]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/i915_request.c
Merge tag 'pstore-v4.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[linux.git] / drivers / gpu / drm / i915 / i915_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/signal.h>
30
31 #include "i915_drv.h"
32
33 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
34 {
35         return "i915";
36 }
37
38 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
39 {
40         /*
41          * The timeline struct (as part of the ppgtt underneath a context)
42          * may be freed when the request is no longer in use by the GPU.
43          * We could extend the life of a context to beyond that of all
44          * fences, possibly keeping the hw resource around indefinitely,
45          * or we just give them a false name. Since
46          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
47          * lie seems justifiable.
48          */
49         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
50                 return "signaled";
51
52         return to_request(fence)->timeline->common->name;
53 }
54
55 static bool i915_fence_signaled(struct dma_fence *fence)
56 {
57         return i915_request_completed(to_request(fence));
58 }
59
60 static bool i915_fence_enable_signaling(struct dma_fence *fence)
61 {
62         if (i915_fence_signaled(fence))
63                 return false;
64
65         intel_engine_enable_signaling(to_request(fence), true);
66         return !i915_fence_signaled(fence);
67 }
68
69 static signed long i915_fence_wait(struct dma_fence *fence,
70                                    bool interruptible,
71                                    signed long timeout)
72 {
73         return i915_request_wait(to_request(fence), interruptible, timeout);
74 }
75
76 static void i915_fence_release(struct dma_fence *fence)
77 {
78         struct i915_request *rq = to_request(fence);
79
80         /*
81          * The request is put onto a RCU freelist (i.e. the address
82          * is immediately reused), mark the fences as being freed now.
83          * Otherwise the debugobjects for the fences are only marked as
84          * freed when the slab cache itself is freed, and so we would get
85          * caught trying to reuse dead objects.
86          */
87         i915_sw_fence_fini(&rq->submit);
88
89         kmem_cache_free(rq->i915->requests, rq);
90 }
91
92 const struct dma_fence_ops i915_fence_ops = {
93         .get_driver_name = i915_fence_get_driver_name,
94         .get_timeline_name = i915_fence_get_timeline_name,
95         .enable_signaling = i915_fence_enable_signaling,
96         .signaled = i915_fence_signaled,
97         .wait = i915_fence_wait,
98         .release = i915_fence_release,
99 };
100
101 static inline void
102 i915_request_remove_from_client(struct i915_request *request)
103 {
104         struct drm_i915_file_private *file_priv;
105
106         file_priv = request->file_priv;
107         if (!file_priv)
108                 return;
109
110         spin_lock(&file_priv->mm.lock);
111         if (request->file_priv) {
112                 list_del(&request->client_link);
113                 request->file_priv = NULL;
114         }
115         spin_unlock(&file_priv->mm.lock);
116 }
117
118 static struct i915_dependency *
119 i915_dependency_alloc(struct drm_i915_private *i915)
120 {
121         return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
122 }
123
124 static void
125 i915_dependency_free(struct drm_i915_private *i915,
126                      struct i915_dependency *dep)
127 {
128         kmem_cache_free(i915->dependencies, dep);
129 }
130
131 static void
132 __i915_priotree_add_dependency(struct i915_priotree *pt,
133                                struct i915_priotree *signal,
134                                struct i915_dependency *dep,
135                                unsigned long flags)
136 {
137         INIT_LIST_HEAD(&dep->dfs_link);
138         list_add(&dep->wait_link, &signal->waiters_list);
139         list_add(&dep->signal_link, &pt->signalers_list);
140         dep->signaler = signal;
141         dep->flags = flags;
142 }
143
144 static int
145 i915_priotree_add_dependency(struct drm_i915_private *i915,
146                              struct i915_priotree *pt,
147                              struct i915_priotree *signal)
148 {
149         struct i915_dependency *dep;
150
151         dep = i915_dependency_alloc(i915);
152         if (!dep)
153                 return -ENOMEM;
154
155         __i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
156         return 0;
157 }
158
159 static void
160 i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
161 {
162         struct i915_dependency *dep, *next;
163
164         GEM_BUG_ON(!list_empty(&pt->link));
165
166         /*
167          * Everyone we depended upon (the fences we wait to be signaled)
168          * should retire before us and remove themselves from our list.
169          * However, retirement is run independently on each timeline and
170          * so we may be called out-of-order.
171          */
172         list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
173                 GEM_BUG_ON(!i915_priotree_signaled(dep->signaler));
174                 GEM_BUG_ON(!list_empty(&dep->dfs_link));
175
176                 list_del(&dep->wait_link);
177                 if (dep->flags & I915_DEPENDENCY_ALLOC)
178                         i915_dependency_free(i915, dep);
179         }
180
181         /* Remove ourselves from everyone who depends upon us */
182         list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
183                 GEM_BUG_ON(dep->signaler != pt);
184                 GEM_BUG_ON(!list_empty(&dep->dfs_link));
185
186                 list_del(&dep->signal_link);
187                 if (dep->flags & I915_DEPENDENCY_ALLOC)
188                         i915_dependency_free(i915, dep);
189         }
190 }
191
192 static void
193 i915_priotree_init(struct i915_priotree *pt)
194 {
195         INIT_LIST_HEAD(&pt->signalers_list);
196         INIT_LIST_HEAD(&pt->waiters_list);
197         INIT_LIST_HEAD(&pt->link);
198         pt->priority = I915_PRIORITY_INVALID;
199 }
200
201 static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
202 {
203         struct intel_engine_cs *engine;
204         enum intel_engine_id id;
205         int ret;
206
207         /* Carefully retire all requests without writing to the rings */
208         ret = i915_gem_wait_for_idle(i915,
209                                      I915_WAIT_INTERRUPTIBLE |
210                                      I915_WAIT_LOCKED);
211         if (ret)
212                 return ret;
213
214         /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
215         for_each_engine(engine, i915, id) {
216                 struct i915_gem_timeline *timeline;
217                 struct intel_timeline *tl = engine->timeline;
218
219                 if (!i915_seqno_passed(seqno, tl->seqno)) {
220                         /* Flush any waiters before we reuse the seqno */
221                         intel_engine_disarm_breadcrumbs(engine);
222                         GEM_BUG_ON(!list_empty(&engine->breadcrumbs.signals));
223                 }
224
225                 /* Check we are idle before we fiddle with hw state! */
226                 GEM_BUG_ON(!intel_engine_is_idle(engine));
227                 GEM_BUG_ON(i915_gem_active_isset(&engine->timeline->last_request));
228
229                 /* Finally reset hw state */
230                 intel_engine_init_global_seqno(engine, seqno);
231                 tl->seqno = seqno;
232
233                 list_for_each_entry(timeline, &i915->gt.timelines, link)
234                         memset(timeline->engine[id].global_sync, 0,
235                                sizeof(timeline->engine[id].global_sync));
236         }
237
238         return 0;
239 }
240
241 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
242 {
243         struct drm_i915_private *i915 = to_i915(dev);
244
245         lockdep_assert_held(&i915->drm.struct_mutex);
246
247         if (seqno == 0)
248                 return -EINVAL;
249
250         /* HWS page needs to be set less than what we will inject to ring */
251         return reset_all_global_seqno(i915, seqno - 1);
252 }
253
254 static void mark_busy(struct drm_i915_private *i915)
255 {
256         if (i915->gt.awake)
257                 return;
258
259         GEM_BUG_ON(!i915->gt.active_requests);
260
261         intel_runtime_pm_get_noresume(i915);
262
263         /*
264          * It seems that the DMC likes to transition between the DC states a lot
265          * when there are no connected displays (no active power domains) during
266          * command submission.
267          *
268          * This activity has negative impact on the performance of the chip with
269          * huge latencies observed in the interrupt handler and elsewhere.
270          *
271          * Work around it by grabbing a GT IRQ power domain whilst there is any
272          * GT activity, preventing any DC state transitions.
273          */
274         intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
275
276         i915->gt.awake = true;
277         if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
278                 i915->gt.epoch = 1;
279
280         intel_enable_gt_powersave(i915);
281         i915_update_gfx_val(i915);
282         if (INTEL_GEN(i915) >= 6)
283                 gen6_rps_busy(i915);
284         i915_pmu_gt_unparked(i915);
285
286         intel_engines_unpark(i915);
287
288         i915_queue_hangcheck(i915);
289
290         queue_delayed_work(i915->wq,
291                            &i915->gt.retire_work,
292                            round_jiffies_up_relative(HZ));
293 }
294
295 static int reserve_engine(struct intel_engine_cs *engine)
296 {
297         struct drm_i915_private *i915 = engine->i915;
298         u32 active = ++engine->timeline->inflight_seqnos;
299         u32 seqno = engine->timeline->seqno;
300         int ret;
301
302         /* Reservation is fine until we need to wrap around */
303         if (unlikely(add_overflows(seqno, active))) {
304                 ret = reset_all_global_seqno(i915, 0);
305                 if (ret) {
306                         engine->timeline->inflight_seqnos--;
307                         return ret;
308                 }
309         }
310
311         if (!i915->gt.active_requests++)
312                 mark_busy(i915);
313
314         return 0;
315 }
316
317 static void unreserve_engine(struct intel_engine_cs *engine)
318 {
319         struct drm_i915_private *i915 = engine->i915;
320
321         if (!--i915->gt.active_requests) {
322                 /* Cancel the mark_busy() from our reserve_engine() */
323                 GEM_BUG_ON(!i915->gt.awake);
324                 mod_delayed_work(i915->wq,
325                                  &i915->gt.idle_work,
326                                  msecs_to_jiffies(100));
327         }
328
329         GEM_BUG_ON(!engine->timeline->inflight_seqnos);
330         engine->timeline->inflight_seqnos--;
331 }
332
333 void i915_gem_retire_noop(struct i915_gem_active *active,
334                           struct i915_request *request)
335 {
336         /* Space left intentionally blank */
337 }
338
339 static void advance_ring(struct i915_request *request)
340 {
341         unsigned int tail;
342
343         /*
344          * We know the GPU must have read the request to have
345          * sent us the seqno + interrupt, so use the position
346          * of tail of the request to update the last known position
347          * of the GPU head.
348          *
349          * Note this requires that we are always called in request
350          * completion order.
351          */
352         if (list_is_last(&request->ring_link, &request->ring->request_list)) {
353                 /*
354                  * We may race here with execlists resubmitting this request
355                  * as we retire it. The resubmission will move the ring->tail
356                  * forwards (to request->wa_tail). We either read the
357                  * current value that was written to hw, or the value that
358                  * is just about to be. Either works, if we miss the last two
359                  * noops - they are safe to be replayed on a reset.
360                  */
361                 tail = READ_ONCE(request->ring->tail);
362         } else {
363                 tail = request->postfix;
364         }
365         list_del(&request->ring_link);
366
367         request->ring->head = tail;
368 }
369
370 static void free_capture_list(struct i915_request *request)
371 {
372         struct i915_capture_list *capture;
373
374         capture = request->capture_list;
375         while (capture) {
376                 struct i915_capture_list *next = capture->next;
377
378                 kfree(capture);
379                 capture = next;
380         }
381 }
382
383 static void i915_request_retire(struct i915_request *request)
384 {
385         struct intel_engine_cs *engine = request->engine;
386         struct i915_gem_active *active, *next;
387
388         lockdep_assert_held(&request->i915->drm.struct_mutex);
389         GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
390         GEM_BUG_ON(!i915_request_completed(request));
391         GEM_BUG_ON(!request->i915->gt.active_requests);
392
393         trace_i915_request_retire(request);
394
395         spin_lock_irq(&engine->timeline->lock);
396         list_del_init(&request->link);
397         spin_unlock_irq(&engine->timeline->lock);
398
399         unreserve_engine(request->engine);
400         advance_ring(request);
401
402         free_capture_list(request);
403
404         /*
405          * Walk through the active list, calling retire on each. This allows
406          * objects to track their GPU activity and mark themselves as idle
407          * when their *last* active request is completed (updating state
408          * tracking lists for eviction, active references for GEM, etc).
409          *
410          * As the ->retire() may free the node, we decouple it first and
411          * pass along the auxiliary information (to avoid dereferencing
412          * the node after the callback).
413          */
414         list_for_each_entry_safe(active, next, &request->active_list, link) {
415                 /*
416                  * In microbenchmarks or focusing upon time inside the kernel,
417                  * we may spend an inordinate amount of time simply handling
418                  * the retirement of requests and processing their callbacks.
419                  * Of which, this loop itself is particularly hot due to the
420                  * cache misses when jumping around the list of i915_gem_active.
421                  * So we try to keep this loop as streamlined as possible and
422                  * also prefetch the next i915_gem_active to try and hide
423                  * the likely cache miss.
424                  */
425                 prefetchw(next);
426
427                 INIT_LIST_HEAD(&active->link);
428                 RCU_INIT_POINTER(active->request, NULL);
429
430                 active->retire(active, request);
431         }
432
433         i915_request_remove_from_client(request);
434
435         /* Retirement decays the ban score as it is a sign of ctx progress */
436         atomic_dec_if_positive(&request->ctx->ban_score);
437
438         /*
439          * The backing object for the context is done after switching to the
440          * *next* context. Therefore we cannot retire the previous context until
441          * the next context has already started running. However, since we
442          * cannot take the required locks at i915_request_submit() we
443          * defer the unpinning of the active context to now, retirement of
444          * the subsequent request.
445          */
446         if (engine->last_retired_context)
447                 engine->context_unpin(engine, engine->last_retired_context);
448         engine->last_retired_context = request->ctx;
449
450         spin_lock_irq(&request->lock);
451         if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags))
452                 dma_fence_signal_locked(&request->fence);
453         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
454                 intel_engine_cancel_signaling(request);
455         if (request->waitboost) {
456                 GEM_BUG_ON(!atomic_read(&request->i915->gt_pm.rps.num_waiters));
457                 atomic_dec(&request->i915->gt_pm.rps.num_waiters);
458         }
459         spin_unlock_irq(&request->lock);
460
461         i915_priotree_fini(request->i915, &request->priotree);
462         i915_request_put(request);
463 }
464
465 void i915_request_retire_upto(struct i915_request *rq)
466 {
467         struct intel_engine_cs *engine = rq->engine;
468         struct i915_request *tmp;
469
470         lockdep_assert_held(&rq->i915->drm.struct_mutex);
471         GEM_BUG_ON(!i915_request_completed(rq));
472
473         if (list_empty(&rq->link))
474                 return;
475
476         do {
477                 tmp = list_first_entry(&engine->timeline->requests,
478                                        typeof(*tmp), link);
479
480                 i915_request_retire(tmp);
481         } while (tmp != rq);
482 }
483
484 static u32 timeline_get_seqno(struct intel_timeline *tl)
485 {
486         return ++tl->seqno;
487 }
488
489 void __i915_request_submit(struct i915_request *request)
490 {
491         struct intel_engine_cs *engine = request->engine;
492         struct intel_timeline *timeline;
493         u32 seqno;
494
495         GEM_BUG_ON(!irqs_disabled());
496         lockdep_assert_held(&engine->timeline->lock);
497
498         /* Transfer from per-context onto the global per-engine timeline */
499         timeline = engine->timeline;
500         GEM_BUG_ON(timeline == request->timeline);
501         GEM_BUG_ON(request->global_seqno);
502
503         seqno = timeline_get_seqno(timeline);
504         GEM_BUG_ON(!seqno);
505         GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
506
507         /* We may be recursing from the signal callback of another i915 fence */
508         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
509         request->global_seqno = seqno;
510         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
511                 intel_engine_enable_signaling(request, false);
512         spin_unlock(&request->lock);
513
514         engine->emit_breadcrumb(request,
515                                 request->ring->vaddr + request->postfix);
516
517         spin_lock(&request->timeline->lock);
518         list_move_tail(&request->link, &timeline->requests);
519         spin_unlock(&request->timeline->lock);
520
521         trace_i915_request_execute(request);
522
523         wake_up_all(&request->execute);
524 }
525
526 void i915_request_submit(struct i915_request *request)
527 {
528         struct intel_engine_cs *engine = request->engine;
529         unsigned long flags;
530
531         /* Will be called from irq-context when using foreign fences. */
532         spin_lock_irqsave(&engine->timeline->lock, flags);
533
534         __i915_request_submit(request);
535
536         spin_unlock_irqrestore(&engine->timeline->lock, flags);
537 }
538
539 void __i915_request_unsubmit(struct i915_request *request)
540 {
541         struct intel_engine_cs *engine = request->engine;
542         struct intel_timeline *timeline;
543
544         GEM_BUG_ON(!irqs_disabled());
545         lockdep_assert_held(&engine->timeline->lock);
546
547         /*
548          * Only unwind in reverse order, required so that the per-context list
549          * is kept in seqno/ring order.
550          */
551         GEM_BUG_ON(!request->global_seqno);
552         GEM_BUG_ON(request->global_seqno != engine->timeline->seqno);
553         GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine),
554                                      request->global_seqno));
555         engine->timeline->seqno--;
556
557         /* We may be recursing from the signal callback of another i915 fence */
558         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
559         request->global_seqno = 0;
560         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
561                 intel_engine_cancel_signaling(request);
562         spin_unlock(&request->lock);
563
564         /* Transfer back from the global per-engine timeline to per-context */
565         timeline = request->timeline;
566         GEM_BUG_ON(timeline == engine->timeline);
567
568         spin_lock(&timeline->lock);
569         list_move(&request->link, &timeline->requests);
570         spin_unlock(&timeline->lock);
571
572         /*
573          * We don't need to wake_up any waiters on request->execute, they
574          * will get woken by any other event or us re-adding this request
575          * to the engine timeline (__i915_request_submit()). The waiters
576          * should be quite adapt at finding that the request now has a new
577          * global_seqno to the one they went to sleep on.
578          */
579 }
580
581 void i915_request_unsubmit(struct i915_request *request)
582 {
583         struct intel_engine_cs *engine = request->engine;
584         unsigned long flags;
585
586         /* Will be called from irq-context when using foreign fences. */
587         spin_lock_irqsave(&engine->timeline->lock, flags);
588
589         __i915_request_unsubmit(request);
590
591         spin_unlock_irqrestore(&engine->timeline->lock, flags);
592 }
593
594 static int __i915_sw_fence_call
595 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
596 {
597         struct i915_request *request =
598                 container_of(fence, typeof(*request), submit);
599
600         switch (state) {
601         case FENCE_COMPLETE:
602                 trace_i915_request_submit(request);
603                 /*
604                  * We need to serialize use of the submit_request() callback
605                  * with its hotplugging performed during an emergency
606                  * i915_gem_set_wedged().  We use the RCU mechanism to mark the
607                  * critical section in order to force i915_gem_set_wedged() to
608                  * wait until the submit_request() is completed before
609                  * proceeding.
610                  */
611                 rcu_read_lock();
612                 request->engine->submit_request(request);
613                 rcu_read_unlock();
614                 break;
615
616         case FENCE_FREE:
617                 i915_request_put(request);
618                 break;
619         }
620
621         return NOTIFY_DONE;
622 }
623
624 /**
625  * i915_request_alloc - allocate a request structure
626  *
627  * @engine: engine that we wish to issue the request on.
628  * @ctx: context that the request will be associated with.
629  *
630  * Returns a pointer to the allocated request if successful,
631  * or an error code if not.
632  */
633 struct i915_request *
634 i915_request_alloc(struct intel_engine_cs *engine, struct i915_gem_context *ctx)
635 {
636         struct drm_i915_private *i915 = engine->i915;
637         struct i915_request *rq;
638         struct intel_ring *ring;
639         int ret;
640
641         lockdep_assert_held(&i915->drm.struct_mutex);
642
643         /*
644          * Preempt contexts are reserved for exclusive use to inject a
645          * preemption context switch. They are never to be used for any trivial
646          * request!
647          */
648         GEM_BUG_ON(ctx == i915->preempt_context);
649
650         /*
651          * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
652          * EIO if the GPU is already wedged.
653          */
654         if (i915_terminally_wedged(&i915->gpu_error))
655                 return ERR_PTR(-EIO);
656
657         /*
658          * Pinning the contexts may generate requests in order to acquire
659          * GGTT space, so do this first before we reserve a seqno for
660          * ourselves.
661          */
662         ring = engine->context_pin(engine, ctx);
663         if (IS_ERR(ring))
664                 return ERR_CAST(ring);
665         GEM_BUG_ON(!ring);
666
667         ret = reserve_engine(engine);
668         if (ret)
669                 goto err_unpin;
670
671         ret = intel_ring_wait_for_space(ring, MIN_SPACE_FOR_ADD_REQUEST);
672         if (ret)
673                 goto err_unreserve;
674
675         /* Move the oldest request to the slab-cache (if not in use!) */
676         rq = list_first_entry_or_null(&engine->timeline->requests,
677                                       typeof(*rq), link);
678         if (rq && i915_request_completed(rq))
679                 i915_request_retire(rq);
680
681         /*
682          * Beware: Dragons be flying overhead.
683          *
684          * We use RCU to look up requests in flight. The lookups may
685          * race with the request being allocated from the slab freelist.
686          * That is the request we are writing to here, may be in the process
687          * of being read by __i915_gem_active_get_rcu(). As such,
688          * we have to be very careful when overwriting the contents. During
689          * the RCU lookup, we change chase the request->engine pointer,
690          * read the request->global_seqno and increment the reference count.
691          *
692          * The reference count is incremented atomically. If it is zero,
693          * the lookup knows the request is unallocated and complete. Otherwise,
694          * it is either still in use, or has been reallocated and reset
695          * with dma_fence_init(). This increment is safe for release as we
696          * check that the request we have a reference to and matches the active
697          * request.
698          *
699          * Before we increment the refcount, we chase the request->engine
700          * pointer. We must not call kmem_cache_zalloc() or else we set
701          * that pointer to NULL and cause a crash during the lookup. If
702          * we see the request is completed (based on the value of the
703          * old engine and seqno), the lookup is complete and reports NULL.
704          * If we decide the request is not completed (new engine or seqno),
705          * then we grab a reference and double check that it is still the
706          * active request - which it won't be and restart the lookup.
707          *
708          * Do not use kmem_cache_zalloc() here!
709          */
710         rq = kmem_cache_alloc(i915->requests,
711                               GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
712         if (unlikely(!rq)) {
713                 /* Ratelimit ourselves to prevent oom from malicious clients */
714                 ret = i915_gem_wait_for_idle(i915,
715                                              I915_WAIT_LOCKED |
716                                              I915_WAIT_INTERRUPTIBLE);
717                 if (ret)
718                         goto err_unreserve;
719
720                 /*
721                  * We've forced the client to stall and catch up with whatever
722                  * backlog there might have been. As we are assuming that we
723                  * caused the mempressure, now is an opportune time to
724                  * recover as much memory from the request pool as is possible.
725                  * Having already penalized the client to stall, we spend
726                  * a little extra time to re-optimise page allocation.
727                  */
728                 kmem_cache_shrink(i915->requests);
729                 rcu_barrier(); /* Recover the TYPESAFE_BY_RCU pages */
730
731                 rq = kmem_cache_alloc(i915->requests, GFP_KERNEL);
732                 if (!rq) {
733                         ret = -ENOMEM;
734                         goto err_unreserve;
735                 }
736         }
737
738         rq->timeline = i915_gem_context_lookup_timeline(ctx, engine);
739         GEM_BUG_ON(rq->timeline == engine->timeline);
740
741         spin_lock_init(&rq->lock);
742         dma_fence_init(&rq->fence,
743                        &i915_fence_ops,
744                        &rq->lock,
745                        rq->timeline->fence_context,
746                        timeline_get_seqno(rq->timeline));
747
748         /* We bump the ref for the fence chain */
749         i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
750         init_waitqueue_head(&rq->execute);
751
752         i915_priotree_init(&rq->priotree);
753
754         INIT_LIST_HEAD(&rq->active_list);
755         rq->i915 = i915;
756         rq->engine = engine;
757         rq->ctx = ctx;
758         rq->ring = ring;
759
760         /* No zalloc, must clear what we need by hand */
761         rq->global_seqno = 0;
762         rq->signaling.wait.seqno = 0;
763         rq->file_priv = NULL;
764         rq->batch = NULL;
765         rq->capture_list = NULL;
766         rq->waitboost = false;
767
768         /*
769          * Reserve space in the ring buffer for all the commands required to
770          * eventually emit this request. This is to guarantee that the
771          * i915_request_add() call can't fail. Note that the reserve may need
772          * to be redone if the request is not actually submitted straight
773          * away, e.g. because a GPU scheduler has deferred it.
774          */
775         rq->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
776         GEM_BUG_ON(rq->reserved_space < engine->emit_breadcrumb_sz);
777
778         /*
779          * Record the position of the start of the request so that
780          * should we detect the updated seqno part-way through the
781          * GPU processing the request, we never over-estimate the
782          * position of the head.
783          */
784         rq->head = rq->ring->emit;
785
786         /* Unconditionally invalidate GPU caches and TLBs. */
787         ret = engine->emit_flush(rq, EMIT_INVALIDATE);
788         if (ret)
789                 goto err_unwind;
790
791         ret = engine->request_alloc(rq);
792         if (ret)
793                 goto err_unwind;
794
795         /* Check that we didn't interrupt ourselves with a new request */
796         GEM_BUG_ON(rq->timeline->seqno != rq->fence.seqno);
797         return rq;
798
799 err_unwind:
800         rq->ring->emit = rq->head;
801
802         /* Make sure we didn't add ourselves to external state before freeing */
803         GEM_BUG_ON(!list_empty(&rq->active_list));
804         GEM_BUG_ON(!list_empty(&rq->priotree.signalers_list));
805         GEM_BUG_ON(!list_empty(&rq->priotree.waiters_list));
806
807         kmem_cache_free(i915->requests, rq);
808 err_unreserve:
809         unreserve_engine(engine);
810 err_unpin:
811         engine->context_unpin(engine, ctx);
812         return ERR_PTR(ret);
813 }
814
815 static int
816 i915_request_await_request(struct i915_request *to, struct i915_request *from)
817 {
818         int ret;
819
820         GEM_BUG_ON(to == from);
821         GEM_BUG_ON(to->timeline == from->timeline);
822
823         if (i915_request_completed(from))
824                 return 0;
825
826         if (to->engine->schedule) {
827                 ret = i915_priotree_add_dependency(to->i915,
828                                                    &to->priotree,
829                                                    &from->priotree);
830                 if (ret < 0)
831                         return ret;
832         }
833
834         if (to->engine == from->engine) {
835                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
836                                                        &from->submit,
837                                                        I915_FENCE_GFP);
838                 return ret < 0 ? ret : 0;
839         }
840
841         if (to->engine->semaphore.sync_to) {
842                 u32 seqno;
843
844                 GEM_BUG_ON(!from->engine->semaphore.signal);
845
846                 seqno = i915_request_global_seqno(from);
847                 if (!seqno)
848                         goto await_dma_fence;
849
850                 if (seqno <= to->timeline->global_sync[from->engine->id])
851                         return 0;
852
853                 trace_i915_gem_ring_sync_to(to, from);
854                 ret = to->engine->semaphore.sync_to(to, from);
855                 if (ret)
856                         return ret;
857
858                 to->timeline->global_sync[from->engine->id] = seqno;
859                 return 0;
860         }
861
862 await_dma_fence:
863         ret = i915_sw_fence_await_dma_fence(&to->submit,
864                                             &from->fence, 0,
865                                             I915_FENCE_GFP);
866         return ret < 0 ? ret : 0;
867 }
868
869 int
870 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
871 {
872         struct dma_fence **child = &fence;
873         unsigned int nchild = 1;
874         int ret;
875
876         /*
877          * Note that if the fence-array was created in signal-on-any mode,
878          * we should *not* decompose it into its individual fences. However,
879          * we don't currently store which mode the fence-array is operating
880          * in. Fortunately, the only user of signal-on-any is private to
881          * amdgpu and we should not see any incoming fence-array from
882          * sync-file being in signal-on-any mode.
883          */
884         if (dma_fence_is_array(fence)) {
885                 struct dma_fence_array *array = to_dma_fence_array(fence);
886
887                 child = array->fences;
888                 nchild = array->num_fences;
889                 GEM_BUG_ON(!nchild);
890         }
891
892         do {
893                 fence = *child++;
894                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
895                         continue;
896
897                 /*
898                  * Requests on the same timeline are explicitly ordered, along
899                  * with their dependencies, by i915_request_add() which ensures
900                  * that requests are submitted in-order through each ring.
901                  */
902                 if (fence->context == rq->fence.context)
903                         continue;
904
905                 /* Squash repeated waits to the same timelines */
906                 if (fence->context != rq->i915->mm.unordered_timeline &&
907                     intel_timeline_sync_is_later(rq->timeline, fence))
908                         continue;
909
910                 if (dma_fence_is_i915(fence))
911                         ret = i915_request_await_request(rq, to_request(fence));
912                 else
913                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
914                                                             I915_FENCE_TIMEOUT,
915                                                             I915_FENCE_GFP);
916                 if (ret < 0)
917                         return ret;
918
919                 /* Record the latest fence used against each timeline */
920                 if (fence->context != rq->i915->mm.unordered_timeline)
921                         intel_timeline_sync_set(rq->timeline, fence);
922         } while (--nchild);
923
924         return 0;
925 }
926
927 /**
928  * i915_request_await_object - set this request to (async) wait upon a bo
929  * @to: request we are wishing to use
930  * @obj: object which may be in use on another ring.
931  * @write: whether the wait is on behalf of a writer
932  *
933  * This code is meant to abstract object synchronization with the GPU.
934  * Conceptually we serialise writes between engines inside the GPU.
935  * We only allow one engine to write into a buffer at any time, but
936  * multiple readers. To ensure each has a coherent view of memory, we must:
937  *
938  * - If there is an outstanding write request to the object, the new
939  *   request must wait for it to complete (either CPU or in hw, requests
940  *   on the same ring will be naturally ordered).
941  *
942  * - If we are a write request (pending_write_domain is set), the new
943  *   request must wait for outstanding read requests to complete.
944  *
945  * Returns 0 if successful, else propagates up the lower layer error.
946  */
947 int
948 i915_request_await_object(struct i915_request *to,
949                           struct drm_i915_gem_object *obj,
950                           bool write)
951 {
952         struct dma_fence *excl;
953         int ret = 0;
954
955         if (write) {
956                 struct dma_fence **shared;
957                 unsigned int count, i;
958
959                 ret = reservation_object_get_fences_rcu(obj->resv,
960                                                         &excl, &count, &shared);
961                 if (ret)
962                         return ret;
963
964                 for (i = 0; i < count; i++) {
965                         ret = i915_request_await_dma_fence(to, shared[i]);
966                         if (ret)
967                                 break;
968
969                         dma_fence_put(shared[i]);
970                 }
971
972                 for (; i < count; i++)
973                         dma_fence_put(shared[i]);
974                 kfree(shared);
975         } else {
976                 excl = reservation_object_get_excl_rcu(obj->resv);
977         }
978
979         if (excl) {
980                 if (ret == 0)
981                         ret = i915_request_await_dma_fence(to, excl);
982
983                 dma_fence_put(excl);
984         }
985
986         return ret;
987 }
988
989 /*
990  * NB: This function is not allowed to fail. Doing so would mean the the
991  * request is not being tracked for completion but the work itself is
992  * going to happen on the hardware. This would be a Bad Thing(tm).
993  */
994 void __i915_request_add(struct i915_request *request, bool flush_caches)
995 {
996         struct intel_engine_cs *engine = request->engine;
997         struct intel_ring *ring = request->ring;
998         struct intel_timeline *timeline = request->timeline;
999         struct i915_request *prev;
1000         u32 *cs;
1001         int err;
1002
1003         lockdep_assert_held(&request->i915->drm.struct_mutex);
1004         trace_i915_request_add(request);
1005
1006         /*
1007          * Make sure that no request gazumped us - if it was allocated after
1008          * our i915_request_alloc() and called __i915_request_add() before
1009          * us, the timeline will hold its seqno which is later than ours.
1010          */
1011         GEM_BUG_ON(timeline->seqno != request->fence.seqno);
1012
1013         /*
1014          * To ensure that this call will not fail, space for its emissions
1015          * should already have been reserved in the ring buffer. Let the ring
1016          * know that it is time to use that space up.
1017          */
1018         request->reserved_space = 0;
1019
1020         /*
1021          * Emit any outstanding flushes - execbuf can fail to emit the flush
1022          * after having emitted the batchbuffer command. Hence we need to fix
1023          * things up similar to emitting the lazy request. The difference here
1024          * is that the flush _must_ happen before the next request, no matter
1025          * what.
1026          */
1027         if (flush_caches) {
1028                 err = engine->emit_flush(request, EMIT_FLUSH);
1029
1030                 /* Not allowed to fail! */
1031                 WARN(err, "engine->emit_flush() failed: %d!\n", err);
1032         }
1033
1034         /*
1035          * Record the position of the start of the breadcrumb so that
1036          * should we detect the updated seqno part-way through the
1037          * GPU processing the request, we never over-estimate the
1038          * position of the ring's HEAD.
1039          */
1040         cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
1041         GEM_BUG_ON(IS_ERR(cs));
1042         request->postfix = intel_ring_offset(request, cs);
1043
1044         /*
1045          * Seal the request and mark it as pending execution. Note that
1046          * we may inspect this state, without holding any locks, during
1047          * hangcheck. Hence we apply the barrier to ensure that we do not
1048          * see a more recent value in the hws than we are tracking.
1049          */
1050
1051         prev = i915_gem_active_raw(&timeline->last_request,
1052                                    &request->i915->drm.struct_mutex);
1053         if (prev && !i915_request_completed(prev)) {
1054                 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
1055                                              &request->submitq);
1056                 if (engine->schedule)
1057                         __i915_priotree_add_dependency(&request->priotree,
1058                                                        &prev->priotree,
1059                                                        &request->dep,
1060                                                        0);
1061         }
1062
1063         spin_lock_irq(&timeline->lock);
1064         list_add_tail(&request->link, &timeline->requests);
1065         spin_unlock_irq(&timeline->lock);
1066
1067         GEM_BUG_ON(timeline->seqno != request->fence.seqno);
1068         i915_gem_active_set(&timeline->last_request, request);
1069
1070         list_add_tail(&request->ring_link, &ring->request_list);
1071         request->emitted_jiffies = jiffies;
1072
1073         /*
1074          * Let the backend know a new request has arrived that may need
1075          * to adjust the existing execution schedule due to a high priority
1076          * request - i.e. we may want to preempt the current request in order
1077          * to run a high priority dependency chain *before* we can execute this
1078          * request.
1079          *
1080          * This is called before the request is ready to run so that we can
1081          * decide whether to preempt the entire chain so that it is ready to
1082          * run at the earliest possible convenience.
1083          */
1084         rcu_read_lock();
1085         if (engine->schedule)
1086                 engine->schedule(request, request->ctx->priority);
1087         rcu_read_unlock();
1088
1089         local_bh_disable();
1090         i915_sw_fence_commit(&request->submit);
1091         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1092
1093         /*
1094          * In typical scenarios, we do not expect the previous request on
1095          * the timeline to be still tracked by timeline->last_request if it
1096          * has been completed. If the completed request is still here, that
1097          * implies that request retirement is a long way behind submission,
1098          * suggesting that we haven't been retiring frequently enough from
1099          * the combination of retire-before-alloc, waiters and the background
1100          * retirement worker. So if the last request on this timeline was
1101          * already completed, do a catch up pass, flushing the retirement queue
1102          * up to this client. Since we have now moved the heaviest operations
1103          * during retirement onto secondary workers, such as freeing objects
1104          * or contexts, retiring a bunch of requests is mostly list management
1105          * (and cache misses), and so we should not be overly penalizing this
1106          * client by performing excess work, though we may still performing
1107          * work on behalf of others -- but instead we should benefit from
1108          * improved resource management. (Well, that's the theory at least.)
1109          */
1110         if (prev && i915_request_completed(prev))
1111                 i915_request_retire_upto(prev);
1112 }
1113
1114 static unsigned long local_clock_us(unsigned int *cpu)
1115 {
1116         unsigned long t;
1117
1118         /*
1119          * Cheaply and approximately convert from nanoseconds to microseconds.
1120          * The result and subsequent calculations are also defined in the same
1121          * approximate microseconds units. The principal source of timing
1122          * error here is from the simple truncation.
1123          *
1124          * Note that local_clock() is only defined wrt to the current CPU;
1125          * the comparisons are no longer valid if we switch CPUs. Instead of
1126          * blocking preemption for the entire busywait, we can detect the CPU
1127          * switch and use that as indicator of system load and a reason to
1128          * stop busywaiting, see busywait_stop().
1129          */
1130         *cpu = get_cpu();
1131         t = local_clock() >> 10;
1132         put_cpu();
1133
1134         return t;
1135 }
1136
1137 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1138 {
1139         unsigned int this_cpu;
1140
1141         if (time_after(local_clock_us(&this_cpu), timeout))
1142                 return true;
1143
1144         return this_cpu != cpu;
1145 }
1146
1147 static bool __i915_spin_request(const struct i915_request *rq,
1148                                 u32 seqno, int state, unsigned long timeout_us)
1149 {
1150         struct intel_engine_cs *engine = rq->engine;
1151         unsigned int irq, cpu;
1152
1153         GEM_BUG_ON(!seqno);
1154
1155         /*
1156          * Only wait for the request if we know it is likely to complete.
1157          *
1158          * We don't track the timestamps around requests, nor the average
1159          * request length, so we do not have a good indicator that this
1160          * request will complete within the timeout. What we do know is the
1161          * order in which requests are executed by the engine and so we can
1162          * tell if the request has started. If the request hasn't started yet,
1163          * it is a fair assumption that it will not complete within our
1164          * relatively short timeout.
1165          */
1166         if (!i915_seqno_passed(intel_engine_get_seqno(engine), seqno - 1))
1167                 return false;
1168
1169         /*
1170          * When waiting for high frequency requests, e.g. during synchronous
1171          * rendering split between the CPU and GPU, the finite amount of time
1172          * required to set up the irq and wait upon it limits the response
1173          * rate. By busywaiting on the request completion for a short while we
1174          * can service the high frequency waits as quick as possible. However,
1175          * if it is a slow request, we want to sleep as quickly as possible.
1176          * The tradeoff between waiting and sleeping is roughly the time it
1177          * takes to sleep on a request, on the order of a microsecond.
1178          */
1179
1180         irq = atomic_read(&engine->irq_count);
1181         timeout_us += local_clock_us(&cpu);
1182         do {
1183                 if (i915_seqno_passed(intel_engine_get_seqno(engine), seqno))
1184                         return seqno == i915_request_global_seqno(rq);
1185
1186                 /*
1187                  * Seqno are meant to be ordered *before* the interrupt. If
1188                  * we see an interrupt without a corresponding seqno advance,
1189                  * assume we won't see one in the near future but require
1190                  * the engine->seqno_barrier() to fixup coherency.
1191                  */
1192                 if (atomic_read(&engine->irq_count) != irq)
1193                         break;
1194
1195                 if (signal_pending_state(state, current))
1196                         break;
1197
1198                 if (busywait_stop(timeout_us, cpu))
1199                         break;
1200
1201                 cpu_relax();
1202         } while (!need_resched());
1203
1204         return false;
1205 }
1206
1207 static bool __i915_wait_request_check_and_reset(struct i915_request *request)
1208 {
1209         if (likely(!i915_reset_handoff(&request->i915->gpu_error)))
1210                 return false;
1211
1212         __set_current_state(TASK_RUNNING);
1213         i915_reset(request->i915, 0);
1214         return true;
1215 }
1216
1217 /**
1218  * i915_request_wait - wait until execution of request has finished
1219  * @rq: the request to wait upon
1220  * @flags: how to wait
1221  * @timeout: how long to wait in jiffies
1222  *
1223  * i915_request_wait() waits for the request to be completed, for a
1224  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1225  * unbounded wait).
1226  *
1227  * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1228  * in via the flags, and vice versa if the struct_mutex is not held, the caller
1229  * must not specify that the wait is locked.
1230  *
1231  * Returns the remaining time (in jiffies) if the request completed, which may
1232  * be zero or -ETIME if the request is unfinished after the timeout expires.
1233  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1234  * pending before the request completes.
1235  */
1236 long i915_request_wait(struct i915_request *rq,
1237                        unsigned int flags,
1238                        long timeout)
1239 {
1240         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1241                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1242         wait_queue_head_t *errq = &rq->i915->gpu_error.wait_queue;
1243         DEFINE_WAIT_FUNC(reset, default_wake_function);
1244         DEFINE_WAIT_FUNC(exec, default_wake_function);
1245         struct intel_wait wait;
1246
1247         might_sleep();
1248 #if IS_ENABLED(CONFIG_LOCKDEP)
1249         GEM_BUG_ON(debug_locks &&
1250                    !!lockdep_is_held(&rq->i915->drm.struct_mutex) !=
1251                    !!(flags & I915_WAIT_LOCKED));
1252 #endif
1253         GEM_BUG_ON(timeout < 0);
1254
1255         if (i915_request_completed(rq))
1256                 return timeout;
1257
1258         if (!timeout)
1259                 return -ETIME;
1260
1261         trace_i915_request_wait_begin(rq, flags);
1262
1263         add_wait_queue(&rq->execute, &exec);
1264         if (flags & I915_WAIT_LOCKED)
1265                 add_wait_queue(errq, &reset);
1266
1267         intel_wait_init(&wait, rq);
1268
1269 restart:
1270         do {
1271                 set_current_state(state);
1272                 if (intel_wait_update_request(&wait, rq))
1273                         break;
1274
1275                 if (flags & I915_WAIT_LOCKED &&
1276                     __i915_wait_request_check_and_reset(rq))
1277                         continue;
1278
1279                 if (signal_pending_state(state, current)) {
1280                         timeout = -ERESTARTSYS;
1281                         goto complete;
1282                 }
1283
1284                 if (!timeout) {
1285                         timeout = -ETIME;
1286                         goto complete;
1287                 }
1288
1289                 timeout = io_schedule_timeout(timeout);
1290         } while (1);
1291
1292         GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1293         GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
1294
1295         /* Optimistic short spin before touching IRQs */
1296         if (__i915_spin_request(rq, wait.seqno, state, 5))
1297                 goto complete;
1298
1299         set_current_state(state);
1300         if (intel_engine_add_wait(rq->engine, &wait))
1301                 /*
1302                  * In order to check that we haven't missed the interrupt
1303                  * as we enabled it, we need to kick ourselves to do a
1304                  * coherent check on the seqno before we sleep.
1305                  */
1306                 goto wakeup;
1307
1308         if (flags & I915_WAIT_LOCKED)
1309                 __i915_wait_request_check_and_reset(rq);
1310
1311         for (;;) {
1312                 if (signal_pending_state(state, current)) {
1313                         timeout = -ERESTARTSYS;
1314                         break;
1315                 }
1316
1317                 if (!timeout) {
1318                         timeout = -ETIME;
1319                         break;
1320                 }
1321
1322                 timeout = io_schedule_timeout(timeout);
1323
1324                 if (intel_wait_complete(&wait) &&
1325                     intel_wait_check_request(&wait, rq))
1326                         break;
1327
1328                 set_current_state(state);
1329
1330 wakeup:
1331                 /*
1332                  * Carefully check if the request is complete, giving time
1333                  * for the seqno to be visible following the interrupt.
1334                  * We also have to check in case we are kicked by the GPU
1335                  * reset in order to drop the struct_mutex.
1336                  */
1337                 if (__i915_request_irq_complete(rq))
1338                         break;
1339
1340                 /*
1341                  * If the GPU is hung, and we hold the lock, reset the GPU
1342                  * and then check for completion. On a full reset, the engine's
1343                  * HW seqno will be advanced passed us and we are complete.
1344                  * If we do a partial reset, we have to wait for the GPU to
1345                  * resume and update the breadcrumb.
1346                  *
1347                  * If we don't hold the mutex, we can just wait for the worker
1348                  * to come along and update the breadcrumb (either directly
1349                  * itself, or indirectly by recovering the GPU).
1350                  */
1351                 if (flags & I915_WAIT_LOCKED &&
1352                     __i915_wait_request_check_and_reset(rq))
1353                         continue;
1354
1355                 /* Only spin if we know the GPU is processing this request */
1356                 if (__i915_spin_request(rq, wait.seqno, state, 2))
1357                         break;
1358
1359                 if (!intel_wait_check_request(&wait, rq)) {
1360                         intel_engine_remove_wait(rq->engine, &wait);
1361                         goto restart;
1362                 }
1363         }
1364
1365         intel_engine_remove_wait(rq->engine, &wait);
1366 complete:
1367         __set_current_state(TASK_RUNNING);
1368         if (flags & I915_WAIT_LOCKED)
1369                 remove_wait_queue(errq, &reset);
1370         remove_wait_queue(&rq->execute, &exec);
1371         trace_i915_request_wait_end(rq);
1372
1373         return timeout;
1374 }
1375
1376 static void engine_retire_requests(struct intel_engine_cs *engine)
1377 {
1378         struct i915_request *request, *next;
1379         u32 seqno = intel_engine_get_seqno(engine);
1380         LIST_HEAD(retire);
1381
1382         spin_lock_irq(&engine->timeline->lock);
1383         list_for_each_entry_safe(request, next,
1384                                  &engine->timeline->requests, link) {
1385                 if (!i915_seqno_passed(seqno, request->global_seqno))
1386                         break;
1387
1388                 list_move_tail(&request->link, &retire);
1389         }
1390         spin_unlock_irq(&engine->timeline->lock);
1391
1392         list_for_each_entry_safe(request, next, &retire, link)
1393                 i915_request_retire(request);
1394 }
1395
1396 void i915_retire_requests(struct drm_i915_private *i915)
1397 {
1398         struct intel_engine_cs *engine;
1399         enum intel_engine_id id;
1400
1401         lockdep_assert_held(&i915->drm.struct_mutex);
1402
1403         if (!i915->gt.active_requests)
1404                 return;
1405
1406         for_each_engine(engine, i915, id)
1407                 engine_retire_requests(engine);
1408 }
1409
1410 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1411 #include "selftests/mock_request.c"
1412 #include "selftests/i915_request.c"
1413 #endif
This page took 0.120265 seconds and 4 git commands to generate.