1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Routines having to do with the 'struct sk_buff' memory handlers.
9 * Alan Cox : Fixed the worst of the load
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
32 * The functions in this file will not compile correctly with gcc 2.4.x
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
41 #include <linux/interrupt.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/bitfield.h>
62 #include <linux/if_vlan.h>
63 #include <linux/mpls.h>
64 #include <linux/kcov.h>
66 #include <net/protocol.h>
69 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
74 #include <net/mptcp.h>
76 #include <net/page_pool.h>
77 #include <net/dropreason.h>
79 #include <linux/uaccess.h>
80 #include <trace/events/skb.h>
81 #include <linux/highmem.h>
82 #include <linux/capability.h>
83 #include <linux/user_namespace.h>
84 #include <linux/indirect_call_wrapper.h>
85 #include <linux/textsearch.h>
88 #include "sock_destructor.h"
90 struct kmem_cache *skbuff_cache __ro_after_init;
91 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
92 #ifdef CONFIG_SKB_EXTENSIONS
93 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
97 static struct kmem_cache *skb_small_head_cache __ro_after_init;
99 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
101 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
102 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
103 * size, and we can differentiate heads from skb_small_head_cache
104 * vs system slabs by looking at their size (skb_end_offset()).
106 #define SKB_SMALL_HEAD_CACHE_SIZE \
107 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \
108 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \
111 #define SKB_SMALL_HEAD_HEADROOM \
112 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
114 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
115 EXPORT_SYMBOL(sysctl_max_skb_frags);
118 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
119 static const char * const drop_reasons[] = {
120 [SKB_CONSUMED] = "CONSUMED",
121 DEFINE_DROP_REASON(FN, FN)
124 static const struct drop_reason_list drop_reasons_core = {
125 .reasons = drop_reasons,
126 .n_reasons = ARRAY_SIZE(drop_reasons),
129 const struct drop_reason_list __rcu *
130 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
131 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
133 EXPORT_SYMBOL(drop_reasons_by_subsys);
136 * drop_reasons_register_subsys - register another drop reason subsystem
137 * @subsys: the subsystem to register, must not be the core
138 * @list: the list of drop reasons within the subsystem, must point to
139 * a statically initialized list
141 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
142 const struct drop_reason_list *list)
144 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
145 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
146 "invalid subsystem %d\n", subsys))
149 /* must point to statically allocated memory, so INIT is OK */
150 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
152 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
155 * drop_reasons_unregister_subsys - unregister a drop reason subsystem
156 * @subsys: the subsystem to remove, must not be the core
158 * Note: This will synchronize_rcu() to ensure no users when it returns.
160 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
162 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
163 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
164 "invalid subsystem %d\n", subsys))
167 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
171 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
174 * skb_panic - private function for out-of-line support
178 * @msg: skb_over_panic or skb_under_panic
180 * Out-of-line support for skb_put() and skb_push().
181 * Called via the wrapper skb_over_panic() or skb_under_panic().
182 * Keep out of line to prevent kernel bloat.
183 * __builtin_return_address is not used because it is not always reliable.
185 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
188 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
189 msg, addr, skb->len, sz, skb->head, skb->data,
190 (unsigned long)skb->tail, (unsigned long)skb->end,
191 skb->dev ? skb->dev->name : "<NULL>");
195 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
197 skb_panic(skb, sz, addr, __func__);
200 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
202 skb_panic(skb, sz, addr, __func__);
205 #define NAPI_SKB_CACHE_SIZE 64
206 #define NAPI_SKB_CACHE_BULK 16
207 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
209 #if PAGE_SIZE == SZ_4K
211 #define NAPI_HAS_SMALL_PAGE_FRAG 1
212 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc)
214 /* specialized page frag allocator using a single order 0 page
215 * and slicing it into 1K sized fragment. Constrained to systems
216 * with a very limited amount of 1K fragments fitting a single
217 * page - to avoid excessive truesize underestimation
220 struct page_frag_1k {
226 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
231 offset = nc->offset - SZ_1K;
232 if (likely(offset >= 0))
235 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
239 nc->va = page_address(page);
240 nc->pfmemalloc = page_is_pfmemalloc(page);
241 offset = PAGE_SIZE - SZ_1K;
242 page_ref_add(page, offset / SZ_1K);
246 return nc->va + offset;
250 /* the small page is actually unused in this build; add dummy helpers
251 * to please the compiler and avoid later preprocessor's conditionals
253 #define NAPI_HAS_SMALL_PAGE_FRAG 0
254 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false
256 struct page_frag_1k {
259 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
266 struct napi_alloc_cache {
267 struct page_frag_cache page;
268 struct page_frag_1k page_small;
269 unsigned int skb_count;
270 void *skb_cache[NAPI_SKB_CACHE_SIZE];
273 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
274 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
276 /* Double check that napi_get_frags() allocates skbs with
277 * skb->head being backed by slab, not a page fragment.
278 * This is to make sure bug fixed in 3226b158e67c
279 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
280 * does not accidentally come back.
282 void napi_get_frags_check(struct napi_struct *napi)
287 skb = napi_get_frags(napi);
288 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
289 napi_free_frags(napi);
293 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
295 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
297 fragsz = SKB_DATA_ALIGN(fragsz);
299 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
301 EXPORT_SYMBOL(__napi_alloc_frag_align);
303 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
307 fragsz = SKB_DATA_ALIGN(fragsz);
308 if (in_hardirq() || irqs_disabled()) {
309 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
311 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
313 struct napi_alloc_cache *nc;
316 nc = this_cpu_ptr(&napi_alloc_cache);
317 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
322 EXPORT_SYMBOL(__netdev_alloc_frag_align);
324 static struct sk_buff *napi_skb_cache_get(void)
326 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
329 if (unlikely(!nc->skb_count)) {
330 nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache,
334 if (unlikely(!nc->skb_count))
338 skb = nc->skb_cache[--nc->skb_count];
339 kasan_unpoison_object_data(skbuff_cache, skb);
344 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
347 struct skb_shared_info *shinfo;
349 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
351 /* Assumes caller memset cleared SKB */
352 skb->truesize = SKB_TRUESIZE(size);
353 refcount_set(&skb->users, 1);
356 skb_reset_tail_pointer(skb);
357 skb_set_end_offset(skb, size);
358 skb->mac_header = (typeof(skb->mac_header))~0U;
359 skb->transport_header = (typeof(skb->transport_header))~0U;
360 skb->alloc_cpu = raw_smp_processor_id();
361 /* make sure we initialize shinfo sequentially */
362 shinfo = skb_shinfo(skb);
363 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
364 atomic_set(&shinfo->dataref, 1);
366 skb_set_kcov_handle(skb, kcov_common_handle());
369 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
374 /* Must find the allocation size (and grow it to match). */
376 /* krealloc() will immediately return "data" when
377 * "ksize(data)" is requested: it is the existing upper
378 * bounds. As a result, GFP_ATOMIC will be ignored. Note
379 * that this "new" pointer needs to be passed back to the
380 * caller for use so the __alloc_size hinting will be
383 resized = krealloc(data, *size, GFP_ATOMIC);
384 WARN_ON_ONCE(resized != data);
388 /* build_skb() variant which can operate on slab buffers.
389 * Note that this should be used sparingly as slab buffers
390 * cannot be combined efficiently by GRO!
392 struct sk_buff *slab_build_skb(void *data)
397 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
401 memset(skb, 0, offsetof(struct sk_buff, tail));
402 data = __slab_build_skb(skb, data, &size);
403 __finalize_skb_around(skb, data, size);
407 EXPORT_SYMBOL(slab_build_skb);
409 /* Caller must provide SKB that is memset cleared */
410 static void __build_skb_around(struct sk_buff *skb, void *data,
411 unsigned int frag_size)
413 unsigned int size = frag_size;
415 /* frag_size == 0 is considered deprecated now. Callers
416 * using slab buffer should use slab_build_skb() instead.
418 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
419 data = __slab_build_skb(skb, data, &size);
421 __finalize_skb_around(skb, data, size);
425 * __build_skb - build a network buffer
426 * @data: data buffer provided by caller
427 * @frag_size: size of data (must not be 0)
429 * Allocate a new &sk_buff. Caller provides space holding head and
430 * skb_shared_info. @data must have been allocated from the page
431 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
432 * allocation is deprecated, and callers should use slab_build_skb()
434 * The return is the new skb buffer.
435 * On a failure the return is %NULL, and @data is not freed.
437 * Before IO, driver allocates only data buffer where NIC put incoming frame
438 * Driver should add room at head (NET_SKB_PAD) and
439 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
440 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
441 * before giving packet to stack.
442 * RX rings only contains data buffers, not full skbs.
444 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
448 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
452 memset(skb, 0, offsetof(struct sk_buff, tail));
453 __build_skb_around(skb, data, frag_size);
458 /* build_skb() is wrapper over __build_skb(), that specifically
459 * takes care of skb->head and skb->pfmemalloc
461 struct sk_buff *build_skb(void *data, unsigned int frag_size)
463 struct sk_buff *skb = __build_skb(data, frag_size);
465 if (likely(skb && frag_size)) {
467 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
471 EXPORT_SYMBOL(build_skb);
474 * build_skb_around - build a network buffer around provided skb
475 * @skb: sk_buff provide by caller, must be memset cleared
476 * @data: data buffer provided by caller
477 * @frag_size: size of data
479 struct sk_buff *build_skb_around(struct sk_buff *skb,
480 void *data, unsigned int frag_size)
485 __build_skb_around(skb, data, frag_size);
489 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
493 EXPORT_SYMBOL(build_skb_around);
496 * __napi_build_skb - build a network buffer
497 * @data: data buffer provided by caller
498 * @frag_size: size of data
500 * Version of __build_skb() that uses NAPI percpu caches to obtain
501 * skbuff_head instead of inplace allocation.
503 * Returns a new &sk_buff on success, %NULL on allocation failure.
505 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
509 skb = napi_skb_cache_get();
513 memset(skb, 0, offsetof(struct sk_buff, tail));
514 __build_skb_around(skb, data, frag_size);
520 * napi_build_skb - build a network buffer
521 * @data: data buffer provided by caller
522 * @frag_size: size of data
524 * Version of __napi_build_skb() that takes care of skb->head_frag
525 * and skb->pfmemalloc when the data is a page or page fragment.
527 * Returns a new &sk_buff on success, %NULL on allocation failure.
529 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
531 struct sk_buff *skb = __napi_build_skb(data, frag_size);
533 if (likely(skb) && frag_size) {
535 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
540 EXPORT_SYMBOL(napi_build_skb);
543 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
544 * the caller if emergency pfmemalloc reserves are being used. If it is and
545 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
546 * may be used. Otherwise, the packet data may be discarded until enough
549 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
552 bool ret_pfmemalloc = false;
553 unsigned int obj_size;
556 obj_size = SKB_HEAD_ALIGN(*size);
557 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
558 !(flags & KMALLOC_NOT_NORMAL_BITS)) {
559 obj = kmem_cache_alloc_node(skb_small_head_cache,
560 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
562 *size = SKB_SMALL_HEAD_CACHE_SIZE;
563 if (obj || !(gfp_pfmemalloc_allowed(flags)))
565 /* Try again but now we are using pfmemalloc reserves */
566 ret_pfmemalloc = true;
567 obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node);
570 *size = obj_size = kmalloc_size_roundup(obj_size);
572 * Try a regular allocation, when that fails and we're not entitled
573 * to the reserves, fail.
575 obj = kmalloc_node_track_caller(obj_size,
576 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
578 if (obj || !(gfp_pfmemalloc_allowed(flags)))
581 /* Try again but now we are using pfmemalloc reserves */
582 ret_pfmemalloc = true;
583 obj = kmalloc_node_track_caller(obj_size, flags, node);
587 *pfmemalloc = ret_pfmemalloc;
592 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
593 * 'private' fields and also do memory statistics to find all the
599 * __alloc_skb - allocate a network buffer
600 * @size: size to allocate
601 * @gfp_mask: allocation mask
602 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
603 * instead of head cache and allocate a cloned (child) skb.
604 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
605 * allocations in case the data is required for writeback
606 * @node: numa node to allocate memory on
608 * Allocate a new &sk_buff. The returned buffer has no headroom and a
609 * tail room of at least size bytes. The object has a reference count
610 * of one. The return is the buffer. On a failure the return is %NULL.
612 * Buffers may only be allocated from interrupts using a @gfp_mask of
615 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
618 struct kmem_cache *cache;
623 cache = (flags & SKB_ALLOC_FCLONE)
624 ? skbuff_fclone_cache : skbuff_cache;
626 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
627 gfp_mask |= __GFP_MEMALLOC;
630 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
631 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
632 skb = napi_skb_cache_get();
634 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
639 /* We do our best to align skb_shared_info on a separate cache
640 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
641 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
642 * Both skb->head and skb_shared_info are cache line aligned.
644 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
647 /* kmalloc_size_roundup() might give us more room than requested.
648 * Put skb_shared_info exactly at the end of allocated zone,
649 * to allow max possible filling before reallocation.
651 prefetchw(data + SKB_WITH_OVERHEAD(size));
654 * Only clear those fields we need to clear, not those that we will
655 * actually initialise below. Hence, don't put any more fields after
656 * the tail pointer in struct sk_buff!
658 memset(skb, 0, offsetof(struct sk_buff, tail));
659 __build_skb_around(skb, data, size);
660 skb->pfmemalloc = pfmemalloc;
662 if (flags & SKB_ALLOC_FCLONE) {
663 struct sk_buff_fclones *fclones;
665 fclones = container_of(skb, struct sk_buff_fclones, skb1);
667 skb->fclone = SKB_FCLONE_ORIG;
668 refcount_set(&fclones->fclone_ref, 1);
674 kmem_cache_free(cache, skb);
677 EXPORT_SYMBOL(__alloc_skb);
680 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
681 * @dev: network device to receive on
682 * @len: length to allocate
683 * @gfp_mask: get_free_pages mask, passed to alloc_skb
685 * Allocate a new &sk_buff and assign it a usage count of one. The
686 * buffer has NET_SKB_PAD headroom built in. Users should allocate
687 * the headroom they think they need without accounting for the
688 * built in space. The built in space is used for optimisations.
690 * %NULL is returned if there is no free memory.
692 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
695 struct page_frag_cache *nc;
702 /* If requested length is either too small or too big,
703 * we use kmalloc() for skb->head allocation.
705 if (len <= SKB_WITH_OVERHEAD(1024) ||
706 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
707 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
708 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
714 len = SKB_HEAD_ALIGN(len);
716 if (sk_memalloc_socks())
717 gfp_mask |= __GFP_MEMALLOC;
719 if (in_hardirq() || irqs_disabled()) {
720 nc = this_cpu_ptr(&netdev_alloc_cache);
721 data = page_frag_alloc(nc, len, gfp_mask);
722 pfmemalloc = nc->pfmemalloc;
725 nc = this_cpu_ptr(&napi_alloc_cache.page);
726 data = page_frag_alloc(nc, len, gfp_mask);
727 pfmemalloc = nc->pfmemalloc;
734 skb = __build_skb(data, len);
735 if (unlikely(!skb)) {
745 skb_reserve(skb, NET_SKB_PAD);
751 EXPORT_SYMBOL(__netdev_alloc_skb);
754 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
755 * @napi: napi instance this buffer was allocated for
756 * @len: length to allocate
757 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
759 * Allocate a new sk_buff for use in NAPI receive. This buffer will
760 * attempt to allocate the head from a special reserved region used
761 * only for NAPI Rx allocation. By doing this we can save several
762 * CPU cycles by avoiding having to disable and re-enable IRQs.
764 * %NULL is returned if there is no free memory.
766 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
769 struct napi_alloc_cache *nc;
774 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
775 len += NET_SKB_PAD + NET_IP_ALIGN;
777 /* If requested length is either too small or too big,
778 * we use kmalloc() for skb->head allocation.
779 * When the small frag allocator is available, prefer it over kmalloc
780 * for small fragments
782 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
783 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
784 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
785 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
792 nc = this_cpu_ptr(&napi_alloc_cache);
794 if (sk_memalloc_socks())
795 gfp_mask |= __GFP_MEMALLOC;
797 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
798 /* we are artificially inflating the allocation size, but
799 * that is not as bad as it may look like, as:
800 * - 'len' less than GRO_MAX_HEAD makes little sense
801 * - On most systems, larger 'len' values lead to fragment
802 * size above 512 bytes
803 * - kmalloc would use the kmalloc-1k slab for such values
804 * - Builds with smaller GRO_MAX_HEAD will very likely do
805 * little networking, as that implies no WiFi and no
806 * tunnels support, and 32 bits arches.
810 data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
811 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
813 len = SKB_HEAD_ALIGN(len);
815 data = page_frag_alloc(&nc->page, len, gfp_mask);
816 pfmemalloc = nc->page.pfmemalloc;
822 skb = __napi_build_skb(data, len);
823 if (unlikely(!skb)) {
833 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
834 skb->dev = napi->dev;
839 EXPORT_SYMBOL(__napi_alloc_skb);
841 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
842 int size, unsigned int truesize)
844 skb_fill_page_desc(skb, i, page, off, size);
846 skb->data_len += size;
847 skb->truesize += truesize;
849 EXPORT_SYMBOL(skb_add_rx_frag);
851 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
852 unsigned int truesize)
854 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
856 skb_frag_size_add(frag, size);
858 skb->data_len += size;
859 skb->truesize += truesize;
861 EXPORT_SYMBOL(skb_coalesce_rx_frag);
863 static void skb_drop_list(struct sk_buff **listp)
865 kfree_skb_list(*listp);
869 static inline void skb_drop_fraglist(struct sk_buff *skb)
871 skb_drop_list(&skb_shinfo(skb)->frag_list);
874 static void skb_clone_fraglist(struct sk_buff *skb)
876 struct sk_buff *list;
878 skb_walk_frags(skb, list)
882 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe)
884 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
886 return page_pool_return_skb_page(virt_to_page(data), napi_safe);
889 static void skb_kfree_head(void *head, unsigned int end_offset)
891 if (end_offset == SKB_SMALL_HEAD_HEADROOM)
892 kmem_cache_free(skb_small_head_cache, head);
897 static void skb_free_head(struct sk_buff *skb, bool napi_safe)
899 unsigned char *head = skb->head;
901 if (skb->head_frag) {
902 if (skb_pp_recycle(skb, head, napi_safe))
906 skb_kfree_head(head, skb_end_offset(skb));
910 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason,
913 struct skb_shared_info *shinfo = skb_shinfo(skb);
917 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
921 if (skb_zcopy(skb)) {
922 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
924 skb_zcopy_clear(skb, true);
929 for (i = 0; i < shinfo->nr_frags; i++)
930 napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe);
933 if (shinfo->frag_list)
934 kfree_skb_list_reason(shinfo->frag_list, reason);
936 skb_free_head(skb, napi_safe);
938 /* When we clone an SKB we copy the reycling bit. The pp_recycle
939 * bit is only set on the head though, so in order to avoid races
940 * while trying to recycle fragments on __skb_frag_unref() we need
941 * to make one SKB responsible for triggering the recycle path.
942 * So disable the recycling bit if an SKB is cloned and we have
943 * additional references to the fragmented part of the SKB.
944 * Eventually the last SKB will have the recycling bit set and it's
945 * dataref set to 0, which will trigger the recycling
951 * Free an skbuff by memory without cleaning the state.
953 static void kfree_skbmem(struct sk_buff *skb)
955 struct sk_buff_fclones *fclones;
957 switch (skb->fclone) {
958 case SKB_FCLONE_UNAVAILABLE:
959 kmem_cache_free(skbuff_cache, skb);
962 case SKB_FCLONE_ORIG:
963 fclones = container_of(skb, struct sk_buff_fclones, skb1);
965 /* We usually free the clone (TX completion) before original skb
966 * This test would have no chance to be true for the clone,
967 * while here, branch prediction will be good.
969 if (refcount_read(&fclones->fclone_ref) == 1)
973 default: /* SKB_FCLONE_CLONE */
974 fclones = container_of(skb, struct sk_buff_fclones, skb2);
977 if (!refcount_dec_and_test(&fclones->fclone_ref))
980 kmem_cache_free(skbuff_fclone_cache, fclones);
983 void skb_release_head_state(struct sk_buff *skb)
986 if (skb->destructor) {
987 DEBUG_NET_WARN_ON_ONCE(in_hardirq());
988 skb->destructor(skb);
990 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
991 nf_conntrack_put(skb_nfct(skb));
996 /* Free everything but the sk_buff shell. */
997 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason,
1000 skb_release_head_state(skb);
1001 if (likely(skb->head))
1002 skb_release_data(skb, reason, napi_safe);
1006 * __kfree_skb - private function
1009 * Free an sk_buff. Release anything attached to the buffer.
1010 * Clean the state. This is an internal helper function. Users should
1011 * always call kfree_skb
1014 void __kfree_skb(struct sk_buff *skb)
1016 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false);
1019 EXPORT_SYMBOL(__kfree_skb);
1021 static __always_inline
1022 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1024 if (unlikely(!skb_unref(skb)))
1027 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1028 u32_get_bits(reason,
1029 SKB_DROP_REASON_SUBSYS_MASK) >=
1030 SKB_DROP_REASON_SUBSYS_NUM);
1032 if (reason == SKB_CONSUMED)
1033 trace_consume_skb(skb, __builtin_return_address(0));
1035 trace_kfree_skb(skb, __builtin_return_address(0), reason);
1040 * kfree_skb_reason - free an sk_buff with special reason
1041 * @skb: buffer to free
1042 * @reason: reason why this skb is dropped
1044 * Drop a reference to the buffer and free it if the usage count has
1045 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1049 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1051 if (__kfree_skb_reason(skb, reason))
1054 EXPORT_SYMBOL(kfree_skb_reason);
1056 #define KFREE_SKB_BULK_SIZE 16
1058 struct skb_free_array {
1059 unsigned int skb_count;
1060 void *skb_array[KFREE_SKB_BULK_SIZE];
1063 static void kfree_skb_add_bulk(struct sk_buff *skb,
1064 struct skb_free_array *sa,
1065 enum skb_drop_reason reason)
1067 /* if SKB is a clone, don't handle this case */
1068 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1073 skb_release_all(skb, reason, false);
1074 sa->skb_array[sa->skb_count++] = skb;
1076 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1077 kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE,
1084 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1086 struct skb_free_array sa;
1091 struct sk_buff *next = segs->next;
1093 if (__kfree_skb_reason(segs, reason)) {
1094 skb_poison_list(segs);
1095 kfree_skb_add_bulk(segs, &sa, reason);
1102 kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array);
1104 EXPORT_SYMBOL(kfree_skb_list_reason);
1106 /* Dump skb information and contents.
1108 * Must only be called from net_ratelimit()-ed paths.
1110 * Dumps whole packets if full_pkt, only headers otherwise.
1112 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1114 struct skb_shared_info *sh = skb_shinfo(skb);
1115 struct net_device *dev = skb->dev;
1116 struct sock *sk = skb->sk;
1117 struct sk_buff *list_skb;
1118 bool has_mac, has_trans;
1119 int headroom, tailroom;
1120 int i, len, seg_len;
1125 len = min_t(int, skb->len, MAX_HEADER + 128);
1127 headroom = skb_headroom(skb);
1128 tailroom = skb_tailroom(skb);
1130 has_mac = skb_mac_header_was_set(skb);
1131 has_trans = skb_transport_header_was_set(skb);
1133 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1134 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1135 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1136 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1137 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1138 level, skb->len, headroom, skb_headlen(skb), tailroom,
1139 has_mac ? skb->mac_header : -1,
1140 has_mac ? skb_mac_header_len(skb) : -1,
1141 skb->network_header,
1142 has_trans ? skb_network_header_len(skb) : -1,
1143 has_trans ? skb->transport_header : -1,
1144 sh->tx_flags, sh->nr_frags,
1145 sh->gso_size, sh->gso_type, sh->gso_segs,
1146 skb->csum, skb->ip_summed, skb->csum_complete_sw,
1147 skb->csum_valid, skb->csum_level,
1148 skb->hash, skb->sw_hash, skb->l4_hash,
1149 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1152 printk("%sdev name=%s feat=%pNF\n",
1153 level, dev->name, &dev->features);
1155 printk("%ssk family=%hu type=%u proto=%u\n",
1156 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1158 if (full_pkt && headroom)
1159 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1160 16, 1, skb->head, headroom, false);
1162 seg_len = min_t(int, skb_headlen(skb), len);
1164 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
1165 16, 1, skb->data, seg_len, false);
1168 if (full_pkt && tailroom)
1169 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1170 16, 1, skb_tail_pointer(skb), tailroom, false);
1172 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1173 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1174 u32 p_off, p_len, copied;
1178 skb_frag_foreach_page(frag, skb_frag_off(frag),
1179 skb_frag_size(frag), p, p_off, p_len,
1181 seg_len = min_t(int, p_len, len);
1182 vaddr = kmap_atomic(p);
1183 print_hex_dump(level, "skb frag: ",
1185 16, 1, vaddr + p_off, seg_len, false);
1186 kunmap_atomic(vaddr);
1193 if (full_pkt && skb_has_frag_list(skb)) {
1194 printk("skb fraglist:\n");
1195 skb_walk_frags(skb, list_skb)
1196 skb_dump(level, list_skb, true);
1199 EXPORT_SYMBOL(skb_dump);
1202 * skb_tx_error - report an sk_buff xmit error
1203 * @skb: buffer that triggered an error
1205 * Report xmit error if a device callback is tracking this skb.
1206 * skb must be freed afterwards.
1208 void skb_tx_error(struct sk_buff *skb)
1211 skb_zcopy_downgrade_managed(skb);
1212 skb_zcopy_clear(skb, true);
1215 EXPORT_SYMBOL(skb_tx_error);
1217 #ifdef CONFIG_TRACEPOINTS
1219 * consume_skb - free an skbuff
1220 * @skb: buffer to free
1222 * Drop a ref to the buffer and free it if the usage count has hit zero
1223 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
1224 * is being dropped after a failure and notes that
1226 void consume_skb(struct sk_buff *skb)
1228 if (!skb_unref(skb))
1231 trace_consume_skb(skb, __builtin_return_address(0));
1234 EXPORT_SYMBOL(consume_skb);
1238 * __consume_stateless_skb - free an skbuff, assuming it is stateless
1239 * @skb: buffer to free
1241 * Alike consume_skb(), but this variant assumes that this is the last
1242 * skb reference and all the head states have been already dropped
1244 void __consume_stateless_skb(struct sk_buff *skb)
1246 trace_consume_skb(skb, __builtin_return_address(0));
1247 skb_release_data(skb, SKB_CONSUMED, false);
1251 static void napi_skb_cache_put(struct sk_buff *skb)
1253 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1256 kasan_poison_object_data(skbuff_cache, skb);
1257 nc->skb_cache[nc->skb_count++] = skb;
1259 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1260 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1261 kasan_unpoison_object_data(skbuff_cache,
1264 kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF,
1265 nc->skb_cache + NAPI_SKB_CACHE_HALF);
1266 nc->skb_count = NAPI_SKB_CACHE_HALF;
1270 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1272 skb_release_all(skb, reason, true);
1273 napi_skb_cache_put(skb);
1276 void napi_skb_free_stolen_head(struct sk_buff *skb)
1278 if (unlikely(skb->slow_gro)) {
1285 napi_skb_cache_put(skb);
1288 void napi_consume_skb(struct sk_buff *skb, int budget)
1290 /* Zero budget indicate non-NAPI context called us, like netpoll */
1291 if (unlikely(!budget)) {
1292 dev_consume_skb_any(skb);
1296 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1298 if (!skb_unref(skb))
1301 /* if reaching here SKB is ready to free */
1302 trace_consume_skb(skb, __builtin_return_address(0));
1304 /* if SKB is a clone, don't handle this case */
1305 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1310 skb_release_all(skb, SKB_CONSUMED, !!budget);
1311 napi_skb_cache_put(skb);
1313 EXPORT_SYMBOL(napi_consume_skb);
1315 /* Make sure a field is contained by headers group */
1316 #define CHECK_SKB_FIELD(field) \
1317 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \
1318 offsetof(struct sk_buff, headers.field)); \
1320 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1322 new->tstamp = old->tstamp;
1323 /* We do not copy old->sk */
1324 new->dev = old->dev;
1325 memcpy(new->cb, old->cb, sizeof(old->cb));
1326 skb_dst_copy(new, old);
1327 __skb_ext_copy(new, old);
1328 __nf_copy(new, old, false);
1330 /* Note : this field could be in the headers group.
1331 * It is not yet because we do not want to have a 16 bit hole
1333 new->queue_mapping = old->queue_mapping;
1335 memcpy(&new->headers, &old->headers, sizeof(new->headers));
1336 CHECK_SKB_FIELD(protocol);
1337 CHECK_SKB_FIELD(csum);
1338 CHECK_SKB_FIELD(hash);
1339 CHECK_SKB_FIELD(priority);
1340 CHECK_SKB_FIELD(skb_iif);
1341 CHECK_SKB_FIELD(vlan_proto);
1342 CHECK_SKB_FIELD(vlan_tci);
1343 CHECK_SKB_FIELD(transport_header);
1344 CHECK_SKB_FIELD(network_header);
1345 CHECK_SKB_FIELD(mac_header);
1346 CHECK_SKB_FIELD(inner_protocol);
1347 CHECK_SKB_FIELD(inner_transport_header);
1348 CHECK_SKB_FIELD(inner_network_header);
1349 CHECK_SKB_FIELD(inner_mac_header);
1350 CHECK_SKB_FIELD(mark);
1351 #ifdef CONFIG_NETWORK_SECMARK
1352 CHECK_SKB_FIELD(secmark);
1354 #ifdef CONFIG_NET_RX_BUSY_POLL
1355 CHECK_SKB_FIELD(napi_id);
1357 CHECK_SKB_FIELD(alloc_cpu);
1359 CHECK_SKB_FIELD(sender_cpu);
1361 #ifdef CONFIG_NET_SCHED
1362 CHECK_SKB_FIELD(tc_index);
1368 * You should not add any new code to this function. Add it to
1369 * __copy_skb_header above instead.
1371 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1373 #define C(x) n->x = skb->x
1375 n->next = n->prev = NULL;
1377 __copy_skb_header(n, skb);
1382 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1388 n->destructor = NULL;
1395 refcount_set(&n->users, 1);
1397 atomic_inc(&(skb_shinfo(skb)->dataref));
1405 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1406 * @first: first sk_buff of the msg
1408 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1412 n = alloc_skb(0, GFP_ATOMIC);
1416 n->len = first->len;
1417 n->data_len = first->len;
1418 n->truesize = first->truesize;
1420 skb_shinfo(n)->frag_list = first;
1422 __copy_skb_header(n, first);
1423 n->destructor = NULL;
1427 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1430 * skb_morph - morph one skb into another
1431 * @dst: the skb to receive the contents
1432 * @src: the skb to supply the contents
1434 * This is identical to skb_clone except that the target skb is
1435 * supplied by the user.
1437 * The target skb is returned upon exit.
1439 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1441 skb_release_all(dst, SKB_CONSUMED, false);
1442 return __skb_clone(dst, src);
1444 EXPORT_SYMBOL_GPL(skb_morph);
1446 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1448 unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1449 struct user_struct *user;
1451 if (capable(CAP_IPC_LOCK) || !size)
1454 rlim = rlimit(RLIMIT_MEMLOCK);
1455 if (rlim == RLIM_INFINITY)
1458 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1459 max_pg = rlim >> PAGE_SHIFT;
1460 user = mmp->user ? : current_user();
1462 old_pg = atomic_long_read(&user->locked_vm);
1464 new_pg = old_pg + num_pg;
1465 if (new_pg > max_pg)
1467 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1470 mmp->user = get_uid(user);
1471 mmp->num_pg = num_pg;
1473 mmp->num_pg += num_pg;
1478 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1480 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1483 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1484 free_uid(mmp->user);
1487 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1489 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1491 struct ubuf_info_msgzc *uarg;
1492 struct sk_buff *skb;
1494 WARN_ON_ONCE(!in_task());
1496 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1500 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1501 uarg = (void *)skb->cb;
1502 uarg->mmp.user = NULL;
1504 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1509 uarg->ubuf.callback = msg_zerocopy_callback;
1510 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1512 uarg->bytelen = size;
1514 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1515 refcount_set(&uarg->ubuf.refcnt, 1);
1521 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1523 return container_of((void *)uarg, struct sk_buff, cb);
1526 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1527 struct ubuf_info *uarg)
1530 struct ubuf_info_msgzc *uarg_zc;
1531 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1534 /* there might be non MSG_ZEROCOPY users */
1535 if (uarg->callback != msg_zerocopy_callback)
1538 /* realloc only when socket is locked (TCP, UDP cork),
1539 * so uarg->len and sk_zckey access is serialized
1541 if (!sock_owned_by_user(sk)) {
1546 uarg_zc = uarg_to_msgzc(uarg);
1547 bytelen = uarg_zc->bytelen + size;
1548 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1549 /* TCP can create new skb to attach new uarg */
1550 if (sk->sk_type == SOCK_STREAM)
1555 next = (u32)atomic_read(&sk->sk_zckey);
1556 if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1557 if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1560 uarg_zc->bytelen = bytelen;
1561 atomic_set(&sk->sk_zckey, ++next);
1563 /* no extra ref when appending to datagram (MSG_MORE) */
1564 if (sk->sk_type == SOCK_STREAM)
1565 net_zcopy_get(uarg);
1572 return msg_zerocopy_alloc(sk, size);
1574 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1576 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1578 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1582 old_lo = serr->ee.ee_info;
1583 old_hi = serr->ee.ee_data;
1584 sum_len = old_hi - old_lo + 1ULL + len;
1586 if (sum_len >= (1ULL << 32))
1589 if (lo != old_hi + 1)
1592 serr->ee.ee_data += len;
1596 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1598 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1599 struct sock_exterr_skb *serr;
1600 struct sock *sk = skb->sk;
1601 struct sk_buff_head *q;
1602 unsigned long flags;
1607 mm_unaccount_pinned_pages(&uarg->mmp);
1609 /* if !len, there was only 1 call, and it was aborted
1610 * so do not queue a completion notification
1612 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1617 hi = uarg->id + len - 1;
1618 is_zerocopy = uarg->zerocopy;
1620 serr = SKB_EXT_ERR(skb);
1621 memset(serr, 0, sizeof(*serr));
1622 serr->ee.ee_errno = 0;
1623 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1624 serr->ee.ee_data = hi;
1625 serr->ee.ee_info = lo;
1627 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1629 q = &sk->sk_error_queue;
1630 spin_lock_irqsave(&q->lock, flags);
1631 tail = skb_peek_tail(q);
1632 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1633 !skb_zerocopy_notify_extend(tail, lo, len)) {
1634 __skb_queue_tail(q, skb);
1637 spin_unlock_irqrestore(&q->lock, flags);
1639 sk_error_report(sk);
1646 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1649 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1651 uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1653 if (refcount_dec_and_test(&uarg->refcnt))
1654 __msg_zerocopy_callback(uarg_zc);
1656 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1658 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1660 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1662 atomic_dec(&sk->sk_zckey);
1663 uarg_to_msgzc(uarg)->len--;
1666 msg_zerocopy_callback(NULL, uarg, true);
1668 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1670 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1671 struct msghdr *msg, int len,
1672 struct ubuf_info *uarg)
1674 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1675 int err, orig_len = skb->len;
1677 /* An skb can only point to one uarg. This edge case happens when
1678 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1680 if (orig_uarg && uarg != orig_uarg)
1683 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1684 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1685 struct sock *save_sk = skb->sk;
1687 /* Streams do not free skb on error. Reset to prev state. */
1688 iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1690 ___pskb_trim(skb, orig_len);
1695 skb_zcopy_set(skb, uarg, NULL);
1696 return skb->len - orig_len;
1698 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1700 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1704 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1705 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1706 skb_frag_ref(skb, i);
1708 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1710 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1713 if (skb_zcopy(orig)) {
1714 if (skb_zcopy(nskb)) {
1715 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1720 if (skb_uarg(nskb) == skb_uarg(orig))
1722 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1725 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1731 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1732 * @skb: the skb to modify
1733 * @gfp_mask: allocation priority
1735 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1736 * It will copy all frags into kernel and drop the reference
1737 * to userspace pages.
1739 * If this function is called from an interrupt gfp_mask() must be
1742 * Returns 0 on success or a negative error code on failure
1743 * to allocate kernel memory to copy to.
1745 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1747 int num_frags = skb_shinfo(skb)->nr_frags;
1748 struct page *page, *head = NULL;
1749 int i, order, psize, new_frags;
1752 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1758 /* We might have to allocate high order pages, so compute what minimum
1759 * page order is needed.
1762 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1764 psize = (PAGE_SIZE << order);
1766 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1767 for (i = 0; i < new_frags; i++) {
1768 page = alloc_pages(gfp_mask | __GFP_COMP, order);
1771 struct page *next = (struct page *)page_private(head);
1777 set_page_private(page, (unsigned long)head);
1783 for (i = 0; i < num_frags; i++) {
1784 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1785 u32 p_off, p_len, copied;
1789 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1790 p, p_off, p_len, copied) {
1792 vaddr = kmap_atomic(p);
1794 while (done < p_len) {
1795 if (d_off == psize) {
1797 page = (struct page *)page_private(page);
1799 copy = min_t(u32, psize - d_off, p_len - done);
1800 memcpy(page_address(page) + d_off,
1801 vaddr + p_off + done, copy);
1805 kunmap_atomic(vaddr);
1809 /* skb frags release userspace buffers */
1810 for (i = 0; i < num_frags; i++)
1811 skb_frag_unref(skb, i);
1813 /* skb frags point to kernel buffers */
1814 for (i = 0; i < new_frags - 1; i++) {
1815 __skb_fill_page_desc(skb, i, head, 0, psize);
1816 head = (struct page *)page_private(head);
1818 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1819 skb_shinfo(skb)->nr_frags = new_frags;
1822 skb_zcopy_clear(skb, false);
1825 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1828 * skb_clone - duplicate an sk_buff
1829 * @skb: buffer to clone
1830 * @gfp_mask: allocation priority
1832 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1833 * copies share the same packet data but not structure. The new
1834 * buffer has a reference count of 1. If the allocation fails the
1835 * function returns %NULL otherwise the new buffer is returned.
1837 * If this function is called from an interrupt gfp_mask() must be
1841 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1843 struct sk_buff_fclones *fclones = container_of(skb,
1844 struct sk_buff_fclones,
1848 if (skb_orphan_frags(skb, gfp_mask))
1851 if (skb->fclone == SKB_FCLONE_ORIG &&
1852 refcount_read(&fclones->fclone_ref) == 1) {
1854 refcount_set(&fclones->fclone_ref, 2);
1855 n->fclone = SKB_FCLONE_CLONE;
1857 if (skb_pfmemalloc(skb))
1858 gfp_mask |= __GFP_MEMALLOC;
1860 n = kmem_cache_alloc(skbuff_cache, gfp_mask);
1864 n->fclone = SKB_FCLONE_UNAVAILABLE;
1867 return __skb_clone(n, skb);
1869 EXPORT_SYMBOL(skb_clone);
1871 void skb_headers_offset_update(struct sk_buff *skb, int off)
1873 /* Only adjust this if it actually is csum_start rather than csum */
1874 if (skb->ip_summed == CHECKSUM_PARTIAL)
1875 skb->csum_start += off;
1876 /* {transport,network,mac}_header and tail are relative to skb->head */
1877 skb->transport_header += off;
1878 skb->network_header += off;
1879 if (skb_mac_header_was_set(skb))
1880 skb->mac_header += off;
1881 skb->inner_transport_header += off;
1882 skb->inner_network_header += off;
1883 skb->inner_mac_header += off;
1885 EXPORT_SYMBOL(skb_headers_offset_update);
1887 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1889 __copy_skb_header(new, old);
1891 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1892 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1893 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1895 EXPORT_SYMBOL(skb_copy_header);
1897 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1899 if (skb_pfmemalloc(skb))
1900 return SKB_ALLOC_RX;
1905 * skb_copy - create private copy of an sk_buff
1906 * @skb: buffer to copy
1907 * @gfp_mask: allocation priority
1909 * Make a copy of both an &sk_buff and its data. This is used when the
1910 * caller wishes to modify the data and needs a private copy of the
1911 * data to alter. Returns %NULL on failure or the pointer to the buffer
1912 * on success. The returned buffer has a reference count of 1.
1914 * As by-product this function converts non-linear &sk_buff to linear
1915 * one, so that &sk_buff becomes completely private and caller is allowed
1916 * to modify all the data of returned buffer. This means that this
1917 * function is not recommended for use in circumstances when only
1918 * header is going to be modified. Use pskb_copy() instead.
1921 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1923 int headerlen = skb_headroom(skb);
1924 unsigned int size = skb_end_offset(skb) + skb->data_len;
1925 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1926 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1931 /* Set the data pointer */
1932 skb_reserve(n, headerlen);
1933 /* Set the tail pointer and length */
1934 skb_put(n, skb->len);
1936 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1938 skb_copy_header(n, skb);
1941 EXPORT_SYMBOL(skb_copy);
1944 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1945 * @skb: buffer to copy
1946 * @headroom: headroom of new skb
1947 * @gfp_mask: allocation priority
1948 * @fclone: if true allocate the copy of the skb from the fclone
1949 * cache instead of the head cache; it is recommended to set this
1950 * to true for the cases where the copy will likely be cloned
1952 * Make a copy of both an &sk_buff and part of its data, located
1953 * in header. Fragmented data remain shared. This is used when
1954 * the caller wishes to modify only header of &sk_buff and needs
1955 * private copy of the header to alter. Returns %NULL on failure
1956 * or the pointer to the buffer on success.
1957 * The returned buffer has a reference count of 1.
1960 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1961 gfp_t gfp_mask, bool fclone)
1963 unsigned int size = skb_headlen(skb) + headroom;
1964 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1965 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1970 /* Set the data pointer */
1971 skb_reserve(n, headroom);
1972 /* Set the tail pointer and length */
1973 skb_put(n, skb_headlen(skb));
1974 /* Copy the bytes */
1975 skb_copy_from_linear_data(skb, n->data, n->len);
1977 n->truesize += skb->data_len;
1978 n->data_len = skb->data_len;
1981 if (skb_shinfo(skb)->nr_frags) {
1984 if (skb_orphan_frags(skb, gfp_mask) ||
1985 skb_zerocopy_clone(n, skb, gfp_mask)) {
1990 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1991 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1992 skb_frag_ref(skb, i);
1994 skb_shinfo(n)->nr_frags = i;
1997 if (skb_has_frag_list(skb)) {
1998 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1999 skb_clone_fraglist(n);
2002 skb_copy_header(n, skb);
2006 EXPORT_SYMBOL(__pskb_copy_fclone);
2009 * pskb_expand_head - reallocate header of &sk_buff
2010 * @skb: buffer to reallocate
2011 * @nhead: room to add at head
2012 * @ntail: room to add at tail
2013 * @gfp_mask: allocation priority
2015 * Expands (or creates identical copy, if @nhead and @ntail are zero)
2016 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2017 * reference count of 1. Returns zero in the case of success or error,
2018 * if expansion failed. In the last case, &sk_buff is not changed.
2020 * All the pointers pointing into skb header may change and must be
2021 * reloaded after call to this function.
2024 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2027 unsigned int osize = skb_end_offset(skb);
2028 unsigned int size = osize + nhead + ntail;
2035 BUG_ON(skb_shared(skb));
2037 skb_zcopy_downgrade_managed(skb);
2039 if (skb_pfmemalloc(skb))
2040 gfp_mask |= __GFP_MEMALLOC;
2042 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2045 size = SKB_WITH_OVERHEAD(size);
2047 /* Copy only real data... and, alas, header. This should be
2048 * optimized for the cases when header is void.
2050 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2052 memcpy((struct skb_shared_info *)(data + size),
2054 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2057 * if shinfo is shared we must drop the old head gracefully, but if it
2058 * is not we can just drop the old head and let the existing refcount
2059 * be since all we did is relocate the values
2061 if (skb_cloned(skb)) {
2062 if (skb_orphan_frags(skb, gfp_mask))
2065 refcount_inc(&skb_uarg(skb)->refcnt);
2066 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2067 skb_frag_ref(skb, i);
2069 if (skb_has_frag_list(skb))
2070 skb_clone_fraglist(skb);
2072 skb_release_data(skb, SKB_CONSUMED, false);
2074 skb_free_head(skb, false);
2076 off = (data + nhead) - skb->head;
2082 skb_set_end_offset(skb, size);
2083 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2087 skb_headers_offset_update(skb, nhead);
2091 atomic_set(&skb_shinfo(skb)->dataref, 1);
2093 skb_metadata_clear(skb);
2095 /* It is not generally safe to change skb->truesize.
2096 * For the moment, we really care of rx path, or
2097 * when skb is orphaned (not attached to a socket).
2099 if (!skb->sk || skb->destructor == sock_edemux)
2100 skb->truesize += size - osize;
2105 skb_kfree_head(data, size);
2109 EXPORT_SYMBOL(pskb_expand_head);
2111 /* Make private copy of skb with writable head and some headroom */
2113 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2115 struct sk_buff *skb2;
2116 int delta = headroom - skb_headroom(skb);
2119 skb2 = pskb_copy(skb, GFP_ATOMIC);
2121 skb2 = skb_clone(skb, GFP_ATOMIC);
2122 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2130 EXPORT_SYMBOL(skb_realloc_headroom);
2132 /* Note: We plan to rework this in linux-6.4 */
2133 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2135 unsigned int saved_end_offset, saved_truesize;
2136 struct skb_shared_info *shinfo;
2139 saved_end_offset = skb_end_offset(skb);
2140 saved_truesize = skb->truesize;
2142 res = pskb_expand_head(skb, 0, 0, pri);
2146 skb->truesize = saved_truesize;
2148 if (likely(skb_end_offset(skb) == saved_end_offset))
2151 /* We can not change skb->end if the original or new value
2152 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2154 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2155 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2156 /* We think this path should not be taken.
2157 * Add a temporary trace to warn us just in case.
2159 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2160 saved_end_offset, skb_end_offset(skb));
2165 shinfo = skb_shinfo(skb);
2167 /* We are about to change back skb->end,
2168 * we need to move skb_shinfo() to its new location.
2170 memmove(skb->head + saved_end_offset,
2172 offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2174 skb_set_end_offset(skb, saved_end_offset);
2180 * skb_expand_head - reallocate header of &sk_buff
2181 * @skb: buffer to reallocate
2182 * @headroom: needed headroom
2184 * Unlike skb_realloc_headroom, this one does not allocate a new skb
2185 * if possible; copies skb->sk to new skb as needed
2186 * and frees original skb in case of failures.
2188 * It expect increased headroom and generates warning otherwise.
2191 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2193 int delta = headroom - skb_headroom(skb);
2194 int osize = skb_end_offset(skb);
2195 struct sock *sk = skb->sk;
2197 if (WARN_ONCE(delta <= 0,
2198 "%s is expecting an increase in the headroom", __func__))
2201 delta = SKB_DATA_ALIGN(delta);
2202 /* pskb_expand_head() might crash, if skb is shared. */
2203 if (skb_shared(skb) || !is_skb_wmem(skb)) {
2204 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2206 if (unlikely(!nskb))
2210 skb_set_owner_w(nskb, sk);
2214 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2217 if (sk && is_skb_wmem(skb)) {
2218 delta = skb_end_offset(skb) - osize;
2219 refcount_add(delta, &sk->sk_wmem_alloc);
2220 skb->truesize += delta;
2228 EXPORT_SYMBOL(skb_expand_head);
2231 * skb_copy_expand - copy and expand sk_buff
2232 * @skb: buffer to copy
2233 * @newheadroom: new free bytes at head
2234 * @newtailroom: new free bytes at tail
2235 * @gfp_mask: allocation priority
2237 * Make a copy of both an &sk_buff and its data and while doing so
2238 * allocate additional space.
2240 * This is used when the caller wishes to modify the data and needs a
2241 * private copy of the data to alter as well as more space for new fields.
2242 * Returns %NULL on failure or the pointer to the buffer
2243 * on success. The returned buffer has a reference count of 1.
2245 * You must pass %GFP_ATOMIC as the allocation priority if this function
2246 * is called from an interrupt.
2248 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2249 int newheadroom, int newtailroom,
2253 * Allocate the copy buffer
2255 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2256 gfp_mask, skb_alloc_rx_flag(skb),
2258 int oldheadroom = skb_headroom(skb);
2259 int head_copy_len, head_copy_off;
2264 skb_reserve(n, newheadroom);
2266 /* Set the tail pointer and length */
2267 skb_put(n, skb->len);
2269 head_copy_len = oldheadroom;
2271 if (newheadroom <= head_copy_len)
2272 head_copy_len = newheadroom;
2274 head_copy_off = newheadroom - head_copy_len;
2276 /* Copy the linear header and data. */
2277 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2278 skb->len + head_copy_len));
2280 skb_copy_header(n, skb);
2282 skb_headers_offset_update(n, newheadroom - oldheadroom);
2286 EXPORT_SYMBOL(skb_copy_expand);
2289 * __skb_pad - zero pad the tail of an skb
2290 * @skb: buffer to pad
2291 * @pad: space to pad
2292 * @free_on_error: free buffer on error
2294 * Ensure that a buffer is followed by a padding area that is zero
2295 * filled. Used by network drivers which may DMA or transfer data
2296 * beyond the buffer end onto the wire.
2298 * May return error in out of memory cases. The skb is freed on error
2299 * if @free_on_error is true.
2302 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2307 /* If the skbuff is non linear tailroom is always zero.. */
2308 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2309 memset(skb->data+skb->len, 0, pad);
2313 ntail = skb->data_len + pad - (skb->end - skb->tail);
2314 if (likely(skb_cloned(skb) || ntail > 0)) {
2315 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2320 /* FIXME: The use of this function with non-linear skb's really needs
2323 err = skb_linearize(skb);
2327 memset(skb->data + skb->len, 0, pad);
2335 EXPORT_SYMBOL(__skb_pad);
2338 * pskb_put - add data to the tail of a potentially fragmented buffer
2339 * @skb: start of the buffer to use
2340 * @tail: tail fragment of the buffer to use
2341 * @len: amount of data to add
2343 * This function extends the used data area of the potentially
2344 * fragmented buffer. @tail must be the last fragment of @skb -- or
2345 * @skb itself. If this would exceed the total buffer size the kernel
2346 * will panic. A pointer to the first byte of the extra data is
2350 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2353 skb->data_len += len;
2356 return skb_put(tail, len);
2358 EXPORT_SYMBOL_GPL(pskb_put);
2361 * skb_put - add data to a buffer
2362 * @skb: buffer to use
2363 * @len: amount of data to add
2365 * This function extends the used data area of the buffer. If this would
2366 * exceed the total buffer size the kernel will panic. A pointer to the
2367 * first byte of the extra data is returned.
2369 void *skb_put(struct sk_buff *skb, unsigned int len)
2371 void *tmp = skb_tail_pointer(skb);
2372 SKB_LINEAR_ASSERT(skb);
2375 if (unlikely(skb->tail > skb->end))
2376 skb_over_panic(skb, len, __builtin_return_address(0));
2379 EXPORT_SYMBOL(skb_put);
2382 * skb_push - add data to the start of a buffer
2383 * @skb: buffer to use
2384 * @len: amount of data to add
2386 * This function extends the used data area of the buffer at the buffer
2387 * start. If this would exceed the total buffer headroom the kernel will
2388 * panic. A pointer to the first byte of the extra data is returned.
2390 void *skb_push(struct sk_buff *skb, unsigned int len)
2394 if (unlikely(skb->data < skb->head))
2395 skb_under_panic(skb, len, __builtin_return_address(0));
2398 EXPORT_SYMBOL(skb_push);
2401 * skb_pull - remove data from the start of a buffer
2402 * @skb: buffer to use
2403 * @len: amount of data to remove
2405 * This function removes data from the start of a buffer, returning
2406 * the memory to the headroom. A pointer to the next data in the buffer
2407 * is returned. Once the data has been pulled future pushes will overwrite
2410 void *skb_pull(struct sk_buff *skb, unsigned int len)
2412 return skb_pull_inline(skb, len);
2414 EXPORT_SYMBOL(skb_pull);
2417 * skb_pull_data - remove data from the start of a buffer returning its
2418 * original position.
2419 * @skb: buffer to use
2420 * @len: amount of data to remove
2422 * This function removes data from the start of a buffer, returning
2423 * the memory to the headroom. A pointer to the original data in the buffer
2424 * is returned after checking if there is enough data to pull. Once the
2425 * data has been pulled future pushes will overwrite the old data.
2427 void *skb_pull_data(struct sk_buff *skb, size_t len)
2429 void *data = skb->data;
2438 EXPORT_SYMBOL(skb_pull_data);
2441 * skb_trim - remove end from a buffer
2442 * @skb: buffer to alter
2445 * Cut the length of a buffer down by removing data from the tail. If
2446 * the buffer is already under the length specified it is not modified.
2447 * The skb must be linear.
2449 void skb_trim(struct sk_buff *skb, unsigned int len)
2452 __skb_trim(skb, len);
2454 EXPORT_SYMBOL(skb_trim);
2456 /* Trims skb to length len. It can change skb pointers.
2459 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2461 struct sk_buff **fragp;
2462 struct sk_buff *frag;
2463 int offset = skb_headlen(skb);
2464 int nfrags = skb_shinfo(skb)->nr_frags;
2468 if (skb_cloned(skb) &&
2469 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2476 for (; i < nfrags; i++) {
2477 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2484 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2487 skb_shinfo(skb)->nr_frags = i;
2489 for (; i < nfrags; i++)
2490 skb_frag_unref(skb, i);
2492 if (skb_has_frag_list(skb))
2493 skb_drop_fraglist(skb);
2497 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2498 fragp = &frag->next) {
2499 int end = offset + frag->len;
2501 if (skb_shared(frag)) {
2502 struct sk_buff *nfrag;
2504 nfrag = skb_clone(frag, GFP_ATOMIC);
2505 if (unlikely(!nfrag))
2508 nfrag->next = frag->next;
2520 unlikely((err = pskb_trim(frag, len - offset))))
2524 skb_drop_list(&frag->next);
2529 if (len > skb_headlen(skb)) {
2530 skb->data_len -= skb->len - len;
2535 skb_set_tail_pointer(skb, len);
2538 if (!skb->sk || skb->destructor == sock_edemux)
2542 EXPORT_SYMBOL(___pskb_trim);
2544 /* Note : use pskb_trim_rcsum() instead of calling this directly
2546 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2548 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2549 int delta = skb->len - len;
2551 skb->csum = csum_block_sub(skb->csum,
2552 skb_checksum(skb, len, delta, 0),
2554 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2555 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2556 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2558 if (offset + sizeof(__sum16) > hdlen)
2561 return __pskb_trim(skb, len);
2563 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2566 * __pskb_pull_tail - advance tail of skb header
2567 * @skb: buffer to reallocate
2568 * @delta: number of bytes to advance tail
2570 * The function makes a sense only on a fragmented &sk_buff,
2571 * it expands header moving its tail forward and copying necessary
2572 * data from fragmented part.
2574 * &sk_buff MUST have reference count of 1.
2576 * Returns %NULL (and &sk_buff does not change) if pull failed
2577 * or value of new tail of skb in the case of success.
2579 * All the pointers pointing into skb header may change and must be
2580 * reloaded after call to this function.
2583 /* Moves tail of skb head forward, copying data from fragmented part,
2584 * when it is necessary.
2585 * 1. It may fail due to malloc failure.
2586 * 2. It may change skb pointers.
2588 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2590 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2592 /* If skb has not enough free space at tail, get new one
2593 * plus 128 bytes for future expansions. If we have enough
2594 * room at tail, reallocate without expansion only if skb is cloned.
2596 int i, k, eat = (skb->tail + delta) - skb->end;
2598 if (eat > 0 || skb_cloned(skb)) {
2599 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2604 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2605 skb_tail_pointer(skb), delta));
2607 /* Optimization: no fragments, no reasons to preestimate
2608 * size of pulled pages. Superb.
2610 if (!skb_has_frag_list(skb))
2613 /* Estimate size of pulled pages. */
2615 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2616 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2623 /* If we need update frag list, we are in troubles.
2624 * Certainly, it is possible to add an offset to skb data,
2625 * but taking into account that pulling is expected to
2626 * be very rare operation, it is worth to fight against
2627 * further bloating skb head and crucify ourselves here instead.
2628 * Pure masohism, indeed. 8)8)
2631 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2632 struct sk_buff *clone = NULL;
2633 struct sk_buff *insp = NULL;
2636 if (list->len <= eat) {
2637 /* Eaten as whole. */
2642 /* Eaten partially. */
2643 if (skb_is_gso(skb) && !list->head_frag &&
2645 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2647 if (skb_shared(list)) {
2648 /* Sucks! We need to fork list. :-( */
2649 clone = skb_clone(list, GFP_ATOMIC);
2655 /* This may be pulled without
2659 if (!pskb_pull(list, eat)) {
2667 /* Free pulled out fragments. */
2668 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2669 skb_shinfo(skb)->frag_list = list->next;
2672 /* And insert new clone at head. */
2675 skb_shinfo(skb)->frag_list = clone;
2678 /* Success! Now we may commit changes to skb data. */
2683 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2684 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2687 skb_frag_unref(skb, i);
2690 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2692 *frag = skb_shinfo(skb)->frags[i];
2694 skb_frag_off_add(frag, eat);
2695 skb_frag_size_sub(frag, eat);
2703 skb_shinfo(skb)->nr_frags = k;
2707 skb->data_len -= delta;
2710 skb_zcopy_clear(skb, false);
2712 return skb_tail_pointer(skb);
2714 EXPORT_SYMBOL(__pskb_pull_tail);
2717 * skb_copy_bits - copy bits from skb to kernel buffer
2719 * @offset: offset in source
2720 * @to: destination buffer
2721 * @len: number of bytes to copy
2723 * Copy the specified number of bytes from the source skb to the
2724 * destination buffer.
2727 * If its prototype is ever changed,
2728 * check arch/{*}/net/{*}.S files,
2729 * since it is called from BPF assembly code.
2731 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2733 int start = skb_headlen(skb);
2734 struct sk_buff *frag_iter;
2737 if (offset > (int)skb->len - len)
2741 if ((copy = start - offset) > 0) {
2744 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2745 if ((len -= copy) == 0)
2751 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2753 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2755 WARN_ON(start > offset + len);
2757 end = start + skb_frag_size(f);
2758 if ((copy = end - offset) > 0) {
2759 u32 p_off, p_len, copied;
2766 skb_frag_foreach_page(f,
2767 skb_frag_off(f) + offset - start,
2768 copy, p, p_off, p_len, copied) {
2769 vaddr = kmap_atomic(p);
2770 memcpy(to + copied, vaddr + p_off, p_len);
2771 kunmap_atomic(vaddr);
2774 if ((len -= copy) == 0)
2782 skb_walk_frags(skb, frag_iter) {
2785 WARN_ON(start > offset + len);
2787 end = start + frag_iter->len;
2788 if ((copy = end - offset) > 0) {
2791 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2793 if ((len -= copy) == 0)
2807 EXPORT_SYMBOL(skb_copy_bits);
2810 * Callback from splice_to_pipe(), if we need to release some pages
2811 * at the end of the spd in case we error'ed out in filling the pipe.
2813 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2815 put_page(spd->pages[i]);
2818 static struct page *linear_to_page(struct page *page, unsigned int *len,
2819 unsigned int *offset,
2822 struct page_frag *pfrag = sk_page_frag(sk);
2824 if (!sk_page_frag_refill(sk, pfrag))
2827 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2829 memcpy(page_address(pfrag->page) + pfrag->offset,
2830 page_address(page) + *offset, *len);
2831 *offset = pfrag->offset;
2832 pfrag->offset += *len;
2837 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2839 unsigned int offset)
2841 return spd->nr_pages &&
2842 spd->pages[spd->nr_pages - 1] == page &&
2843 (spd->partial[spd->nr_pages - 1].offset +
2844 spd->partial[spd->nr_pages - 1].len == offset);
2848 * Fill page/offset/length into spd, if it can hold more pages.
2850 static bool spd_fill_page(struct splice_pipe_desc *spd,
2851 struct pipe_inode_info *pipe, struct page *page,
2852 unsigned int *len, unsigned int offset,
2856 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2860 page = linear_to_page(page, len, &offset, sk);
2864 if (spd_can_coalesce(spd, page, offset)) {
2865 spd->partial[spd->nr_pages - 1].len += *len;
2869 spd->pages[spd->nr_pages] = page;
2870 spd->partial[spd->nr_pages].len = *len;
2871 spd->partial[spd->nr_pages].offset = offset;
2877 static bool __splice_segment(struct page *page, unsigned int poff,
2878 unsigned int plen, unsigned int *off,
2880 struct splice_pipe_desc *spd, bool linear,
2882 struct pipe_inode_info *pipe)
2887 /* skip this segment if already processed */
2893 /* ignore any bits we already processed */
2899 unsigned int flen = min(*len, plen);
2901 if (spd_fill_page(spd, pipe, page, &flen, poff,
2907 } while (*len && plen);
2913 * Map linear and fragment data from the skb to spd. It reports true if the
2914 * pipe is full or if we already spliced the requested length.
2916 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2917 unsigned int *offset, unsigned int *len,
2918 struct splice_pipe_desc *spd, struct sock *sk)
2921 struct sk_buff *iter;
2923 /* map the linear part :
2924 * If skb->head_frag is set, this 'linear' part is backed by a
2925 * fragment, and if the head is not shared with any clones then
2926 * we can avoid a copy since we own the head portion of this page.
2928 if (__splice_segment(virt_to_page(skb->data),
2929 (unsigned long) skb->data & (PAGE_SIZE - 1),
2932 skb_head_is_locked(skb),
2937 * then map the fragments
2939 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2940 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2942 if (__splice_segment(skb_frag_page(f),
2943 skb_frag_off(f), skb_frag_size(f),
2944 offset, len, spd, false, sk, pipe))
2948 skb_walk_frags(skb, iter) {
2949 if (*offset >= iter->len) {
2950 *offset -= iter->len;
2953 /* __skb_splice_bits() only fails if the output has no room
2954 * left, so no point in going over the frag_list for the error
2957 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2965 * Map data from the skb to a pipe. Should handle both the linear part,
2966 * the fragments, and the frag list.
2968 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2969 struct pipe_inode_info *pipe, unsigned int tlen,
2972 struct partial_page partial[MAX_SKB_FRAGS];
2973 struct page *pages[MAX_SKB_FRAGS];
2974 struct splice_pipe_desc spd = {
2977 .nr_pages_max = MAX_SKB_FRAGS,
2978 .ops = &nosteal_pipe_buf_ops,
2979 .spd_release = sock_spd_release,
2983 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2986 ret = splice_to_pipe(pipe, &spd);
2990 EXPORT_SYMBOL_GPL(skb_splice_bits);
2992 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
2994 struct socket *sock = sk->sk_socket;
2995 size_t size = msg_data_left(msg);
3000 if (!sock->ops->sendmsg_locked)
3001 return sock_no_sendmsg_locked(sk, msg, size);
3003 return sock->ops->sendmsg_locked(sk, msg, size);
3006 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3008 struct socket *sock = sk->sk_socket;
3012 return sock_sendmsg(sock, msg);
3015 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3016 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3017 int len, sendmsg_func sendmsg)
3019 unsigned int orig_len = len;
3020 struct sk_buff *head = skb;
3021 unsigned short fragidx;
3026 /* Deal with head data */
3027 while (offset < skb_headlen(skb) && len) {
3031 slen = min_t(int, len, skb_headlen(skb) - offset);
3032 kv.iov_base = skb->data + offset;
3034 memset(&msg, 0, sizeof(msg));
3035 msg.msg_flags = MSG_DONTWAIT;
3037 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3038 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3039 sendmsg_unlocked, sk, &msg);
3047 /* All the data was skb head? */
3051 /* Make offset relative to start of frags */
3052 offset -= skb_headlen(skb);
3054 /* Find where we are in frag list */
3055 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3056 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3058 if (offset < skb_frag_size(frag))
3061 offset -= skb_frag_size(frag);
3064 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3065 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3067 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3070 struct bio_vec bvec;
3071 struct msghdr msg = {
3072 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3075 bvec_set_page(&bvec, skb_frag_page(frag), slen,
3076 skb_frag_off(frag) + offset);
3077 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3080 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3081 sendmsg_unlocked, sk, &msg);
3094 /* Process any frag lists */
3097 if (skb_has_frag_list(skb)) {
3098 skb = skb_shinfo(skb)->frag_list;
3101 } else if (skb->next) {
3108 return orig_len - len;
3111 return orig_len == len ? ret : orig_len - len;
3114 /* Send skb data on a socket. Socket must be locked. */
3115 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3118 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3120 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3122 /* Send skb data on a socket. Socket must be unlocked. */
3123 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3125 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3129 * skb_store_bits - store bits from kernel buffer to skb
3130 * @skb: destination buffer
3131 * @offset: offset in destination
3132 * @from: source buffer
3133 * @len: number of bytes to copy
3135 * Copy the specified number of bytes from the source buffer to the
3136 * destination skb. This function handles all the messy bits of
3137 * traversing fragment lists and such.
3140 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3142 int start = skb_headlen(skb);
3143 struct sk_buff *frag_iter;
3146 if (offset > (int)skb->len - len)
3149 if ((copy = start - offset) > 0) {
3152 skb_copy_to_linear_data_offset(skb, offset, from, copy);
3153 if ((len -= copy) == 0)
3159 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3160 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3163 WARN_ON(start > offset + len);
3165 end = start + skb_frag_size(frag);
3166 if ((copy = end - offset) > 0) {
3167 u32 p_off, p_len, copied;
3174 skb_frag_foreach_page(frag,
3175 skb_frag_off(frag) + offset - start,
3176 copy, p, p_off, p_len, copied) {
3177 vaddr = kmap_atomic(p);
3178 memcpy(vaddr + p_off, from + copied, p_len);
3179 kunmap_atomic(vaddr);
3182 if ((len -= copy) == 0)
3190 skb_walk_frags(skb, frag_iter) {
3193 WARN_ON(start > offset + len);
3195 end = start + frag_iter->len;
3196 if ((copy = end - offset) > 0) {
3199 if (skb_store_bits(frag_iter, offset - start,
3202 if ((len -= copy) == 0)
3215 EXPORT_SYMBOL(skb_store_bits);
3217 /* Checksum skb data. */
3218 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3219 __wsum csum, const struct skb_checksum_ops *ops)
3221 int start = skb_headlen(skb);
3222 int i, copy = start - offset;
3223 struct sk_buff *frag_iter;
3226 /* Checksum header. */
3230 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3231 skb->data + offset, copy, csum);
3232 if ((len -= copy) == 0)
3238 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3240 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3242 WARN_ON(start > offset + len);
3244 end = start + skb_frag_size(frag);
3245 if ((copy = end - offset) > 0) {
3246 u32 p_off, p_len, copied;
3254 skb_frag_foreach_page(frag,
3255 skb_frag_off(frag) + offset - start,
3256 copy, p, p_off, p_len, copied) {
3257 vaddr = kmap_atomic(p);
3258 csum2 = INDIRECT_CALL_1(ops->update,
3260 vaddr + p_off, p_len, 0);
3261 kunmap_atomic(vaddr);
3262 csum = INDIRECT_CALL_1(ops->combine,
3263 csum_block_add_ext, csum,
3275 skb_walk_frags(skb, frag_iter) {
3278 WARN_ON(start > offset + len);
3280 end = start + frag_iter->len;
3281 if ((copy = end - offset) > 0) {
3285 csum2 = __skb_checksum(frag_iter, offset - start,
3287 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3288 csum, csum2, pos, copy);
3289 if ((len -= copy) == 0)
3300 EXPORT_SYMBOL(__skb_checksum);
3302 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3303 int len, __wsum csum)
3305 const struct skb_checksum_ops ops = {
3306 .update = csum_partial_ext,
3307 .combine = csum_block_add_ext,
3310 return __skb_checksum(skb, offset, len, csum, &ops);
3312 EXPORT_SYMBOL(skb_checksum);
3314 /* Both of above in one bottle. */
3316 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3319 int start = skb_headlen(skb);
3320 int i, copy = start - offset;
3321 struct sk_buff *frag_iter;
3329 csum = csum_partial_copy_nocheck(skb->data + offset, to,
3331 if ((len -= copy) == 0)
3338 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3341 WARN_ON(start > offset + len);
3343 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3344 if ((copy = end - offset) > 0) {
3345 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3346 u32 p_off, p_len, copied;
3354 skb_frag_foreach_page(frag,
3355 skb_frag_off(frag) + offset - start,
3356 copy, p, p_off, p_len, copied) {
3357 vaddr = kmap_atomic(p);
3358 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3361 kunmap_atomic(vaddr);
3362 csum = csum_block_add(csum, csum2, pos);
3374 skb_walk_frags(skb, frag_iter) {
3378 WARN_ON(start > offset + len);
3380 end = start + frag_iter->len;
3381 if ((copy = end - offset) > 0) {
3384 csum2 = skb_copy_and_csum_bits(frag_iter,
3387 csum = csum_block_add(csum, csum2, pos);
3388 if ((len -= copy) == 0)
3399 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3401 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3405 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3406 /* See comments in __skb_checksum_complete(). */
3408 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3409 !skb->csum_complete_sw)
3410 netdev_rx_csum_fault(skb->dev, skb);
3412 if (!skb_shared(skb))
3413 skb->csum_valid = !sum;
3416 EXPORT_SYMBOL(__skb_checksum_complete_head);
3418 /* This function assumes skb->csum already holds pseudo header's checksum,
3419 * which has been changed from the hardware checksum, for example, by
3420 * __skb_checksum_validate_complete(). And, the original skb->csum must
3421 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3423 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3424 * zero. The new checksum is stored back into skb->csum unless the skb is
3427 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3432 csum = skb_checksum(skb, 0, skb->len, 0);
3434 sum = csum_fold(csum_add(skb->csum, csum));
3435 /* This check is inverted, because we already knew the hardware
3436 * checksum is invalid before calling this function. So, if the
3437 * re-computed checksum is valid instead, then we have a mismatch
3438 * between the original skb->csum and skb_checksum(). This means either
3439 * the original hardware checksum is incorrect or we screw up skb->csum
3440 * when moving skb->data around.
3443 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3444 !skb->csum_complete_sw)
3445 netdev_rx_csum_fault(skb->dev, skb);
3448 if (!skb_shared(skb)) {
3449 /* Save full packet checksum */
3451 skb->ip_summed = CHECKSUM_COMPLETE;
3452 skb->csum_complete_sw = 1;
3453 skb->csum_valid = !sum;
3458 EXPORT_SYMBOL(__skb_checksum_complete);
3460 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3462 net_warn_ratelimited(
3463 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3468 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3469 int offset, int len)
3471 net_warn_ratelimited(
3472 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3477 static const struct skb_checksum_ops default_crc32c_ops = {
3478 .update = warn_crc32c_csum_update,
3479 .combine = warn_crc32c_csum_combine,
3482 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3483 &default_crc32c_ops;
3484 EXPORT_SYMBOL(crc32c_csum_stub);
3487 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3488 * @from: source buffer
3490 * Calculates the amount of linear headroom needed in the 'to' skb passed
3491 * into skb_zerocopy().
3494 skb_zerocopy_headlen(const struct sk_buff *from)
3496 unsigned int hlen = 0;
3498 if (!from->head_frag ||
3499 skb_headlen(from) < L1_CACHE_BYTES ||
3500 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3501 hlen = skb_headlen(from);
3506 if (skb_has_frag_list(from))
3511 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3514 * skb_zerocopy - Zero copy skb to skb
3515 * @to: destination buffer
3516 * @from: source buffer
3517 * @len: number of bytes to copy from source buffer
3518 * @hlen: size of linear headroom in destination buffer
3520 * Copies up to `len` bytes from `from` to `to` by creating references
3521 * to the frags in the source buffer.
3523 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3524 * headroom in the `to` buffer.
3527 * 0: everything is OK
3528 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3529 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3532 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3535 int plen = 0; /* length of skb->head fragment */
3538 unsigned int offset;
3540 BUG_ON(!from->head_frag && !hlen);
3542 /* dont bother with small payloads */
3543 if (len <= skb_tailroom(to))
3544 return skb_copy_bits(from, 0, skb_put(to, len), len);
3547 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3552 plen = min_t(int, skb_headlen(from), len);
3554 page = virt_to_head_page(from->head);
3555 offset = from->data - (unsigned char *)page_address(page);
3556 __skb_fill_page_desc(to, 0, page, offset, plen);
3563 skb_len_add(to, len + plen);
3565 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3569 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3571 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3576 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3577 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3579 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3581 skb_frag_ref(to, j);
3584 skb_shinfo(to)->nr_frags = j;
3588 EXPORT_SYMBOL_GPL(skb_zerocopy);
3590 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3595 if (skb->ip_summed == CHECKSUM_PARTIAL)
3596 csstart = skb_checksum_start_offset(skb);
3598 csstart = skb_headlen(skb);
3600 BUG_ON(csstart > skb_headlen(skb));
3602 skb_copy_from_linear_data(skb, to, csstart);
3605 if (csstart != skb->len)
3606 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3607 skb->len - csstart);
3609 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3610 long csstuff = csstart + skb->csum_offset;
3612 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3615 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3618 * skb_dequeue - remove from the head of the queue
3619 * @list: list to dequeue from
3621 * Remove the head of the list. The list lock is taken so the function
3622 * may be used safely with other locking list functions. The head item is
3623 * returned or %NULL if the list is empty.
3626 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3628 unsigned long flags;
3629 struct sk_buff *result;
3631 spin_lock_irqsave(&list->lock, flags);
3632 result = __skb_dequeue(list);
3633 spin_unlock_irqrestore(&list->lock, flags);
3636 EXPORT_SYMBOL(skb_dequeue);
3639 * skb_dequeue_tail - remove from the tail of the queue
3640 * @list: list to dequeue from
3642 * Remove the tail of the list. The list lock is taken so the function
3643 * may be used safely with other locking list functions. The tail item is
3644 * returned or %NULL if the list is empty.
3646 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3648 unsigned long flags;
3649 struct sk_buff *result;
3651 spin_lock_irqsave(&list->lock, flags);
3652 result = __skb_dequeue_tail(list);
3653 spin_unlock_irqrestore(&list->lock, flags);
3656 EXPORT_SYMBOL(skb_dequeue_tail);
3659 * skb_queue_purge - empty a list
3660 * @list: list to empty
3662 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3663 * the list and one reference dropped. This function takes the list
3664 * lock and is atomic with respect to other list locking functions.
3666 void skb_queue_purge(struct sk_buff_head *list)
3668 struct sk_buff *skb;
3669 while ((skb = skb_dequeue(list)) != NULL)
3672 EXPORT_SYMBOL(skb_queue_purge);
3675 * skb_rbtree_purge - empty a skb rbtree
3676 * @root: root of the rbtree to empty
3677 * Return value: the sum of truesizes of all purged skbs.
3679 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3680 * the list and one reference dropped. This function does not take
3681 * any lock. Synchronization should be handled by the caller (e.g., TCP
3682 * out-of-order queue is protected by the socket lock).
3684 unsigned int skb_rbtree_purge(struct rb_root *root)
3686 struct rb_node *p = rb_first(root);
3687 unsigned int sum = 0;
3690 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3693 rb_erase(&skb->rbnode, root);
3694 sum += skb->truesize;
3701 * skb_queue_head - queue a buffer at the list head
3702 * @list: list to use
3703 * @newsk: buffer to queue
3705 * Queue a buffer at the start of the list. This function takes the
3706 * list lock and can be used safely with other locking &sk_buff functions
3709 * A buffer cannot be placed on two lists at the same time.
3711 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3713 unsigned long flags;
3715 spin_lock_irqsave(&list->lock, flags);
3716 __skb_queue_head(list, newsk);
3717 spin_unlock_irqrestore(&list->lock, flags);
3719 EXPORT_SYMBOL(skb_queue_head);
3722 * skb_queue_tail - queue a buffer at the list tail
3723 * @list: list to use
3724 * @newsk: buffer to queue
3726 * Queue a buffer at the tail of the list. This function takes the
3727 * list lock and can be used safely with other locking &sk_buff functions
3730 * A buffer cannot be placed on two lists at the same time.
3732 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3734 unsigned long flags;
3736 spin_lock_irqsave(&list->lock, flags);
3737 __skb_queue_tail(list, newsk);
3738 spin_unlock_irqrestore(&list->lock, flags);
3740 EXPORT_SYMBOL(skb_queue_tail);
3743 * skb_unlink - remove a buffer from a list
3744 * @skb: buffer to remove
3745 * @list: list to use
3747 * Remove a packet from a list. The list locks are taken and this
3748 * function is atomic with respect to other list locked calls
3750 * You must know what list the SKB is on.
3752 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3754 unsigned long flags;
3756 spin_lock_irqsave(&list->lock, flags);
3757 __skb_unlink(skb, list);
3758 spin_unlock_irqrestore(&list->lock, flags);
3760 EXPORT_SYMBOL(skb_unlink);
3763 * skb_append - append a buffer
3764 * @old: buffer to insert after
3765 * @newsk: buffer to insert
3766 * @list: list to use
3768 * Place a packet after a given packet in a list. The list locks are taken
3769 * and this function is atomic with respect to other list locked calls.
3770 * A buffer cannot be placed on two lists at the same time.
3772 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3774 unsigned long flags;
3776 spin_lock_irqsave(&list->lock, flags);
3777 __skb_queue_after(list, old, newsk);
3778 spin_unlock_irqrestore(&list->lock, flags);
3780 EXPORT_SYMBOL(skb_append);
3782 static inline void skb_split_inside_header(struct sk_buff *skb,
3783 struct sk_buff* skb1,
3784 const u32 len, const int pos)
3788 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3790 /* And move data appendix as is. */
3791 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3792 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3794 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3795 skb_shinfo(skb)->nr_frags = 0;
3796 skb1->data_len = skb->data_len;
3797 skb1->len += skb1->data_len;
3800 skb_set_tail_pointer(skb, len);
3803 static inline void skb_split_no_header(struct sk_buff *skb,
3804 struct sk_buff* skb1,
3805 const u32 len, int pos)
3808 const int nfrags = skb_shinfo(skb)->nr_frags;
3810 skb_shinfo(skb)->nr_frags = 0;
3811 skb1->len = skb1->data_len = skb->len - len;
3813 skb->data_len = len - pos;
3815 for (i = 0; i < nfrags; i++) {
3816 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3818 if (pos + size > len) {
3819 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3823 * We have two variants in this case:
3824 * 1. Move all the frag to the second
3825 * part, if it is possible. F.e.
3826 * this approach is mandatory for TUX,
3827 * where splitting is expensive.
3828 * 2. Split is accurately. We make this.
3830 skb_frag_ref(skb, i);
3831 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3832 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3833 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3834 skb_shinfo(skb)->nr_frags++;
3838 skb_shinfo(skb)->nr_frags++;
3841 skb_shinfo(skb1)->nr_frags = k;
3845 * skb_split - Split fragmented skb to two parts at length len.
3846 * @skb: the buffer to split
3847 * @skb1: the buffer to receive the second part
3848 * @len: new length for skb
3850 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3852 int pos = skb_headlen(skb);
3853 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3855 skb_zcopy_downgrade_managed(skb);
3857 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3858 skb_zerocopy_clone(skb1, skb, 0);
3859 if (len < pos) /* Split line is inside header. */
3860 skb_split_inside_header(skb, skb1, len, pos);
3861 else /* Second chunk has no header, nothing to copy. */
3862 skb_split_no_header(skb, skb1, len, pos);
3864 EXPORT_SYMBOL(skb_split);
3866 /* Shifting from/to a cloned skb is a no-go.
3868 * Caller cannot keep skb_shinfo related pointers past calling here!
3870 static int skb_prepare_for_shift(struct sk_buff *skb)
3872 return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3876 * skb_shift - Shifts paged data partially from skb to another
3877 * @tgt: buffer into which tail data gets added
3878 * @skb: buffer from which the paged data comes from
3879 * @shiftlen: shift up to this many bytes
3881 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3882 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3883 * It's up to caller to free skb if everything was shifted.
3885 * If @tgt runs out of frags, the whole operation is aborted.
3887 * Skb cannot include anything else but paged data while tgt is allowed
3888 * to have non-paged data as well.
3890 * TODO: full sized shift could be optimized but that would need
3891 * specialized skb free'er to handle frags without up-to-date nr_frags.
3893 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3895 int from, to, merge, todo;
3896 skb_frag_t *fragfrom, *fragto;
3898 BUG_ON(shiftlen > skb->len);
3900 if (skb_headlen(skb))
3902 if (skb_zcopy(tgt) || skb_zcopy(skb))
3907 to = skb_shinfo(tgt)->nr_frags;
3908 fragfrom = &skb_shinfo(skb)->frags[from];
3910 /* Actual merge is delayed until the point when we know we can
3911 * commit all, so that we don't have to undo partial changes
3914 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3915 skb_frag_off(fragfrom))) {
3920 todo -= skb_frag_size(fragfrom);
3922 if (skb_prepare_for_shift(skb) ||
3923 skb_prepare_for_shift(tgt))
3926 /* All previous frag pointers might be stale! */
3927 fragfrom = &skb_shinfo(skb)->frags[from];
3928 fragto = &skb_shinfo(tgt)->frags[merge];
3930 skb_frag_size_add(fragto, shiftlen);
3931 skb_frag_size_sub(fragfrom, shiftlen);
3932 skb_frag_off_add(fragfrom, shiftlen);
3940 /* Skip full, not-fitting skb to avoid expensive operations */
3941 if ((shiftlen == skb->len) &&
3942 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3945 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3948 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3949 if (to == MAX_SKB_FRAGS)
3952 fragfrom = &skb_shinfo(skb)->frags[from];
3953 fragto = &skb_shinfo(tgt)->frags[to];
3955 if (todo >= skb_frag_size(fragfrom)) {
3956 *fragto = *fragfrom;
3957 todo -= skb_frag_size(fragfrom);
3962 __skb_frag_ref(fragfrom);
3963 skb_frag_page_copy(fragto, fragfrom);
3964 skb_frag_off_copy(fragto, fragfrom);
3965 skb_frag_size_set(fragto, todo);
3967 skb_frag_off_add(fragfrom, todo);
3968 skb_frag_size_sub(fragfrom, todo);
3976 /* Ready to "commit" this state change to tgt */
3977 skb_shinfo(tgt)->nr_frags = to;
3980 fragfrom = &skb_shinfo(skb)->frags[0];
3981 fragto = &skb_shinfo(tgt)->frags[merge];
3983 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3984 __skb_frag_unref(fragfrom, skb->pp_recycle);
3987 /* Reposition in the original skb */
3989 while (from < skb_shinfo(skb)->nr_frags)
3990 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3991 skb_shinfo(skb)->nr_frags = to;
3993 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3996 /* Most likely the tgt won't ever need its checksum anymore, skb on
3997 * the other hand might need it if it needs to be resent
3999 tgt->ip_summed = CHECKSUM_PARTIAL;
4000 skb->ip_summed = CHECKSUM_PARTIAL;
4002 skb_len_add(skb, -shiftlen);
4003 skb_len_add(tgt, shiftlen);
4009 * skb_prepare_seq_read - Prepare a sequential read of skb data
4010 * @skb: the buffer to read
4011 * @from: lower offset of data to be read
4012 * @to: upper offset of data to be read
4013 * @st: state variable
4015 * Initializes the specified state variable. Must be called before
4016 * invoking skb_seq_read() for the first time.
4018 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4019 unsigned int to, struct skb_seq_state *st)
4021 st->lower_offset = from;
4022 st->upper_offset = to;
4023 st->root_skb = st->cur_skb = skb;
4024 st->frag_idx = st->stepped_offset = 0;
4025 st->frag_data = NULL;
4028 EXPORT_SYMBOL(skb_prepare_seq_read);
4031 * skb_seq_read - Sequentially read skb data
4032 * @consumed: number of bytes consumed by the caller so far
4033 * @data: destination pointer for data to be returned
4034 * @st: state variable
4036 * Reads a block of skb data at @consumed relative to the
4037 * lower offset specified to skb_prepare_seq_read(). Assigns
4038 * the head of the data block to @data and returns the length
4039 * of the block or 0 if the end of the skb data or the upper
4040 * offset has been reached.
4042 * The caller is not required to consume all of the data
4043 * returned, i.e. @consumed is typically set to the number
4044 * of bytes already consumed and the next call to
4045 * skb_seq_read() will return the remaining part of the block.
4047 * Note 1: The size of each block of data returned can be arbitrary,
4048 * this limitation is the cost for zerocopy sequential
4049 * reads of potentially non linear data.
4051 * Note 2: Fragment lists within fragments are not implemented
4052 * at the moment, state->root_skb could be replaced with
4053 * a stack for this purpose.
4055 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4056 struct skb_seq_state *st)
4058 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4061 if (unlikely(abs_offset >= st->upper_offset)) {
4062 if (st->frag_data) {
4063 kunmap_atomic(st->frag_data);
4064 st->frag_data = NULL;
4070 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4072 if (abs_offset < block_limit && !st->frag_data) {
4073 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4074 return block_limit - abs_offset;
4077 if (st->frag_idx == 0 && !st->frag_data)
4078 st->stepped_offset += skb_headlen(st->cur_skb);
4080 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4081 unsigned int pg_idx, pg_off, pg_sz;
4083 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4086 pg_off = skb_frag_off(frag);
4087 pg_sz = skb_frag_size(frag);
4089 if (skb_frag_must_loop(skb_frag_page(frag))) {
4090 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4091 pg_off = offset_in_page(pg_off + st->frag_off);
4092 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4093 PAGE_SIZE - pg_off);
4096 block_limit = pg_sz + st->stepped_offset;
4097 if (abs_offset < block_limit) {
4099 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4101 *data = (u8 *)st->frag_data + pg_off +
4102 (abs_offset - st->stepped_offset);
4104 return block_limit - abs_offset;
4107 if (st->frag_data) {
4108 kunmap_atomic(st->frag_data);
4109 st->frag_data = NULL;
4112 st->stepped_offset += pg_sz;
4113 st->frag_off += pg_sz;
4114 if (st->frag_off == skb_frag_size(frag)) {
4120 if (st->frag_data) {
4121 kunmap_atomic(st->frag_data);
4122 st->frag_data = NULL;
4125 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4126 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4129 } else if (st->cur_skb->next) {
4130 st->cur_skb = st->cur_skb->next;
4137 EXPORT_SYMBOL(skb_seq_read);
4140 * skb_abort_seq_read - Abort a sequential read of skb data
4141 * @st: state variable
4143 * Must be called if skb_seq_read() was not called until it
4146 void skb_abort_seq_read(struct skb_seq_state *st)
4149 kunmap_atomic(st->frag_data);
4151 EXPORT_SYMBOL(skb_abort_seq_read);
4153 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
4155 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4156 struct ts_config *conf,
4157 struct ts_state *state)
4159 return skb_seq_read(offset, text, TS_SKB_CB(state));
4162 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4164 skb_abort_seq_read(TS_SKB_CB(state));
4168 * skb_find_text - Find a text pattern in skb data
4169 * @skb: the buffer to look in
4170 * @from: search offset
4172 * @config: textsearch configuration
4174 * Finds a pattern in the skb data according to the specified
4175 * textsearch configuration. Use textsearch_next() to retrieve
4176 * subsequent occurrences of the pattern. Returns the offset
4177 * to the first occurrence or UINT_MAX if no match was found.
4179 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4180 unsigned int to, struct ts_config *config)
4182 struct ts_state state;
4185 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4187 config->get_next_block = skb_ts_get_next_block;
4188 config->finish = skb_ts_finish;
4190 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4192 ret = textsearch_find(config, &state);
4193 return (ret <= to - from ? ret : UINT_MAX);
4195 EXPORT_SYMBOL(skb_find_text);
4197 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4198 int offset, size_t size, size_t max_frags)
4200 int i = skb_shinfo(skb)->nr_frags;
4202 if (skb_can_coalesce(skb, i, page, offset)) {
4203 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4204 } else if (i < max_frags) {
4205 skb_zcopy_downgrade_managed(skb);
4207 skb_fill_page_desc_noacc(skb, i, page, offset, size);
4214 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4217 * skb_pull_rcsum - pull skb and update receive checksum
4218 * @skb: buffer to update
4219 * @len: length of data pulled
4221 * This function performs an skb_pull on the packet and updates
4222 * the CHECKSUM_COMPLETE checksum. It should be used on
4223 * receive path processing instead of skb_pull unless you know
4224 * that the checksum difference is zero (e.g., a valid IP header)
4225 * or you are setting ip_summed to CHECKSUM_NONE.
4227 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4229 unsigned char *data = skb->data;
4231 BUG_ON(len > skb->len);
4232 __skb_pull(skb, len);
4233 skb_postpull_rcsum(skb, data, len);
4236 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4238 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4240 skb_frag_t head_frag;
4243 page = virt_to_head_page(frag_skb->head);
4244 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4245 (unsigned char *)page_address(page),
4246 skb_headlen(frag_skb));
4250 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4251 netdev_features_t features,
4252 unsigned int offset)
4254 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4255 unsigned int tnl_hlen = skb_tnl_header_len(skb);
4256 unsigned int delta_truesize = 0;
4257 unsigned int delta_len = 0;
4258 struct sk_buff *tail = NULL;
4259 struct sk_buff *nskb, *tmp;
4262 skb_push(skb, -skb_network_offset(skb) + offset);
4264 skb_shinfo(skb)->frag_list = NULL;
4268 list_skb = list_skb->next;
4271 delta_truesize += nskb->truesize;
4272 if (skb_shared(nskb)) {
4273 tmp = skb_clone(nskb, GFP_ATOMIC);
4277 err = skb_unclone(nskb, GFP_ATOMIC);
4288 if (unlikely(err)) {
4289 nskb->next = list_skb;
4295 delta_len += nskb->len;
4297 skb_push(nskb, -skb_network_offset(nskb) + offset);
4299 skb_release_head_state(nskb);
4300 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4301 __copy_skb_header(nskb, skb);
4303 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4304 nskb->transport_header += len_diff;
4305 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4306 nskb->data - tnl_hlen,
4309 if (skb_needs_linearize(nskb, features) &&
4310 __skb_linearize(nskb))
4314 skb->truesize = skb->truesize - delta_truesize;
4315 skb->data_len = skb->data_len - delta_len;
4316 skb->len = skb->len - delta_len;
4322 if (skb_needs_linearize(skb, features) &&
4323 __skb_linearize(skb))
4331 kfree_skb_list(skb->next);
4333 return ERR_PTR(-ENOMEM);
4335 EXPORT_SYMBOL_GPL(skb_segment_list);
4338 * skb_segment - Perform protocol segmentation on skb.
4339 * @head_skb: buffer to segment
4340 * @features: features for the output path (see dev->features)
4342 * This function performs segmentation on the given skb. It returns
4343 * a pointer to the first in a list of new skbs for the segments.
4344 * In case of error it returns ERR_PTR(err).
4346 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4347 netdev_features_t features)
4349 struct sk_buff *segs = NULL;
4350 struct sk_buff *tail = NULL;
4351 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4352 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
4353 unsigned int mss = skb_shinfo(head_skb)->gso_size;
4354 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4355 struct sk_buff *frag_skb = head_skb;
4356 unsigned int offset = doffset;
4357 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4358 unsigned int partial_segs = 0;
4359 unsigned int headroom;
4360 unsigned int len = head_skb->len;
4363 int nfrags = skb_shinfo(head_skb)->nr_frags;
4368 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4369 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4370 struct sk_buff *check_skb;
4372 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4373 if (skb_headlen(check_skb) && !check_skb->head_frag) {
4374 /* gso_size is untrusted, and we have a frag_list with
4375 * a linear non head_frag item.
4377 * If head_skb's headlen does not fit requested gso_size,
4378 * it means that the frag_list members do NOT terminate
4379 * on exact gso_size boundaries. Hence we cannot perform
4380 * skb_frag_t page sharing. Therefore we must fallback to
4381 * copying the frag_list skbs; we do so by disabling SG.
4383 features &= ~NETIF_F_SG;
4389 __skb_push(head_skb, doffset);
4390 proto = skb_network_protocol(head_skb, NULL);
4391 if (unlikely(!proto))
4392 return ERR_PTR(-EINVAL);
4394 sg = !!(features & NETIF_F_SG);
4395 csum = !!can_checksum_protocol(features, proto);
4397 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4398 if (!(features & NETIF_F_GSO_PARTIAL)) {
4399 struct sk_buff *iter;
4400 unsigned int frag_len;
4403 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4406 /* If we get here then all the required
4407 * GSO features except frag_list are supported.
4408 * Try to split the SKB to multiple GSO SKBs
4409 * with no frag_list.
4410 * Currently we can do that only when the buffers don't
4411 * have a linear part and all the buffers except
4412 * the last are of the same length.
4414 frag_len = list_skb->len;
4415 skb_walk_frags(head_skb, iter) {
4416 if (frag_len != iter->len && iter->next)
4418 if (skb_headlen(iter) && !iter->head_frag)
4424 if (len != frag_len)
4428 /* GSO partial only requires that we trim off any excess that
4429 * doesn't fit into an MSS sized block, so take care of that
4432 partial_segs = len / mss;
4433 if (partial_segs > 1)
4434 mss *= partial_segs;
4440 headroom = skb_headroom(head_skb);
4441 pos = skb_headlen(head_skb);
4444 struct sk_buff *nskb;
4445 skb_frag_t *nskb_frag;
4449 if (unlikely(mss == GSO_BY_FRAGS)) {
4450 len = list_skb->len;
4452 len = head_skb->len - offset;
4457 hsize = skb_headlen(head_skb) - offset;
4459 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4460 (skb_headlen(list_skb) == len || sg)) {
4461 BUG_ON(skb_headlen(list_skb) > len);
4464 nfrags = skb_shinfo(list_skb)->nr_frags;
4465 frag = skb_shinfo(list_skb)->frags;
4466 frag_skb = list_skb;
4467 pos += skb_headlen(list_skb);
4469 while (pos < offset + len) {
4470 BUG_ON(i >= nfrags);
4472 size = skb_frag_size(frag);
4473 if (pos + size > offset + len)
4481 nskb = skb_clone(list_skb, GFP_ATOMIC);
4482 list_skb = list_skb->next;
4484 if (unlikely(!nskb))
4487 if (unlikely(pskb_trim(nskb, len))) {
4492 hsize = skb_end_offset(nskb);
4493 if (skb_cow_head(nskb, doffset + headroom)) {
4498 nskb->truesize += skb_end_offset(nskb) - hsize;
4499 skb_release_head_state(nskb);
4500 __skb_push(nskb, doffset);
4504 if (hsize > len || !sg)
4507 nskb = __alloc_skb(hsize + doffset + headroom,
4508 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4511 if (unlikely(!nskb))
4514 skb_reserve(nskb, headroom);
4515 __skb_put(nskb, doffset);
4524 __copy_skb_header(nskb, head_skb);
4526 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4527 skb_reset_mac_len(nskb);
4529 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4530 nskb->data - tnl_hlen,
4531 doffset + tnl_hlen);
4533 if (nskb->len == len + doffset)
4534 goto perform_csum_check;
4538 if (!nskb->remcsum_offload)
4539 nskb->ip_summed = CHECKSUM_NONE;
4540 SKB_GSO_CB(nskb)->csum =
4541 skb_copy_and_csum_bits(head_skb, offset,
4545 SKB_GSO_CB(nskb)->csum_start =
4546 skb_headroom(nskb) + doffset;
4548 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4554 nskb_frag = skb_shinfo(nskb)->frags;
4556 skb_copy_from_linear_data_offset(head_skb, offset,
4557 skb_put(nskb, hsize), hsize);
4559 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4562 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4563 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4566 while (pos < offset + len) {
4569 nfrags = skb_shinfo(list_skb)->nr_frags;
4570 frag = skb_shinfo(list_skb)->frags;
4571 frag_skb = list_skb;
4572 if (!skb_headlen(list_skb)) {
4575 BUG_ON(!list_skb->head_frag);
4577 /* to make room for head_frag. */
4581 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4582 skb_zerocopy_clone(nskb, frag_skb,
4586 list_skb = list_skb->next;
4589 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4591 net_warn_ratelimited(
4592 "skb_segment: too many frags: %u %u\n",
4598 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4599 __skb_frag_ref(nskb_frag);
4600 size = skb_frag_size(nskb_frag);
4603 skb_frag_off_add(nskb_frag, offset - pos);
4604 skb_frag_size_sub(nskb_frag, offset - pos);
4607 skb_shinfo(nskb)->nr_frags++;
4609 if (pos + size <= offset + len) {
4614 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4622 nskb->data_len = len - hsize;
4623 nskb->len += nskb->data_len;
4624 nskb->truesize += nskb->data_len;
4628 if (skb_has_shared_frag(nskb) &&
4629 __skb_linearize(nskb))
4632 if (!nskb->remcsum_offload)
4633 nskb->ip_summed = CHECKSUM_NONE;
4634 SKB_GSO_CB(nskb)->csum =
4635 skb_checksum(nskb, doffset,
4636 nskb->len - doffset, 0);
4637 SKB_GSO_CB(nskb)->csum_start =
4638 skb_headroom(nskb) + doffset;
4640 } while ((offset += len) < head_skb->len);
4642 /* Some callers want to get the end of the list.
4643 * Put it in segs->prev to avoid walking the list.
4644 * (see validate_xmit_skb_list() for example)
4649 struct sk_buff *iter;
4650 int type = skb_shinfo(head_skb)->gso_type;
4651 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4653 /* Update type to add partial and then remove dodgy if set */
4654 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4655 type &= ~SKB_GSO_DODGY;
4657 /* Update GSO info and prepare to start updating headers on
4658 * our way back down the stack of protocols.
4660 for (iter = segs; iter; iter = iter->next) {
4661 skb_shinfo(iter)->gso_size = gso_size;
4662 skb_shinfo(iter)->gso_segs = partial_segs;
4663 skb_shinfo(iter)->gso_type = type;
4664 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4667 if (tail->len - doffset <= gso_size)
4668 skb_shinfo(tail)->gso_size = 0;
4669 else if (tail != segs)
4670 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4673 /* Following permits correct backpressure, for protocols
4674 * using skb_set_owner_w().
4675 * Idea is to tranfert ownership from head_skb to last segment.
4677 if (head_skb->destructor == sock_wfree) {
4678 swap(tail->truesize, head_skb->truesize);
4679 swap(tail->destructor, head_skb->destructor);
4680 swap(tail->sk, head_skb->sk);
4685 kfree_skb_list(segs);
4686 return ERR_PTR(err);
4688 EXPORT_SYMBOL_GPL(skb_segment);
4690 #ifdef CONFIG_SKB_EXTENSIONS
4691 #define SKB_EXT_ALIGN_VALUE 8
4692 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4694 static const u8 skb_ext_type_len[] = {
4695 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4696 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4699 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4701 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4702 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4704 #if IS_ENABLED(CONFIG_MPTCP)
4705 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4707 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4708 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4712 static __always_inline unsigned int skb_ext_total_length(void)
4714 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4715 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4716 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4719 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4721 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4722 skb_ext_type_len[TC_SKB_EXT] +
4724 #if IS_ENABLED(CONFIG_MPTCP)
4725 skb_ext_type_len[SKB_EXT_MPTCP] +
4727 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4728 skb_ext_type_len[SKB_EXT_MCTP] +
4733 static void skb_extensions_init(void)
4735 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4736 BUILD_BUG_ON(skb_ext_total_length() > 255);
4738 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4739 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4741 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4745 static void skb_extensions_init(void) {}
4748 void __init skb_init(void)
4750 skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4751 sizeof(struct sk_buff),
4753 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4754 offsetof(struct sk_buff, cb),
4755 sizeof_field(struct sk_buff, cb),
4757 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4758 sizeof(struct sk_buff_fclones),
4760 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4762 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
4763 * struct skb_shared_info is located at the end of skb->head,
4764 * and should not be copied to/from user.
4766 skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
4767 SKB_SMALL_HEAD_CACHE_SIZE,
4769 SLAB_HWCACHE_ALIGN | SLAB_PANIC,
4771 SKB_SMALL_HEAD_HEADROOM,
4773 skb_extensions_init();
4777 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4778 unsigned int recursion_level)
4780 int start = skb_headlen(skb);
4781 int i, copy = start - offset;
4782 struct sk_buff *frag_iter;
4785 if (unlikely(recursion_level >= 24))
4791 sg_set_buf(sg, skb->data + offset, copy);
4793 if ((len -= copy) == 0)
4798 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4801 WARN_ON(start > offset + len);
4803 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4804 if ((copy = end - offset) > 0) {
4805 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4806 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4811 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4812 skb_frag_off(frag) + offset - start);
4821 skb_walk_frags(skb, frag_iter) {
4824 WARN_ON(start > offset + len);
4826 end = start + frag_iter->len;
4827 if ((copy = end - offset) > 0) {
4828 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4833 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4834 copy, recursion_level + 1);
4835 if (unlikely(ret < 0))
4838 if ((len -= copy) == 0)
4849 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4850 * @skb: Socket buffer containing the buffers to be mapped
4851 * @sg: The scatter-gather list to map into
4852 * @offset: The offset into the buffer's contents to start mapping
4853 * @len: Length of buffer space to be mapped
4855 * Fill the specified scatter-gather list with mappings/pointers into a
4856 * region of the buffer space attached to a socket buffer. Returns either
4857 * the number of scatterlist items used, or -EMSGSIZE if the contents
4860 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4862 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4867 sg_mark_end(&sg[nsg - 1]);
4871 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4873 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4874 * sglist without mark the sg which contain last skb data as the end.
4875 * So the caller can mannipulate sg list as will when padding new data after
4876 * the first call without calling sg_unmark_end to expend sg list.
4878 * Scenario to use skb_to_sgvec_nomark:
4880 * 2. skb_to_sgvec_nomark(payload1)
4881 * 3. skb_to_sgvec_nomark(payload2)
4883 * This is equivalent to:
4885 * 2. skb_to_sgvec(payload1)
4887 * 4. skb_to_sgvec(payload2)
4889 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4890 * is more preferable.
4892 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4893 int offset, int len)
4895 return __skb_to_sgvec(skb, sg, offset, len, 0);
4897 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4902 * skb_cow_data - Check that a socket buffer's data buffers are writable
4903 * @skb: The socket buffer to check.
4904 * @tailbits: Amount of trailing space to be added
4905 * @trailer: Returned pointer to the skb where the @tailbits space begins
4907 * Make sure that the data buffers attached to a socket buffer are
4908 * writable. If they are not, private copies are made of the data buffers
4909 * and the socket buffer is set to use these instead.
4911 * If @tailbits is given, make sure that there is space to write @tailbits
4912 * bytes of data beyond current end of socket buffer. @trailer will be
4913 * set to point to the skb in which this space begins.
4915 * The number of scatterlist elements required to completely map the
4916 * COW'd and extended socket buffer will be returned.
4918 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4922 struct sk_buff *skb1, **skb_p;
4924 /* If skb is cloned or its head is paged, reallocate
4925 * head pulling out all the pages (pages are considered not writable
4926 * at the moment even if they are anonymous).
4928 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4929 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4932 /* Easy case. Most of packets will go this way. */
4933 if (!skb_has_frag_list(skb)) {
4934 /* A little of trouble, not enough of space for trailer.
4935 * This should not happen, when stack is tuned to generate
4936 * good frames. OK, on miss we reallocate and reserve even more
4937 * space, 128 bytes is fair. */
4939 if (skb_tailroom(skb) < tailbits &&
4940 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4948 /* Misery. We are in troubles, going to mincer fragments... */
4951 skb_p = &skb_shinfo(skb)->frag_list;
4954 while ((skb1 = *skb_p) != NULL) {
4957 /* The fragment is partially pulled by someone,
4958 * this can happen on input. Copy it and everything
4961 if (skb_shared(skb1))
4964 /* If the skb is the last, worry about trailer. */
4966 if (skb1->next == NULL && tailbits) {
4967 if (skb_shinfo(skb1)->nr_frags ||
4968 skb_has_frag_list(skb1) ||
4969 skb_tailroom(skb1) < tailbits)
4970 ntail = tailbits + 128;
4976 skb_shinfo(skb1)->nr_frags ||
4977 skb_has_frag_list(skb1)) {
4978 struct sk_buff *skb2;
4980 /* Fuck, we are miserable poor guys... */
4982 skb2 = skb_copy(skb1, GFP_ATOMIC);
4984 skb2 = skb_copy_expand(skb1,
4988 if (unlikely(skb2 == NULL))
4992 skb_set_owner_w(skb2, skb1->sk);
4994 /* Looking around. Are we still alive?
4995 * OK, link new skb, drop old one */
4997 skb2->next = skb1->next;
5004 skb_p = &skb1->next;
5009 EXPORT_SYMBOL_GPL(skb_cow_data);
5011 static void sock_rmem_free(struct sk_buff *skb)
5013 struct sock *sk = skb->sk;
5015 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5018 static void skb_set_err_queue(struct sk_buff *skb)
5020 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5021 * So, it is safe to (mis)use it to mark skbs on the error queue.
5023 skb->pkt_type = PACKET_OUTGOING;
5024 BUILD_BUG_ON(PACKET_OUTGOING == 0);
5028 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5030 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5032 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5033 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5038 skb->destructor = sock_rmem_free;
5039 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5040 skb_set_err_queue(skb);
5042 /* before exiting rcu section, make sure dst is refcounted */
5045 skb_queue_tail(&sk->sk_error_queue, skb);
5046 if (!sock_flag(sk, SOCK_DEAD))
5047 sk_error_report(sk);
5050 EXPORT_SYMBOL(sock_queue_err_skb);
5052 static bool is_icmp_err_skb(const struct sk_buff *skb)
5054 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5055 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5058 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5060 struct sk_buff_head *q = &sk->sk_error_queue;
5061 struct sk_buff *skb, *skb_next = NULL;
5062 bool icmp_next = false;
5063 unsigned long flags;
5065 spin_lock_irqsave(&q->lock, flags);
5066 skb = __skb_dequeue(q);
5067 if (skb && (skb_next = skb_peek(q))) {
5068 icmp_next = is_icmp_err_skb(skb_next);
5070 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5072 spin_unlock_irqrestore(&q->lock, flags);
5074 if (is_icmp_err_skb(skb) && !icmp_next)
5078 sk_error_report(sk);
5082 EXPORT_SYMBOL(sock_dequeue_err_skb);
5085 * skb_clone_sk - create clone of skb, and take reference to socket
5086 * @skb: the skb to clone
5088 * This function creates a clone of a buffer that holds a reference on
5089 * sk_refcnt. Buffers created via this function are meant to be
5090 * returned using sock_queue_err_skb, or free via kfree_skb.
5092 * When passing buffers allocated with this function to sock_queue_err_skb
5093 * it is necessary to wrap the call with sock_hold/sock_put in order to
5094 * prevent the socket from being released prior to being enqueued on
5095 * the sk_error_queue.
5097 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5099 struct sock *sk = skb->sk;
5100 struct sk_buff *clone;
5102 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5105 clone = skb_clone(skb, GFP_ATOMIC);
5112 clone->destructor = sock_efree;
5116 EXPORT_SYMBOL(skb_clone_sk);
5118 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5123 struct sock_exterr_skb *serr;
5126 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5128 serr = SKB_EXT_ERR(skb);
5129 memset(serr, 0, sizeof(*serr));
5130 serr->ee.ee_errno = ENOMSG;
5131 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5132 serr->ee.ee_info = tstype;
5133 serr->opt_stats = opt_stats;
5134 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5135 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
5136 serr->ee.ee_data = skb_shinfo(skb)->tskey;
5138 serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5141 err = sock_queue_err_skb(sk, skb);
5147 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5151 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5154 read_lock_bh(&sk->sk_callback_lock);
5155 ret = sk->sk_socket && sk->sk_socket->file &&
5156 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5157 read_unlock_bh(&sk->sk_callback_lock);
5161 void skb_complete_tx_timestamp(struct sk_buff *skb,
5162 struct skb_shared_hwtstamps *hwtstamps)
5164 struct sock *sk = skb->sk;
5166 if (!skb_may_tx_timestamp(sk, false))
5169 /* Take a reference to prevent skb_orphan() from freeing the socket,
5170 * but only if the socket refcount is not zero.
5172 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5173 *skb_hwtstamps(skb) = *hwtstamps;
5174 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5182 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5184 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5185 const struct sk_buff *ack_skb,
5186 struct skb_shared_hwtstamps *hwtstamps,
5187 struct sock *sk, int tstype)
5189 struct sk_buff *skb;
5190 bool tsonly, opt_stats = false;
5195 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5196 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5199 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5200 if (!skb_may_tx_timestamp(sk, tsonly))
5205 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5207 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5212 skb = alloc_skb(0, GFP_ATOMIC);
5214 skb = skb_clone(orig_skb, GFP_ATOMIC);
5216 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5225 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5227 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5231 *skb_hwtstamps(skb) = *hwtstamps;
5233 __net_timestamp(skb);
5235 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5237 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5239 void skb_tstamp_tx(struct sk_buff *orig_skb,
5240 struct skb_shared_hwtstamps *hwtstamps)
5242 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5245 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5247 #ifdef CONFIG_WIRELESS
5248 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5250 struct sock *sk = skb->sk;
5251 struct sock_exterr_skb *serr;
5254 skb->wifi_acked_valid = 1;
5255 skb->wifi_acked = acked;
5257 serr = SKB_EXT_ERR(skb);
5258 memset(serr, 0, sizeof(*serr));
5259 serr->ee.ee_errno = ENOMSG;
5260 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5262 /* Take a reference to prevent skb_orphan() from freeing the socket,
5263 * but only if the socket refcount is not zero.
5265 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5266 err = sock_queue_err_skb(sk, skb);
5272 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5273 #endif /* CONFIG_WIRELESS */
5276 * skb_partial_csum_set - set up and verify partial csum values for packet
5277 * @skb: the skb to set
5278 * @start: the number of bytes after skb->data to start checksumming.
5279 * @off: the offset from start to place the checksum.
5281 * For untrusted partially-checksummed packets, we need to make sure the values
5282 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5284 * This function checks and sets those values and skb->ip_summed: if this
5285 * returns false you should drop the packet.
5287 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5289 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5290 u32 csum_start = skb_headroom(skb) + (u32)start;
5292 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5293 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5294 start, off, skb_headroom(skb), skb_headlen(skb));
5297 skb->ip_summed = CHECKSUM_PARTIAL;
5298 skb->csum_start = csum_start;
5299 skb->csum_offset = off;
5300 skb->transport_header = csum_start;
5303 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5305 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5308 if (skb_headlen(skb) >= len)
5311 /* If we need to pullup then pullup to the max, so we
5312 * won't need to do it again.
5317 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5320 if (skb_headlen(skb) < len)
5326 #define MAX_TCP_HDR_LEN (15 * 4)
5328 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5329 typeof(IPPROTO_IP) proto,
5336 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5337 off + MAX_TCP_HDR_LEN);
5338 if (!err && !skb_partial_csum_set(skb, off,
5339 offsetof(struct tcphdr,
5342 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5345 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5346 off + sizeof(struct udphdr));
5347 if (!err && !skb_partial_csum_set(skb, off,
5348 offsetof(struct udphdr,
5351 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5354 return ERR_PTR(-EPROTO);
5357 /* This value should be large enough to cover a tagged ethernet header plus
5358 * maximally sized IP and TCP or UDP headers.
5360 #define MAX_IP_HDR_LEN 128
5362 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5371 err = skb_maybe_pull_tail(skb,
5372 sizeof(struct iphdr),
5377 if (ip_is_fragment(ip_hdr(skb)))
5380 off = ip_hdrlen(skb);
5387 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5389 return PTR_ERR(csum);
5392 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5395 ip_hdr(skb)->protocol, 0);
5402 /* This value should be large enough to cover a tagged ethernet header plus
5403 * an IPv6 header, all options, and a maximal TCP or UDP header.
5405 #define MAX_IPV6_HDR_LEN 256
5407 #define OPT_HDR(type, skb, off) \
5408 (type *)(skb_network_header(skb) + (off))
5410 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5423 off = sizeof(struct ipv6hdr);
5425 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5429 nexthdr = ipv6_hdr(skb)->nexthdr;
5431 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5432 while (off <= len && !done) {
5434 case IPPROTO_DSTOPTS:
5435 case IPPROTO_HOPOPTS:
5436 case IPPROTO_ROUTING: {
5437 struct ipv6_opt_hdr *hp;
5439 err = skb_maybe_pull_tail(skb,
5441 sizeof(struct ipv6_opt_hdr),
5446 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5447 nexthdr = hp->nexthdr;
5448 off += ipv6_optlen(hp);
5452 struct ip_auth_hdr *hp;
5454 err = skb_maybe_pull_tail(skb,
5456 sizeof(struct ip_auth_hdr),
5461 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5462 nexthdr = hp->nexthdr;
5463 off += ipv6_authlen(hp);
5466 case IPPROTO_FRAGMENT: {
5467 struct frag_hdr *hp;
5469 err = skb_maybe_pull_tail(skb,
5471 sizeof(struct frag_hdr),
5476 hp = OPT_HDR(struct frag_hdr, skb, off);
5478 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5481 nexthdr = hp->nexthdr;
5482 off += sizeof(struct frag_hdr);
5493 if (!done || fragment)
5496 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5498 return PTR_ERR(csum);
5501 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5502 &ipv6_hdr(skb)->daddr,
5503 skb->len - off, nexthdr, 0);
5511 * skb_checksum_setup - set up partial checksum offset
5512 * @skb: the skb to set up
5513 * @recalculate: if true the pseudo-header checksum will be recalculated
5515 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5519 switch (skb->protocol) {
5520 case htons(ETH_P_IP):
5521 err = skb_checksum_setup_ipv4(skb, recalculate);
5524 case htons(ETH_P_IPV6):
5525 err = skb_checksum_setup_ipv6(skb, recalculate);
5535 EXPORT_SYMBOL(skb_checksum_setup);
5538 * skb_checksum_maybe_trim - maybe trims the given skb
5539 * @skb: the skb to check
5540 * @transport_len: the data length beyond the network header
5542 * Checks whether the given skb has data beyond the given transport length.
5543 * If so, returns a cloned skb trimmed to this transport length.
5544 * Otherwise returns the provided skb. Returns NULL in error cases
5545 * (e.g. transport_len exceeds skb length or out-of-memory).
5547 * Caller needs to set the skb transport header and free any returned skb if it
5548 * differs from the provided skb.
5550 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5551 unsigned int transport_len)
5553 struct sk_buff *skb_chk;
5554 unsigned int len = skb_transport_offset(skb) + transport_len;
5559 else if (skb->len == len)
5562 skb_chk = skb_clone(skb, GFP_ATOMIC);
5566 ret = pskb_trim_rcsum(skb_chk, len);
5576 * skb_checksum_trimmed - validate checksum of an skb
5577 * @skb: the skb to check
5578 * @transport_len: the data length beyond the network header
5579 * @skb_chkf: checksum function to use
5581 * Applies the given checksum function skb_chkf to the provided skb.
5582 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5584 * If the skb has data beyond the given transport length, then a
5585 * trimmed & cloned skb is checked and returned.
5587 * Caller needs to set the skb transport header and free any returned skb if it
5588 * differs from the provided skb.
5590 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5591 unsigned int transport_len,
5592 __sum16(*skb_chkf)(struct sk_buff *skb))
5594 struct sk_buff *skb_chk;
5595 unsigned int offset = skb_transport_offset(skb);
5598 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5602 if (!pskb_may_pull(skb_chk, offset))
5605 skb_pull_rcsum(skb_chk, offset);
5606 ret = skb_chkf(skb_chk);
5607 skb_push_rcsum(skb_chk, offset);
5615 if (skb_chk && skb_chk != skb)
5621 EXPORT_SYMBOL(skb_checksum_trimmed);
5623 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5625 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5628 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5630 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5633 skb_release_head_state(skb);
5634 kmem_cache_free(skbuff_cache, skb);
5639 EXPORT_SYMBOL(kfree_skb_partial);
5642 * skb_try_coalesce - try to merge skb to prior one
5644 * @from: buffer to add
5645 * @fragstolen: pointer to boolean
5646 * @delta_truesize: how much more was allocated than was requested
5648 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5649 bool *fragstolen, int *delta_truesize)
5651 struct skb_shared_info *to_shinfo, *from_shinfo;
5652 int i, delta, len = from->len;
5654 *fragstolen = false;
5659 /* In general, avoid mixing page_pool and non-page_pool allocated
5660 * pages within the same SKB. Additionally avoid dealing with clones
5661 * with page_pool pages, in case the SKB is using page_pool fragment
5662 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5663 * references for cloned SKBs at the moment that would result in
5664 * inconsistent reference counts.
5665 * In theory we could take full references if @from is cloned and
5666 * !@to->pp_recycle but its tricky (due to potential race with
5667 * the clone disappearing) and rare, so not worth dealing with.
5669 if (to->pp_recycle != from->pp_recycle ||
5670 (from->pp_recycle && skb_cloned(from)))
5673 if (len <= skb_tailroom(to)) {
5675 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5676 *delta_truesize = 0;
5680 to_shinfo = skb_shinfo(to);
5681 from_shinfo = skb_shinfo(from);
5682 if (to_shinfo->frag_list || from_shinfo->frag_list)
5684 if (skb_zcopy(to) || skb_zcopy(from))
5687 if (skb_headlen(from) != 0) {
5689 unsigned int offset;
5691 if (to_shinfo->nr_frags +
5692 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5695 if (skb_head_is_locked(from))
5698 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5700 page = virt_to_head_page(from->head);
5701 offset = from->data - (unsigned char *)page_address(page);
5703 skb_fill_page_desc(to, to_shinfo->nr_frags,
5704 page, offset, skb_headlen(from));
5707 if (to_shinfo->nr_frags +
5708 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5711 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5714 WARN_ON_ONCE(delta < len);
5716 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5718 from_shinfo->nr_frags * sizeof(skb_frag_t));
5719 to_shinfo->nr_frags += from_shinfo->nr_frags;
5721 if (!skb_cloned(from))
5722 from_shinfo->nr_frags = 0;
5724 /* if the skb is not cloned this does nothing
5725 * since we set nr_frags to 0.
5727 for (i = 0; i < from_shinfo->nr_frags; i++)
5728 __skb_frag_ref(&from_shinfo->frags[i]);
5730 to->truesize += delta;
5732 to->data_len += len;
5734 *delta_truesize = delta;
5737 EXPORT_SYMBOL(skb_try_coalesce);
5740 * skb_scrub_packet - scrub an skb
5742 * @skb: buffer to clean
5743 * @xnet: packet is crossing netns
5745 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5746 * into/from a tunnel. Some information have to be cleared during these
5748 * skb_scrub_packet can also be used to clean a skb before injecting it in
5749 * another namespace (@xnet == true). We have to clear all information in the
5750 * skb that could impact namespace isolation.
5752 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5754 skb->pkt_type = PACKET_HOST;
5760 nf_reset_trace(skb);
5762 #ifdef CONFIG_NET_SWITCHDEV
5763 skb->offload_fwd_mark = 0;
5764 skb->offload_l3_fwd_mark = 0;
5772 skb_clear_tstamp(skb);
5774 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5776 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5778 int mac_len, meta_len;
5781 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5786 mac_len = skb->data - skb_mac_header(skb);
5787 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5788 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5789 mac_len - VLAN_HLEN - ETH_TLEN);
5792 meta_len = skb_metadata_len(skb);
5794 meta = skb_metadata_end(skb) - meta_len;
5795 memmove(meta + VLAN_HLEN, meta, meta_len);
5798 skb->mac_header += VLAN_HLEN;
5802 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5804 struct vlan_hdr *vhdr;
5807 if (unlikely(skb_vlan_tag_present(skb))) {
5808 /* vlan_tci is already set-up so leave this for another time */
5812 skb = skb_share_check(skb, GFP_ATOMIC);
5815 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5816 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5819 vhdr = (struct vlan_hdr *)skb->data;
5820 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5821 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5823 skb_pull_rcsum(skb, VLAN_HLEN);
5824 vlan_set_encap_proto(skb, vhdr);
5826 skb = skb_reorder_vlan_header(skb);
5830 skb_reset_network_header(skb);
5831 if (!skb_transport_header_was_set(skb))
5832 skb_reset_transport_header(skb);
5833 skb_reset_mac_len(skb);
5841 EXPORT_SYMBOL(skb_vlan_untag);
5843 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5845 if (!pskb_may_pull(skb, write_len))
5848 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5851 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5853 EXPORT_SYMBOL(skb_ensure_writable);
5855 /* remove VLAN header from packet and update csum accordingly.
5856 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5858 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5860 int offset = skb->data - skb_mac_header(skb);
5863 if (WARN_ONCE(offset,
5864 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5869 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5873 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5875 vlan_remove_tag(skb, vlan_tci);
5877 skb->mac_header += VLAN_HLEN;
5879 if (skb_network_offset(skb) < ETH_HLEN)
5880 skb_set_network_header(skb, ETH_HLEN);
5882 skb_reset_mac_len(skb);
5886 EXPORT_SYMBOL(__skb_vlan_pop);
5888 /* Pop a vlan tag either from hwaccel or from payload.
5889 * Expects skb->data at mac header.
5891 int skb_vlan_pop(struct sk_buff *skb)
5897 if (likely(skb_vlan_tag_present(skb))) {
5898 __vlan_hwaccel_clear_tag(skb);
5900 if (unlikely(!eth_type_vlan(skb->protocol)))
5903 err = __skb_vlan_pop(skb, &vlan_tci);
5907 /* move next vlan tag to hw accel tag */
5908 if (likely(!eth_type_vlan(skb->protocol)))
5911 vlan_proto = skb->protocol;
5912 err = __skb_vlan_pop(skb, &vlan_tci);
5916 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5919 EXPORT_SYMBOL(skb_vlan_pop);
5921 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5922 * Expects skb->data at mac header.
5924 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5926 if (skb_vlan_tag_present(skb)) {
5927 int offset = skb->data - skb_mac_header(skb);
5930 if (WARN_ONCE(offset,
5931 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5936 err = __vlan_insert_tag(skb, skb->vlan_proto,
5937 skb_vlan_tag_get(skb));
5941 skb->protocol = skb->vlan_proto;
5942 skb->mac_len += VLAN_HLEN;
5944 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5946 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5949 EXPORT_SYMBOL(skb_vlan_push);
5952 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5954 * @skb: Socket buffer to modify
5956 * Drop the Ethernet header of @skb.
5958 * Expects that skb->data points to the mac header and that no VLAN tags are
5961 * Returns 0 on success, -errno otherwise.
5963 int skb_eth_pop(struct sk_buff *skb)
5965 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5966 skb_network_offset(skb) < ETH_HLEN)
5969 skb_pull_rcsum(skb, ETH_HLEN);
5970 skb_reset_mac_header(skb);
5971 skb_reset_mac_len(skb);
5975 EXPORT_SYMBOL(skb_eth_pop);
5978 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5980 * @skb: Socket buffer to modify
5981 * @dst: Destination MAC address of the new header
5982 * @src: Source MAC address of the new header
5984 * Prepend @skb with a new Ethernet header.
5986 * Expects that skb->data points to the mac header, which must be empty.
5988 * Returns 0 on success, -errno otherwise.
5990 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5991 const unsigned char *src)
5996 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5999 err = skb_cow_head(skb, sizeof(*eth));
6003 skb_push(skb, sizeof(*eth));
6004 skb_reset_mac_header(skb);
6005 skb_reset_mac_len(skb);
6008 ether_addr_copy(eth->h_dest, dst);
6009 ether_addr_copy(eth->h_source, src);
6010 eth->h_proto = skb->protocol;
6012 skb_postpush_rcsum(skb, eth, sizeof(*eth));
6016 EXPORT_SYMBOL(skb_eth_push);
6018 /* Update the ethertype of hdr and the skb csum value if required. */
6019 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6022 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6023 __be16 diff[] = { ~hdr->h_proto, ethertype };
6025 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6028 hdr->h_proto = ethertype;
6032 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6036 * @mpls_lse: MPLS label stack entry to push
6037 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6038 * @mac_len: length of the MAC header
6039 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6042 * Expects skb->data at mac header.
6044 * Returns 0 on success, -errno otherwise.
6046 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6047 int mac_len, bool ethernet)
6049 struct mpls_shim_hdr *lse;
6052 if (unlikely(!eth_p_mpls(mpls_proto)))
6055 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6056 if (skb->encapsulation)
6059 err = skb_cow_head(skb, MPLS_HLEN);
6063 if (!skb->inner_protocol) {
6064 skb_set_inner_network_header(skb, skb_network_offset(skb));
6065 skb_set_inner_protocol(skb, skb->protocol);
6068 skb_push(skb, MPLS_HLEN);
6069 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6071 skb_reset_mac_header(skb);
6072 skb_set_network_header(skb, mac_len);
6073 skb_reset_mac_len(skb);
6075 lse = mpls_hdr(skb);
6076 lse->label_stack_entry = mpls_lse;
6077 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6079 if (ethernet && mac_len >= ETH_HLEN)
6080 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6081 skb->protocol = mpls_proto;
6085 EXPORT_SYMBOL_GPL(skb_mpls_push);
6088 * skb_mpls_pop() - pop the outermost MPLS header
6091 * @next_proto: ethertype of header after popped MPLS header
6092 * @mac_len: length of the MAC header
6093 * @ethernet: flag to indicate if the packet is ethernet
6095 * Expects skb->data at mac header.
6097 * Returns 0 on success, -errno otherwise.
6099 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6104 if (unlikely(!eth_p_mpls(skb->protocol)))
6107 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6111 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6112 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6115 __skb_pull(skb, MPLS_HLEN);
6116 skb_reset_mac_header(skb);
6117 skb_set_network_header(skb, mac_len);
6119 if (ethernet && mac_len >= ETH_HLEN) {
6122 /* use mpls_hdr() to get ethertype to account for VLANs. */
6123 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6124 skb_mod_eth_type(skb, hdr, next_proto);
6126 skb->protocol = next_proto;
6130 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6133 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6136 * @mpls_lse: new MPLS label stack entry to update to
6138 * Expects skb->data at mac header.
6140 * Returns 0 on success, -errno otherwise.
6142 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6146 if (unlikely(!eth_p_mpls(skb->protocol)))
6149 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6153 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6154 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6156 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6159 mpls_hdr(skb)->label_stack_entry = mpls_lse;
6163 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6166 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6170 * Expects skb->data at mac header.
6172 * Returns 0 on success, -errno otherwise.
6174 int skb_mpls_dec_ttl(struct sk_buff *skb)
6179 if (unlikely(!eth_p_mpls(skb->protocol)))
6182 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6185 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6186 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6190 lse &= ~MPLS_LS_TTL_MASK;
6191 lse |= ttl << MPLS_LS_TTL_SHIFT;
6193 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6195 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6198 * alloc_skb_with_frags - allocate skb with page frags
6200 * @header_len: size of linear part
6201 * @data_len: needed length in frags
6202 * @max_page_order: max page order desired.
6203 * @errcode: pointer to error code if any
6204 * @gfp_mask: allocation mask
6206 * This can be used to allocate a paged skb, given a maximal order for frags.
6208 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6209 unsigned long data_len,
6214 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6215 unsigned long chunk;
6216 struct sk_buff *skb;
6220 *errcode = -EMSGSIZE;
6221 /* Note this test could be relaxed, if we succeed to allocate
6222 * high order pages...
6224 if (npages > MAX_SKB_FRAGS)
6227 *errcode = -ENOBUFS;
6228 skb = alloc_skb(header_len, gfp_mask);
6232 skb->truesize += npages << PAGE_SHIFT;
6234 for (i = 0; npages > 0; i++) {
6235 int order = max_page_order;
6238 if (npages >= 1 << order) {
6239 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6245 /* Do not retry other high order allocations */
6251 page = alloc_page(gfp_mask);
6255 chunk = min_t(unsigned long, data_len,
6256 PAGE_SIZE << order);
6257 skb_fill_page_desc(skb, i, page, 0, chunk);
6259 npages -= 1 << order;
6267 EXPORT_SYMBOL(alloc_skb_with_frags);
6269 /* carve out the first off bytes from skb when off < headlen */
6270 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6271 const int headlen, gfp_t gfp_mask)
6274 unsigned int size = skb_end_offset(skb);
6275 int new_hlen = headlen - off;
6278 if (skb_pfmemalloc(skb))
6279 gfp_mask |= __GFP_MEMALLOC;
6281 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6284 size = SKB_WITH_OVERHEAD(size);
6286 /* Copy real data, and all frags */
6287 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6290 memcpy((struct skb_shared_info *)(data + size),
6292 offsetof(struct skb_shared_info,
6293 frags[skb_shinfo(skb)->nr_frags]));
6294 if (skb_cloned(skb)) {
6295 /* drop the old head gracefully */
6296 if (skb_orphan_frags(skb, gfp_mask)) {
6297 skb_kfree_head(data, size);
6300 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6301 skb_frag_ref(skb, i);
6302 if (skb_has_frag_list(skb))
6303 skb_clone_fraglist(skb);
6304 skb_release_data(skb, SKB_CONSUMED, false);
6306 /* we can reuse existing recount- all we did was
6309 skb_free_head(skb, false);
6315 skb_set_end_offset(skb, size);
6316 skb_set_tail_pointer(skb, skb_headlen(skb));
6317 skb_headers_offset_update(skb, 0);
6321 atomic_set(&skb_shinfo(skb)->dataref, 1);
6326 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6328 /* carve out the first eat bytes from skb's frag_list. May recurse into
6331 static int pskb_carve_frag_list(struct sk_buff *skb,
6332 struct skb_shared_info *shinfo, int eat,
6335 struct sk_buff *list = shinfo->frag_list;
6336 struct sk_buff *clone = NULL;
6337 struct sk_buff *insp = NULL;
6341 pr_err("Not enough bytes to eat. Want %d\n", eat);
6344 if (list->len <= eat) {
6345 /* Eaten as whole. */
6350 /* Eaten partially. */
6351 if (skb_shared(list)) {
6352 clone = skb_clone(list, gfp_mask);
6358 /* This may be pulled without problems. */
6361 if (pskb_carve(list, eat, gfp_mask) < 0) {
6369 /* Free pulled out fragments. */
6370 while ((list = shinfo->frag_list) != insp) {
6371 shinfo->frag_list = list->next;
6374 /* And insert new clone at head. */
6377 shinfo->frag_list = clone;
6382 /* carve off first len bytes from skb. Split line (off) is in the
6383 * non-linear part of skb
6385 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6386 int pos, gfp_t gfp_mask)
6389 unsigned int size = skb_end_offset(skb);
6391 const int nfrags = skb_shinfo(skb)->nr_frags;
6392 struct skb_shared_info *shinfo;
6394 if (skb_pfmemalloc(skb))
6395 gfp_mask |= __GFP_MEMALLOC;
6397 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6400 size = SKB_WITH_OVERHEAD(size);
6402 memcpy((struct skb_shared_info *)(data + size),
6403 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6404 if (skb_orphan_frags(skb, gfp_mask)) {
6405 skb_kfree_head(data, size);
6408 shinfo = (struct skb_shared_info *)(data + size);
6409 for (i = 0; i < nfrags; i++) {
6410 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6412 if (pos + fsize > off) {
6413 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6417 * We have two variants in this case:
6418 * 1. Move all the frag to the second
6419 * part, if it is possible. F.e.
6420 * this approach is mandatory for TUX,
6421 * where splitting is expensive.
6422 * 2. Split is accurately. We make this.
6424 skb_frag_off_add(&shinfo->frags[0], off - pos);
6425 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6427 skb_frag_ref(skb, i);
6432 shinfo->nr_frags = k;
6433 if (skb_has_frag_list(skb))
6434 skb_clone_fraglist(skb);
6436 /* split line is in frag list */
6437 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6438 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6439 if (skb_has_frag_list(skb))
6440 kfree_skb_list(skb_shinfo(skb)->frag_list);
6441 skb_kfree_head(data, size);
6444 skb_release_data(skb, SKB_CONSUMED, false);
6449 skb_set_end_offset(skb, size);
6450 skb_reset_tail_pointer(skb);
6451 skb_headers_offset_update(skb, 0);
6456 skb->data_len = skb->len;
6457 atomic_set(&skb_shinfo(skb)->dataref, 1);
6461 /* remove len bytes from the beginning of the skb */
6462 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6464 int headlen = skb_headlen(skb);
6467 return pskb_carve_inside_header(skb, len, headlen, gfp);
6469 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6472 /* Extract to_copy bytes starting at off from skb, and return this in
6475 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6476 int to_copy, gfp_t gfp)
6478 struct sk_buff *clone = skb_clone(skb, gfp);
6483 if (pskb_carve(clone, off, gfp) < 0 ||
6484 pskb_trim(clone, to_copy)) {
6490 EXPORT_SYMBOL(pskb_extract);
6493 * skb_condense - try to get rid of fragments/frag_list if possible
6496 * Can be used to save memory before skb is added to a busy queue.
6497 * If packet has bytes in frags and enough tail room in skb->head,
6498 * pull all of them, so that we can free the frags right now and adjust
6501 * We do not reallocate skb->head thus can not fail.
6502 * Caller must re-evaluate skb->truesize if needed.
6504 void skb_condense(struct sk_buff *skb)
6506 if (skb->data_len) {
6507 if (skb->data_len > skb->end - skb->tail ||
6511 /* Nice, we can free page frag(s) right now */
6512 __pskb_pull_tail(skb, skb->data_len);
6514 /* At this point, skb->truesize might be over estimated,
6515 * because skb had a fragment, and fragments do not tell
6517 * When we pulled its content into skb->head, fragment
6518 * was freed, but __pskb_pull_tail() could not possibly
6519 * adjust skb->truesize, not knowing the frag truesize.
6521 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6523 EXPORT_SYMBOL(skb_condense);
6525 #ifdef CONFIG_SKB_EXTENSIONS
6526 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6528 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6532 * __skb_ext_alloc - allocate a new skb extensions storage
6534 * @flags: See kmalloc().
6536 * Returns the newly allocated pointer. The pointer can later attached to a
6537 * skb via __skb_ext_set().
6538 * Note: caller must handle the skb_ext as an opaque data.
6540 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6542 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6545 memset(new->offset, 0, sizeof(new->offset));
6546 refcount_set(&new->refcnt, 1);
6552 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6553 unsigned int old_active)
6555 struct skb_ext *new;
6557 if (refcount_read(&old->refcnt) == 1)
6560 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6564 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6565 refcount_set(&new->refcnt, 1);
6568 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6569 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6572 for (i = 0; i < sp->len; i++)
6573 xfrm_state_hold(sp->xvec[i]);
6581 * __skb_ext_set - attach the specified extension storage to this skb
6584 * @ext: extension storage previously allocated via __skb_ext_alloc()
6586 * Existing extensions, if any, are cleared.
6588 * Returns the pointer to the extension.
6590 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6591 struct skb_ext *ext)
6593 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6596 newlen = newoff + skb_ext_type_len[id];
6597 ext->chunks = newlen;
6598 ext->offset[id] = newoff;
6599 skb->extensions = ext;
6600 skb->active_extensions = 1 << id;
6601 return skb_ext_get_ptr(ext, id);
6605 * skb_ext_add - allocate space for given extension, COW if needed
6607 * @id: extension to allocate space for
6609 * Allocates enough space for the given extension.
6610 * If the extension is already present, a pointer to that extension
6613 * If the skb was cloned, COW applies and the returned memory can be
6614 * modified without changing the extension space of clones buffers.
6616 * Returns pointer to the extension or NULL on allocation failure.
6618 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6620 struct skb_ext *new, *old = NULL;
6621 unsigned int newlen, newoff;
6623 if (skb->active_extensions) {
6624 old = skb->extensions;
6626 new = skb_ext_maybe_cow(old, skb->active_extensions);
6630 if (__skb_ext_exist(new, id))
6633 newoff = new->chunks;
6635 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6637 new = __skb_ext_alloc(GFP_ATOMIC);
6642 newlen = newoff + skb_ext_type_len[id];
6643 new->chunks = newlen;
6644 new->offset[id] = newoff;
6647 skb->extensions = new;
6648 skb->active_extensions |= 1 << id;
6649 return skb_ext_get_ptr(new, id);
6651 EXPORT_SYMBOL(skb_ext_add);
6654 static void skb_ext_put_sp(struct sec_path *sp)
6658 for (i = 0; i < sp->len; i++)
6659 xfrm_state_put(sp->xvec[i]);
6663 #ifdef CONFIG_MCTP_FLOWS
6664 static void skb_ext_put_mctp(struct mctp_flow *flow)
6667 mctp_key_unref(flow->key);
6671 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6673 struct skb_ext *ext = skb->extensions;
6675 skb->active_extensions &= ~(1 << id);
6676 if (skb->active_extensions == 0) {
6677 skb->extensions = NULL;
6680 } else if (id == SKB_EXT_SEC_PATH &&
6681 refcount_read(&ext->refcnt) == 1) {
6682 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6689 EXPORT_SYMBOL(__skb_ext_del);
6691 void __skb_ext_put(struct skb_ext *ext)
6693 /* If this is last clone, nothing can increment
6694 * it after check passes. Avoids one atomic op.
6696 if (refcount_read(&ext->refcnt) == 1)
6699 if (!refcount_dec_and_test(&ext->refcnt))
6703 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6704 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6706 #ifdef CONFIG_MCTP_FLOWS
6707 if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6708 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6711 kmem_cache_free(skbuff_ext_cache, ext);
6713 EXPORT_SYMBOL(__skb_ext_put);
6714 #endif /* CONFIG_SKB_EXTENSIONS */
6717 * skb_attempt_defer_free - queue skb for remote freeing
6720 * Put @skb in a per-cpu list, using the cpu which
6721 * allocated the skb/pages to reduce false sharing
6722 * and memory zone spinlock contention.
6724 void skb_attempt_defer_free(struct sk_buff *skb)
6726 int cpu = skb->alloc_cpu;
6727 struct softnet_data *sd;
6728 unsigned int defer_max;
6731 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6733 cpu == raw_smp_processor_id()) {
6734 nodefer: __kfree_skb(skb);
6738 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
6739 DEBUG_NET_WARN_ON_ONCE(skb->destructor);
6741 sd = &per_cpu(softnet_data, cpu);
6742 defer_max = READ_ONCE(sysctl_skb_defer_max);
6743 if (READ_ONCE(sd->defer_count) >= defer_max)
6746 spin_lock_bh(&sd->defer_lock);
6747 /* Send an IPI every time queue reaches half capacity. */
6748 kick = sd->defer_count == (defer_max >> 1);
6749 /* Paired with the READ_ONCE() few lines above */
6750 WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6752 skb->next = sd->defer_list;
6753 /* Paired with READ_ONCE() in skb_defer_free_flush() */
6754 WRITE_ONCE(sd->defer_list, skb);
6755 spin_unlock_bh(&sd->defer_lock);
6757 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6758 * if we are unlucky enough (this seems very unlikely).
6760 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6761 smp_call_function_single_async(cpu, &sd->defer_csd);
6764 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
6765 size_t offset, size_t len)
6770 kaddr = kmap_local_page(page);
6771 csum = csum_partial(kaddr + offset, len, 0);
6772 kunmap_local(kaddr);
6773 skb->csum = csum_block_add(skb->csum, csum, skb->len);
6777 * skb_splice_from_iter - Splice (or copy) pages to skbuff
6778 * @skb: The buffer to add pages to
6779 * @iter: Iterator representing the pages to be added
6780 * @maxsize: Maximum amount of pages to be added
6781 * @gfp: Allocation flags
6783 * This is a common helper function for supporting MSG_SPLICE_PAGES. It
6784 * extracts pages from an iterator and adds them to the socket buffer if
6785 * possible, copying them to fragments if not possible (such as if they're slab
6788 * Returns the amount of data spliced/copied or -EMSGSIZE if there's
6789 * insufficient space in the buffer to transfer anything.
6791 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
6792 ssize_t maxsize, gfp_t gfp)
6794 size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
6795 struct page *pages[8], **ppages = pages;
6796 ssize_t spliced = 0, ret = 0;
6799 while (iter->count > 0) {
6800 ssize_t space, nr, len;
6804 space = frag_limit - skb_shinfo(skb)->nr_frags;
6808 /* We might be able to coalesce without increasing nr_frags */
6809 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
6811 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
6819 struct page *page = pages[i++];
6820 size_t part = min_t(size_t, PAGE_SIZE - off, len);
6823 if (WARN_ON_ONCE(!sendpage_ok(page)))
6826 ret = skb_append_pagefrags(skb, page, off, part,
6829 iov_iter_revert(iter, len);
6833 if (skb->ip_summed == CHECKSUM_NONE)
6834 skb_splice_csum_page(skb, page, off, part);
6847 skb_len_add(skb, spliced);
6848 return spliced ?: ret;
6850 EXPORT_SYMBOL(skb_splice_from_iter);