intel_set_memory_cxsr(dev_priv, false);
2353
2354         /* Calc sr entries for one plane configs */
2355         if (HAS_FW_BLC(dev_priv) && enabled) {
2356                 /* self-refresh has much higher latency */
2357                 static const int sr_latency_ns = 6000;
2358                 const struct drm_display_mode *adjusted_mode =
2359                         &enabled->config->base.adjusted_mode;
2360                 const struct drm_framebuffer *fb =
2361                         enabled->base.primary->state->fb;
2362                 int clock = adjusted_mode->crtc_clock;
2363                 int htotal = adjusted_mode->crtc_htotal;
2364                 int hdisplay = enabled->config->pipe_src_w;
2365                 int cpp;
2366                 int entries;
2367
2368                 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2369                         cpp = 4;
2370                 else
2371                         cpp = fb->format->cpp[0];
2372
2373                 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2374                                            sr_latency_ns / 100);
2375                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2376                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2377                 srwm = wm_info->fifo_size - entries;
2378                 if (srwm < 0)
2379                         srwm = 1;
2380
2381                 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2382                         I915_WRITE(FW_BLC_SELF,
2383                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2384                 else
2385                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2386         }
2387
2388         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2389                       planea_wm, planeb_wm, cwm, srwm);
2390
2391         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2392         fwater_hi = (cwm & 0x1f);
2393
2394         /* Set request length to 8 cachelines per fetch */
2395         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2396         fwater_hi = fwater_hi | (1 << 8);
2397
2398         I915_WRITE(FW_BLC, fwater_lo);
2399         I915_WRITE(FW_BLC2, fwater_hi);
2400
2401         if (enabled)
2402                 intel_set_memory_cxsr(dev_priv, true);
2403 }
2404
2405 static void i845_update_wm(struct intel_crtc *unused_crtc)
2406 {
2407         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2408         struct intel_crtc *crtc;
2409         const struct drm_display_mode *adjusted_mode;
2410         uint32_t fwater_lo;
2411         int planea_wm;
2412
2413         crtc = single_enabled_crtc(dev_priv);
2414         if (crtc == NULL)
2415                 return;
2416
2417         adjusted_mode = &crtc->config->base.adjusted_mode;
2418         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2419                                        &i845_wm_info,
2420                                        dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2421                                        4, pessimal_latency_ns);
2422         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2423         fwater_lo |= (3<<8) | planea_wm;
2424
2425         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2426
2427         I915_WRITE(FW_BLC, fwater_lo);
2428 }
2429
2430 /* latency must be in 0.1us units. */
2431 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2432                                    unsigned int cpp,
2433                                    unsigned int latency)
2434 {
2435         unsigned int ret;
2436
2437         ret = intel_wm_method1(pixel_rate, cpp, latency);
2438         ret = DIV_ROUND_UP(ret, 64) + 2;
2439
2440         return ret;
2441 }
2442
2443 /* latency must be in 0.1us units. */
2444 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2445                                    unsigned int htotal,
2446                                    unsigned int width,
2447                                    unsigned int cpp,
2448                                    unsigned int latency)
2449 {
2450         unsigned int ret;
2451
2452         ret = intel_wm_method2(pixel_rate, htotal,
2453                                width, cpp, latency);
2454         ret = DIV_ROUND_UP(ret, 64) + 2;
2455
2456         return ret;
2457 }
2458
2459 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2460                            uint8_t cpp)
2461 {
2462         /*
2463          * Neither of these should be possible since this function shouldn't be
2464          * called if the CRTC is off or the plane is invisible.  But let's be
2465          * extra paranoid to avoid a potential divide-by-zero if we screw up
2466          * elsewhere in the driver.
2467          */
2468         if (WARN_ON(!cpp))
2469                 return 0;
2470         if (WARN_ON(!horiz_pixels))
2471                 return 0;
2472
2473         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2474 }
2475
2476 struct ilk_wm_maximums {
2477         uint16_t pri;
2478         uint16_t spr;
2479         uint16_t cur;
2480         uint16_t fbc;
2481 };
2482
2483 /*
2484  * For both WM_PIPE and WM_LP.
2485  * mem_value must be in 0.1us units.
2486  */
2487 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2488                                    const struct intel_plane_state *pstate,
2489                                    uint32_t mem_value,
2490                                    bool is_lp)
2491 {
2492         uint32_t method1, method2;
2493         int cpp;
2494
2495         if (!intel_wm_plane_visible(cstate, pstate))
2496                 return 0;
2497
2498         cpp = pstate->base.fb->format->cpp[0];
2499
2500         method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2501
2502         if (!is_lp)
2503                 return method1;
2504
2505         method2 = ilk_wm_method2(cstate->pixel_rate,
2506                                  cstate->base.adjusted_mode.crtc_htotal,
2507                                  drm_rect_width(&pstate->base.dst),
2508                                  cpp, mem_value);
2509
2510         return min(method1, method2);
2511 }
2512
2513 /*
2514  * For both WM_PIPE and WM_LP.
2515  * mem_value must be in 0.1us units.
2516  */
2517 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2518                                    const struct intel_plane_state *pstate,
2519                                    uint32_t mem_value)
2520 {
2521         uint32_t method1, method2;
2522         int cpp;
2523
2524         if (!intel_wm_plane_visible(cstate, pstate))
2525                 return 0;
2526
2527         cpp = pstate->base.fb->format->cpp[0];
2528
2529         method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2530         method2 = ilk_wm_method2(cstate->pixel_rate,
2531                                  cstate->base.adjusted_mode.crtc_htotal,
2532                                  drm_rect_width(&pstate->base.dst),
2533                                  cpp, mem_value);
2534         return min(method1, method2);
2535 }
2536
2537 /*
2538  * For both WM_PIPE and WM_LP.
2539  * mem_value must be in 0.1us units.
2540  */
2541 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2542                                    const struct intel_plane_state *pstate,
2543                                    uint32_t mem_value)
2544 {
2545         int cpp;
2546
2547         if (!intel_wm_plane_visible(cstate, pstate))
2548                 return 0;
2549
2550         cpp = pstate->base.fb->format->cpp[0];
2551
2552         return ilk_wm_method2(cstate->pixel_rate,
2553                               cstate->base.adjusted_mode.crtc_htotal,
2554                               pstate->base.crtc_w, cpp, mem_value);
2555 }
2556
2557 /* Only for WM_LP. */
2558 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2559                                    const struct intel_plane_state *pstate,
2560                                    uint32_t pri_val)
2561 {
2562         int cpp;
2563
2564         if (!intel_wm_plane_visible(cstate, pstate))
2565                 return 0;
2566
2567         cpp = pstate->base.fb->format->cpp[0];
2568
2569         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2570 }
2571
2572 static unsigned int
2573 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2574 {
2575         if (INTEL_GEN(dev_priv) >= 8)
2576                 return 3072;
2577         else if (INTEL_GEN(dev_priv) >= 7)
2578                 return 768;
2579         else
2580                 return 512;
2581 }
2582
2583 static unsigned int
2584 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2585                      int level, bool is_sprite)
2586 {
2587         if (INTEL_GEN(dev_priv) >= 8)
2588                 /* BDW primary/sprite plane watermarks */
2589                 return level == 0 ? 255 : 2047;
2590         else if (INTEL_GEN(dev_priv) >= 7)
2591                 /* IVB/HSW primary/sprite plane watermarks */
2592                 return level == 0 ? 127 : 1023;
2593         else if (!is_sprite)
2594                 /* ILK/SNB primary plane watermarks */
2595                 return level == 0 ? 127 : 511;
2596         else
2597                 /* ILK/SNB sprite plane watermarks */
2598                 return level == 0 ? 63 : 255;
2599 }
2600
2601 static unsigned int
2602 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2603 {
2604         if (INTEL_GEN(dev_priv) >= 7)
2605                 return level == 0 ? 63 : 255;
2606         else
2607                 return level == 0 ? 31 : 63;
2608 }
2609
2610 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2611 {
2612         if (INTEL_GEN(dev_priv) >= 8)
2613                 return 31;
2614         else
2615                 return 15;
2616 }
2617
2618 /* Calculate the maximum primary/sprite plane watermark */
2619 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2620                                      int level,
2621                                      const struct intel_wm_config *config,
2622                                      enum intel_ddb_partitioning ddb_partitioning,
2623                                      bool is_sprite)
2624 {
2625         struct drm_i915_private *dev_priv = to_i915(dev);
2626         unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2627
2628         /* if sprites aren't enabled, sprites get nothing */
2629         if (is_sprite && !config->sprites_enabled)
2630                 return 0;
2631
2632         /* HSW allows LP1+ watermarks even with multiple pipes */
2633         if (level == 0 || config->num_pipes_active > 1) {
2634                 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2635
2636                 /*
2637                  * For some reason the non self refresh
2638                  * FIFO size is only half of the self
2639                  * refresh FIFO size on ILK/SNB.
2640                  */
2641                 if (INTEL_GEN(dev_priv) <= 6)
2642                         fifo_size /= 2;
2643         }
2644
2645         if (config->sprites_enabled) {
2646                 /* level 0 is always calculated with 1:1 split */
2647                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2648                         if (is_sprite)
2649                                 fifo_size *= 5;
2650                         fifo_size /= 6;
2651                 } else {
2652                         fifo_size /= 2;
2653                 }
2654         }
2655
2656         /* clamp to max that the registers can hold */
2657         return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2658 }
2659
2660 /* Calculate the maximum cursor plane watermark */
2661 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2662                                       int level,
2663                                       const struct intel_wm_config *config)
2664 {
2665         /* HSW LP1+ watermarks w/ multiple pipes */
2666         if (level > 0 && config->num_pipes_active > 1)
2667                 return 64;
2668
2669         /* otherwise just report max that registers can hold */
2670         return ilk_cursor_wm_reg_max(to_i915(dev), level);
2671 }
2672
2673 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2674                                     int level,
2675                                     const struct intel_wm_config *config,
2676                                     enum intel_ddb_partitioning ddb_partitioning,
2677                                     struct ilk_wm_maximums *max)
2678 {
2679         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2680         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2681         max->cur = ilk_cursor_wm_max(dev, level, config);
2682         max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2683 }
2684
2685 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2686                                         int level,
2687                                         struct ilk_wm_maximums *max)
2688 {
2689         max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2690         max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2691         max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2692         max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2693 }
2694
2695 static bool ilk_validate_wm_level(int level,
2696                                   const struct ilk_wm_maximums *max,
2697                                   struct intel_wm_level *result)
2698 {
2699         bool ret;
2700
2701         /* already determined to be invalid? */
2702         if (!result->enable)
2703                 return false;
2704
2705         result->enable = result->pri_val <= max->pri &&
2706                          result->spr_val <= max->spr &&
2707                          result->cur_val <= max->cur;
2708
2709         ret = result->enable;
2710
2711         /*
2712          * HACK until we can pre-compute everything,
2713          * and thus fail gracefully if LP0 watermarks
2714          * are exceeded...
2715          */
2716         if (level == 0 && !result->enable) {
2717                 if (result->pri_val > max->pri)
2718                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2719                                       level, result->pri_val, max->pri);
2720                 if (result->spr_val > max->spr)
2721                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2722                                       level, result->spr_val, max->spr);
2723                 if (result->cur_val > max->cur)
2724                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2725                                       level, result->cur_val, max->cur);
2726
2727                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2728                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2729                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2730                 result->enable = true;
2731         }
2732
2733         return ret;
2734 }
2735
2736 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2737                                  const struct intel_crtc *intel_crtc,
2738                                  int level,
2739                                  struct intel_crtc_state *cstate,
2740                                  const struct intel_plane_state *pristate,
2741                                  const struct intel_plane_state *sprstate,
2742                                  const struct intel_plane_state *curstate,
2743                                  struct intel_wm_level *result)
2744 {
2745         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2746         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2747         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2748
2749         /* WM1+ latency values stored in 0.5us units */
2750         if (level > 0) {
2751                 pri_latency *= 5;
2752                 spr_latency *= 5;
2753                 cur_latency *= 5;
2754         }
2755
2756         if (pristate) {
2757                 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2758                                                      pri_latency, level);
2759                 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2760         }
2761
2762         if (sprstate)
2763                 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2764
2765         if (curstate)
2766                 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2767
2768         result->enable = true;
2769 }
2770
2771 static uint32_t
2772 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2773 {
2774         const struct intel_atomic_state *intel_state =
2775                 to_intel_atomic_state(cstate->base.state);
2776         const struct drm_display_mode *adjusted_mode =
2777                 &cstate->base.adjusted_mode;
2778         u32 linetime, ips_linetime;
2779
2780         if (!cstate->base.active)
2781                 return 0;
2782         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2783                 return 0;
2784         if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2785                 return 0;
2786
2787         /* The WM are computed with base on how long it takes to fill a single
2788          * row at the given clock rate, multiplied by 8.
2789          * */
2790         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2791                                      adjusted_mode->crtc_clock);
2792         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2793                                          intel_state->cdclk.logical.cdclk);
2794
2795         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2796                PIPE_WM_LINETIME_TIME(linetime);
2797 }
2798
2799 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2800                                   uint16_t wm[8])
2801 {
2802         if (INTEL_GEN(dev_priv) >= 9) {
2803                 uint32_t val;
2804                 int ret, i;
2805                 int level, max_level = ilk_wm_max_level(dev_priv);
2806
2807                 /* read the first set of memory latencies[0:3] */
2808                 val = 0; /* data0 to be programmed to 0 for first set */
2809                 mutex_lock(&dev_priv->pcu_lock);
2810                 ret = sandybridge_pcode_read(dev_priv,
2811                                              GEN9_PCODE_READ_MEM_LATENCY,
2812                                              &val);
2813                 mutex_unlock(&dev_priv->pcu_lock);
2814
2815                 if (ret) {
2816                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2817                         return;
2818                 }
2819
2820                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2821                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2822                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2823                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2824                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2825                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2826                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2827
2828                 /* read the second set of memory latencies[4:7] */
2829                 val = 1; /* data0 to be programmed to 1 for second set */
2830                 mutex_lock(&dev_priv->pcu_lock);
2831                 ret = sandybridge_pcode_read(dev_priv,
2832                                              GEN9_PCODE_READ_MEM_LATENCY,
2833                                              &val);
2834                 mutex_unlock(&dev_priv->pcu_lock);
2835                 if (ret) {
2836                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2837                         return;
2838                 }
2839
2840                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2841                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2842                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2843                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2844                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2845                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2846                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2847
2848                 /*
2849                  * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2850                  * need to be disabled. We make sure to sanitize the values out
2851                  * of the punit to satisfy this requirement.
2852                  */
2853                 for (level = 1; level <= max_level; level++) {
2854                         if (wm[level] == 0) {
2855                                 for (i = level + 1; i <= max_level; i++)
2856                                         wm[i] = 0;
2857                                 break;
2858                         }
2859                 }
2860
2861                 /*
2862                  * WaWmMemoryReadLatency:skl+,glk
2863                  *
2864                  * punit doesn't take into account the read latency so we need
2865                  * to add 2us to the various latency levels we retrieve from the
2866                  * punit when level 0 response data us 0us.
2867                  */
2868                 if (wm[0] == 0) {
2869                         wm[0] += 2;
2870                         for (level = 1; level <= max_level; level++) {
2871                                 if (wm[level] == 0)
2872                                         break;
2873                                 wm[level] += 2;
2874                         }
2875                 }
2876
2877         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2878                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2879
2880                 wm[0] = (sskpd >> 56) & 0xFF;
2881                 if (wm[0] == 0)
2882                         wm[0] = sskpd & 0xF;
2883                 wm[1] = (sskpd >> 4) & 0xFF;
2884                 wm[2] = (sskpd >> 12) & 0xFF;
2885                 wm[3] = (sskpd >> 20) & 0x1FF;
2886                 wm[4] = (sskpd >> 32) & 0x1FF;
2887         } else if (INTEL_GEN(dev_priv) >= 6) {
2888                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2889
2890                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2891                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2892                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2893                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2894         } else if (INTEL_GEN(dev_priv) >= 5) {
2895                 uint32_t mltr = I915_READ(MLTR_ILK);
2896
2897                 /* ILK primary LP0 latency is 700 ns */
2898                 wm[0] = 7;
2899                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2900                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2901         } else {
2902                 MISSING_CASE(INTEL_DEVID(dev_priv));
2903         }
2904 }
2905
2906 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2907                                        uint16_t wm[5])
2908 {
2909         /* ILK sprite LP0 latency is 1300 ns */
2910         if (IS_GEN5(dev_priv))
2911                 wm[0] = 13;
2912 }
2913
2914 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2915                                        uint16_t wm[5])
2916 {
2917         /* ILK cursor LP0 latency is 1300 ns */
2918         if (IS_GEN5(dev_priv))
2919                 wm[0] = 13;
2920 }
2921
2922 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2923 {
2924         /* how many WM levels are we expecting */
2925         if (INTEL_GEN(dev_priv) >= 9)
2926                 return 7;
2927         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2928                 return 4;
2929         else if (INTEL_GEN(dev_priv) >= 6)
2930                 return 3;
2931         else
2932                 return 2;
2933 }
2934
2935 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2936                                    const char *name,
2937                                    const uint16_t wm[8])
2938 {
2939         int level, max_level = ilk_wm_max_level(dev_priv);
2940
2941         for (level = 0; level <= max_level; level++) {
2942                 unsigned int latency = wm[level];
2943
2944                 if (latency == 0) {
2945                         DRM_ERROR("%s WM%d latency not provided\n",
2946                                   name, level);
2947                         continue;
2948                 }
2949
2950                 /*
2951                  * - latencies are in us on gen9.
2952                  * - before then, WM1+ latency values are in 0.5us units
2953                  */
2954                 if (INTEL_GEN(dev_priv) >= 9)
2955                         latency *= 10;
2956                 else if (level > 0)
2957                         latency *= 5;
2958
2959                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2960                               name, level, wm[level],
2961                               latency / 10, latency % 10);
2962         }
2963 }
2964
2965 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2966                                     uint16_t wm[5], uint16_t min)
2967 {
2968         int level, max_level = ilk_wm_max_level(dev_priv);
2969
2970         if (wm[0] >= min)
2971                 return false;
2972
2973         wm[0] = max(wm[0], min);
2974         for (level = 1; level <= max_level; level++)
2975                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2976
2977         return true;
2978 }
2979
2980 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2981 {
2982         bool changed;
2983
2984         /*
2985          * The BIOS provided WM memory latency values are often
2986          * inadequate for high resolution displays. Adjust them.
2987          */
2988         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2989                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2990                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2991
2992         if (!changed)
2993                 return;
2994
2995         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2996         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2997         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2998         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2999 }
3000
3001 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3002 {
3003         intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3004
3005         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3006                sizeof(dev_priv->wm.pri_latency));
3007         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3008                sizeof(dev_priv->wm.pri_latency));
3009
3010         intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3011         intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3012
3013         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3014         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3015         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3016
3017         if (IS_GEN6(dev_priv))
3018                 snb_wm_latency_quirk(dev_priv);
3019 }
3020
3021 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3022 {
3023         intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3024         intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3025 }
3026
3027 static bool ilk_validate_pipe_wm(struct drm_device *dev,
3028                                  struct intel_pipe_wm *pipe_wm)
3029 {
3030         /* LP0 watermark maximums depend on this pipe alone */
3031         const struct intel_wm_config config = {
3032                 .num_pipes_active = 1,
3033                 .sprites_enabled = pipe_wm->sprites_enabled,
3034                 .sprites_scaled = pipe_wm->sprites_scaled,
3035         };
3036         struct ilk_wm_maximums max;
3037
3038         /* LP0 watermarks always use 1/2 DDB partitioning */
3039         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
3040
3041         /* At least LP0 must be valid */
3042         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3043                 DRM_DEBUG_KMS("LP0 watermark invalid\n");
3044                 return false;
3045         }
3046
3047         return true;
3048 }
3049
3050 /* Compute new watermarks for the pipe */
3051 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3052 {
3053         struct drm_atomic_state *state = cstate->base.state;
3054         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3055         struct intel_pipe_wm *pipe_wm;
3056         struct drm_device *dev = state->dev;
3057         const struct drm_i915_private *dev_priv = to_i915(dev);
3058         struct drm_plane *plane;
3059         const struct drm_plane_state *plane_state;
3060         const struct intel_plane_state *pristate = NULL;
3061         const struct intel_plane_state *sprstate = NULL;
3062         const struct intel_plane_state *curstate = NULL;
3063         int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3064         struct ilk_wm_maximums max;
3065
3066         pipe_wm = &cstate->wm.ilk.optimal;
3067
3068         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
3069                 const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3070
3071                 if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3072                         pristate = ps;
3073                 else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3074                         sprstate = ps;
3075                 else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3076                         curstate = ps;
3077         }
3078
3079         pipe_wm->pipe_enabled = cstate->base.active;
3080         if (sprstate) {
3081                 pipe_wm->sprites_enabled = sprstate->base.visible;
3082                 pipe_wm->sprites_scaled = sprstate->base.visible &&
3083                         (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3084                          drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3085         }
3086
3087         usable_level = max_level;
3088
3089         /* ILK/SNB: LP2+ watermarks only w/o sprites */
3090         if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3091                 usable_level = 1;
3092
3093         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3094         if (pipe_wm->sprites_scaled)
3095                 usable_level = 0;
3096
3097         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3098         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3099                              pristate, sprstate, curstate, &pipe_wm->wm[0]);
3100
3101         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3102                 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3103
3104         if (!ilk_validate_pipe_wm(dev, pipe_wm))
3105                 return -EINVAL;
3106
3107         ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3108
3109         for (level = 1; level <= usable_level; level++) {
3110                 struct intel_wm_level *wm = &pipe_wm->wm[level];
3111
3112                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3113                                      pristate, sprstate, curstate, wm);
3114
3115                 /*
3116                  * Disable any watermark level that exceeds the
3117                  * register maximums since such watermarks are
3118                  * always invalid.
3119                  */
3120                 if (!ilk_validate_wm_level(level, &max, wm)) {
3121                         memset(wm, 0, sizeof(*wm));
3122                         break;
3123                 }
3124         }
3125
3126         return 0;
3127 }
3128
3129 /*
3130  * Build a set of 'intermediate' watermark values that satisfy both the old
3131  * state and the new state.  These can be programmed to the hardware
3132  * immediately.
3133  */
3134 static int ilk_compute_intermediate_wm(struct drm_device *dev,
3135                                        struct intel_crtc *intel_crtc,
3136                                        struct intel_crtc_state *newstate)
3137 {
3138         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3139         struct intel_atomic_state *intel_state =
3140                 to_intel_atomic_state(newstate->base.state);
3141         const struct intel_crtc_state *oldstate =
3142                 intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3143         const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3144         int level, max_level = ilk_wm_max_level(to_i915(dev));
3145
3146         /*
3147          * Start with the final, target watermarks, then combine with the
3148          * currently active watermarks to get values that are safe both before
3149          * and after the vblank.
3150          */
3151         *a = newstate->wm.ilk.optimal;
3152         if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base))
3153                 return 0;
3154
3155         a->pipe_enabled |= b->pipe_enabled;
3156         a->sprites_enabled |= b->sprites_enabled;
3157         a->sprites_scaled |= b->sprites_scaled;
3158
3159         for (level = 0; level <= max_level; level++) {
3160                 struct intel_wm_level *a_wm = &a->wm[level];
3161                 const struct intel_wm_level *b_wm = &b->wm[level];
3162
3163                 a_wm->enable &= b_wm->enable;
3164                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3165                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3166                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3167                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3168         }
3169
3170         /*
3171          * We need to make sure that these merged watermark values are
3172          * actually a valid configuration themselves.  If they're not,
3173          * there's no safe way to transition from the old state to
3174          * the new state, so we need to fail the atomic transaction.
3175          */
3176         if (!ilk_validate_pipe_wm(dev, a))
3177                 return -EINVAL;
3178
3179         /*
3180          * If our intermediate WM are identical to the final WM, then we can
3181          * omit the post-vblank programming; only update if it's different.
3182          */
3183         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3184                 newstate->wm.need_postvbl_update = true;
3185
3186         return 0;
3187 }
3188
3189 /*
3190  * Merge the watermarks from all active pipes for a specific level.
3191  */
3192 static void ilk_merge_wm_level(struct drm_device *dev,
3193                                int level,
3194                                struct intel_wm_level *ret_wm)
3195 {
3196         const struct intel_crtc *intel_crtc;
3197
3198         ret_wm->enable = true;
3199
3200         for_each_intel_crtc(dev, intel_crtc) {
3201                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3202                 const struct intel_wm_level *wm = &active->wm[level];
3203
3204                 if (!active->pipe_enabled)
3205                         continue;
3206
3207                 /*
3208                  * The watermark values may have been used in the past,
3209                  * so we must maintain them in the registers for some
3210                  * time even if the level is now disabled.
3211                  */
3212                 if (!wm->enable)
3213                         ret_wm->enable = false;
3214
3215                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3216                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3217                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3218                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3219         }
3220 }
3221
3222 /*
3223  * Merge all low power watermarks for all active pipes.
3224  */
3225 static void ilk_wm_merge(struct drm_device *dev,
3226                          const struct intel_wm_config *config,
3227                          const struct ilk_wm_maximums *max,
3228                          struct intel_pipe_wm *merged)
3229 {
3230         struct drm_i915_private *dev_priv = to_i915(dev);
3231         int level, max_level = ilk_wm_max_level(dev_priv);
3232         int last_enabled_level = max_level;
3233
3234         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3235         if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3236             config->num_pipes_active > 1)
3237                 last_enabled_level = 0;
3238
3239         /* ILK: FBC WM must be disabled always */
3240         merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3241
3242         /* merge each WM1+ level */
3243         for (level = 1; level <= max_level; level++) {
3244                 struct intel_wm_level *wm = &merged->wm[level];
3245
3246                 ilk_merge_wm_level(dev, level, wm);
3247
3248                 if (level > last_enabled_level)
3249                         wm->enable = false;
3250                 else if (!ilk_validate_wm_level(level, max, wm))
3251                         /* make sure all following levels get disabled */
3252                         last_enabled_level = level - 1;
3253
3254                 /*
3255                  * The spec says it is preferred to disable
3256                  * FBC WMs instead of disabling a WM level.
3257                  */
3258                 if (wm->fbc_val > max->fbc) {
3259                         if (wm->enable)
3260                                 merged->fbc_wm_enabled = false;
3261                         wm->fbc_val = 0;
3262                 }
3263         }
3264
3265         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3266         /*
3267          * FIXME this is racy. FBC might get enabled later.
3268          * What we should check here is whether FBC can be
3269          * enabled sometime later.
3270          */
3271         if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3272             intel_fbc_is_active(dev_priv)) {
3273                 for (level = 2; level <= max_level; level++) {
3274                         struct intel_wm_level *wm = &merged->wm[level];
3275
3276                         wm->enable = false;
3277                 }
3278         }
3279 }
3280
3281 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3282 {
3283         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3284         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3285 }
3286
3287 /* The value we need to program into the WM_LPx latency field */
3288 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
3289 {
3290         struct drm_i915_private *dev_priv = to_i915(dev);
3291
3292         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3293                 return 2 * level;
3294         else
3295                 return dev_priv->wm.pri_latency[level];
3296 }
3297
3298 static void ilk_compute_wm_results(struct drm_device *dev,
3299                                    const struct intel_pipe_wm *merged,
3300                                    enum intel_ddb_partitioning partitioning,
3301                                    struct ilk_wm_values *results)
3302 {
3303         struct drm_i915_private *dev_priv = to_i915(dev);
3304         struct intel_crtc *intel_crtc;
3305         int level, wm_lp;
3306
3307         results->enable_fbc_wm = merged->fbc_wm_enabled;
3308         results->partitioning = partitioning;
3309
3310         /* LP1+ register values */
3311         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3312                 const struct intel_wm_level *r;
3313
3314                 level = ilk_wm_lp_to_level(wm_lp, merged);
3315
3316                 r = &merged->wm[level];
3317
3318                 /*
3319                  * Maintain the watermark values even if the level is
3320                  * disabled. Doing otherwise could cause underruns.
3321                  */
3322                 results->wm_lp[wm_lp - 1] =
3323                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3324                         (r->pri_val << WM1_LP_SR_SHIFT) |
3325                         r->cur_val;
3326
3327                 if (r->enable)
3328                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3329
3330                 if (INTEL_GEN(dev_priv) >= 8)
3331                         results->wm_lp[wm_lp - 1] |=
3332                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3333                 else
3334                         results->wm_lp[wm_lp - 1] |=
3335                                 r->fbc_val << WM1_LP_FBC_SHIFT;
3336
3337                 /*
3338                  * Always set WM1S_LP_EN when spr_val != 0, even if the
3339                  * level is disabled. Doing otherwise could cause underruns.
3340                  */
3341                 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3342                         WARN_ON(wm_lp != 1);
3343                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3344                 } else
3345                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3346         }
3347
3348         /* LP0 register values */
3349         for_each_intel_crtc(dev, intel_crtc) {
3350                 enum pipe pipe = intel_crtc->pipe;
3351                 const struct intel_wm_level *r =
3352                         &intel_crtc->wm.active.ilk.wm[0];
3353
3354                 if (WARN_ON(!r->enable))
3355                         continue;
3356
3357                 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3358
3359                 results->wm_pipe[pipe] =
3360                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3361                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3362                         r->cur_val;
3363         }
3364 }
3365
3366 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3367  * case both are at the same level. Prefer r1 in case they're the same. */
3368 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3369                                                   struct intel_pipe_wm *r1,
3370                                                   struct intel_pipe_wm *r2)
3371 {
3372         int level, max_level = ilk_wm_max_level(to_i915(dev));
3373         int level1 = 0, level2 = 0;
3374
3375         for (level = 1; level <= max_level; level++) {
3376                 if (r1->wm[level].enable)
3377                         level1 = level;
3378                 if (r2->wm[level].enable)
3379                         level2 = level;
3380         }
3381
3382         if (level1 == level2) {
3383                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3384                         return r2;
3385                 else
3386                         return r1;
3387         } else if (level1 > level2) {
3388                 return r1;
3389         } else {
3390                 return r2;
3391         }
3392 }
3393
3394 /* dirty bits used to track which watermarks need changes */
3395 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3396 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3397 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3398 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3399 #define WM_DIRTY_FBC (1 << 24)
3400 #define WM_DIRTY_DDB (1 << 25)
3401
3402 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3403                                          const struct ilk_wm_values *old,
3404                                          const struct ilk_wm_values *new)
3405 {
3406         unsigned int dirty = 0;
3407         enum pipe pipe;
3408         int wm_lp;
3409
3410         for_each_pipe(dev_priv, pipe) {
3411                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3412                         dirty |= WM_DIRTY_LINETIME(pipe);
3413                         /* Must disable LP1+ watermarks too */
3414                         dirty |= WM_DIRTY_LP_ALL;
3415                 }
3416
3417                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3418                         dirty |= WM_DIRTY_PIPE(pipe);
3419                         /* Must disable LP1+ watermarks too */
3420                         dirty |= WM_DIRTY_LP_ALL;
3421                 }
3422         }
3423
3424         if (old->enable_fbc_wm != new->enable_fbc_wm) {
3425                 dirty |= WM_DIRTY_FBC;
3426                 /* Must disable LP1+ watermarks too */
3427                 dirty |= WM_DIRTY_LP_ALL;
3428         }
3429
3430         if (old->partitioning != new->partitioning) {
3431                 dirty |= WM_DIRTY_DDB;
3432                 /* Must disable LP1+ watermarks too */
3433                 dirty |= WM_DIRTY_LP_ALL;
3434         }
3435
3436         /* LP1+ watermarks already deemed dirty, no need to continue */
3437         if (dirty & WM_DIRTY_LP_ALL)
3438                 return dirty;
3439
3440         /* Find the lowest numbered LP1+ watermark in need of an update... */
3441         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3442                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3443                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3444                         break;
3445         }
3446
3447         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3448         for (; wm_lp <= 3; wm_lp++)
3449                 dirty |= WM_DIRTY_LP(wm_lp);
3450
3451         return dirty;
3452 }
3453
3454 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3455                                unsigned int dirty)
3456 {
3457         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3458         bool changed = false;
3459
3460         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3461                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3462                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3463                 changed = true;
3464         }
3465         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3466                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3467                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3468                 changed = true;
3469         }
3470         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3471                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3472                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3473                 changed = true;
3474         }
3475
3476         /*
3477          * Don't touch WM1S_LP_EN here.
3478          * Doing so could cause underruns.
3479          */
3480
3481         return changed;
3482 }
3483
3484 /*
3485  * The spec says we shouldn't write when we don't need, because every write
3486  * causes WMs to be re-evaluated, expending some power.
3487  */
3488 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3489                                 struct ilk_wm_values *results)
3490 {
3491         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3492         unsigned int dirty;
3493         uint32_t val;
3494
3495         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3496         if (!dirty)
3497                 return;
3498
3499         _ilk_disable_lp_wm(dev_priv, dirty);
3500
3501         if (dirty & WM_DIRTY_PIPE(PIPE_A))
3502                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3503         if (dirty & WM_DIRTY_PIPE(PIPE_B))
3504                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3505         if (dirty & WM_DIRTY_PIPE(PIPE_C))
3506                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3507
3508         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3509                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3510         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3511                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3512         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3513                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3514
3515         if (dirty & WM_DIRTY_DDB) {
3516                 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3517                         val = I915_READ(WM_MISC);
3518                         if (results->partitioning == INTEL_DDB_PART_1_2)
3519                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
3520                         else
3521                                 val |= WM_MISC_DATA_PARTITION_5_6;
3522                         I915_WRITE(WM_MISC, val);
3523                 } else {
3524                         val = I915_READ(DISP_ARB_CTL2);
3525                         if (results->partitioning == INTEL_DDB_PART_1_2)
3526                                 val &= ~DISP_DATA_PARTITION_5_6;
3527                         else
3528                                 val |= DISP_DATA_PARTITION_5_6;
3529                         I915_WRITE(DISP_ARB_CTL2, val);
3530                 }
3531         }
3532
3533         if (dirty & WM_DIRTY_FBC) {
3534                 val = I915_READ(DISP_ARB_CTL);
3535                 if (results->enable_fbc_wm)
3536                         val &= ~DISP_FBC_WM_DIS;
3537                 else
3538                         val |= DISP_FBC_WM_DIS;
3539                 I915_WRITE(DISP_ARB_CTL, val);
3540         }
3541
3542         if (dirty & WM_DIRTY_LP(1) &&
3543             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3544                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3545
3546         if (INTEL_GEN(dev_priv) >= 7) {
3547                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3548                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3549                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3550                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3551         }
3552
3553         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3554                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3555         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3556                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3557         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3558                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3559
3560         dev_priv->wm.hw = *results;
3561 }
3562
3563 bool ilk_disable_lp_wm(struct drm_device *dev)
3564 {
3565         struct drm_i915_private *dev_priv = to_i915(dev);
3566
3567         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3568 }
3569
3570 /*
3571  * FIXME: We still don't have the proper code detect if we need to apply the WA,
3572  * so assume we'll always need it in order to avoid underruns.
3573  */
3574 static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
3575 {
3576         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3577
3578         if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3579                 return true;
3580
3581         return false;
3582 }
3583
3584 static bool
3585 intel_has_sagv(struct drm_i915_private *dev_priv)
3586 {
3587         if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
3588             IS_CANNONLAKE(dev_priv))
3589                 return true;
3590
3591         if (IS_SKYLAKE(dev_priv) &&
3592             dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
3593                 return true;
3594
3595         return false;
3596 }
3597
3598 /*
3599  * SAGV dynamically adjusts the system agent voltage and clock frequencies
3600  * depending on power and performance requirements. The display engine access
3601  * to system memory is blocked during the adjustment time. Because of the
3602  * blocking time, having this enabled can cause full system hangs and/or pipe
3603  * underruns if we don't meet all of the following requirements:
3604  *
3605  *  - <= 1 pipe enabled
3606  *  - All planes can enable watermarks for latencies >= SAGV engine block time
3607  *  - We're not using an interlaced display configuration
3608  */
3609 int
3610 intel_enable_sagv(struct drm_i915_private *dev_priv)
3611 {
3612         int ret;
3613
3614         if (!intel_has_sagv(dev_priv))
3615                 return 0;
3616
3617         if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3618                 return 0;
3619
3620         DRM_DEBUG_KMS("Enabling the SAGV\n");
3621         mutex_lock(&dev_priv->pcu_lock);
3622
3623         ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3624                                       GEN9_SAGV_ENABLE);
3625
3626         /* We don't need to wait for the SAGV when enabling */
3627         mutex_unlock(&dev_priv->pcu_lock);
3628
3629         /*
3630          * Some skl systems, pre-release machines in particular,
3631          * don't actually have an SAGV.
3632          */
3633         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3634                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3635                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3636                 return 0;
3637         } else if (ret < 0) {
3638                 DRM_ERROR("Failed to enable the SAGV\n");
3639                 return ret;
3640         }
3641
3642         dev_priv->sagv_status = I915_SAGV_ENABLED;
3643         return 0;
3644 }
3645
3646 int
3647 intel_disable_sagv(struct drm_i915_private *dev_priv)
3648 {
3649         int ret;
3650
3651         if (!intel_has_sagv(dev_priv))
3652                 return 0;
3653
3654         if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3655                 return 0;
3656
3657         DRM_DEBUG_KMS("Disabling the SAGV\n");
3658         mutex_lock(&dev_priv->pcu_lock);
3659
3660         /* bspec says to keep retrying for at least 1 ms */
3661         ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3662                                 GEN9_SAGV_DISABLE,
3663                                 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3664                                 1);
3665         mutex_unlock(&dev_priv->pcu_lock);
3666
3667         /*
3668          * Some skl systems, pre-release machines in particular,
3669          * don't actually have an SAGV.
3670          */
3671         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3672                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3673                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3674                 return 0;
3675         } else if (ret < 0) {
3676                 DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
3677                 return ret;
3678         }
3679
3680         dev_priv->sagv_status = I915_SAGV_DISABLED;
3681         return 0;
3682 }
3683
3684 bool intel_can_enable_sagv(struct drm_atomic_state *state)
3685 {
3686         struct drm_device *dev = state->dev;
3687         struct drm_i915_private *dev_priv = to_i915(dev);
3688         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3689         struct intel_crtc *crtc;
3690         struct intel_plane *plane;
3691         struct intel_crtc_state *cstate;
3692         enum pipe pipe;
3693         int level, latency;
3694         int sagv_block_time_us;
3695
3696         if (!intel_has_sagv(dev_priv))
3697                 return false;
3698
3699         if (IS_GEN9(dev_priv))
3700                 sagv_block_time_us = 30;
3701         else if (IS_GEN10(dev_priv))
3702                 sagv_block_time_us = 20;
3703         else
3704                 sagv_block_time_us = 10;
3705
3706         /*
3707          * SKL+ workaround: bspec recommends we disable the SAGV when we have
3708          * more then one pipe enabled
3709          *
3710          * If there are no active CRTCs, no additional checks need be performed
3711          */
3712         if (hweight32(intel_state->active_crtcs) == 0)
3713                 return true;
3714         else if (hweight32(intel_state->active_crtcs) > 1)
3715                 return false;
3716
3717         /* Since we're now guaranteed to only have one active CRTC... */
3718         pipe = ffs(intel_state->active_crtcs) - 1;
3719         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3720         cstate = to_intel_crtc_state(crtc->base.state);
3721
3722         if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3723                 return false;
3724
3725         for_each_intel_plane_on_crtc(dev, crtc, plane) {
3726                 struct skl_plane_wm *wm =
3727                         &cstate->wm.skl.optimal.planes[plane->id];
3728
3729                 /* Skip this plane if it's not enabled */
3730                 if (!wm->wm[0].plane_en)
3731                         continue;
3732
3733                 /* Find the highest enabled wm level for this plane */
3734                 for (level = ilk_wm_max_level(dev_priv);
3735                      !wm->wm[level].plane_en; --level)
3736                      { }
3737
3738                 latency = dev_priv->wm.skl_latency[level];
3739
3740                 if (skl_needs_memory_bw_wa(intel_state) &&
3741                     plane->base.state->fb->modifier ==
3742                     I915_FORMAT_MOD_X_TILED)
3743                         latency += 15;
3744
3745                 /*
3746                  * If any of the planes on this pipe don't enable wm levels that
3747                  * incur memory latencies higher than sagv_block_time_us we
3748                  * can't enable the SAGV.
3749                  */
3750                 if (latency < sagv_block_time_us)
3751                         return false;
3752         }
3753
3754         return true;
3755 }
3756
3757 static void
3758 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3759                                    const struct intel_crtc_state *cstate,
3760                                    struct skl_ddb_entry *alloc, /* out */
3761                                    int *num_active /* out */)
3762 {
3763         struct drm_atomic_state *state = cstate->base.state;
3764         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3765         struct drm_i915_private *dev_priv = to_i915(dev);
3766         struct drm_crtc *for_crtc = cstate->base.crtc;
3767         unsigned int pipe_size, ddb_size;
3768         int nth_active_pipe;
3769
3770         if (WARN_ON(!state) || !cstate->base.active) {
3771                 alloc->start = 0;
3772                 alloc->end = 0;
3773                 *num_active = hweight32(dev_priv->active_crtcs);
3774                 return;
3775         }
3776
3777         if (intel_state->active_pipe_changes)
3778                 *num_active = hweight32(intel_state->active_crtcs);
3779         else
3780                 *num_active = hweight32(dev_priv->active_crtcs);
3781
3782         ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3783         WARN_ON(ddb_size == 0);
3784
3785         if (INTEL_GEN(dev_priv) < 11)
3786                 ddb_size -= 4; /* 4 blocks for bypass path allocation */
3787
3788         /*
3789          * If the state doesn't change the active CRTC's, then there's
3790          * no need to recalculate; the existing pipe allocation limits
3791          * should remain unchanged.  Note that we're safe from racing
3792          * commits since any racing commit that changes the active CRTC
3793          * list would need to grab _all_ crtc locks, including the one
3794          * we currently hold.
3795          */
3796         if (!intel_state->active_pipe_changes) {
3797                 /*
3798                  * alloc may be cleared by clear_intel_crtc_state,
3799                  * copy from old state to be sure
3800                  */
3801                 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3802                 return;
3803         }
3804
3805         nth_active_pipe = hweight32(intel_state->active_crtcs &
3806                                     (drm_crtc_mask(for_crtc) - 1));
3807         pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3808         alloc->start = nth_active_pipe * ddb_size / *num_active;
3809         alloc->end = alloc->start + pipe_size;
3810 }
3811
3812 static unsigned int skl_cursor_allocation(int num_active)
3813 {
3814         if (num_active == 1)
3815                 return 32;
3816
3817         return 8;
3818 }
3819
3820 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3821 {
3822         entry->start = reg & 0x3ff;
3823         entry->end = (reg >> 16) & 0x3ff;
3824         if (entry->end)
3825                 entry->end += 1;
3826 }
3827
3828 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3829                           struct skl_ddb_allocation *ddb /* out */)
3830 {
3831         struct intel_crtc *crtc;
3832
3833         memset(ddb, 0, sizeof(*ddb));
3834
3835         for_each_intel_crtc(&dev_priv->drm, crtc) {
3836                 enum intel_display_power_domain power_domain;
3837                 enum plane_id plane_id;
3838                 enum pipe pipe = crtc->pipe;
3839
3840                 power_domain = POWER_DOMAIN_PIPE(pipe);
3841                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3842                         continue;
3843
3844                 for_each_plane_id_on_crtc(crtc, plane_id) {
3845                         u32 val;
3846
3847                         if (plane_id != PLANE_CURSOR)
3848                                 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3849                         else
3850                                 val = I915_READ(CUR_BUF_CFG(pipe));
3851
3852                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
3853                 }
3854
3855                 intel_display_power_put(dev_priv, power_domain);
3856         }
3857 }
3858
3859 /*
3860  * Determines the downscale amount of a plane for the purposes of watermark calculations.
3861  * The bspec defines downscale amount as:
3862  *
3863  * """
3864  * Horizontal down scale amount = maximum[1, Horizontal source size /
3865  *                                           Horizontal destination size]
3866  * Vertical down scale amount = maximum[1, Vertical source size /
3867  *                                         Vertical destination size]
3868  * Total down scale amount = Horizontal down scale amount *
3869  *                           Vertical down scale amount
3870  * """
3871  *
3872  * Return value is provided in 16.16 fixed point form to retain fractional part.
3873  * Caller should take care of dividing & rounding off the value.
3874  */
3875 static uint_fixed_16_16_t
3876 skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
3877                            const struct intel_plane_state *pstate)
3878 {
3879         struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3880         uint32_t src_w, src_h, dst_w, dst_h;
3881         uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
3882         uint_fixed_16_16_t downscale_h, downscale_w;
3883
3884         if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3885                 return u32_to_fixed16(0);
3886
3887         /* n.b., src is 16.16 fixed point, dst is whole integer */
3888         if (plane->id == PLANE_CURSOR) {
3889                 /*
3890                  * Cursors only support 0/180 degree rotation,
3891                  * hence no need to account for rotation here.
3892                  */
3893                 src_w = pstate->base.src_w >> 16;
3894                 src_h = pstate->base.src_h >> 16;
3895                 dst_w = pstate->base.crtc_w;
3896                 dst_h = pstate->base.crtc_h;
3897         } else {
3898                 /*
3899                  * Src coordinates are already rotated by 270 degrees for
3900                  * the 90/270 degree plane rotation cases (to match the
3901                  * GTT mapping), hence no need to account for rotation here.
3902                  */
3903                 src_w = drm_rect_width(&pstate->base.src) >> 16;
3904                 src_h = drm_rect_height(&pstate->base.src) >> 16;
3905                 dst_w = drm_rect_width(&pstate->base.dst);
3906                 dst_h = drm_rect_height(&pstate->base.dst);
3907         }
3908
3909         fp_w_ratio = div_fixed16(src_w, dst_w);
3910         fp_h_ratio = div_fixed16(src_h, dst_h);
3911         downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
3912         downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3913
3914         return mul_fixed16(downscale_w, downscale_h);
3915 }
3916
3917 static uint_fixed_16_16_t
3918 skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
3919 {
3920         uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
3921
3922         if (!crtc_state->base.enable)
3923                 return pipe_downscale;
3924
3925         if (crtc_state->pch_pfit.enabled) {
3926                 uint32_t src_w, src_h, dst_w, dst_h;
3927                 uint32_t pfit_size = crtc_state->pch_pfit.size;
3928                 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
3929                 uint_fixed_16_16_t downscale_h, downscale_w;
3930
3931                 src_w = crtc_state->pipe_src_w;
3932                 src_h = crtc_state->pipe_src_h;
3933                 dst_w = pfit_size >> 16;
3934                 dst_h = pfit_size & 0xffff;
3935
3936                 if (!dst_w || !dst_h)
3937                         return pipe_downscale;
3938
3939                 fp_w_ratio = div_fixed16(src_w, dst_w);
3940                 fp_h_ratio = div_fixed16(src_h, dst_h);
3941                 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
3942                 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3943
3944                 pipe_downscale = mul_fixed16(downscale_w, downscale_h);
3945         }
3946
3947         return pipe_downscale;
3948 }
3949
3950 int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
3951                                   struct intel_crtc_state *cstate)
3952 {
3953         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3954         struct drm_crtc_state *crtc_state = &cstate->base;
3955         struct drm_atomic_state *state = crtc_state->state;
3956         struct drm_plane *plane;
3957         const struct drm_plane_state *pstate;
3958         struct intel_plane_state *intel_pstate;
3959         int crtc_clock, dotclk;
3960         uint32_t pipe_max_pixel_rate;
3961         uint_fixed_16_16_t pipe_downscale;
3962         uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
3963
3964         if (!cstate->base.enable)
3965                 return 0;
3966
3967         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
3968                 uint_fixed_16_16_t plane_downscale;
3969                 uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
3970                 int bpp;
3971
3972                 if (!intel_wm_plane_visible(cstate,
3973                                             to_intel_plane_state(pstate)))
3974                         continue;
3975
3976                 if (WARN_ON(!pstate->fb))
3977                         return -EINVAL;
3978
3979                 intel_pstate = to_intel_plane_state(pstate);
3980                 plane_downscale = skl_plane_downscale_amount(cstate,
3981                                                              intel_pstate);
3982                 bpp = pstate->fb->format->cpp[0] * 8;
3983                 if (bpp == 64)
3984                         plane_downscale = mul_fixed16(plane_downscale,
3985                                                       fp_9_div_8);
3986
3987                 max_downscale = max_fixed16(plane_downscale, max_downscale);
3988         }
3989         pipe_downscale = skl_pipe_downscale_amount(cstate);
3990
3991         pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
3992
3993         crtc_clock = crtc_state->adjusted_mode.crtc_clock;
3994         dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
3995
3996         if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3997                 dotclk *= 2;
3998
3999         pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4000
4001         if (pipe_max_pixel_rate < crtc_clock) {
4002                 DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4003                 return -EINVAL;
4004         }
4005
4006         return 0;
4007 }
4008
4009 static unsigned int
4010 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
4011                              const struct drm_plane_state *pstate,
4012                              int y)
4013 {
4014         struct intel_plane *plane = to_intel_plane(pstate->plane);
4015         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4016         uint32_t data_rate;
4017         uint32_t width = 0, height = 0;
4018         struct drm_framebuffer *fb;
4019         u32 format;
4020         uint_fixed_16_16_t down_scale_amount;
4021
4022         if (!intel_pstate->base.visible)
4023                 return 0;
4024
4025         fb = pstate->fb;
4026         format = fb->format->format;
4027
4028         if (plane->id == PLANE_CURSOR)
4029                 return 0;
4030         if (y && format != DRM_FORMAT_NV12)
4031                 return 0;
4032
4033         /*
4034          * Src coordinates are already rotated by 270 degrees for
4035          * the 90/270 degree plane rotation cases (to match the
4036          * GTT mapping), hence no need to account for rotation here.
4037          */
4038         width = drm_rect_width(&intel_pstate->base.src) >> 16;
4039         height = drm_rect_height(&intel_pstate->base.src) >> 16;
4040
4041         /* for planar format */
4042         if (format == DRM_FORMAT_NV12) {
4043                 if (y)  /* y-plane data rate */
4044                         data_rate = width * height *
4045                                 fb->format->cpp[0];
4046                 else    /* uv-plane data rate */
4047                         data_rate = (width / 2) * (height / 2) *
4048                                 fb->format->cpp[1];
4049         } else {
4050                 /* for packed formats */
4051                 data_rate = width * height * fb->format->cpp[0];
4052         }
4053
4054         down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4055
4056         return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4057 }
4058
4059 /*
4060  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
4061  * a 8192x4096@32bpp framebuffer:
4062  *   3 * 4096 * 8192  * 4 < 2^32
4063  */
4064 static unsigned int
4065 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4066                                  unsigned *plane_data_rate,
4067                                  unsigned *plane_y_data_rate)
4068 {
4069         struct drm_crtc_state *cstate = &intel_cstate->base;
4070         struct drm_atomic_state *state = cstate->state;
4071         struct drm_plane *plane;
4072         const struct drm_plane_state *pstate;
4073         unsigned int total_data_rate = 0;
4074
4075         if (WARN_ON(!state))
4076                 return 0;
4077
4078         /* Calculate and cache data rate for each plane */
4079         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4080                 enum plane_id plane_id = to_intel_plane(plane)->id;
4081                 unsigned int rate;
4082
4083                 /* packed/uv */
4084                 rate = skl_plane_relative_data_rate(intel_cstate,
4085                                                     pstate, 0);
4086                 plane_data_rate[plane_id] = rate;
4087
4088                 total_data_rate += rate;
4089
4090                 /* y-plane */
4091                 rate = skl_plane_relative_data_rate(intel_cstate,
4092                                                     pstate, 1);
4093                 plane_y_data_rate[plane_id] = rate;
4094
4095                 total_data_rate += rate;
4096         }
4097
4098         return total_data_rate;
4099 }
4100
4101 static uint16_t
4102 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
4103                   const int y)
4104 {
4105         struct drm_framebuffer *fb = pstate->fb;
4106         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4107         uint32_t src_w, src_h;
4108         uint32_t min_scanlines = 8;
4109         uint8_t plane_bpp;
4110
4111         if (WARN_ON(!fb))
4112                 return 0;
4113
4114         /* For packed formats, no y-plane, return 0 */
4115         if (y && fb->format->format != DRM_FORMAT_NV12)
4116                 return 0;
4117
4118         /* For Non Y-tile return 8-blocks */
4119         if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4120             fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
4121             fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
4122             fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
4123                 return 8;
4124
4125         /*
4126          * Src coordinates are already rotated by 270 degrees for
4127          * the 90/270 degree plane rotation cases (to match the
4128          * GTT mapping), hence no need to account for rotation here.
4129          */
4130         src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
4131         src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4132
4133         /* Halve UV plane width and height for NV12 */
4134         if (fb->format->format == DRM_FORMAT_NV12 && !y) {
4135                 src_w /= 2;
4136                 src_h /= 2;
4137         }
4138
4139         if (fb->format->format == DRM_FORMAT_NV12 && !y)
4140                 plane_bpp = fb->format->cpp[1];
4141         else
4142                 plane_bpp = fb->format->cpp[0];
4143
4144         if (drm_rotation_90_or_270(pstate->rotation)) {
4145                 switch (plane_bpp) {
4146                 case 1:
4147                         min_scanlines = 32;
4148                         break;
4149                 case 2:
4150                         min_scanlines = 16;
4151                         break;
4152                 case 4:
4153                         min_scanlines = 8;
4154                         break;
4155                 case 8:
4156                         min_scanlines = 4;
4157                         break;
4158                 default:
4159                         WARN(1, "Unsupported pixel depth %u for rotation",
4160                              plane_bpp);
4161                         min_scanlines = 32;
4162                 }
4163         }
4164
4165         return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
4166 }
4167
4168 static void
4169 skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
4170                  uint16_t *minimum, uint16_t *y_minimum)
4171 {
4172         const struct drm_plane_state *pstate;
4173         struct drm_plane *plane;
4174
4175         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4176                 enum plane_id plane_id = to_intel_plane(plane)->id;
4177
4178                 if (plane_id == PLANE_CURSOR)
4179                         continue;
4180
4181                 if (!pstate->visible)
4182                         continue;
4183
4184                 minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
4185                 y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4186         }
4187
4188         minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
4189 }
4190
4191 static int
4192 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4193                       struct skl_ddb_allocation *ddb /* out */)
4194 {
4195         struct drm_atomic_state *state = cstate->base.state;
4196         struct drm_crtc *crtc = cstate->base.crtc;
4197         struct drm_device *dev = crtc->dev;
4198         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4199         enum pipe pipe = intel_crtc->pipe;
4200         struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4201         uint16_t alloc_size, start;
4202         uint16_t minimum[I915_MAX_PLANES] = {};
4203         uint16_t y_minimum[I915_MAX_PLANES] = {};
4204         unsigned int total_data_rate;
4205         enum plane_id plane_id;
4206         int num_active;
4207         unsigned plane_data_rate[I915_MAX_PLANES] = {};
4208         unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
4209         uint16_t total_min_blocks = 0;
4210
4211         /* Clear the partitioning for disabled planes. */
4212         memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
4213         memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
4214
4215         if (WARN_ON(!state))
4216                 return 0;
4217
4218         if (!cstate->base.active) {
4219                 alloc->start = alloc->end = 0;
4220                 return 0;
4221         }
4222
4223         skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
4224         alloc_size = skl_ddb_entry_size(alloc);
4225         if (alloc_size == 0)
4226                 return 0;
4227
4228         skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
4229
4230         /*
4231          * 1. Allocate the mininum required blocks for each active plane
4232          * and allocate the cursor, it doesn't require extra allocation
4233          * proportional to the data rate.
4234          */
4235
4236         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4237                 total_min_blocks += minimum[plane_id];
4238                 total_min_blocks += y_minimum[plane_id];
4239         }
4240
4241         if (total_min_blocks > alloc_size) {
4242                 DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4243                 DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
4244                                                         alloc_size);
4245                 return -EINVAL;
4246         }
4247
4248         alloc_size -= total_min_blocks;
4249         ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4250         ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
4251
4252         /*
4253          * 2. Distribute the remaining space in proportion to the amount of
4254          * data each plane needs to fetch from memory.
4255          *
4256          * FIXME: we may not allocate every single block here.
4257          */
4258         total_data_rate = skl_get_total_relative_data_rate(cstate,
4259                                                            plane_data_rate,
4260                                                            plane_y_data_rate);
4261         if (total_data_rate == 0)
4262                 return 0;
4263
4264         start = alloc->start;
4265         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4266                 unsigned int data_rate, y_data_rate;
4267                 uint16_t plane_blocks, y_plane_blocks = 0;
4268
4269                 if (plane_id == PLANE_CURSOR)
4270                         continue;
4271
4272                 data_rate = plane_data_rate[plane_id];
4273
4274                 /*
4275                  * allocation for (packed formats) or (uv-plane part of planar format):
4276                  * promote the expression to 64 bits to avoid overflowing, the
4277                  * result is < available as data_rate / total_data_rate < 1
4278                  */
4279                 plane_blocks = minimum[plane_id];
4280                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
4281                                         total_data_rate);
4282
4283                 /* Leave disabled planes at (0,0) */
4284                 if (data_rate) {
4285                         ddb->plane[pipe][plane_id].start = start;
4286                         ddb->plane[pipe][plane_id].end = start + plane_blocks;
4287                 }
4288
4289                 start += plane_blocks;
4290
4291                 /*
4292                  * allocation for y_plane part of planar format:
4293                  */
4294                 y_data_rate = plane_y_data_rate[plane_id];
4295
4296                 y_plane_blocks = y_minimum[plane_id];
4297                 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
4298                                         total_data_rate);
4299
4300                 if (y_data_rate) {
4301                         ddb->y_plane[pipe][plane_id].start = start;
4302                         ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
4303                 }
4304
4305                 start += y_plane_blocks;
4306         }
4307
4308         return 0;
4309 }
4310
4311 /*
4312  * The max latency should be 257 (max the punit can code is 255 and we add 2us
4313  * for the read latency) and cpp should always be <= 8, so that
4314  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4315  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4316 */
4317 static uint_fixed_16_16_t
4318 skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
4319                uint8_t cpp, uint32_t latency, uint32_t dbuf_block_size)
4320 {
4321         uint32_t wm_intermediate_val;
4322         uint_fixed_16_16_t ret;
4323
4324         if (latency == 0)
4325                 return FP_16_16_MAX;
4326
4327         wm_intermediate_val = latency * pixel_rate * cpp;
4328         ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4329
4330         if (INTEL_GEN(dev_priv) >= 10)
4331                 ret = add_fixed16_u32(ret, 1);
4332
4333         return ret;
4334 }
4335
4336 static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
4337                         uint32_t pipe_htotal,
4338                         uint32_t latency,
4339                         uint_fixed_16_16_t plane_blocks_per_line)
4340 {
4341         uint32_t wm_intermediate_val;
4342         uint_fixed_16_16_t ret;
4343
4344         if (latency == 0)
4345                 return FP_16_16_MAX;
4346
4347         wm_intermediate_val = latency * pixel_rate;
4348         wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4349                                            pipe_htotal * 1000);
4350         ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4351         return ret;
4352 }
4353
4354 static uint_fixed_16_16_t
4355 intel_get_linetime_us(struct intel_crtc_state *cstate)
4356 {
4357         uint32_t pixel_rate;
4358         uint32_t crtc_htotal;
4359         uint_fixed_16_16_t linetime_us;
4360
4361         if (!cstate->base.active)
4362                 return u32_to_fixed16(0);
4363
4364         pixel_rate = cstate->pixel_rate;
4365
4366         if (WARN_ON(pixel_rate == 0))
4367                 return u32_to_fixed16(0);
4368
4369         crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4370         linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4371
4372         return linetime_us;
4373 }
4374
4375 static uint32_t
4376 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
4377                               const struct intel_plane_state *pstate)
4378 {
4379         uint64_t adjusted_pixel_rate;
4380         uint_fixed_16_16_t downscale_amount;
4381
4382         /* Shouldn't reach here on disabled planes... */
4383         if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4384                 return 0;
4385
4386         /*
4387          * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4388          * with additional adjustments for plane-specific scaling.
4389          */
4390         adjusted_pixel_rate = cstate->pixel_rate;
4391         downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4392
4393         return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4394                                             downscale_amount);
4395 }
4396
4397 static int
4398 skl_compute_plane_wm_params(const struct drm_i915_private *dev_priv,
4399                             struct intel_crtc_state *cstate,
4400                             const struct intel_plane_state *intel_pstate,
4401                             struct skl_wm_params *wp)
4402 {
4403         struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4404         const struct drm_plane_state *pstate = &intel_pstate->base;
4405         const struct drm_framebuffer *fb = pstate->fb;
4406         uint32_t interm_pbpl;
4407         struct intel_atomic_state *state =
4408                 to_intel_atomic_state(cstate->base.state);
4409         bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4410
4411         if (!intel_wm_plane_visible(cstate, intel_pstate))
4412                 return 0;
4413
4414         wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
4415                       fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
4416                       fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4417                       fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4418         wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
4419         wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4420                          fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4421
4422         if (plane->id == PLANE_CURSOR) {
4423                 wp->width = intel_pstate->base.crtc_w;
4424         } else {
4425                 /*
4426                  * Src coordinates are already rotated by 270 degrees for
4427                  * the 90/270 degree plane rotation cases (to match the
4428                  * GTT mapping), hence no need to account for rotation here.
4429                  */
4430                 wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4431         }
4432
4433         wp->cpp = (fb->format->format == DRM_FORMAT_NV12) ? fb->format->cpp[1] :
4434                                                             fb->format->cpp[0];
4435         wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
4436                                                              intel_pstate);
4437
4438         if (INTEL_GEN(dev_priv) >= 11 &&
4439             fb->modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 8)
4440                 wp->dbuf_block_size = 256;
4441         else
4442                 wp->dbuf_block_size = 512;
4443
4444         if (drm_rotation_90_or_270(pstate->rotation)) {
4445
4446                 switch (wp->cpp) {
4447                 case 1:
4448                         wp->y_min_scanlines = 16;
4449                         break;
4450                 case 2:
4451                         wp->y_min_scanlines = 8;
4452                         break;
4453                 case 4:
4454                         wp->y_min_scanlines = 4;
4455                         break;
4456                 default:
4457                         MISSING_CASE(wp->cpp);
4458                         return -EINVAL;
4459                 }
4460         } else {
4461                 wp->y_min_scanlines = 4;
4462         }
4463
4464         if (apply_memory_bw_wa)
4465                 wp->y_min_scanlines *= 2;
4466
4467         wp->plane_bytes_per_line = wp->width * wp->cpp;
4468         if (wp->y_tiled) {
4469                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4470                                            wp->y_min_scanlines,
4471                                            wp->dbuf_block_size);
4472
4473                 if (INTEL_GEN(dev_priv) >= 10)
4474                         interm_pbpl++;
4475
4476                 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
4477                                                         wp->y_min_scanlines);
4478         } else if (wp->x_tiled && IS_GEN9(dev_priv)) {
4479                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4480                                            wp->dbuf_block_size);
4481                 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4482         } else {
4483                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4484                                            wp->dbuf_block_size) + 1;
4485                 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4486         }
4487
4488         wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
4489                                              wp->plane_blocks_per_line);
4490         wp->linetime_us = fixed16_to_u32_round_up(
4491                                         intel_get_linetime_us(cstate));
4492
4493         return 0;
4494 }
4495
4496 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
4497                                 struct intel_crtc_state *cstate,
4498                                 const struct intel_plane_state *intel_pstate,
4499                                 uint16_t ddb_allocation,
4500                                 int level,
4501                                 const struct skl_wm_params *wp,
4502                                 uint16_t *out_blocks, /* out */
4503                                 uint8_t *out_lines, /* out */
4504                                 bool *enabled /* out */)
4505 {
4506         const struct drm_plane_state *pstate = &intel_pstate->base;
4507         uint32_t latency = dev_priv->wm.skl_latency[level];
4508         uint_fixed_16_16_t method1, method2;
4509         uint_fixed_16_16_t selected_result;
4510         uint32_t res_blocks, res_lines;
4511         struct intel_atomic_state *state =
4512                 to_intel_atomic_state(cstate->base.state);
4513         bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4514         uint32_t min_disp_buf_needed;
4515
4516         if (latency == 0 ||
4517             !intel_wm_plane_visible(cstate, intel_pstate)) {
4518                 *enabled = false;
4519                 return 0;
4520         }
4521
4522         /* Display WA #1141: kbl,cfl */
4523         if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
4524             IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4525             dev_priv->ipc_enabled)
4526                 latency += 4;
4527
4528         if (apply_memory_bw_wa && wp->x_tiled)
4529                 latency += 15;
4530
4531         method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4532                                  wp->cpp, latency, wp->dbuf_block_size);
4533         method2 = skl_wm_method2(wp->plane_pixel_rate,
4534                                  cstate->base.adjusted_mode.crtc_htotal,
4535                                  latency,
4536                                  wp->plane_blocks_per_line);
4537
4538         if (wp->y_tiled) {
4539                 selected_result = max_fixed16(method2, wp->y_tile_minimum);
4540         } else {
4541                 if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4542                      wp->dbuf_block_size < 1) &&
4543                      (wp->plane_bytes_per_line / wp->dbuf_block_size < 1))
4544                         selected_result = method2;
4545                 else if (ddb_allocation >=
4546                          fixed16_to_u32_round_up(wp->plane_blocks_per_line))
4547                         selected_result = min_fixed16(method1, method2);
4548                 else if (latency >= wp->linetime_us)
4549                         selected_result = min_fixed16(method1, method2);
4550                 else
4551                         selected_result = method1;
4552         }
4553
4554         res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4555         res_lines = div_round_up_fixed16(selected_result,
4556                                          wp->plane_blocks_per_line);
4557
4558         /* Display WA #1125: skl,bxt,kbl,glk */
4559         if (level == 0 && wp->rc_surface)
4560                 res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
4561
4562         /* Display WA #1126: skl,bxt,kbl,glk */
4563         if (level >= 1 && level <= 7) {
4564                 if (wp->y_tiled) {
4565                         res_blocks += fixed16_to_u32_round_up(
4566                                                         wp->y_tile_minimum);
4567                         res_lines += wp->y_min_scanlines;
4568                 } else {
4569                         res_blocks++;
4570                 }
4571         }
4572
4573         if (INTEL_GEN(dev_priv) >= 11) {
4574                 if (wp->y_tiled) {
4575                         uint32_t extra_lines;
4576                         uint_fixed_16_16_t fp_min_disp_buf_needed;
4577
4578                         if (res_lines % wp->y_min_scanlines == 0)
4579                                 extra_lines = wp->y_min_scanlines;
4580                         else
4581                                 extra_lines = wp->y_min_scanlines * 2 -
4582                                               res_lines % wp->y_min_scanlines;
4583
4584                         fp_min_disp_buf_needed = mul_u32_fixed16(res_lines +
4585                                                 extra_lines,
4586                                                 wp->plane_blocks_per_line);
4587                         min_disp_buf_needed = fixed16_to_u32_round_up(
4588                                                 fp_min_disp_buf_needed);
4589                 } else {
4590                         min_disp_buf_needed = DIV_ROUND_UP(res_blocks * 11, 10);
4591                 }
4592         } else {
4593                 min_disp_buf_needed = res_blocks;
4594         }
4595
4596         if ((level > 0 && res_lines > 31) ||
4597             res_blocks >= ddb_allocation ||
4598             min_disp_buf_needed >= ddb_allocation) {
4599                 *enabled = false;
4600
4601                 /*
4602                  * If there are no valid level 0 watermarks, then we can't
4603                  * support this display configuration.
4604                  */
4605                 if (level) {
4606                         return 0;
4607                 } else {
4608                         struct drm_plane *plane = pstate->plane;
4609
4610                         DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
4611                         DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
4612                                       plane->base.id, plane->name,
4613                                       res_blocks, ddb_allocation, res_lines);
4614                         return -EINVAL;
4615                 }
4616         }
4617
4618         /* The number of lines are ignored for the level 0 watermark. */
4619         *out_lines = level ? res_lines : 0;
4620         *out_blocks = res_blocks;
4621         *enabled = true;
4622
4623         return 0;
4624 }
4625
4626 static int
4627 skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4628                       struct skl_ddb_allocation *ddb,
4629                       struct intel_crtc_state *cstate,
4630                       const struct intel_plane_state *intel_pstate,
4631                       const struct skl_wm_params *wm_params,
4632                       struct skl_plane_wm *wm)
4633 {
4634         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4635         struct drm_plane *plane = intel_pstate->base.plane;
4636         struct intel_plane *intel_plane = to_intel_plane(plane);
4637         uint16_t ddb_blocks;
4638         enum pipe pipe = intel_crtc->pipe;
4639         int level, max_level = ilk_wm_max_level(dev_priv);
4640         int ret;
4641
4642         if (WARN_ON(!intel_pstate->base.fb))
4643                 return -EINVAL;
4644
4645         ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
4646
4647         for (level = 0; level <= max_level; level++) {
4648                 struct skl_wm_level *result = &wm->wm[level];
4649
4650                 ret = skl_compute_plane_wm(dev_priv,
4651                                            cstate,
4652                                            intel_pstate,
4653                                            ddb_blocks,
4654                                            level,
4655                                            wm_params,
4656                                            &result->plane_res_b,
4657                                            &result->plane_res_l,
4658                                            &result->plane_en);
4659                 if (ret)
4660                         return ret;
4661         }
4662
4663         return 0;
4664 }
4665
4666 static uint32_t
4667 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4668 {
4669         struct drm_atomic_state *state = cstate->base.state;
4670         struct drm_i915_private *dev_priv = to_i915(state->dev);
4671         uint_fixed_16_16_t linetime_us;
4672         uint32_t linetime_wm;
4673
4674         linetime_us = intel_get_linetime_us(cstate);
4675
4676         if (is_fixed16_zero(linetime_us))
4677                 return 0;
4678
4679         linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
4680
4681         /* Display WA #1135: bxt:ALL GLK:ALL */
4682         if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
4683             dev_priv->ipc_enabled)
4684                 linetime_wm /= 2;
4685
4686         return linetime_wm;
4687 }
4688
4689 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4690                                       struct skl_wm_params *wp,
4691                                       struct skl_wm_level *wm_l0,
4692                                       uint16_t ddb_allocation,
4693                                       struct skl_wm_level *trans_wm /* out */)
4694 {
4695         struct drm_device *dev = cstate->base.crtc->dev;
4696         const struct drm_i915_private *dev_priv = to_i915(dev);
4697         uint16_t trans_min, trans_y_tile_min;
4698         const uint16_t trans_amount = 10; /* This is configurable amount */
4699         uint16_t trans_offset_b, res_blocks;
4700
4701         if (!cstate->base.active)
4702                 goto exit;
4703
4704         /* Transition WM are not recommended by HW team for GEN9 */
4705         if (INTEL_GEN(dev_priv) <= 9)
4706                 goto exit;
4707
4708         /* Transition WM don't make any sense if ipc is disabled */
4709         if (!dev_priv->ipc_enabled)
4710                 goto exit;
4711
4712         trans_min = 0;
4713         if (INTEL_GEN(dev_priv) >= 10)
4714                 trans_min = 4;
4715
4716         trans_offset_b = trans_min + trans_amount;
4717
4718         if (wp->y_tiled) {
4719                 trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2,
4720                                                         wp->y_tile_minimum);
4721                 res_blocks = max(wm_l0->plane_res_b, trans_y_tile_min) +
4722                                 trans_offset_b;
4723         } else {
4724                 res_blocks = wm_l0->plane_res_b + trans_offset_b;
4725
4726                 /* WA BUG:1938466 add one block for non y-tile planes */
4727                 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
4728                         res_blocks += 1;
4729
4730         }
4731
4732         res_blocks += 1;
4733
4734         if (res_blocks < ddb_allocation) {
4735                 trans_wm->plane_res_b = res_blocks;
4736                 trans_wm->plane_en = true;
4737                 return;
4738         }
4739
4740 exit:
4741         trans_wm->plane_en = false;
4742 }
4743
4744 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
4745                              struct skl_ddb_allocation *ddb,
4746                              struct skl_pipe_wm *pipe_wm)
4747 {
4748         struct drm_device *dev = cstate->base.crtc->dev;
4749         struct drm_crtc_state *crtc_state = &cstate->base;
4750         const struct drm_i915_private *dev_priv = to_i915(dev);
4751         struct drm_plane *plane;
4752         const struct drm_plane_state *pstate;
4753         struct skl_plane_wm *wm;
4754         int ret;
4755
4756         /*
4757          * We'll only calculate watermarks for planes that are actually
4758          * enabled, so make sure all other planes are set as disabled.
4759          */
4760         memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
4761
4762         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4763                 const struct intel_plane_state *intel_pstate =
4764                                                 to_intel_plane_state(pstate);
4765                 enum plane_id plane_id = to_intel_plane(plane)->id;
4766                 struct skl_wm_params wm_params;
4767                 enum pipe pipe = to_intel_crtc(cstate->base.crtc)->pipe;
4768                 uint16_t ddb_blocks;
4769
4770                 wm = &pipe_wm->planes[plane_id];
4771                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][plane_id]);
4772                 memset(&wm_params, 0, sizeof(struct skl_wm_params));
4773
4774                 ret = skl_compute_plane_wm_params(dev_priv, cstate,
4775                                                   intel_pstate, &wm_params);
4776                 if (ret)
4777                         return ret;
4778
4779                 ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4780                                             intel_pstate, &wm_params, wm);
4781                 if (ret)
4782                         return ret;
4783                 skl_compute_transition_wm(cstate, &wm_params, &wm->wm[0],
4784                                           ddb_blocks, &wm->trans_wm);
4785         }
4786         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4787
4788         return 0;
4789 }
4790
4791 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
4792                                 i915_reg_t reg,
4793                                 const struct skl_ddb_entry *entry)
4794 {
4795         if (entry->end)
4796                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
4797         else
4798                 I915_WRITE(reg, 0);
4799 }
4800
4801 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
4802                                i915_reg_t reg,
4803                                const struct skl_wm_level *level)
4804 {
4805         uint32_t val = 0;
4806
4807         if (level->plane_en) {
4808                 val |= PLANE_WM_EN;
4809                 val |= level->plane_res_b;
4810                 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
4811         }
4812
4813         I915_WRITE(reg, val);
4814 }
4815
4816 static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
4817                                const struct skl_plane_wm *wm,
4818                                const struct skl_ddb_allocation *ddb,
4819                                enum plane_id plane_id)
4820 {
4821         struct drm_crtc *crtc = &intel_crtc->base;
4822         struct drm_device *dev = crtc->dev;
4823         struct drm_i915_private *dev_priv = to_i915(dev);
4824         int level, max_level = ilk_wm_max_level(dev_priv);
4825         enum pipe pipe = intel_crtc->pipe;
4826
4827         for (level = 0; level <= max_level; level++) {
4828                 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4829                                    &wm->wm[level]);
4830         }
4831         skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4832                            &wm->trans_wm);
4833
4834         skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4835                             &ddb->plane[pipe][plane_id]);
4836         if (INTEL_GEN(dev_priv) < 11)
4837                 skl_ddb_entry_write(dev_priv,
4838                                     PLANE_NV12_BUF_CFG(pipe, plane_id),
4839                                     &ddb->y_plane[pipe][plane_id]);
4840 }
4841
4842 static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
4843                                 const struct skl_plane_wm *wm,
4844                                 const struct skl_ddb_allocation *ddb)
4845 {
4846         struct drm_crtc *crtc = &intel_crtc->base;
4847         struct drm_device *dev = crtc->dev;
4848         struct drm_i915_private *dev_priv = to_i915(dev);
4849         int level, max_level = ilk_wm_max_level(dev_priv);
4850         enum pipe pipe = intel_crtc->pipe;
4851
4852         for (level = 0; level <= max_level; level++) {
4853                 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
4854                                    &wm->wm[level]);
4855         }
4856         skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4857
4858         skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4859                             &ddb->plane[pipe][PLANE_CURSOR]);
4860 }
4861
4862 bool skl_wm_level_equals(const struct skl_wm_level *l1,
4863                          const struct skl_wm_level *l2)
4864 {
4865         if (l1->plane_en != l2->plane_en)
4866                 return false;
4867
4868         /* If both planes aren't enabled, the rest shouldn't matter */
4869         if (!l1->plane_en)
4870                 return true;
4871
4872         return (l1->plane_res_l == l2->plane_res_l &&
4873                 l1->plane_res_b == l2->plane_res_b);
4874 }
4875
4876 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
4877                                            const struct skl_ddb_entry *b)
4878 {
4879         return a->start < b->end && b->start < a->end;
4880 }
4881
4882 bool skl_ddb_allocation_overlaps(struct drm_i915_private *dev_priv,
4883                                  const struct skl_ddb_entry **entries,
4884                                  const struct skl_ddb_entry *ddb,
4885                                  int ignore)
4886 {
4887         enum pipe pipe;
4888
4889         for_each_pipe(dev_priv, pipe) {
4890                 if (pipe != ignore && entries[pipe] &&
4891                     skl_ddb_entries_overlap(ddb, entries[pipe]))
4892                         return true;
4893         }
4894
4895         return false;
4896 }
4897
4898 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4899                               const struct skl_pipe_wm *old_pipe_wm,
4900                               struct skl_pipe_wm *pipe_wm, /* out */
4901                               struct skl_ddb_allocation *ddb, /* out */
4902                               bool *changed /* out */)
4903 {
4904         struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4905         int ret;
4906
4907         ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
4908         if (ret)
4909                 return ret;
4910
4911         if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4912                 *changed = false;
4913         else
4914                 *changed = true;
4915
4916         return 0;
4917 }
4918
4919 static uint32_t
4920 pipes_modified(struct drm_atomic_state *state)
4921 {
4922         struct drm_crtc *crtc;
4923         struct drm_crtc_state *cstate;
4924         uint32_t i, ret = 0;
4925
4926         for_each_new_crtc_in_state(state, crtc, cstate, i)
4927                 ret |= drm_crtc_mask(crtc);
4928
4929         return ret;
4930 }
4931
4932 static int
4933 skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
4934 {
4935         struct drm_atomic_state *state = cstate->base.state;
4936         struct drm_device *dev = state->dev;
4937         struct drm_crtc *crtc = cstate->base.crtc;
4938         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4939         struct drm_i915_private *dev_priv = to_i915(dev);
4940         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4941         struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4942         struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
4943         struct drm_plane_state *plane_state;
4944         struct drm_plane *plane;
4945         enum pipe pipe = intel_crtc->pipe;
4946
4947         WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
4948
4949         drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
4950                 enum plane_id plane_id = to_intel_plane(plane)->id;
4951
4952                 if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
4953                                         &new_ddb->plane[pipe][plane_id]) &&
4954                     skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
4955                                         &new_ddb->y_plane[pipe][plane_id]))
4956                         continue;
4957
4958                 plane_state = drm_atomic_get_plane_state(state, plane);
4959                 if (IS_ERR(plane_state))
4960                         return PTR_ERR(plane_state);
4961         }
4962
4963         return 0;
4964 }
4965
4966 static int
4967 skl_compute_ddb(struct drm_atomic_state *state)
4968 {
4969         struct drm_device *dev = state->dev;
4970         struct drm_i915_private *dev_priv = to_i915(dev);
4971         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4972         struct intel_crtc *intel_crtc;
4973         struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4974         uint32_t realloc_pipes = pipes_modified(state);
4975         int ret;
4976
4977         /*
4978          * If this is our first atomic update following hardware readout,
4979          * we can't trust the DDB that the BIOS programmed for us.  Let's
4980          * pretend that all pipes switched active status so that we'll
4981          * ensure a full DDB recompute.
4982          */
4983         if (dev_priv->wm.distrust_bios_wm) {
4984                 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
4985                                        state->acquire_ctx);
4986                 if (ret)
4987                         return ret;
4988
4989                 intel_state->active_pipe_changes = ~0;
4990
4991                 /*
4992                  * We usually only initialize intel_state->active_crtcs if we
4993                  * we're doing a modeset; make sure this field is always
4994                  * initialized during the sanitization process that happens
4995                  * on the first commit too.
4996                  */
4997                 if (!intel_state->modeset)
4998                         intel_state->active_crtcs = dev_priv->active_crtcs;
4999         }
5000
5001         /*
5002          * If the modeset changes which CRTC's are active, we need to
5003          * recompute the DDB allocation for *all* active pipes, even
5004          * those that weren't otherwise being modified in any way by this
5005          * atomic commit.  Due to the shrinking of the per-pipe allocations
5006          * when new active CRTC's are added, it's possible for a pipe that
5007          * we were already using and aren't changing at all here to suddenly
5008          * become invalid if its DDB needs exceeds its new allocation.
5009          *
5010          * Note that if we wind up doing a full DDB recompute, we can't let
5011          * any other display updates race with this transaction, so we need
5012          * to grab the lock on *all* CRTC's.
5013          */
5014         if (intel_state->active_pipe_changes) {
5015                 realloc_pipes = ~0;
5016                 intel_state->wm_results.dirty_pipes = ~0;
5017         }
5018
5019         /*
5020          * We're not recomputing for the pipes not included in the commit, so
5021          * make sure we start with the current state.
5022          */
5023         memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
5024
5025         for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
5026                 struct intel_crtc_state *cstate;
5027
5028                 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
5029                 if (IS_ERR(cstate))
5030                         return PTR_ERR(cstate);
5031
5032                 ret = skl_allocate_pipe_ddb(cstate, ddb);
5033                 if (ret)
5034                         return ret;
5035
5036                 ret = skl_ddb_add_affected_planes(cstate);
5037                 if (ret)
5038                         return ret;
5039         }
5040
5041         return 0;
5042 }
5043
5044 static void
5045 skl_copy_wm_for_pipe(struct skl_wm_values *dst,
5046                      struct skl_wm_values *src,
5047                      enum pipe pipe)
5048 {
5049         memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
5050                sizeof(dst->ddb.y_plane[pipe]));
5051         memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
5052                sizeof(dst->ddb.plane[pipe]));
5053 }
5054
5055 static void
5056 skl_print_wm_changes(const struct drm_atomic_state *state)
5057 {
5058         const struct drm_device *dev = state->dev;
5059         const struct drm_i915_private *dev_priv = to_i915(dev);
5060         const struct intel_atomic_state *intel_state =
5061                 to_intel_atomic_state(state);
5062         const struct drm_crtc *crtc;
5063         const struct drm_crtc_state *cstate;
5064         const struct intel_plane *intel_plane;
5065         const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
5066         const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5067         int i;
5068
5069         for_each_new_crtc_in_state(state, crtc, cstate, i) {
5070                 const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5071                 enum pipe pipe = intel_crtc->pipe;
5072
5073                 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
5074                         enum plane_id plane_id = intel_plane->id;
5075                         const struct skl_ddb_entry *old, *new;
5076
5077                         old = &old_ddb->plane[pipe][plane_id];
5078                         new = &new_ddb->plane[pipe][plane_id];
5079
5080                         if (skl_ddb_entry_equal(old, new))
5081                                 continue;
5082
5083                         DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
5084                                          intel_plane->base.base.id,
5085                                          intel_plane->base.name,
5086                                          old->start, old->end,
5087                                          new->start, new->end);
5088                 }
5089         }
5090 }
5091
5092 static int
5093 skl_compute_wm(struct drm_atomic_state *state)
5094 {
5095         struct drm_crtc *crtc;
5096         struct drm_crtc_state *cstate;
5097         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5098         struct skl_wm_values *results = &intel_state->wm_results;
5099         struct drm_device *dev = state->dev;
5100         struct skl_pipe_wm *pipe_wm;
5101         bool changed = false;
5102         int ret, i;
5103
5104         /*
5105          * When we distrust bios wm we always need to recompute to set the
5106          * expected DDB allocations for each CRTC.
5107          */
5108         if (to_i915(dev)->wm.distrust_bios_wm)
5109                 changed = true;
5110
5111         /*
5112          * If this transaction isn't actually touching any CRTC's, don't
5113          * bother with watermark calculation.  Note that if we pass this
5114          * test, we're guaranteed to hold at least one CRTC state mutex,
5115          * which means we can safely use values like dev_priv->active_crtcs
5116          * since any racing commits that want to update them would need to
5117          * hold _all_ CRTC state mutexes.
5118          */
5119         for_each_new_crtc_in_state(state, crtc, cstate, i)
5120                 changed = true;
5121
5122         if (!changed)
5123                 return 0;
5124
5125         /* Clear all dirty flags */
5126         results->dirty_pipes = 0;
5127
5128         ret = skl_compute_ddb(state);
5129         if (ret)
5130                 return ret;
5131
5132         /*
5133          * Calculate WM's for all pipes that are part of this transaction.
5134          * Note that the DDB allocation above may have added more CRTC's that
5135          * weren't otherwise being modified (and set bits in dirty_pipes) if
5136          * pipe allocations had to change.
5137          *
5138          * FIXME:  Now that we're doing this in the atomic check phase, we
5139          * should allow skl_update_pipe_wm() to return failure in cases where
5140          * no suitable watermark values can be found.
5141          */
5142         for_each_new_crtc_in_state(state, crtc, cstate, i) {
5143                 struct intel_crtc_state *intel_cstate =
5144                         to_intel_crtc_state(cstate);
5145                 const struct skl_pipe_wm *old_pipe_wm =
5146                         &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
5147
5148                 pipe_wm = &intel_cstate->wm.skl.optimal;
5149                 ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
5150                                          &results->ddb, &changed);
5151                 if (ret)
5152                         return ret;
5153
5154                 if (changed)
5155                         results->dirty_pipes |= drm_crtc_mask(crtc);
5156
5157                 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
5158                         /* This pipe's WM's did not change */
5159                         continue;
5160
5161                 intel_cstate->update_wm_pre = true;
5162         }
5163
5164         skl_print_wm_changes(state);
5165
5166         return 0;
5167 }
5168
5169 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5170                                       struct intel_crtc_state *cstate)
5171 {
5172         struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
5173         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5174         struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5175         const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5176         enum pipe pipe = crtc->pipe;
5177         enum plane_id plane_id;
5178
5179         if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
5180                 return;
5181
5182         I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5183
5184         for_each_plane_id_on_crtc(crtc, plane_id) {
5185                 if (plane_id != PLANE_CURSOR)
5186                         skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
5187                                            ddb, plane_id);
5188                 else
5189                         skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
5190                                             ddb);
5191         }
5192 }
5193
5194 static void skl_initial_wm(struct intel_atomic_state *state,
5195                            struct intel_crtc_state *cstate)
5196 {
5197         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5198         struct drm_device *dev = intel_crtc->base.dev;
5199         struct drm_i915_private *dev_priv = to_i915(dev);
5200         struct skl_wm_values *results = &state->wm_results;
5201         struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
5202         enum pipe pipe = intel_crtc->pipe;
5203
5204         if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5205                 return;
5206
5207         mutex_lock(&dev_priv->wm.wm_mutex);
5208
5209         if (cstate->base.active_changed)
5210                 skl_atomic_update_crtc_wm(state, cstate);
5211
5212         skl_copy_wm_for_pipe(hw_vals, results, pipe);
5213
5214         mutex_unlock(&dev_priv->wm.wm_mutex);
5215 }
5216
5217 static void ilk_compute_wm_config(struct drm_device *dev,
5218                                   struct intel_wm_config *config)
5219 {
5220         struct intel_crtc *crtc;
5221
5222         /* Compute the currently _active_ config */
5223         for_each_intel_crtc(dev, crtc) {
5224                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5225
5226                 if (!wm->pipe_enabled)
5227                         continue;
5228
5229                 config->sprites_enabled |= wm->sprites_enabled;
5230                 config->sprites_scaled |= wm->sprites_scaled;
5231                 config->num_pipes_active++;
5232         }
5233 }
5234
5235 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5236 {
5237         struct drm_device *dev = &dev_priv->drm;
5238         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5239         struct ilk_wm_maximums max;
5240         struct intel_wm_config config = {};
5241         struct ilk_wm_values results = {};
5242         enum intel_ddb_partitioning partitioning;
5243
5244         ilk_compute_wm_config(dev, &config);
5245
5246         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
5247         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5248
5249         /* 5/6 split only in single pipe config on IVB+ */
5250         if (INTEL_GEN(dev_priv) >= 7 &&
5251             config.num_pipes_active == 1 && config.sprites_enabled) {
5252                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
5253                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5254
5255                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5256         } else {
5257                 best_lp_wm = &lp_wm_1_2;
5258         }
5259
5260         partitioning = (best_lp_wm == &lp_wm_1_2) ?
5261                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5262
5263         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5264
5265         ilk_write_wm_values(dev_priv, &results);
5266 }
5267
5268 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5269                                    struct intel_crtc_state *cstate)
5270 {
5271         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5272         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5273
5274         mutex_lock(&dev_priv->wm.wm_mutex);
5275         intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5276         ilk_program_watermarks(dev_priv);
5277         mutex_unlock(&dev_priv->wm.wm_mutex);
5278 }
5279
5280 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5281                                     struct intel_crtc_state *cstate)
5282 {
5283         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5284         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5285
5286         mutex_lock(&dev_priv->wm.wm_mutex);
5287         if (cstate->wm.need_postvbl_update) {
5288                 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5289                 ilk_program_watermarks(dev_priv);
5290         }
5291         mutex_unlock(&dev_priv->wm.wm_mutex);
5292 }
5293
5294 static inline void skl_wm_level_from_reg_val(uint32_t val,
5295                                              struct skl_wm_level *level)
5296 {
5297         level->plane_en = val & PLANE_WM_EN;
5298         level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5299         level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5300                 PLANE_WM_LINES_MASK;
5301 }
5302
5303 void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
5304                               struct skl_pipe_wm *out)
5305 {
5306         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5307         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5308         enum pipe pipe = intel_crtc->pipe;
5309         int level, max_level;
5310         enum plane_id plane_id;
5311         uint32_t val;
5312
5313         max_level = ilk_wm_max_level(dev_priv);
5314
5315         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
5316                 struct skl_plane_wm *wm = &out->planes[plane_id];
5317
5318                 for (level = 0; level <= max_level; level++) {
5319                         if (plane_id != PLANE_CURSOR)
5320                                 val = I915_READ(PLANE_WM(pipe, plane_id, level));
5321                         else
5322                                 val = I915_READ(CUR_WM(pipe, level));
5323
5324                         skl_wm_level_from_reg_val(val, &wm->wm[level]);
5325                 }
5326
5327                 if (plane_id != PLANE_CURSOR)
5328                         val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5329                 else
5330                         val = I915_READ(CUR_WM_TRANS(pipe));
5331
5332                 skl_wm_level_from_reg_val(val, &wm->trans_wm);
5333         }
5334
5335         if (!intel_crtc->active)
5336                 return;
5337
5338         out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5339 }
5340
5341 void skl_wm_get_hw_state(struct drm_device *dev)
5342 {
5343         struct drm_i915_private *dev_priv = to_i915(dev);
5344         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
5345         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5346         struct drm_crtc *crtc;
5347         struct intel_crtc *intel_crtc;
5348         struct intel_crtc_state *cstate;
5349
5350         skl_ddb_get_hw_state(dev_priv, ddb);
5351         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5352                 intel_crtc = to_intel_crtc(crtc);
5353                 cstate = to_intel_crtc_state(crtc->state);
5354
5355                 skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
5356
5357                 if (intel_crtc->active)
5358                         hw->dirty_pipes |= drm_crtc_mask(crtc);
5359         }
5360
5361         if (dev_priv->active_crtcs) {
5362                 /* Fully recompute DDB on first atomic commit */
5363                 dev_priv->wm.distrust_bios_wm = true;
5364         } else {
5365                 /* Easy/common case; just sanitize DDB now if everything off */
5366                 memset(ddb, 0, sizeof(*ddb));
5367         }
5368 }
5369
5370 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
5371 {
5372         struct drm_device *dev = crtc->dev;
5373         struct drm_i915_private *dev_priv = to_i915(dev);
5374         struct ilk_wm_values *hw = &dev_priv->wm.hw;
5375         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5376         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5377         struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5378         enum pipe pipe = intel_crtc->pipe;
5379         static const i915_reg_t wm0_pipe_reg[] = {
5380                 [PIPE_A] = WM0_PIPEA_ILK,
5381                 [PIPE_B] = WM0_PIPEB_ILK,
5382                 [PIPE_C] = WM0_PIPEC_IVB,
5383         };
5384
5385         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5386         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5387                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5388
5389         memset(active, 0, sizeof(*active));
5390
5391         active->pipe_enabled = intel_crtc->active;
5392
5393         if (active->pipe_enabled) {
5394                 u32 tmp = hw->wm_pipe[pipe];
5395
5396                 /*
5397                  * For active pipes LP0 watermark is marked as
5398                  * enabled, and LP1+ watermaks as disabled since
5399                  * we can't really reverse compute them in case
5400                  * multiple pipes are active.
5401                  */
5402                 active->wm[0].enable = true;
5403                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5404                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5405                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5406                 active->linetime = hw->wm_linetime[pipe];
5407         } else {
5408                 int level, max_level = ilk_wm_max_level(dev_priv);
5409
5410                 /*
5411                  * For inactive pipes, all watermark levels
5412                  * should be marked as enabled but zeroed,
5413                  * which is what we'd compute them to.
5414                  */
5415                 for (level = 0; level <= max_level; level++)
5416                         active->wm[level].enable = true;
5417         }
5418
5419         intel_crtc->wm.active.ilk = *active;
5420 }
5421
5422 #define _FW_WM(value, plane) \
5423         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5424 #define _FW_WM_VLV(value, plane) \
5425         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5426
5427 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5428                                struct g4x_wm_values *wm)
5429 {
5430         uint32_t tmp;
5431
5432         tmp = I915_READ(DSPFW1);
5433         wm->sr.plane = _FW_WM(tmp, SR);
5434         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5435         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5436         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5437
5438         tmp = I915_READ(DSPFW2);
5439         wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5440         wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5441         wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5442         wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5443         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5444         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5445
5446         tmp = I915_READ(DSPFW3);
5447         wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5448         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5449         wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5450         wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5451 }
5452
5453 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5454                                struct vlv_wm_values *wm)
5455 {
5456         enum pipe pipe;
5457         uint32_t tmp;
5458
5459         for_each_pipe(dev_priv, pipe) {
5460                 tmp = I915_READ(VLV_DDL(pipe));
5461
5462                 wm->ddl[pipe].plane[PLANE_PRIMARY] =
5463                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5464                 wm->ddl[pipe].plane[PLANE_CURSOR] =
5465                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5466                 wm->ddl[pipe].plane[PLANE_SPRITE0] =
5467                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5468                 wm->ddl[pipe].plane[PLANE_SPRITE1] =
5469                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5470         }
5471
5472         tmp = I915_READ(DSPFW1);
5473         wm->sr.plane = _FW_WM(tmp, SR);
5474         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5475         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5476         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5477
5478         tmp = I915_READ(DSPFW2);
5479         wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5480         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5481         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5482
5483         tmp = I915_READ(DSPFW3);
5484         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5485
5486         if (IS_CHERRYVIEW(dev_priv)) {
5487                 tmp = I915_READ(DSPFW7_CHV);
5488                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5489                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5490
5491                 tmp = I915_READ(DSPFW8_CHV);
5492                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5493                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5494
5495                 tmp = I915_READ(DSPFW9_CHV);
5496                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5497                 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5498
5499                 tmp = I915_READ(DSPHOWM);
5500                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5501                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5502                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5503                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5504                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5505                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5506                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5507                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5508                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5509                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5510         } else {
5511                 tmp = I915_READ(DSPFW7);
5512                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5513                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5514
5515                 tmp = I915_READ(DSPHOWM);
5516                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5517                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5518                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5519                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5520                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5521                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5522                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5523         }
5524 }
5525
5526 #undef _FW_WM
5527 #undef _FW_WM_VLV
5528
5529 void g4x_wm_get_hw_state(struct drm_device *dev)
5530 {
5531         struct drm_i915_private *dev_priv = to_i915(dev);
5532         struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5533         struct intel_crtc *crtc;
5534
5535         g4x_read_wm_values(dev_priv, wm);
5536
5537         wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5538
5539         for_each_intel_crtc(dev, crtc) {
5540                 struct intel_crtc_state *crtc_state =
5541                         to_intel_crtc_state(crtc->base.state);
5542                 struct g4x_wm_state *active = &crtc->wm.active.g4x;
5543                 struct g4x_pipe_wm *raw;
5544                 enum pipe pipe = crtc->pipe;
5545                 enum plane_id plane_id;
5546                 int level, max_level;
5547
5548                 active->cxsr = wm->cxsr;
5549                 active->hpll_en = wm->hpll_en;
5550                 active->fbc_en = wm->fbc_en;
5551
5552                 active->sr = wm->sr;
5553                 active->hpll = wm->hpll;
5554
5555                 for_each_plane_id_on_crtc(crtc, plane_id) {
5556                         active->wm.plane[plane_id] =
5557                                 wm->pipe[pipe].plane[plane_id];
5558                 }
5559
5560                 if (wm->cxsr && wm->hpll_en)
5561                         max_level = G4X_WM_LEVEL_HPLL;
5562                 else if (wm->cxsr)
5563                         max_level = G4X_WM_LEVEL_SR;
5564                 else
5565                         max_level = G4X_WM_LEVEL_NORMAL;
5566
5567                 level = G4X_WM_LEVEL_NORMAL;
5568                 raw = &crtc_state->wm.g4x.raw[level];
5569                 for_each_plane_id_on_crtc(crtc, plane_id)
5570                         raw->plane[plane_id] = active->wm.plane[plane_id];
5571
5572                 if (++level > max_level)
5573                         goto out;
5574
5575                 raw = &crtc_state->wm.g4x.raw[level];
5576                 raw->plane[PLANE_PRIMARY] = active->sr.plane;
5577                 raw->plane[PLANE_CURSOR] = active->sr.cursor;
5578                 raw->plane[PLANE_SPRITE0] = 0;
5579                 raw->fbc = active->sr.fbc;
5580
5581                 if (++level > max_level)
5582                         goto out;
5583
5584                 raw = &crtc_state->wm.g4x.raw[level];
5585                 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
5586                 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
5587                 raw->plane[PLANE_SPRITE0] = 0;
5588                 raw->fbc = active->hpll.fbc;
5589
5590         out:
5591                 for_each_plane_id_on_crtc(crtc, plane_id)
5592                         g4x_raw_plane_wm_set(crtc_state, level,
5593                                              plane_id, USHRT_MAX);
5594                 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
5595
5596                 crtc_state->wm.g4x.optimal = *active;
5597                 crtc_state->wm.g4x.intermediate = *active;
5598
5599                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
5600                               pipe_name(pipe),
5601                               wm->pipe[pipe].plane[PLANE_PRIMARY],
5602                               wm->pipe[pipe].plane[PLANE_CURSOR],
5603                               wm->pipe[pipe].plane[PLANE_SPRITE0]);
5604         }
5605
5606         DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
5607                       wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
5608         DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
5609                       wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
5610         DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
5611                       yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
5612 }
5613
5614 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
5615 {
5616         struct intel_plane *plane;
5617         struct intel_crtc *crtc;
5618
5619         mutex_lock(&dev_priv->wm.wm_mutex);
5620
5621         for_each_intel_plane(&dev_priv->drm, plane) {
5622                 struct intel_crtc *crtc =
5623                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5624                 struct intel_crtc_state *crtc_state =
5625                         to_intel_crtc_state(crtc->base.state);
5626                 struct intel_plane_state *plane_state =
5627                         to_intel_plane_state(plane->base.state);
5628                 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
5629                 enum plane_id plane_id = plane->id;
5630                 int level;
5631
5632                 if (plane_state->base.visible)
5633                         continue;
5634
5635                 for (level = 0; level < 3; level++) {
5636                         struct g4x_pipe_wm *raw =
5637                                 &crtc_state->wm.g4x.raw[level];
5638
5639                         raw->plane[plane_id] = 0;
5640                         wm_state->wm.plane[plane_id] = 0;
5641                 }
5642
5643                 if (plane_id == PLANE_PRIMARY) {
5644                         for (level = 0; level < 3; level++) {
5645                                 struct g4x_pipe_wm *raw =
5646                                         &crtc_state->wm.g4x.raw[level];
5647                                 raw->fbc = 0;
5648                         }
5649
5650                         wm_state->sr.fbc = 0;
5651                         wm_state->hpll.fbc = 0;
5652                         wm_state->fbc_en = false;
5653                 }
5654         }
5655
5656         for_each_intel_crtc(&dev_priv->drm, crtc) {
5657                 struct intel_crtc_state *crtc_state =
5658                         to_intel_crtc_state(crtc->base.state);
5659
5660                 crtc_state->wm.g4x.intermediate =
5661                         crtc_state->wm.g4x.optimal;
5662                 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
5663         }
5664
5665         g4x_program_watermarks(dev_priv);
5666
5667         mutex_unlock(&dev_priv->wm.wm_mutex);
5668 }
5669
5670 void vlv_wm_get_hw_state(struct drm_device *dev)
5671 {
5672         struct drm_i915_private *dev_priv = to_i915(dev);
5673         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5674         struct intel_crtc *crtc;
5675         u32 val;
5676
5677         vlv_read_wm_values(dev_priv, wm);
5678
5679         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
5680         wm->level = VLV_WM_LEVEL_PM2;
5681
5682         if (IS_CHERRYVIEW(dev_priv)) {
5683                 mutex_lock(&dev_priv->pcu_lock);
5684
5685                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5686                 if (val & DSP_MAXFIFO_PM5_ENABLE)
5687                         wm->level = VLV_WM_LEVEL_PM5;
5688
5689                 /*
5690                  * If DDR DVFS is disabled in the BIOS, Punit
5691                  * will never ack the request. So if that happens
5692                  * assume we don't have to enable/disable DDR DVFS
5693                  * dynamically. To test that just set the REQ_ACK
5694                  * bit to poke the Punit, but don't change the
5695                  * HIGH/LOW bits so that we don't actually change
5696                  * the current state.
5697                  */
5698                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5699                 val |= FORCE_DDR_FREQ_REQ_ACK;
5700                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
5701
5702                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
5703                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
5704                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
5705                                       "assuming DDR DVFS is disabled\n");
5706                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
5707                 } else {
5708                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5709                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
5710                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
5711                 }
5712
5713                 mutex_unlock(&dev_priv->pcu_lock);
5714         }
5715
5716         for_each_intel_crtc(dev, crtc) {
5717                 struct intel_crtc_state *crtc_state =
5718                         to_intel_crtc_state(crtc->base.state);
5719                 struct vlv_wm_state *active = &crtc->wm.active.vlv;
5720                 const struct vlv_fifo_state *fifo_state =
5721                         &crtc_state->wm.vlv.fifo_state;
5722                 enum pipe pipe = crtc->pipe;
5723                 enum plane_id plane_id;
5724                 int level;
5725
5726                 vlv_get_fifo_size(crtc_state);
5727
5728                 active->num_levels = wm->level + 1;
5729                 active->cxsr = wm->cxsr;
5730
5731                 for (level = 0; level < active->num_levels; level++) {
5732                         struct g4x_pipe_wm *raw =
5733                                 &crtc_state->wm.vlv.raw[level];
5734
5735                         active->sr[level].plane = wm->sr.plane;
5736                         active->sr[level].cursor = wm->sr.cursor;
5737
5738                         for_each_plane_id_on_crtc(crtc, plane_id) {
5739                                 active->wm[level].plane[plane_id] =
5740                                         wm->pipe[pipe].plane[plane_id];
5741
5742                                 raw->plane[plane_id] =
5743                                         vlv_invert_wm_value(active->wm[level].plane[plane_id],
5744                                                             fifo_state->plane[plane_id]);
5745                         }
5746                 }
5747
5748                 for_each_plane_id_on_crtc(crtc, plane_id)
5749                         vlv_raw_plane_wm_set(crtc_state, level,
5750                                              plane_id, USHRT_MAX);
5751                 vlv_invalidate_wms(crtc, active, level);
5752
5753                 crtc_state->wm.vlv.optimal = *active;
5754                 crtc_state->wm.vlv.intermediate = *active;
5755
5756                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5757                               pipe_name(pipe),
5758                               wm->pipe[pipe].plane[PLANE_PRIMARY],
5759                               wm->pipe[pipe].plane[PLANE_CURSOR],
5760                               wm->pipe[pipe].plane[PLANE_SPRITE0],
5761                               wm->pipe[pipe].plane[PLANE_SPRITE1]);
5762         }
5763
5764         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
5765                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
5766 }
5767
5768 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
5769 {
5770         struct intel_plane *plane;
5771         struct intel_crtc *crtc;
5772
5773         mutex_lock(&dev_priv->wm.wm_mutex);
5774
5775         for_each_intel_plane(&dev_priv->drm, plane) {
5776                 struct intel_crtc *crtc =
5777                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5778                 struct intel_crtc_state *crtc_state =
5779                         to_intel_crtc_state(crtc->base.state);
5780                 struct intel_plane_state *plane_state =
5781                         to_intel_plane_state(plane->base.state);
5782                 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
5783                 const struct vlv_fifo_state *fifo_state =
5784                         &crtc_state->wm.vlv.fifo_state;
5785                 enum plane_id plane_id = plane->id;
5786                 int level;
5787
5788                 if (plane_state->base.visible)
5789                         continue;
5790
5791                 for (level = 0; level < wm_state->num_levels; level++) {
5792                         struct g4x_pipe_wm *raw =
5793                                 &crtc_state->wm.vlv.raw[level];
5794
5795                         raw->plane[plane_id] = 0;
5796
5797                         wm_state->wm[level].plane[plane_id] =
5798                                 vlv_invert_wm_value(raw->plane[plane_id],
5799                                                     fifo_state->plane[plane_id]);
5800                 }
5801         }
5802
5803         for_each_intel_crtc(&dev_priv->drm, crtc) {
5804                 struct intel_crtc_state *crtc_state =
5805                         to_intel_crtc_state(crtc->base.state);
5806
5807                 crtc_state->wm.vlv.intermediate =
5808                         crtc_state->wm.vlv.optimal;
5809                 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
5810         }
5811
5812         vlv_program_watermarks(dev_priv);
5813
5814         mutex_unlock(&dev_priv->wm.wm_mutex);
5815 }
5816
5817 /*
5818  * FIXME should probably kill this and improve
5819  * the real watermark readout/sanitation instead
5820  */
5821 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
5822 {
5823         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5824         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5825         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5826
5827         /*
5828          * Don't touch WM1S_LP_EN here.
5829          * Doing so could cause underruns.
5830          */
5831 }
5832
5833 void ilk_wm_get_hw_state(struct drm_device *dev)
5834 {
5835         struct drm_i915_private *dev_priv = to_i915(dev);
5836         struct ilk_wm_values *hw = &dev_priv->wm.hw;
5837         struct drm_crtc *crtc;
5838
5839         ilk_init_lp_watermarks(dev_priv);
5840
5841         for_each_crtc(dev, crtc)
5842                 ilk_pipe_wm_get_hw_state(crtc);
5843
5844         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
5845         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
5846         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
5847
5848         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
5849         if (INTEL_GEN(dev_priv) >= 7) {
5850                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
5851                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
5852         }
5853
5854         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5855                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
5856                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5857         else if (IS_IVYBRIDGE(dev_priv))
5858                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
5859                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5860
5861         hw->enable_fbc_wm =
5862                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
5863 }
5864
5865 /**
5866  * intel_update_watermarks - update FIFO watermark values based on current modes
5867  * @crtc: the #intel_crtc on which to compute the WM
5868  *
5869  * Calculate watermark values for the various WM regs based on current mode
5870  * and plane configuration.
5871  *
5872  * There are several cases to deal with here:
5873  *   - normal (i.e. non-self-refresh)
5874  *   - self-refresh (SR) mode
5875  *   - lines are large relative to FIFO size (buffer can hold up to 2)
5876  *   - lines are small relative to FIFO size (buffer can hold more than 2
5877  *     lines), so need to account for TLB latency
5878  *
5879  *   The normal calculation is:
5880  *     watermark = dotclock * bytes per pixel * latency
5881  *   where latency is platform & configuration dependent (we assume pessimal
5882  *   values here).
5883  *
5884  *   The SR calculation is:
5885  *     watermark = (trunc(latency/line time)+1) * surface width *
5886  *       bytes per pixel
5887  *   where
5888  *     line time = htotal / dotclock
5889  *     surface width = hdisplay for normal plane and 64 for cursor
5890  *   and latency is assumed to be high, as above.
5891  *
5892  * The final value programmed to the register should always be rounded up,
5893  * and include an extra 2 entries to account for clock crossings.
5894  *
5895  * We don't use the sprite, so we can ignore that.  And on Crestline we have
5896  * to set the non-SR watermarks to 8.
5897  */
5898 void intel_update_watermarks(struct intel_crtc *crtc)
5899 {
5900         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5901
5902         if (dev_priv->display.update_wm)
5903                 dev_priv->display.update_wm(crtc);
5904 }
5905
5906 void intel_enable_ipc(struct drm_i915_private *dev_priv)
5907 {
5908         u32 val;
5909
5910         /* Display WA #0477 WaDisableIPC: skl */
5911         if (IS_SKYLAKE(dev_priv)) {
5912                 dev_priv->ipc_enabled = false;
5913                 return;
5914         }
5915
5916         val = I915_READ(DISP_ARB_CTL2);
5917
5918         if (dev_priv->ipc_enabled)
5919                 val |= DISP_IPC_ENABLE;
5920         else
5921                 val &= ~DISP_IPC_ENABLE;
5922
5923         I915_WRITE(DISP_ARB_CTL2, val);
5924 }
5925
5926 void intel_init_ipc(struct drm_i915_private *dev_priv)
5927 {
5928         dev_priv->ipc_enabled = false;
5929         if (!HAS_IPC(dev_priv))
5930                 return;
5931
5932         dev_priv->ipc_enabled = true;
5933         intel_enable_ipc(dev_priv);
5934 }
5935
5936 /*
5937  * Lock protecting IPS related data structures
5938  */
5939 DEFINE_SPINLOCK(mchdev_lock);
5940
5941 /* Global for IPS driver to get at the current i915 device. Protected by
5942  * mchdev_lock. */
5943 static struct drm_i915_private *i915_mch_dev;
5944
5945 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
5946 {
5947         u16 rgvswctl;
5948
5949         lockdep_assert_held(&mchdev_lock);
5950
5951         rgvswctl = I915_READ16(MEMSWCTL);
5952         if (rgvswctl & MEMCTL_CMD_STS) {
5953                 DRM_DEBUG("gpu busy, RCS change rejected\n");
5954                 return false; /* still busy with another command */
5955         }
5956
5957         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5958                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5959         I915_WRITE16(MEMSWCTL, rgvswctl);
5960         POSTING_READ16(MEMSWCTL);
5961
5962         rgvswctl |= MEMCTL_CMD_STS;
5963         I915_WRITE16(MEMSWCTL, rgvswctl);
5964
5965         return true;
5966 }
5967
5968 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
5969 {
5970         u32 rgvmodectl;
5971         u8 fmax, fmin, fstart, vstart;
5972
5973         spin_lock_irq(&mchdev_lock);
5974
5975         rgvmodectl = I915_READ(MEMMODECTL);
5976
5977         /* Enable temp reporting */
5978         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5979         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5980
5981         /* 100ms RC evaluation intervals */
5982         I915_WRITE(RCUPEI, 100000);
5983         I915_WRITE(RCDNEI, 100000);
5984
5985         /* Set max/min thresholds to 90ms and 80ms respectively */
5986         I915_WRITE(RCBMAXAVG, 90000);
5987         I915_WRITE(RCBMINAVG, 80000);
5988
5989         I915_WRITE(MEMIHYST, 1);
5990
5991         /* Set up min, max, and cur for interrupt handling */
5992         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5993         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5994         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5995                 MEMMODE_FSTART_SHIFT;
5996
5997         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
5998                 PXVFREQ_PX_SHIFT;
5999
6000         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
6001         dev_priv->ips.fstart = fstart;
6002
6003         dev_priv->ips.max_delay = fstart;
6004         dev_priv->ips.min_delay = fmin;
6005         dev_priv->ips.cur_delay = fstart;
6006
6007         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6008                          fmax, fmin, fstart);
6009
6010         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6011
6012         /*
6013          * Interrupts will be enabled in ironlake_irq_postinstall
6014          */
6015
6016         I915_WRITE(VIDSTART, vstart);
6017         POSTING_READ(VIDSTART);
6018
6019         rgvmodectl |= MEMMODE_SWMODE_EN;
6020         I915_WRITE(MEMMODECTL, rgvmodectl);
6021
6022         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6023                 DRM_ERROR("stuck trying to change perf mode\n");
6024         mdelay(1);
6025
6026         ironlake_set_drps(dev_priv, fstart);
6027
6028         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
6029                 I915_READ(DDREC) + I915_READ(CSIEC);
6030         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6031         dev_priv->ips.last_count2 = I915_READ(GFXEC);
6032         dev_priv->ips.last_time2 = ktime_get_raw_ns();
6033
6034         spin_unlock_irq(&mchdev_lock);
6035 }
6036
6037 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
6038 {
6039         u16 rgvswctl;
6040
6041         spin_lock_irq(&mchdev_lock);
6042
6043         rgvswctl = I915_READ16(MEMSWCTL);
6044
6045         /* Ack interrupts, disable EFC interrupt */
6046         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
6047         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
6048         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
6049         I915_WRITE(DEIIR, DE_PCU_EVENT);
6050         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
6051
6052         /* Go back to the starting frequency */
6053         ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
6054         mdelay(1);
6055         rgvswctl |= MEMCTL_CMD_STS;
6056         I915_WRITE(MEMSWCTL, rgvswctl);
6057         mdelay(1);
6058
6059         spin_unlock_irq(&mchdev_lock);
6060 }
6061
6062 /* There's a funny hw issue where the hw returns all 0 when reading from
6063  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
6064  * ourselves, instead of doing a rmw cycle (which might result in us clearing
6065  * all limits and the gpu stuck at whatever frequency it is at atm).
6066  */
6067 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6068 {
6069         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6070         u32 limits;
6071
6072         /* Only set the down limit when we've reached the lowest level to avoid
6073          * getting more interrupts, otherwise leave this clear. This prevents a
6074          * race in the hw when coming out of rc6: There's a tiny window where
6075          * the hw runs at the minimal clock before selecting the desired
6076          * frequency, if the down threshold expires in that window we will not
6077          * receive a down interrupt. */
6078         if (INTEL_GEN(dev_priv) >= 9) {
6079                 limits = (rps->max_freq_softlimit) << 23;
6080                 if (val <= rps->min_freq_softlimit)
6081                         limits |= (rps->min_freq_softlimit) << 14;
6082         } else {
6083                 limits = rps->max_freq_softlimit << 24;
6084                 if (val <= rps->min_freq_softlimit)
6085                         limits |= rps->min_freq_softlimit << 16;
6086         }
6087
6088         return limits;
6089 }
6090
6091 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
6092 {
6093         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6094         int new_power;
6095         u32 threshold_up = 0, threshold_down = 0; /* in % */
6096         u32 ei_up = 0, ei_down = 0;
6097
6098         new_power = rps->power;
6099         switch (rps->power) {
6100         case LOW_POWER:
6101                 if (val > rps->efficient_freq + 1 &&
6102                     val > rps->cur_freq)
6103                         new_power = BETWEEN;
6104                 break;
6105
6106         case BETWEEN:
6107                 if (val <= rps->efficient_freq &&
6108                     val < rps->cur_freq)
6109                         new_power = LOW_POWER;
6110                 else if (val >= rps->rp0_freq &&
6111                          val > rps->cur_freq)
6112                         new_power = HIGH_POWER;
6113                 break;
6114
6115         case HIGH_POWER:
6116                 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
6117                     val < rps->cur_freq)
6118                         new_power = BETWEEN;
6119                 break;
6120         }
6121         /* Max/min bins are special */
6122         if (val <= rps->min_freq_softlimit)
6123                 new_power = LOW_POWER;
6124         if (val >= rps->max_freq_softlimit)
6125                 new_power = HIGH_POWER;
6126         if (new_power == rps->power)
6127                 return;
6128
6129         /* Note the units here are not exactly 1us, but 1280ns. */
6130         switch (new_power) {
6131         case LOW_POWER:
6132                 /* Upclock if more than 95% busy over 16ms */
6133                 ei_up = 16000;
6134                 threshold_up = 95;
6135
6136                 /* Downclock if less than 85% busy over 32ms */
6137                 ei_down = 32000;
6138                 threshold_down = 85;
6139                 break;
6140
6141         case BETWEEN:
6142                 /* Upclock if more than 90% busy over 13ms */
6143                 ei_up = 13000;
6144                 threshold_up = 90;
6145
6146                 /* Downclock if less than 75% busy over 32ms */
6147                 ei_down = 32000;
6148                 threshold_down = 75;
6149                 break;
6150
6151         case HIGH_POWER:
6152                 /* Upclock if more than 85% busy over 10ms */
6153                 ei_up = 10000;
6154                 threshold_up = 85;
6155
6156                 /* Downclock if less than 60% busy over 32ms */
6157                 ei_down = 32000;
6158                 threshold_down = 60;
6159                 break;
6160         }
6161
6162         /* When byt can survive without system hang with dynamic
6163          * sw freq adjustments, this restriction can be lifted.
6164          */
6165         if (IS_VALLEYVIEW(dev_priv))
6166                 goto skip_hw_write;
6167
6168         I915_WRITE(GEN6_RP_UP_EI,
6169                    GT_INTERVAL_FROM_US(dev_priv, ei_up));
6170         I915_WRITE(GEN6_RP_UP_THRESHOLD,
6171                    GT_INTERVAL_FROM_US(dev_priv,
6172                                        ei_up * threshold_up / 100));
6173
6174         I915_WRITE(GEN6_RP_DOWN_EI,
6175                    GT_INTERVAL_FROM_US(dev_priv, ei_down));
6176         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6177                    GT_INTERVAL_FROM_US(dev_priv,
6178                                        ei_down * threshold_down / 100));
6179
6180         I915_WRITE(GEN6_RP_CONTROL,
6181                    GEN6_RP_MEDIA_TURBO |
6182                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
6183                    GEN6_RP_MEDIA_IS_GFX |
6184                    GEN6_RP_ENABLE |
6185                    GEN6_RP_UP_BUSY_AVG |
6186                    GEN6_RP_DOWN_IDLE_AVG);
6187
6188 skip_hw_write:
6189         rps->power = new_power;
6190         rps->up_threshold = threshold_up;
6191         rps->down_threshold = threshold_down;
6192         rps->last_adj = 0;
6193 }
6194
6195 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
6196 {
6197         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6198         u32 mask = 0;
6199
6200         /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6201         if (val > rps->min_freq_softlimit)
6202                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6203         if (val < rps->max_freq_softlimit)
6204                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6205
6206         mask &= dev_priv->pm_rps_events;
6207
6208         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6209 }
6210
6211 /* gen6_set_rps is called to update the frequency request, but should also be
6212  * called when the range (min_delay and max_delay) is modified so that we can
6213  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6214 static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6215 {
6216         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6217
6218         /* min/max delay may still have been modified so be sure to
6219          * write the limits value.
6220          */
6221         if (val != rps->cur_freq) {
6222                 gen6_set_rps_thresholds(dev_priv, val);
6223
6224                 if (INTEL_GEN(dev_priv) >= 9)
6225                         I915_WRITE(GEN6_RPNSWREQ,
6226                                    GEN9_FREQUENCY(val));
6227                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6228                         I915_WRITE(GEN6_RPNSWREQ,
6229                                    HSW_FREQUENCY(val));
6230                 else
6231                         I915_WRITE(GEN6_RPNSWREQ,
6232                                    GEN6_FREQUENCY(val) |
6233                                    GEN6_OFFSET(0) |
6234                                    GEN6_AGGRESSIVE_TURBO);
6235         }
6236
6237         /* Make sure we continue to get interrupts
6238          * until we hit the minimum or maximum frequencies.
6239          */
6240         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6241         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6242
6243         rps->cur_freq = val;
6244         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6245
6246         return 0;
6247 }
6248
6249 static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6250 {
6251         int err;
6252
6253         if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6254                       "Odd GPU freq value\n"))
6255                 val &= ~1;
6256
6257         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6258
6259         if (val != dev_priv->gt_pm.rps.cur_freq) {
6260                 err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6261                 if (err)
6262                         return err;
6263
6264                 gen6_set_rps_thresholds(dev_priv, val);
6265         }
6266
6267         dev_priv->gt_pm.rps.cur_freq = val;
6268         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6269
6270         return 0;
6271 }
6272
6273 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6274  *
6275  * * If Gfx is Idle, then
6276  * 1. Forcewake Media well.
6277  * 2. Request idle freq.
6278  * 3. Release Forcewake of Media well.
6279 */
6280 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6281 {
6282         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6283         u32 val = rps->idle_freq;
6284         int err;
6285
6286         if (rps->cur_freq <= val)
6287                 return;
6288
6289         /* The punit delays the write of the frequency and voltage until it
6290          * determines the GPU is awake. During normal usage we don't want to
6291          * waste power changing the frequency if the GPU is sleeping (rc6).
6292          * However, the GPU and driver is now idle and we do not want to delay
6293          * switching to minimum voltage (reducing power whilst idle) as we do
6294          * not expect to be woken in the near future and so must flush the
6295          * change by waking the device.
6296          *
6297          * We choose to take the media powerwell (either would do to trick the
6298          * punit into committing the voltage change) as that takes a lot less
6299          * power than the render powerwell.
6300          */
6301         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6302         err = valleyview_set_rps(dev_priv, val);
6303         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6304
6305         if (err)
6306                 DRM_ERROR("Failed to set RPS for idle\n");
6307 }
6308
6309 void gen6_rps_busy(struct drm_i915_private *dev_priv)
6310 {
6311         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6312
6313         mutex_lock(&dev_priv->pcu_lock);
6314         if (rps->enabled) {
6315                 u8 freq;
6316
6317                 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6318                         gen6_rps_reset_ei(dev_priv);
6319                 I915_WRITE(GEN6_PMINTRMSK,
6320                            gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6321
6322                 gen6_enable_rps_interrupts(dev_priv);
6323
6324                 /* Use the user's desired frequency as a guide, but for better
6325                  * performance, jump directly to RPe as our starting frequency.
6326                  */
6327                 freq = max(rps->cur_freq,
6328                            rps->efficient_freq);
6329
6330                 if (intel_set_rps(dev_priv,
6331                                   clamp(freq,
6332                                         rps->min_freq_softlimit,
6333                                         rps->max_freq_softlimit)))
6334                         DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6335         }
6336         mutex_unlock(&dev_priv->pcu_lock);
6337 }
6338
6339 void gen6_rps_idle(struct drm_i915_private *dev_priv)
6340 {
6341         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6342
6343         /* Flush our bottom-half so that it does not race with us
6344          * setting the idle frequency and so that it is bounded by
6345          * our rpm wakeref. And then disable the interrupts to stop any
6346          * futher RPS reclocking whilst we are asleep.
6347          */
6348         gen6_disable_rps_interrupts(dev_priv);
6349
6350         mutex_lock(&dev_priv->pcu_lock);
6351         if (rps->enabled) {
6352                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6353                         vlv_set_rps_idle(dev_priv);
6354                 else
6355                         gen6_set_rps(dev_priv, rps->idle_freq);
6356                 rps->last_adj = 0;
6357                 I915_WRITE(GEN6_PMINTRMSK,
6358                            gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6359         }
6360         mutex_unlock(&dev_priv->pcu_lock);
6361 }
6362
6363 void gen6_rps_boost(struct i915_request *rq,
6364                     struct intel_rps_client *rps_client)
6365 {
6366         struct intel_rps *rps = &rq->i915->gt_pm.rps;
6367         unsigned long flags;
6368         bool boost;
6369
6370         /* This is intentionally racy! We peek at the state here, then
6371          * validate inside the RPS worker.
6372          */
6373         if (!rps->enabled)
6374                 return;
6375
6376         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
6377                 return;
6378
6379         /* Serializes with i915_request_retire() */
6380         boost = false;
6381         spin_lock_irqsave(&rq->lock, flags);
6382         if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
6383                 boost = !atomic_fetch_inc(&rps->num_waiters);
6384                 rq->waitboost = true;
6385         }
6386         spin_unlock_irqrestore(&rq->lock, flags);
6387         if (!boost)
6388                 return;
6389
6390         if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
6391                 schedule_work(&rps->work);
6392
6393         atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
6394 }
6395
6396 int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6397 {
6398         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6399         int err;
6400
6401         lockdep_assert_held(&dev_priv->pcu_lock);
6402         GEM_BUG_ON(val > rps->max_freq);
6403         GEM_BUG_ON(val < rps->min_freq);
6404
6405         if (!rps->enabled) {
6406                 rps->cur_freq = val;
6407                 return 0;
6408         }
6409
6410         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6411                 err = valleyview_set_rps(dev_priv, val);
6412         else
6413                 err = gen6_set_rps(dev_priv, val);
6414
6415         return err;
6416 }
6417
6418 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6419 {
6420         I915_WRITE(GEN6_RC_CONTROL, 0);
6421         I915_WRITE(GEN9_PG_ENABLE, 0);
6422 }
6423
6424 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6425 {
6426         I915_WRITE(GEN6_RP_CONTROL, 0);
6427 }
6428
6429 static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6430 {
6431         I915_WRITE(GEN6_RC_CONTROL, 0);
6432 }
6433
6434 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6435 {
6436         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6437         I915_WRITE(GEN6_RP_CONTROL, 0);
6438 }
6439
6440 static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6441 {
6442         I915_WRITE(GEN6_RC_CONTROL, 0);
6443 }
6444
6445 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6446 {
6447         I915_WRITE(GEN6_RP_CONTROL, 0);
6448 }
6449
6450 static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6451 {
6452         /* We're doing forcewake before Disabling RC6,
6453          * This what the BIOS expects when going into suspend */
6454         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6455
6456         I915_WRITE(GEN6_RC_CONTROL, 0);
6457
6458         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6459 }
6460
6461 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6462 {
6463         I915_WRITE(GEN6_RP_CONTROL, 0);
6464 }
6465
6466 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6467 {
6468         bool enable_rc6 = true;
6469         unsigned long rc6_ctx_base;
6470         u32 rc_ctl;
6471         int rc_sw_target;
6472
6473         rc_ctl = I915_READ(GEN6_RC_CONTROL);
6474         rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6475                        RC_SW_TARGET_STATE_SHIFT;
6476         DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6477                          "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6478                          onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6479                          onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6480                          rc_sw_target);
6481
6482         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6483                 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6484                 enable_rc6 = false;
6485         }
6486
6487         /*
6488          * The exact context size is not known for BXT, so assume a page size
6489          * for this check.
6490          */
6491         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6492         if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
6493               (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6494                 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6495                 enable_rc6 = false;
6496         }
6497
6498         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
6499               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
6500               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
6501               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6502                 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6503                 enable_rc6 = false;
6504         }
6505
6506         if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
6507             !I915_READ(GEN8_PUSHBUS_ENABLE) ||
6508             !I915_READ(GEN8_PUSHBUS_SHIFT)) {
6509                 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
6510                 enable_rc6 = false;
6511         }
6512
6513         if (!I915_READ(GEN6_GFXPAUSE)) {
6514                 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
6515                 enable_rc6 = false;
6516         }
6517
6518         if (!I915_READ(GEN8_MISC_CTRL0)) {
6519                 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6520                 enable_rc6 = false;
6521         }
6522
6523         return enable_rc6;
6524 }
6525
6526 static bool sanitize_rc6(struct drm_i915_private *i915)
6527 {
6528         struct intel_device_info *info = mkwrite_device_info(i915);
6529
6530         /* Powersaving is controlled by the host when inside a VM */
6531         if (intel_vgpu_active(i915))
6532                 info->has_rc6 = 0;
6533
6534         if (info->has_rc6 &&
6535             IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
6536                 DRM_INFO("RC6 disabled by BIOS\n");
6537                 info->has_rc6 = 0;
6538         }
6539
6540         /*
6541          * We assume that we do not have any deep rc6 levels if we don't have
6542          * have the previous rc6 level supported, i.e. we use HAS_RC6()
6543          * as the initial coarse check for rc6 in general, moving on to
6544          * progressively finer/deeper levels.
6545          */
6546         if (!info->has_rc6 && info->has_rc6p)
6547                 info->has_rc6p = 0;
6548
6549         return info->has_rc6;
6550 }
6551
6552 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6553 {
6554         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6555
6556         /* All of these values are in units of 50MHz */
6557
6558         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
6559         if (IS_GEN9_LP(dev_priv)) {
6560                 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6561                 rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
6562                 rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
6563                 rps->min_freq = (rp_state_cap >>  0) & 0xff;
6564         } else {
6565                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6566                 rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
6567                 rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
6568                 rps->min_freq = (rp_state_cap >> 16) & 0xff;
6569         }
6570         /* hw_max = RP0 until we check for overclocking */
6571         rps->max_freq = rps->rp0_freq;
6572
6573         rps->efficient_freq = rps->rp1_freq;
6574         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6575             IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6576                 u32 ddcc_status = 0;
6577
6578                 if (sandybridge_pcode_read(dev_priv,
6579                                            HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
6580                                            &ddcc_status) == 0)
6581                         rps->efficient_freq =
6582                                 clamp_t(u8,
6583                                         ((ddcc_status >> 8) & 0xff),
6584                                         rps->min_freq,
6585                                         rps->max_freq);
6586         }
6587
6588         if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6589                 /* Store the frequency values in 16.66 MHZ units, which is
6590                  * the natural hardware unit for SKL
6591                  */
6592                 rps->rp0_freq *= GEN9_FREQ_SCALER;
6593                 rps->rp1_freq *= GEN9_FREQ_SCALER;
6594                 rps->min_freq *= GEN9_FREQ_SCALER;
6595                 rps->max_freq *= GEN9_FREQ_SCALER;
6596                 rps->efficient_freq *= GEN9_FREQ_SCALER;
6597         }
6598 }
6599
6600 static void reset_rps(struct drm_i915_private *dev_priv,
6601                       int (*set)(struct drm_i915_private *, u8))
6602 {
6603         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6604         u8 freq = rps->cur_freq;
6605
6606         /* force a reset */
6607         rps->power = -1;
6608         rps->cur_freq = -1;
6609
6610         if (set(dev_priv, freq))
6611                 DRM_ERROR("Failed to reset RPS to initial values\n");
6612 }
6613
6614 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
6615 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
6616 {
6617         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6618
6619         /* Program defaults and thresholds for RPS */
6620         if (IS_GEN9(dev_priv))
6621                 I915_WRITE(GEN6_RC_VIDEO_FREQ,
6622                         GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6623
6624         /* 1 second timeout*/
6625         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
6626                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
6627
6628         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
6629
6630         /* Leaning on the below call to gen6_set_rps to program/setup the
6631          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
6632          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6633         reset_rps(dev_priv, gen6_set_rps);
6634
6635         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6636 }
6637
6638 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
6639 {
6640         struct intel_engine_cs *engine;
6641         enum intel_engine_id id;
6642         u32 rc6_mode;
6643
6644         /* 1a: Software RC state - RC0 */
6645         I915_WRITE(GEN6_RC_STATE, 0);
6646
6647         /* 1b: Get forcewake during program sequence. Although the driver
6648          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6649         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6650
6651         /* 2a: Disable RC states. */
6652         I915_WRITE(GEN6_RC_CONTROL, 0);
6653
6654         /* 2b: Program RC6 thresholds.*/
6655         if (INTEL_GEN(dev_priv) >= 10) {
6656                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
6657                 I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
6658         } else if (IS_SKYLAKE(dev_priv)) {
6659                 /*
6660                  * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
6661                  * when CPG is enabled
6662                  */
6663                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
6664         } else {
6665                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
6666         }
6667
6668         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6669         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6670         for_each_engine(engine, dev_priv, id)
6671                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6672
6673         if (HAS_GUC(dev_priv))
6674                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
6675
6676         I915_WRITE(GEN6_RC_SLEEP, 0);
6677
6678         /*
6679          * 2c: Program Coarse Power Gating Policies.
6680          *
6681          * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
6682          * use instead is a more conservative estimate for the maximum time
6683          * it takes us to service a CS interrupt and submit a new ELSP - that
6684          * is the time which the GPU is idle waiting for the CPU to select the
6685          * next request to execute. If the idle hysteresis is less than that
6686          * interrupt service latency, the hardware will automatically gate
6687          * the power well and we will then incur the wake up cost on top of
6688          * the service latency. A similar guide from intel_pstate is that we
6689          * do not want the enable hysteresis to less than the wakeup latency.
6690          *
6691          * igt/gem_exec_nop/sequential provides a rough estimate for the
6692          * service latency, and puts it around 10us for Broadwell (and other
6693          * big core) and around 40us for Broxton (and other low power cores).
6694          * [Note that for legacy ringbuffer submission, this is less than 1us!]
6695          * However, the wakeup latency on Broxton is closer to 100us. To be
6696          * conservative, we have to factor in a context switch on top (due
6697          * to ksoftirqd).
6698          */
6699         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
6700         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
6701
6702         /* 3a: Enable RC6 */
6703         I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
6704
6705         /* WaRsUseTimeoutMode:cnl (pre-prod) */
6706         if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
6707                 rc6_mode = GEN7_RC_CTL_TO_MODE;
6708         else
6709                 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
6710
6711         I915_WRITE(GEN6_RC_CONTROL,
6712                    GEN6_RC_CTL_HW_ENABLE |
6713                    GEN6_RC_CTL_RC6_ENABLE |
6714                    rc6_mode);
6715
6716         /*
6717          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6718          * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
6719          */
6720         if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6721                 I915_WRITE(GEN9_PG_ENABLE, 0);
6722         else
6723                 I915_WRITE(GEN9_PG_ENABLE,
6724                            GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
6725
6726         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6727 }
6728
6729 static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
6730 {
6731         struct intel_engine_cs *engine;
6732         enum intel_engine_id id;
6733
6734         /* 1a: Software RC state - RC0 */
6735         I915_WRITE(GEN6_RC_STATE, 0);
6736
6737         /* 1b: Get forcewake during program sequence. Although the driver
6738          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6739         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6740
6741         /* 2a: Disable RC states. */
6742         I915_WRITE(GEN6_RC_CONTROL, 0);
6743
6744         /* 2b: Program RC6 thresholds.*/
6745         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6746         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6747         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6748         for_each_engine(engine, dev_priv, id)
6749                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6750         I915_WRITE(GEN6_RC_SLEEP, 0);
6751         I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
6752
6753         /* 3: Enable RC6 */
6754
6755         I915_WRITE(GEN6_RC_CONTROL,
6756                    GEN6_RC_CTL_HW_ENABLE |
6757                    GEN7_RC_CTL_TO_MODE |
6758                    GEN6_RC_CTL_RC6_ENABLE);
6759
6760         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6761 }
6762
6763 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
6764 {
6765         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6766
6767         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6768
6769         /* 1 Program defaults and thresholds for RPS*/
6770         I915_WRITE(GEN6_RPNSWREQ,
6771                    HSW_FREQUENCY(rps->rp1_freq));
6772         I915_WRITE(GEN6_RC_VIDEO_FREQ,
6773                    HSW_FREQUENCY(rps->rp1_freq));
6774         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
6775         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
6776
6777         /* Docs recommend 900MHz, and 300 MHz respectively */
6778         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6779                    rps->max_freq_softlimit << 24 |
6780                    rps->min_freq_softlimit << 16);
6781
6782         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
6783         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
6784         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
6785         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
6786
6787         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6788
6789         /* 2: Enable RPS */
6790         I915_WRITE(GEN6_RP_CONTROL,
6791                    GEN6_RP_MEDIA_TURBO |
6792                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
6793                    GEN6_RP_MEDIA_IS_GFX |
6794                    GEN6_RP_ENABLE |
6795                    GEN6_RP_UP_BUSY_AVG |
6796                    GEN6_RP_DOWN_IDLE_AVG);
6797
6798         reset_rps(dev_priv, gen6_set_rps);
6799
6800         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6801 }
6802
6803 static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
6804 {
6805         struct intel_engine_cs *engine;
6806         enum intel_engine_id id;
6807         u32 rc6vids, rc6_mask;
6808         u32 gtfifodbg;
6809         int ret;
6810
6811         I915_WRITE(GEN6_RC_STATE, 0);
6812
6813         /* Clear the DBG now so we don't confuse earlier errors */
6814         gtfifodbg = I915_READ(GTFIFODBG);
6815         if (gtfifodbg) {
6816                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
6817                 I915_WRITE(GTFIFODBG, gtfifodbg);
6818         }
6819
6820         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6821
6822         /* disable the counters and set deterministic thresholds */
6823         I915_WRITE(GEN6_RC_CONTROL, 0);
6824
6825         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
6826         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
6827         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
6828         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6829         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6830
6831         for_each_engine(engine, dev_priv, id)
6832                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6833
6834         I915_WRITE(GEN6_RC_SLEEP, 0);
6835         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
6836         if (IS_IVYBRIDGE(dev_priv))
6837                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
6838         else
6839                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
6840         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
6841         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
6842
6843         /* We don't use those on Haswell */
6844         rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6845         if (HAS_RC6p(dev_priv))
6846                 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
6847         if (HAS_RC6pp(dev_priv))
6848                 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
6849         I915_WRITE(GEN6_RC_CONTROL,
6850                    rc6_mask |
6851                    GEN6_RC_CTL_EI_MODE(1) |
6852                    GEN6_RC_CTL_HW_ENABLE);
6853
6854         rc6vids = 0;
6855         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
6856         if (IS_GEN6(dev_priv) && ret) {
6857                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
6858         } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
6859                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
6860                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
6861                 rc6vids &= 0xffff00;
6862                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
6863                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
6864                 if (ret)
6865                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
6866         }
6867
6868         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6869 }
6870
6871 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
6872 {
6873         /* Here begins a magic sequence of register writes to enable
6874          * auto-downclocking.
6875          *
6876          * Perhaps there might be some value in exposing these to
6877          * userspace...
6878          */
6879         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6880
6881         /* Power down if completely idle for over 50ms */
6882         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
6883         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6884
6885         reset_rps(dev_priv, gen6_set_rps);
6886
6887         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6888 }
6889
6890 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
6891 {
6892         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6893         int min_freq = 15;
6894         unsigned int gpu_freq;
6895         unsigned int max_ia_freq, min_ring_freq;
6896         unsigned int max_gpu_freq, min_gpu_freq;
6897         int scaling_factor = 180;
6898         struct cpufreq_policy *policy;
6899
6900         WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
6901
6902         policy = cpufreq_cpu_get(0);
6903         if (policy) {
6904                 max_ia_freq = policy->cpuinfo.max_freq;
6905                 cpufreq_cpu_put(policy);
6906         } else {
6907                 /*
6908                  * Default to measured freq if none found, PCU will ensure we
6909                  * don't go over
6910                  */
6911                 max_ia_freq = tsc_khz;
6912         }
6913
6914         /* Convert from kHz to MHz */
6915         max_ia_freq /= 1000;
6916
6917         min_ring_freq = I915_READ(DCLK) & 0xf;
6918         /* convert DDR frequency from units of 266.6MHz to bandwidth */
6919         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
6920
6921         if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6922                 /* Convert GT frequency to 50 HZ units */
6923                 min_gpu_freq = rps->min_freq / GEN9_FREQ_SCALER;
6924                 max_gpu_freq = rps->max_freq / GEN9_FREQ_SCALER;
6925         } else {
6926                 min_gpu_freq = rps->min_freq;
6927                 max_gpu_freq = rps->max_freq;
6928         }
6929
6930         /*
6931          * For each potential GPU frequency, load a ring frequency we'd like
6932          * to use for memory access.  We do this by specifying the IA frequency
6933          * the PCU should use as a reference to determine the ring frequency.
6934          */
6935         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
6936                 int diff = max_gpu_freq - gpu_freq;
6937                 unsigned int ia_freq = 0, ring_freq = 0;
6938
6939                 if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6940                         /*
6941                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
6942                          * No floor required for ring frequency on SKL.
6943                          */
6944                         ring_freq = gpu_freq;
6945                 } else if (INTEL_GEN(dev_priv) >= 8) {
6946                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
6947                         ring_freq = max(min_ring_freq, gpu_freq);
6948                 } else if (IS_HASWELL(dev_priv)) {
6949                         ring_freq = mult_frac(gpu_freq, 5, 4);
6950                         ring_freq = max(min_ring_freq, ring_freq);
6951                         /* leave ia_freq as the default, chosen by cpufreq */
6952                 } else {
6953                         /* On older processors, there is no separate ring
6954                          * clock domain, so in order to boost the bandwidth
6955                          * of the ring, we need to upclock the CPU (ia_freq).
6956                          *
6957                          * For GPU frequencies less than 750MHz,
6958                          * just use the lowest ring freq.
6959                          */
6960                         if (gpu_freq < min_freq)
6961                                 ia_freq = 800;
6962                         else
6963                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
6964                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
6965                 }
6966
6967                 sandybridge_pcode_write(dev_priv,
6968                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
6969                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
6970                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
6971                                         gpu_freq);
6972         }
6973 }
6974
6975 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
6976 {
6977         u32 val, rp0;
6978
6979         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6980
6981         switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
6982         case 8:
6983                 /* (2 * 4) config */
6984                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
6985                 break;
6986         case 12:
6987                 /* (2 * 6) config */
6988                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
6989                 break;
6990         case 16:
6991                 /* (2 * 8) config */
6992         default:
6993                 /* Setting (2 * 8) Min RP0 for any other combination */
6994                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
6995                 break;
6996         }
6997
6998         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
6999
7000         return rp0;
7001 }
7002
7003 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7004 {
7005         u32 val, rpe;
7006
7007         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
7008         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
7009
7010         return rpe;
7011 }
7012
7013 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
7014 {
7015         u32 val, rp1;
7016
7017         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7018         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
7019
7020         return rp1;
7021 }
7022
7023 static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
7024 {
7025         u32 val, rpn;
7026
7027         val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
7028         rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
7029                        FB_GFX_FREQ_FUSE_MASK);
7030
7031         return rpn;
7032 }
7033
7034 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
7035 {
7036         u32 val, rp1;
7037
7038         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7039
7040         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
7041
7042         return rp1;
7043 }
7044
7045 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7046 {
7047         u32 val, rp0;
7048
7049         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7050
7051         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
7052         /* Clamp to max */
7053         rp0 = min_t(u32, rp0, 0xea);
7054
7055         return rp0;
7056 }
7057
7058 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7059 {
7060         u32 val, rpe;
7061
7062         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7063         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7064         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7065         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
7066
7067         return rpe;
7068 }
7069
7070 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7071 {
7072         u32 val;
7073
7074         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
7075         /*
7076          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
7077          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
7078          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
7079          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
7080          * to make sure it matches what Punit accepts.
7081          */
7082         return max_t(u32, val, 0xc0);
7083 }
7084
7085 /* Check that the pctx buffer wasn't move under us. */
7086 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
7087 {
7088         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7089
7090         WARN_ON(pctx_addr != dev_priv->dsm.start +
7091                              dev_priv->vlv_pctx->stolen->start);
7092 }
7093
7094
7095 /* Check that the pcbr address is not empty. */
7096 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
7097 {
7098         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7099
7100         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
7101 }
7102
7103 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7104 {
7105         resource_size_t pctx_paddr, paddr;
7106         resource_size_t pctx_size = 32*1024;
7107         u32 pcbr;
7108
7109         pcbr = I915_READ(VLV_PCBR);
7110         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7111                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7112                 paddr = dev_priv->dsm.end + 1 - pctx_size;
7113                 GEM_BUG_ON(paddr > U32_MAX);
7114
7115                 pctx_paddr = (paddr & (~4095));
7116                 I915_WRITE(VLV_PCBR, pctx_paddr);
7117         }
7118
7119         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7120 }
7121
7122 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7123 {
7124         struct drm_i915_gem_object *pctx;
7125         resource_size_t pctx_paddr;
7126         resource_size_t pctx_size = 24*1024;
7127         u32 pcbr;
7128
7129         pcbr = I915_READ(VLV_PCBR);
7130         if (pcbr) {
7131                 /* BIOS set it up already, grab the pre-alloc'd space */
7132                 resource_size_t pcbr_offset;
7133
7134                 pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7135                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7136                                                                       pcbr_offset,
7137                                                                       I915_GTT_OFFSET_NONE,
7138                                                                       pctx_size);
7139                 goto out;
7140         }
7141
7142         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7143
7144         /*
7145          * From the Gunit register HAS:
7146          * The Gfx driver is expected to program this register and ensure
7147          * proper allocation within Gfx stolen memory.  For example, this
7148          * register should be programmed such than the PCBR range does not
7149          * overlap with other ranges, such as the frame buffer, protected
7150          * memory, or any other relevant ranges.
7151          */
7152         pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7153         if (!pctx) {
7154                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7155                 goto out;
7156         }
7157
7158         GEM_BUG_ON(range_overflows_t(u64,
7159                                      dev_priv->dsm.start,
7160                                      pctx->stolen->start,
7161                                      U32_MAX));
7162         pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7163         I915_WRITE(VLV_PCBR, pctx_paddr);
7164
7165 out:
7166         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7167         dev_priv->vlv_pctx = pctx;
7168 }
7169
7170 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7171 {
7172         if (WARN_ON(!dev_priv->vlv_pctx))
7173                 return;
7174
7175         i915_gem_object_put(dev_priv->vlv_pctx);
7176         dev_priv->vlv_pctx = NULL;
7177 }
7178
7179 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
7180 {
7181         dev_priv->gt_pm.rps.gpll_ref_freq =
7182                 vlv_get_cck_clock(dev_priv, "GPLL ref",
7183                                   CCK_GPLL_CLOCK_CONTROL,
7184                                   dev_priv->czclk_freq);
7185
7186         DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7187                          dev_priv->gt_pm.rps.gpll_ref_freq);
7188 }
7189
7190 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7191 {
7192         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7193         u32 val;
7194
7195         valleyview_setup_pctx(dev_priv);
7196
7197         vlv_init_gpll_ref_freq(dev_priv);
7198
7199         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7200         switch ((val >> 6) & 3) {
7201         case 0:
7202         case 1:
7203                 dev_priv->mem_freq = 800;
7204                 break;
7205         case 2:
7206                 dev_priv->mem_freq = 1066;
7207                 break;
7208         case 3:
7209                 dev_priv->mem_freq = 1333;
7210                 break;
7211         }
7212         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7213
7214         rps->max_freq = valleyview_rps_max_freq(dev_priv);
7215         rps->rp0_freq = rps->max_freq;
7216         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7217                          intel_gpu_freq(dev_priv, rps->max_freq),
7218                          rps->max_freq);
7219
7220         rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7221         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7222                          intel_gpu_freq(dev_priv, rps->efficient_freq),
7223                          rps->efficient_freq);
7224
7225         rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7226         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7227                          intel_gpu_freq(dev_priv, rps->rp1_freq),
7228                          rps->rp1_freq);
7229
7230         rps->min_freq = valleyview_rps_min_freq(dev_priv);
7231         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7232                          intel_gpu_freq(dev_priv, rps->min_freq),
7233                          rps->min_freq);
7234 }
7235
7236 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7237 {
7238         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7239         u32 val;
7240
7241         cherryview_setup_pctx(dev_priv);
7242
7243         vlv_init_gpll_ref_freq(dev_priv);
7244
7245         mutex_lock(&dev_priv->sb_lock);
7246         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
7247         mutex_unlock(&dev_priv->sb_lock);
7248
7249         switch ((val >> 2) & 0x7) {
7250         case 3:
7251                 dev_priv->mem_freq = 2000;
7252                 break;
7253         default:
7254                 dev_priv->mem_freq = 1600;
7255                 break;
7256         }
7257         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7258
7259         rps->max_freq = cherryview_rps_max_freq(dev_priv);
7260         rps->rp0_freq = rps->max_freq;
7261         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7262                          intel_gpu_freq(dev_priv, rps->max_freq),
7263                          rps->max_freq);
7264
7265         rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7266         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7267                          intel_gpu_freq(dev_priv, rps->efficient_freq),
7268                          rps->efficient_freq);
7269
7270         rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7271         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7272                          intel_gpu_freq(dev_priv, rps->rp1_freq),
7273                          rps->rp1_freq);
7274
7275         rps->min_freq = cherryview_rps_min_freq(dev_priv);
7276         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7277                          intel_gpu_freq(dev_priv, rps->min_freq),
7278                          rps->min_freq);
7279
7280         WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
7281                    rps->min_freq) & 1,
7282                   "Odd GPU freq values\n");
7283 }
7284
7285 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7286 {
7287         valleyview_cleanup_pctx(dev_priv);
7288 }
7289
7290 static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7291 {
7292         struct intel_engine_cs *engine;
7293         enum intel_engine_id id;
7294         u32 gtfifodbg, rc6_mode, pcbr;
7295
7296         gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7297                                              GT_FIFO_FREE_ENTRIES_CHV);
7298         if (gtfifodbg) {
7299                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7300                                  gtfifodbg);
7301                 I915_WRITE(GTFIFODBG, gtfifodbg);
7302         }
7303
7304         cherryview_check_pctx(dev_priv);
7305
7306         /* 1a & 1b: Get forcewake during program sequence. Although the driver
7307          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7308         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7309
7310         /*  Disable RC states. */
7311         I915_WRITE(GEN6_RC_CONTROL, 0);
7312
7313         /* 2a: Program RC6 thresholds.*/
7314         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7315         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7316         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7317
7318         for_each_engine(engine, dev_priv, id)
7319                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7320         I915_WRITE(GEN6_RC_SLEEP, 0);
7321
7322         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7323         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7324
7325         /* Allows RC6 residency counter to work */
7326         I915_WRITE(VLV_COUNTER_CONTROL,
7327                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7328                                       VLV_MEDIA_RC6_COUNT_EN |
7329                                       VLV_RENDER_RC6_COUNT_EN));
7330
7331         /* For now we assume BIOS is allocating and populating the PCBR  */
7332         pcbr = I915_READ(VLV_PCBR);
7333
7334         /* 3: Enable RC6 */
7335         rc6_mode = 0;
7336         if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7337                 rc6_mode = GEN7_RC_CTL_TO_MODE;
7338         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7339
7340         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7341 }
7342
7343 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7344 {
7345         u32 val;
7346
7347         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7348
7349         /* 1: Program defaults and thresholds for RPS*/
7350         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7351         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7352         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7353         I915_WRITE(GEN6_RP_UP_EI, 66000);
7354         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7355
7356         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7357
7358         /* 2: Enable RPS */
7359         I915_WRITE(GEN6_RP_CONTROL,
7360                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
7361                    GEN6_RP_MEDIA_IS_GFX |
7362                    GEN6_RP_ENABLE |
7363                    GEN6_RP_UP_BUSY_AVG |
7364                    GEN6_RP_DOWN_IDLE_AVG);
7365
7366         /* Setting Fixed Bias */
7367         val = VLV_OVERRIDE_EN |
7368                   VLV_SOC_TDP_EN |
7369                   CHV_BIAS_CPU_50_SOC_50;
7370         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7371
7372         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7373
7374         /* RPS code assumes GPLL is used */
7375         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7376
7377         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7378         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7379
7380         reset_rps(dev_priv, valleyview_set_rps);
7381
7382         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7383 }
7384
7385 static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7386 {
7387         struct intel_engine_cs *engine;
7388         enum intel_engine_id id;
7389         u32 gtfifodbg;
7390
7391         valleyview_check_pctx(dev_priv);
7392
7393         gtfifodbg = I915_READ(GTFIFODBG);
7394         if (gtfifodbg) {
7395                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7396                                  gtfifodbg);
7397                 I915_WRITE(GTFIFODBG, gtfifodbg);
7398         }
7399
7400         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7401
7402         /*  Disable RC states. */
7403         I915_WRITE(GEN6_RC_CONTROL, 0);
7404
7405         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
7406         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7407         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7408
7409         for_each_engine(engine, dev_priv, id)
7410                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7411
7412         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7413
7414         /* Allows RC6 residency counter to work */
7415         I915_WRITE(VLV_COUNTER_CONTROL,
7416                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7417                                       VLV_MEDIA_RC0_COUNT_EN |
7418                                       VLV_RENDER_RC0_COUNT_EN |
7419                                       VLV_MEDIA_RC6_COUNT_EN |
7420                                       VLV_RENDER_RC6_COUNT_EN));
7421
7422         I915_WRITE(GEN6_RC_CONTROL,
7423                    GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
7424
7425         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7426 }
7427
7428 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7429 {
7430         u32 val;
7431
7432         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7433
7434         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7435         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7436         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7437         I915_WRITE(GEN6_RP_UP_EI, 66000);
7438         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7439
7440         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7441
7442         I915_WRITE(GEN6_RP_CONTROL,
7443                    GEN6_RP_MEDIA_TURBO |
7444                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
7445                    GEN6_RP_MEDIA_IS_GFX |
7446                    GEN6_RP_ENABLE |
7447                    GEN6_RP_UP_BUSY_AVG |
7448                    GEN6_RP_DOWN_IDLE_CONT);
7449
7450         /* Setting Fixed Bias */
7451         val = VLV_OVERRIDE_EN |
7452                   VLV_SOC_TDP_EN |
7453                   VLV_BIAS_CPU_125_SOC_875;
7454         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7455
7456         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7457
7458         /* RPS code assumes GPLL is used */
7459         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7460
7461         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7462         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7463
7464         reset_rps(dev_priv, valleyview_set_rps);
7465
7466         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7467 }
7468
7469 static unsigned long intel_pxfreq(u32 vidfreq)
7470 {
7471         unsigned long freq;
7472         int div = (vidfreq & 0x3f0000) >> 16;
7473         int post = (vidfreq & 0x3000) >> 12;
7474         int pre = (vidfreq & 0x7);
7475
7476         if (!pre)
7477                 return 0;
7478
7479         freq = ((div * 133333) / ((1<<post) * pre));
7480
7481         return freq;
7482 }
7483
7484 static const struct cparams {
7485         u16 i;
7486         u16 t;
7487         u16 m;
7488         u16 c;
7489 } cparams[] = {
7490         { 1, 1333, 301, 28664 },
7491         { 1, 1066, 294, 24460 },
7492         { 1, 800, 294, 25192 },
7493         { 0, 1333, 276, 27605 },
7494         { 0, 1066, 276, 27605 },
7495         { 0, 800, 231, 23784 },
7496 };
7497
7498 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7499 {
7500         u64 total_count, diff, ret;
7501         u32 count1, count2, count3, m = 0, c = 0;
7502         unsigned long now = jiffies_to_msecs(jiffies), diff1;
7503         int i;
7504
7505         lockdep_assert_held(&mchdev_lock);
7506
7507         diff1 = now - dev_priv->ips.last_time1;
7508
7509         /* Prevent division-by-zero if we are asking too fast.
7510          * Also, we don't get interesting results if we are polling
7511          * faster than once in 10ms, so just return the saved value
7512          * in such cases.
7513          */
7514         if (diff1 <= 10)
7515                 return dev_priv->ips.chipset_power;
7516
7517         count1 = I915_READ(DMIEC);
7518         count2 = I915_READ(DDREC);
7519         count3 = I915_READ(CSIEC);
7520
7521         total_count = count1 + count2 + count3;
7522
7523         /* FIXME: handle per-counter overflow */
7524         if (total_count < dev_priv->ips.last_count1) {
7525                 diff = ~0UL - dev_priv->ips.last_count1;
7526                 diff += total_count;
7527         } else {
7528                 diff = total_count - dev_priv->ips.last_count1;
7529         }
7530
7531         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7532                 if (cparams[i].i == dev_priv->ips.c_m &&
7533                     cparams[i].t == dev_priv->ips.r_t) {
7534                         m = cparams[i].m;
7535                         c = cparams[i].c;
7536                         break;
7537                 }
7538         }
7539
7540         diff = div_u64(diff, diff1);
7541         ret = ((m * diff) + c);
7542         ret = div_u64(ret, 10);
7543
7544         dev_priv->ips.last_count1 = total_count;
7545         dev_priv->ips.last_time1 = now;
7546
7547         dev_priv->ips.chipset_power = ret;
7548
7549         return ret;
7550 }
7551
7552 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
7553 {
7554         unsigned long val;
7555
7556         if (!IS_GEN5(dev_priv))
7557                 return 0;
7558
7559         spin_lock_irq(&mchdev_lock);
7560
7561         val = __i915_chipset_val(dev_priv);
7562
7563         spin_unlock_irq(&mchdev_lock);
7564
7565         return val;
7566 }
7567
7568 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
7569 {
7570         unsigned long m, x, b;
7571         u32 tsfs;
7572
7573         tsfs = I915_READ(TSFS);
7574
7575         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
7576         x = I915_READ8(TR1);
7577
7578         b = tsfs & TSFS_INTR_MASK;
7579
7580         return ((m * x) / 127) - b;
7581 }
7582
7583 static int _pxvid_to_vd(u8 pxvid)
7584 {
7585         if (pxvid == 0)
7586                 return 0;
7587
7588         if (pxvid >= 8 && pxvid < 31)
7589                 pxvid = 31;
7590
7591         return (pxvid + 2) * 125;
7592 }
7593
7594 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7595 {
7596         const int vd = _pxvid_to_vd(pxvid);
7597         const int vm = vd - 1125;
7598
7599         if (INTEL_INFO(dev_priv)->is_mobile)
7600                 return vm > 0 ? vm : 0;
7601
7602         return vd;
7603 }
7604
7605 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7606 {
7607         u64 now, diff, diffms;
7608         u32 count;
7609
7610         lockdep_assert_held(&mchdev_lock);
7611
7612         now = ktime_get_raw_ns();
7613         diffms = now - dev_priv->ips.last_time2;
7614         do_div(diffms, NSEC_PER_MSEC);
7615
7616         /* Don't divide by 0 */
7617         if (!diffms)
7618                 return;
7619
7620         count = I915_READ(GFXEC);
7621
7622         if (count < dev_priv->ips.last_count2) {
7623                 diff = ~0UL - dev_priv->ips.last_count2;
7624                 diff += count;
7625         } else {
7626                 diff = count - dev_priv->ips.last_count2;
7627         }
7628
7629         dev_priv->ips.last_count2 = count;
7630         dev_priv->ips.last_time2 = now;
7631
7632         /* More magic constants... */
7633         diff = diff * 1181;
7634         diff = div_u64(diff, diffms * 10);
7635         dev_priv->ips.gfx_power = diff;
7636 }
7637
7638 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
7639 {
7640         if (!IS_GEN5(dev_priv))
7641                 return;
7642
7643         spin_lock_irq(&mchdev_lock);
7644
7645         __i915_update_gfx_val(dev_priv);
7646
7647         spin_unlock_irq(&mchdev_lock);
7648 }
7649
7650 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7651 {
7652         unsigned long t, corr, state1, corr2, state2;
7653         u32 pxvid, ext_v;
7654
7655         lockdep_assert_held(&mchdev_lock);
7656
7657         pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7658         pxvid = (pxvid >> 24) & 0x7f;
7659         ext_v = pvid_to_extvid(dev_priv, pxvid);
7660
7661         state1 = ext_v;
7662
7663         t = i915_mch_val(dev_priv);
7664
7665         /* Revel in the empirically derived constants */
7666
7667         /* Correction factor in 1/100000 units */
7668         if (t > 80)
7669                 corr = ((t * 2349) + 135940);
7670         else if (t >= 50)
7671                 corr = ((t * 964) + 29317);
7672         else /* < 50 */
7673                 corr = ((t * 301) + 1004);
7674
7675         corr = corr * ((150142 * state1) / 10000 - 78642);
7676         corr /= 100000;
7677         corr2 = (corr * dev_priv->ips.corr);
7678
7679         state2 = (corr2 * state1) / 10000;
7680         state2 /= 100; /* convert to mW */
7681
7682         __i915_update_gfx_val(dev_priv);
7683
7684         return dev_priv->ips.gfx_power + state2;
7685 }
7686
7687 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
7688 {
7689         unsigned long val;
7690
7691         if (!IS_GEN5(dev_priv))
7692                 return 0;
7693
7694         spin_lock_irq(&mchdev_lock);
7695
7696         val = __i915_gfx_val(dev_priv);
7697
7698         spin_unlock_irq(&mchdev_lock);
7699
7700         return val;
7701 }
7702
7703 /**
7704  * i915_read_mch_val - return value for IPS use
7705  *
7706  * Calculate and return a value for the IPS driver to use when deciding whether
7707  * we have thermal and power headroom to increase CPU or GPU power budget.
7708  */
7709 unsigned long i915_read_mch_val(void)
7710 {
7711         struct drm_i915_private *dev_priv;
7712         unsigned long chipset_val, graphics_val, ret = 0;
7713
7714         spin_lock_irq(&mchdev_lock);
7715         if (!i915_mch_dev)
7716                 goto out_unlock;
7717         dev_priv = i915_mch_dev;
7718
7719         chipset_val = __i915_chipset_val(dev_priv);
7720         graphics_val = __i915_gfx_val(dev_priv);
7721
7722         ret = chipset_val + graphics_val;
7723
7724 out_unlock:
7725         spin_unlock_irq(&mchdev_lock);
7726
7727         return ret;
7728 }
7729 EXPORT_SYMBOL_GPL(i915_read_mch_val);
7730
7731 /**
7732  * i915_gpu_raise - raise GPU frequency limit
7733  *
7734  * Raise the limit; IPS indicates we have thermal headroom.
7735  */
7736 bool i915_gpu_raise(void)
7737 {
7738         struct drm_i915_private *dev_priv;
7739         bool ret = true;
7740
7741         spin_lock_irq(&mchdev_lock);
7742         if (!i915_mch_dev) {
7743                 ret = false;
7744                 goto out_unlock;
7745         }
7746         dev_priv = i915_mch_dev;
7747
7748         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
7749                 dev_priv->ips.max_delay--;
7750
7751 out_unlock:
7752         spin_unlock_irq(&mchdev_lock);
7753
7754         return ret;
7755 }
7756 EXPORT_SYMBOL_GPL(i915_gpu_raise);
7757
7758 /**
7759  * i915_gpu_lower - lower GPU frequency limit
7760  *
7761  * IPS indicates we're close to a thermal limit, so throttle back the GPU
7762  * frequency maximum.
7763  */
7764 bool i915_gpu_lower(void)
7765 {
7766         struct drm_i915_private *dev_priv;
7767         bool ret = true;
7768
7769         spin_lock_irq(&mchdev_lock);
7770         if (!i915_mch_dev) {
7771                 ret = false;
7772                 goto out_unlock;
7773         }
7774         dev_priv = i915_mch_dev;
7775
7776         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
7777                 dev_priv->ips.max_delay++;
7778
7779 out_unlock:
7780         spin_unlock_irq(&mchdev_lock);
7781
7782         return ret;
7783 }
7784 EXPORT_SYMBOL_GPL(i915_gpu_lower);
7785
7786 /**
7787  * i915_gpu_busy - indicate GPU business to IPS
7788  *
7789  * Tell the IPS driver whether or not the GPU is busy.
7790  */
7791 bool i915_gpu_busy(void)
7792 {
7793         bool ret = false;
7794
7795         spin_lock_irq(&mchdev_lock);
7796         if (i915_mch_dev)
7797                 ret = i915_mch_dev->gt.awake;
7798         spin_unlock_irq(&mchdev_lock);
7799
7800         return ret;
7801 }
7802 EXPORT_SYMBOL_GPL(i915_gpu_busy);
7803
7804 /**
7805  * i915_gpu_turbo_disable - disable graphics turbo
7806  *
7807  * Disable graphics turbo by resetting the max frequency and setting the
7808  * current frequency to the default.
7809  */
7810 bool i915_gpu_turbo_disable(void)
7811 {
7812         struct drm_i915_private *dev_priv;
7813         bool ret = true;
7814
7815         spin_lock_irq(&mchdev_lock);
7816         if (!i915_mch_dev) {
7817                 ret = false;
7818                 goto out_unlock;
7819         }
7820         dev_priv = i915_mch_dev;
7821
7822         dev_priv->ips.max_delay = dev_priv->ips.fstart;
7823
7824         if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
7825                 ret = false;
7826
7827 out_unlock:
7828         spin_unlock_irq(&mchdev_lock);
7829
7830         return ret;
7831 }
7832 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
7833
7834 /**
7835  * Tells the intel_ips driver that the i915 driver is now loaded, if
7836  * IPS got loaded first.
7837  *
7838  * This awkward dance is so that neither module has to depend on the
7839  * other in order for IPS to do the appropriate communication of
7840  * GPU turbo limits to i915.
7841  */
7842 static void
7843 ips_ping_for_i915_load(void)
7844 {
7845         void (*link)(void);
7846
7847         link = symbol_get(ips_link_to_i915_driver);
7848         if (link) {
7849                 link();
7850                 symbol_put(ips_link_to_i915_driver);
7851         }
7852 }
7853
7854 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
7855 {
7856         /* We only register the i915 ips part with intel-ips once everything is
7857          * set up, to avoid intel-ips sneaking in and reading bogus values. */
7858         spin_lock_irq(&mchdev_lock);
7859         i915_mch_dev = dev_priv;
7860         spin_unlock_irq(&mchdev_lock);
7861
7862         ips_ping_for_i915_load();
7863 }
7864
7865 void intel_gpu_ips_teardown(void)
7866 {
7867         spin_lock_irq(&mchdev_lock);
7868         i915_mch_dev = NULL;
7869         spin_unlock_irq(&mchdev_lock);
7870 }
7871
7872 static void intel_init_emon(struct drm_i915_private *dev_priv)
7873 {
7874         u32 lcfuse;
7875         u8 pxw[16];
7876         int i;
7877
7878         /* Disable to program */
7879         I915_WRITE(ECR, 0);
7880         POSTING_READ(ECR);
7881
7882         /* Program energy weights for various events */
7883         I915_WRITE(SDEW, 0x15040d00);
7884         I915_WRITE(CSIEW0, 0x007f0000);
7885         I915_WRITE(CSIEW1, 0x1e220004);
7886         I915_WRITE(CSIEW2, 0x04000004);
7887
7888         for (i = 0; i < 5; i++)
7889                 I915_WRITE(PEW(i), 0);
7890         for (i = 0; i < 3; i++)
7891                 I915_WRITE(DEW(i), 0);
7892
7893         /* Program P-state weights to account for frequency power adjustment */
7894         for (i = 0; i < 16; i++) {
7895                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
7896                 unsigned long freq = intel_pxfreq(pxvidfreq);
7897                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7898                         PXVFREQ_PX_SHIFT;
7899                 unsigned long val;
7900
7901                 val = vid * vid;
7902                 val *= (freq / 1000);
7903                 val *= 255;
7904                 val /= (127*127*900);
7905                 if (val > 0xff)
7906                         DRM_ERROR("bad pxval: %ld\n", val);
7907                 pxw[i] = val;
7908         }
7909         /* Render standby states get 0 weight */
7910         pxw[14] = 0;
7911         pxw[15] = 0;
7912
7913         for (i = 0; i < 4; i++) {
7914                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7915                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7916                 I915_WRITE(PXW(i), val);
7917         }
7918
7919         /* Adjust magic regs to magic values (more experimental results) */
7920         I915_WRITE(OGW0, 0);
7921         I915_WRITE(OGW1, 0);
7922         I915_WRITE(EG0, 0x00007f00);
7923         I915_WRITE(EG1, 0x0000000e);
7924         I915_WRITE(EG2, 0x000e0000);
7925         I915_WRITE(EG3, 0x68000300);
7926         I915_WRITE(EG4, 0x42000000);
7927         I915_WRITE(EG5, 0x00140031);
7928         I915_WRITE(EG6, 0);
7929         I915_WRITE(EG7, 0);
7930
7931         for (i = 0; i < 8; i++)
7932                 I915_WRITE(PXWL(i), 0);
7933
7934         /* Enable PMON + select events */
7935         I915_WRITE(ECR, 0x80000019);
7936
7937         lcfuse = I915_READ(LCFUSE02);
7938
7939         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
7940 }
7941
7942 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
7943 {
7944         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7945
7946         /*
7947          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
7948          * requirement.
7949          */
7950         if (!sanitize_rc6(dev_priv)) {
7951                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
7952                 intel_runtime_pm_get(dev_priv);
7953         }
7954
7955         mutex_lock(&dev_priv->pcu_lock);
7956
7957         /* Initialize RPS limits (for userspace) */
7958         if (IS_CHERRYVIEW(dev_priv))
7959                 cherryview_init_gt_powersave(dev_priv);
7960         else if (IS_VALLEYVIEW(dev_priv))
7961                 valleyview_init_gt_powersave(dev_priv);
7962         else if (INTEL_GEN(dev_priv) >= 6)
7963                 gen6_init_rps_frequencies(dev_priv);
7964
7965         /* Derive initial user preferences/limits from the hardware limits */
7966         rps->idle_freq = rps->min_freq;
7967         rps->cur_freq = rps->idle_freq;
7968
7969         rps->max_freq_softlimit = rps->max_freq;
7970         rps->min_freq_softlimit = rps->min_freq;
7971
7972         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
7973                 rps->min_freq_softlimit =
7974                         max_t(int,
7975                               rps->efficient_freq,
7976                               intel_freq_opcode(dev_priv, 450));
7977
7978         /* After setting max-softlimit, find the overclock max freq */
7979         if (IS_GEN6(dev_priv) ||
7980             IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
7981                 u32 params = 0;
7982
7983                 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
7984                 if (params & BIT(31)) { /* OC supported */
7985                         DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
7986                                          (rps->max_freq & 0xff) * 50,
7987                                          (params & 0xff) * 50);
7988                         rps->max_freq = params & 0xff;
7989                 }
7990         }
7991
7992         /* Finally allow us to boost to max by default */
7993         rps->boost_freq = rps->max_freq;
7994
7995         mutex_unlock(&dev_priv->pcu_lock);
7996 }
7997
7998 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7999 {
8000         if (IS_VALLEYVIEW(dev_priv))
8001                 valleyview_cleanup_gt_powersave(dev_priv);
8002
8003         if (!HAS_RC6(dev_priv))
8004                 intel_runtime_pm_put(dev_priv);
8005 }
8006
8007 /**
8008  * intel_suspend_gt_powersave - suspend PM work and helper threads
8009  * @dev_priv: i915 device
8010  *
8011  * We don't want to disable RC6 or other features here, we just want
8012  * to make sure any work we've queued has finished and won't bother
8013  * us while we're suspended.
8014  */
8015 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
8016 {
8017         if (INTEL_GEN(dev_priv) < 6)
8018                 return;
8019
8020         /* gen6_rps_idle() will be called later to disable interrupts */
8021 }
8022
8023 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
8024 {
8025         dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
8026         dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8027         intel_disable_gt_powersave(dev_priv);
8028
8029         if (INTEL_GEN(dev_priv) < 11)
8030                 gen6_reset_rps_interrupts(dev_priv);
8031         else
8032                 WARN_ON_ONCE(1);
8033 }
8034
8035 static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
8036 {
8037         lockdep_assert_held(&i915->pcu_lock);
8038
8039         if (!i915->gt_pm.llc_pstate.enabled)
8040                 return;
8041
8042         /* Currently there is no HW configuration to be done to disable. */
8043
8044         i915->gt_pm.llc_pstate.enabled = false;
8045 }
8046
8047 static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8048 {
8049         lockdep_assert_held(&dev_priv->pcu_lock);
8050
8051         if (!dev_priv->gt_pm.rc6.enabled)
8052                 return;
8053
8054         if (INTEL_GEN(dev_priv) >= 9)
8055                 gen9_disable_rc6(dev_priv);
8056         else if (IS_CHERRYVIEW(dev_priv))
8057                 cherryview_disable_rc6(dev_priv);
8058         else if (IS_VALLEYVIEW(dev_priv))
8059                 valleyview_disable_rc6(dev_priv);
8060         else if (INTEL_GEN(dev_priv) >= 6)
8061                 gen6_disable_rc6(dev_priv);
8062
8063         dev_priv->gt_pm.rc6.enabled = false;
8064 }
8065
8066 static void intel_disable_rps(struct drm_i915_private *dev_priv)
8067 {
8068         lockdep_assert_held(&dev_priv->pcu_lock);
8069
8070         if (!dev_priv->gt_pm.rps.enabled)
8071                 return;
8072
8073         if (INTEL_GEN(dev_priv) >= 9)
8074                 gen9_disable_rps(dev_priv);
8075         else if (IS_CHERRYVIEW(dev_priv))
8076                 cherryview_disable_rps(dev_priv);
8077         else if (IS_VALLEYVIEW(dev_priv))
8078                 valleyview_disable_rps(dev_priv);
8079         else if (INTEL_GEN(dev_priv) >= 6)
8080                 gen6_disable_rps(dev_priv);
8081         else if (IS_IRONLAKE_M(dev_priv))
8082                 ironlake_disable_drps(dev_priv);
8083
8084         dev_priv->gt_pm.rps.enabled = false;
8085 }
8086
8087 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
8088 {
8089         mutex_lock(&dev_priv->pcu_lock);
8090
8091         intel_disable_rc6(dev_priv);
8092         intel_disable_rps(dev_priv);
8093         if (HAS_LLC(dev_priv))
8094                 intel_disable_llc_pstate(dev_priv);
8095
8096         mutex_unlock(&dev_priv->pcu_lock);
8097 }
8098
8099 static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
8100 {
8101         lockdep_assert_held(&i915->pcu_lock);
8102
8103         if (i915->gt_pm.llc_pstate.enabled)
8104                 return;
8105
8106         gen6_update_ring_freq(i915);
8107
8108         i915->gt_pm.llc_pstate.enabled = true;
8109 }
8110
8111 static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8112 {
8113         lockdep_assert_held(&dev_priv->pcu_lock);
8114
8115         if (dev_priv->gt_pm.rc6.enabled)
8116                 return;
8117
8118         if (IS_CHERRYVIEW(dev_priv))
8119                 cherryview_enable_rc6(dev_priv);
8120         else if (IS_VALLEYVIEW(dev_priv))
8121                 valleyview_enable_rc6(dev_priv);
8122         else if (INTEL_GEN(dev_priv) >= 9)
8123                 gen9_enable_rc6(dev_priv);
8124         else if (IS_BROADWELL(dev_priv))
8125                 gen8_enable_rc6(dev_priv);
8126         else if (INTEL_GEN(dev_priv) >= 6)
8127                 gen6_enable_rc6(dev_priv);
8128
8129         dev_priv->gt_pm.rc6.enabled = true;
8130 }
8131
8132 static void intel_enable_rps(struct drm_i915_private *dev_priv)
8133 {
8134         struct intel_rps *rps = &dev_priv->gt_pm.rps;
8135
8136         lockdep_assert_held(&dev_priv->pcu_lock);
8137
8138         if (rps->enabled)
8139                 return;
8140
8141         if (IS_CHERRYVIEW(dev_priv)) {
8142                 cherryview_enable_rps(dev_priv);
8143         } else if (IS_VALLEYVIEW(dev_priv)) {
8144                 valleyview_enable_rps(dev_priv);
8145         } else if (WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11)) {
8146                 /* TODO */
8147         } else if (INTEL_GEN(dev_priv) >= 9) {
8148                 gen9_enable_rps(dev_priv);
8149         } else if (IS_BROADWELL(dev_priv)) {
8150                 gen8_enable_rps(dev_priv);
8151         } else if (INTEL_GEN(dev_priv) >= 6) {
8152                 gen6_enable_rps(dev_priv);
8153         } else if (IS_IRONLAKE_M(dev_priv)) {
8154                 ironlake_enable_drps(dev_priv);
8155                 intel_init_emon(dev_priv);
8156         }
8157
8158         WARN_ON(rps->max_freq < rps->min_freq);
8159         WARN_ON(rps->idle_freq > rps->max_freq);
8160
8161         WARN_ON(rps->efficient_freq < rps->min_freq);
8162         WARN_ON(rps->efficient_freq > rps->max_freq);
8163
8164         rps->enabled = true;
8165 }
8166
8167 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
8168 {
8169         /* Powersaving is controlled by the host when inside a VM */
8170         if (intel_vgpu_active(dev_priv))
8171                 return;
8172
8173         mutex_lock(&dev_priv->pcu_lock);
8174
8175         if (HAS_RC6(dev_priv))
8176                 intel_enable_rc6(dev_priv);
8177         intel_enable_rps(dev_priv);
8178         if (HAS_LLC(dev_priv))
8179                 intel_enable_llc_pstate(dev_priv);
8180
8181         mutex_unlock(&dev_priv->pcu_lock);
8182 }
8183
8184 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8185 {
8186         /*
8187          * On Ibex Peak and Cougar Point, we need to disable clock
8188          * gating for the panel power sequencer or it will fail to
8189          * start up when no ports are active.
8190          */
8191         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8192 }
8193
8194 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8195 {
8196         enum pipe pipe;
8197
8198         for_each_pipe(dev_priv, pipe) {
8199                 I915_WRITE(DSPCNTR(pipe),
8200                            I915_READ(DSPCNTR(pipe)) |
8201                            DISPPLANE_TRICKLE_FEED_DISABLE);
8202
8203                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
8204                 POSTING_READ(DSPSURF(pipe));
8205         }
8206 }
8207
8208 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8209 {
8210         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8211
8212         /*
8213          * Required for FBC
8214          * WaFbcDisableDpfcClockGating:ilk
8215          */
8216         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
8217                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
8218                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8219
8220         I915_WRITE(PCH_3DCGDIS0,
8221                    MARIUNIT_CLOCK_GATE_DISABLE |
8222                    SVSMUNIT_CLOCK_GATE_DISABLE);
8223         I915_WRITE(PCH_3DCGDIS1,
8224                    VFMUNIT_CLOCK_GATE_DISABLE);
8225
8226         /*
8227          * According to the spec the following bits should be set in
8228          * order to enable memory self-refresh
8229          * The bit 22/21 of 0x42004
8230          * The bit 5 of 0x42020
8231          * The bit 15 of 0x45000
8232          */
8233         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8234                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
8235                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8236         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8237         I915_WRITE(DISP_ARB_CTL,
8238                    (I915_READ(DISP_ARB_CTL) |
8239                     DISP_FBC_WM_DIS));
8240
8241         /*
8242          * Based on the document from hardware guys the following bits
8243          * should be set unconditionally in order to enable FBC.
8244          * The bit 22 of 0x42000
8245          * The bit 22 of 0x42004
8246          * The bit 7,8,9 of 0x42020.
8247          */
8248         if (IS_IRONLAKE_M(dev_priv)) {
8249                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
8250                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8251                            I915_READ(ILK_DISPLAY_CHICKEN1) |
8252                            ILK_FBCQ_DIS);
8253                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8254                            I915_READ(ILK_DISPLAY_CHICKEN2) |
8255                            ILK_DPARB_GATE);
8256         }
8257
8258         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8259
8260         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8261                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8262                    ILK_ELPIN_409_SELECT);
8263         I915_WRITE(_3D_CHICKEN2,
8264                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8265                    _3D_CHICKEN2_WM_READ_PIPELINED);
8266
8267         /* WaDisableRenderCachePipelinedFlush:ilk */
8268         I915_WRITE(CACHE_MODE_0,
8269                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8270
8271         /* WaDisable_RenderCache_OperationalFlush:ilk */
8272         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8273
8274         g4x_disable_trickle_feed(dev_priv);
8275
8276         ibx_init_clock_gating(dev_priv);
8277 }
8278
8279 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8280 {
8281         int pipe;
8282         uint32_t val;
8283
8284         /*
8285          * On Ibex Peak and Cougar Point, we need to disable clock
8286          * gating for the panel power sequencer or it will fail to
8287          * start up when no ports are active.
8288          */
8289         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8290                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8291                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
8292         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8293                    DPLS_EDP_PPS_FIX_DIS);
8294         /* The below fixes the weird display corruption, a few pixels shifted
8295          * downward, on (only) LVDS of some HP laptops with IVY.
8296          */
8297         for_each_pipe(dev_priv, pipe) {
8298                 val = I915_READ(TRANS_CHICKEN2(pipe));
8299                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8300                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8301                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
8302                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8303                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
8304                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
8305                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8306                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
8307         }
8308         /* WADP0ClockGatingDisable */
8309         for_each_pipe(dev_priv, pipe) {
8310                 I915_WRITE(TRANS_CHICKEN1(pipe),
8311                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8312         }
8313 }
8314
8315 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8316 {
8317         uint32_t tmp;
8318
8319         tmp = I915_READ(MCH_SSKPD);
8320         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
8321                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
8322                               tmp);
8323 }
8324
8325 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8326 {
8327         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8328
8329         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8330
8331         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8332                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8333                    ILK_ELPIN_409_SELECT);
8334
8335         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8336         I915_WRITE(_3D_CHICKEN,
8337                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
8338
8339         /* WaDisable_RenderCache_OperationalFlush:snb */
8340         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8341
8342         /*
8343          * BSpec recoomends 8x4 when MSAA is used,
8344          * however in practice 16x4 seems fastest.
8345          *
8346          * Note that PS/WM thread counts depend on the WIZ hashing
8347          * disable bit, which we don't touch here, but it's good
8348          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8349          */
8350         I915_WRITE(GEN6_GT_MODE,
8351                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8352
8353         I915_WRITE(CACHE_MODE_0,
8354                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8355
8356         I915_WRITE(GEN6_UCGCTL1,
8357                    I915_READ(GEN6_UCGCTL1) |
8358                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
8359                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8360
8361         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8362          * gating disable must be set.  Failure to set it results in
8363          * flickering pixels due to Z write ordering failures after
8364          * some amount of runtime in the Mesa "fire" demo, and Unigine
8365          * Sanctuary and Tropics, and apparently anything else with
8366          * alpha test or pixel discard.
8367          *
8368          * According to the spec, bit 11 (RCCUNIT) must also be set,
8369          * but we didn't debug actual testcases to find it out.
8370          *
8371          * WaDisableRCCUnitClockGating:snb
8372          * WaDisableRCPBUnitClockGating:snb
8373          */
8374         I915_WRITE(GEN6_UCGCTL2,
8375                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8376                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8377
8378         /* WaStripsFansDisableFastClipPerformanceFix:snb */
8379         I915_WRITE(_3D_CHICKEN3,
8380                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8381
8382         /*
8383          * Bspec says:
8384          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
8385          * 3DSTATE_SF number of SF output attributes is more than 16."
8386          */
8387         I915_WRITE(_3D_CHICKEN3,
8388                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
8389
8390         /*
8391          * According to the spec the following bits should be
8392          * set in order to enable memory self-refresh and fbc:
8393          * The bit21 and bit22 of 0x42000
8394          * The bit21 and bit22 of 0x42004
8395          * The bit5 and bit7 of 0x42020
8396          * The bit14 of 0x70180
8397          * The bit14 of 0x71180
8398          *
8399          * WaFbcAsynchFlipDisableFbcQueue:snb
8400          */
8401         I915_WRITE(ILK_DISPLAY_CHICKEN1,
8402                    I915_READ(ILK_DISPLAY_CHICKEN1) |
8403                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8404         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8405                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8406                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8407         I915_WRITE(ILK_DSPCLK_GATE_D,
8408                    I915_READ(ILK_DSPCLK_GATE_D) |
8409                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
8410                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8411
8412         g4x_disable_trickle_feed(dev_priv);
8413
8414         cpt_init_clock_gating(dev_priv);
8415
8416         gen6_check_mch_setup(dev_priv);
8417 }
8418
8419 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8420 {
8421         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
8422
8423         /*
8424          * WaVSThreadDispatchOverride:ivb,vlv
8425          *
8426          * This actually overrides the dispatch
8427          * mode for all thread types.
8428          */
8429         reg &= ~GEN7_FF_SCHED_MASK;
8430         reg |= GEN7_FF_TS_SCHED_HW;
8431         reg |= GEN7_FF_VS_SCHED_HW;
8432         reg |= GEN7_FF_DS_SCHED_HW;
8433
8434         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
8435 }
8436
8437 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8438 {
8439         /*
8440          * TODO: this bit should only be enabled when really needed, then
8441          * disabled when not needed anymore in order to save power.
8442          */
8443         if (HAS_PCH_LPT_LP(dev_priv))
8444                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
8445                            I915_READ(SOUTH_DSPCLK_GATE_D) |
8446                            PCH_LP_PARTITION_LEVEL_DISABLE);
8447
8448         /* WADPOClockGatingDisable:hsw */
8449         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
8450                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8451                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8452 }
8453
8454 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8455 {
8456         if (HAS_PCH_LPT_LP(dev_priv)) {
8457                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
8458
8459                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8460                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8461         }
8462 }
8463
8464 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
8465                                    int general_prio_credits,
8466                                    int high_prio_credits)
8467 {
8468         u32 misccpctl;
8469         u32 val;
8470
8471         /* WaTempDisableDOPClkGating:bdw */
8472         misccpctl = I915_READ(GEN7_MISCCPCTL);
8473         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
8474
8475         val = I915_READ(GEN8_L3SQCREG1);
8476         val &= ~L3_PRIO_CREDITS_MASK;
8477         val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
8478         val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
8479         I915_WRITE(GEN8_L3SQCREG1, val);
8480
8481         /*
8482          * Wait at least 100 clocks before re-enabling clock gating.
8483          * See the definition of L3SQCREG1 in BSpec.
8484          */
8485         POSTING_READ(GEN8_L3SQCREG1);
8486         udelay(1);
8487         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
8488 }
8489
8490 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
8491 {
8492         if (!HAS_PCH_CNP(dev_priv))
8493                 return;
8494
8495         /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
8496         I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
8497                    CNP_PWM_CGE_GATING_DISABLE);
8498 }
8499
8500 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8501 {
8502         u32 val;
8503         cnp_init_clock_gating(dev_priv);
8504
8505         /* This is not an Wa. Enable for better image quality */
8506         I915_WRITE(_3D_CHICKEN3,
8507                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
8508
8509         /* WaEnableChickenDCPR:cnl */
8510         I915_WRITE(GEN8_CHICKEN_DCPR_1,
8511                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
8512
8513         /* WaFbcWakeMemOn:cnl */
8514         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
8515                    DISP_FBC_MEMORY_WAKE);
8516
8517         val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
8518         /* ReadHitWriteOnlyDisable:cnl */
8519         val |= RCCUNIT_CLKGATE_DIS;
8520         /* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
8521         if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8522                 val |= SARBUNIT_CLKGATE_DIS;
8523         I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
8524
8525         /* Wa_2201832410:cnl */
8526         val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
8527         val |= GWUNIT_CLKGATE_DIS;
8528         I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
8529
8530         /* WaDisableVFclkgate:cnl */
8531         /* WaVFUnitClockGatingDisable:cnl */
8532         val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
8533         val |= VFUNIT_CLKGATE_DIS;
8534         I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
8535 }
8536
8537 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
8538 {
8539         cnp_init_clock_gating(dev_priv);
8540         gen9_init_clock_gating(dev_priv);
8541
8542         /* WaFbcNukeOnHostModify:cfl */
8543         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8544                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8545 }
8546
8547 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8548 {
8549         gen9_init_clock_gating(dev_priv);
8550
8551         /* WaDisableSDEUnitClockGating:kbl */
8552         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8553                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8554                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8555
8556         /* WaDisableGamClockGating:kbl */
8557         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8558                 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8559                            GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8560
8561         /* WaFbcNukeOnHostModify:kbl */
8562         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8563                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8564 }
8565
8566 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8567 {
8568         gen9_init_clock_gating(dev_priv);
8569
8570         /* WAC6entrylatency:skl */
8571         I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
8572                    FBC_LLC_FULLY_OPEN);
8573
8574         /* WaFbcNukeOnHostModify:skl */
8575         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8576                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8577 }
8578
8579 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
8580 {
8581         /* The GTT cache must be disabled if the system is using 2M pages. */
8582         bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
8583                                                  I915_GTT_PAGE_SIZE_2M);
8584         enum pipe pipe;
8585
8586         /* WaSwitchSolVfFArbitrationPriority:bdw */
8587         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8588
8589         /* WaPsrDPAMaskVBlankInSRD:bdw */
8590         I915_WRITE(CHICKEN_PAR1_1,
8591                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
8592
8593         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8594         for_each_pipe(dev_priv, pipe) {
8595                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
8596                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
8597                            BDW_DPRS_MASK_VBLANK_SRD);
8598         }
8599
8600         /* WaVSRefCountFullforceMissDisable:bdw */
8601         /* WaDSRefCountFullforceMissDisable:bdw */
8602         I915_WRITE(GEN7_FF_THREAD_MODE,
8603                    I915_READ(GEN7_FF_THREAD_MODE) &
8604                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8605
8606         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8607                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8608
8609         /* WaDisableSDEUnitClockGating:bdw */
8610         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8611                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8612
8613         /* WaProgramL3SqcReg1Default:bdw */
8614         gen8_set_l3sqc_credits(dev_priv, 30, 2);
8615
8616         /* WaGttCachingOffByDefault:bdw */
8617         I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
8618
8619         /* WaKVMNotificationOnConfigChange:bdw */
8620         I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
8621                    | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
8622
8623         lpt_init_clock_gating(dev_priv);
8624
8625         /* WaDisableDopClockGating:bdw
8626          *
8627          * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
8628          * clock gating.
8629          */
8630         I915_WRITE(GEN6_UCGCTL1,
8631                    I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
8632 }
8633
8634 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8635 {
8636         /* L3 caching of data atomics doesn't work -- disable it. */
8637         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
8638         I915_WRITE(HSW_ROW_CHICKEN3,
8639                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
8640
8641         /* This is required by WaCatErrorRejectionIssue:hsw */
8642         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8643                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8644                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8645
8646         /* WaVSRefCountFullforceMissDisable:hsw */
8647         I915_WRITE(GEN7_FF_THREAD_MODE,
8648                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8649
8650         /* WaDisable_RenderCache_OperationalFlush:hsw */
8651         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8652
8653         /* enable HiZ Raw Stall Optimization */
8654         I915_WRITE(CACHE_MODE_0_GEN7,
8655                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8656
8657         /* WaDisable4x2SubspanOptimization:hsw */
8658         I915_WRITE(CACHE_MODE_1,
8659                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8660
8661         /*
8662          * BSpec recommends 8x4 when MSAA is used,
8663          * however in practice 16x4 seems fastest.
8664          *
8665          * Note that PS/WM thread counts depend on the WIZ hashing
8666          * disable bit, which we don't touch here, but it's good
8667          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8668          */
8669         I915_WRITE(GEN7_GT_MODE,
8670                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8671
8672         /* WaSampleCChickenBitEnable:hsw */
8673         I915_WRITE(HALF_SLICE_CHICKEN3,
8674                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
8675
8676         /* WaSwitchSolVfFArbitrationPriority:hsw */
8677         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8678
8679         lpt_init_clock_gating(dev_priv);
8680 }
8681
8682 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8683 {
8684         uint32_t snpcr;
8685
8686         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8687
8688         /* WaDisableEarlyCull:ivb */
8689         I915_WRITE(_3D_CHICKEN3,
8690                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8691
8692         /* WaDisableBackToBackFlipFix:ivb */
8693         I915_WRITE(IVB_CHICKEN3,
8694                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8695                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
8696
8697         /* WaDisablePSDDualDispatchEnable:ivb */
8698         if (IS_IVB_GT1(dev_priv))
8699                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8700                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8701
8702         /* WaDisable_RenderCache_OperationalFlush:ivb */
8703         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8704
8705         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8706         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8707                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8708
8709         /* WaApplyL3ControlAndL3ChickenMode:ivb */
8710         I915_WRITE(GEN7_L3CNTLREG1,
8711                         GEN7_WA_FOR_GEN7_L3_CONTROL);
8712         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8713                    GEN7_WA_L3_CHICKEN_MODE);
8714         if (IS_IVB_GT1(dev_priv))
8715                 I915_WRITE(GEN7_ROW_CHICKEN2,
8716                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8717         else {
8718                 /* must write both registers */
8719                 I915_WRITE(GEN7_ROW_CHICKEN2,
8720                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8721                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
8722                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8723         }
8724
8725         /* WaForceL3Serialization:ivb */
8726         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8727                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8728
8729         /*
8730          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8731          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8732          */
8733         I915_WRITE(GEN6_UCGCTL2,
8734                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8735
8736         /* This is required by WaCatErrorRejectionIssue:ivb */
8737         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8738                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8739                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8740
8741         g4x_disable_trickle_feed(dev_priv);
8742
8743         gen7_setup_fixed_func_scheduler(dev_priv);
8744
8745         if (0) { /* causes HiZ corruption on ivb:gt1 */
8746                 /* enable HiZ Raw Stall Optimization */
8747                 I915_WRITE(CACHE_MODE_0_GEN7,
8748                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8749         }
8750
8751         /* WaDisable4x2SubspanOptimization:ivb */
8752         I915_WRITE(CACHE_MODE_1,
8753                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8754
8755         /*
8756          * BSpec recommends 8x4 when MSAA is used,
8757          * however in practice 16x4 seems fastest.
8758          *
8759          * Note that PS/WM thread counts depend on the WIZ hashing
8760          * disable bit, which we don't touch here, but it's good
8761          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8762          */
8763         I915_WRITE(GEN7_GT_MODE,
8764                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8765
8766         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
8767         snpcr &= ~GEN6_MBC_SNPCR_MASK;
8768         snpcr |= GEN6_MBC_SNPCR_MED;
8769         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8770
8771         if (!HAS_PCH_NOP(dev_priv))
8772                 cpt_init_clock_gating(dev_priv);
8773
8774         gen6_check_mch_setup(dev_priv);
8775 }
8776
8777 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
8778 {
8779         /* WaDisableEarlyCull:vlv */
8780         I915_WRITE(_3D_CHICKEN3,
8781                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8782
8783         /* WaDisableBackToBackFlipFix:vlv */
8784         I915_WRITE(IVB_CHICKEN3,
8785                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8786                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
8787
8788         /* WaPsdDispatchEnable:vlv */
8789         /* WaDisablePSDDualDispatchEnable:vlv */
8790         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8791                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
8792                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8793
8794         /* WaDisable_RenderCache_OperationalFlush:vlv */
8795         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8796
8797         /* WaForceL3Serialization:vlv */
8798         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8799                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8800
8801         /* WaDisableDopClockGating:vlv */
8802         I915_WRITE(GEN7_ROW_CHICKEN2,
8803                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8804
8805         /* This is required by WaCatErrorRejectionIssue:vlv */
8806         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8807                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8808                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8809
8810         gen7_setup_fixed_func_scheduler(dev_priv);
8811
8812         /*
8813          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8814          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
8815          */
8816         I915_WRITE(GEN6_UCGCTL2,
8817                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8818
8819         /* WaDisableL3Bank2xClockGate:vlv
8820          * Disabling L3 clock gating- MMIO 940c[25] = 1
8821          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
8822         I915_WRITE(GEN7_UCGCTL4,
8823                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
8824
8825         /*
8826          * BSpec says this must be set, even though
8827          * WaDisable4x2SubspanOptimization isn't listed for VLV.
8828          */
8829         I915_WRITE(CACHE_MODE_1,
8830                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8831
8832         /*
8833          * BSpec recommends 8x4 when MSAA is used,
8834          * however in practice 16x4 seems fastest.
8835          *
8836          * Note that PS/WM thread counts depend on the WIZ hashing
8837          * disable bit, which we don't touch here, but it's good
8838          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8839          */
8840         I915_WRITE(GEN7_GT_MODE,
8841                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8842
8843         /*
8844          * WaIncreaseL3CreditsForVLVB0:vlv
8845          * This is the hardware default actually.
8846          */
8847         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
8848
8849         /*
8850          * WaDisableVLVClockGating_VBIIssue:vlv
8851          * Disable clock gating on th GCFG unit to prevent a delay
8852          * in the reporting of vblank events.
8853          */
8854         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
8855 }
8856
8857 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
8858 {
8859         /* WaVSRefCountFullforceMissDisable:chv */
8860         /* WaDSRefCountFullforceMissDisable:chv */
8861         I915_WRITE(GEN7_FF_THREAD_MODE,
8862                    I915_READ(GEN7_FF_THREAD_MODE) &
8863                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8864
8865         /* WaDisableSemaphoreAndSyncFlipWait:chv */
8866         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8867                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8868
8869         /* WaDisableCSUnitClockGating:chv */
8870         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8871                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8872
8873         /* WaDisableSDEUnitClockGating:chv */
8874         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8875                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8876
8877         /*
8878          * WaProgramL3SqcReg1Default:chv
8879          * See gfxspecs/Related Documents/Performance Guide/
8880          * LSQC Setting Recommendations.
8881          */
8882         gen8_set_l3sqc_credits(dev_priv, 38, 2);
8883
8884         /*
8885          * GTT cache may not work with big pages, so if those
8886          * are ever enabled GTT cache may need to be disabled.
8887          */
8888         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
8889 }
8890
8891 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
8892 {
8893         uint32_t dspclk_gate;
8894
8895         I915_WRITE(RENCLK_GATE_D1, 0);
8896         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8897                    GS_UNIT_CLOCK_GATE_DISABLE |
8898                    CL_UNIT_CLOCK_GATE_DISABLE);
8899         I915_WRITE(RAMCLK_GATE_D, 0);
8900         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8901                 OVRUNIT_CLOCK_GATE_DISABLE |
8902                 OVCUNIT_CLOCK_GATE_DISABLE;
8903         if (IS_GM45(dev_priv))
8904                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8905         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8906
8907         /* WaDisableRenderCachePipelinedFlush */
8908         I915_WRITE(CACHE_MODE_0,
8909                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8910
8911         /* WaDisable_RenderCache_OperationalFlush:g4x */
8912         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8913
8914         g4x_disable_trickle_feed(dev_priv);
8915 }
8916
8917 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
8918 {
8919         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8920         I915_WRITE(RENCLK_GATE_D2, 0);
8921         I915_WRITE(DSPCLK_GATE_D, 0);
8922         I915_WRITE(RAMCLK_GATE_D, 0);
8923         I915_WRITE16(DEUC, 0);
8924         I915_WRITE(MI_ARB_STATE,
8925                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8926
8927         /* WaDisable_RenderCache_OperationalFlush:gen4 */
8928         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8929 }
8930
8931 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
8932 {
8933         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8934                    I965_RCC_CLOCK_GATE_DISABLE |
8935                    I965_RCPB_CLOCK_GATE_DISABLE |
8936                    I965_ISC_CLOCK_GATE_DISABLE |
8937                    I965_FBC_CLOCK_GATE_DISABLE);
8938         I915_WRITE(RENCLK_GATE_D2, 0);
8939         I915_WRITE(MI_ARB_STATE,
8940                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8941
8942         /* WaDisable_RenderCache_OperationalFlush:gen4 */
8943         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8944 }
8945
8946 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
8947 {
8948         u32 dstate = I915_READ(D_STATE);
8949
8950         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8951                 DSTATE_DOT_CLOCK_GATING;
8952         I915_WRITE(D_STATE, dstate);
8953
8954         if (IS_PINEVIEW(dev_priv))
8955                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
8956
8957         /* IIR "flip pending" means done if this bit is set */
8958         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
8959
8960         /* interrupts should cause a wake up from C3 */
8961         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
8962
8963         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
8964         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
8965
8966         I915_WRITE(MI_ARB_STATE,
8967                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8968 }
8969
8970 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
8971 {
8972         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8973
8974         /* interrupts should cause a wake up from C3 */
8975         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
8976                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
8977
8978         I915_WRITE(MEM_MODE,
8979                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
8980 }
8981
8982 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
8983 {
8984         I915_WRITE(MEM_MODE,
8985                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
8986                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
8987 }
8988
8989 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
8990 {
8991         dev_priv->display.init_clock_gating(dev_priv);
8992 }
8993
8994 void intel_suspend_hw(struct drm_i915_private *dev_priv)
8995 {
8996         if (HAS_PCH_LPT(dev_priv))
8997                 lpt_suspend_hw(dev_priv);
8998 }
8999
9000 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9001 {
9002         DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
9003 }
9004
9005 /**
9006  * intel_init_clock_gating_hooks - setup the clock gating hooks
9007  * @dev_priv: device private
9008  *
9009  * Setup the hooks that configure which clocks of a given platform can be
9010  * gated and also apply various GT and display specific workarounds for these
9011  * platforms. Note that some GT specific workarounds are applied separately
9012  * when GPU contexts or batchbuffers start their execution.
9013  */
9014 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
9015 {
9016         if (IS_CANNONLAKE(dev_priv))
9017                 dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9018         else if (IS_COFFEELAKE(dev_priv))
9019                 dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9020         else if (IS_SKYLAKE(dev_priv))
9021                 dev_priv->display.init_clock_gating = skl_init_clock_gating;
9022         else if (IS_KABYLAKE(dev_priv))
9023                 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9024         else if (IS_BROXTON(dev_priv))
9025                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9026         else if (IS_GEMINILAKE(dev_priv))
9027                 dev_priv->display.init_clock_gating = glk_init_clock_gating;
9028         else if (IS_BROADWELL(dev_priv))
9029                 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9030         else if (IS_CHERRYVIEW(dev_priv))
9031                 dev_priv->display.init_clock_gating = chv_init_clock_gating;
9032         else if (IS_HASWELL(dev_priv))
9033                 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9034         else if (IS_IVYBRIDGE(dev_priv))
9035                 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9036         else if (IS_VALLEYVIEW(dev_priv))
9037                 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9038         else if (IS_GEN6(dev_priv))
9039                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9040         else if (IS_GEN5(dev_priv))
9041                 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9042         else if (IS_G4X(dev_priv))
9043                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9044         else if (IS_I965GM(dev_priv))
9045                 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9046         else if (IS_I965G(dev_priv))
9047                 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9048         else if (IS_GEN3(dev_priv))
9049                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9050         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
9051                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9052         else if (IS_GEN2(dev_priv))
9053                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9054         else {
9055                 MISSING_CASE(INTEL_DEVID(dev_priv));
9056                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
9057         }
9058 }
9059
9060 /* Set up chip specific power management-related functions */
9061 void intel_init_pm(struct drm_i915_private *dev_priv)
9062 {
9063         intel_fbc_init(dev_priv);
9064
9065         /* For cxsr */
9066         if (IS_PINEVIEW(dev_priv))
9067                 i915_pineview_get_mem_freq(dev_priv);
9068         else if (IS_GEN5(dev_priv))
9069                 i915_ironlake_get_mem_freq(dev_priv);
9070
9071         /* For FIFO watermark updates */
9072         if (INTEL_GEN(dev_priv) >= 9) {
9073                 skl_setup_wm_latency(dev_priv);
9074                 dev_priv->display.initial_watermarks = skl_initial_wm;
9075                 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9076                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
9077         } else if (HAS_PCH_SPLIT(dev_priv)) {
9078                 ilk_setup_wm_latency(dev_priv);
9079
9080                 if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
9081                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9082                     (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
9083                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9084                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9085                         dev_priv->display.compute_intermediate_wm =
9086                                 ilk_compute_intermediate_wm;
9087                         dev_priv->display.initial_watermarks =
9088                                 ilk_initial_watermarks;
9089                         dev_priv->display.optimize_watermarks =
9090                                 ilk_optimize_watermarks;
9091                 } else {
9092                         DRM_DEBUG_KMS("Failed to read display plane latency. "
9093                                       "Disable CxSR\n");
9094                 }
9095         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9096                 vlv_setup_wm_latency(dev_priv);
9097                 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9098                 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9099                 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9100                 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9101                 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9102         } else if (IS_G4X(dev_priv)) {
9103                 g4x_setup_wm_latency(dev_priv);
9104                 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
9105                 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
9106                 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
9107                 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9108         } else if (IS_PINEVIEW(dev_priv)) {
9109                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9110                                             dev_priv->is_ddr3,
9111                                             dev_priv->fsb_freq,
9112                                             dev_priv->mem_freq)) {
9113                         DRM_INFO("failed to find known CxSR latency "
9114                                  "(found ddr%s fsb freq %d, mem freq %d), "
9115                                  "disabling CxSR\n",
9116                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
9117                                  dev_priv->fsb_freq, dev_priv->mem_freq);
9118                         /* Disable CxSR and never update its watermark again */
9119                         intel_set_memory_cxsr(dev_priv, false);
9120                         dev_priv->display.update_wm = NULL;
9121                 } else
9122                         dev_priv->display.update_wm = pineview_update_wm;
9123         } else if (IS_GEN4(dev_priv)) {
9124                 dev_priv->display.update_wm = i965_update_wm;
9125         } else if (IS_GEN3(dev_priv)) {
9126                 dev_priv->display.update_wm = i9xx_update_wm;
9127                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9128         } else if (IS_GEN2(dev_priv)) {
9129                 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9130                         dev_priv->display.update_wm = i845_update_wm;
9131                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
9132                 } else {
9133                         dev_priv->display.update_wm = i9xx_update_wm;
9134                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
9135                 }
9136         } else {
9137                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9138         }
9139 }
9140
9141 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
9142 {
9143         uint32_t flags =
9144                 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9145
9146         switch (flags) {
9147         case GEN6_PCODE_SUCCESS:
9148                 return 0;
9149         case GEN6_PCODE_UNIMPLEMENTED_CMD:
9150                 return -ENODEV;
9151         case GEN6_PCODE_ILLEGAL_CMD:
9152                 return -ENXIO;
9153         case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9154         case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9155                 return -EOVERFLOW;
9156         case GEN6_PCODE_TIMEOUT:
9157                 return -ETIMEDOUT;
9158         default:
9159                 MISSING_CASE(flags);
9160                 return 0;
9161         }
9162 }
9163
9164 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
9165 {
9166         uint32_t flags =
9167                 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9168
9169         switch (flags) {
9170         case GEN6_PCODE_SUCCESS:
9171                 return 0;
9172         case GEN6_PCODE_ILLEGAL_CMD:
9173                 return -ENXIO;
9174         case GEN7_PCODE_TIMEOUT:
9175                 return -ETIMEDOUT;
9176         case GEN7_PCODE_ILLEGAL_DATA:
9177                 return -EINVAL;
9178         case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9179                 return -EOVERFLOW;
9180         default:
9181                 MISSING_CASE(flags);
9182                 return 0;
9183         }
9184 }
9185
9186 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
9187 {
9188         int status;
9189
9190         WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9191
9192         /* GEN6_PCODE_* are outside of the forcewake domain, we can
9193          * use te fw I915_READ variants to reduce the amount of work
9194          * required when reading/writing.
9195          */
9196
9197         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9198                 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
9199                                  mbox, __builtin_return_address(0));
9200                 return -EAGAIN;
9201         }
9202
9203         I915_WRITE_FW(GEN6_PCODE_DATA, *val);
9204         I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9205         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9206
9207         if (__intel_wait_for_register_fw(dev_priv,
9208                                          GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9209                                          500, 0, NULL)) {
9210                 DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
9211                           mbox, __builtin_return_address(0));
9212                 return -ETIMEDOUT;
9213         }
9214
9215         *val = I915_READ_FW(GEN6_PCODE_DATA);
9216         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9217
9218         if (INTEL_GEN(dev_priv) > 6)
9219                 status = gen7_check_mailbox_status(dev_priv);
9220         else
9221                 status = gen6_check_mailbox_status(dev_priv);
9222
9223         if (status) {
9224                 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
9225                                  mbox, __builtin_return_address(0), status);
9226                 return status;
9227         }
9228
9229         return 0;
9230 }
9231
9232 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
9233                                     u32 mbox, u32 val,
9234                                     int fast_timeout_us, int slow_timeout_ms)
9235 {
9236         int status;
9237
9238         WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9239
9240         /* GEN6_PCODE_* are outside of the forcewake domain, we can
9241          * use te fw I915_READ variants to reduce the amount of work
9242          * required when reading/writing.
9243          */
9244
9245         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9246                 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
9247                                  val, mbox, __builtin_return_address(0));
9248                 return -EAGAIN;
9249         }
9250
9251         I915_WRITE_FW(GEN6_PCODE_DATA, val);
9252         I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9253         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9254
9255         if (__intel_wait_for_register_fw(dev_priv,
9256                                          GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9257                                          fast_timeout_us, slow_timeout_ms,
9258                                          NULL)) {
9259                 DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
9260                           val, mbox, __builtin_return_address(0));
9261                 return -ETIMEDOUT;
9262         }
9263
9264         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9265
9266         if (INTEL_GEN(dev_priv) > 6)
9267                 status = gen7_check_mailbox_status(dev_priv);
9268         else
9269                 status = gen6_check_mailbox_status(dev_priv);
9270
9271         if (status) {
9272                 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
9273                                  val, mbox, __builtin_return_address(0), status);
9274                 return status;
9275         }
9276
9277         return 0;
9278 }
9279
9280 static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
9281                                   u32 request, u32 reply_mask, u32 reply,
9282                                   u32 *status)
9283 {
9284         u32 val = request;
9285
9286         *status = sandybridge_pcode_read(dev_priv, mbox, &val);
9287
9288         return *status || ((val & reply_mask) == reply);
9289 }
9290
9291 /**
9292  * skl_pcode_request - send PCODE request until acknowledgment
9293  * @dev_priv: device private
9294  * @mbox: PCODE mailbox ID the request is targeted for
9295  * @request: request ID
9296  * @reply_mask: mask used to check for request acknowledgment
9297  * @reply: value used to check for request acknowledgment
9298  * @timeout_base_ms: timeout for polling with preemption enabled
9299  *
9300  * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9301  * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9302  * The request is acknowledged once the PCODE reply dword equals @reply after
9303  * applying @reply_mask. Polling is first attempted with preemption enabled
9304  * for @timeout_base_ms and if this times out for another 50 ms with
9305  * preemption disabled.
9306  *
9307  * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
9308  * other error as reported by PCODE.
9309  */
9310 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
9311                       u32 reply_mask, u32 reply, int timeout_base_ms)
9312 {
9313         u32 status;
9314         int ret;
9315
9316         WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9317
9318 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
9319                                    &status)
9320
9321         /*
9322          * Prime the PCODE by doing a request first. Normally it guarantees
9323          * that a subsequent request, at most @timeout_base_ms later, succeeds.
9324          * _wait_for() doesn't guarantee when its passed condition is evaluated
9325          * first, so send the first request explicitly.
9326          */
9327         if (COND) {
9328                 ret = 0;
9329                 goto out;
9330         }
9331         ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10);
9332         if (!ret)
9333                 goto out;
9334
9335         /*
9336          * The above can time out if the number of requests was low (2 in the
9337          * worst case) _and_ PCODE was busy for some reason even after a
9338          * (queued) request and @timeout_base_ms delay. As a workaround retry
9339          * the poll with preemption disabled to maximize the number of
9340          * requests. Increase the timeout from @timeout_base_ms to 50ms to
9341          * account for interrupts that could reduce the number of these
9342          * requests, and for any quirks of the PCODE firmware that delays
9343          * the request completion.
9344          */
9345         DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
9346         WARN_ON_ONCE(timeout_base_ms > 3);
9347         preempt_disable();
9348         ret = wait_for_atomic(COND, 50);
9349         preempt_enable();
9350
9351 out:
9352         return ret ? ret : status;
9353 #undef COND
9354 }
9355
9356 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9357 {
9358         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9359
9360         /*
9361          * N = val - 0xb7
9362          * Slow = Fast = GPLL ref * N
9363          */
9364         return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9365 }
9366
9367 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9368 {
9369         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9370
9371         return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9372 }
9373
9374 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9375 {
9376         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9377
9378         /*
9379          * N = val / 2
9380          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9381          */
9382         return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9383 }
9384
9385 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9386 {
9387         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9388
9389         /* CHV needs even values */
9390         return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9391 }
9392
9393 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9394 {
9395         if (INTEL_GEN(dev_priv) >= 9)
9396                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9397                                          GEN9_FREQ_SCALER);
9398         else if (IS_CHERRYVIEW(dev_priv))
9399                 return chv_gpu_freq(dev_priv, val);
9400         else if (IS_VALLEYVIEW(dev_priv))
9401                 return byt_gpu_freq(dev_priv, val);
9402         else
9403                 return val * GT_FREQUENCY_MULTIPLIER;
9404 }
9405
9406 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9407 {
9408         if (INTEL_GEN(dev_priv) >= 9)
9409                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9410                                          GT_FREQUENCY_MULTIPLIER);
9411         else if (IS_CHERRYVIEW(dev_priv))
9412                 return chv_freq_opcode(dev_priv, val);
9413         else if (IS_VALLEYVIEW(dev_priv))
9414                 return byt_freq_opcode(dev_priv, val);
9415         else
9416                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9417 }
9418
9419 void intel_pm_setup(struct drm_i915_private *dev_priv)
9420 {
9421         mutex_init(&dev_priv->pcu_lock);
9422
9423         atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9424
9425         dev_priv->runtime_pm.suspended = false;
9426         atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9427 }
9428
9429 static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9430                              const i915_reg_t reg)
9431 {
9432         u32 lower, upper, tmp;
9433         int loop = 2;
9434
9435         /*
9436          * The register accessed do not need forcewake. We borrow
9437          * uncore lock to prevent concurrent access to range reg.
9438          */
9439         lockdep_assert_held(&dev_priv->uncore.lock);
9440
9441         /*
9442          * vlv and chv residency counters are 40 bits in width.
9443          * With a control bit, we can choose between upper or lower
9444          * 32bit window into this counter.
9445          *
9446          * Although we always use the counter in high-range mode elsewhere,
9447          * userspace may attempt to read the value before rc6 is initialised,
9448          * before we have set the default VLV_COUNTER_CONTROL value. So always
9449          * set the high bit to be safe.
9450          */
9451         I915_WRITE_FW(VLV_COUNTER_CONTROL,
9452                       _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9453         upper = I915_READ_FW(reg);
9454         do {
9455                 tmp = upper;
9456
9457                 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9458                               _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9459                 lower = I915_READ_FW(reg);
9460
9461                 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9462                               _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9463                 upper = I915_READ_FW(reg);
9464         } while (upper != tmp && --loop);
9465
9466         /*
9467          * Everywhere else we always use VLV_COUNTER_CONTROL with the
9468          * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9469          * now.
9470          */
9471
9472         return lower | (u64)upper << 8;
9473 }
9474
9475 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9476                            const i915_reg_t reg)
9477 {
9478         u64 time_hw, prev_hw, overflow_hw;
9479         unsigned int fw_domains;
9480         unsigned long flags;
9481         unsigned int i;
9482         u32 mul, div;
9483
9484         if (!HAS_RC6(dev_priv))
9485                 return 0;
9486
9487         /*
9488          * Store previous hw counter values for counter wrap-around handling.
9489          *
9490          * There are only four interesting registers and they live next to each
9491          * other so we can use the relative address, compared to the smallest
9492          * one as the index into driver storage.
9493          */
9494         i = (i915_mmio_reg_offset(reg) -
9495              i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
9496         if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
9497                 return 0;
9498
9499         fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg, FW_REG_READ);
9500
9501         spin_lock_irqsave(&dev_priv->uncore.lock, flags);
9502         intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
9503
9504         /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
9505         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9506                 mul = 1000000;
9507                 div = dev_priv->czclk_freq;
9508                 overflow_hw = BIT_ULL(40);
9509                 time_hw = vlv_residency_raw(dev_priv, reg);
9510         } else {
9511                 /* 833.33ns units on Gen9LP, 1.28us elsewhere. */
9512                 if (IS_GEN9_LP(dev_priv)) {
9513                         mul = 10000;
9514                         div = 12;
9515                 } else {
9516                         mul = 1280;
9517                         div = 1;
9518                 }
9519
9520                 overflow_hw = BIT_ULL(32);
9521                 time_hw = I915_READ_FW(reg);
9522         }
9523
9524         /*
9525          * Counter wrap handling.
9526          *
9527          * But relying on a sufficient frequency of queries otherwise counters
9528          * can still wrap.
9529          */
9530         prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
9531         dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;
9532
9533         /* RC6 delta from last sample. */
9534         if (time_hw >= prev_hw)
9535                 time_hw -= prev_hw;
9536         else
9537                 time_hw += overflow_hw - prev_hw;
9538
9539         /* Add delta to RC6 extended raw driver copy. */
9540         time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
9541         dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;
9542
9543         intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
9544         spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
9545
9546         return mul_u64_u32_div(time_hw, mul, div);
9547 }
9548
9549 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
9550 {
9551         u32 cagf;
9552
9553         if (INTEL_GEN(dev_priv) >= 9)
9554                 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
9555         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
9556                 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
9557         else
9558                 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
9559
9560         return  cagf;
9561 }
This page took 0.622317 seconds and 4 git commands to generate.