1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
16 #include "print-tree.h"
18 #include "compression.h"
20 #include "block-group.h"
21 #include "space-info.h"
23 #include "inode-item.h"
25 #include "accessors.h"
26 #include "extent-tree.h"
27 #include "root-tree.h"
29 #include "file-item.h"
32 #include "tree-checker.h"
34 #define MAX_CONFLICT_INODES 10
36 /* magic values for the inode_only field in btrfs_log_inode:
38 * LOG_INODE_ALL means to log everything
39 * LOG_INODE_EXISTS means to log just enough to recreate the inode
48 * directory trouble cases
50 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
51 * log, we must force a full commit before doing an fsync of the directory
52 * where the unlink was done.
53 * ---> record transid of last unlink/rename per directory
57 * rename foo/some_dir foo2/some_dir
59 * fsync foo/some_dir/some_file
61 * The fsync above will unlink the original some_dir without recording
62 * it in its new location (foo2). After a crash, some_dir will be gone
63 * unless the fsync of some_file forces a full commit
65 * 2) we must log any new names for any file or dir that is in the fsync
66 * log. ---> check inode while renaming/linking.
68 * 2a) we must log any new names for any file or dir during rename
69 * when the directory they are being removed from was logged.
70 * ---> check inode and old parent dir during rename
72 * 2a is actually the more important variant. With the extra logging
73 * a crash might unlink the old name without recreating the new one
75 * 3) after a crash, we must go through any directories with a link count
76 * of zero and redo the rm -rf
83 * The directory f1 was fully removed from the FS, but fsync was never
84 * called on f1, only its parent dir. After a crash the rm -rf must
85 * be replayed. This must be able to recurse down the entire
86 * directory tree. The inode link count fixup code takes care of the
91 * stages for the tree walking. The first
92 * stage (0) is to only pin down the blocks we find
93 * the second stage (1) is to make sure that all the inodes
94 * we find in the log are created in the subvolume.
96 * The last stage is to deal with directories and links and extents
97 * and all the other fun semantics
101 LOG_WALK_REPLAY_INODES,
102 LOG_WALK_REPLAY_DIR_INDEX,
106 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
107 struct btrfs_inode *inode,
109 struct btrfs_log_ctx *ctx);
110 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
111 struct btrfs_root *root,
112 struct btrfs_path *path, u64 objectid);
113 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
114 struct btrfs_root *root,
115 struct btrfs_root *log,
116 struct btrfs_path *path,
117 u64 dirid, int del_all);
118 static void wait_log_commit(struct btrfs_root *root, int transid);
121 * tree logging is a special write ahead log used to make sure that
122 * fsyncs and O_SYNCs can happen without doing full tree commits.
124 * Full tree commits are expensive because they require commonly
125 * modified blocks to be recowed, creating many dirty pages in the
126 * extent tree an 4x-6x higher write load than ext3.
128 * Instead of doing a tree commit on every fsync, we use the
129 * key ranges and transaction ids to find items for a given file or directory
130 * that have changed in this transaction. Those items are copied into
131 * a special tree (one per subvolume root), that tree is written to disk
132 * and then the fsync is considered complete.
134 * After a crash, items are copied out of the log-tree back into the
135 * subvolume tree. Any file data extents found are recorded in the extent
136 * allocation tree, and the log-tree freed.
138 * The log tree is read three times, once to pin down all the extents it is
139 * using in ram and once, once to create all the inodes logged in the tree
140 * and once to do all the other items.
144 * start a sub transaction and setup the log tree
145 * this increments the log tree writer count to make the people
146 * syncing the tree wait for us to finish
148 static int start_log_trans(struct btrfs_trans_handle *trans,
149 struct btrfs_root *root,
150 struct btrfs_log_ctx *ctx)
152 struct btrfs_fs_info *fs_info = root->fs_info;
153 struct btrfs_root *tree_root = fs_info->tree_root;
154 const bool zoned = btrfs_is_zoned(fs_info);
156 bool created = false;
159 * First check if the log root tree was already created. If not, create
160 * it before locking the root's log_mutex, just to keep lockdep happy.
162 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
163 mutex_lock(&tree_root->log_mutex);
164 if (!fs_info->log_root_tree) {
165 ret = btrfs_init_log_root_tree(trans, fs_info);
167 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
171 mutex_unlock(&tree_root->log_mutex);
176 mutex_lock(&root->log_mutex);
179 if (root->log_root) {
180 int index = (root->log_transid + 1) % 2;
182 if (btrfs_need_log_full_commit(trans)) {
183 ret = BTRFS_LOG_FORCE_COMMIT;
187 if (zoned && atomic_read(&root->log_commit[index])) {
188 wait_log_commit(root, root->log_transid - 1);
192 if (!root->log_start_pid) {
193 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
194 root->log_start_pid = current->pid;
195 } else if (root->log_start_pid != current->pid) {
196 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
200 * This means fs_info->log_root_tree was already created
201 * for some other FS trees. Do the full commit not to mix
202 * nodes from multiple log transactions to do sequential
205 if (zoned && !created) {
206 ret = BTRFS_LOG_FORCE_COMMIT;
210 ret = btrfs_add_log_tree(trans, root);
214 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
215 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
216 root->log_start_pid = current->pid;
219 atomic_inc(&root->log_writers);
220 if (!ctx->logging_new_name) {
221 int index = root->log_transid % 2;
222 list_add_tail(&ctx->list, &root->log_ctxs[index]);
223 ctx->log_transid = root->log_transid;
227 mutex_unlock(&root->log_mutex);
232 * returns 0 if there was a log transaction running and we were able
233 * to join, or returns -ENOENT if there were not transactions
236 static int join_running_log_trans(struct btrfs_root *root)
238 const bool zoned = btrfs_is_zoned(root->fs_info);
241 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
244 mutex_lock(&root->log_mutex);
246 if (root->log_root) {
247 int index = (root->log_transid + 1) % 2;
250 if (zoned && atomic_read(&root->log_commit[index])) {
251 wait_log_commit(root, root->log_transid - 1);
254 atomic_inc(&root->log_writers);
256 mutex_unlock(&root->log_mutex);
261 * This either makes the current running log transaction wait
262 * until you call btrfs_end_log_trans() or it makes any future
263 * log transactions wait until you call btrfs_end_log_trans()
265 void btrfs_pin_log_trans(struct btrfs_root *root)
267 atomic_inc(&root->log_writers);
271 * indicate we're done making changes to the log tree
272 * and wake up anyone waiting to do a sync
274 void btrfs_end_log_trans(struct btrfs_root *root)
276 if (atomic_dec_and_test(&root->log_writers)) {
277 /* atomic_dec_and_test implies a barrier */
278 cond_wake_up_nomb(&root->log_writer_wait);
283 * the walk control struct is used to pass state down the chain when
284 * processing the log tree. The stage field tells us which part
285 * of the log tree processing we are currently doing. The others
286 * are state fields used for that specific part
288 struct walk_control {
289 /* should we free the extent on disk when done? This is used
290 * at transaction commit time while freeing a log tree
294 /* pin only walk, we record which extents on disk belong to the
299 /* what stage of the replay code we're currently in */
303 * Ignore any items from the inode currently being processed. Needs
304 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
305 * the LOG_WALK_REPLAY_INODES stage.
307 bool ignore_cur_inode;
309 /* the root we are currently replaying */
310 struct btrfs_root *replay_dest;
312 /* the trans handle for the current replay */
313 struct btrfs_trans_handle *trans;
315 /* the function that gets used to process blocks we find in the
316 * tree. Note the extent_buffer might not be up to date when it is
317 * passed in, and it must be checked or read if you need the data
320 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
321 struct walk_control *wc, u64 gen, int level);
325 * process_func used to pin down extents, write them or wait on them
327 static int process_one_buffer(struct btrfs_root *log,
328 struct extent_buffer *eb,
329 struct walk_control *wc, u64 gen, int level)
331 struct btrfs_fs_info *fs_info = log->fs_info;
335 * If this fs is mixed then we need to be able to process the leaves to
336 * pin down any logged extents, so we have to read the block.
338 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
339 struct btrfs_tree_parent_check check = {
344 ret = btrfs_read_extent_buffer(eb, &check);
350 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
355 if (btrfs_buffer_uptodate(eb, gen, 0) &&
356 btrfs_header_level(eb) == 0)
357 ret = btrfs_exclude_logged_extents(eb);
363 * Item overwrite used by replay and tree logging. eb, slot and key all refer
364 * to the src data we are copying out.
366 * root is the tree we are copying into, and path is a scratch
367 * path for use in this function (it should be released on entry and
368 * will be released on exit).
370 * If the key is already in the destination tree the existing item is
371 * overwritten. If the existing item isn't big enough, it is extended.
372 * If it is too large, it is truncated.
374 * If the key isn't in the destination yet, a new item is inserted.
376 static int overwrite_item(struct btrfs_trans_handle *trans,
377 struct btrfs_root *root,
378 struct btrfs_path *path,
379 struct extent_buffer *eb, int slot,
380 struct btrfs_key *key)
384 u64 saved_i_size = 0;
385 int save_old_i_size = 0;
386 unsigned long src_ptr;
387 unsigned long dst_ptr;
388 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
391 * This is only used during log replay, so the root is always from a
392 * fs/subvolume tree. In case we ever need to support a log root, then
393 * we'll have to clone the leaf in the path, release the path and use
394 * the leaf before writing into the log tree. See the comments at
395 * copy_items() for more details.
397 ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
399 item_size = btrfs_item_size(eb, slot);
400 src_ptr = btrfs_item_ptr_offset(eb, slot);
402 /* Look for the key in the destination tree. */
403 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
410 u32 dst_size = btrfs_item_size(path->nodes[0],
412 if (dst_size != item_size)
415 if (item_size == 0) {
416 btrfs_release_path(path);
419 dst_copy = kmalloc(item_size, GFP_NOFS);
420 src_copy = kmalloc(item_size, GFP_NOFS);
421 if (!dst_copy || !src_copy) {
422 btrfs_release_path(path);
428 read_extent_buffer(eb, src_copy, src_ptr, item_size);
430 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
431 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
433 ret = memcmp(dst_copy, src_copy, item_size);
438 * they have the same contents, just return, this saves
439 * us from cowing blocks in the destination tree and doing
440 * extra writes that may not have been done by a previous
444 btrfs_release_path(path);
449 * We need to load the old nbytes into the inode so when we
450 * replay the extents we've logged we get the right nbytes.
453 struct btrfs_inode_item *item;
457 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
458 struct btrfs_inode_item);
459 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
460 item = btrfs_item_ptr(eb, slot,
461 struct btrfs_inode_item);
462 btrfs_set_inode_nbytes(eb, item, nbytes);
465 * If this is a directory we need to reset the i_size to
466 * 0 so that we can set it up properly when replaying
467 * the rest of the items in this log.
469 mode = btrfs_inode_mode(eb, item);
471 btrfs_set_inode_size(eb, item, 0);
473 } else if (inode_item) {
474 struct btrfs_inode_item *item;
478 * New inode, set nbytes to 0 so that the nbytes comes out
479 * properly when we replay the extents.
481 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
482 btrfs_set_inode_nbytes(eb, item, 0);
485 * If this is a directory we need to reset the i_size to 0 so
486 * that we can set it up properly when replaying the rest of
487 * the items in this log.
489 mode = btrfs_inode_mode(eb, item);
491 btrfs_set_inode_size(eb, item, 0);
494 btrfs_release_path(path);
495 /* try to insert the key into the destination tree */
496 path->skip_release_on_error = 1;
497 ret = btrfs_insert_empty_item(trans, root, path,
499 path->skip_release_on_error = 0;
501 /* make sure any existing item is the correct size */
502 if (ret == -EEXIST || ret == -EOVERFLOW) {
504 found_size = btrfs_item_size(path->nodes[0],
506 if (found_size > item_size)
507 btrfs_truncate_item(path, item_size, 1);
508 else if (found_size < item_size)
509 btrfs_extend_item(path, item_size - found_size);
513 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
516 /* don't overwrite an existing inode if the generation number
517 * was logged as zero. This is done when the tree logging code
518 * is just logging an inode to make sure it exists after recovery.
520 * Also, don't overwrite i_size on directories during replay.
521 * log replay inserts and removes directory items based on the
522 * state of the tree found in the subvolume, and i_size is modified
525 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
526 struct btrfs_inode_item *src_item;
527 struct btrfs_inode_item *dst_item;
529 src_item = (struct btrfs_inode_item *)src_ptr;
530 dst_item = (struct btrfs_inode_item *)dst_ptr;
532 if (btrfs_inode_generation(eb, src_item) == 0) {
533 struct extent_buffer *dst_eb = path->nodes[0];
534 const u64 ino_size = btrfs_inode_size(eb, src_item);
537 * For regular files an ino_size == 0 is used only when
538 * logging that an inode exists, as part of a directory
539 * fsync, and the inode wasn't fsynced before. In this
540 * case don't set the size of the inode in the fs/subvol
541 * tree, otherwise we would be throwing valid data away.
543 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
544 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
546 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
550 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
551 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
553 saved_i_size = btrfs_inode_size(path->nodes[0],
558 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
561 if (save_old_i_size) {
562 struct btrfs_inode_item *dst_item;
563 dst_item = (struct btrfs_inode_item *)dst_ptr;
564 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
567 /* make sure the generation is filled in */
568 if (key->type == BTRFS_INODE_ITEM_KEY) {
569 struct btrfs_inode_item *dst_item;
570 dst_item = (struct btrfs_inode_item *)dst_ptr;
571 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
572 btrfs_set_inode_generation(path->nodes[0], dst_item,
577 btrfs_mark_buffer_dirty(path->nodes[0]);
578 btrfs_release_path(path);
582 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
583 struct fscrypt_str *name)
587 buf = kmalloc(len, GFP_NOFS);
591 read_extent_buffer(eb, buf, (unsigned long)start, len);
598 * simple helper to read an inode off the disk from a given root
599 * This can only be called for subvolume roots and not for the log
601 static noinline struct inode *read_one_inode(struct btrfs_root *root,
606 inode = btrfs_iget(root->fs_info->sb, objectid, root);
612 /* replays a single extent in 'eb' at 'slot' with 'key' into the
613 * subvolume 'root'. path is released on entry and should be released
616 * extents in the log tree have not been allocated out of the extent
617 * tree yet. So, this completes the allocation, taking a reference
618 * as required if the extent already exists or creating a new extent
619 * if it isn't in the extent allocation tree yet.
621 * The extent is inserted into the file, dropping any existing extents
622 * from the file that overlap the new one.
624 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
625 struct btrfs_root *root,
626 struct btrfs_path *path,
627 struct extent_buffer *eb, int slot,
628 struct btrfs_key *key)
630 struct btrfs_drop_extents_args drop_args = { 0 };
631 struct btrfs_fs_info *fs_info = root->fs_info;
634 u64 start = key->offset;
636 struct btrfs_file_extent_item *item;
637 struct inode *inode = NULL;
641 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
642 found_type = btrfs_file_extent_type(eb, item);
644 if (found_type == BTRFS_FILE_EXTENT_REG ||
645 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
646 nbytes = btrfs_file_extent_num_bytes(eb, item);
647 extent_end = start + nbytes;
650 * We don't add to the inodes nbytes if we are prealloc or a
653 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
655 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
656 size = btrfs_file_extent_ram_bytes(eb, item);
657 nbytes = btrfs_file_extent_ram_bytes(eb, item);
658 extent_end = ALIGN(start + size,
659 fs_info->sectorsize);
665 inode = read_one_inode(root, key->objectid);
672 * first check to see if we already have this extent in the
673 * file. This must be done before the btrfs_drop_extents run
674 * so we don't try to drop this extent.
676 ret = btrfs_lookup_file_extent(trans, root, path,
677 btrfs_ino(BTRFS_I(inode)), start, 0);
680 (found_type == BTRFS_FILE_EXTENT_REG ||
681 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
682 struct btrfs_file_extent_item cmp1;
683 struct btrfs_file_extent_item cmp2;
684 struct btrfs_file_extent_item *existing;
685 struct extent_buffer *leaf;
687 leaf = path->nodes[0];
688 existing = btrfs_item_ptr(leaf, path->slots[0],
689 struct btrfs_file_extent_item);
691 read_extent_buffer(eb, &cmp1, (unsigned long)item,
693 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
697 * we already have a pointer to this exact extent,
698 * we don't have to do anything
700 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
701 btrfs_release_path(path);
705 btrfs_release_path(path);
707 /* drop any overlapping extents */
708 drop_args.start = start;
709 drop_args.end = extent_end;
710 drop_args.drop_cache = true;
711 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
715 if (found_type == BTRFS_FILE_EXTENT_REG ||
716 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
718 unsigned long dest_offset;
719 struct btrfs_key ins;
721 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
722 btrfs_fs_incompat(fs_info, NO_HOLES))
725 ret = btrfs_insert_empty_item(trans, root, path, key,
729 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
731 copy_extent_buffer(path->nodes[0], eb, dest_offset,
732 (unsigned long)item, sizeof(*item));
734 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
735 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
736 ins.type = BTRFS_EXTENT_ITEM_KEY;
737 offset = key->offset - btrfs_file_extent_offset(eb, item);
740 * Manually record dirty extent, as here we did a shallow
741 * file extent item copy and skip normal backref update,
742 * but modifying extent tree all by ourselves.
743 * So need to manually record dirty extent for qgroup,
744 * as the owner of the file extent changed from log tree
745 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
747 ret = btrfs_qgroup_trace_extent(trans,
748 btrfs_file_extent_disk_bytenr(eb, item),
749 btrfs_file_extent_disk_num_bytes(eb, item));
753 if (ins.objectid > 0) {
754 struct btrfs_ref ref = { 0 };
757 LIST_HEAD(ordered_sums);
760 * is this extent already allocated in the extent
761 * allocation tree? If so, just add a reference
763 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
767 } else if (ret == 0) {
768 btrfs_init_generic_ref(&ref,
769 BTRFS_ADD_DELAYED_REF,
770 ins.objectid, ins.offset, 0);
771 btrfs_init_data_ref(&ref,
772 root->root_key.objectid,
773 key->objectid, offset, 0, false);
774 ret = btrfs_inc_extent_ref(trans, &ref);
779 * insert the extent pointer in the extent
782 ret = btrfs_alloc_logged_file_extent(trans,
783 root->root_key.objectid,
784 key->objectid, offset, &ins);
788 btrfs_release_path(path);
790 if (btrfs_file_extent_compression(eb, item)) {
791 csum_start = ins.objectid;
792 csum_end = csum_start + ins.offset;
794 csum_start = ins.objectid +
795 btrfs_file_extent_offset(eb, item);
796 csum_end = csum_start +
797 btrfs_file_extent_num_bytes(eb, item);
800 ret = btrfs_lookup_csums_list(root->log_root,
801 csum_start, csum_end - 1,
802 &ordered_sums, 0, false);
806 * Now delete all existing cums in the csum root that
807 * cover our range. We do this because we can have an
808 * extent that is completely referenced by one file
809 * extent item and partially referenced by another
810 * file extent item (like after using the clone or
811 * extent_same ioctls). In this case if we end up doing
812 * the replay of the one that partially references the
813 * extent first, and we do not do the csum deletion
814 * below, we can get 2 csum items in the csum tree that
815 * overlap each other. For example, imagine our log has
816 * the two following file extent items:
818 * key (257 EXTENT_DATA 409600)
819 * extent data disk byte 12845056 nr 102400
820 * extent data offset 20480 nr 20480 ram 102400
822 * key (257 EXTENT_DATA 819200)
823 * extent data disk byte 12845056 nr 102400
824 * extent data offset 0 nr 102400 ram 102400
826 * Where the second one fully references the 100K extent
827 * that starts at disk byte 12845056, and the log tree
828 * has a single csum item that covers the entire range
831 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
833 * After the first file extent item is replayed, the
834 * csum tree gets the following csum item:
836 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
838 * Which covers the 20K sub-range starting at offset 20K
839 * of our extent. Now when we replay the second file
840 * extent item, if we do not delete existing csum items
841 * that cover any of its blocks, we end up getting two
842 * csum items in our csum tree that overlap each other:
844 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
845 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
847 * Which is a problem, because after this anyone trying
848 * to lookup up for the checksum of any block of our
849 * extent starting at an offset of 40K or higher, will
850 * end up looking at the second csum item only, which
851 * does not contain the checksum for any block starting
852 * at offset 40K or higher of our extent.
854 while (!list_empty(&ordered_sums)) {
855 struct btrfs_ordered_sum *sums;
856 struct btrfs_root *csum_root;
858 sums = list_entry(ordered_sums.next,
859 struct btrfs_ordered_sum,
861 csum_root = btrfs_csum_root(fs_info,
864 ret = btrfs_del_csums(trans, csum_root,
868 ret = btrfs_csum_file_blocks(trans,
871 list_del(&sums->list);
877 btrfs_release_path(path);
879 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
880 /* inline extents are easy, we just overwrite them */
881 ret = overwrite_item(trans, root, path, eb, slot, key);
886 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
892 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
893 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
899 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
900 struct btrfs_inode *dir,
901 struct btrfs_inode *inode,
902 const struct fscrypt_str *name)
906 ret = btrfs_unlink_inode(trans, dir, inode, name);
910 * Whenever we need to check if a name exists or not, we check the
911 * fs/subvolume tree. So after an unlink we must run delayed items, so
912 * that future checks for a name during log replay see that the name
913 * does not exists anymore.
915 return btrfs_run_delayed_items(trans);
919 * when cleaning up conflicts between the directory names in the
920 * subvolume, directory names in the log and directory names in the
921 * inode back references, we may have to unlink inodes from directories.
923 * This is a helper function to do the unlink of a specific directory
926 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
927 struct btrfs_path *path,
928 struct btrfs_inode *dir,
929 struct btrfs_dir_item *di)
931 struct btrfs_root *root = dir->root;
933 struct fscrypt_str name;
934 struct extent_buffer *leaf;
935 struct btrfs_key location;
938 leaf = path->nodes[0];
940 btrfs_dir_item_key_to_cpu(leaf, di, &location);
941 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
945 btrfs_release_path(path);
947 inode = read_one_inode(root, location.objectid);
953 ret = link_to_fixup_dir(trans, root, path, location.objectid);
957 ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
965 * See if a given name and sequence number found in an inode back reference are
966 * already in a directory and correctly point to this inode.
968 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
971 static noinline int inode_in_dir(struct btrfs_root *root,
972 struct btrfs_path *path,
973 u64 dirid, u64 objectid, u64 index,
974 struct fscrypt_str *name)
976 struct btrfs_dir_item *di;
977 struct btrfs_key location;
980 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
986 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
987 if (location.objectid != objectid)
993 btrfs_release_path(path);
994 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
999 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1000 if (location.objectid == objectid)
1004 btrfs_release_path(path);
1009 * helper function to check a log tree for a named back reference in
1010 * an inode. This is used to decide if a back reference that is
1011 * found in the subvolume conflicts with what we find in the log.
1013 * inode backreferences may have multiple refs in a single item,
1014 * during replay we process one reference at a time, and we don't
1015 * want to delete valid links to a file from the subvolume if that
1016 * link is also in the log.
1018 static noinline int backref_in_log(struct btrfs_root *log,
1019 struct btrfs_key *key,
1021 const struct fscrypt_str *name)
1023 struct btrfs_path *path;
1026 path = btrfs_alloc_path();
1030 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1033 } else if (ret == 1) {
1038 if (key->type == BTRFS_INODE_EXTREF_KEY)
1039 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1041 ref_objectid, name);
1043 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1044 path->slots[0], name);
1046 btrfs_free_path(path);
1050 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1051 struct btrfs_root *root,
1052 struct btrfs_path *path,
1053 struct btrfs_root *log_root,
1054 struct btrfs_inode *dir,
1055 struct btrfs_inode *inode,
1056 u64 inode_objectid, u64 parent_objectid,
1057 u64 ref_index, struct fscrypt_str *name)
1060 struct extent_buffer *leaf;
1061 struct btrfs_dir_item *di;
1062 struct btrfs_key search_key;
1063 struct btrfs_inode_extref *extref;
1066 /* Search old style refs */
1067 search_key.objectid = inode_objectid;
1068 search_key.type = BTRFS_INODE_REF_KEY;
1069 search_key.offset = parent_objectid;
1070 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1072 struct btrfs_inode_ref *victim_ref;
1074 unsigned long ptr_end;
1076 leaf = path->nodes[0];
1078 /* are we trying to overwrite a back ref for the root directory
1079 * if so, just jump out, we're done
1081 if (search_key.objectid == search_key.offset)
1084 /* check all the names in this back reference to see
1085 * if they are in the log. if so, we allow them to stay
1086 * otherwise they must be unlinked as a conflict
1088 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1089 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1090 while (ptr < ptr_end) {
1091 struct fscrypt_str victim_name;
1093 victim_ref = (struct btrfs_inode_ref *)ptr;
1094 ret = read_alloc_one_name(leaf, (victim_ref + 1),
1095 btrfs_inode_ref_name_len(leaf, victim_ref),
1100 ret = backref_in_log(log_root, &search_key,
1101 parent_objectid, &victim_name);
1103 kfree(victim_name.name);
1106 inc_nlink(&inode->vfs_inode);
1107 btrfs_release_path(path);
1109 ret = unlink_inode_for_log_replay(trans, dir, inode,
1111 kfree(victim_name.name);
1116 kfree(victim_name.name);
1118 ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1121 btrfs_release_path(path);
1123 /* Same search but for extended refs */
1124 extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1125 inode_objectid, parent_objectid, 0,
1127 if (IS_ERR(extref)) {
1128 return PTR_ERR(extref);
1129 } else if (extref) {
1133 struct inode *victim_parent;
1135 leaf = path->nodes[0];
1137 item_size = btrfs_item_size(leaf, path->slots[0]);
1138 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1140 while (cur_offset < item_size) {
1141 struct fscrypt_str victim_name;
1143 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1145 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1148 ret = read_alloc_one_name(leaf, &extref->name,
1149 btrfs_inode_extref_name_len(leaf, extref),
1154 search_key.objectid = inode_objectid;
1155 search_key.type = BTRFS_INODE_EXTREF_KEY;
1156 search_key.offset = btrfs_extref_hash(parent_objectid,
1159 ret = backref_in_log(log_root, &search_key,
1160 parent_objectid, &victim_name);
1162 kfree(victim_name.name);
1166 victim_parent = read_one_inode(root,
1168 if (victim_parent) {
1169 inc_nlink(&inode->vfs_inode);
1170 btrfs_release_path(path);
1172 ret = unlink_inode_for_log_replay(trans,
1173 BTRFS_I(victim_parent),
1174 inode, &victim_name);
1176 iput(victim_parent);
1177 kfree(victim_name.name);
1182 kfree(victim_name.name);
1184 cur_offset += victim_name.len + sizeof(*extref);
1187 btrfs_release_path(path);
1189 /* look for a conflicting sequence number */
1190 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1191 ref_index, name, 0);
1195 ret = drop_one_dir_item(trans, path, dir, di);
1199 btrfs_release_path(path);
1201 /* look for a conflicting name */
1202 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1206 ret = drop_one_dir_item(trans, path, dir, di);
1210 btrfs_release_path(path);
1215 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1216 struct fscrypt_str *name, u64 *index,
1217 u64 *parent_objectid)
1219 struct btrfs_inode_extref *extref;
1222 extref = (struct btrfs_inode_extref *)ref_ptr;
1224 ret = read_alloc_one_name(eb, &extref->name,
1225 btrfs_inode_extref_name_len(eb, extref), name);
1230 *index = btrfs_inode_extref_index(eb, extref);
1231 if (parent_objectid)
1232 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1237 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1238 struct fscrypt_str *name, u64 *index)
1240 struct btrfs_inode_ref *ref;
1243 ref = (struct btrfs_inode_ref *)ref_ptr;
1245 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1251 *index = btrfs_inode_ref_index(eb, ref);
1257 * Take an inode reference item from the log tree and iterate all names from the
1258 * inode reference item in the subvolume tree with the same key (if it exists).
1259 * For any name that is not in the inode reference item from the log tree, do a
1260 * proper unlink of that name (that is, remove its entry from the inode
1261 * reference item and both dir index keys).
1263 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1264 struct btrfs_root *root,
1265 struct btrfs_path *path,
1266 struct btrfs_inode *inode,
1267 struct extent_buffer *log_eb,
1269 struct btrfs_key *key)
1272 unsigned long ref_ptr;
1273 unsigned long ref_end;
1274 struct extent_buffer *eb;
1277 btrfs_release_path(path);
1278 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1286 eb = path->nodes[0];
1287 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1288 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1289 while (ref_ptr < ref_end) {
1290 struct fscrypt_str name;
1293 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1294 ret = extref_get_fields(eb, ref_ptr, &name,
1297 parent_id = key->offset;
1298 ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1303 if (key->type == BTRFS_INODE_EXTREF_KEY)
1304 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1307 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1312 btrfs_release_path(path);
1313 dir = read_one_inode(root, parent_id);
1319 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1329 ref_ptr += name.len;
1330 if (key->type == BTRFS_INODE_EXTREF_KEY)
1331 ref_ptr += sizeof(struct btrfs_inode_extref);
1333 ref_ptr += sizeof(struct btrfs_inode_ref);
1337 btrfs_release_path(path);
1342 * replay one inode back reference item found in the log tree.
1343 * eb, slot and key refer to the buffer and key found in the log tree.
1344 * root is the destination we are replaying into, and path is for temp
1345 * use by this function. (it should be released on return).
1347 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1348 struct btrfs_root *root,
1349 struct btrfs_root *log,
1350 struct btrfs_path *path,
1351 struct extent_buffer *eb, int slot,
1352 struct btrfs_key *key)
1354 struct inode *dir = NULL;
1355 struct inode *inode = NULL;
1356 unsigned long ref_ptr;
1357 unsigned long ref_end;
1358 struct fscrypt_str name;
1360 int log_ref_ver = 0;
1361 u64 parent_objectid;
1364 int ref_struct_size;
1366 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1367 ref_end = ref_ptr + btrfs_item_size(eb, slot);
1369 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1370 struct btrfs_inode_extref *r;
1372 ref_struct_size = sizeof(struct btrfs_inode_extref);
1374 r = (struct btrfs_inode_extref *)ref_ptr;
1375 parent_objectid = btrfs_inode_extref_parent(eb, r);
1377 ref_struct_size = sizeof(struct btrfs_inode_ref);
1378 parent_objectid = key->offset;
1380 inode_objectid = key->objectid;
1383 * it is possible that we didn't log all the parent directories
1384 * for a given inode. If we don't find the dir, just don't
1385 * copy the back ref in. The link count fixup code will take
1388 dir = read_one_inode(root, parent_objectid);
1394 inode = read_one_inode(root, inode_objectid);
1400 while (ref_ptr < ref_end) {
1402 ret = extref_get_fields(eb, ref_ptr, &name,
1403 &ref_index, &parent_objectid);
1405 * parent object can change from one array
1409 dir = read_one_inode(root, parent_objectid);
1415 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1420 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1421 btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1424 } else if (ret == 0) {
1426 * look for a conflicting back reference in the
1427 * metadata. if we find one we have to unlink that name
1428 * of the file before we add our new link. Later on, we
1429 * overwrite any existing back reference, and we don't
1430 * want to create dangling pointers in the directory.
1432 ret = __add_inode_ref(trans, root, path, log,
1433 BTRFS_I(dir), BTRFS_I(inode),
1434 inode_objectid, parent_objectid,
1442 /* insert our name */
1443 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1444 &name, 0, ref_index);
1448 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1452 /* Else, ret == 1, we already have a perfect match, we're done. */
1454 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1464 * Before we overwrite the inode reference item in the subvolume tree
1465 * with the item from the log tree, we must unlink all names from the
1466 * parent directory that are in the subvolume's tree inode reference
1467 * item, otherwise we end up with an inconsistent subvolume tree where
1468 * dir index entries exist for a name but there is no inode reference
1469 * item with the same name.
1471 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1476 /* finally write the back reference in the inode */
1477 ret = overwrite_item(trans, root, path, eb, slot, key);
1479 btrfs_release_path(path);
1486 static int count_inode_extrefs(struct btrfs_root *root,
1487 struct btrfs_inode *inode, struct btrfs_path *path)
1491 unsigned int nlink = 0;
1494 u64 inode_objectid = btrfs_ino(inode);
1497 struct btrfs_inode_extref *extref;
1498 struct extent_buffer *leaf;
1501 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1506 leaf = path->nodes[0];
1507 item_size = btrfs_item_size(leaf, path->slots[0]);
1508 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1511 while (cur_offset < item_size) {
1512 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1513 name_len = btrfs_inode_extref_name_len(leaf, extref);
1517 cur_offset += name_len + sizeof(*extref);
1521 btrfs_release_path(path);
1523 btrfs_release_path(path);
1525 if (ret < 0 && ret != -ENOENT)
1530 static int count_inode_refs(struct btrfs_root *root,
1531 struct btrfs_inode *inode, struct btrfs_path *path)
1534 struct btrfs_key key;
1535 unsigned int nlink = 0;
1537 unsigned long ptr_end;
1539 u64 ino = btrfs_ino(inode);
1542 key.type = BTRFS_INODE_REF_KEY;
1543 key.offset = (u64)-1;
1546 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1550 if (path->slots[0] == 0)
1555 btrfs_item_key_to_cpu(path->nodes[0], &key,
1557 if (key.objectid != ino ||
1558 key.type != BTRFS_INODE_REF_KEY)
1560 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1561 ptr_end = ptr + btrfs_item_size(path->nodes[0],
1563 while (ptr < ptr_end) {
1564 struct btrfs_inode_ref *ref;
1566 ref = (struct btrfs_inode_ref *)ptr;
1567 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1569 ptr = (unsigned long)(ref + 1) + name_len;
1573 if (key.offset == 0)
1575 if (path->slots[0] > 0) {
1580 btrfs_release_path(path);
1582 btrfs_release_path(path);
1588 * There are a few corners where the link count of the file can't
1589 * be properly maintained during replay. So, instead of adding
1590 * lots of complexity to the log code, we just scan the backrefs
1591 * for any file that has been through replay.
1593 * The scan will update the link count on the inode to reflect the
1594 * number of back refs found. If it goes down to zero, the iput
1595 * will free the inode.
1597 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1598 struct btrfs_root *root,
1599 struct inode *inode)
1601 struct btrfs_path *path;
1604 u64 ino = btrfs_ino(BTRFS_I(inode));
1606 path = btrfs_alloc_path();
1610 ret = count_inode_refs(root, BTRFS_I(inode), path);
1616 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1624 if (nlink != inode->i_nlink) {
1625 set_nlink(inode, nlink);
1626 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1630 BTRFS_I(inode)->index_cnt = (u64)-1;
1632 if (inode->i_nlink == 0) {
1633 if (S_ISDIR(inode->i_mode)) {
1634 ret = replay_dir_deletes(trans, root, NULL, path,
1639 ret = btrfs_insert_orphan_item(trans, root, ino);
1645 btrfs_free_path(path);
1649 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1650 struct btrfs_root *root,
1651 struct btrfs_path *path)
1654 struct btrfs_key key;
1655 struct inode *inode;
1657 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1658 key.type = BTRFS_ORPHAN_ITEM_KEY;
1659 key.offset = (u64)-1;
1661 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1667 if (path->slots[0] == 0)
1672 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1673 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1674 key.type != BTRFS_ORPHAN_ITEM_KEY)
1677 ret = btrfs_del_item(trans, root, path);
1681 btrfs_release_path(path);
1682 inode = read_one_inode(root, key.offset);
1688 ret = fixup_inode_link_count(trans, root, inode);
1694 * fixup on a directory may create new entries,
1695 * make sure we always look for the highset possible
1698 key.offset = (u64)-1;
1700 btrfs_release_path(path);
1706 * record a given inode in the fixup dir so we can check its link
1707 * count when replay is done. The link count is incremented here
1708 * so the inode won't go away until we check it
1710 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1711 struct btrfs_root *root,
1712 struct btrfs_path *path,
1715 struct btrfs_key key;
1717 struct inode *inode;
1719 inode = read_one_inode(root, objectid);
1723 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1724 key.type = BTRFS_ORPHAN_ITEM_KEY;
1725 key.offset = objectid;
1727 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1729 btrfs_release_path(path);
1731 if (!inode->i_nlink)
1732 set_nlink(inode, 1);
1735 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1736 } else if (ret == -EEXIST) {
1745 * when replaying the log for a directory, we only insert names
1746 * for inodes that actually exist. This means an fsync on a directory
1747 * does not implicitly fsync all the new files in it
1749 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1750 struct btrfs_root *root,
1751 u64 dirid, u64 index,
1752 const struct fscrypt_str *name,
1753 struct btrfs_key *location)
1755 struct inode *inode;
1759 inode = read_one_inode(root, location->objectid);
1763 dir = read_one_inode(root, dirid);
1769 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1772 /* FIXME, put inode into FIXUP list */
1779 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1780 struct btrfs_inode *dir,
1781 struct btrfs_path *path,
1782 struct btrfs_dir_item *dst_di,
1783 const struct btrfs_key *log_key,
1787 struct btrfs_key found_key;
1789 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1790 /* The existing dentry points to the same inode, don't delete it. */
1791 if (found_key.objectid == log_key->objectid &&
1792 found_key.type == log_key->type &&
1793 found_key.offset == log_key->offset &&
1794 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1798 * Don't drop the conflicting directory entry if the inode for the new
1799 * entry doesn't exist.
1804 return drop_one_dir_item(trans, path, dir, dst_di);
1808 * take a single entry in a log directory item and replay it into
1811 * if a conflicting item exists in the subdirectory already,
1812 * the inode it points to is unlinked and put into the link count
1815 * If a name from the log points to a file or directory that does
1816 * not exist in the FS, it is skipped. fsyncs on directories
1817 * do not force down inodes inside that directory, just changes to the
1818 * names or unlinks in a directory.
1820 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1821 * non-existing inode) and 1 if the name was replayed.
1823 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1824 struct btrfs_root *root,
1825 struct btrfs_path *path,
1826 struct extent_buffer *eb,
1827 struct btrfs_dir_item *di,
1828 struct btrfs_key *key)
1830 struct fscrypt_str name;
1831 struct btrfs_dir_item *dir_dst_di;
1832 struct btrfs_dir_item *index_dst_di;
1833 bool dir_dst_matches = false;
1834 bool index_dst_matches = false;
1835 struct btrfs_key log_key;
1836 struct btrfs_key search_key;
1841 bool update_size = true;
1842 bool name_added = false;
1844 dir = read_one_inode(root, key->objectid);
1848 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1852 log_flags = btrfs_dir_flags(eb, di);
1853 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1854 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1855 btrfs_release_path(path);
1858 exists = (ret == 0);
1861 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1863 if (IS_ERR(dir_dst_di)) {
1864 ret = PTR_ERR(dir_dst_di);
1866 } else if (dir_dst_di) {
1867 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1868 dir_dst_di, &log_key,
1872 dir_dst_matches = (ret == 1);
1875 btrfs_release_path(path);
1877 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1878 key->objectid, key->offset,
1880 if (IS_ERR(index_dst_di)) {
1881 ret = PTR_ERR(index_dst_di);
1883 } else if (index_dst_di) {
1884 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1885 index_dst_di, &log_key,
1889 index_dst_matches = (ret == 1);
1892 btrfs_release_path(path);
1894 if (dir_dst_matches && index_dst_matches) {
1896 update_size = false;
1901 * Check if the inode reference exists in the log for the given name,
1902 * inode and parent inode
1904 search_key.objectid = log_key.objectid;
1905 search_key.type = BTRFS_INODE_REF_KEY;
1906 search_key.offset = key->objectid;
1907 ret = backref_in_log(root->log_root, &search_key, 0, &name);
1911 /* The dentry will be added later. */
1913 update_size = false;
1917 search_key.objectid = log_key.objectid;
1918 search_key.type = BTRFS_INODE_EXTREF_KEY;
1919 search_key.offset = key->objectid;
1920 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1924 /* The dentry will be added later. */
1926 update_size = false;
1929 btrfs_release_path(path);
1930 ret = insert_one_name(trans, root, key->objectid, key->offset,
1932 if (ret && ret != -ENOENT && ret != -EEXIST)
1936 update_size = false;
1940 if (!ret && update_size) {
1941 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1942 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
1946 if (!ret && name_added)
1951 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
1952 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1953 struct btrfs_root *root,
1954 struct btrfs_path *path,
1955 struct extent_buffer *eb, int slot,
1956 struct btrfs_key *key)
1959 struct btrfs_dir_item *di;
1961 /* We only log dir index keys, which only contain a single dir item. */
1962 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1964 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1965 ret = replay_one_name(trans, root, path, eb, di, key);
1970 * If this entry refers to a non-directory (directories can not have a
1971 * link count > 1) and it was added in the transaction that was not
1972 * committed, make sure we fixup the link count of the inode the entry
1973 * points to. Otherwise something like the following would result in a
1974 * directory pointing to an inode with a wrong link that does not account
1975 * for this dir entry:
1982 * ln testdir/bar testdir/bar_link
1983 * ln testdir/foo testdir/foo_link
1984 * xfs_io -c "fsync" testdir/bar
1988 * mount fs, log replay happens
1990 * File foo would remain with a link count of 1 when it has two entries
1991 * pointing to it in the directory testdir. This would make it impossible
1992 * to ever delete the parent directory has it would result in stale
1993 * dentries that can never be deleted.
1995 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
1996 struct btrfs_path *fixup_path;
1997 struct btrfs_key di_key;
1999 fixup_path = btrfs_alloc_path();
2003 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2004 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2005 btrfs_free_path(fixup_path);
2012 * directory replay has two parts. There are the standard directory
2013 * items in the log copied from the subvolume, and range items
2014 * created in the log while the subvolume was logged.
2016 * The range items tell us which parts of the key space the log
2017 * is authoritative for. During replay, if a key in the subvolume
2018 * directory is in a logged range item, but not actually in the log
2019 * that means it was deleted from the directory before the fsync
2020 * and should be removed.
2022 static noinline int find_dir_range(struct btrfs_root *root,
2023 struct btrfs_path *path,
2025 u64 *start_ret, u64 *end_ret)
2027 struct btrfs_key key;
2029 struct btrfs_dir_log_item *item;
2033 if (*start_ret == (u64)-1)
2036 key.objectid = dirid;
2037 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2038 key.offset = *start_ret;
2040 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2044 if (path->slots[0] == 0)
2049 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2051 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2055 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2056 struct btrfs_dir_log_item);
2057 found_end = btrfs_dir_log_end(path->nodes[0], item);
2059 if (*start_ret >= key.offset && *start_ret <= found_end) {
2061 *start_ret = key.offset;
2062 *end_ret = found_end;
2067 /* check the next slot in the tree to see if it is a valid item */
2068 nritems = btrfs_header_nritems(path->nodes[0]);
2070 if (path->slots[0] >= nritems) {
2071 ret = btrfs_next_leaf(root, path);
2076 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2078 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2082 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2083 struct btrfs_dir_log_item);
2084 found_end = btrfs_dir_log_end(path->nodes[0], item);
2085 *start_ret = key.offset;
2086 *end_ret = found_end;
2089 btrfs_release_path(path);
2094 * this looks for a given directory item in the log. If the directory
2095 * item is not in the log, the item is removed and the inode it points
2098 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2099 struct btrfs_root *log,
2100 struct btrfs_path *path,
2101 struct btrfs_path *log_path,
2103 struct btrfs_key *dir_key)
2105 struct btrfs_root *root = BTRFS_I(dir)->root;
2107 struct extent_buffer *eb;
2109 struct btrfs_dir_item *di;
2110 struct fscrypt_str name;
2111 struct inode *inode = NULL;
2112 struct btrfs_key location;
2115 * Currently we only log dir index keys. Even if we replay a log created
2116 * by an older kernel that logged both dir index and dir item keys, all
2117 * we need to do is process the dir index keys, we (and our caller) can
2118 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2120 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2122 eb = path->nodes[0];
2123 slot = path->slots[0];
2124 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2125 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2130 struct btrfs_dir_item *log_di;
2132 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2134 dir_key->offset, &name, 0);
2135 if (IS_ERR(log_di)) {
2136 ret = PTR_ERR(log_di);
2138 } else if (log_di) {
2139 /* The dentry exists in the log, we have nothing to do. */
2145 btrfs_dir_item_key_to_cpu(eb, di, &location);
2146 btrfs_release_path(path);
2147 btrfs_release_path(log_path);
2148 inode = read_one_inode(root, location.objectid);
2154 ret = link_to_fixup_dir(trans, root, path, location.objectid);
2159 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2162 * Unlike dir item keys, dir index keys can only have one name (entry) in
2163 * them, as there are no key collisions since each key has a unique offset
2164 * (an index number), so we're done.
2167 btrfs_release_path(path);
2168 btrfs_release_path(log_path);
2174 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2175 struct btrfs_root *root,
2176 struct btrfs_root *log,
2177 struct btrfs_path *path,
2180 struct btrfs_key search_key;
2181 struct btrfs_path *log_path;
2186 log_path = btrfs_alloc_path();
2190 search_key.objectid = ino;
2191 search_key.type = BTRFS_XATTR_ITEM_KEY;
2192 search_key.offset = 0;
2194 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2198 nritems = btrfs_header_nritems(path->nodes[0]);
2199 for (i = path->slots[0]; i < nritems; i++) {
2200 struct btrfs_key key;
2201 struct btrfs_dir_item *di;
2202 struct btrfs_dir_item *log_di;
2206 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2207 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2212 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2213 total_size = btrfs_item_size(path->nodes[0], i);
2215 while (cur < total_size) {
2216 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2217 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2218 u32 this_len = sizeof(*di) + name_len + data_len;
2221 name = kmalloc(name_len, GFP_NOFS);
2226 read_extent_buffer(path->nodes[0], name,
2227 (unsigned long)(di + 1), name_len);
2229 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2231 btrfs_release_path(log_path);
2233 /* Doesn't exist in log tree, so delete it. */
2234 btrfs_release_path(path);
2235 di = btrfs_lookup_xattr(trans, root, path, ino,
2236 name, name_len, -1);
2243 ret = btrfs_delete_one_dir_name(trans, root,
2247 btrfs_release_path(path);
2252 if (IS_ERR(log_di)) {
2253 ret = PTR_ERR(log_di);
2257 di = (struct btrfs_dir_item *)((char *)di + this_len);
2260 ret = btrfs_next_leaf(root, path);
2266 btrfs_free_path(log_path);
2267 btrfs_release_path(path);
2273 * deletion replay happens before we copy any new directory items
2274 * out of the log or out of backreferences from inodes. It
2275 * scans the log to find ranges of keys that log is authoritative for,
2276 * and then scans the directory to find items in those ranges that are
2277 * not present in the log.
2279 * Anything we don't find in the log is unlinked and removed from the
2282 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2283 struct btrfs_root *root,
2284 struct btrfs_root *log,
2285 struct btrfs_path *path,
2286 u64 dirid, int del_all)
2291 struct btrfs_key dir_key;
2292 struct btrfs_key found_key;
2293 struct btrfs_path *log_path;
2296 dir_key.objectid = dirid;
2297 dir_key.type = BTRFS_DIR_INDEX_KEY;
2298 log_path = btrfs_alloc_path();
2302 dir = read_one_inode(root, dirid);
2303 /* it isn't an error if the inode isn't there, that can happen
2304 * because we replay the deletes before we copy in the inode item
2308 btrfs_free_path(log_path);
2316 range_end = (u64)-1;
2318 ret = find_dir_range(log, path, dirid,
2319 &range_start, &range_end);
2326 dir_key.offset = range_start;
2329 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2334 nritems = btrfs_header_nritems(path->nodes[0]);
2335 if (path->slots[0] >= nritems) {
2336 ret = btrfs_next_leaf(root, path);
2342 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2344 if (found_key.objectid != dirid ||
2345 found_key.type != dir_key.type) {
2350 if (found_key.offset > range_end)
2353 ret = check_item_in_log(trans, log, path,
2358 if (found_key.offset == (u64)-1)
2360 dir_key.offset = found_key.offset + 1;
2362 btrfs_release_path(path);
2363 if (range_end == (u64)-1)
2365 range_start = range_end + 1;
2369 btrfs_release_path(path);
2370 btrfs_free_path(log_path);
2376 * the process_func used to replay items from the log tree. This
2377 * gets called in two different stages. The first stage just looks
2378 * for inodes and makes sure they are all copied into the subvolume.
2380 * The second stage copies all the other item types from the log into
2381 * the subvolume. The two stage approach is slower, but gets rid of
2382 * lots of complexity around inodes referencing other inodes that exist
2383 * only in the log (references come from either directory items or inode
2386 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2387 struct walk_control *wc, u64 gen, int level)
2390 struct btrfs_tree_parent_check check = {
2394 struct btrfs_path *path;
2395 struct btrfs_root *root = wc->replay_dest;
2396 struct btrfs_key key;
2400 ret = btrfs_read_extent_buffer(eb, &check);
2404 level = btrfs_header_level(eb);
2409 path = btrfs_alloc_path();
2413 nritems = btrfs_header_nritems(eb);
2414 for (i = 0; i < nritems; i++) {
2415 btrfs_item_key_to_cpu(eb, &key, i);
2417 /* inode keys are done during the first stage */
2418 if (key.type == BTRFS_INODE_ITEM_KEY &&
2419 wc->stage == LOG_WALK_REPLAY_INODES) {
2420 struct btrfs_inode_item *inode_item;
2423 inode_item = btrfs_item_ptr(eb, i,
2424 struct btrfs_inode_item);
2426 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2427 * and never got linked before the fsync, skip it, as
2428 * replaying it is pointless since it would be deleted
2429 * later. We skip logging tmpfiles, but it's always
2430 * possible we are replaying a log created with a kernel
2431 * that used to log tmpfiles.
2433 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2434 wc->ignore_cur_inode = true;
2437 wc->ignore_cur_inode = false;
2439 ret = replay_xattr_deletes(wc->trans, root, log,
2440 path, key.objectid);
2443 mode = btrfs_inode_mode(eb, inode_item);
2444 if (S_ISDIR(mode)) {
2445 ret = replay_dir_deletes(wc->trans,
2446 root, log, path, key.objectid, 0);
2450 ret = overwrite_item(wc->trans, root, path,
2456 * Before replaying extents, truncate the inode to its
2457 * size. We need to do it now and not after log replay
2458 * because before an fsync we can have prealloc extents
2459 * added beyond the inode's i_size. If we did it after,
2460 * through orphan cleanup for example, we would drop
2461 * those prealloc extents just after replaying them.
2463 if (S_ISREG(mode)) {
2464 struct btrfs_drop_extents_args drop_args = { 0 };
2465 struct inode *inode;
2468 inode = read_one_inode(root, key.objectid);
2473 from = ALIGN(i_size_read(inode),
2474 root->fs_info->sectorsize);
2475 drop_args.start = from;
2476 drop_args.end = (u64)-1;
2477 drop_args.drop_cache = true;
2478 ret = btrfs_drop_extents(wc->trans, root,
2482 inode_sub_bytes(inode,
2483 drop_args.bytes_found);
2484 /* Update the inode's nbytes. */
2485 ret = btrfs_update_inode(wc->trans,
2486 root, BTRFS_I(inode));
2493 ret = link_to_fixup_dir(wc->trans, root,
2494 path, key.objectid);
2499 if (wc->ignore_cur_inode)
2502 if (key.type == BTRFS_DIR_INDEX_KEY &&
2503 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2504 ret = replay_one_dir_item(wc->trans, root, path,
2510 if (wc->stage < LOG_WALK_REPLAY_ALL)
2513 /* these keys are simply copied */
2514 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2515 ret = overwrite_item(wc->trans, root, path,
2519 } else if (key.type == BTRFS_INODE_REF_KEY ||
2520 key.type == BTRFS_INODE_EXTREF_KEY) {
2521 ret = add_inode_ref(wc->trans, root, log, path,
2523 if (ret && ret != -ENOENT)
2526 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2527 ret = replay_one_extent(wc->trans, root, path,
2533 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2534 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2535 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2536 * older kernel with such keys, ignore them.
2539 btrfs_free_path(path);
2544 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2546 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2548 struct btrfs_block_group *cache;
2550 cache = btrfs_lookup_block_group(fs_info, start);
2552 btrfs_err(fs_info, "unable to find block group for %llu", start);
2556 spin_lock(&cache->space_info->lock);
2557 spin_lock(&cache->lock);
2558 cache->reserved -= fs_info->nodesize;
2559 cache->space_info->bytes_reserved -= fs_info->nodesize;
2560 spin_unlock(&cache->lock);
2561 spin_unlock(&cache->space_info->lock);
2563 btrfs_put_block_group(cache);
2566 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2567 struct btrfs_root *root,
2568 struct btrfs_path *path, int *level,
2569 struct walk_control *wc)
2571 struct btrfs_fs_info *fs_info = root->fs_info;
2574 struct extent_buffer *next;
2575 struct extent_buffer *cur;
2579 while (*level > 0) {
2580 struct btrfs_tree_parent_check check = { 0 };
2582 cur = path->nodes[*level];
2584 WARN_ON(btrfs_header_level(cur) != *level);
2586 if (path->slots[*level] >=
2587 btrfs_header_nritems(cur))
2590 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2591 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2592 check.transid = ptr_gen;
2593 check.level = *level - 1;
2594 check.has_first_key = true;
2595 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2596 blocksize = fs_info->nodesize;
2598 next = btrfs_find_create_tree_block(fs_info, bytenr,
2599 btrfs_header_owner(cur),
2602 return PTR_ERR(next);
2605 ret = wc->process_func(root, next, wc, ptr_gen,
2608 free_extent_buffer(next);
2612 path->slots[*level]++;
2614 ret = btrfs_read_extent_buffer(next, &check);
2616 free_extent_buffer(next);
2620 btrfs_tree_lock(next);
2621 btrfs_clear_buffer_dirty(trans, next);
2622 wait_on_extent_buffer_writeback(next);
2623 btrfs_tree_unlock(next);
2626 ret = btrfs_pin_reserved_extent(trans,
2629 free_extent_buffer(next);
2632 btrfs_redirty_list_add(
2633 trans->transaction, next);
2635 unaccount_log_buffer(fs_info, bytenr);
2638 free_extent_buffer(next);
2641 ret = btrfs_read_extent_buffer(next, &check);
2643 free_extent_buffer(next);
2647 if (path->nodes[*level-1])
2648 free_extent_buffer(path->nodes[*level-1]);
2649 path->nodes[*level-1] = next;
2650 *level = btrfs_header_level(next);
2651 path->slots[*level] = 0;
2654 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2660 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2661 struct btrfs_root *root,
2662 struct btrfs_path *path, int *level,
2663 struct walk_control *wc)
2665 struct btrfs_fs_info *fs_info = root->fs_info;
2670 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2671 slot = path->slots[i];
2672 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2675 WARN_ON(*level == 0);
2678 ret = wc->process_func(root, path->nodes[*level], wc,
2679 btrfs_header_generation(path->nodes[*level]),
2685 struct extent_buffer *next;
2687 next = path->nodes[*level];
2689 btrfs_tree_lock(next);
2690 btrfs_clear_buffer_dirty(trans, next);
2691 wait_on_extent_buffer_writeback(next);
2692 btrfs_tree_unlock(next);
2695 ret = btrfs_pin_reserved_extent(trans,
2696 path->nodes[*level]->start,
2697 path->nodes[*level]->len);
2700 btrfs_redirty_list_add(trans->transaction,
2703 unaccount_log_buffer(fs_info,
2704 path->nodes[*level]->start);
2707 free_extent_buffer(path->nodes[*level]);
2708 path->nodes[*level] = NULL;
2716 * drop the reference count on the tree rooted at 'snap'. This traverses
2717 * the tree freeing any blocks that have a ref count of zero after being
2720 static int walk_log_tree(struct btrfs_trans_handle *trans,
2721 struct btrfs_root *log, struct walk_control *wc)
2723 struct btrfs_fs_info *fs_info = log->fs_info;
2727 struct btrfs_path *path;
2730 path = btrfs_alloc_path();
2734 level = btrfs_header_level(log->node);
2736 path->nodes[level] = log->node;
2737 atomic_inc(&log->node->refs);
2738 path->slots[level] = 0;
2741 wret = walk_down_log_tree(trans, log, path, &level, wc);
2749 wret = walk_up_log_tree(trans, log, path, &level, wc);
2758 /* was the root node processed? if not, catch it here */
2759 if (path->nodes[orig_level]) {
2760 ret = wc->process_func(log, path->nodes[orig_level], wc,
2761 btrfs_header_generation(path->nodes[orig_level]),
2766 struct extent_buffer *next;
2768 next = path->nodes[orig_level];
2770 btrfs_tree_lock(next);
2771 btrfs_clear_buffer_dirty(trans, next);
2772 wait_on_extent_buffer_writeback(next);
2773 btrfs_tree_unlock(next);
2776 ret = btrfs_pin_reserved_extent(trans,
2777 next->start, next->len);
2780 btrfs_redirty_list_add(trans->transaction, next);
2782 unaccount_log_buffer(fs_info, next->start);
2788 btrfs_free_path(path);
2793 * helper function to update the item for a given subvolumes log root
2794 * in the tree of log roots
2796 static int update_log_root(struct btrfs_trans_handle *trans,
2797 struct btrfs_root *log,
2798 struct btrfs_root_item *root_item)
2800 struct btrfs_fs_info *fs_info = log->fs_info;
2803 if (log->log_transid == 1) {
2804 /* insert root item on the first sync */
2805 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2806 &log->root_key, root_item);
2808 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2809 &log->root_key, root_item);
2814 static void wait_log_commit(struct btrfs_root *root, int transid)
2817 int index = transid % 2;
2820 * we only allow two pending log transactions at a time,
2821 * so we know that if ours is more than 2 older than the
2822 * current transaction, we're done
2825 prepare_to_wait(&root->log_commit_wait[index],
2826 &wait, TASK_UNINTERRUPTIBLE);
2828 if (!(root->log_transid_committed < transid &&
2829 atomic_read(&root->log_commit[index])))
2832 mutex_unlock(&root->log_mutex);
2834 mutex_lock(&root->log_mutex);
2836 finish_wait(&root->log_commit_wait[index], &wait);
2839 static void wait_for_writer(struct btrfs_root *root)
2844 prepare_to_wait(&root->log_writer_wait, &wait,
2845 TASK_UNINTERRUPTIBLE);
2846 if (!atomic_read(&root->log_writers))
2849 mutex_unlock(&root->log_mutex);
2851 mutex_lock(&root->log_mutex);
2853 finish_wait(&root->log_writer_wait, &wait);
2856 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2857 struct btrfs_log_ctx *ctx)
2859 mutex_lock(&root->log_mutex);
2860 list_del_init(&ctx->list);
2861 mutex_unlock(&root->log_mutex);
2865 * Invoked in log mutex context, or be sure there is no other task which
2866 * can access the list.
2868 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2869 int index, int error)
2871 struct btrfs_log_ctx *ctx;
2872 struct btrfs_log_ctx *safe;
2874 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2875 list_del_init(&ctx->list);
2876 ctx->log_ret = error;
2881 * btrfs_sync_log does sends a given tree log down to the disk and
2882 * updates the super blocks to record it. When this call is done,
2883 * you know that any inodes previously logged are safely on disk only
2886 * Any other return value means you need to call btrfs_commit_transaction.
2887 * Some of the edge cases for fsyncing directories that have had unlinks
2888 * or renames done in the past mean that sometimes the only safe
2889 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2890 * that has happened.
2892 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2893 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2899 struct btrfs_fs_info *fs_info = root->fs_info;
2900 struct btrfs_root *log = root->log_root;
2901 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2902 struct btrfs_root_item new_root_item;
2903 int log_transid = 0;
2904 struct btrfs_log_ctx root_log_ctx;
2905 struct blk_plug plug;
2909 mutex_lock(&root->log_mutex);
2910 log_transid = ctx->log_transid;
2911 if (root->log_transid_committed >= log_transid) {
2912 mutex_unlock(&root->log_mutex);
2913 return ctx->log_ret;
2916 index1 = log_transid % 2;
2917 if (atomic_read(&root->log_commit[index1])) {
2918 wait_log_commit(root, log_transid);
2919 mutex_unlock(&root->log_mutex);
2920 return ctx->log_ret;
2922 ASSERT(log_transid == root->log_transid);
2923 atomic_set(&root->log_commit[index1], 1);
2925 /* wait for previous tree log sync to complete */
2926 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2927 wait_log_commit(root, log_transid - 1);
2930 int batch = atomic_read(&root->log_batch);
2931 /* when we're on an ssd, just kick the log commit out */
2932 if (!btrfs_test_opt(fs_info, SSD) &&
2933 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2934 mutex_unlock(&root->log_mutex);
2935 schedule_timeout_uninterruptible(1);
2936 mutex_lock(&root->log_mutex);
2938 wait_for_writer(root);
2939 if (batch == atomic_read(&root->log_batch))
2943 /* bail out if we need to do a full commit */
2944 if (btrfs_need_log_full_commit(trans)) {
2945 ret = BTRFS_LOG_FORCE_COMMIT;
2946 mutex_unlock(&root->log_mutex);
2950 if (log_transid % 2 == 0)
2951 mark = EXTENT_DIRTY;
2955 /* we start IO on all the marked extents here, but we don't actually
2956 * wait for them until later.
2958 blk_start_plug(&plug);
2959 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2961 * -EAGAIN happens when someone, e.g., a concurrent transaction
2962 * commit, writes a dirty extent in this tree-log commit. This
2963 * concurrent write will create a hole writing out the extents,
2964 * and we cannot proceed on a zoned filesystem, requiring
2965 * sequential writing. While we can bail out to a full commit
2966 * here, but we can continue hoping the concurrent writing fills
2969 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2972 blk_finish_plug(&plug);
2973 btrfs_set_log_full_commit(trans);
2974 mutex_unlock(&root->log_mutex);
2979 * We _must_ update under the root->log_mutex in order to make sure we
2980 * have a consistent view of the log root we are trying to commit at
2983 * We _must_ copy this into a local copy, because we are not holding the
2984 * log_root_tree->log_mutex yet. This is important because when we
2985 * commit the log_root_tree we must have a consistent view of the
2986 * log_root_tree when we update the super block to point at the
2987 * log_root_tree bytenr. If we update the log_root_tree here we'll race
2988 * with the commit and possibly point at the new block which we may not
2991 btrfs_set_root_node(&log->root_item, log->node);
2992 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
2994 root->log_transid++;
2995 log->log_transid = root->log_transid;
2996 root->log_start_pid = 0;
2998 * IO has been started, blocks of the log tree have WRITTEN flag set
2999 * in their headers. new modifications of the log will be written to
3000 * new positions. so it's safe to allow log writers to go in.
3002 mutex_unlock(&root->log_mutex);
3004 if (btrfs_is_zoned(fs_info)) {
3005 mutex_lock(&fs_info->tree_root->log_mutex);
3006 if (!log_root_tree->node) {
3007 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3009 mutex_unlock(&fs_info->tree_root->log_mutex);
3010 blk_finish_plug(&plug);
3014 mutex_unlock(&fs_info->tree_root->log_mutex);
3017 btrfs_init_log_ctx(&root_log_ctx, NULL);
3019 mutex_lock(&log_root_tree->log_mutex);
3021 index2 = log_root_tree->log_transid % 2;
3022 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3023 root_log_ctx.log_transid = log_root_tree->log_transid;
3026 * Now we are safe to update the log_root_tree because we're under the
3027 * log_mutex, and we're a current writer so we're holding the commit
3028 * open until we drop the log_mutex.
3030 ret = update_log_root(trans, log, &new_root_item);
3032 if (!list_empty(&root_log_ctx.list))
3033 list_del_init(&root_log_ctx.list);
3035 blk_finish_plug(&plug);
3036 btrfs_set_log_full_commit(trans);
3039 "failed to update log for root %llu ret %d",
3040 root->root_key.objectid, ret);
3041 btrfs_wait_tree_log_extents(log, mark);
3042 mutex_unlock(&log_root_tree->log_mutex);
3046 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3047 blk_finish_plug(&plug);
3048 list_del_init(&root_log_ctx.list);
3049 mutex_unlock(&log_root_tree->log_mutex);
3050 ret = root_log_ctx.log_ret;
3054 index2 = root_log_ctx.log_transid % 2;
3055 if (atomic_read(&log_root_tree->log_commit[index2])) {
3056 blk_finish_plug(&plug);
3057 ret = btrfs_wait_tree_log_extents(log, mark);
3058 wait_log_commit(log_root_tree,
3059 root_log_ctx.log_transid);
3060 mutex_unlock(&log_root_tree->log_mutex);
3062 ret = root_log_ctx.log_ret;
3065 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3066 atomic_set(&log_root_tree->log_commit[index2], 1);
3068 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3069 wait_log_commit(log_root_tree,
3070 root_log_ctx.log_transid - 1);
3074 * now that we've moved on to the tree of log tree roots,
3075 * check the full commit flag again
3077 if (btrfs_need_log_full_commit(trans)) {
3078 blk_finish_plug(&plug);
3079 btrfs_wait_tree_log_extents(log, mark);
3080 mutex_unlock(&log_root_tree->log_mutex);
3081 ret = BTRFS_LOG_FORCE_COMMIT;
3082 goto out_wake_log_root;
3085 ret = btrfs_write_marked_extents(fs_info,
3086 &log_root_tree->dirty_log_pages,
3087 EXTENT_DIRTY | EXTENT_NEW);
3088 blk_finish_plug(&plug);
3090 * As described above, -EAGAIN indicates a hole in the extents. We
3091 * cannot wait for these write outs since the waiting cause a
3092 * deadlock. Bail out to the full commit instead.
3094 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3095 btrfs_set_log_full_commit(trans);
3096 btrfs_wait_tree_log_extents(log, mark);
3097 mutex_unlock(&log_root_tree->log_mutex);
3098 goto out_wake_log_root;
3100 btrfs_set_log_full_commit(trans);
3101 mutex_unlock(&log_root_tree->log_mutex);
3102 goto out_wake_log_root;
3104 ret = btrfs_wait_tree_log_extents(log, mark);
3106 ret = btrfs_wait_tree_log_extents(log_root_tree,
3107 EXTENT_NEW | EXTENT_DIRTY);
3109 btrfs_set_log_full_commit(trans);
3110 mutex_unlock(&log_root_tree->log_mutex);
3111 goto out_wake_log_root;
3114 log_root_start = log_root_tree->node->start;
3115 log_root_level = btrfs_header_level(log_root_tree->node);
3116 log_root_tree->log_transid++;
3117 mutex_unlock(&log_root_tree->log_mutex);
3120 * Here we are guaranteed that nobody is going to write the superblock
3121 * for the current transaction before us and that neither we do write
3122 * our superblock before the previous transaction finishes its commit
3123 * and writes its superblock, because:
3125 * 1) We are holding a handle on the current transaction, so no body
3126 * can commit it until we release the handle;
3128 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3129 * if the previous transaction is still committing, and hasn't yet
3130 * written its superblock, we wait for it to do it, because a
3131 * transaction commit acquires the tree_log_mutex when the commit
3132 * begins and releases it only after writing its superblock.
3134 mutex_lock(&fs_info->tree_log_mutex);
3137 * The previous transaction writeout phase could have failed, and thus
3138 * marked the fs in an error state. We must not commit here, as we
3139 * could have updated our generation in the super_for_commit and
3140 * writing the super here would result in transid mismatches. If there
3141 * is an error here just bail.
3143 if (BTRFS_FS_ERROR(fs_info)) {
3145 btrfs_set_log_full_commit(trans);
3146 btrfs_abort_transaction(trans, ret);
3147 mutex_unlock(&fs_info->tree_log_mutex);
3148 goto out_wake_log_root;
3151 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3152 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3153 ret = write_all_supers(fs_info, 1);
3154 mutex_unlock(&fs_info->tree_log_mutex);
3156 btrfs_set_log_full_commit(trans);
3157 btrfs_abort_transaction(trans, ret);
3158 goto out_wake_log_root;
3162 * We know there can only be one task here, since we have not yet set
3163 * root->log_commit[index1] to 0 and any task attempting to sync the
3164 * log must wait for the previous log transaction to commit if it's
3165 * still in progress or wait for the current log transaction commit if
3166 * someone else already started it. We use <= and not < because the
3167 * first log transaction has an ID of 0.
3169 ASSERT(root->last_log_commit <= log_transid);
3170 root->last_log_commit = log_transid;
3173 mutex_lock(&log_root_tree->log_mutex);
3174 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3176 log_root_tree->log_transid_committed++;
3177 atomic_set(&log_root_tree->log_commit[index2], 0);
3178 mutex_unlock(&log_root_tree->log_mutex);
3181 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3182 * all the updates above are seen by the woken threads. It might not be
3183 * necessary, but proving that seems to be hard.
3185 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3187 mutex_lock(&root->log_mutex);
3188 btrfs_remove_all_log_ctxs(root, index1, ret);
3189 root->log_transid_committed++;
3190 atomic_set(&root->log_commit[index1], 0);
3191 mutex_unlock(&root->log_mutex);
3194 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3195 * all the updates above are seen by the woken threads. It might not be
3196 * necessary, but proving that seems to be hard.
3198 cond_wake_up(&root->log_commit_wait[index1]);
3202 static void free_log_tree(struct btrfs_trans_handle *trans,
3203 struct btrfs_root *log)
3206 struct walk_control wc = {
3208 .process_func = process_one_buffer
3212 ret = walk_log_tree(trans, log, &wc);
3215 * We weren't able to traverse the entire log tree, the
3216 * typical scenario is getting an -EIO when reading an
3217 * extent buffer of the tree, due to a previous writeback
3220 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3221 &log->fs_info->fs_state);
3224 * Some extent buffers of the log tree may still be dirty
3225 * and not yet written back to storage, because we may
3226 * have updates to a log tree without syncing a log tree,
3227 * such as during rename and link operations. So flush
3228 * them out and wait for their writeback to complete, so
3229 * that we properly cleanup their state and pages.
3231 btrfs_write_marked_extents(log->fs_info,
3232 &log->dirty_log_pages,
3233 EXTENT_DIRTY | EXTENT_NEW);
3234 btrfs_wait_tree_log_extents(log,
3235 EXTENT_DIRTY | EXTENT_NEW);
3238 btrfs_abort_transaction(trans, ret);
3240 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3244 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3245 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3246 extent_io_tree_release(&log->log_csum_range);
3248 btrfs_put_root(log);
3252 * free all the extents used by the tree log. This should be called
3253 * at commit time of the full transaction
3255 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3257 if (root->log_root) {
3258 free_log_tree(trans, root->log_root);
3259 root->log_root = NULL;
3260 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3265 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3266 struct btrfs_fs_info *fs_info)
3268 if (fs_info->log_root_tree) {
3269 free_log_tree(trans, fs_info->log_root_tree);
3270 fs_info->log_root_tree = NULL;
3271 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3277 * Check if an inode was logged in the current transaction. This correctly deals
3278 * with the case where the inode was logged but has a logged_trans of 0, which
3279 * happens if the inode is evicted and loaded again, as logged_trans is an in
3280 * memory only field (not persisted).
3282 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3285 static int inode_logged(struct btrfs_trans_handle *trans,
3286 struct btrfs_inode *inode,
3287 struct btrfs_path *path_in)
3289 struct btrfs_path *path = path_in;
3290 struct btrfs_key key;
3293 if (inode->logged_trans == trans->transid)
3297 * If logged_trans is not 0, then we know the inode logged was not logged
3298 * in this transaction, so we can return false right away.
3300 if (inode->logged_trans > 0)
3304 * If no log tree was created for this root in this transaction, then
3305 * the inode can not have been logged in this transaction. In that case
3306 * set logged_trans to anything greater than 0 and less than the current
3307 * transaction's ID, to avoid the search below in a future call in case
3308 * a log tree gets created after this.
3310 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3311 inode->logged_trans = trans->transid - 1;
3316 * We have a log tree and the inode's logged_trans is 0. We can't tell
3317 * for sure if the inode was logged before in this transaction by looking
3318 * only at logged_trans. We could be pessimistic and assume it was, but
3319 * that can lead to unnecessarily logging an inode during rename and link
3320 * operations, and then further updating the log in followup rename and
3321 * link operations, specially if it's a directory, which adds latency
3322 * visible to applications doing a series of rename or link operations.
3324 * A logged_trans of 0 here can mean several things:
3326 * 1) The inode was never logged since the filesystem was mounted, and may
3327 * or may have not been evicted and loaded again;
3329 * 2) The inode was logged in a previous transaction, then evicted and
3330 * then loaded again;
3332 * 3) The inode was logged in the current transaction, then evicted and
3333 * then loaded again.
3335 * For cases 1) and 2) we don't want to return true, but we need to detect
3336 * case 3) and return true. So we do a search in the log root for the inode
3339 key.objectid = btrfs_ino(inode);
3340 key.type = BTRFS_INODE_ITEM_KEY;
3344 path = btrfs_alloc_path();
3349 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3352 btrfs_release_path(path);
3354 btrfs_free_path(path);
3357 * Logging an inode always results in logging its inode item. So if we
3358 * did not find the item we know the inode was not logged for sure.
3362 } else if (ret > 0) {
3364 * Set logged_trans to a value greater than 0 and less then the
3365 * current transaction to avoid doing the search in future calls.
3367 inode->logged_trans = trans->transid - 1;
3372 * The inode was previously logged and then evicted, set logged_trans to
3373 * the current transacion's ID, to avoid future tree searches as long as
3374 * the inode is not evicted again.
3376 inode->logged_trans = trans->transid;
3379 * If it's a directory, then we must set last_dir_index_offset to the
3380 * maximum possible value, so that the next attempt to log the inode does
3381 * not skip checking if dir index keys found in modified subvolume tree
3382 * leaves have been logged before, otherwise it would result in attempts
3383 * to insert duplicate dir index keys in the log tree. This must be done
3384 * because last_dir_index_offset is an in-memory only field, not persisted
3385 * in the inode item or any other on-disk structure, so its value is lost
3386 * once the inode is evicted.
3388 if (S_ISDIR(inode->vfs_inode.i_mode))
3389 inode->last_dir_index_offset = (u64)-1;
3395 * Delete a directory entry from the log if it exists.
3397 * Returns < 0 on error
3398 * 1 if the entry does not exists
3399 * 0 if the entry existed and was successfully deleted
3401 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3402 struct btrfs_root *log,
3403 struct btrfs_path *path,
3405 const struct fscrypt_str *name,
3408 struct btrfs_dir_item *di;
3411 * We only log dir index items of a directory, so we don't need to look
3412 * for dir item keys.
3414 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3422 * We do not need to update the size field of the directory's
3423 * inode item because on log replay we update the field to reflect
3424 * all existing entries in the directory (see overwrite_item()).
3426 return btrfs_delete_one_dir_name(trans, log, path, di);
3430 * If both a file and directory are logged, and unlinks or renames are
3431 * mixed in, we have a few interesting corners:
3433 * create file X in dir Y
3434 * link file X to X.link in dir Y
3436 * unlink file X but leave X.link
3439 * After a crash we would expect only X.link to exist. But file X
3440 * didn't get fsync'd again so the log has back refs for X and X.link.
3442 * We solve this by removing directory entries and inode backrefs from the
3443 * log when a file that was logged in the current transaction is
3444 * unlinked. Any later fsync will include the updated log entries, and
3445 * we'll be able to reconstruct the proper directory items from backrefs.
3447 * This optimizations allows us to avoid relogging the entire inode
3448 * or the entire directory.
3450 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3451 struct btrfs_root *root,
3452 const struct fscrypt_str *name,
3453 struct btrfs_inode *dir, u64 index)
3455 struct btrfs_path *path;
3458 ret = inode_logged(trans, dir, NULL);
3462 btrfs_set_log_full_commit(trans);
3466 ret = join_running_log_trans(root);
3470 mutex_lock(&dir->log_mutex);
3472 path = btrfs_alloc_path();
3478 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3480 btrfs_free_path(path);
3482 mutex_unlock(&dir->log_mutex);
3484 btrfs_set_log_full_commit(trans);
3485 btrfs_end_log_trans(root);
3488 /* see comments for btrfs_del_dir_entries_in_log */
3489 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3490 struct btrfs_root *root,
3491 const struct fscrypt_str *name,
3492 struct btrfs_inode *inode, u64 dirid)
3494 struct btrfs_root *log;
3498 ret = inode_logged(trans, inode, NULL);
3502 btrfs_set_log_full_commit(trans);
3506 ret = join_running_log_trans(root);
3509 log = root->log_root;
3510 mutex_lock(&inode->log_mutex);
3512 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3514 mutex_unlock(&inode->log_mutex);
3515 if (ret < 0 && ret != -ENOENT)
3516 btrfs_set_log_full_commit(trans);
3517 btrfs_end_log_trans(root);
3521 * creates a range item in the log for 'dirid'. first_offset and
3522 * last_offset tell us which parts of the key space the log should
3523 * be considered authoritative for.
3525 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3526 struct btrfs_root *log,
3527 struct btrfs_path *path,
3529 u64 first_offset, u64 last_offset)
3532 struct btrfs_key key;
3533 struct btrfs_dir_log_item *item;
3535 key.objectid = dirid;
3536 key.offset = first_offset;
3537 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3538 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3540 * -EEXIST is fine and can happen sporadically when we are logging a
3541 * directory and have concurrent insertions in the subvolume's tree for
3542 * items from other inodes and that result in pushing off some dir items
3543 * from one leaf to another in order to accommodate for the new items.
3544 * This results in logging the same dir index range key.
3546 if (ret && ret != -EEXIST)
3549 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3550 struct btrfs_dir_log_item);
3551 if (ret == -EEXIST) {
3552 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3555 * btrfs_del_dir_entries_in_log() might have been called during
3556 * an unlink between the initial insertion of this key and the
3557 * current update, or we might be logging a single entry deletion
3558 * during a rename, so set the new last_offset to the max value.
3560 last_offset = max(last_offset, curr_end);
3562 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3563 btrfs_mark_buffer_dirty(path->nodes[0]);
3564 btrfs_release_path(path);
3568 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3569 struct btrfs_inode *inode,
3570 struct extent_buffer *src,
3571 struct btrfs_path *dst_path,
3575 struct btrfs_root *log = inode->root->log_root;
3576 char *ins_data = NULL;
3577 struct btrfs_item_batch batch;
3578 struct extent_buffer *dst;
3579 unsigned long src_offset;
3580 unsigned long dst_offset;
3582 struct btrfs_key key;
3591 btrfs_item_key_to_cpu(src, &key, start_slot);
3592 item_size = btrfs_item_size(src, start_slot);
3594 batch.data_sizes = &item_size;
3595 batch.total_data_size = item_size;
3597 struct btrfs_key *ins_keys;
3600 ins_data = kmalloc(count * sizeof(u32) +
3601 count * sizeof(struct btrfs_key), GFP_NOFS);
3605 ins_sizes = (u32 *)ins_data;
3606 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3607 batch.keys = ins_keys;
3608 batch.data_sizes = ins_sizes;
3609 batch.total_data_size = 0;
3611 for (i = 0; i < count; i++) {
3612 const int slot = start_slot + i;
3614 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3615 ins_sizes[i] = btrfs_item_size(src, slot);
3616 batch.total_data_size += ins_sizes[i];
3620 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3624 dst = dst_path->nodes[0];
3626 * Copy all the items in bulk, in a single copy operation. Item data is
3627 * organized such that it's placed at the end of a leaf and from right
3628 * to left. For example, the data for the second item ends at an offset
3629 * that matches the offset where the data for the first item starts, the
3630 * data for the third item ends at an offset that matches the offset
3631 * where the data of the second items starts, and so on.
3632 * Therefore our source and destination start offsets for copy match the
3633 * offsets of the last items (highest slots).
3635 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3636 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3637 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3638 btrfs_release_path(dst_path);
3640 last_index = batch.keys[count - 1].offset;
3641 ASSERT(last_index > inode->last_dir_index_offset);
3644 * If for some unexpected reason the last item's index is not greater
3645 * than the last index we logged, warn and force a transaction commit.
3647 if (WARN_ON(last_index <= inode->last_dir_index_offset))
3648 ret = BTRFS_LOG_FORCE_COMMIT;
3650 inode->last_dir_index_offset = last_index;
3657 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3658 struct btrfs_inode *inode,
3659 struct btrfs_path *path,
3660 struct btrfs_path *dst_path,
3661 struct btrfs_log_ctx *ctx,
3662 u64 *last_old_dentry_offset)
3664 struct btrfs_root *log = inode->root->log_root;
3665 struct extent_buffer *src;
3666 const int nritems = btrfs_header_nritems(path->nodes[0]);
3667 const u64 ino = btrfs_ino(inode);
3668 bool last_found = false;
3669 int batch_start = 0;
3674 * We need to clone the leaf, release the read lock on it, and use the
3675 * clone before modifying the log tree. See the comment at copy_items()
3676 * about why we need to do this.
3678 src = btrfs_clone_extent_buffer(path->nodes[0]);
3683 btrfs_release_path(path);
3684 path->nodes[0] = src;
3687 for (; i < nritems; i++) {
3688 struct btrfs_dir_item *di;
3689 struct btrfs_key key;
3692 btrfs_item_key_to_cpu(src, &key, i);
3694 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3699 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3702 * Skip ranges of items that consist only of dir item keys created
3703 * in past transactions. However if we find a gap, we must log a
3704 * dir index range item for that gap, so that index keys in that
3705 * gap are deleted during log replay.
3707 if (btrfs_dir_transid(src, di) < trans->transid) {
3708 if (key.offset > *last_old_dentry_offset + 1) {
3709 ret = insert_dir_log_key(trans, log, dst_path,
3710 ino, *last_old_dentry_offset + 1,
3716 *last_old_dentry_offset = key.offset;
3720 /* If we logged this dir index item before, we can skip it. */
3721 if (key.offset <= inode->last_dir_index_offset)
3725 * We must make sure that when we log a directory entry, the
3726 * corresponding inode, after log replay, has a matching link
3727 * count. For example:
3733 * xfs_io -c "fsync" mydir
3735 * <mount fs and log replay>
3737 * Would result in a fsync log that when replayed, our file inode
3738 * would have a link count of 1, but we get two directory entries
3739 * pointing to the same inode. After removing one of the names,
3740 * it would not be possible to remove the other name, which
3741 * resulted always in stale file handle errors, and would not be
3742 * possible to rmdir the parent directory, since its i_size could
3743 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3744 * resulting in -ENOTEMPTY errors.
3746 if (!ctx->log_new_dentries) {
3747 struct btrfs_key di_key;
3749 btrfs_dir_item_key_to_cpu(src, di, &di_key);
3750 if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3751 ctx->log_new_dentries = true;
3754 if (batch_size == 0)
3759 if (batch_size > 0) {
3762 ret = flush_dir_items_batch(trans, inode, src, dst_path,
3763 batch_start, batch_size);
3768 return last_found ? 1 : 0;
3772 * log all the items included in the current transaction for a given
3773 * directory. This also creates the range items in the log tree required
3774 * to replay anything deleted before the fsync
3776 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3777 struct btrfs_inode *inode,
3778 struct btrfs_path *path,
3779 struct btrfs_path *dst_path,
3780 struct btrfs_log_ctx *ctx,
3781 u64 min_offset, u64 *last_offset_ret)
3783 struct btrfs_key min_key;
3784 struct btrfs_root *root = inode->root;
3785 struct btrfs_root *log = root->log_root;
3787 u64 last_old_dentry_offset = min_offset - 1;
3788 u64 last_offset = (u64)-1;
3789 u64 ino = btrfs_ino(inode);
3791 min_key.objectid = ino;
3792 min_key.type = BTRFS_DIR_INDEX_KEY;
3793 min_key.offset = min_offset;
3795 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3798 * we didn't find anything from this transaction, see if there
3799 * is anything at all
3801 if (ret != 0 || min_key.objectid != ino ||
3802 min_key.type != BTRFS_DIR_INDEX_KEY) {
3803 min_key.objectid = ino;
3804 min_key.type = BTRFS_DIR_INDEX_KEY;
3805 min_key.offset = (u64)-1;
3806 btrfs_release_path(path);
3807 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3809 btrfs_release_path(path);
3812 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3814 /* if ret == 0 there are items for this type,
3815 * create a range to tell us the last key of this type.
3816 * otherwise, there are no items in this directory after
3817 * *min_offset, and we create a range to indicate that.
3820 struct btrfs_key tmp;
3822 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3824 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3825 last_old_dentry_offset = tmp.offset;
3826 } else if (ret > 0) {
3833 /* go backward to find any previous key */
3834 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3836 struct btrfs_key tmp;
3838 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3840 * The dir index key before the first one we found that needs to
3841 * be logged might be in a previous leaf, and there might be a
3842 * gap between these keys, meaning that we had deletions that
3843 * happened. So the key range item we log (key type
3844 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3845 * previous key's offset plus 1, so that those deletes are replayed.
3847 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3848 last_old_dentry_offset = tmp.offset;
3849 } else if (ret < 0) {
3853 btrfs_release_path(path);
3856 * Find the first key from this transaction again or the one we were at
3857 * in the loop below in case we had to reschedule. We may be logging the
3858 * directory without holding its VFS lock, which happen when logging new
3859 * dentries (through log_new_dir_dentries()) or in some cases when we
3860 * need to log the parent directory of an inode. This means a dir index
3861 * key might be deleted from the inode's root, and therefore we may not
3862 * find it anymore. If we can't find it, just move to the next key. We
3863 * can not bail out and ignore, because if we do that we will simply
3864 * not log dir index keys that come after the one that was just deleted
3865 * and we can end up logging a dir index range that ends at (u64)-1
3866 * (@last_offset is initialized to that), resulting in removing dir
3867 * entries we should not remove at log replay time.
3870 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3872 ret = btrfs_next_item(root, path);
3874 /* There are no more keys in the inode's root. */
3883 * we have a block from this transaction, log every item in it
3884 * from our directory
3887 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3888 &last_old_dentry_offset);
3894 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3897 * look ahead to the next item and see if it is also
3898 * from this directory and from this transaction
3900 ret = btrfs_next_leaf(root, path);
3903 last_offset = (u64)-1;
3908 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3909 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3910 last_offset = (u64)-1;
3913 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3915 * The next leaf was not changed in the current transaction
3916 * and has at least one dir index key.
3917 * We check for the next key because there might have been
3918 * one or more deletions between the last key we logged and
3919 * that next key. So the key range item we log (key type
3920 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3921 * offset minus 1, so that those deletes are replayed.
3923 last_offset = min_key.offset - 1;
3926 if (need_resched()) {
3927 btrfs_release_path(path);
3933 btrfs_release_path(path);
3934 btrfs_release_path(dst_path);
3937 *last_offset_ret = last_offset;
3939 * In case the leaf was changed in the current transaction but
3940 * all its dir items are from a past transaction, the last item
3941 * in the leaf is a dir item and there's no gap between that last
3942 * dir item and the first one on the next leaf (which did not
3943 * change in the current transaction), then we don't need to log
3944 * a range, last_old_dentry_offset is == to last_offset.
3946 ASSERT(last_old_dentry_offset <= last_offset);
3947 if (last_old_dentry_offset < last_offset)
3948 ret = insert_dir_log_key(trans, log, path, ino,
3949 last_old_dentry_offset + 1,
3957 * If the inode was logged before and it was evicted, then its
3958 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3959 * key offset. If that's the case, search for it and update the inode. This
3960 * is to avoid lookups in the log tree every time we try to insert a dir index
3961 * key from a leaf changed in the current transaction, and to allow us to always
3962 * do batch insertions of dir index keys.
3964 static int update_last_dir_index_offset(struct btrfs_inode *inode,
3965 struct btrfs_path *path,
3966 const struct btrfs_log_ctx *ctx)
3968 const u64 ino = btrfs_ino(inode);
3969 struct btrfs_key key;
3972 lockdep_assert_held(&inode->log_mutex);
3974 if (inode->last_dir_index_offset != (u64)-1)
3977 if (!ctx->logged_before) {
3978 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3983 key.type = BTRFS_DIR_INDEX_KEY;
3984 key.offset = (u64)-1;
3986 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3988 * An error happened or we actually have an index key with an offset
3989 * value of (u64)-1. Bail out, we're done.
3995 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3998 * No dir index items, bail out and leave last_dir_index_offset with
3999 * the value right before the first valid index value.
4001 if (path->slots[0] == 0)
4005 * btrfs_search_slot() left us at one slot beyond the slot with the last
4006 * index key, or beyond the last key of the directory that is not an
4007 * index key. If we have an index key before, set last_dir_index_offset
4008 * to its offset value, otherwise leave it with a value right before the
4009 * first valid index value, as it means we have an empty directory.
4011 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4012 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4013 inode->last_dir_index_offset = key.offset;
4016 btrfs_release_path(path);
4022 * logging directories is very similar to logging inodes, We find all the items
4023 * from the current transaction and write them to the log.
4025 * The recovery code scans the directory in the subvolume, and if it finds a
4026 * key in the range logged that is not present in the log tree, then it means
4027 * that dir entry was unlinked during the transaction.
4029 * In order for that scan to work, we must include one key smaller than
4030 * the smallest logged by this transaction and one key larger than the largest
4031 * key logged by this transaction.
4033 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4034 struct btrfs_inode *inode,
4035 struct btrfs_path *path,
4036 struct btrfs_path *dst_path,
4037 struct btrfs_log_ctx *ctx)
4043 ret = update_last_dir_index_offset(inode, path, ctx);
4047 min_key = BTRFS_DIR_START_INDEX;
4051 ret = log_dir_items(trans, inode, path, dst_path,
4052 ctx, min_key, &max_key);
4055 if (max_key == (u64)-1)
4057 min_key = max_key + 1;
4064 * a helper function to drop items from the log before we relog an
4065 * inode. max_key_type indicates the highest item type to remove.
4066 * This cannot be run for file data extents because it does not
4067 * free the extents they point to.
4069 static int drop_inode_items(struct btrfs_trans_handle *trans,
4070 struct btrfs_root *log,
4071 struct btrfs_path *path,
4072 struct btrfs_inode *inode,
4076 struct btrfs_key key;
4077 struct btrfs_key found_key;
4080 key.objectid = btrfs_ino(inode);
4081 key.type = max_key_type;
4082 key.offset = (u64)-1;
4085 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4086 BUG_ON(ret == 0); /* Logic error */
4090 if (path->slots[0] == 0)
4094 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4097 if (found_key.objectid != key.objectid)
4100 found_key.offset = 0;
4102 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
4106 ret = btrfs_del_items(trans, log, path, start_slot,
4107 path->slots[0] - start_slot + 1);
4109 * If start slot isn't 0 then we don't need to re-search, we've
4110 * found the last guy with the objectid in this tree.
4112 if (ret || start_slot != 0)
4114 btrfs_release_path(path);
4116 btrfs_release_path(path);
4122 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4123 struct btrfs_root *log_root,
4124 struct btrfs_inode *inode,
4125 u64 new_size, u32 min_type)
4127 struct btrfs_truncate_control control = {
4128 .new_size = new_size,
4129 .ino = btrfs_ino(inode),
4130 .min_type = min_type,
4131 .skip_ref_updates = true,
4134 return btrfs_truncate_inode_items(trans, log_root, &control);
4137 static void fill_inode_item(struct btrfs_trans_handle *trans,
4138 struct extent_buffer *leaf,
4139 struct btrfs_inode_item *item,
4140 struct inode *inode, int log_inode_only,
4143 struct btrfs_map_token token;
4146 btrfs_init_map_token(&token, leaf);
4148 if (log_inode_only) {
4149 /* set the generation to zero so the recover code
4150 * can tell the difference between an logging
4151 * just to say 'this inode exists' and a logging
4152 * to say 'update this inode with these values'
4154 btrfs_set_token_inode_generation(&token, item, 0);
4155 btrfs_set_token_inode_size(&token, item, logged_isize);
4157 btrfs_set_token_inode_generation(&token, item,
4158 BTRFS_I(inode)->generation);
4159 btrfs_set_token_inode_size(&token, item, inode->i_size);
4162 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4163 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4164 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4165 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4167 btrfs_set_token_timespec_sec(&token, &item->atime,
4168 inode->i_atime.tv_sec);
4169 btrfs_set_token_timespec_nsec(&token, &item->atime,
4170 inode->i_atime.tv_nsec);
4172 btrfs_set_token_timespec_sec(&token, &item->mtime,
4173 inode->i_mtime.tv_sec);
4174 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4175 inode->i_mtime.tv_nsec);
4177 btrfs_set_token_timespec_sec(&token, &item->ctime,
4178 inode->i_ctime.tv_sec);
4179 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4180 inode->i_ctime.tv_nsec);
4183 * We do not need to set the nbytes field, in fact during a fast fsync
4184 * its value may not even be correct, since a fast fsync does not wait
4185 * for ordered extent completion, which is where we update nbytes, it
4186 * only waits for writeback to complete. During log replay as we find
4187 * file extent items and replay them, we adjust the nbytes field of the
4188 * inode item in subvolume tree as needed (see overwrite_item()).
4191 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4192 btrfs_set_token_inode_transid(&token, item, trans->transid);
4193 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4194 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4195 BTRFS_I(inode)->ro_flags);
4196 btrfs_set_token_inode_flags(&token, item, flags);
4197 btrfs_set_token_inode_block_group(&token, item, 0);
4200 static int log_inode_item(struct btrfs_trans_handle *trans,
4201 struct btrfs_root *log, struct btrfs_path *path,
4202 struct btrfs_inode *inode, bool inode_item_dropped)
4204 struct btrfs_inode_item *inode_item;
4208 * If we are doing a fast fsync and the inode was logged before in the
4209 * current transaction, then we know the inode was previously logged and
4210 * it exists in the log tree. For performance reasons, in this case use
4211 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4212 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4213 * contention in case there are concurrent fsyncs for other inodes of the
4214 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4215 * already exists can also result in unnecessarily splitting a leaf.
4217 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4218 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4224 * This means it is the first fsync in the current transaction,
4225 * so the inode item is not in the log and we need to insert it.
4226 * We can never get -EEXIST because we are only called for a fast
4227 * fsync and in case an inode eviction happens after the inode was
4228 * logged before in the current transaction, when we load again
4229 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4230 * flags and set ->logged_trans to 0.
4232 ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4233 sizeof(*inode_item));
4234 ASSERT(ret != -EEXIST);
4238 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4239 struct btrfs_inode_item);
4240 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4242 btrfs_release_path(path);
4246 static int log_csums(struct btrfs_trans_handle *trans,
4247 struct btrfs_inode *inode,
4248 struct btrfs_root *log_root,
4249 struct btrfs_ordered_sum *sums)
4251 const u64 lock_end = sums->bytenr + sums->len - 1;
4252 struct extent_state *cached_state = NULL;
4256 * If this inode was not used for reflink operations in the current
4257 * transaction with new extents, then do the fast path, no need to
4258 * worry about logging checksum items with overlapping ranges.
4260 if (inode->last_reflink_trans < trans->transid)
4261 return btrfs_csum_file_blocks(trans, log_root, sums);
4264 * Serialize logging for checksums. This is to avoid racing with the
4265 * same checksum being logged by another task that is logging another
4266 * file which happens to refer to the same extent as well. Such races
4267 * can leave checksum items in the log with overlapping ranges.
4269 ret = lock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4274 * Due to extent cloning, we might have logged a csum item that covers a
4275 * subrange of a cloned extent, and later we can end up logging a csum
4276 * item for a larger subrange of the same extent or the entire range.
4277 * This would leave csum items in the log tree that cover the same range
4278 * and break the searches for checksums in the log tree, resulting in
4279 * some checksums missing in the fs/subvolume tree. So just delete (or
4280 * trim and adjust) any existing csum items in the log for this range.
4282 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4284 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4286 unlock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4292 static noinline int copy_items(struct btrfs_trans_handle *trans,
4293 struct btrfs_inode *inode,
4294 struct btrfs_path *dst_path,
4295 struct btrfs_path *src_path,
4296 int start_slot, int nr, int inode_only,
4299 struct btrfs_root *log = inode->root->log_root;
4300 struct btrfs_file_extent_item *extent;
4301 struct extent_buffer *src;
4303 struct btrfs_key *ins_keys;
4305 struct btrfs_item_batch batch;
4309 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4310 const u64 i_size = i_size_read(&inode->vfs_inode);
4313 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4314 * use the clone. This is because otherwise we would be changing the log
4315 * tree, to insert items from the subvolume tree or insert csum items,
4316 * while holding a read lock on a leaf from the subvolume tree, which
4317 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4319 * 1) Modifying the log tree triggers an extent buffer allocation while
4320 * holding a write lock on a parent extent buffer from the log tree.
4321 * Allocating the pages for an extent buffer, or the extent buffer
4322 * struct, can trigger inode eviction and finally the inode eviction
4323 * will trigger a release/remove of a delayed node, which requires
4324 * taking the delayed node's mutex;
4326 * 2) Allocating a metadata extent for a log tree can trigger the async
4327 * reclaim thread and make us wait for it to release enough space and
4328 * unblock our reservation ticket. The reclaim thread can start
4329 * flushing delayed items, and that in turn results in the need to
4330 * lock delayed node mutexes and in the need to write lock extent
4331 * buffers of a subvolume tree - all this while holding a write lock
4332 * on the parent extent buffer in the log tree.
4334 * So one task in scenario 1) running in parallel with another task in
4335 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4336 * node mutex while having a read lock on a leaf from the subvolume,
4337 * while the other is holding the delayed node's mutex and wants to
4338 * write lock the same subvolume leaf for flushing delayed items.
4340 src = btrfs_clone_extent_buffer(src_path->nodes[0]);
4344 i = src_path->slots[0];
4345 btrfs_release_path(src_path);
4346 src_path->nodes[0] = src;
4347 src_path->slots[0] = i;
4349 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4350 nr * sizeof(u32), GFP_NOFS);
4354 ins_sizes = (u32 *)ins_data;
4355 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4356 batch.keys = ins_keys;
4357 batch.data_sizes = ins_sizes;
4358 batch.total_data_size = 0;
4362 for (i = 0; i < nr; i++) {
4363 const int src_slot = start_slot + i;
4364 struct btrfs_root *csum_root;
4365 struct btrfs_ordered_sum *sums;
4366 struct btrfs_ordered_sum *sums_next;
4367 LIST_HEAD(ordered_sums);
4371 u64 extent_num_bytes;
4374 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4376 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4379 extent = btrfs_item_ptr(src, src_slot,
4380 struct btrfs_file_extent_item);
4382 is_old_extent = (btrfs_file_extent_generation(src, extent) <
4386 * Don't copy extents from past generations. That would make us
4387 * log a lot more metadata for common cases like doing only a
4388 * few random writes into a file and then fsync it for the first
4389 * time or after the full sync flag is set on the inode. We can
4390 * get leaves full of extent items, most of which are from past
4391 * generations, so we can skip them - as long as the inode has
4392 * not been the target of a reflink operation in this transaction,
4393 * as in that case it might have had file extent items with old
4394 * generations copied into it. We also must always log prealloc
4395 * extents that start at or beyond eof, otherwise we would lose
4396 * them on log replay.
4398 if (is_old_extent &&
4399 ins_keys[dst_index].offset < i_size &&
4400 inode->last_reflink_trans < trans->transid)
4406 /* Only regular extents have checksums. */
4407 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4411 * If it's an extent created in a past transaction, then its
4412 * checksums are already accessible from the committed csum tree,
4413 * no need to log them.
4418 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4419 /* If it's an explicit hole, there are no checksums. */
4420 if (disk_bytenr == 0)
4423 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4425 if (btrfs_file_extent_compression(src, extent)) {
4427 extent_num_bytes = disk_num_bytes;
4429 extent_offset = btrfs_file_extent_offset(src, extent);
4430 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4433 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4434 disk_bytenr += extent_offset;
4435 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4436 disk_bytenr + extent_num_bytes - 1,
4437 &ordered_sums, 0, false);
4441 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4443 ret = log_csums(trans, inode, log, sums);
4444 list_del(&sums->list);
4451 ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4452 batch.total_data_size += ins_sizes[dst_index];
4458 * We have a leaf full of old extent items that don't need to be logged,
4459 * so we don't need to do anything.
4464 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4469 for (i = 0; i < nr; i++) {
4470 const int src_slot = start_slot + i;
4471 const int dst_slot = dst_path->slots[0] + dst_index;
4472 struct btrfs_key key;
4473 unsigned long src_offset;
4474 unsigned long dst_offset;
4477 * We're done, all the remaining items in the source leaf
4478 * correspond to old file extent items.
4480 if (dst_index >= batch.nr)
4483 btrfs_item_key_to_cpu(src, &key, src_slot);
4485 if (key.type != BTRFS_EXTENT_DATA_KEY)
4488 extent = btrfs_item_ptr(src, src_slot,
4489 struct btrfs_file_extent_item);
4491 /* See the comment in the previous loop, same logic. */
4492 if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4493 key.offset < i_size &&
4494 inode->last_reflink_trans < trans->transid)
4498 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4499 src_offset = btrfs_item_ptr_offset(src, src_slot);
4501 if (key.type == BTRFS_INODE_ITEM_KEY) {
4502 struct btrfs_inode_item *inode_item;
4504 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4505 struct btrfs_inode_item);
4506 fill_inode_item(trans, dst_path->nodes[0], inode_item,
4508 inode_only == LOG_INODE_EXISTS,
4511 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4512 src_offset, ins_sizes[dst_index]);
4518 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4519 btrfs_release_path(dst_path);
4526 static int extent_cmp(void *priv, const struct list_head *a,
4527 const struct list_head *b)
4529 const struct extent_map *em1, *em2;
4531 em1 = list_entry(a, struct extent_map, list);
4532 em2 = list_entry(b, struct extent_map, list);
4534 if (em1->start < em2->start)
4536 else if (em1->start > em2->start)
4541 static int log_extent_csums(struct btrfs_trans_handle *trans,
4542 struct btrfs_inode *inode,
4543 struct btrfs_root *log_root,
4544 const struct extent_map *em,
4545 struct btrfs_log_ctx *ctx)
4547 struct btrfs_ordered_extent *ordered;
4548 struct btrfs_root *csum_root;
4551 u64 mod_start = em->mod_start;
4552 u64 mod_len = em->mod_len;
4553 LIST_HEAD(ordered_sums);
4556 if (inode->flags & BTRFS_INODE_NODATASUM ||
4557 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4558 em->block_start == EXTENT_MAP_HOLE)
4561 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4562 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4563 const u64 mod_end = mod_start + mod_len;
4564 struct btrfs_ordered_sum *sums;
4569 if (ordered_end <= mod_start)
4571 if (mod_end <= ordered->file_offset)
4575 * We are going to copy all the csums on this ordered extent, so
4576 * go ahead and adjust mod_start and mod_len in case this ordered
4577 * extent has already been logged.
4579 if (ordered->file_offset > mod_start) {
4580 if (ordered_end >= mod_end)
4581 mod_len = ordered->file_offset - mod_start;
4583 * If we have this case
4585 * |--------- logged extent ---------|
4586 * |----- ordered extent ----|
4588 * Just don't mess with mod_start and mod_len, we'll
4589 * just end up logging more csums than we need and it
4593 if (ordered_end < mod_end) {
4594 mod_len = mod_end - ordered_end;
4595 mod_start = ordered_end;
4602 * To keep us from looping for the above case of an ordered
4603 * extent that falls inside of the logged extent.
4605 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4608 list_for_each_entry(sums, &ordered->list, list) {
4609 ret = log_csums(trans, inode, log_root, sums);
4615 /* We're done, found all csums in the ordered extents. */
4619 /* If we're compressed we have to save the entire range of csums. */
4620 if (em->compress_type) {
4622 csum_len = max(em->block_len, em->orig_block_len);
4624 csum_offset = mod_start - em->start;
4628 /* block start is already adjusted for the file extent offset. */
4629 csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4630 ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset,
4631 em->block_start + csum_offset +
4632 csum_len - 1, &ordered_sums, 0, false);
4636 while (!list_empty(&ordered_sums)) {
4637 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4638 struct btrfs_ordered_sum,
4641 ret = log_csums(trans, inode, log_root, sums);
4642 list_del(&sums->list);
4649 static int log_one_extent(struct btrfs_trans_handle *trans,
4650 struct btrfs_inode *inode,
4651 const struct extent_map *em,
4652 struct btrfs_path *path,
4653 struct btrfs_log_ctx *ctx)
4655 struct btrfs_drop_extents_args drop_args = { 0 };
4656 struct btrfs_root *log = inode->root->log_root;
4657 struct btrfs_file_extent_item fi = { 0 };
4658 struct extent_buffer *leaf;
4659 struct btrfs_key key;
4660 u64 extent_offset = em->start - em->orig_start;
4664 btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4665 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4666 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4668 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4670 block_len = max(em->block_len, em->orig_block_len);
4671 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4672 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4673 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4674 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4675 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4677 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4680 btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4681 btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4682 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4683 btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4685 ret = log_extent_csums(trans, inode, log, em, ctx);
4690 * If this is the first time we are logging the inode in the current
4691 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4692 * because it does a deletion search, which always acquires write locks
4693 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4694 * but also adds significant contention in a log tree, since log trees
4695 * are small, with a root at level 2 or 3 at most, due to their short
4698 if (ctx->logged_before) {
4699 drop_args.path = path;
4700 drop_args.start = em->start;
4701 drop_args.end = em->start + em->len;
4702 drop_args.replace_extent = true;
4703 drop_args.extent_item_size = sizeof(fi);
4704 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4709 if (!drop_args.extent_inserted) {
4710 key.objectid = btrfs_ino(inode);
4711 key.type = BTRFS_EXTENT_DATA_KEY;
4712 key.offset = em->start;
4714 ret = btrfs_insert_empty_item(trans, log, path, &key,
4719 leaf = path->nodes[0];
4720 write_extent_buffer(leaf, &fi,
4721 btrfs_item_ptr_offset(leaf, path->slots[0]),
4723 btrfs_mark_buffer_dirty(leaf);
4725 btrfs_release_path(path);
4731 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4732 * lose them after doing a full/fast fsync and replaying the log. We scan the
4733 * subvolume's root instead of iterating the inode's extent map tree because
4734 * otherwise we can log incorrect extent items based on extent map conversion.
4735 * That can happen due to the fact that extent maps are merged when they
4736 * are not in the extent map tree's list of modified extents.
4738 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4739 struct btrfs_inode *inode,
4740 struct btrfs_path *path)
4742 struct btrfs_root *root = inode->root;
4743 struct btrfs_key key;
4744 const u64 i_size = i_size_read(&inode->vfs_inode);
4745 const u64 ino = btrfs_ino(inode);
4746 struct btrfs_path *dst_path = NULL;
4747 bool dropped_extents = false;
4748 u64 truncate_offset = i_size;
4749 struct extent_buffer *leaf;
4755 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4759 key.type = BTRFS_EXTENT_DATA_KEY;
4760 key.offset = i_size;
4761 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4766 * We must check if there is a prealloc extent that starts before the
4767 * i_size and crosses the i_size boundary. This is to ensure later we
4768 * truncate down to the end of that extent and not to the i_size, as
4769 * otherwise we end up losing part of the prealloc extent after a log
4770 * replay and with an implicit hole if there is another prealloc extent
4771 * that starts at an offset beyond i_size.
4773 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4778 struct btrfs_file_extent_item *ei;
4780 leaf = path->nodes[0];
4781 slot = path->slots[0];
4782 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4784 if (btrfs_file_extent_type(leaf, ei) ==
4785 BTRFS_FILE_EXTENT_PREALLOC) {
4788 btrfs_item_key_to_cpu(leaf, &key, slot);
4789 extent_end = key.offset +
4790 btrfs_file_extent_num_bytes(leaf, ei);
4792 if (extent_end > i_size)
4793 truncate_offset = extent_end;
4800 leaf = path->nodes[0];
4801 slot = path->slots[0];
4803 if (slot >= btrfs_header_nritems(leaf)) {
4805 ret = copy_items(trans, inode, dst_path, path,
4806 start_slot, ins_nr, 1, 0);
4811 ret = btrfs_next_leaf(root, path);
4821 btrfs_item_key_to_cpu(leaf, &key, slot);
4822 if (key.objectid > ino)
4824 if (WARN_ON_ONCE(key.objectid < ino) ||
4825 key.type < BTRFS_EXTENT_DATA_KEY ||
4826 key.offset < i_size) {
4830 if (!dropped_extents) {
4832 * Avoid logging extent items logged in past fsync calls
4833 * and leading to duplicate keys in the log tree.
4835 ret = truncate_inode_items(trans, root->log_root, inode,
4837 BTRFS_EXTENT_DATA_KEY);
4840 dropped_extents = true;
4847 dst_path = btrfs_alloc_path();
4855 ret = copy_items(trans, inode, dst_path, path,
4856 start_slot, ins_nr, 1, 0);
4858 btrfs_release_path(path);
4859 btrfs_free_path(dst_path);
4863 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4864 struct btrfs_inode *inode,
4865 struct btrfs_path *path,
4866 struct btrfs_log_ctx *ctx)
4868 struct btrfs_ordered_extent *ordered;
4869 struct btrfs_ordered_extent *tmp;
4870 struct extent_map *em, *n;
4871 struct list_head extents;
4872 struct extent_map_tree *tree = &inode->extent_tree;
4876 INIT_LIST_HEAD(&extents);
4878 write_lock(&tree->lock);
4880 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4881 list_del_init(&em->list);
4883 * Just an arbitrary number, this can be really CPU intensive
4884 * once we start getting a lot of extents, and really once we
4885 * have a bunch of extents we just want to commit since it will
4888 if (++num > 32768) {
4889 list_del_init(&tree->modified_extents);
4894 if (em->generation < trans->transid)
4897 /* We log prealloc extents beyond eof later. */
4898 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4899 em->start >= i_size_read(&inode->vfs_inode))
4902 /* Need a ref to keep it from getting evicted from cache */
4903 refcount_inc(&em->refs);
4904 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4905 list_add_tail(&em->list, &extents);
4909 list_sort(NULL, &extents, extent_cmp);
4911 while (!list_empty(&extents)) {
4912 em = list_entry(extents.next, struct extent_map, list);
4914 list_del_init(&em->list);
4917 * If we had an error we just need to delete everybody from our
4921 clear_em_logging(tree, em);
4922 free_extent_map(em);
4926 write_unlock(&tree->lock);
4928 ret = log_one_extent(trans, inode, em, path, ctx);
4929 write_lock(&tree->lock);
4930 clear_em_logging(tree, em);
4931 free_extent_map(em);
4933 WARN_ON(!list_empty(&extents));
4934 write_unlock(&tree->lock);
4937 ret = btrfs_log_prealloc_extents(trans, inode, path);
4942 * We have logged all extents successfully, now make sure the commit of
4943 * the current transaction waits for the ordered extents to complete
4944 * before it commits and wipes out the log trees, otherwise we would
4945 * lose data if an ordered extents completes after the transaction
4946 * commits and a power failure happens after the transaction commit.
4948 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4949 list_del_init(&ordered->log_list);
4950 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4952 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4953 spin_lock_irq(&inode->ordered_tree.lock);
4954 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4955 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4956 atomic_inc(&trans->transaction->pending_ordered);
4958 spin_unlock_irq(&inode->ordered_tree.lock);
4960 btrfs_put_ordered_extent(ordered);
4966 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4967 struct btrfs_path *path, u64 *size_ret)
4969 struct btrfs_key key;
4972 key.objectid = btrfs_ino(inode);
4973 key.type = BTRFS_INODE_ITEM_KEY;
4976 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4979 } else if (ret > 0) {
4982 struct btrfs_inode_item *item;
4984 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4985 struct btrfs_inode_item);
4986 *size_ret = btrfs_inode_size(path->nodes[0], item);
4988 * If the in-memory inode's i_size is smaller then the inode
4989 * size stored in the btree, return the inode's i_size, so
4990 * that we get a correct inode size after replaying the log
4991 * when before a power failure we had a shrinking truncate
4992 * followed by addition of a new name (rename / new hard link).
4993 * Otherwise return the inode size from the btree, to avoid
4994 * data loss when replaying a log due to previously doing a
4995 * write that expands the inode's size and logging a new name
4996 * immediately after.
4998 if (*size_ret > inode->vfs_inode.i_size)
4999 *size_ret = inode->vfs_inode.i_size;
5002 btrfs_release_path(path);
5007 * At the moment we always log all xattrs. This is to figure out at log replay
5008 * time which xattrs must have their deletion replayed. If a xattr is missing
5009 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5010 * because if a xattr is deleted, the inode is fsynced and a power failure
5011 * happens, causing the log to be replayed the next time the fs is mounted,
5012 * we want the xattr to not exist anymore (same behaviour as other filesystems
5013 * with a journal, ext3/4, xfs, f2fs, etc).
5015 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5016 struct btrfs_inode *inode,
5017 struct btrfs_path *path,
5018 struct btrfs_path *dst_path)
5020 struct btrfs_root *root = inode->root;
5022 struct btrfs_key key;
5023 const u64 ino = btrfs_ino(inode);
5026 bool found_xattrs = false;
5028 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5032 key.type = BTRFS_XATTR_ITEM_KEY;
5035 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5040 int slot = path->slots[0];
5041 struct extent_buffer *leaf = path->nodes[0];
5042 int nritems = btrfs_header_nritems(leaf);
5044 if (slot >= nritems) {
5046 ret = copy_items(trans, inode, dst_path, path,
5047 start_slot, ins_nr, 1, 0);
5052 ret = btrfs_next_leaf(root, path);
5060 btrfs_item_key_to_cpu(leaf, &key, slot);
5061 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5068 found_xattrs = true;
5072 ret = copy_items(trans, inode, dst_path, path,
5073 start_slot, ins_nr, 1, 0);
5079 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5085 * When using the NO_HOLES feature if we punched a hole that causes the
5086 * deletion of entire leafs or all the extent items of the first leaf (the one
5087 * that contains the inode item and references) we may end up not processing
5088 * any extents, because there are no leafs with a generation matching the
5089 * current transaction that have extent items for our inode. So we need to find
5090 * if any holes exist and then log them. We also need to log holes after any
5091 * truncate operation that changes the inode's size.
5093 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5094 struct btrfs_inode *inode,
5095 struct btrfs_path *path)
5097 struct btrfs_root *root = inode->root;
5098 struct btrfs_fs_info *fs_info = root->fs_info;
5099 struct btrfs_key key;
5100 const u64 ino = btrfs_ino(inode);
5101 const u64 i_size = i_size_read(&inode->vfs_inode);
5102 u64 prev_extent_end = 0;
5105 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5109 key.type = BTRFS_EXTENT_DATA_KEY;
5112 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5117 struct extent_buffer *leaf = path->nodes[0];
5119 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5120 ret = btrfs_next_leaf(root, path);
5127 leaf = path->nodes[0];
5130 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5131 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5134 /* We have a hole, log it. */
5135 if (prev_extent_end < key.offset) {
5136 const u64 hole_len = key.offset - prev_extent_end;
5139 * Release the path to avoid deadlocks with other code
5140 * paths that search the root while holding locks on
5141 * leafs from the log root.
5143 btrfs_release_path(path);
5144 ret = btrfs_insert_hole_extent(trans, root->log_root,
5145 ino, prev_extent_end,
5151 * Search for the same key again in the root. Since it's
5152 * an extent item and we are holding the inode lock, the
5153 * key must still exist. If it doesn't just emit warning
5154 * and return an error to fall back to a transaction
5157 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5160 if (WARN_ON(ret > 0))
5162 leaf = path->nodes[0];
5165 prev_extent_end = btrfs_file_extent_end(path);
5170 if (prev_extent_end < i_size) {
5173 btrfs_release_path(path);
5174 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5175 ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5176 prev_extent_end, hole_len);
5185 * When we are logging a new inode X, check if it doesn't have a reference that
5186 * matches the reference from some other inode Y created in a past transaction
5187 * and that was renamed in the current transaction. If we don't do this, then at
5188 * log replay time we can lose inode Y (and all its files if it's a directory):
5191 * echo "hello world" > /mnt/x/foobar
5194 * mkdir /mnt/x # or touch /mnt/x
5195 * xfs_io -c fsync /mnt/x
5197 * mount fs, trigger log replay
5199 * After the log replay procedure, we would lose the first directory and all its
5200 * files (file foobar).
5201 * For the case where inode Y is not a directory we simply end up losing it:
5203 * echo "123" > /mnt/foo
5205 * mv /mnt/foo /mnt/bar
5206 * echo "abc" > /mnt/foo
5207 * xfs_io -c fsync /mnt/foo
5210 * We also need this for cases where a snapshot entry is replaced by some other
5211 * entry (file or directory) otherwise we end up with an unreplayable log due to
5212 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5213 * if it were a regular entry:
5216 * btrfs subvolume snapshot /mnt /mnt/x/snap
5217 * btrfs subvolume delete /mnt/x/snap
5220 * fsync /mnt/x or fsync some new file inside it
5223 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5224 * the same transaction.
5226 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5228 const struct btrfs_key *key,
5229 struct btrfs_inode *inode,
5230 u64 *other_ino, u64 *other_parent)
5233 struct btrfs_path *search_path;
5236 u32 item_size = btrfs_item_size(eb, slot);
5238 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5240 search_path = btrfs_alloc_path();
5243 search_path->search_commit_root = 1;
5244 search_path->skip_locking = 1;
5246 while (cur_offset < item_size) {
5250 unsigned long name_ptr;
5251 struct btrfs_dir_item *di;
5252 struct fscrypt_str name_str;
5254 if (key->type == BTRFS_INODE_REF_KEY) {
5255 struct btrfs_inode_ref *iref;
5257 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5258 parent = key->offset;
5259 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5260 name_ptr = (unsigned long)(iref + 1);
5261 this_len = sizeof(*iref) + this_name_len;
5263 struct btrfs_inode_extref *extref;
5265 extref = (struct btrfs_inode_extref *)(ptr +
5267 parent = btrfs_inode_extref_parent(eb, extref);
5268 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5269 name_ptr = (unsigned long)&extref->name;
5270 this_len = sizeof(*extref) + this_name_len;
5273 if (this_name_len > name_len) {
5276 new_name = krealloc(name, this_name_len, GFP_NOFS);
5281 name_len = this_name_len;
5285 read_extent_buffer(eb, name, name_ptr, this_name_len);
5287 name_str.name = name;
5288 name_str.len = this_name_len;
5289 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5290 parent, &name_str, 0);
5291 if (di && !IS_ERR(di)) {
5292 struct btrfs_key di_key;
5294 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5296 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5297 if (di_key.objectid != key->objectid) {
5299 *other_ino = di_key.objectid;
5300 *other_parent = parent;
5308 } else if (IS_ERR(di)) {
5312 btrfs_release_path(search_path);
5314 cur_offset += this_len;
5318 btrfs_free_path(search_path);
5324 * Check if we need to log an inode. This is used in contexts where while
5325 * logging an inode we need to log another inode (either that it exists or in
5326 * full mode). This is used instead of btrfs_inode_in_log() because the later
5327 * requires the inode to be in the log and have the log transaction committed,
5328 * while here we do not care if the log transaction was already committed - our
5329 * caller will commit the log later - and we want to avoid logging an inode
5330 * multiple times when multiple tasks have joined the same log transaction.
5332 static bool need_log_inode(const struct btrfs_trans_handle *trans,
5333 const struct btrfs_inode *inode)
5336 * If a directory was not modified, no dentries added or removed, we can
5337 * and should avoid logging it.
5339 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5343 * If this inode does not have new/updated/deleted xattrs since the last
5344 * time it was logged and is flagged as logged in the current transaction,
5345 * we can skip logging it. As for new/deleted names, those are updated in
5346 * the log by link/unlink/rename operations.
5347 * In case the inode was logged and then evicted and reloaded, its
5348 * logged_trans will be 0, in which case we have to fully log it since
5349 * logged_trans is a transient field, not persisted.
5351 if (inode->logged_trans == trans->transid &&
5352 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5358 struct btrfs_dir_list {
5360 struct list_head list;
5364 * Log the inodes of the new dentries of a directory.
5365 * See process_dir_items_leaf() for details about why it is needed.
5366 * This is a recursive operation - if an existing dentry corresponds to a
5367 * directory, that directory's new entries are logged too (same behaviour as
5368 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5369 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5370 * complains about the following circular lock dependency / possible deadlock:
5374 * lock(&type->i_mutex_dir_key#3/2);
5375 * lock(sb_internal#2);
5376 * lock(&type->i_mutex_dir_key#3/2);
5377 * lock(&sb->s_type->i_mutex_key#14);
5379 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5380 * sb_start_intwrite() in btrfs_start_transaction().
5381 * Not acquiring the VFS lock of the inodes is still safe because:
5383 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5384 * that while logging the inode new references (names) are added or removed
5385 * from the inode, leaving the logged inode item with a link count that does
5386 * not match the number of logged inode reference items. This is fine because
5387 * at log replay time we compute the real number of links and correct the
5388 * link count in the inode item (see replay_one_buffer() and
5389 * link_to_fixup_dir());
5391 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5392 * while logging the inode's items new index items (key type
5393 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5394 * has a size that doesn't match the sum of the lengths of all the logged
5395 * names - this is ok, not a problem, because at log replay time we set the
5396 * directory's i_size to the correct value (see replay_one_name() and
5397 * overwrite_item()).
5399 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5400 struct btrfs_inode *start_inode,
5401 struct btrfs_log_ctx *ctx)
5403 struct btrfs_root *root = start_inode->root;
5404 struct btrfs_fs_info *fs_info = root->fs_info;
5405 struct btrfs_path *path;
5406 LIST_HEAD(dir_list);
5407 struct btrfs_dir_list *dir_elem;
5408 u64 ino = btrfs_ino(start_inode);
5412 * If we are logging a new name, as part of a link or rename operation,
5413 * don't bother logging new dentries, as we just want to log the names
5414 * of an inode and that any new parents exist.
5416 if (ctx->logging_new_name)
5419 path = btrfs_alloc_path();
5424 struct extent_buffer *leaf;
5425 struct btrfs_key min_key;
5426 bool continue_curr_inode = true;
5430 min_key.objectid = ino;
5431 min_key.type = BTRFS_DIR_INDEX_KEY;
5434 btrfs_release_path(path);
5435 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
5438 } else if (ret > 0) {
5443 leaf = path->nodes[0];
5444 nritems = btrfs_header_nritems(leaf);
5445 for (i = path->slots[0]; i < nritems; i++) {
5446 struct btrfs_dir_item *di;
5447 struct btrfs_key di_key;
5448 struct inode *di_inode;
5449 int log_mode = LOG_INODE_EXISTS;
5452 btrfs_item_key_to_cpu(leaf, &min_key, i);
5453 if (min_key.objectid != ino ||
5454 min_key.type != BTRFS_DIR_INDEX_KEY) {
5455 continue_curr_inode = false;
5459 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5460 type = btrfs_dir_ftype(leaf, di);
5461 if (btrfs_dir_transid(leaf, di) < trans->transid)
5463 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5464 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5467 btrfs_release_path(path);
5468 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5469 if (IS_ERR(di_inode)) {
5470 ret = PTR_ERR(di_inode);
5474 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5475 btrfs_add_delayed_iput(BTRFS_I(di_inode));
5479 ctx->log_new_dentries = false;
5480 if (type == BTRFS_FT_DIR)
5481 log_mode = LOG_INODE_ALL;
5482 ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5484 btrfs_add_delayed_iput(BTRFS_I(di_inode));
5487 if (ctx->log_new_dentries) {
5488 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5493 dir_elem->ino = di_key.objectid;
5494 list_add_tail(&dir_elem->list, &dir_list);
5499 if (continue_curr_inode && min_key.offset < (u64)-1) {
5505 if (list_empty(&dir_list))
5508 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5509 ino = dir_elem->ino;
5510 list_del(&dir_elem->list);
5514 btrfs_free_path(path);
5516 struct btrfs_dir_list *next;
5518 list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5525 struct btrfs_ino_list {
5528 struct list_head list;
5531 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5533 struct btrfs_ino_list *curr;
5534 struct btrfs_ino_list *next;
5536 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5537 list_del(&curr->list);
5542 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5543 struct btrfs_path *path)
5545 struct btrfs_key key;
5549 key.type = BTRFS_INODE_ITEM_KEY;
5552 path->search_commit_root = 1;
5553 path->skip_locking = 1;
5555 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5556 if (WARN_ON_ONCE(ret > 0)) {
5558 * We have previously found the inode through the commit root
5559 * so this should not happen. If it does, just error out and
5560 * fallback to a transaction commit.
5563 } else if (ret == 0) {
5564 struct btrfs_inode_item *item;
5566 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5567 struct btrfs_inode_item);
5568 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5572 btrfs_release_path(path);
5573 path->search_commit_root = 0;
5574 path->skip_locking = 0;
5579 static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5580 struct btrfs_root *root,
5581 struct btrfs_path *path,
5582 u64 ino, u64 parent,
5583 struct btrfs_log_ctx *ctx)
5585 struct btrfs_ino_list *ino_elem;
5586 struct inode *inode;
5589 * It's rare to have a lot of conflicting inodes, in practice it is not
5590 * common to have more than 1 or 2. We don't want to collect too many,
5591 * as we could end up logging too many inodes (even if only in
5592 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5595 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5596 return BTRFS_LOG_FORCE_COMMIT;
5598 inode = btrfs_iget(root->fs_info->sb, ino, root);
5600 * If the other inode that had a conflicting dir entry was deleted in
5601 * the current transaction then we either:
5603 * 1) Log the parent directory (later after adding it to the list) if
5604 * the inode is a directory. This is because it may be a deleted
5605 * subvolume/snapshot or it may be a regular directory that had
5606 * deleted subvolumes/snapshots (or subdirectories that had them),
5607 * and at the moment we can't deal with dropping subvolumes/snapshots
5608 * during log replay. So we just log the parent, which will result in
5609 * a fallback to a transaction commit if we are dealing with those
5610 * cases (last_unlink_trans will match the current transaction);
5612 * 2) Do nothing if it's not a directory. During log replay we simply
5613 * unlink the conflicting dentry from the parent directory and then
5614 * add the dentry for our inode. Like this we can avoid logging the
5615 * parent directory (and maybe fallback to a transaction commit in
5616 * case it has a last_unlink_trans == trans->transid, due to moving
5617 * some inode from it to some other directory).
5619 if (IS_ERR(inode)) {
5620 int ret = PTR_ERR(inode);
5625 ret = conflicting_inode_is_dir(root, ino, path);
5626 /* Not a directory or we got an error. */
5630 /* Conflicting inode is a directory, so we'll log its parent. */
5631 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5634 ino_elem->ino = ino;
5635 ino_elem->parent = parent;
5636 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5637 ctx->num_conflict_inodes++;
5643 * If the inode was already logged skip it - otherwise we can hit an
5644 * infinite loop. Example:
5646 * From the commit root (previous transaction) we have the following
5649 * inode 257 a directory
5650 * inode 258 with references "zz" and "zz_link" on inode 257
5651 * inode 259 with reference "a" on inode 257
5653 * And in the current (uncommitted) transaction we have:
5655 * inode 257 a directory, unchanged
5656 * inode 258 with references "a" and "a2" on inode 257
5657 * inode 259 with reference "zz_link" on inode 257
5658 * inode 261 with reference "zz" on inode 257
5660 * When logging inode 261 the following infinite loop could
5661 * happen if we don't skip already logged inodes:
5663 * - we detect inode 258 as a conflicting inode, with inode 261
5664 * on reference "zz", and log it;
5666 * - we detect inode 259 as a conflicting inode, with inode 258
5667 * on reference "a", and log it;
5669 * - we detect inode 258 as a conflicting inode, with inode 259
5670 * on reference "zz_link", and log it - again! After this we
5671 * repeat the above steps forever.
5673 * Here we can use need_log_inode() because we only need to log the
5674 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5675 * so that the log ends up with the new name and without the old name.
5677 if (!need_log_inode(trans, BTRFS_I(inode))) {
5678 btrfs_add_delayed_iput(BTRFS_I(inode));
5682 btrfs_add_delayed_iput(BTRFS_I(inode));
5684 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5687 ino_elem->ino = ino;
5688 ino_elem->parent = parent;
5689 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5690 ctx->num_conflict_inodes++;
5695 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5696 struct btrfs_root *root,
5697 struct btrfs_log_ctx *ctx)
5699 struct btrfs_fs_info *fs_info = root->fs_info;
5703 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5704 * otherwise we could have unbounded recursion of btrfs_log_inode()
5705 * calls. This check guarantees we can have only 1 level of recursion.
5707 if (ctx->logging_conflict_inodes)
5710 ctx->logging_conflict_inodes = true;
5713 * New conflicting inodes may be found and added to the list while we
5714 * are logging a conflicting inode, so keep iterating while the list is
5717 while (!list_empty(&ctx->conflict_inodes)) {
5718 struct btrfs_ino_list *curr;
5719 struct inode *inode;
5723 curr = list_first_entry(&ctx->conflict_inodes,
5724 struct btrfs_ino_list, list);
5726 parent = curr->parent;
5727 list_del(&curr->list);
5730 inode = btrfs_iget(fs_info->sb, ino, root);
5732 * If the other inode that had a conflicting dir entry was
5733 * deleted in the current transaction, we need to log its parent
5734 * directory. See the comment at add_conflicting_inode().
5736 if (IS_ERR(inode)) {
5737 ret = PTR_ERR(inode);
5741 inode = btrfs_iget(fs_info->sb, parent, root);
5742 if (IS_ERR(inode)) {
5743 ret = PTR_ERR(inode);
5748 * Always log the directory, we cannot make this
5749 * conditional on need_log_inode() because the directory
5750 * might have been logged in LOG_INODE_EXISTS mode or
5751 * the dir index of the conflicting inode is not in a
5752 * dir index key range logged for the directory. So we
5753 * must make sure the deletion is recorded.
5755 ret = btrfs_log_inode(trans, BTRFS_I(inode),
5756 LOG_INODE_ALL, ctx);
5757 btrfs_add_delayed_iput(BTRFS_I(inode));
5764 * Here we can use need_log_inode() because we only need to log
5765 * the inode in LOG_INODE_EXISTS mode and rename operations
5766 * update the log, so that the log ends up with the new name and
5767 * without the old name.
5769 * We did this check at add_conflicting_inode(), but here we do
5770 * it again because if some other task logged the inode after
5771 * that, we can avoid doing it again.
5773 if (!need_log_inode(trans, BTRFS_I(inode))) {
5774 btrfs_add_delayed_iput(BTRFS_I(inode));
5779 * We are safe logging the other inode without acquiring its
5780 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5781 * are safe against concurrent renames of the other inode as
5782 * well because during a rename we pin the log and update the
5783 * log with the new name before we unpin it.
5785 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5786 btrfs_add_delayed_iput(BTRFS_I(inode));
5791 ctx->logging_conflict_inodes = false;
5793 free_conflicting_inodes(ctx);
5798 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5799 struct btrfs_inode *inode,
5800 struct btrfs_key *min_key,
5801 const struct btrfs_key *max_key,
5802 struct btrfs_path *path,
5803 struct btrfs_path *dst_path,
5804 const u64 logged_isize,
5805 const int inode_only,
5806 struct btrfs_log_ctx *ctx,
5807 bool *need_log_inode_item)
5809 const u64 i_size = i_size_read(&inode->vfs_inode);
5810 struct btrfs_root *root = inode->root;
5811 int ins_start_slot = 0;
5816 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5824 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5825 if (min_key->objectid != max_key->objectid)
5827 if (min_key->type > max_key->type)
5830 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5831 *need_log_inode_item = false;
5832 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5833 min_key->offset >= i_size) {
5835 * Extents at and beyond eof are logged with
5836 * btrfs_log_prealloc_extents().
5837 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5838 * and no keys greater than that, so bail out.
5841 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5842 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5843 (inode->generation == trans->transid ||
5844 ctx->logging_conflict_inodes)) {
5846 u64 other_parent = 0;
5848 ret = btrfs_check_ref_name_override(path->nodes[0],
5849 path->slots[0], min_key, inode,
5850 &other_ino, &other_parent);
5853 } else if (ret > 0 &&
5854 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5859 ins_start_slot = path->slots[0];
5861 ret = copy_items(trans, inode, dst_path, path,
5862 ins_start_slot, ins_nr,
5863 inode_only, logged_isize);
5868 btrfs_release_path(path);
5869 ret = add_conflicting_inode(trans, root, path,
5876 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5877 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5880 ret = copy_items(trans, inode, dst_path, path,
5882 ins_nr, inode_only, logged_isize);
5889 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5892 } else if (!ins_nr) {
5893 ins_start_slot = path->slots[0];
5898 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5899 ins_nr, inode_only, logged_isize);
5903 ins_start_slot = path->slots[0];
5906 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5907 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5912 ret = copy_items(trans, inode, dst_path, path,
5913 ins_start_slot, ins_nr, inode_only,
5919 btrfs_release_path(path);
5921 if (min_key->offset < (u64)-1) {
5923 } else if (min_key->type < max_key->type) {
5925 min_key->offset = 0;
5931 * We may process many leaves full of items for our inode, so
5932 * avoid monopolizing a cpu for too long by rescheduling while
5933 * not holding locks on any tree.
5938 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5939 ins_nr, inode_only, logged_isize);
5944 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5946 * Release the path because otherwise we might attempt to double
5947 * lock the same leaf with btrfs_log_prealloc_extents() below.
5949 btrfs_release_path(path);
5950 ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5956 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
5957 struct btrfs_root *log,
5958 struct btrfs_path *path,
5959 const struct btrfs_item_batch *batch,
5960 const struct btrfs_delayed_item *first_item)
5962 const struct btrfs_delayed_item *curr = first_item;
5965 ret = btrfs_insert_empty_items(trans, log, path, batch);
5969 for (int i = 0; i < batch->nr; i++) {
5972 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
5973 write_extent_buffer(path->nodes[0], &curr->data,
5974 (unsigned long)data_ptr, curr->data_len);
5975 curr = list_next_entry(curr, log_list);
5979 btrfs_release_path(path);
5984 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
5985 struct btrfs_inode *inode,
5986 struct btrfs_path *path,
5987 const struct list_head *delayed_ins_list,
5988 struct btrfs_log_ctx *ctx)
5990 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
5991 const int max_batch_size = 195;
5992 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
5993 const u64 ino = btrfs_ino(inode);
5994 struct btrfs_root *log = inode->root->log_root;
5995 struct btrfs_item_batch batch = {
5997 .total_data_size = 0,
5999 const struct btrfs_delayed_item *first = NULL;
6000 const struct btrfs_delayed_item *curr;
6002 struct btrfs_key *ins_keys;
6004 u64 curr_batch_size = 0;
6008 /* We are adding dir index items to the log tree. */
6009 lockdep_assert_held(&inode->log_mutex);
6012 * We collect delayed items before copying index keys from the subvolume
6013 * to the log tree. However just after we collected them, they may have
6014 * been flushed (all of them or just some of them), and therefore we
6015 * could have copied them from the subvolume tree to the log tree.
6016 * So find the first delayed item that was not yet logged (they are
6017 * sorted by index number).
6019 list_for_each_entry(curr, delayed_ins_list, log_list) {
6020 if (curr->index > inode->last_dir_index_offset) {
6026 /* Empty list or all delayed items were already logged. */
6030 ins_data = kmalloc(max_batch_size * sizeof(u32) +
6031 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6034 ins_sizes = (u32 *)ins_data;
6035 batch.data_sizes = ins_sizes;
6036 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6037 batch.keys = ins_keys;
6040 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6041 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6043 if (curr_batch_size + curr_size > leaf_data_size ||
6044 batch.nr == max_batch_size) {
6045 ret = insert_delayed_items_batch(trans, log, path,
6051 batch.total_data_size = 0;
6052 curr_batch_size = 0;
6056 ins_sizes[batch_idx] = curr->data_len;
6057 ins_keys[batch_idx].objectid = ino;
6058 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6059 ins_keys[batch_idx].offset = curr->index;
6060 curr_batch_size += curr_size;
6061 batch.total_data_size += curr->data_len;
6064 curr = list_next_entry(curr, log_list);
6067 ASSERT(batch.nr >= 1);
6068 ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6070 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6072 inode->last_dir_index_offset = curr->index;
6079 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6080 struct btrfs_inode *inode,
6081 struct btrfs_path *path,
6082 const struct list_head *delayed_del_list,
6083 struct btrfs_log_ctx *ctx)
6085 const u64 ino = btrfs_ino(inode);
6086 const struct btrfs_delayed_item *curr;
6088 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6091 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6092 u64 first_dir_index = curr->index;
6094 const struct btrfs_delayed_item *next;
6098 * Find a range of consecutive dir index items to delete. Like
6099 * this we log a single dir range item spanning several contiguous
6100 * dir items instead of logging one range item per dir index item.
6102 next = list_next_entry(curr, log_list);
6103 while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6104 if (next->index != curr->index + 1)
6107 next = list_next_entry(next, log_list);
6110 last_dir_index = curr->index;
6111 ASSERT(last_dir_index >= first_dir_index);
6113 ret = insert_dir_log_key(trans, inode->root->log_root, path,
6114 ino, first_dir_index, last_dir_index);
6117 curr = list_next_entry(curr, log_list);
6123 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6124 struct btrfs_inode *inode,
6125 struct btrfs_path *path,
6126 struct btrfs_log_ctx *ctx,
6127 const struct list_head *delayed_del_list,
6128 const struct btrfs_delayed_item *first,
6129 const struct btrfs_delayed_item **last_ret)
6131 const struct btrfs_delayed_item *next;
6132 struct extent_buffer *leaf = path->nodes[0];
6133 const int last_slot = btrfs_header_nritems(leaf) - 1;
6134 int slot = path->slots[0] + 1;
6135 const u64 ino = btrfs_ino(inode);
6137 next = list_next_entry(first, log_list);
6139 while (slot < last_slot &&
6140 !list_entry_is_head(next, delayed_del_list, log_list)) {
6141 struct btrfs_key key;
6143 btrfs_item_key_to_cpu(leaf, &key, slot);
6144 if (key.objectid != ino ||
6145 key.type != BTRFS_DIR_INDEX_KEY ||
6146 key.offset != next->index)
6151 next = list_next_entry(next, log_list);
6154 return btrfs_del_items(trans, inode->root->log_root, path,
6155 path->slots[0], slot - path->slots[0]);
6158 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6159 struct btrfs_inode *inode,
6160 struct btrfs_path *path,
6161 const struct list_head *delayed_del_list,
6162 struct btrfs_log_ctx *ctx)
6164 struct btrfs_root *log = inode->root->log_root;
6165 const struct btrfs_delayed_item *curr;
6166 u64 last_range_start;
6167 u64 last_range_end = 0;
6168 struct btrfs_key key;
6170 key.objectid = btrfs_ino(inode);
6171 key.type = BTRFS_DIR_INDEX_KEY;
6172 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6175 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6176 const struct btrfs_delayed_item *last = curr;
6177 u64 first_dir_index = curr->index;
6179 bool deleted_items = false;
6182 key.offset = curr->index;
6183 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6186 } else if (ret == 0) {
6187 ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6188 delayed_del_list, curr,
6192 deleted_items = true;
6195 btrfs_release_path(path);
6198 * If we deleted items from the leaf, it means we have a range
6199 * item logging their range, so no need to add one or update an
6200 * existing one. Otherwise we have to log a dir range item.
6205 last_dir_index = last->index;
6206 ASSERT(last_dir_index >= first_dir_index);
6208 * If this range starts right after where the previous one ends,
6209 * then we want to reuse the previous range item and change its
6210 * end offset to the end of this range. This is just to minimize
6211 * leaf space usage, by avoiding adding a new range item.
6213 if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6214 first_dir_index = last_range_start;
6216 ret = insert_dir_log_key(trans, log, path, key.objectid,
6217 first_dir_index, last_dir_index);
6221 last_range_start = first_dir_index;
6222 last_range_end = last_dir_index;
6224 curr = list_next_entry(last, log_list);
6230 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6231 struct btrfs_inode *inode,
6232 struct btrfs_path *path,
6233 const struct list_head *delayed_del_list,
6234 struct btrfs_log_ctx *ctx)
6237 * We are deleting dir index items from the log tree or adding range
6240 lockdep_assert_held(&inode->log_mutex);
6242 if (list_empty(delayed_del_list))
6245 if (ctx->logged_before)
6246 return log_delayed_deletions_incremental(trans, inode, path,
6247 delayed_del_list, ctx);
6249 return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6254 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6255 * items instead of the subvolume tree.
6257 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6258 struct btrfs_inode *inode,
6259 const struct list_head *delayed_ins_list,
6260 struct btrfs_log_ctx *ctx)
6262 const bool orig_log_new_dentries = ctx->log_new_dentries;
6263 struct btrfs_fs_info *fs_info = trans->fs_info;
6264 struct btrfs_delayed_item *item;
6268 * No need for the log mutex, plus to avoid potential deadlocks or
6269 * lockdep annotations due to nesting of delayed inode mutexes and log
6272 lockdep_assert_not_held(&inode->log_mutex);
6274 ASSERT(!ctx->logging_new_delayed_dentries);
6275 ctx->logging_new_delayed_dentries = true;
6277 list_for_each_entry(item, delayed_ins_list, log_list) {
6278 struct btrfs_dir_item *dir_item;
6279 struct inode *di_inode;
6280 struct btrfs_key key;
6281 int log_mode = LOG_INODE_EXISTS;
6283 dir_item = (struct btrfs_dir_item *)item->data;
6284 btrfs_disk_key_to_cpu(&key, &dir_item->location);
6286 if (key.type == BTRFS_ROOT_ITEM_KEY)
6289 di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6290 if (IS_ERR(di_inode)) {
6291 ret = PTR_ERR(di_inode);
6295 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6296 btrfs_add_delayed_iput(BTRFS_I(di_inode));
6300 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6301 log_mode = LOG_INODE_ALL;
6303 ctx->log_new_dentries = false;
6304 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6306 if (!ret && ctx->log_new_dentries)
6307 ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6309 btrfs_add_delayed_iput(BTRFS_I(di_inode));
6315 ctx->log_new_dentries = orig_log_new_dentries;
6316 ctx->logging_new_delayed_dentries = false;
6321 /* log a single inode in the tree log.
6322 * At least one parent directory for this inode must exist in the tree
6323 * or be logged already.
6325 * Any items from this inode changed by the current transaction are copied
6326 * to the log tree. An extra reference is taken on any extents in this
6327 * file, allowing us to avoid a whole pile of corner cases around logging
6328 * blocks that have been removed from the tree.
6330 * See LOG_INODE_ALL and related defines for a description of what inode_only
6333 * This handles both files and directories.
6335 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6336 struct btrfs_inode *inode,
6338 struct btrfs_log_ctx *ctx)
6340 struct btrfs_path *path;
6341 struct btrfs_path *dst_path;
6342 struct btrfs_key min_key;
6343 struct btrfs_key max_key;
6344 struct btrfs_root *log = inode->root->log_root;
6346 bool fast_search = false;
6347 u64 ino = btrfs_ino(inode);
6348 struct extent_map_tree *em_tree = &inode->extent_tree;
6349 u64 logged_isize = 0;
6350 bool need_log_inode_item = true;
6351 bool xattrs_logged = false;
6352 bool inode_item_dropped = true;
6353 bool full_dir_logging = false;
6354 LIST_HEAD(delayed_ins_list);
6355 LIST_HEAD(delayed_del_list);
6357 path = btrfs_alloc_path();
6360 dst_path = btrfs_alloc_path();
6362 btrfs_free_path(path);
6366 min_key.objectid = ino;
6367 min_key.type = BTRFS_INODE_ITEM_KEY;
6370 max_key.objectid = ino;
6373 /* today the code can only do partial logging of directories */
6374 if (S_ISDIR(inode->vfs_inode.i_mode) ||
6375 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6376 &inode->runtime_flags) &&
6377 inode_only >= LOG_INODE_EXISTS))
6378 max_key.type = BTRFS_XATTR_ITEM_KEY;
6380 max_key.type = (u8)-1;
6381 max_key.offset = (u64)-1;
6383 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6384 full_dir_logging = true;
6387 * If we are logging a directory while we are logging dentries of the
6388 * delayed items of some other inode, then we need to flush the delayed
6389 * items of this directory and not log the delayed items directly. This
6390 * is to prevent more than one level of recursion into btrfs_log_inode()
6391 * by having something like this:
6393 * $ mkdir -p a/b/c/d/e/f/g/h/...
6394 * $ xfs_io -c "fsync" a
6396 * Where all directories in the path did not exist before and are
6397 * created in the current transaction.
6398 * So in such a case we directly log the delayed items of the main
6399 * directory ("a") without flushing them first, while for each of its
6400 * subdirectories we flush their delayed items before logging them.
6401 * This prevents a potential unbounded recursion like this:
6404 * log_new_delayed_dentries()
6406 * log_new_delayed_dentries()
6408 * log_new_delayed_dentries()
6411 * We have thresholds for the maximum number of delayed items to have in
6412 * memory, and once they are hit, the items are flushed asynchronously.
6413 * However the limit is quite high, so lets prevent deep levels of
6414 * recursion to happen by limiting the maximum depth to be 1.
6416 if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6417 ret = btrfs_commit_inode_delayed_items(trans, inode);
6422 mutex_lock(&inode->log_mutex);
6425 * For symlinks, we must always log their content, which is stored in an
6426 * inline extent, otherwise we could end up with an empty symlink after
6427 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6428 * one attempts to create an empty symlink).
6429 * We don't need to worry about flushing delalloc, because when we create
6430 * the inline extent when the symlink is created (we never have delalloc
6433 if (S_ISLNK(inode->vfs_inode.i_mode))
6434 inode_only = LOG_INODE_ALL;
6437 * Before logging the inode item, cache the value returned by
6438 * inode_logged(), because after that we have the need to figure out if
6439 * the inode was previously logged in this transaction.
6441 ret = inode_logged(trans, inode, path);
6444 ctx->logged_before = (ret == 1);
6448 * This is for cases where logging a directory could result in losing a
6449 * a file after replaying the log. For example, if we move a file from a
6450 * directory A to a directory B, then fsync directory A, we have no way
6451 * to known the file was moved from A to B, so logging just A would
6452 * result in losing the file after a log replay.
6454 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6455 ret = BTRFS_LOG_FORCE_COMMIT;
6460 * a brute force approach to making sure we get the most uptodate
6461 * copies of everything.
6463 if (S_ISDIR(inode->vfs_inode.i_mode)) {
6464 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6465 if (ctx->logged_before)
6466 ret = drop_inode_items(trans, log, path, inode,
6467 BTRFS_XATTR_ITEM_KEY);
6469 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6471 * Make sure the new inode item we write to the log has
6472 * the same isize as the current one (if it exists).
6473 * This is necessary to prevent data loss after log
6474 * replay, and also to prevent doing a wrong expanding
6475 * truncate - for e.g. create file, write 4K into offset
6476 * 0, fsync, write 4K into offset 4096, add hard link,
6477 * fsync some other file (to sync log), power fail - if
6478 * we use the inode's current i_size, after log replay
6479 * we get a 8Kb file, with the last 4Kb extent as a hole
6480 * (zeroes), as if an expanding truncate happened,
6481 * instead of getting a file of 4Kb only.
6483 ret = logged_inode_size(log, inode, path, &logged_isize);
6487 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6488 &inode->runtime_flags)) {
6489 if (inode_only == LOG_INODE_EXISTS) {
6490 max_key.type = BTRFS_XATTR_ITEM_KEY;
6491 if (ctx->logged_before)
6492 ret = drop_inode_items(trans, log, path,
6493 inode, max_key.type);
6495 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6496 &inode->runtime_flags);
6497 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6498 &inode->runtime_flags);
6499 if (ctx->logged_before)
6500 ret = truncate_inode_items(trans, log,
6503 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6504 &inode->runtime_flags) ||
6505 inode_only == LOG_INODE_EXISTS) {
6506 if (inode_only == LOG_INODE_ALL)
6508 max_key.type = BTRFS_XATTR_ITEM_KEY;
6509 if (ctx->logged_before)
6510 ret = drop_inode_items(trans, log, path, inode,
6513 if (inode_only == LOG_INODE_ALL)
6515 inode_item_dropped = false;
6524 * If we are logging a directory in full mode, collect the delayed items
6525 * before iterating the subvolume tree, so that we don't miss any new
6526 * dir index items in case they get flushed while or right after we are
6527 * iterating the subvolume tree.
6529 if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6530 btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6533 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6534 path, dst_path, logged_isize,
6536 &need_log_inode_item);
6540 btrfs_release_path(path);
6541 btrfs_release_path(dst_path);
6542 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6545 xattrs_logged = true;
6546 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6547 btrfs_release_path(path);
6548 btrfs_release_path(dst_path);
6549 ret = btrfs_log_holes(trans, inode, path);
6554 btrfs_release_path(path);
6555 btrfs_release_path(dst_path);
6556 if (need_log_inode_item) {
6557 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6561 * If we are doing a fast fsync and the inode was logged before
6562 * in this transaction, we don't need to log the xattrs because
6563 * they were logged before. If xattrs were added, changed or
6564 * deleted since the last time we logged the inode, then we have
6565 * already logged them because the inode had the runtime flag
6566 * BTRFS_INODE_COPY_EVERYTHING set.
6568 if (!xattrs_logged && inode->logged_trans < trans->transid) {
6569 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6572 btrfs_release_path(path);
6576 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6579 } else if (inode_only == LOG_INODE_ALL) {
6580 struct extent_map *em, *n;
6582 write_lock(&em_tree->lock);
6583 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6584 list_del_init(&em->list);
6585 write_unlock(&em_tree->lock);
6588 if (full_dir_logging) {
6589 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6592 ret = log_delayed_insertion_items(trans, inode, path,
6593 &delayed_ins_list, ctx);
6596 ret = log_delayed_deletion_items(trans, inode, path,
6597 &delayed_del_list, ctx);
6602 spin_lock(&inode->lock);
6603 inode->logged_trans = trans->transid;
6605 * Don't update last_log_commit if we logged that an inode exists.
6606 * We do this for three reasons:
6608 * 1) We might have had buffered writes to this inode that were
6609 * flushed and had their ordered extents completed in this
6610 * transaction, but we did not previously log the inode with
6611 * LOG_INODE_ALL. Later the inode was evicted and after that
6612 * it was loaded again and this LOG_INODE_EXISTS log operation
6613 * happened. We must make sure that if an explicit fsync against
6614 * the inode is performed later, it logs the new extents, an
6615 * updated inode item, etc, and syncs the log. The same logic
6616 * applies to direct IO writes instead of buffered writes.
6618 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6619 * is logged with an i_size of 0 or whatever value was logged
6620 * before. If later the i_size of the inode is increased by a
6621 * truncate operation, the log is synced through an fsync of
6622 * some other inode and then finally an explicit fsync against
6623 * this inode is made, we must make sure this fsync logs the
6624 * inode with the new i_size, the hole between old i_size and
6625 * the new i_size, and syncs the log.
6627 * 3) If we are logging that an ancestor inode exists as part of
6628 * logging a new name from a link or rename operation, don't update
6629 * its last_log_commit - otherwise if an explicit fsync is made
6630 * against an ancestor, the fsync considers the inode in the log
6631 * and doesn't sync the log, resulting in the ancestor missing after
6632 * a power failure unless the log was synced as part of an fsync
6633 * against any other unrelated inode.
6635 if (inode_only != LOG_INODE_EXISTS)
6636 inode->last_log_commit = inode->last_sub_trans;
6637 spin_unlock(&inode->lock);
6640 * Reset the last_reflink_trans so that the next fsync does not need to
6641 * go through the slower path when logging extents and their checksums.
6643 if (inode_only == LOG_INODE_ALL)
6644 inode->last_reflink_trans = 0;
6647 mutex_unlock(&inode->log_mutex);
6649 btrfs_free_path(path);
6650 btrfs_free_path(dst_path);
6653 free_conflicting_inodes(ctx);
6655 ret = log_conflicting_inodes(trans, inode->root, ctx);
6657 if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6659 ret = log_new_delayed_dentries(trans, inode,
6660 &delayed_ins_list, ctx);
6662 btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6669 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6670 struct btrfs_inode *inode,
6671 struct btrfs_log_ctx *ctx)
6673 struct btrfs_fs_info *fs_info = trans->fs_info;
6675 struct btrfs_path *path;
6676 struct btrfs_key key;
6677 struct btrfs_root *root = inode->root;
6678 const u64 ino = btrfs_ino(inode);
6680 path = btrfs_alloc_path();
6683 path->skip_locking = 1;
6684 path->search_commit_root = 1;
6687 key.type = BTRFS_INODE_REF_KEY;
6689 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6694 struct extent_buffer *leaf = path->nodes[0];
6695 int slot = path->slots[0];
6700 if (slot >= btrfs_header_nritems(leaf)) {
6701 ret = btrfs_next_leaf(root, path);
6709 btrfs_item_key_to_cpu(leaf, &key, slot);
6710 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6711 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6714 item_size = btrfs_item_size(leaf, slot);
6715 ptr = btrfs_item_ptr_offset(leaf, slot);
6716 while (cur_offset < item_size) {
6717 struct btrfs_key inode_key;
6718 struct inode *dir_inode;
6720 inode_key.type = BTRFS_INODE_ITEM_KEY;
6721 inode_key.offset = 0;
6723 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6724 struct btrfs_inode_extref *extref;
6726 extref = (struct btrfs_inode_extref *)
6728 inode_key.objectid = btrfs_inode_extref_parent(
6730 cur_offset += sizeof(*extref);
6731 cur_offset += btrfs_inode_extref_name_len(leaf,
6734 inode_key.objectid = key.offset;
6735 cur_offset = item_size;
6738 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6741 * If the parent inode was deleted, return an error to
6742 * fallback to a transaction commit. This is to prevent
6743 * getting an inode that was moved from one parent A to
6744 * a parent B, got its former parent A deleted and then
6745 * it got fsync'ed, from existing at both parents after
6746 * a log replay (and the old parent still existing).
6753 * mv /mnt/B/bar /mnt/A/bar
6754 * mv -T /mnt/A /mnt/B
6758 * If we ignore the old parent B which got deleted,
6759 * after a log replay we would have file bar linked
6760 * at both parents and the old parent B would still
6763 if (IS_ERR(dir_inode)) {
6764 ret = PTR_ERR(dir_inode);
6768 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6769 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6773 ctx->log_new_dentries = false;
6774 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6775 LOG_INODE_ALL, ctx);
6776 if (!ret && ctx->log_new_dentries)
6777 ret = log_new_dir_dentries(trans,
6778 BTRFS_I(dir_inode), ctx);
6779 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6787 btrfs_free_path(path);
6791 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6792 struct btrfs_root *root,
6793 struct btrfs_path *path,
6794 struct btrfs_log_ctx *ctx)
6796 struct btrfs_key found_key;
6798 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6801 struct btrfs_fs_info *fs_info = root->fs_info;
6802 struct extent_buffer *leaf = path->nodes[0];
6803 int slot = path->slots[0];
6804 struct btrfs_key search_key;
6805 struct inode *inode;
6809 btrfs_release_path(path);
6811 ino = found_key.offset;
6813 search_key.objectid = found_key.offset;
6814 search_key.type = BTRFS_INODE_ITEM_KEY;
6815 search_key.offset = 0;
6816 inode = btrfs_iget(fs_info->sb, ino, root);
6818 return PTR_ERR(inode);
6820 if (BTRFS_I(inode)->generation >= trans->transid &&
6821 need_log_inode(trans, BTRFS_I(inode)))
6822 ret = btrfs_log_inode(trans, BTRFS_I(inode),
6823 LOG_INODE_EXISTS, ctx);
6824 btrfs_add_delayed_iput(BTRFS_I(inode));
6828 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6831 search_key.type = BTRFS_INODE_REF_KEY;
6832 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6836 leaf = path->nodes[0];
6837 slot = path->slots[0];
6838 if (slot >= btrfs_header_nritems(leaf)) {
6839 ret = btrfs_next_leaf(root, path);
6844 leaf = path->nodes[0];
6845 slot = path->slots[0];
6848 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6849 if (found_key.objectid != search_key.objectid ||
6850 found_key.type != BTRFS_INODE_REF_KEY)
6856 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6857 struct btrfs_inode *inode,
6858 struct dentry *parent,
6859 struct btrfs_log_ctx *ctx)
6861 struct btrfs_root *root = inode->root;
6862 struct dentry *old_parent = NULL;
6863 struct super_block *sb = inode->vfs_inode.i_sb;
6867 if (!parent || d_really_is_negative(parent) ||
6871 inode = BTRFS_I(d_inode(parent));
6872 if (root != inode->root)
6875 if (inode->generation >= trans->transid &&
6876 need_log_inode(trans, inode)) {
6877 ret = btrfs_log_inode(trans, inode,
6878 LOG_INODE_EXISTS, ctx);
6882 if (IS_ROOT(parent))
6885 parent = dget_parent(parent);
6887 old_parent = parent;
6894 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6895 struct btrfs_inode *inode,
6896 struct dentry *parent,
6897 struct btrfs_log_ctx *ctx)
6899 struct btrfs_root *root = inode->root;
6900 const u64 ino = btrfs_ino(inode);
6901 struct btrfs_path *path;
6902 struct btrfs_key search_key;
6906 * For a single hard link case, go through a fast path that does not
6907 * need to iterate the fs/subvolume tree.
6909 if (inode->vfs_inode.i_nlink < 2)
6910 return log_new_ancestors_fast(trans, inode, parent, ctx);
6912 path = btrfs_alloc_path();
6916 search_key.objectid = ino;
6917 search_key.type = BTRFS_INODE_REF_KEY;
6918 search_key.offset = 0;
6920 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6927 struct extent_buffer *leaf = path->nodes[0];
6928 int slot = path->slots[0];
6929 struct btrfs_key found_key;
6931 if (slot >= btrfs_header_nritems(leaf)) {
6932 ret = btrfs_next_leaf(root, path);
6940 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6941 if (found_key.objectid != ino ||
6942 found_key.type > BTRFS_INODE_EXTREF_KEY)
6946 * Don't deal with extended references because they are rare
6947 * cases and too complex to deal with (we would need to keep
6948 * track of which subitem we are processing for each item in
6949 * this loop, etc). So just return some error to fallback to
6950 * a transaction commit.
6952 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6958 * Logging ancestors needs to do more searches on the fs/subvol
6959 * tree, so it releases the path as needed to avoid deadlocks.
6960 * Keep track of the last inode ref key and resume from that key
6961 * after logging all new ancestors for the current hard link.
6963 memcpy(&search_key, &found_key, sizeof(search_key));
6965 ret = log_new_ancestors(trans, root, path, ctx);
6968 btrfs_release_path(path);
6973 btrfs_free_path(path);
6978 * helper function around btrfs_log_inode to make sure newly created
6979 * parent directories also end up in the log. A minimal inode and backref
6980 * only logging is done of any parent directories that are older than
6981 * the last committed transaction
6983 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6984 struct btrfs_inode *inode,
6985 struct dentry *parent,
6987 struct btrfs_log_ctx *ctx)
6989 struct btrfs_root *root = inode->root;
6990 struct btrfs_fs_info *fs_info = root->fs_info;
6992 bool log_dentries = false;
6994 if (btrfs_test_opt(fs_info, NOTREELOG)) {
6995 ret = BTRFS_LOG_FORCE_COMMIT;
6999 if (btrfs_root_refs(&root->root_item) == 0) {
7000 ret = BTRFS_LOG_FORCE_COMMIT;
7005 * Skip already logged inodes or inodes corresponding to tmpfiles
7006 * (since logging them is pointless, a link count of 0 means they
7007 * will never be accessible).
7009 if ((btrfs_inode_in_log(inode, trans->transid) &&
7010 list_empty(&ctx->ordered_extents)) ||
7011 inode->vfs_inode.i_nlink == 0) {
7012 ret = BTRFS_NO_LOG_SYNC;
7016 ret = start_log_trans(trans, root, ctx);
7020 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7025 * for regular files, if its inode is already on disk, we don't
7026 * have to worry about the parents at all. This is because
7027 * we can use the last_unlink_trans field to record renames
7028 * and other fun in this file.
7030 if (S_ISREG(inode->vfs_inode.i_mode) &&
7031 inode->generation < trans->transid &&
7032 inode->last_unlink_trans < trans->transid) {
7037 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7038 log_dentries = true;
7041 * On unlink we must make sure all our current and old parent directory
7042 * inodes are fully logged. This is to prevent leaving dangling
7043 * directory index entries in directories that were our parents but are
7044 * not anymore. Not doing this results in old parent directory being
7045 * impossible to delete after log replay (rmdir will always fail with
7046 * error -ENOTEMPTY).
7052 * ln testdir/foo testdir/bar
7054 * unlink testdir/bar
7055 * xfs_io -c fsync testdir/foo
7057 * mount fs, triggers log replay
7059 * If we don't log the parent directory (testdir), after log replay the
7060 * directory still has an entry pointing to the file inode using the bar
7061 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7062 * the file inode has a link count of 1.
7068 * ln foo testdir/foo2
7069 * ln foo testdir/foo3
7071 * unlink testdir/foo3
7072 * xfs_io -c fsync foo
7074 * mount fs, triggers log replay
7076 * Similar as the first example, after log replay the parent directory
7077 * testdir still has an entry pointing to the inode file with name foo3
7078 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7079 * and has a link count of 2.
7081 if (inode->last_unlink_trans >= trans->transid) {
7082 ret = btrfs_log_all_parents(trans, inode, ctx);
7087 ret = log_all_new_ancestors(trans, inode, parent, ctx);
7092 ret = log_new_dir_dentries(trans, inode, ctx);
7097 btrfs_set_log_full_commit(trans);
7098 ret = BTRFS_LOG_FORCE_COMMIT;
7102 btrfs_remove_log_ctx(root, ctx);
7103 btrfs_end_log_trans(root);
7109 * it is not safe to log dentry if the chunk root has added new
7110 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
7111 * If this returns 1, you must commit the transaction to safely get your
7114 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7115 struct dentry *dentry,
7116 struct btrfs_log_ctx *ctx)
7118 struct dentry *parent = dget_parent(dentry);
7121 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7122 LOG_INODE_ALL, ctx);
7129 * should be called during mount to recover any replay any log trees
7132 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7135 struct btrfs_path *path;
7136 struct btrfs_trans_handle *trans;
7137 struct btrfs_key key;
7138 struct btrfs_key found_key;
7139 struct btrfs_root *log;
7140 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7141 struct walk_control wc = {
7142 .process_func = process_one_buffer,
7143 .stage = LOG_WALK_PIN_ONLY,
7146 path = btrfs_alloc_path();
7150 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7152 trans = btrfs_start_transaction(fs_info->tree_root, 0);
7153 if (IS_ERR(trans)) {
7154 ret = PTR_ERR(trans);
7161 ret = walk_log_tree(trans, log_root_tree, &wc);
7163 btrfs_abort_transaction(trans, ret);
7168 key.objectid = BTRFS_TREE_LOG_OBJECTID;
7169 key.offset = (u64)-1;
7170 key.type = BTRFS_ROOT_ITEM_KEY;
7173 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7176 btrfs_abort_transaction(trans, ret);
7180 if (path->slots[0] == 0)
7184 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7186 btrfs_release_path(path);
7187 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7190 log = btrfs_read_tree_root(log_root_tree, &found_key);
7193 btrfs_abort_transaction(trans, ret);
7197 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7199 if (IS_ERR(wc.replay_dest)) {
7200 ret = PTR_ERR(wc.replay_dest);
7203 * We didn't find the subvol, likely because it was
7204 * deleted. This is ok, simply skip this log and go to
7207 * We need to exclude the root because we can't have
7208 * other log replays overwriting this log as we'll read
7209 * it back in a few more times. This will keep our
7210 * block from being modified, and we'll just bail for
7211 * each subsequent pass.
7214 ret = btrfs_pin_extent_for_log_replay(trans,
7217 btrfs_put_root(log);
7221 btrfs_abort_transaction(trans, ret);
7225 wc.replay_dest->log_root = log;
7226 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7228 /* The loop needs to continue due to the root refs */
7229 btrfs_abort_transaction(trans, ret);
7231 ret = walk_log_tree(trans, log, &wc);
7233 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7234 ret = fixup_inode_link_counts(trans, wc.replay_dest,
7237 btrfs_abort_transaction(trans, ret);
7240 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7241 struct btrfs_root *root = wc.replay_dest;
7243 btrfs_release_path(path);
7246 * We have just replayed everything, and the highest
7247 * objectid of fs roots probably has changed in case
7248 * some inode_item's got replayed.
7250 * root->objectid_mutex is not acquired as log replay
7251 * could only happen during mount.
7253 ret = btrfs_init_root_free_objectid(root);
7255 btrfs_abort_transaction(trans, ret);
7258 wc.replay_dest->log_root = NULL;
7259 btrfs_put_root(wc.replay_dest);
7260 btrfs_put_root(log);
7265 if (found_key.offset == 0)
7267 key.offset = found_key.offset - 1;
7269 btrfs_release_path(path);
7271 /* step one is to pin it all, step two is to replay just inodes */
7274 wc.process_func = replay_one_buffer;
7275 wc.stage = LOG_WALK_REPLAY_INODES;
7278 /* step three is to replay everything */
7279 if (wc.stage < LOG_WALK_REPLAY_ALL) {
7284 btrfs_free_path(path);
7286 /* step 4: commit the transaction, which also unpins the blocks */
7287 ret = btrfs_commit_transaction(trans);
7291 log_root_tree->log_root = NULL;
7292 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7293 btrfs_put_root(log_root_tree);
7298 btrfs_end_transaction(wc.trans);
7299 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7300 btrfs_free_path(path);
7305 * there are some corner cases where we want to force a full
7306 * commit instead of allowing a directory to be logged.
7308 * They revolve around files there were unlinked from the directory, and
7309 * this function updates the parent directory so that a full commit is
7310 * properly done if it is fsync'd later after the unlinks are done.
7312 * Must be called before the unlink operations (updates to the subvolume tree,
7313 * inodes, etc) are done.
7315 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7316 struct btrfs_inode *dir, struct btrfs_inode *inode,
7320 * when we're logging a file, if it hasn't been renamed
7321 * or unlinked, and its inode is fully committed on disk,
7322 * we don't have to worry about walking up the directory chain
7323 * to log its parents.
7325 * So, we use the last_unlink_trans field to put this transid
7326 * into the file. When the file is logged we check it and
7327 * don't log the parents if the file is fully on disk.
7329 mutex_lock(&inode->log_mutex);
7330 inode->last_unlink_trans = trans->transid;
7331 mutex_unlock(&inode->log_mutex);
7334 * if this directory was already logged any new
7335 * names for this file/dir will get recorded
7337 if (dir->logged_trans == trans->transid)
7341 * if the inode we're about to unlink was logged,
7342 * the log will be properly updated for any new names
7344 if (inode->logged_trans == trans->transid)
7348 * when renaming files across directories, if the directory
7349 * there we're unlinking from gets fsync'd later on, there's
7350 * no way to find the destination directory later and fsync it
7351 * properly. So, we have to be conservative and force commits
7352 * so the new name gets discovered.
7357 /* we can safely do the unlink without any special recording */
7361 mutex_lock(&dir->log_mutex);
7362 dir->last_unlink_trans = trans->transid;
7363 mutex_unlock(&dir->log_mutex);
7367 * Make sure that if someone attempts to fsync the parent directory of a deleted
7368 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7369 * that after replaying the log tree of the parent directory's root we will not
7370 * see the snapshot anymore and at log replay time we will not see any log tree
7371 * corresponding to the deleted snapshot's root, which could lead to replaying
7372 * it after replaying the log tree of the parent directory (which would replay
7373 * the snapshot delete operation).
7375 * Must be called before the actual snapshot destroy operation (updates to the
7376 * parent root and tree of tree roots trees, etc) are done.
7378 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7379 struct btrfs_inode *dir)
7381 mutex_lock(&dir->log_mutex);
7382 dir->last_unlink_trans = trans->transid;
7383 mutex_unlock(&dir->log_mutex);
7387 * Update the log after adding a new name for an inode.
7389 * @trans: Transaction handle.
7390 * @old_dentry: The dentry associated with the old name and the old
7392 * @old_dir: The inode of the previous parent directory for the case
7393 * of a rename. For a link operation, it must be NULL.
7394 * @old_dir_index: The index number associated with the old name, meaningful
7395 * only for rename operations (when @old_dir is not NULL).
7396 * Ignored for link operations.
7397 * @parent: The dentry associated with the directory under which the
7398 * new name is located.
7400 * Call this after adding a new name for an inode, as a result of a link or
7401 * rename operation, and it will properly update the log to reflect the new name.
7403 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7404 struct dentry *old_dentry, struct btrfs_inode *old_dir,
7405 u64 old_dir_index, struct dentry *parent)
7407 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7408 struct btrfs_root *root = inode->root;
7409 struct btrfs_log_ctx ctx;
7410 bool log_pinned = false;
7414 * this will force the logging code to walk the dentry chain
7417 if (!S_ISDIR(inode->vfs_inode.i_mode))
7418 inode->last_unlink_trans = trans->transid;
7421 * if this inode hasn't been logged and directory we're renaming it
7422 * from hasn't been logged, we don't need to log it
7424 ret = inode_logged(trans, inode, NULL);
7427 } else if (ret == 0) {
7431 * If the inode was not logged and we are doing a rename (old_dir is not
7432 * NULL), check if old_dir was logged - if it was not we can return and
7435 ret = inode_logged(trans, old_dir, NULL);
7444 * If we are doing a rename (old_dir is not NULL) from a directory that
7445 * was previously logged, make sure that on log replay we get the old
7446 * dir entry deleted. This is needed because we will also log the new
7447 * name of the renamed inode, so we need to make sure that after log
7448 * replay we don't end up with both the new and old dir entries existing.
7450 if (old_dir && old_dir->logged_trans == trans->transid) {
7451 struct btrfs_root *log = old_dir->root->log_root;
7452 struct btrfs_path *path;
7453 struct fscrypt_name fname;
7455 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7457 ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7458 &old_dentry->d_name, 0, &fname);
7462 * We have two inodes to update in the log, the old directory and
7463 * the inode that got renamed, so we must pin the log to prevent
7464 * anyone from syncing the log until we have updated both inodes
7467 ret = join_running_log_trans(root);
7469 * At least one of the inodes was logged before, so this should
7470 * not fail, but if it does, it's not serious, just bail out and
7471 * mark the log for a full commit.
7473 if (WARN_ON_ONCE(ret < 0)) {
7474 fscrypt_free_filename(&fname);
7480 path = btrfs_alloc_path();
7483 fscrypt_free_filename(&fname);
7488 * Other concurrent task might be logging the old directory,
7489 * as it can be triggered when logging other inode that had or
7490 * still has a dentry in the old directory. We lock the old
7491 * directory's log_mutex to ensure the deletion of the old
7492 * name is persisted, because during directory logging we
7493 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7494 * the old name's dir index item is in the delayed items, so
7495 * it could be missed by an in progress directory logging.
7497 mutex_lock(&old_dir->log_mutex);
7498 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7499 &fname.disk_name, old_dir_index);
7502 * The dentry does not exist in the log, so record its
7505 btrfs_release_path(path);
7506 ret = insert_dir_log_key(trans, log, path,
7508 old_dir_index, old_dir_index);
7510 mutex_unlock(&old_dir->log_mutex);
7512 btrfs_free_path(path);
7513 fscrypt_free_filename(&fname);
7518 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7519 ctx.logging_new_name = true;
7521 * We don't care about the return value. If we fail to log the new name
7522 * then we know the next attempt to sync the log will fallback to a full
7523 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7524 * we don't need to worry about getting a log committed that has an
7525 * inconsistent state after a rename operation.
7527 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7528 ASSERT(list_empty(&ctx.conflict_inodes));
7531 * If an error happened mark the log for a full commit because it's not
7532 * consistent and up to date or we couldn't find out if one of the
7533 * inodes was logged before in this transaction. Do it before unpinning
7534 * the log, to avoid any races with someone else trying to commit it.
7537 btrfs_set_log_full_commit(trans);
7539 btrfs_end_log_trans(root);