1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
17 static bool __read_mostly enable_shadow_vmcs = 1;
18 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
20 static bool __read_mostly nested_early_check = 0;
21 module_param(nested_early_check, bool, S_IRUGO);
23 #define CC(consistency_check) \
25 bool failed = (consistency_check); \
27 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
32 * Hyper-V requires all of these, so mark them as supported even though
33 * they are just treated the same as all-context.
35 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
36 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
37 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
38 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
39 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
41 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
48 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
50 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
51 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
53 struct shadow_vmcs_field {
57 static struct shadow_vmcs_field shadow_read_only_fields[] = {
58 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
59 #include "vmcs_shadow_fields.h"
61 static int max_shadow_read_only_fields =
62 ARRAY_SIZE(shadow_read_only_fields);
64 static struct shadow_vmcs_field shadow_read_write_fields[] = {
65 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
66 #include "vmcs_shadow_fields.h"
68 static int max_shadow_read_write_fields =
69 ARRAY_SIZE(shadow_read_write_fields);
71 static void init_vmcs_shadow_fields(void)
75 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
76 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
78 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
79 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
80 u16 field = entry.encoding;
82 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
83 (i + 1 == max_shadow_read_only_fields ||
84 shadow_read_only_fields[i + 1].encoding != field + 1))
85 pr_err("Missing field from shadow_read_only_field %x\n",
88 clear_bit(field, vmx_vmread_bitmap);
93 entry.offset += sizeof(u32);
95 shadow_read_only_fields[j++] = entry;
97 max_shadow_read_only_fields = j;
99 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
100 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
101 u16 field = entry.encoding;
103 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
104 (i + 1 == max_shadow_read_write_fields ||
105 shadow_read_write_fields[i + 1].encoding != field + 1))
106 pr_err("Missing field from shadow_read_write_field %x\n",
109 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
110 field <= GUEST_TR_AR_BYTES,
111 "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
114 * PML and the preemption timer can be emulated, but the
115 * processor cannot vmwrite to fields that don't exist
119 case GUEST_PML_INDEX:
120 if (!cpu_has_vmx_pml())
123 case VMX_PREEMPTION_TIMER_VALUE:
124 if (!cpu_has_vmx_preemption_timer())
127 case GUEST_INTR_STATUS:
128 if (!cpu_has_vmx_apicv())
135 clear_bit(field, vmx_vmwrite_bitmap);
136 clear_bit(field, vmx_vmread_bitmap);
141 entry.offset += sizeof(u32);
143 shadow_read_write_fields[j++] = entry;
145 max_shadow_read_write_fields = j;
149 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
150 * set the success or error code of an emulated VMX instruction (as specified
151 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
154 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
156 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
157 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
158 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
159 return kvm_skip_emulated_instruction(vcpu);
162 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
164 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
166 X86_EFLAGS_SF | X86_EFLAGS_OF))
168 return kvm_skip_emulated_instruction(vcpu);
171 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
172 u32 vm_instruction_error)
174 struct vcpu_vmx *vmx = to_vmx(vcpu);
177 * failValid writes the error number to the current VMCS, which
178 * can't be done if there isn't a current VMCS.
180 if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
181 return nested_vmx_failInvalid(vcpu);
183 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
184 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
185 X86_EFLAGS_SF | X86_EFLAGS_OF))
187 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
189 * We don't need to force a shadow sync because
190 * VM_INSTRUCTION_ERROR is not shadowed
192 return kvm_skip_emulated_instruction(vcpu);
195 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
197 /* TODO: not to reset guest simply here. */
198 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
199 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
202 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
204 return fixed_bits_valid(control, low, high);
207 static inline u64 vmx_control_msr(u32 low, u32 high)
209 return low | ((u64)high << 32);
212 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
214 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
215 vmcs_write64(VMCS_LINK_POINTER, -1ull);
216 vmx->nested.need_vmcs12_to_shadow_sync = false;
219 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
221 struct vcpu_vmx *vmx = to_vmx(vcpu);
223 if (!vmx->nested.hv_evmcs)
226 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
227 vmx->nested.hv_evmcs_vmptr = 0;
228 vmx->nested.hv_evmcs = NULL;
232 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
233 * just stops using VMX.
235 static void free_nested(struct kvm_vcpu *vcpu)
237 struct vcpu_vmx *vmx = to_vmx(vcpu);
239 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
242 kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
244 vmx->nested.vmxon = false;
245 vmx->nested.smm.vmxon = false;
246 free_vpid(vmx->nested.vpid02);
247 vmx->nested.posted_intr_nv = -1;
248 vmx->nested.current_vmptr = -1ull;
249 if (enable_shadow_vmcs) {
250 vmx_disable_shadow_vmcs(vmx);
251 vmcs_clear(vmx->vmcs01.shadow_vmcs);
252 free_vmcs(vmx->vmcs01.shadow_vmcs);
253 vmx->vmcs01.shadow_vmcs = NULL;
255 kfree(vmx->nested.cached_vmcs12);
256 vmx->nested.cached_vmcs12 = NULL;
257 kfree(vmx->nested.cached_shadow_vmcs12);
258 vmx->nested.cached_shadow_vmcs12 = NULL;
259 /* Unpin physical memory we referred to in the vmcs02 */
260 if (vmx->nested.apic_access_page) {
261 kvm_release_page_clean(vmx->nested.apic_access_page);
262 vmx->nested.apic_access_page = NULL;
264 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
265 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
266 vmx->nested.pi_desc = NULL;
268 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
270 nested_release_evmcs(vcpu);
272 free_loaded_vmcs(&vmx->nested.vmcs02);
275 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
276 struct loaded_vmcs *prev)
278 struct vmcs_host_state *dest, *src;
280 if (unlikely(!vmx->guest_state_loaded))
283 src = &prev->host_state;
284 dest = &vmx->loaded_vmcs->host_state;
286 vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
287 dest->ldt_sel = src->ldt_sel;
289 dest->ds_sel = src->ds_sel;
290 dest->es_sel = src->es_sel;
294 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
296 struct vcpu_vmx *vmx = to_vmx(vcpu);
297 struct loaded_vmcs *prev;
300 if (vmx->loaded_vmcs == vmcs)
304 prev = vmx->loaded_vmcs;
305 vmx->loaded_vmcs = vmcs;
306 vmx_vcpu_load_vmcs(vcpu, cpu, prev);
307 vmx_sync_vmcs_host_state(vmx, prev);
310 vmx_register_cache_reset(vcpu);
314 * Ensure that the current vmcs of the logical processor is the
315 * vmcs01 of the vcpu before calling free_nested().
317 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
320 vmx_leave_nested(vcpu);
321 vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
326 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
327 struct x86_exception *fault)
329 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
330 struct vcpu_vmx *vmx = to_vmx(vcpu);
332 unsigned long exit_qualification = vcpu->arch.exit_qualification;
334 if (vmx->nested.pml_full) {
335 vm_exit_reason = EXIT_REASON_PML_FULL;
336 vmx->nested.pml_full = false;
337 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
338 } else if (fault->error_code & PFERR_RSVD_MASK)
339 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
341 vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
343 nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
344 vmcs12->guest_physical_address = fault->address;
347 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
349 WARN_ON(mmu_is_nested(vcpu));
351 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
352 kvm_init_shadow_ept_mmu(vcpu,
353 to_vmx(vcpu)->nested.msrs.ept_caps &
354 VMX_EPT_EXECUTE_ONLY_BIT,
355 nested_ept_ad_enabled(vcpu),
356 nested_ept_get_eptp(vcpu));
357 vcpu->arch.mmu->get_guest_pgd = nested_ept_get_eptp;
358 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
359 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
361 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
364 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
366 vcpu->arch.mmu = &vcpu->arch.root_mmu;
367 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
370 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
373 bool inequality, bit;
375 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
377 (error_code & vmcs12->page_fault_error_code_mask) !=
378 vmcs12->page_fault_error_code_match;
379 return inequality ^ bit;
384 * KVM wants to inject page-faults which it got to the guest. This function
385 * checks whether in a nested guest, we need to inject them to L1 or L2.
387 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
389 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
390 unsigned int nr = vcpu->arch.exception.nr;
391 bool has_payload = vcpu->arch.exception.has_payload;
392 unsigned long payload = vcpu->arch.exception.payload;
394 if (nr == PF_VECTOR) {
395 if (vcpu->arch.exception.nested_apf) {
396 *exit_qual = vcpu->arch.apf.nested_apf_token;
399 if (nested_vmx_is_page_fault_vmexit(vmcs12,
400 vcpu->arch.exception.error_code)) {
401 *exit_qual = has_payload ? payload : vcpu->arch.cr2;
404 } else if (vmcs12->exception_bitmap & (1u << nr)) {
405 if (nr == DB_VECTOR) {
407 payload = vcpu->arch.dr6;
408 payload &= ~(DR6_FIXED_1 | DR6_BT);
411 *exit_qual = payload;
421 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
422 struct x86_exception *fault)
424 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
426 WARN_ON(!is_guest_mode(vcpu));
428 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
429 !to_vmx(vcpu)->nested.nested_run_pending) {
430 vmcs12->vm_exit_intr_error_code = fault->error_code;
431 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
432 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
433 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
436 kvm_inject_page_fault(vcpu, fault);
440 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
441 struct vmcs12 *vmcs12)
443 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
446 if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
447 CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
453 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
454 struct vmcs12 *vmcs12)
456 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
459 if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
465 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
466 struct vmcs12 *vmcs12)
468 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
471 if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
478 * Check if MSR is intercepted for L01 MSR bitmap.
480 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
482 unsigned long *msr_bitmap;
483 int f = sizeof(unsigned long);
485 if (!cpu_has_vmx_msr_bitmap())
488 msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
491 return !!test_bit(msr, msr_bitmap + 0x800 / f);
492 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
494 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
501 * If a msr is allowed by L0, we should check whether it is allowed by L1.
502 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
504 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
505 unsigned long *msr_bitmap_nested,
508 int f = sizeof(unsigned long);
511 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
512 * have the write-low and read-high bitmap offsets the wrong way round.
513 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
516 if (type & MSR_TYPE_R &&
517 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
519 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
521 if (type & MSR_TYPE_W &&
522 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
524 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
526 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
528 if (type & MSR_TYPE_R &&
529 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
531 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
533 if (type & MSR_TYPE_W &&
534 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
536 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
541 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
545 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
546 unsigned word = msr / BITS_PER_LONG;
548 msr_bitmap[word] = ~0;
549 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
554 * Merge L0's and L1's MSR bitmap, return false to indicate that
555 * we do not use the hardware.
557 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
558 struct vmcs12 *vmcs12)
561 unsigned long *msr_bitmap_l1;
562 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
563 struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
565 /* Nothing to do if the MSR bitmap is not in use. */
566 if (!cpu_has_vmx_msr_bitmap() ||
567 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
570 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
573 msr_bitmap_l1 = (unsigned long *)map->hva;
576 * To keep the control flow simple, pay eight 8-byte writes (sixteen
577 * 4-byte writes on 32-bit systems) up front to enable intercepts for
578 * the x2APIC MSR range and selectively disable them below.
580 enable_x2apic_msr_intercepts(msr_bitmap_l0);
582 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
583 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
585 * L0 need not intercept reads for MSRs between 0x800
586 * and 0x8ff, it just lets the processor take the value
587 * from the virtual-APIC page; take those 256 bits
588 * directly from the L1 bitmap.
590 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
591 unsigned word = msr / BITS_PER_LONG;
593 msr_bitmap_l0[word] = msr_bitmap_l1[word];
597 nested_vmx_disable_intercept_for_msr(
598 msr_bitmap_l1, msr_bitmap_l0,
599 X2APIC_MSR(APIC_TASKPRI),
600 MSR_TYPE_R | MSR_TYPE_W);
602 if (nested_cpu_has_vid(vmcs12)) {
603 nested_vmx_disable_intercept_for_msr(
604 msr_bitmap_l1, msr_bitmap_l0,
605 X2APIC_MSR(APIC_EOI),
607 nested_vmx_disable_intercept_for_msr(
608 msr_bitmap_l1, msr_bitmap_l0,
609 X2APIC_MSR(APIC_SELF_IPI),
614 /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
615 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
616 MSR_FS_BASE, MSR_TYPE_RW);
618 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
619 MSR_GS_BASE, MSR_TYPE_RW);
621 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
622 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
625 * Checking the L0->L1 bitmap is trying to verify two things:
627 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
628 * ensures that we do not accidentally generate an L02 MSR bitmap
629 * from the L12 MSR bitmap that is too permissive.
630 * 2. That L1 or L2s have actually used the MSR. This avoids
631 * unnecessarily merging of the bitmap if the MSR is unused. This
632 * works properly because we only update the L01 MSR bitmap lazily.
633 * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
634 * updated to reflect this when L1 (or its L2s) actually write to
637 if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
638 nested_vmx_disable_intercept_for_msr(
639 msr_bitmap_l1, msr_bitmap_l0,
641 MSR_TYPE_R | MSR_TYPE_W);
643 if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
644 nested_vmx_disable_intercept_for_msr(
645 msr_bitmap_l1, msr_bitmap_l0,
649 kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
654 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
655 struct vmcs12 *vmcs12)
657 struct kvm_host_map map;
658 struct vmcs12 *shadow;
660 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
661 vmcs12->vmcs_link_pointer == -1ull)
664 shadow = get_shadow_vmcs12(vcpu);
666 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
669 memcpy(shadow, map.hva, VMCS12_SIZE);
670 kvm_vcpu_unmap(vcpu, &map, false);
673 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
674 struct vmcs12 *vmcs12)
676 struct vcpu_vmx *vmx = to_vmx(vcpu);
678 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
679 vmcs12->vmcs_link_pointer == -1ull)
682 kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
683 get_shadow_vmcs12(vcpu), VMCS12_SIZE);
687 * In nested virtualization, check if L1 has set
688 * VM_EXIT_ACK_INTR_ON_EXIT
690 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
692 return get_vmcs12(vcpu)->vm_exit_controls &
693 VM_EXIT_ACK_INTR_ON_EXIT;
696 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
697 struct vmcs12 *vmcs12)
699 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
700 CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
706 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
707 struct vmcs12 *vmcs12)
709 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
710 !nested_cpu_has_apic_reg_virt(vmcs12) &&
711 !nested_cpu_has_vid(vmcs12) &&
712 !nested_cpu_has_posted_intr(vmcs12))
716 * If virtualize x2apic mode is enabled,
717 * virtualize apic access must be disabled.
719 if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
720 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
724 * If virtual interrupt delivery is enabled,
725 * we must exit on external interrupts.
727 if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
731 * bits 15:8 should be zero in posted_intr_nv,
732 * the descriptor address has been already checked
733 * in nested_get_vmcs12_pages.
735 * bits 5:0 of posted_intr_desc_addr should be zero.
737 if (nested_cpu_has_posted_intr(vmcs12) &&
738 (CC(!nested_cpu_has_vid(vmcs12)) ||
739 CC(!nested_exit_intr_ack_set(vcpu)) ||
740 CC((vmcs12->posted_intr_nv & 0xff00)) ||
741 CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
742 CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
745 /* tpr shadow is needed by all apicv features. */
746 if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
752 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
759 maxphyaddr = cpuid_maxphyaddr(vcpu);
760 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
761 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
767 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
768 struct vmcs12 *vmcs12)
770 if (CC(nested_vmx_check_msr_switch(vcpu,
771 vmcs12->vm_exit_msr_load_count,
772 vmcs12->vm_exit_msr_load_addr)) ||
773 CC(nested_vmx_check_msr_switch(vcpu,
774 vmcs12->vm_exit_msr_store_count,
775 vmcs12->vm_exit_msr_store_addr)))
781 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
782 struct vmcs12 *vmcs12)
784 if (CC(nested_vmx_check_msr_switch(vcpu,
785 vmcs12->vm_entry_msr_load_count,
786 vmcs12->vm_entry_msr_load_addr)))
792 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
793 struct vmcs12 *vmcs12)
795 if (!nested_cpu_has_pml(vmcs12))
798 if (CC(!nested_cpu_has_ept(vmcs12)) ||
799 CC(!page_address_valid(vcpu, vmcs12->pml_address)))
805 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
806 struct vmcs12 *vmcs12)
808 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
809 !nested_cpu_has_ept(vmcs12)))
814 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
815 struct vmcs12 *vmcs12)
817 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
818 !nested_cpu_has_ept(vmcs12)))
823 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
824 struct vmcs12 *vmcs12)
826 if (!nested_cpu_has_shadow_vmcs(vmcs12))
829 if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
830 CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
836 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
837 struct vmx_msr_entry *e)
839 /* x2APIC MSR accesses are not allowed */
840 if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
842 if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
843 CC(e->index == MSR_IA32_UCODE_REV))
845 if (CC(e->reserved != 0))
850 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
851 struct vmx_msr_entry *e)
853 if (CC(e->index == MSR_FS_BASE) ||
854 CC(e->index == MSR_GS_BASE) ||
855 CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
856 nested_vmx_msr_check_common(vcpu, e))
861 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
862 struct vmx_msr_entry *e)
864 if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
865 nested_vmx_msr_check_common(vcpu, e))
870 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
872 struct vcpu_vmx *vmx = to_vmx(vcpu);
873 u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
874 vmx->nested.msrs.misc_high);
876 return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
880 * Load guest's/host's msr at nested entry/exit.
881 * return 0 for success, entry index for failure.
883 * One of the failure modes for MSR load/store is when a list exceeds the
884 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
885 * as possible, process all valid entries before failing rather than precheck
886 * for a capacity violation.
888 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
891 struct vmx_msr_entry e;
892 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
894 for (i = 0; i < count; i++) {
895 if (unlikely(i >= max_msr_list_size))
898 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
900 pr_debug_ratelimited(
901 "%s cannot read MSR entry (%u, 0x%08llx)\n",
902 __func__, i, gpa + i * sizeof(e));
905 if (nested_vmx_load_msr_check(vcpu, &e)) {
906 pr_debug_ratelimited(
907 "%s check failed (%u, 0x%x, 0x%x)\n",
908 __func__, i, e.index, e.reserved);
911 if (kvm_set_msr(vcpu, e.index, e.value)) {
912 pr_debug_ratelimited(
913 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
914 __func__, i, e.index, e.value);
920 /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
924 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
928 struct vcpu_vmx *vmx = to_vmx(vcpu);
931 * If the L0 hypervisor stored a more accurate value for the TSC that
932 * does not include the time taken for emulation of the L2->L1
933 * VM-exit in L0, use the more accurate value.
935 if (msr_index == MSR_IA32_TSC) {
936 int index = vmx_find_msr_index(&vmx->msr_autostore.guest,
940 u64 val = vmx->msr_autostore.guest.val[index].value;
942 *data = kvm_read_l1_tsc(vcpu, val);
947 if (kvm_get_msr(vcpu, msr_index, data)) {
948 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
955 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
956 struct vmx_msr_entry *e)
958 if (kvm_vcpu_read_guest(vcpu,
959 gpa + i * sizeof(*e),
960 e, 2 * sizeof(u32))) {
961 pr_debug_ratelimited(
962 "%s cannot read MSR entry (%u, 0x%08llx)\n",
963 __func__, i, gpa + i * sizeof(*e));
966 if (nested_vmx_store_msr_check(vcpu, e)) {
967 pr_debug_ratelimited(
968 "%s check failed (%u, 0x%x, 0x%x)\n",
969 __func__, i, e->index, e->reserved);
975 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
979 struct vmx_msr_entry e;
980 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
982 for (i = 0; i < count; i++) {
983 if (unlikely(i >= max_msr_list_size))
986 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
989 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
992 if (kvm_vcpu_write_guest(vcpu,
993 gpa + i * sizeof(e) +
994 offsetof(struct vmx_msr_entry, value),
995 &data, sizeof(data))) {
996 pr_debug_ratelimited(
997 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
998 __func__, i, e.index, data);
1005 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1007 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1008 u32 count = vmcs12->vm_exit_msr_store_count;
1009 u64 gpa = vmcs12->vm_exit_msr_store_addr;
1010 struct vmx_msr_entry e;
1013 for (i = 0; i < count; i++) {
1014 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1017 if (e.index == msr_index)
1023 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1026 struct vcpu_vmx *vmx = to_vmx(vcpu);
1027 struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1028 bool in_vmcs12_store_list;
1029 int msr_autostore_index;
1030 bool in_autostore_list;
1033 msr_autostore_index = vmx_find_msr_index(autostore, msr_index);
1034 in_autostore_list = msr_autostore_index >= 0;
1035 in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1037 if (in_vmcs12_store_list && !in_autostore_list) {
1038 if (autostore->nr == NR_LOADSTORE_MSRS) {
1040 * Emulated VMEntry does not fail here. Instead a less
1041 * accurate value will be returned by
1042 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1043 * instead of reading the value from the vmcs02 VMExit
1046 pr_warn_ratelimited(
1047 "Not enough msr entries in msr_autostore. Can't add msr %x\n",
1051 last = autostore->nr++;
1052 autostore->val[last].index = msr_index;
1053 } else if (!in_vmcs12_store_list && in_autostore_list) {
1054 last = --autostore->nr;
1055 autostore->val[msr_autostore_index] = autostore->val[last];
1059 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
1061 unsigned long invalid_mask;
1063 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1064 return (val & invalid_mask) == 0;
1068 * Returns true if the MMU needs to be sync'd on nested VM-Enter/VM-Exit.
1069 * tl;dr: the MMU needs a sync if L0 is using shadow paging and L1 didn't
1070 * enable VPID for L2 (implying it expects a TLB flush on VMX transitions).
1073 * If EPT is enabled by L0 a sync is never needed:
1074 * - if it is disabled by L1, then L0 is not shadowing L1 or L2 PTEs, there
1075 * cannot be unsync'd SPTEs for either L1 or L2.
1077 * - if it is also enabled by L1, then L0 doesn't need to sync on VM-Enter
1078 * VM-Enter as VM-Enter isn't required to invalidate guest-physical mappings
1079 * (irrespective of VPID), i.e. L1 can't rely on the (virtual) CPU to flush
1080 * stale guest-physical mappings for L2 from the TLB. And as above, L0 isn't
1081 * shadowing L1 PTEs so there are no unsync'd SPTEs to sync on VM-Exit.
1083 * If EPT is disabled by L0:
1084 * - if VPID is enabled by L1 (for L2), the situation is similar to when L1
1085 * enables EPT: L0 doesn't need to sync as VM-Enter and VM-Exit aren't
1086 * required to invalidate linear mappings (EPT is disabled so there are
1087 * no combined or guest-physical mappings), i.e. L1 can't rely on the
1088 * (virtual) CPU to flush stale linear mappings for either L2 or itself (L1).
1090 * - however if VPID is disabled by L1, then a sync is needed as L1 expects all
1091 * linear mappings (EPT is disabled so there are no combined or guest-physical
1092 * mappings) to be invalidated on both VM-Enter and VM-Exit.
1094 * Note, this logic is subtly different than nested_has_guest_tlb_tag(), which
1095 * additionally checks that L2 has been assigned a VPID (when EPT is disabled).
1096 * Whether or not L2 has been assigned a VPID by L0 is irrelevant with respect
1097 * to L1's expectations, e.g. L0 needs to invalidate hardware TLB entries if L2
1098 * doesn't have a unique VPID to prevent reusing L1's entries (assuming L1 has
1099 * been assigned a VPID), but L0 doesn't need to do a MMU sync because L1
1100 * doesn't expect stale (virtual) TLB entries to be flushed, i.e. L1 doesn't
1101 * know that L0 will flush the TLB and so L1 will do INVVPID as needed to flush
1102 * stale TLB entries, at which point L0 will sync L2's MMU.
1104 static bool nested_vmx_transition_mmu_sync(struct kvm_vcpu *vcpu)
1106 return !enable_ept && !nested_cpu_has_vpid(get_vmcs12(vcpu));
1110 * Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are
1111 * emulating VM-Entry into a guest with EPT enabled. On failure, the expected
1112 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1113 * @entry_failure_code.
1115 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
1116 enum vm_entry_failure_code *entry_failure_code)
1118 if (CC(!nested_cr3_valid(vcpu, cr3))) {
1119 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1124 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1125 * must not be dereferenced.
1127 if (!nested_ept && is_pae_paging(vcpu) &&
1128 (cr3 != kvm_read_cr3(vcpu) || pdptrs_changed(vcpu))) {
1129 if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1130 *entry_failure_code = ENTRY_FAIL_PDPTE;
1136 * Unconditionally skip the TLB flush on fast CR3 switch, all TLB
1137 * flushes are handled by nested_vmx_transition_tlb_flush(). See
1138 * nested_vmx_transition_mmu_sync for details on skipping the MMU sync.
1141 kvm_mmu_new_pgd(vcpu, cr3, true,
1142 !nested_vmx_transition_mmu_sync(vcpu));
1144 vcpu->arch.cr3 = cr3;
1145 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1147 kvm_init_mmu(vcpu, false);
1153 * Returns if KVM is able to config CPU to tag TLB entries
1154 * populated by L2 differently than TLB entries populated
1157 * If L0 uses EPT, L1 and L2 run with different EPTP because
1158 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1159 * are tagged with different EPTP.
1161 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1162 * with different VPID (L1 entries are tagged with vmx->vpid
1163 * while L2 entries are tagged with vmx->nested.vpid02).
1165 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1167 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1169 return enable_ept ||
1170 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1173 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1174 struct vmcs12 *vmcs12,
1177 struct vcpu_vmx *vmx = to_vmx(vcpu);
1180 * If VPID is disabled, linear and combined mappings are flushed on
1181 * VM-Enter/VM-Exit, and guest-physical mappings are valid only for
1182 * their associated EPTP.
1188 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1189 * for *all* contexts to be flushed on VM-Enter/VM-Exit.
1191 * If VPID is enabled and used by vmc12, but L2 does not have a unique
1192 * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate
1193 * a VPID for L2, flush the current context as the effective ASID is
1194 * common to both L1 and L2.
1196 * Defer the flush so that it runs after vmcs02.EPTP has been set by
1197 * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid
1198 * redundant flushes further down the nested pipeline.
1200 * If a TLB flush isn't required due to any of the above, and vpid12 is
1201 * changing then the new "virtual" VPID (vpid12) will reuse the same
1202 * "real" VPID (vpid02), and so needs to be sync'd. There is no direct
1203 * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for
1206 if (!nested_cpu_has_vpid(vmcs12)) {
1207 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1208 } else if (!nested_has_guest_tlb_tag(vcpu)) {
1209 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1210 } else if (is_vmenter &&
1211 vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1212 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1213 vpid_sync_context(nested_get_vpid02(vcpu));
1217 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1222 return (superset | subset) == superset;
1225 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1227 const u64 feature_and_reserved =
1228 /* feature (except bit 48; see below) */
1229 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1231 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1232 u64 vmx_basic = vmx->nested.msrs.basic;
1234 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1238 * KVM does not emulate a version of VMX that constrains physical
1239 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1241 if (data & BIT_ULL(48))
1244 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1245 vmx_basic_vmcs_revision_id(data))
1248 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1251 vmx->nested.msrs.basic = data;
1256 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1261 switch (msr_index) {
1262 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1263 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1264 highp = &vmx->nested.msrs.pinbased_ctls_high;
1266 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1267 lowp = &vmx->nested.msrs.procbased_ctls_low;
1268 highp = &vmx->nested.msrs.procbased_ctls_high;
1270 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1271 lowp = &vmx->nested.msrs.exit_ctls_low;
1272 highp = &vmx->nested.msrs.exit_ctls_high;
1274 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1275 lowp = &vmx->nested.msrs.entry_ctls_low;
1276 highp = &vmx->nested.msrs.entry_ctls_high;
1278 case MSR_IA32_VMX_PROCBASED_CTLS2:
1279 lowp = &vmx->nested.msrs.secondary_ctls_low;
1280 highp = &vmx->nested.msrs.secondary_ctls_high;
1286 supported = vmx_control_msr(*lowp, *highp);
1288 /* Check must-be-1 bits are still 1. */
1289 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1292 /* Check must-be-0 bits are still 0. */
1293 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1297 *highp = data >> 32;
1301 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1303 const u64 feature_and_reserved_bits =
1305 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1306 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1308 GENMASK_ULL(13, 9) | BIT_ULL(31);
1311 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1312 vmx->nested.msrs.misc_high);
1314 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1317 if ((vmx->nested.msrs.pinbased_ctls_high &
1318 PIN_BASED_VMX_PREEMPTION_TIMER) &&
1319 vmx_misc_preemption_timer_rate(data) !=
1320 vmx_misc_preemption_timer_rate(vmx_misc))
1323 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1326 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1329 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1332 vmx->nested.msrs.misc_low = data;
1333 vmx->nested.msrs.misc_high = data >> 32;
1338 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1340 u64 vmx_ept_vpid_cap;
1342 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1343 vmx->nested.msrs.vpid_caps);
1345 /* Every bit is either reserved or a feature bit. */
1346 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1349 vmx->nested.msrs.ept_caps = data;
1350 vmx->nested.msrs.vpid_caps = data >> 32;
1354 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1358 switch (msr_index) {
1359 case MSR_IA32_VMX_CR0_FIXED0:
1360 msr = &vmx->nested.msrs.cr0_fixed0;
1362 case MSR_IA32_VMX_CR4_FIXED0:
1363 msr = &vmx->nested.msrs.cr4_fixed0;
1370 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1371 * must be 1 in the restored value.
1373 if (!is_bitwise_subset(data, *msr, -1ULL))
1381 * Called when userspace is restoring VMX MSRs.
1383 * Returns 0 on success, non-0 otherwise.
1385 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1387 struct vcpu_vmx *vmx = to_vmx(vcpu);
1390 * Don't allow changes to the VMX capability MSRs while the vCPU
1391 * is in VMX operation.
1393 if (vmx->nested.vmxon)
1396 switch (msr_index) {
1397 case MSR_IA32_VMX_BASIC:
1398 return vmx_restore_vmx_basic(vmx, data);
1399 case MSR_IA32_VMX_PINBASED_CTLS:
1400 case MSR_IA32_VMX_PROCBASED_CTLS:
1401 case MSR_IA32_VMX_EXIT_CTLS:
1402 case MSR_IA32_VMX_ENTRY_CTLS:
1404 * The "non-true" VMX capability MSRs are generated from the
1405 * "true" MSRs, so we do not support restoring them directly.
1407 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1408 * should restore the "true" MSRs with the must-be-1 bits
1409 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1410 * DEFAULT SETTINGS".
1413 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1414 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1415 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1416 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1417 case MSR_IA32_VMX_PROCBASED_CTLS2:
1418 return vmx_restore_control_msr(vmx, msr_index, data);
1419 case MSR_IA32_VMX_MISC:
1420 return vmx_restore_vmx_misc(vmx, data);
1421 case MSR_IA32_VMX_CR0_FIXED0:
1422 case MSR_IA32_VMX_CR4_FIXED0:
1423 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1424 case MSR_IA32_VMX_CR0_FIXED1:
1425 case MSR_IA32_VMX_CR4_FIXED1:
1427 * These MSRs are generated based on the vCPU's CPUID, so we
1428 * do not support restoring them directly.
1431 case MSR_IA32_VMX_EPT_VPID_CAP:
1432 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1433 case MSR_IA32_VMX_VMCS_ENUM:
1434 vmx->nested.msrs.vmcs_enum = data;
1436 case MSR_IA32_VMX_VMFUNC:
1437 if (data & ~vmx->nested.msrs.vmfunc_controls)
1439 vmx->nested.msrs.vmfunc_controls = data;
1443 * The rest of the VMX capability MSRs do not support restore.
1449 /* Returns 0 on success, non-0 otherwise. */
1450 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1452 switch (msr_index) {
1453 case MSR_IA32_VMX_BASIC:
1454 *pdata = msrs->basic;
1456 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1457 case MSR_IA32_VMX_PINBASED_CTLS:
1458 *pdata = vmx_control_msr(
1459 msrs->pinbased_ctls_low,
1460 msrs->pinbased_ctls_high);
1461 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1462 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1464 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1465 case MSR_IA32_VMX_PROCBASED_CTLS:
1466 *pdata = vmx_control_msr(
1467 msrs->procbased_ctls_low,
1468 msrs->procbased_ctls_high);
1469 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1470 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1472 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1473 case MSR_IA32_VMX_EXIT_CTLS:
1474 *pdata = vmx_control_msr(
1475 msrs->exit_ctls_low,
1476 msrs->exit_ctls_high);
1477 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1478 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1480 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1481 case MSR_IA32_VMX_ENTRY_CTLS:
1482 *pdata = vmx_control_msr(
1483 msrs->entry_ctls_low,
1484 msrs->entry_ctls_high);
1485 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1486 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1488 case MSR_IA32_VMX_MISC:
1489 *pdata = vmx_control_msr(
1493 case MSR_IA32_VMX_CR0_FIXED0:
1494 *pdata = msrs->cr0_fixed0;
1496 case MSR_IA32_VMX_CR0_FIXED1:
1497 *pdata = msrs->cr0_fixed1;
1499 case MSR_IA32_VMX_CR4_FIXED0:
1500 *pdata = msrs->cr4_fixed0;
1502 case MSR_IA32_VMX_CR4_FIXED1:
1503 *pdata = msrs->cr4_fixed1;
1505 case MSR_IA32_VMX_VMCS_ENUM:
1506 *pdata = msrs->vmcs_enum;
1508 case MSR_IA32_VMX_PROCBASED_CTLS2:
1509 *pdata = vmx_control_msr(
1510 msrs->secondary_ctls_low,
1511 msrs->secondary_ctls_high);
1513 case MSR_IA32_VMX_EPT_VPID_CAP:
1514 *pdata = msrs->ept_caps |
1515 ((u64)msrs->vpid_caps << 32);
1517 case MSR_IA32_VMX_VMFUNC:
1518 *pdata = msrs->vmfunc_controls;
1528 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1529 * been modified by the L1 guest. Note, "writable" in this context means
1530 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1531 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1532 * VM-exit information fields (which are actually writable if the vCPU is
1533 * configured to support "VMWRITE to any supported field in the VMCS").
1535 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1537 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1538 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1539 struct shadow_vmcs_field field;
1543 if (WARN_ON(!shadow_vmcs))
1548 vmcs_load(shadow_vmcs);
1550 for (i = 0; i < max_shadow_read_write_fields; i++) {
1551 field = shadow_read_write_fields[i];
1552 val = __vmcs_readl(field.encoding);
1553 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1556 vmcs_clear(shadow_vmcs);
1557 vmcs_load(vmx->loaded_vmcs->vmcs);
1562 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1564 const struct shadow_vmcs_field *fields[] = {
1565 shadow_read_write_fields,
1566 shadow_read_only_fields
1568 const int max_fields[] = {
1569 max_shadow_read_write_fields,
1570 max_shadow_read_only_fields
1572 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1573 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1574 struct shadow_vmcs_field field;
1578 if (WARN_ON(!shadow_vmcs))
1581 vmcs_load(shadow_vmcs);
1583 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1584 for (i = 0; i < max_fields[q]; i++) {
1585 field = fields[q][i];
1586 val = vmcs12_read_any(vmcs12, field.encoding,
1588 __vmcs_writel(field.encoding, val);
1592 vmcs_clear(shadow_vmcs);
1593 vmcs_load(vmx->loaded_vmcs->vmcs);
1596 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1598 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1599 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1601 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1602 vmcs12->tpr_threshold = evmcs->tpr_threshold;
1603 vmcs12->guest_rip = evmcs->guest_rip;
1605 if (unlikely(!(evmcs->hv_clean_fields &
1606 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1607 vmcs12->guest_rsp = evmcs->guest_rsp;
1608 vmcs12->guest_rflags = evmcs->guest_rflags;
1609 vmcs12->guest_interruptibility_info =
1610 evmcs->guest_interruptibility_info;
1613 if (unlikely(!(evmcs->hv_clean_fields &
1614 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1615 vmcs12->cpu_based_vm_exec_control =
1616 evmcs->cpu_based_vm_exec_control;
1619 if (unlikely(!(evmcs->hv_clean_fields &
1620 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1621 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1624 if (unlikely(!(evmcs->hv_clean_fields &
1625 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1626 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1629 if (unlikely(!(evmcs->hv_clean_fields &
1630 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1631 vmcs12->vm_entry_intr_info_field =
1632 evmcs->vm_entry_intr_info_field;
1633 vmcs12->vm_entry_exception_error_code =
1634 evmcs->vm_entry_exception_error_code;
1635 vmcs12->vm_entry_instruction_len =
1636 evmcs->vm_entry_instruction_len;
1639 if (unlikely(!(evmcs->hv_clean_fields &
1640 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1641 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1642 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1643 vmcs12->host_cr0 = evmcs->host_cr0;
1644 vmcs12->host_cr3 = evmcs->host_cr3;
1645 vmcs12->host_cr4 = evmcs->host_cr4;
1646 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1647 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1648 vmcs12->host_rip = evmcs->host_rip;
1649 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1650 vmcs12->host_es_selector = evmcs->host_es_selector;
1651 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1652 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1653 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1654 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1655 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1656 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1659 if (unlikely(!(evmcs->hv_clean_fields &
1660 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1661 vmcs12->pin_based_vm_exec_control =
1662 evmcs->pin_based_vm_exec_control;
1663 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1664 vmcs12->secondary_vm_exec_control =
1665 evmcs->secondary_vm_exec_control;
1668 if (unlikely(!(evmcs->hv_clean_fields &
1669 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1670 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1671 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1674 if (unlikely(!(evmcs->hv_clean_fields &
1675 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1676 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1679 if (unlikely(!(evmcs->hv_clean_fields &
1680 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1681 vmcs12->guest_es_base = evmcs->guest_es_base;
1682 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1683 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1684 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1685 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1686 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1687 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1688 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1689 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1690 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1691 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1692 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1693 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1694 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1695 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1696 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1697 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1698 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1699 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1700 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1701 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1702 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1703 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1704 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1705 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1706 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1707 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1708 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1709 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1710 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1711 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1712 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1713 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1714 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1715 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1716 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1719 if (unlikely(!(evmcs->hv_clean_fields &
1720 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1721 vmcs12->tsc_offset = evmcs->tsc_offset;
1722 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1723 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1726 if (unlikely(!(evmcs->hv_clean_fields &
1727 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1728 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1729 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1730 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1731 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1732 vmcs12->guest_cr0 = evmcs->guest_cr0;
1733 vmcs12->guest_cr3 = evmcs->guest_cr3;
1734 vmcs12->guest_cr4 = evmcs->guest_cr4;
1735 vmcs12->guest_dr7 = evmcs->guest_dr7;
1738 if (unlikely(!(evmcs->hv_clean_fields &
1739 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1740 vmcs12->host_fs_base = evmcs->host_fs_base;
1741 vmcs12->host_gs_base = evmcs->host_gs_base;
1742 vmcs12->host_tr_base = evmcs->host_tr_base;
1743 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1744 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1745 vmcs12->host_rsp = evmcs->host_rsp;
1748 if (unlikely(!(evmcs->hv_clean_fields &
1749 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1750 vmcs12->ept_pointer = evmcs->ept_pointer;
1751 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1754 if (unlikely(!(evmcs->hv_clean_fields &
1755 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1756 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1757 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1758 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1759 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1760 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1761 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1762 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1763 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1764 vmcs12->guest_pending_dbg_exceptions =
1765 evmcs->guest_pending_dbg_exceptions;
1766 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1767 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1768 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1769 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1770 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1775 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1776 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1777 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1778 * vmcs12->page_fault_error_code_mask =
1779 * evmcs->page_fault_error_code_mask;
1780 * vmcs12->page_fault_error_code_match =
1781 * evmcs->page_fault_error_code_match;
1782 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1783 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1784 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1785 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1790 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1791 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1792 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1793 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1794 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1795 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1796 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1797 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1798 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1799 * vmcs12->exit_qualification = evmcs->exit_qualification;
1800 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1802 * Not present in struct vmcs12:
1803 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1804 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1805 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1806 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1812 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1814 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1815 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1818 * Should not be changed by KVM:
1820 * evmcs->host_es_selector = vmcs12->host_es_selector;
1821 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1822 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1823 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1824 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1825 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1826 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1827 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1828 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1829 * evmcs->host_cr0 = vmcs12->host_cr0;
1830 * evmcs->host_cr3 = vmcs12->host_cr3;
1831 * evmcs->host_cr4 = vmcs12->host_cr4;
1832 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1833 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1834 * evmcs->host_rip = vmcs12->host_rip;
1835 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1836 * evmcs->host_fs_base = vmcs12->host_fs_base;
1837 * evmcs->host_gs_base = vmcs12->host_gs_base;
1838 * evmcs->host_tr_base = vmcs12->host_tr_base;
1839 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1840 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1841 * evmcs->host_rsp = vmcs12->host_rsp;
1842 * sync_vmcs02_to_vmcs12() doesn't read these:
1843 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1844 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1845 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1846 * evmcs->ept_pointer = vmcs12->ept_pointer;
1847 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1848 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1849 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1850 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1851 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1852 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1853 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1854 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1855 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1856 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1857 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1858 * evmcs->page_fault_error_code_mask =
1859 * vmcs12->page_fault_error_code_mask;
1860 * evmcs->page_fault_error_code_match =
1861 * vmcs12->page_fault_error_code_match;
1862 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1863 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1864 * evmcs->tsc_offset = vmcs12->tsc_offset;
1865 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1866 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1867 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1868 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1869 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1870 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1871 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1872 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1874 * Not present in struct vmcs12:
1875 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1876 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1877 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1878 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1881 evmcs->guest_es_selector = vmcs12->guest_es_selector;
1882 evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1883 evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1884 evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1885 evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1886 evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1887 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1888 evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1890 evmcs->guest_es_limit = vmcs12->guest_es_limit;
1891 evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1892 evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1893 evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1894 evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1895 evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1896 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1897 evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1898 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1899 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1901 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1902 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1903 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1904 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1905 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1906 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1907 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1908 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1910 evmcs->guest_es_base = vmcs12->guest_es_base;
1911 evmcs->guest_cs_base = vmcs12->guest_cs_base;
1912 evmcs->guest_ss_base = vmcs12->guest_ss_base;
1913 evmcs->guest_ds_base = vmcs12->guest_ds_base;
1914 evmcs->guest_fs_base = vmcs12->guest_fs_base;
1915 evmcs->guest_gs_base = vmcs12->guest_gs_base;
1916 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1917 evmcs->guest_tr_base = vmcs12->guest_tr_base;
1918 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1919 evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1921 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1922 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1924 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1925 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1926 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1927 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1929 evmcs->guest_pending_dbg_exceptions =
1930 vmcs12->guest_pending_dbg_exceptions;
1931 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1932 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1934 evmcs->guest_activity_state = vmcs12->guest_activity_state;
1935 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1937 evmcs->guest_cr0 = vmcs12->guest_cr0;
1938 evmcs->guest_cr3 = vmcs12->guest_cr3;
1939 evmcs->guest_cr4 = vmcs12->guest_cr4;
1940 evmcs->guest_dr7 = vmcs12->guest_dr7;
1942 evmcs->guest_physical_address = vmcs12->guest_physical_address;
1944 evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1945 evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1946 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1947 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1948 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1949 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1950 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1951 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1953 evmcs->exit_qualification = vmcs12->exit_qualification;
1955 evmcs->guest_linear_address = vmcs12->guest_linear_address;
1956 evmcs->guest_rsp = vmcs12->guest_rsp;
1957 evmcs->guest_rflags = vmcs12->guest_rflags;
1959 evmcs->guest_interruptibility_info =
1960 vmcs12->guest_interruptibility_info;
1961 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1962 evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1963 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1964 evmcs->vm_entry_exception_error_code =
1965 vmcs12->vm_entry_exception_error_code;
1966 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1968 evmcs->guest_rip = vmcs12->guest_rip;
1970 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1976 * This is an equivalent of the nested hypervisor executing the vmptrld
1979 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1980 struct kvm_vcpu *vcpu, bool from_launch)
1982 struct vcpu_vmx *vmx = to_vmx(vcpu);
1983 bool evmcs_gpa_changed = false;
1986 if (likely(!vmx->nested.enlightened_vmcs_enabled))
1987 return EVMPTRLD_DISABLED;
1989 if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1990 return EVMPTRLD_DISABLED;
1992 if (unlikely(!vmx->nested.hv_evmcs ||
1993 evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1994 if (!vmx->nested.hv_evmcs)
1995 vmx->nested.current_vmptr = -1ull;
1997 nested_release_evmcs(vcpu);
1999 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2000 &vmx->nested.hv_evmcs_map))
2001 return EVMPTRLD_ERROR;
2003 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2006 * Currently, KVM only supports eVMCS version 1
2007 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2008 * value to first u32 field of eVMCS which should specify eVMCS
2011 * Guest should be aware of supported eVMCS versions by host by
2012 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2013 * expected to set this CPUID leaf according to the value
2014 * returned in vmcs_version from nested_enable_evmcs().
2016 * However, it turns out that Microsoft Hyper-V fails to comply
2017 * to their own invented interface: When Hyper-V use eVMCS, it
2018 * just sets first u32 field of eVMCS to revision_id specified
2019 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2020 * which is one of the supported versions specified in
2021 * CPUID.0x4000000A.EAX[0:15].
2023 * To overcome Hyper-V bug, we accept here either a supported
2024 * eVMCS version or VMCS12 revision_id as valid values for first
2025 * u32 field of eVMCS.
2027 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2028 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2029 nested_release_evmcs(vcpu);
2030 return EVMPTRLD_VMFAIL;
2033 vmx->nested.dirty_vmcs12 = true;
2034 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2036 evmcs_gpa_changed = true;
2038 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2039 * reloaded from guest's memory (read only fields, fields not
2040 * present in struct hv_enlightened_vmcs, ...). Make sure there
2044 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2045 memset(vmcs12, 0, sizeof(*vmcs12));
2046 vmcs12->hdr.revision_id = VMCS12_REVISION;
2052 * Clean fields data can't be used on VMLAUNCH and when we switch
2053 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2055 if (from_launch || evmcs_gpa_changed)
2056 vmx->nested.hv_evmcs->hv_clean_fields &=
2057 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2059 return EVMPTRLD_SUCCEEDED;
2062 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2064 struct vcpu_vmx *vmx = to_vmx(vcpu);
2066 if (vmx->nested.hv_evmcs) {
2067 copy_vmcs12_to_enlightened(vmx);
2068 /* All fields are clean */
2069 vmx->nested.hv_evmcs->hv_clean_fields |=
2070 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2072 copy_vmcs12_to_shadow(vmx);
2075 vmx->nested.need_vmcs12_to_shadow_sync = false;
2078 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2080 struct vcpu_vmx *vmx =
2081 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2083 vmx->nested.preemption_timer_expired = true;
2084 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2085 kvm_vcpu_kick(&vmx->vcpu);
2087 return HRTIMER_NORESTART;
2090 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
2092 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
2093 struct vcpu_vmx *vmx = to_vmx(vcpu);
2096 * A timer value of zero is architecturally guaranteed to cause
2097 * a VMExit prior to executing any instructions in the guest.
2099 if (preemption_timeout == 0) {
2100 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2104 if (vcpu->arch.virtual_tsc_khz == 0)
2107 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2108 preemption_timeout *= 1000000;
2109 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2110 hrtimer_start(&vmx->nested.preemption_timer,
2111 ktime_add_ns(ktime_get(), preemption_timeout),
2112 HRTIMER_MODE_ABS_PINNED);
2115 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2117 if (vmx->nested.nested_run_pending &&
2118 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2119 return vmcs12->guest_ia32_efer;
2120 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2121 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2123 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2126 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2129 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2130 * according to L0's settings (vmcs12 is irrelevant here). Host
2131 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2132 * will be set as needed prior to VMLAUNCH/VMRESUME.
2134 if (vmx->nested.vmcs02_initialized)
2136 vmx->nested.vmcs02_initialized = true;
2139 * We don't care what the EPTP value is we just need to guarantee
2140 * it's valid so we don't get a false positive when doing early
2141 * consistency checks.
2143 if (enable_ept && nested_early_check)
2144 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
2146 /* All VMFUNCs are currently emulated through L0 vmexits. */
2147 if (cpu_has_vmx_vmfunc())
2148 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2150 if (cpu_has_vmx_posted_intr())
2151 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2153 if (cpu_has_vmx_msr_bitmap())
2154 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2157 * The PML address never changes, so it is constant in vmcs02.
2158 * Conceptually we want to copy the PML index from vmcs01 here,
2159 * and then back to vmcs01 on nested vmexit. But since we flush
2160 * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2161 * index is also effectively constant in vmcs02.
2164 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2165 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2168 if (cpu_has_vmx_encls_vmexit())
2169 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2172 * Set the MSR load/store lists to match L0's settings. Only the
2173 * addresses are constant (for vmcs02), the counts can change based
2174 * on L2's behavior, e.g. switching to/from long mode.
2176 vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2177 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2178 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2180 vmx_set_constant_host_state(vmx);
2183 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2184 struct vmcs12 *vmcs12)
2186 prepare_vmcs02_constant_state(vmx);
2188 vmcs_write64(VMCS_LINK_POINTER, -1ull);
2191 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2192 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2194 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2198 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2200 u32 exec_control, vmcs12_exec_ctrl;
2201 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2203 if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2204 prepare_vmcs02_early_rare(vmx, vmcs12);
2209 exec_control = vmx_pin_based_exec_ctrl(vmx);
2210 exec_control |= (vmcs12->pin_based_vm_exec_control &
2211 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2213 /* Posted interrupts setting is only taken from vmcs12. */
2214 if (nested_cpu_has_posted_intr(vmcs12)) {
2215 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2216 vmx->nested.pi_pending = false;
2218 exec_control &= ~PIN_BASED_POSTED_INTR;
2220 pin_controls_set(vmx, exec_control);
2225 exec_control = vmx_exec_control(vmx); /* L0's desires */
2226 exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2227 exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2228 exec_control &= ~CPU_BASED_TPR_SHADOW;
2229 exec_control |= vmcs12->cpu_based_vm_exec_control;
2231 vmx->nested.l1_tpr_threshold = -1;
2232 if (exec_control & CPU_BASED_TPR_SHADOW)
2233 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2234 #ifdef CONFIG_X86_64
2236 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2237 CPU_BASED_CR8_STORE_EXITING;
2241 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2242 * for I/O port accesses.
2244 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2245 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2248 * This bit will be computed in nested_get_vmcs12_pages, because
2249 * we do not have access to L1's MSR bitmap yet. For now, keep
2250 * the same bit as before, hoping to avoid multiple VMWRITEs that
2251 * only set/clear this bit.
2253 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2254 exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2256 exec_controls_set(vmx, exec_control);
2259 * SECONDARY EXEC CONTROLS
2261 if (cpu_has_secondary_exec_ctrls()) {
2262 exec_control = vmx->secondary_exec_control;
2264 /* Take the following fields only from vmcs12 */
2265 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2266 SECONDARY_EXEC_ENABLE_INVPCID |
2267 SECONDARY_EXEC_RDTSCP |
2268 SECONDARY_EXEC_XSAVES |
2269 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2270 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2271 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2272 SECONDARY_EXEC_ENABLE_VMFUNC);
2273 if (nested_cpu_has(vmcs12,
2274 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2275 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2276 ~SECONDARY_EXEC_ENABLE_PML;
2277 exec_control |= vmcs12_exec_ctrl;
2280 /* VMCS shadowing for L2 is emulated for now */
2281 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2284 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2285 * will not have to rewrite the controls just for this bit.
2287 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2288 (vmcs12->guest_cr4 & X86_CR4_UMIP))
2289 exec_control |= SECONDARY_EXEC_DESC;
2291 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2292 vmcs_write16(GUEST_INTR_STATUS,
2293 vmcs12->guest_intr_status);
2295 secondary_exec_controls_set(vmx, exec_control);
2301 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2302 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2303 * on the related bits (if supported by the CPU) in the hope that
2304 * we can avoid VMWrites during vmx_set_efer().
2306 exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2307 ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2308 if (cpu_has_load_ia32_efer()) {
2309 if (guest_efer & EFER_LMA)
2310 exec_control |= VM_ENTRY_IA32E_MODE;
2311 if (guest_efer != host_efer)
2312 exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2314 vm_entry_controls_set(vmx, exec_control);
2319 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2320 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2321 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2323 exec_control = vmx_vmexit_ctrl();
2324 if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2325 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2326 vm_exit_controls_set(vmx, exec_control);
2329 * Interrupt/Exception Fields
2331 if (vmx->nested.nested_run_pending) {
2332 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2333 vmcs12->vm_entry_intr_info_field);
2334 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2335 vmcs12->vm_entry_exception_error_code);
2336 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2337 vmcs12->vm_entry_instruction_len);
2338 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2339 vmcs12->guest_interruptibility_info);
2340 vmx->loaded_vmcs->nmi_known_unmasked =
2341 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2343 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2347 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2349 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2351 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2352 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2353 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2354 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2355 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2356 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2357 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2358 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2359 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2360 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2361 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2362 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2363 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2364 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2365 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2366 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2367 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2368 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2369 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2370 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2371 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2372 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2373 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2374 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2375 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2376 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2377 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2378 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2379 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2380 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2381 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2382 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2383 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2384 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2385 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2386 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2387 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2388 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2391 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2392 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2393 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2394 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2395 vmcs12->guest_pending_dbg_exceptions);
2396 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2397 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2400 * L1 may access the L2's PDPTR, so save them to construct
2404 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2405 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2406 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2407 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2410 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2411 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2412 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2415 if (nested_cpu_has_xsaves(vmcs12))
2416 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2419 * Whether page-faults are trapped is determined by a combination of
2420 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2421 * If enable_ept, L0 doesn't care about page faults and we should
2422 * set all of these to L1's desires. However, if !enable_ept, L0 does
2423 * care about (at least some) page faults, and because it is not easy
2424 * (if at all possible?) to merge L0 and L1's desires, we simply ask
2425 * to exit on each and every L2 page fault. This is done by setting
2426 * MASK=MATCH=0 and (see below) EB.PF=1.
2427 * Note that below we don't need special code to set EB.PF beyond the
2428 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2429 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2430 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2432 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2433 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2434 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2435 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2437 if (cpu_has_vmx_apicv()) {
2438 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2439 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2440 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2441 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2445 * Make sure the msr_autostore list is up to date before we set the
2446 * count in the vmcs02.
2448 prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2450 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2451 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2452 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2454 set_cr4_guest_host_mask(vmx);
2458 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2459 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2460 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2461 * guest in a way that will both be appropriate to L1's requests, and our
2462 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2463 * function also has additional necessary side-effects, like setting various
2464 * vcpu->arch fields.
2465 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2466 * is assigned to entry_failure_code on failure.
2468 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2469 enum vm_entry_failure_code *entry_failure_code)
2471 struct vcpu_vmx *vmx = to_vmx(vcpu);
2472 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2473 bool load_guest_pdptrs_vmcs12 = false;
2475 if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2476 prepare_vmcs02_rare(vmx, vmcs12);
2477 vmx->nested.dirty_vmcs12 = false;
2479 load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2480 !(hv_evmcs->hv_clean_fields &
2481 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2484 if (vmx->nested.nested_run_pending &&
2485 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2486 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2487 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2489 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2490 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2492 if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2493 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2494 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2495 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2497 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2498 * bitwise-or of what L1 wants to trap for L2, and what we want to
2499 * trap. Note that CR0.TS also needs updating - we do this later.
2501 update_exception_bitmap(vcpu);
2502 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2503 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2505 if (vmx->nested.nested_run_pending &&
2506 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2507 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2508 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2509 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2510 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2513 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2515 if (kvm_has_tsc_control)
2516 decache_tsc_multiplier(vmx);
2518 nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2520 if (nested_cpu_has_ept(vmcs12))
2521 nested_ept_init_mmu_context(vcpu);
2524 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2525 * bits which we consider mandatory enabled.
2526 * The CR0_READ_SHADOW is what L2 should have expected to read given
2527 * the specifications by L1; It's not enough to take
2528 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2529 * have more bits than L1 expected.
2531 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2532 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2534 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2535 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2537 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2538 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2539 vmx_set_efer(vcpu, vcpu->arch.efer);
2542 * Guest state is invalid and unrestricted guest is disabled,
2543 * which means L1 attempted VMEntry to L2 with invalid state.
2546 if (vmx->emulation_required) {
2547 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2551 /* Shadow page tables on either EPT or shadow page tables. */
2552 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2553 entry_failure_code))
2557 * Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12
2558 * on nested VM-Exit, which can occur without actually running L2 and
2559 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2560 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2561 * transition to HLT instead of running L2.
2564 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2566 /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2567 if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2568 is_pae_paging(vcpu)) {
2569 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2570 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2571 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2572 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2576 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2578 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2579 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2580 vmcs12->guest_ia32_perf_global_ctrl)))
2583 kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2584 kvm_rip_write(vcpu, vmcs12->guest_rip);
2588 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2590 if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2591 nested_cpu_has_virtual_nmis(vmcs12)))
2594 if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2595 nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2601 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2603 struct vcpu_vmx *vmx = to_vmx(vcpu);
2604 int maxphyaddr = cpuid_maxphyaddr(vcpu);
2606 /* Check for memory type validity */
2607 switch (new_eptp & VMX_EPTP_MT_MASK) {
2608 case VMX_EPTP_MT_UC:
2609 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2612 case VMX_EPTP_MT_WB:
2613 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2620 /* Page-walk levels validity. */
2621 switch (new_eptp & VMX_EPTP_PWL_MASK) {
2622 case VMX_EPTP_PWL_5:
2623 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2626 case VMX_EPTP_PWL_4:
2627 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2634 /* Reserved bits should not be set */
2635 if (CC(new_eptp >> maxphyaddr || ((new_eptp >> 7) & 0x1f)))
2638 /* AD, if set, should be supported */
2639 if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2640 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2648 * Checks related to VM-Execution Control Fields
2650 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2651 struct vmcs12 *vmcs12)
2653 struct vcpu_vmx *vmx = to_vmx(vcpu);
2655 if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2656 vmx->nested.msrs.pinbased_ctls_low,
2657 vmx->nested.msrs.pinbased_ctls_high)) ||
2658 CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2659 vmx->nested.msrs.procbased_ctls_low,
2660 vmx->nested.msrs.procbased_ctls_high)))
2663 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2664 CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2665 vmx->nested.msrs.secondary_ctls_low,
2666 vmx->nested.msrs.secondary_ctls_high)))
2669 if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2670 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2671 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2672 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2673 nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2674 nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2675 nested_vmx_check_nmi_controls(vmcs12) ||
2676 nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2677 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2678 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2679 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2680 CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2683 if (!nested_cpu_has_preemption_timer(vmcs12) &&
2684 nested_cpu_has_save_preemption_timer(vmcs12))
2687 if (nested_cpu_has_ept(vmcs12) &&
2688 CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2691 if (nested_cpu_has_vmfunc(vmcs12)) {
2692 if (CC(vmcs12->vm_function_control &
2693 ~vmx->nested.msrs.vmfunc_controls))
2696 if (nested_cpu_has_eptp_switching(vmcs12)) {
2697 if (CC(!nested_cpu_has_ept(vmcs12)) ||
2698 CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2707 * Checks related to VM-Exit Control Fields
2709 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2710 struct vmcs12 *vmcs12)
2712 struct vcpu_vmx *vmx = to_vmx(vcpu);
2714 if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2715 vmx->nested.msrs.exit_ctls_low,
2716 vmx->nested.msrs.exit_ctls_high)) ||
2717 CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2724 * Checks related to VM-Entry Control Fields
2726 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2727 struct vmcs12 *vmcs12)
2729 struct vcpu_vmx *vmx = to_vmx(vcpu);
2731 if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2732 vmx->nested.msrs.entry_ctls_low,
2733 vmx->nested.msrs.entry_ctls_high)))
2737 * From the Intel SDM, volume 3:
2738 * Fields relevant to VM-entry event injection must be set properly.
2739 * These fields are the VM-entry interruption-information field, the
2740 * VM-entry exception error code, and the VM-entry instruction length.
2742 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2743 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2744 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2745 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2746 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2747 bool should_have_error_code;
2748 bool urg = nested_cpu_has2(vmcs12,
2749 SECONDARY_EXEC_UNRESTRICTED_GUEST);
2750 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2752 /* VM-entry interruption-info field: interruption type */
2753 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2754 CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2755 !nested_cpu_supports_monitor_trap_flag(vcpu)))
2758 /* VM-entry interruption-info field: vector */
2759 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2760 CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2761 CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2764 /* VM-entry interruption-info field: deliver error code */
2765 should_have_error_code =
2766 intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2767 x86_exception_has_error_code(vector);
2768 if (CC(has_error_code != should_have_error_code))
2771 /* VM-entry exception error code */
2772 if (CC(has_error_code &&
2773 vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2776 /* VM-entry interruption-info field: reserved bits */
2777 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2780 /* VM-entry instruction length */
2781 switch (intr_type) {
2782 case INTR_TYPE_SOFT_EXCEPTION:
2783 case INTR_TYPE_SOFT_INTR:
2784 case INTR_TYPE_PRIV_SW_EXCEPTION:
2785 if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2786 CC(vmcs12->vm_entry_instruction_len == 0 &&
2787 CC(!nested_cpu_has_zero_length_injection(vcpu))))
2792 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2798 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2799 struct vmcs12 *vmcs12)
2801 if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2802 nested_check_vm_exit_controls(vcpu, vmcs12) ||
2803 nested_check_vm_entry_controls(vcpu, vmcs12))
2806 if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2807 return nested_evmcs_check_controls(vmcs12);
2812 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2813 struct vmcs12 *vmcs12)
2817 if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2818 CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2819 CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2822 if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2823 CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2826 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2827 CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2830 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2831 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2832 vmcs12->host_ia32_perf_global_ctrl)))
2835 #ifdef CONFIG_X86_64
2836 ia32e = !!(vcpu->arch.efer & EFER_LMA);
2842 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2843 CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2846 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2847 CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2848 CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2849 CC((vmcs12->host_rip) >> 32))
2853 if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2854 CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2855 CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2856 CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2857 CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2858 CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2859 CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2860 CC(vmcs12->host_cs_selector == 0) ||
2861 CC(vmcs12->host_tr_selector == 0) ||
2862 CC(vmcs12->host_ss_selector == 0 && !ia32e))
2865 if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2866 CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2867 CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2868 CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2869 CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2870 CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2874 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2875 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2876 * the values of the LMA and LME bits in the field must each be that of
2877 * the host address-space size VM-exit control.
2879 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2880 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2881 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2882 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2889 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2890 struct vmcs12 *vmcs12)
2893 struct vmcs12 *shadow;
2894 struct kvm_host_map map;
2896 if (vmcs12->vmcs_link_pointer == -1ull)
2899 if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2902 if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2907 if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2908 CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2911 kvm_vcpu_unmap(vcpu, &map, false);
2916 * Checks related to Guest Non-register State
2918 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2920 if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2921 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2927 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2928 struct vmcs12 *vmcs12,
2929 enum vm_entry_failure_code *entry_failure_code)
2933 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2935 if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2936 CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2939 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2940 CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2943 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2944 CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2947 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2948 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
2952 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2953 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2954 vmcs12->guest_ia32_perf_global_ctrl)))
2958 * If the load IA32_EFER VM-entry control is 1, the following checks
2959 * are performed on the field for the IA32_EFER MSR:
2960 * - Bits reserved in the IA32_EFER MSR must be 0.
2961 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2962 * the IA-32e mode guest VM-exit control. It must also be identical
2963 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2966 if (to_vmx(vcpu)->nested.nested_run_pending &&
2967 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2968 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2969 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
2970 CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
2971 CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
2972 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
2976 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2977 (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
2978 CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
2981 if (nested_check_guest_non_reg_state(vmcs12))
2987 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2989 struct vcpu_vmx *vmx = to_vmx(vcpu);
2990 unsigned long cr3, cr4;
2993 if (!nested_early_check)
2996 if (vmx->msr_autoload.host.nr)
2997 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2998 if (vmx->msr_autoload.guest.nr)
2999 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3003 vmx_prepare_switch_to_guest(vcpu);
3006 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3007 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
3008 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3009 * there is no need to preserve other bits or save/restore the field.
3011 vmcs_writel(GUEST_RFLAGS, 0);
3013 cr3 = __get_current_cr3_fast();
3014 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3015 vmcs_writel(HOST_CR3, cr3);
3016 vmx->loaded_vmcs->host_state.cr3 = cr3;
3019 cr4 = cr4_read_shadow();
3020 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3021 vmcs_writel(HOST_CR4, cr4);
3022 vmx->loaded_vmcs->host_state.cr4 = cr4;
3026 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
3027 "cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
3029 __ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
3030 "mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
3032 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
3034 /* Check if vmlaunch or vmresume is needed */
3035 "cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
3038 * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
3039 * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
3040 * Valid. vmx_vmenter() directly "returns" RFLAGS, and so the
3041 * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
3043 "call vmx_vmenter\n\t"
3046 : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
3047 : [HOST_RSP]"r"((unsigned long)HOST_RSP),
3048 [loaded_vmcs]"r"(vmx->loaded_vmcs),
3049 [launched]"i"(offsetof(struct loaded_vmcs, launched)),
3050 [host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
3051 [wordsize]"i"(sizeof(ulong))
3055 if (vmx->msr_autoload.host.nr)
3056 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3057 if (vmx->msr_autoload.guest.nr)
3058 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3061 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3065 trace_kvm_nested_vmenter_failed(
3066 "early hardware check VM-instruction error: ", error);
3067 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3072 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3075 if (hw_breakpoint_active())
3076 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3080 * A non-failing VMEntry means we somehow entered guest mode with
3081 * an illegal RIP, and that's just the tip of the iceberg. There
3082 * is no telling what memory has been modified or what state has
3083 * been exposed to unknown code. Hitting this all but guarantees
3084 * a (very critical) hardware issue.
3086 WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3087 VMX_EXIT_REASONS_FAILED_VMENTRY));
3092 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3094 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3095 struct vcpu_vmx *vmx = to_vmx(vcpu);
3096 struct kvm_host_map *map;
3101 * hv_evmcs may end up being not mapped after migration (when
3102 * L2 was running), map it here to make sure vmcs12 changes are
3103 * properly reflected.
3105 if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs) {
3106 enum nested_evmptrld_status evmptrld_status =
3107 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3109 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3110 evmptrld_status == EVMPTRLD_ERROR) {
3111 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3113 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3114 vcpu->run->internal.suberror =
3115 KVM_INTERNAL_ERROR_EMULATION;
3116 vcpu->run->internal.ndata = 0;
3121 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3123 * Translate L1 physical address to host physical
3124 * address for vmcs02. Keep the page pinned, so this
3125 * physical address remains valid. We keep a reference
3126 * to it so we can release it later.
3128 if (vmx->nested.apic_access_page) { /* shouldn't happen */
3129 kvm_release_page_clean(vmx->nested.apic_access_page);
3130 vmx->nested.apic_access_page = NULL;
3132 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3133 if (!is_error_page(page)) {
3134 vmx->nested.apic_access_page = page;
3135 hpa = page_to_phys(vmx->nested.apic_access_page);
3136 vmcs_write64(APIC_ACCESS_ADDR, hpa);
3138 pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3140 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3141 vcpu->run->internal.suberror =
3142 KVM_INTERNAL_ERROR_EMULATION;
3143 vcpu->run->internal.ndata = 0;
3148 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3149 map = &vmx->nested.virtual_apic_map;
3151 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3152 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3153 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3154 nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3155 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3157 * The processor will never use the TPR shadow, simply
3158 * clear the bit from the execution control. Such a
3159 * configuration is useless, but it happens in tests.
3160 * For any other configuration, failing the vm entry is
3161 * _not_ what the processor does but it's basically the
3162 * only possibility we have.
3164 exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3167 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3168 * force VM-Entry to fail.
3170 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3174 if (nested_cpu_has_posted_intr(vmcs12)) {
3175 map = &vmx->nested.pi_desc_map;
3177 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3178 vmx->nested.pi_desc =
3179 (struct pi_desc *)(((void *)map->hva) +
3180 offset_in_page(vmcs12->posted_intr_desc_addr));
3181 vmcs_write64(POSTED_INTR_DESC_ADDR,
3182 pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3185 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3186 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3188 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3193 * Intel's VMX Instruction Reference specifies a common set of prerequisites
3194 * for running VMX instructions (except VMXON, whose prerequisites are
3195 * slightly different). It also specifies what exception to inject otherwise.
3196 * Note that many of these exceptions have priority over VM exits, so they
3197 * don't have to be checked again here.
3199 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3201 if (!to_vmx(vcpu)->nested.vmxon) {
3202 kvm_queue_exception(vcpu, UD_VECTOR);
3206 if (vmx_get_cpl(vcpu)) {
3207 kvm_inject_gp(vcpu, 0);
3214 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3216 u8 rvi = vmx_get_rvi();
3217 u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3219 return ((rvi & 0xf0) > (vppr & 0xf0));
3222 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3223 struct vmcs12 *vmcs12);
3226 * If from_vmentry is false, this is being called from state restore (either RSM
3227 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
3230 * NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3231 * NVMX_VMENTRY_VMFAIL: Consistency check VMFail
3232 * NVMX_VMENTRY_VMEXIT: Consistency check VMExit
3233 * NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3235 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3238 struct vcpu_vmx *vmx = to_vmx(vcpu);
3239 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3240 enum vm_entry_failure_code entry_failure_code;
3241 bool evaluate_pending_interrupts;
3242 u32 exit_reason, failed_index;
3244 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3245 kvm_vcpu_flush_tlb_current(vcpu);
3247 evaluate_pending_interrupts = exec_controls_get(vmx) &
3248 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3249 if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3250 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3252 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3253 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3254 if (kvm_mpx_supported() &&
3255 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3256 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3259 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3260 * nested early checks are disabled. In the event of a "late" VM-Fail,
3261 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3262 * software model to the pre-VMEntry host state. When EPT is disabled,
3263 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3264 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing
3265 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3266 * the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested
3267 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3268 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3269 * L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3270 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3271 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3272 * path would need to manually save/restore vmcs01.GUEST_CR3.
3274 if (!enable_ept && !nested_early_check)
3275 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3277 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3279 prepare_vmcs02_early(vmx, vmcs12);
3282 if (unlikely(!nested_get_vmcs12_pages(vcpu)))
3283 return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3285 if (nested_vmx_check_vmentry_hw(vcpu)) {
3286 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3287 return NVMX_VMENTRY_VMFAIL;
3290 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3291 &entry_failure_code)) {
3292 exit_reason = EXIT_REASON_INVALID_STATE;
3293 vmcs12->exit_qualification = entry_failure_code;
3294 goto vmentry_fail_vmexit;
3298 enter_guest_mode(vcpu);
3299 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3300 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3302 if (prepare_vmcs02(vcpu, vmcs12, &entry_failure_code)) {
3303 exit_reason = EXIT_REASON_INVALID_STATE;
3304 vmcs12->exit_qualification = entry_failure_code;
3305 goto vmentry_fail_vmexit_guest_mode;
3309 failed_index = nested_vmx_load_msr(vcpu,
3310 vmcs12->vm_entry_msr_load_addr,
3311 vmcs12->vm_entry_msr_load_count);
3313 exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3314 vmcs12->exit_qualification = failed_index;
3315 goto vmentry_fail_vmexit_guest_mode;
3319 * The MMU is not initialized to point at the right entities yet and
3320 * "get pages" would need to read data from the guest (i.e. we will
3321 * need to perform gpa to hpa translation). Request a call
3322 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
3323 * have already been set at vmentry time and should not be reset.
3325 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3329 * If L1 had a pending IRQ/NMI until it executed
3330 * VMLAUNCH/VMRESUME which wasn't delivered because it was
3331 * disallowed (e.g. interrupts disabled), L0 needs to
3332 * evaluate if this pending event should cause an exit from L2
3333 * to L1 or delivered directly to L2 (e.g. In case L1 don't
3334 * intercept EXTERNAL_INTERRUPT).
3336 * Usually this would be handled by the processor noticing an
3337 * IRQ/NMI window request, or checking RVI during evaluation of
3338 * pending virtual interrupts. However, this setting was done
3339 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3340 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3342 if (unlikely(evaluate_pending_interrupts))
3343 kvm_make_request(KVM_REQ_EVENT, vcpu);
3346 * Do not start the preemption timer hrtimer until after we know
3347 * we are successful, so that only nested_vmx_vmexit needs to cancel
3350 vmx->nested.preemption_timer_expired = false;
3351 if (nested_cpu_has_preemption_timer(vmcs12))
3352 vmx_start_preemption_timer(vcpu);
3355 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3356 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3357 * returned as far as L1 is concerned. It will only return (and set
3358 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3360 return NVMX_VMENTRY_SUCCESS;
3363 * A failed consistency check that leads to a VMExit during L1's
3364 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3365 * 26.7 "VM-entry failures during or after loading guest state".
3367 vmentry_fail_vmexit_guest_mode:
3368 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3369 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3370 leave_guest_mode(vcpu);
3372 vmentry_fail_vmexit:
3373 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3376 return NVMX_VMENTRY_VMEXIT;
3378 load_vmcs12_host_state(vcpu, vmcs12);
3379 vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3380 if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3381 vmx->nested.need_vmcs12_to_shadow_sync = true;
3382 return NVMX_VMENTRY_VMEXIT;
3386 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3387 * for running an L2 nested guest.
3389 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3391 struct vmcs12 *vmcs12;
3392 enum nvmx_vmentry_status status;
3393 struct vcpu_vmx *vmx = to_vmx(vcpu);
3394 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3395 enum nested_evmptrld_status evmptrld_status;
3397 if (!nested_vmx_check_permission(vcpu))
3400 evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3401 if (evmptrld_status == EVMPTRLD_ERROR) {
3402 kvm_queue_exception(vcpu, UD_VECTOR);
3404 } else if (evmptrld_status == EVMPTRLD_VMFAIL) {
3405 return nested_vmx_failInvalid(vcpu);
3408 if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3409 return nested_vmx_failInvalid(vcpu);
3411 vmcs12 = get_vmcs12(vcpu);
3414 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3415 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3416 * rather than RFLAGS.ZF, and no error number is stored to the
3417 * VM-instruction error field.
3419 if (vmcs12->hdr.shadow_vmcs)
3420 return nested_vmx_failInvalid(vcpu);
3422 if (vmx->nested.hv_evmcs) {
3423 copy_enlightened_to_vmcs12(vmx);
3424 /* Enlightened VMCS doesn't have launch state */
3425 vmcs12->launch_state = !launch;
3426 } else if (enable_shadow_vmcs) {
3427 copy_shadow_to_vmcs12(vmx);
3431 * The nested entry process starts with enforcing various prerequisites
3432 * on vmcs12 as required by the Intel SDM, and act appropriately when
3433 * they fail: As the SDM explains, some conditions should cause the
3434 * instruction to fail, while others will cause the instruction to seem
3435 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3436 * To speed up the normal (success) code path, we should avoid checking
3437 * for misconfigurations which will anyway be caught by the processor
3438 * when using the merged vmcs02.
3440 if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3441 return nested_vmx_failValid(vcpu,
3442 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3444 if (vmcs12->launch_state == launch)
3445 return nested_vmx_failValid(vcpu,
3446 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3447 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3449 if (nested_vmx_check_controls(vcpu, vmcs12))
3450 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3452 if (nested_vmx_check_host_state(vcpu, vmcs12))
3453 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3456 * We're finally done with prerequisite checking, and can start with
3459 vmx->nested.nested_run_pending = 1;
3460 status = nested_vmx_enter_non_root_mode(vcpu, true);
3461 if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3462 goto vmentry_failed;
3464 /* Hide L1D cache contents from the nested guest. */
3465 vmx->vcpu.arch.l1tf_flush_l1d = true;
3468 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3469 * also be used as part of restoring nVMX state for
3470 * snapshot restore (migration).
3472 * In this flow, it is assumed that vmcs12 cache was
3473 * trasferred as part of captured nVMX state and should
3474 * therefore not be read from guest memory (which may not
3475 * exist on destination host yet).
3477 nested_cache_shadow_vmcs12(vcpu, vmcs12);
3480 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3481 * awakened by event injection or by an NMI-window VM-exit or
3482 * by an interrupt-window VM-exit, halt the vcpu.
3484 if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3485 !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3486 !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_NMI_WINDOW_EXITING) &&
3487 !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_INTR_WINDOW_EXITING) &&
3488 (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3489 vmx->nested.nested_run_pending = 0;
3490 return kvm_vcpu_halt(vcpu);
3495 vmx->nested.nested_run_pending = 0;
3496 if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3498 if (status == NVMX_VMENTRY_VMEXIT)
3500 WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3501 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3505 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3506 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3507 * This function returns the new value we should put in vmcs12.guest_cr0.
3508 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3509 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3510 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3511 * didn't trap the bit, because if L1 did, so would L0).
3512 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3513 * been modified by L2, and L1 knows it. So just leave the old value of
3514 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3515 * isn't relevant, because if L0 traps this bit it can set it to anything.
3516 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3517 * changed these bits, and therefore they need to be updated, but L0
3518 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3519 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3521 static inline unsigned long
3522 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3525 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3526 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3527 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3528 vcpu->arch.cr0_guest_owned_bits));
3531 static inline unsigned long
3532 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3535 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3536 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3537 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3538 vcpu->arch.cr4_guest_owned_bits));
3541 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3542 struct vmcs12 *vmcs12)
3547 if (vcpu->arch.exception.injected) {
3548 nr = vcpu->arch.exception.nr;
3549 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3551 if (kvm_exception_is_soft(nr)) {
3552 vmcs12->vm_exit_instruction_len =
3553 vcpu->arch.event_exit_inst_len;
3554 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3556 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3558 if (vcpu->arch.exception.has_error_code) {
3559 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3560 vmcs12->idt_vectoring_error_code =
3561 vcpu->arch.exception.error_code;
3564 vmcs12->idt_vectoring_info_field = idt_vectoring;
3565 } else if (vcpu->arch.nmi_injected) {
3566 vmcs12->idt_vectoring_info_field =
3567 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3568 } else if (vcpu->arch.interrupt.injected) {
3569 nr = vcpu->arch.interrupt.nr;
3570 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3572 if (vcpu->arch.interrupt.soft) {
3573 idt_vectoring |= INTR_TYPE_SOFT_INTR;
3574 vmcs12->vm_entry_instruction_len =
3575 vcpu->arch.event_exit_inst_len;
3577 idt_vectoring |= INTR_TYPE_EXT_INTR;
3579 vmcs12->idt_vectoring_info_field = idt_vectoring;
3584 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3586 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3590 * Don't need to mark the APIC access page dirty; it is never
3591 * written to by the CPU during APIC virtualization.
3594 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3595 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3596 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3599 if (nested_cpu_has_posted_intr(vmcs12)) {
3600 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3601 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3605 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3607 struct vcpu_vmx *vmx = to_vmx(vcpu);
3612 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3615 vmx->nested.pi_pending = false;
3616 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3619 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3620 if (max_irr != 256) {
3621 vapic_page = vmx->nested.virtual_apic_map.hva;
3625 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3626 vapic_page, &max_irr);
3627 status = vmcs_read16(GUEST_INTR_STATUS);
3628 if ((u8)max_irr > ((u8)status & 0xff)) {
3630 status |= (u8)max_irr;
3631 vmcs_write16(GUEST_INTR_STATUS, status);
3635 nested_mark_vmcs12_pages_dirty(vcpu);
3638 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3639 unsigned long exit_qual)
3641 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3642 unsigned int nr = vcpu->arch.exception.nr;
3643 u32 intr_info = nr | INTR_INFO_VALID_MASK;
3645 if (vcpu->arch.exception.has_error_code) {
3646 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3647 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3650 if (kvm_exception_is_soft(nr))
3651 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3653 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3655 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3656 vmx_get_nmi_mask(vcpu))
3657 intr_info |= INTR_INFO_UNBLOCK_NMI;
3659 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3663 * Returns true if a debug trap is pending delivery.
3665 * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3666 * exception may be inferred from the presence of an exception payload.
3668 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3670 return vcpu->arch.exception.pending &&
3671 vcpu->arch.exception.nr == DB_VECTOR &&
3672 vcpu->arch.exception.payload;
3676 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3677 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3678 * represents these debug traps with a payload that is said to be compatible
3679 * with the 'pending debug exceptions' field, write the payload to the VMCS
3680 * field if a VM-exit is delivered before the debug trap.
3682 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3684 if (vmx_pending_dbg_trap(vcpu))
3685 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3686 vcpu->arch.exception.payload);
3689 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3691 return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3692 to_vmx(vcpu)->nested.preemption_timer_expired;
3695 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3697 struct vcpu_vmx *vmx = to_vmx(vcpu);
3698 unsigned long exit_qual;
3699 bool block_nested_events =
3700 vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3701 bool mtf_pending = vmx->nested.mtf_pending;
3702 struct kvm_lapic *apic = vcpu->arch.apic;
3705 * Clear the MTF state. If a higher priority VM-exit is delivered first,
3706 * this state is discarded.
3708 if (!block_nested_events)
3709 vmx->nested.mtf_pending = false;
3711 if (lapic_in_kernel(vcpu) &&
3712 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3713 if (block_nested_events)
3715 nested_vmx_update_pending_dbg(vcpu);
3716 clear_bit(KVM_APIC_INIT, &apic->pending_events);
3717 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3722 * Process any exceptions that are not debug traps before MTF.
3724 if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3725 if (block_nested_events)
3727 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3729 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3734 if (block_nested_events)
3736 nested_vmx_update_pending_dbg(vcpu);
3737 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3741 if (vcpu->arch.exception.pending) {
3742 if (block_nested_events)
3744 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3746 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3750 if (nested_vmx_preemption_timer_pending(vcpu)) {
3751 if (block_nested_events)
3753 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3757 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3758 if (block_nested_events)
3763 if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3764 if (block_nested_events)
3766 if (!nested_exit_on_nmi(vcpu))
3769 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3770 NMI_VECTOR | INTR_TYPE_NMI_INTR |
3771 INTR_INFO_VALID_MASK, 0);
3773 * The NMI-triggered VM exit counts as injection:
3774 * clear this one and block further NMIs.
3776 vcpu->arch.nmi_pending = 0;
3777 vmx_set_nmi_mask(vcpu, true);
3781 if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3782 if (block_nested_events)
3784 if (!nested_exit_on_intr(vcpu))
3786 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3791 vmx_complete_nested_posted_interrupt(vcpu);
3795 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3798 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3801 if (ktime_to_ns(remaining) <= 0)
3804 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3805 do_div(value, 1000000);
3806 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3809 static bool is_vmcs12_ext_field(unsigned long field)
3812 case GUEST_ES_SELECTOR:
3813 case GUEST_CS_SELECTOR:
3814 case GUEST_SS_SELECTOR:
3815 case GUEST_DS_SELECTOR:
3816 case GUEST_FS_SELECTOR:
3817 case GUEST_GS_SELECTOR:
3818 case GUEST_LDTR_SELECTOR:
3819 case GUEST_TR_SELECTOR:
3820 case GUEST_ES_LIMIT:
3821 case GUEST_CS_LIMIT:
3822 case GUEST_SS_LIMIT:
3823 case GUEST_DS_LIMIT:
3824 case GUEST_FS_LIMIT:
3825 case GUEST_GS_LIMIT:
3826 case GUEST_LDTR_LIMIT:
3827 case GUEST_TR_LIMIT:
3828 case GUEST_GDTR_LIMIT:
3829 case GUEST_IDTR_LIMIT:
3830 case GUEST_ES_AR_BYTES:
3831 case GUEST_DS_AR_BYTES:
3832 case GUEST_FS_AR_BYTES:
3833 case GUEST_GS_AR_BYTES:
3834 case GUEST_LDTR_AR_BYTES:
3835 case GUEST_TR_AR_BYTES:
3842 case GUEST_LDTR_BASE:
3844 case GUEST_GDTR_BASE:
3845 case GUEST_IDTR_BASE:
3846 case GUEST_PENDING_DBG_EXCEPTIONS:
3856 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3857 struct vmcs12 *vmcs12)
3859 struct vcpu_vmx *vmx = to_vmx(vcpu);
3861 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3862 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3863 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3864 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3865 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3866 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3867 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3868 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3869 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3870 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3871 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3872 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3873 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3874 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3875 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3876 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3877 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3878 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3879 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3880 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3881 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3882 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3883 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3884 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3885 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3886 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3887 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3888 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3889 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3890 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3891 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3892 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3893 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3894 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3895 vmcs12->guest_pending_dbg_exceptions =
3896 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3897 if (kvm_mpx_supported())
3898 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3900 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3903 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3904 struct vmcs12 *vmcs12)
3906 struct vcpu_vmx *vmx = to_vmx(vcpu);
3909 if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
3913 WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
3916 vmx->loaded_vmcs = &vmx->nested.vmcs02;
3917 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
3919 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3921 vmx->loaded_vmcs = &vmx->vmcs01;
3922 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
3927 * Update the guest state fields of vmcs12 to reflect changes that
3928 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3929 * VM-entry controls is also updated, since this is really a guest
3932 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3934 struct vcpu_vmx *vmx = to_vmx(vcpu);
3936 if (vmx->nested.hv_evmcs)
3937 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3939 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
3941 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3942 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3944 vmcs12->guest_rsp = kvm_rsp_read(vcpu);
3945 vmcs12->guest_rip = kvm_rip_read(vcpu);
3946 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3948 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3949 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3951 vmcs12->guest_interruptibility_info =
3952 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3954 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3955 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3957 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3959 if (nested_cpu_has_preemption_timer(vmcs12) &&
3960 vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3961 vmcs12->vmx_preemption_timer_value =
3962 vmx_get_preemption_timer_value(vcpu);
3965 * In some cases (usually, nested EPT), L2 is allowed to change its
3966 * own CR3 without exiting. If it has changed it, we must keep it.
3967 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3968 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3970 * Additionally, restore L2's PDPTR to vmcs12.
3973 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3974 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3975 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3976 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3977 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3978 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3982 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3984 if (nested_cpu_has_vid(vmcs12))
3985 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3987 vmcs12->vm_entry_controls =
3988 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3989 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3991 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
3992 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3994 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3995 vmcs12->guest_ia32_efer = vcpu->arch.efer;
3999 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4000 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4001 * and this function updates it to reflect the changes to the guest state while
4002 * L2 was running (and perhaps made some exits which were handled directly by L0
4003 * without going back to L1), and to reflect the exit reason.
4004 * Note that we do not have to copy here all VMCS fields, just those that
4005 * could have changed by the L2 guest or the exit - i.e., the guest-state and
4006 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4007 * which already writes to vmcs12 directly.
4009 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4010 u32 vm_exit_reason, u32 exit_intr_info,
4011 unsigned long exit_qualification)
4013 /* update exit information fields: */
4014 vmcs12->vm_exit_reason = vm_exit_reason;
4015 vmcs12->exit_qualification = exit_qualification;
4016 vmcs12->vm_exit_intr_info = exit_intr_info;
4018 vmcs12->idt_vectoring_info_field = 0;
4019 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4020 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4022 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4023 vmcs12->launch_state = 1;
4025 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4026 * instead of reading the real value. */
4027 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4030 * Transfer the event that L0 or L1 may wanted to inject into
4031 * L2 to IDT_VECTORING_INFO_FIELD.
4033 vmcs12_save_pending_event(vcpu, vmcs12);
4036 * According to spec, there's no need to store the guest's
4037 * MSRs if the exit is due to a VM-entry failure that occurs
4038 * during or after loading the guest state. Since this exit
4039 * does not fall in that category, we need to save the MSRs.
4041 if (nested_vmx_store_msr(vcpu,
4042 vmcs12->vm_exit_msr_store_addr,
4043 vmcs12->vm_exit_msr_store_count))
4044 nested_vmx_abort(vcpu,
4045 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4049 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4050 * preserved above and would only end up incorrectly in L1.
4052 vcpu->arch.nmi_injected = false;
4053 kvm_clear_exception_queue(vcpu);
4054 kvm_clear_interrupt_queue(vcpu);
4058 * A part of what we need to when the nested L2 guest exits and we want to
4059 * run its L1 parent, is to reset L1's guest state to the host state specified
4061 * This function is to be called not only on normal nested exit, but also on
4062 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4063 * Failures During or After Loading Guest State").
4064 * This function should be called when the active VMCS is L1's (vmcs01).
4066 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4067 struct vmcs12 *vmcs12)
4069 enum vm_entry_failure_code ignored;
4070 struct kvm_segment seg;
4072 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4073 vcpu->arch.efer = vmcs12->host_ia32_efer;
4074 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4075 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4077 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4078 vmx_set_efer(vcpu, vcpu->arch.efer);
4080 kvm_rsp_write(vcpu, vmcs12->host_rsp);
4081 kvm_rip_write(vcpu, vmcs12->host_rip);
4082 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4083 vmx_set_interrupt_shadow(vcpu, 0);
4086 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4087 * actually changed, because vmx_set_cr0 refers to efer set above.
4089 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4090 * (KVM doesn't change it);
4092 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
4093 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4095 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4096 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4097 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4099 nested_ept_uninit_mmu_context(vcpu);
4102 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4103 * couldn't have changed.
4105 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &ignored))
4106 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4109 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
4111 nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4113 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4114 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4115 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4116 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4117 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4118 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4119 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4121 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
4122 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4123 vmcs_write64(GUEST_BNDCFGS, 0);
4125 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4126 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4127 vcpu->arch.pat = vmcs12->host_ia32_pat;
4129 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4130 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4131 vmcs12->host_ia32_perf_global_ctrl));
4133 /* Set L1 segment info according to Intel SDM
4134 27.5.2 Loading Host Segment and Descriptor-Table Registers */
4135 seg = (struct kvm_segment) {
4137 .limit = 0xFFFFFFFF,
4138 .selector = vmcs12->host_cs_selector,
4144 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4148 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4149 seg = (struct kvm_segment) {
4151 .limit = 0xFFFFFFFF,
4158 seg.selector = vmcs12->host_ds_selector;
4159 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4160 seg.selector = vmcs12->host_es_selector;
4161 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4162 seg.selector = vmcs12->host_ss_selector;
4163 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4164 seg.selector = vmcs12->host_fs_selector;
4165 seg.base = vmcs12->host_fs_base;
4166 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4167 seg.selector = vmcs12->host_gs_selector;
4168 seg.base = vmcs12->host_gs_base;
4169 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4170 seg = (struct kvm_segment) {
4171 .base = vmcs12->host_tr_base,
4173 .selector = vmcs12->host_tr_selector,
4177 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4179 kvm_set_dr(vcpu, 7, 0x400);
4180 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4182 if (cpu_has_vmx_msr_bitmap())
4183 vmx_update_msr_bitmap(vcpu);
4185 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4186 vmcs12->vm_exit_msr_load_count))
4187 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4190 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4192 struct shared_msr_entry *efer_msr;
4195 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4196 return vmcs_read64(GUEST_IA32_EFER);
4198 if (cpu_has_load_ia32_efer())
4201 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4202 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4203 return vmx->msr_autoload.guest.val[i].value;
4206 efer_msr = find_msr_entry(vmx, MSR_EFER);
4208 return efer_msr->data;
4213 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4215 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4216 struct vcpu_vmx *vmx = to_vmx(vcpu);
4217 struct vmx_msr_entry g, h;
4221 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4223 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4225 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4226 * as vmcs01.GUEST_DR7 contains a userspace defined value
4227 * and vcpu->arch.dr7 is not squirreled away before the
4228 * nested VMENTER (not worth adding a variable in nested_vmx).
4230 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4231 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4233 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4237 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4238 * handle a variety of side effects to KVM's software model.
4240 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4242 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
4243 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4245 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4246 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4248 nested_ept_uninit_mmu_context(vcpu);
4249 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4250 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4253 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4254 * from vmcs01 (if necessary). The PDPTRs are not loaded on
4255 * VMFail, like everything else we just need to ensure our
4256 * software model is up-to-date.
4258 if (enable_ept && is_pae_paging(vcpu))
4259 ept_save_pdptrs(vcpu);
4261 kvm_mmu_reset_context(vcpu);
4263 if (cpu_has_vmx_msr_bitmap())
4264 vmx_update_msr_bitmap(vcpu);
4267 * This nasty bit of open coding is a compromise between blindly
4268 * loading L1's MSRs using the exit load lists (incorrect emulation
4269 * of VMFail), leaving the nested VM's MSRs in the software model
4270 * (incorrect behavior) and snapshotting the modified MSRs (too
4271 * expensive since the lists are unbound by hardware). For each
4272 * MSR that was (prematurely) loaded from the nested VMEntry load
4273 * list, reload it from the exit load list if it exists and differs
4274 * from the guest value. The intent is to stuff host state as
4275 * silently as possible, not to fully process the exit load list.
4277 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4278 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4279 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4280 pr_debug_ratelimited(
4281 "%s read MSR index failed (%u, 0x%08llx)\n",
4286 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4287 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4288 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4289 pr_debug_ratelimited(
4290 "%s read MSR failed (%u, 0x%08llx)\n",
4294 if (h.index != g.index)
4296 if (h.value == g.value)
4299 if (nested_vmx_load_msr_check(vcpu, &h)) {
4300 pr_debug_ratelimited(
4301 "%s check failed (%u, 0x%x, 0x%x)\n",
4302 __func__, j, h.index, h.reserved);
4306 if (kvm_set_msr(vcpu, h.index, h.value)) {
4307 pr_debug_ratelimited(
4308 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4309 __func__, j, h.index, h.value);
4318 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4322 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4323 * and modify vmcs12 to make it see what it would expect to see there if
4324 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4326 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4327 u32 exit_intr_info, unsigned long exit_qualification)
4329 struct vcpu_vmx *vmx = to_vmx(vcpu);
4330 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4332 /* trying to cancel vmlaunch/vmresume is a bug */
4333 WARN_ON_ONCE(vmx->nested.nested_run_pending);
4335 /* Service the TLB flush request for L2 before switching to L1. */
4336 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
4337 kvm_vcpu_flush_tlb_current(vcpu);
4339 leave_guest_mode(vcpu);
4341 if (nested_cpu_has_preemption_timer(vmcs12))
4342 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4344 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
4345 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4347 if (likely(!vmx->fail)) {
4348 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4350 if (vm_exit_reason != -1)
4351 prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4352 exit_intr_info, exit_qualification);
4355 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4356 * also be used to capture vmcs12 cache as part of
4357 * capturing nVMX state for snapshot (migration).
4359 * Otherwise, this flush will dirty guest memory at a
4360 * point it is already assumed by user-space to be
4363 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4366 * The only expected VM-instruction error is "VM entry with
4367 * invalid control field(s)." Anything else indicates a
4368 * problem with L0. And we should never get here with a
4369 * VMFail of any type if early consistency checks are enabled.
4371 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4372 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4373 WARN_ON_ONCE(nested_early_check);
4376 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4378 /* Update any VMCS fields that might have changed while L2 ran */
4379 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4380 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4381 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4382 if (vmx->nested.l1_tpr_threshold != -1)
4383 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4385 if (kvm_has_tsc_control)
4386 decache_tsc_multiplier(vmx);
4388 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4389 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4390 vmx_set_virtual_apic_mode(vcpu);
4393 /* Unpin physical memory we referred to in vmcs02 */
4394 if (vmx->nested.apic_access_page) {
4395 kvm_release_page_clean(vmx->nested.apic_access_page);
4396 vmx->nested.apic_access_page = NULL;
4398 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4399 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4400 vmx->nested.pi_desc = NULL;
4402 if (vmx->nested.reload_vmcs01_apic_access_page) {
4403 vmx->nested.reload_vmcs01_apic_access_page = false;
4404 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4407 if ((vm_exit_reason != -1) &&
4408 (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4409 vmx->nested.need_vmcs12_to_shadow_sync = true;
4411 /* in case we halted in L2 */
4412 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4414 if (likely(!vmx->fail)) {
4415 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4416 nested_exit_intr_ack_set(vcpu)) {
4417 int irq = kvm_cpu_get_interrupt(vcpu);
4419 vmcs12->vm_exit_intr_info = irq |
4420 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4423 if (vm_exit_reason != -1)
4424 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4425 vmcs12->exit_qualification,
4426 vmcs12->idt_vectoring_info_field,
4427 vmcs12->vm_exit_intr_info,
4428 vmcs12->vm_exit_intr_error_code,
4431 load_vmcs12_host_state(vcpu, vmcs12);
4437 * After an early L2 VM-entry failure, we're now back
4438 * in L1 which thinks it just finished a VMLAUNCH or
4439 * VMRESUME instruction, so we need to set the failure
4440 * flag and the VM-instruction error field of the VMCS
4441 * accordingly, and skip the emulated instruction.
4443 (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4446 * Restore L1's host state to KVM's software model. We're here
4447 * because a consistency check was caught by hardware, which
4448 * means some amount of guest state has been propagated to KVM's
4449 * model and needs to be unwound to the host's state.
4451 nested_vmx_restore_host_state(vcpu);
4457 * Decode the memory-address operand of a vmx instruction, as recorded on an
4458 * exit caused by such an instruction (run by a guest hypervisor).
4459 * On success, returns 0. When the operand is invalid, returns 1 and throws
4462 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4463 u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4467 struct kvm_segment s;
4470 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4471 * Execution", on an exit, vmx_instruction_info holds most of the
4472 * addressing components of the operand. Only the displacement part
4473 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4474 * For how an actual address is calculated from all these components,
4475 * refer to Vol. 1, "Operand Addressing".
4477 int scaling = vmx_instruction_info & 3;
4478 int addr_size = (vmx_instruction_info >> 7) & 7;
4479 bool is_reg = vmx_instruction_info & (1u << 10);
4480 int seg_reg = (vmx_instruction_info >> 15) & 7;
4481 int index_reg = (vmx_instruction_info >> 18) & 0xf;
4482 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4483 int base_reg = (vmx_instruction_info >> 23) & 0xf;
4484 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
4487 kvm_queue_exception(vcpu, UD_VECTOR);
4491 /* Addr = segment_base + offset */
4492 /* offset = base + [index * scale] + displacement */
4493 off = exit_qualification; /* holds the displacement */
4495 off = (gva_t)sign_extend64(off, 31);
4496 else if (addr_size == 0)
4497 off = (gva_t)sign_extend64(off, 15);
4499 off += kvm_register_read(vcpu, base_reg);
4501 off += kvm_register_read(vcpu, index_reg) << scaling;
4502 vmx_get_segment(vcpu, &s, seg_reg);
4505 * The effective address, i.e. @off, of a memory operand is truncated
4506 * based on the address size of the instruction. Note that this is
4507 * the *effective address*, i.e. the address prior to accounting for
4508 * the segment's base.
4510 if (addr_size == 1) /* 32 bit */
4512 else if (addr_size == 0) /* 16 bit */
4515 /* Checks for #GP/#SS exceptions. */
4517 if (is_long_mode(vcpu)) {
4519 * The virtual/linear address is never truncated in 64-bit
4520 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4521 * address when using FS/GS with a non-zero base.
4523 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4524 *ret = s.base + off;
4528 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4529 * non-canonical form. This is the only check on the memory
4530 * destination for long mode!
4532 exn = is_noncanonical_address(*ret, vcpu);
4535 * When not in long mode, the virtual/linear address is
4536 * unconditionally truncated to 32 bits regardless of the
4539 *ret = (s.base + off) & 0xffffffff;
4541 /* Protected mode: apply checks for segment validity in the
4543 * - segment type check (#GP(0) may be thrown)
4544 * - usability check (#GP(0)/#SS(0))
4545 * - limit check (#GP(0)/#SS(0))
4548 /* #GP(0) if the destination operand is located in a
4549 * read-only data segment or any code segment.
4551 exn = ((s.type & 0xa) == 0 || (s.type & 8));
4553 /* #GP(0) if the source operand is located in an
4554 * execute-only code segment
4556 exn = ((s.type & 0xa) == 8);
4558 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4561 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4563 exn = (s.unusable != 0);
4566 * Protected mode: #GP(0)/#SS(0) if the memory operand is
4567 * outside the segment limit. All CPUs that support VMX ignore
4568 * limit checks for flat segments, i.e. segments with base==0,
4569 * limit==0xffffffff and of type expand-up data or code.
4571 if (!(s.base == 0 && s.limit == 0xffffffff &&
4572 ((s.type & 8) || !(s.type & 4))))
4573 exn = exn || ((u64)off + len - 1 > s.limit);
4576 kvm_queue_exception_e(vcpu,
4577 seg_reg == VCPU_SREG_SS ?
4578 SS_VECTOR : GP_VECTOR,
4586 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4588 struct vcpu_vmx *vmx;
4590 if (!nested_vmx_allowed(vcpu))
4594 if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4595 vmx->nested.msrs.entry_ctls_high |=
4596 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4597 vmx->nested.msrs.exit_ctls_high |=
4598 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4600 vmx->nested.msrs.entry_ctls_high &=
4601 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4602 vmx->nested.msrs.exit_ctls_high &=
4603 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4607 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4610 struct x86_exception e;
4612 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4613 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4614 sizeof(*vmpointer), &gva))
4617 if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4618 kvm_inject_emulated_page_fault(vcpu, &e);
4626 * Allocate a shadow VMCS and associate it with the currently loaded
4627 * VMCS, unless such a shadow VMCS already exists. The newly allocated
4628 * VMCS is also VMCLEARed, so that it is ready for use.
4630 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4632 struct vcpu_vmx *vmx = to_vmx(vcpu);
4633 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4636 * We should allocate a shadow vmcs for vmcs01 only when L1
4637 * executes VMXON and free it when L1 executes VMXOFF.
4638 * As it is invalid to execute VMXON twice, we shouldn't reach
4639 * here when vmcs01 already have an allocated shadow vmcs.
4641 WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4643 if (!loaded_vmcs->shadow_vmcs) {
4644 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4645 if (loaded_vmcs->shadow_vmcs)
4646 vmcs_clear(loaded_vmcs->shadow_vmcs);
4648 return loaded_vmcs->shadow_vmcs;
4651 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4653 struct vcpu_vmx *vmx = to_vmx(vcpu);
4656 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4660 vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4661 if (!vmx->nested.cached_vmcs12)
4662 goto out_cached_vmcs12;
4664 vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4665 if (!vmx->nested.cached_shadow_vmcs12)
4666 goto out_cached_shadow_vmcs12;
4668 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4669 goto out_shadow_vmcs;
4671 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4672 HRTIMER_MODE_ABS_PINNED);
4673 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4675 vmx->nested.vpid02 = allocate_vpid();
4677 vmx->nested.vmcs02_initialized = false;
4678 vmx->nested.vmxon = true;
4680 if (vmx_pt_mode_is_host_guest()) {
4681 vmx->pt_desc.guest.ctl = 0;
4682 pt_update_intercept_for_msr(vmx);
4688 kfree(vmx->nested.cached_shadow_vmcs12);
4690 out_cached_shadow_vmcs12:
4691 kfree(vmx->nested.cached_vmcs12);
4694 free_loaded_vmcs(&vmx->nested.vmcs02);
4701 * Emulate the VMXON instruction.
4702 * Currently, we just remember that VMX is active, and do not save or even
4703 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4704 * do not currently need to store anything in that guest-allocated memory
4705 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4706 * argument is different from the VMXON pointer (which the spec says they do).
4708 static int handle_vmon(struct kvm_vcpu *vcpu)
4713 struct vcpu_vmx *vmx = to_vmx(vcpu);
4714 const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4715 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4718 * The Intel VMX Instruction Reference lists a bunch of bits that are
4719 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4720 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4721 * Otherwise, we should fail with #UD. But most faulting conditions
4722 * have already been checked by hardware, prior to the VM-exit for
4723 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
4724 * that bit set to 1 in non-root mode.
4726 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4727 kvm_queue_exception(vcpu, UD_VECTOR);
4731 /* CPL=0 must be checked manually. */
4732 if (vmx_get_cpl(vcpu)) {
4733 kvm_inject_gp(vcpu, 0);
4737 if (vmx->nested.vmxon)
4738 return nested_vmx_failValid(vcpu,
4739 VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4741 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4742 != VMXON_NEEDED_FEATURES) {
4743 kvm_inject_gp(vcpu, 0);
4747 if (nested_vmx_get_vmptr(vcpu, &vmptr))
4752 * The first 4 bytes of VMXON region contain the supported
4753 * VMCS revision identifier
4755 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4756 * which replaces physical address width with 32
4758 if (!page_address_valid(vcpu, vmptr))
4759 return nested_vmx_failInvalid(vcpu);
4761 if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4762 revision != VMCS12_REVISION)
4763 return nested_vmx_failInvalid(vcpu);
4765 vmx->nested.vmxon_ptr = vmptr;
4766 ret = enter_vmx_operation(vcpu);
4770 return nested_vmx_succeed(vcpu);
4773 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4775 struct vcpu_vmx *vmx = to_vmx(vcpu);
4777 if (vmx->nested.current_vmptr == -1ull)
4780 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4782 if (enable_shadow_vmcs) {
4783 /* copy to memory all shadowed fields in case
4784 they were modified */
4785 copy_shadow_to_vmcs12(vmx);
4786 vmx_disable_shadow_vmcs(vmx);
4788 vmx->nested.posted_intr_nv = -1;
4790 /* Flush VMCS12 to guest memory */
4791 kvm_vcpu_write_guest_page(vcpu,
4792 vmx->nested.current_vmptr >> PAGE_SHIFT,
4793 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4795 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4797 vmx->nested.current_vmptr = -1ull;
4800 /* Emulate the VMXOFF instruction */
4801 static int handle_vmoff(struct kvm_vcpu *vcpu)
4803 if (!nested_vmx_check_permission(vcpu))
4808 /* Process a latched INIT during time CPU was in VMX operation */
4809 kvm_make_request(KVM_REQ_EVENT, vcpu);
4811 return nested_vmx_succeed(vcpu);
4814 /* Emulate the VMCLEAR instruction */
4815 static int handle_vmclear(struct kvm_vcpu *vcpu)
4817 struct vcpu_vmx *vmx = to_vmx(vcpu);
4822 if (!nested_vmx_check_permission(vcpu))
4825 if (nested_vmx_get_vmptr(vcpu, &vmptr))
4828 if (!page_address_valid(vcpu, vmptr))
4829 return nested_vmx_failValid(vcpu,
4830 VMXERR_VMCLEAR_INVALID_ADDRESS);
4832 if (vmptr == vmx->nested.vmxon_ptr)
4833 return nested_vmx_failValid(vcpu,
4834 VMXERR_VMCLEAR_VMXON_POINTER);
4837 * When Enlightened VMEntry is enabled on the calling CPU we treat
4838 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4839 * way to distinguish it from VMCS12) and we must not corrupt it by
4840 * writing to the non-existent 'launch_state' field. The area doesn't
4841 * have to be the currently active EVMCS on the calling CPU and there's
4842 * nothing KVM has to do to transition it from 'active' to 'non-active'
4843 * state. It is possible that the area will stay mapped as
4844 * vmx->nested.hv_evmcs but this shouldn't be a problem.
4846 if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4847 !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4848 if (vmptr == vmx->nested.current_vmptr)
4849 nested_release_vmcs12(vcpu);
4851 kvm_vcpu_write_guest(vcpu,
4852 vmptr + offsetof(struct vmcs12,
4854 &zero, sizeof(zero));
4857 return nested_vmx_succeed(vcpu);
4860 /* Emulate the VMLAUNCH instruction */
4861 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4863 return nested_vmx_run(vcpu, true);
4866 /* Emulate the VMRESUME instruction */
4867 static int handle_vmresume(struct kvm_vcpu *vcpu)
4870 return nested_vmx_run(vcpu, false);
4873 static int handle_vmread(struct kvm_vcpu *vcpu)
4875 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4877 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
4878 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4879 struct vcpu_vmx *vmx = to_vmx(vcpu);
4880 struct x86_exception e;
4881 unsigned long field;
4887 if (!nested_vmx_check_permission(vcpu))
4891 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
4892 * any VMREAD sets the ALU flags for VMfailInvalid.
4894 if (vmx->nested.current_vmptr == -1ull ||
4895 (is_guest_mode(vcpu) &&
4896 get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
4897 return nested_vmx_failInvalid(vcpu);
4899 /* Decode instruction info and find the field to read */
4900 field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
4902 offset = vmcs_field_to_offset(field);
4904 return nested_vmx_failValid(vcpu,
4905 VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4907 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
4908 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4910 /* Read the field, zero-extended to a u64 value */
4911 value = vmcs12_read_any(vmcs12, field, offset);
4914 * Now copy part of this value to register or memory, as requested.
4915 * Note that the number of bits actually copied is 32 or 64 depending
4916 * on the guest's mode (32 or 64 bit), not on the given field's length.
4918 if (instr_info & BIT(10)) {
4919 kvm_register_writel(vcpu, (((instr_info) >> 3) & 0xf), value);
4921 len = is_64_bit_mode(vcpu) ? 8 : 4;
4922 if (get_vmx_mem_address(vcpu, exit_qualification,
4923 instr_info, true, len, &gva))
4925 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4926 if (kvm_write_guest_virt_system(vcpu, gva, &value, len, &e)) {
4927 kvm_inject_emulated_page_fault(vcpu, &e);
4932 return nested_vmx_succeed(vcpu);
4935 static bool is_shadow_field_rw(unsigned long field)
4938 #define SHADOW_FIELD_RW(x, y) case x:
4939 #include "vmcs_shadow_fields.h"
4947 static bool is_shadow_field_ro(unsigned long field)
4950 #define SHADOW_FIELD_RO(x, y) case x:
4951 #include "vmcs_shadow_fields.h"
4959 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4961 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4963 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
4964 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4965 struct vcpu_vmx *vmx = to_vmx(vcpu);
4966 struct x86_exception e;
4967 unsigned long field;
4973 * The value to write might be 32 or 64 bits, depending on L1's long
4974 * mode, and eventually we need to write that into a field of several
4975 * possible lengths. The code below first zero-extends the value to 64
4976 * bit (value), and then copies only the appropriate number of
4977 * bits into the vmcs12 field.
4981 if (!nested_vmx_check_permission(vcpu))
4985 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
4986 * any VMWRITE sets the ALU flags for VMfailInvalid.
4988 if (vmx->nested.current_vmptr == -1ull ||
4989 (is_guest_mode(vcpu) &&
4990 get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
4991 return nested_vmx_failInvalid(vcpu);
4993 if (instr_info & BIT(10))
4994 value = kvm_register_readl(vcpu, (((instr_info) >> 3) & 0xf));
4996 len = is_64_bit_mode(vcpu) ? 8 : 4;
4997 if (get_vmx_mem_address(vcpu, exit_qualification,
4998 instr_info, false, len, &gva))
5000 if (kvm_read_guest_virt(vcpu, gva, &value, len, &e)) {
5001 kvm_inject_emulated_page_fault(vcpu, &e);
5006 field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
5008 offset = vmcs_field_to_offset(field);
5010 return nested_vmx_failValid(vcpu,
5011 VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5014 * If the vCPU supports "VMWRITE to any supported field in the
5015 * VMCS," then the "read-only" fields are actually read/write.
5017 if (vmcs_field_readonly(field) &&
5018 !nested_cpu_has_vmwrite_any_field(vcpu))
5019 return nested_vmx_failValid(vcpu,
5020 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5023 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5024 * vmcs12, else we may crush a field or consume a stale value.
5026 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5027 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5030 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5031 * fields on VMWRITE. Emulate this behavior to ensure consistent KVM
5032 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5033 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5034 * from L1 will return a different value than VMREAD from L2 (L1 sees
5035 * the stripped down value, L2 sees the full value as stored by KVM).
5037 if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5040 vmcs12_write_any(vmcs12, field, offset, value);
5043 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5044 * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated
5045 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5046 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5048 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5050 * L1 can read these fields without exiting, ensure the
5051 * shadow VMCS is up-to-date.
5053 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5055 vmcs_load(vmx->vmcs01.shadow_vmcs);
5057 __vmcs_writel(field, value);
5059 vmcs_clear(vmx->vmcs01.shadow_vmcs);
5060 vmcs_load(vmx->loaded_vmcs->vmcs);
5063 vmx->nested.dirty_vmcs12 = true;
5066 return nested_vmx_succeed(vcpu);
5069 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5071 vmx->nested.current_vmptr = vmptr;
5072 if (enable_shadow_vmcs) {
5073 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5074 vmcs_write64(VMCS_LINK_POINTER,
5075 __pa(vmx->vmcs01.shadow_vmcs));
5076 vmx->nested.need_vmcs12_to_shadow_sync = true;
5078 vmx->nested.dirty_vmcs12 = true;
5081 /* Emulate the VMPTRLD instruction */
5082 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5084 struct vcpu_vmx *vmx = to_vmx(vcpu);
5087 if (!nested_vmx_check_permission(vcpu))
5090 if (nested_vmx_get_vmptr(vcpu, &vmptr))
5093 if (!page_address_valid(vcpu, vmptr))
5094 return nested_vmx_failValid(vcpu,
5095 VMXERR_VMPTRLD_INVALID_ADDRESS);
5097 if (vmptr == vmx->nested.vmxon_ptr)
5098 return nested_vmx_failValid(vcpu,
5099 VMXERR_VMPTRLD_VMXON_POINTER);
5101 /* Forbid normal VMPTRLD if Enlightened version was used */
5102 if (vmx->nested.hv_evmcs)
5105 if (vmx->nested.current_vmptr != vmptr) {
5106 struct kvm_host_map map;
5107 struct vmcs12 *new_vmcs12;
5109 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5111 * Reads from an unbacked page return all 1s,
5112 * which means that the 32 bits located at the
5113 * given physical address won't match the required
5114 * VMCS12_REVISION identifier.
5116 return nested_vmx_failValid(vcpu,
5117 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5120 new_vmcs12 = map.hva;
5122 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5123 (new_vmcs12->hdr.shadow_vmcs &&
5124 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5125 kvm_vcpu_unmap(vcpu, &map, false);
5126 return nested_vmx_failValid(vcpu,
5127 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5130 nested_release_vmcs12(vcpu);
5133 * Load VMCS12 from guest memory since it is not already
5136 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5137 kvm_vcpu_unmap(vcpu, &map, false);
5139 set_current_vmptr(vmx, vmptr);
5142 return nested_vmx_succeed(vcpu);
5145 /* Emulate the VMPTRST instruction */
5146 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5148 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5149 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5150 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5151 struct x86_exception e;
5154 if (!nested_vmx_check_permission(vcpu))
5157 if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
5160 if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5161 true, sizeof(gpa_t), &gva))
5163 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5164 if (kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr,
5165 sizeof(gpa_t), &e)) {
5166 kvm_inject_emulated_page_fault(vcpu, &e);
5169 return nested_vmx_succeed(vcpu);
5172 #define EPTP_PA_MASK GENMASK_ULL(51, 12)
5174 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
5176 return VALID_PAGE(root_hpa) &&
5177 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
5180 /* Emulate the INVEPT instruction */
5181 static int handle_invept(struct kvm_vcpu *vcpu)
5183 struct vcpu_vmx *vmx = to_vmx(vcpu);
5184 u32 vmx_instruction_info, types;
5185 unsigned long type, roots_to_free;
5186 struct kvm_mmu *mmu;
5188 struct x86_exception e;
5194 if (!(vmx->nested.msrs.secondary_ctls_high &
5195 SECONDARY_EXEC_ENABLE_EPT) ||
5196 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5197 kvm_queue_exception(vcpu, UD_VECTOR);
5201 if (!nested_vmx_check_permission(vcpu))
5204 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5205 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5207 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5209 if (type >= 32 || !(types & (1 << type)))
5210 return nested_vmx_failValid(vcpu,
5211 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5213 /* According to the Intel VMX instruction reference, the memory
5214 * operand is read even if it isn't needed (e.g., for type==global)
5216 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5217 vmx_instruction_info, false, sizeof(operand), &gva))
5219 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5220 kvm_inject_emulated_page_fault(vcpu, &e);
5225 * Nested EPT roots are always held through guest_mmu,
5228 mmu = &vcpu->arch.guest_mmu;
5231 case VMX_EPT_EXTENT_CONTEXT:
5232 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5233 return nested_vmx_failValid(vcpu,
5234 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5237 if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5239 roots_to_free |= KVM_MMU_ROOT_CURRENT;
5241 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5242 if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5243 mmu->prev_roots[i].pgd,
5245 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5248 case VMX_EPT_EXTENT_GLOBAL:
5249 roots_to_free = KVM_MMU_ROOTS_ALL;
5257 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5259 return nested_vmx_succeed(vcpu);
5262 static int handle_invvpid(struct kvm_vcpu *vcpu)
5264 struct vcpu_vmx *vmx = to_vmx(vcpu);
5265 u32 vmx_instruction_info;
5266 unsigned long type, types;
5268 struct x86_exception e;
5275 if (!(vmx->nested.msrs.secondary_ctls_high &
5276 SECONDARY_EXEC_ENABLE_VPID) ||
5277 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5278 kvm_queue_exception(vcpu, UD_VECTOR);
5282 if (!nested_vmx_check_permission(vcpu))
5285 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5286 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5288 types = (vmx->nested.msrs.vpid_caps &
5289 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5291 if (type >= 32 || !(types & (1 << type)))
5292 return nested_vmx_failValid(vcpu,
5293 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5295 /* according to the intel vmx instruction reference, the memory
5296 * operand is read even if it isn't needed (e.g., for type==global)
5298 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5299 vmx_instruction_info, false, sizeof(operand), &gva))
5301 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5302 kvm_inject_emulated_page_fault(vcpu, &e);
5305 if (operand.vpid >> 16)
5306 return nested_vmx_failValid(vcpu,
5307 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5309 vpid02 = nested_get_vpid02(vcpu);
5311 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5312 if (!operand.vpid ||
5313 is_noncanonical_address(operand.gla, vcpu))
5314 return nested_vmx_failValid(vcpu,
5315 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5316 vpid_sync_vcpu_addr(vpid02, operand.gla);
5318 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5319 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5321 return nested_vmx_failValid(vcpu,
5322 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5323 vpid_sync_context(vpid02);
5325 case VMX_VPID_EXTENT_ALL_CONTEXT:
5326 vpid_sync_context(vpid02);
5330 return kvm_skip_emulated_instruction(vcpu);
5334 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5335 * linear mappings for L2 (tagged with L2's VPID). Free all roots as
5336 * VPIDs are not tracked in the MMU role.
5338 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5339 * an MMU when EPT is disabled.
5341 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5344 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu,
5347 return nested_vmx_succeed(vcpu);
5350 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5351 struct vmcs12 *vmcs12)
5353 u32 index = kvm_rcx_read(vcpu);
5355 bool accessed_dirty;
5356 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5358 if (!nested_cpu_has_eptp_switching(vmcs12) ||
5359 !nested_cpu_has_ept(vmcs12))
5362 if (index >= VMFUNC_EPTP_ENTRIES)
5366 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5367 &new_eptp, index * 8, 8))
5370 accessed_dirty = !!(new_eptp & VMX_EPTP_AD_ENABLE_BIT);
5373 * If the (L2) guest does a vmfunc to the currently
5374 * active ept pointer, we don't have to do anything else
5376 if (vmcs12->ept_pointer != new_eptp) {
5377 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5380 kvm_mmu_unload(vcpu);
5381 mmu->ept_ad = accessed_dirty;
5382 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5383 vmcs12->ept_pointer = new_eptp;
5385 * TODO: Check what's the correct approach in case
5386 * mmu reload fails. Currently, we just let the next
5387 * reload potentially fail
5389 kvm_mmu_reload(vcpu);
5395 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5397 struct vcpu_vmx *vmx = to_vmx(vcpu);
5398 struct vmcs12 *vmcs12;
5399 u32 function = kvm_rax_read(vcpu);
5402 * VMFUNC is only supported for nested guests, but we always enable the
5403 * secondary control for simplicity; for non-nested mode, fake that we
5404 * didn't by injecting #UD.
5406 if (!is_guest_mode(vcpu)) {
5407 kvm_queue_exception(vcpu, UD_VECTOR);
5411 vmcs12 = get_vmcs12(vcpu);
5412 if ((vmcs12->vm_function_control & (1 << function)) == 0)
5417 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5423 return kvm_skip_emulated_instruction(vcpu);
5426 nested_vmx_vmexit(vcpu, vmx->exit_reason,
5427 vmx_get_intr_info(vcpu),
5428 vmx_get_exit_qual(vcpu));
5433 * Return true if an IO instruction with the specified port and size should cause
5434 * a VM-exit into L1.
5436 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5439 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5440 gpa_t bitmap, last_bitmap;
5443 last_bitmap = (gpa_t)-1;
5448 bitmap = vmcs12->io_bitmap_a;
5449 else if (port < 0x10000)
5450 bitmap = vmcs12->io_bitmap_b;
5453 bitmap += (port & 0x7fff) / 8;
5455 if (last_bitmap != bitmap)
5456 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5458 if (b & (1 << (port & 7)))
5463 last_bitmap = bitmap;
5469 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5470 struct vmcs12 *vmcs12)
5472 unsigned long exit_qualification;
5473 unsigned short port;
5476 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5477 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5479 exit_qualification = vmx_get_exit_qual(vcpu);
5481 port = exit_qualification >> 16;
5482 size = (exit_qualification & 7) + 1;
5484 return nested_vmx_check_io_bitmaps(vcpu, port, size);
5488 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5489 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5490 * disinterest in the current event (read or write a specific MSR) by using an
5491 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5493 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5494 struct vmcs12 *vmcs12, u32 exit_reason)
5496 u32 msr_index = kvm_rcx_read(vcpu);
5499 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5503 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5504 * for the four combinations of read/write and low/high MSR numbers.
5505 * First we need to figure out which of the four to use:
5507 bitmap = vmcs12->msr_bitmap;
5508 if (exit_reason == EXIT_REASON_MSR_WRITE)
5510 if (msr_index >= 0xc0000000) {
5511 msr_index -= 0xc0000000;
5515 /* Then read the msr_index'th bit from this bitmap: */
5516 if (msr_index < 1024*8) {
5518 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5520 return 1 & (b >> (msr_index & 7));
5522 return true; /* let L1 handle the wrong parameter */
5526 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5527 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5528 * intercept (via guest_host_mask etc.) the current event.
5530 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5531 struct vmcs12 *vmcs12)
5533 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5534 int cr = exit_qualification & 15;
5538 switch ((exit_qualification >> 4) & 3) {
5539 case 0: /* mov to cr */
5540 reg = (exit_qualification >> 8) & 15;
5541 val = kvm_register_readl(vcpu, reg);
5544 if (vmcs12->cr0_guest_host_mask &
5545 (val ^ vmcs12->cr0_read_shadow))
5549 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5553 if (vmcs12->cr4_guest_host_mask &
5554 (vmcs12->cr4_read_shadow ^ val))
5558 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5564 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5565 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5568 case 1: /* mov from cr */
5571 if (vmcs12->cpu_based_vm_exec_control &
5572 CPU_BASED_CR3_STORE_EXITING)
5576 if (vmcs12->cpu_based_vm_exec_control &
5577 CPU_BASED_CR8_STORE_EXITING)
5584 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5585 * cr0. Other attempted changes are ignored, with no exit.
5587 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5588 if (vmcs12->cr0_guest_host_mask & 0xe &
5589 (val ^ vmcs12->cr0_read_shadow))
5591 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5592 !(vmcs12->cr0_read_shadow & 0x1) &&
5600 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5601 struct vmcs12 *vmcs12, gpa_t bitmap)
5603 u32 vmx_instruction_info;
5604 unsigned long field;
5607 if (!nested_cpu_has_shadow_vmcs(vmcs12))
5610 /* Decode instruction info and find the field to access */
5611 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5612 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5614 /* Out-of-range fields always cause a VM exit from L2 to L1 */
5618 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5621 return 1 & (b >> (field & 7));
5624 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5626 u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5628 if (nested_cpu_has_mtf(vmcs12))
5632 * An MTF VM-exit may be injected into the guest by setting the
5633 * interruption-type to 7 (other event) and the vector field to 0. Such
5634 * is the case regardless of the 'monitor trap flag' VM-execution
5637 return entry_intr_info == (INTR_INFO_VALID_MASK
5638 | INTR_TYPE_OTHER_EVENT);
5642 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5643 * L1 wants the exit. Only call this when in is_guest_mode (L2).
5645 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu, u32 exit_reason)
5649 switch (exit_reason) {
5650 case EXIT_REASON_EXCEPTION_NMI:
5651 intr_info = vmx_get_intr_info(vcpu);
5652 if (is_nmi(intr_info))
5654 else if (is_page_fault(intr_info))
5655 return vcpu->arch.apf.host_apf_flags || !enable_ept;
5656 else if (is_debug(intr_info) &&
5658 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5660 else if (is_breakpoint(intr_info) &&
5661 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5664 case EXIT_REASON_EXTERNAL_INTERRUPT:
5666 case EXIT_REASON_MCE_DURING_VMENTRY:
5668 case EXIT_REASON_EPT_VIOLATION:
5670 * L0 always deals with the EPT violation. If nested EPT is
5671 * used, and the nested mmu code discovers that the address is
5672 * missing in the guest EPT table (EPT12), the EPT violation
5673 * will be injected with nested_ept_inject_page_fault()
5676 case EXIT_REASON_EPT_MISCONFIG:
5678 * L2 never uses directly L1's EPT, but rather L0's own EPT
5679 * table (shadow on EPT) or a merged EPT table that L0 built
5680 * (EPT on EPT). So any problems with the structure of the
5681 * table is L0's fault.
5684 case EXIT_REASON_PREEMPTION_TIMER:
5686 case EXIT_REASON_PML_FULL:
5687 /* We emulate PML support to L1. */
5689 case EXIT_REASON_VMFUNC:
5690 /* VM functions are emulated through L2->L0 vmexits. */
5692 case EXIT_REASON_ENCLS:
5693 /* SGX is never exposed to L1 */
5702 * Return 1 if L1 wants to intercept an exit from L2. Only call this when in
5703 * is_guest_mode (L2).
5705 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu, u32 exit_reason)
5707 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5710 switch (exit_reason) {
5711 case EXIT_REASON_EXCEPTION_NMI:
5712 intr_info = vmx_get_intr_info(vcpu);
5713 if (is_nmi(intr_info))
5715 else if (is_page_fault(intr_info))
5717 return vmcs12->exception_bitmap &
5718 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5719 case EXIT_REASON_EXTERNAL_INTERRUPT:
5720 return nested_exit_on_intr(vcpu);
5721 case EXIT_REASON_TRIPLE_FAULT:
5723 case EXIT_REASON_INTERRUPT_WINDOW:
5724 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5725 case EXIT_REASON_NMI_WINDOW:
5726 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5727 case EXIT_REASON_TASK_SWITCH:
5729 case EXIT_REASON_CPUID:
5731 case EXIT_REASON_HLT:
5732 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5733 case EXIT_REASON_INVD:
5735 case EXIT_REASON_INVLPG:
5736 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5737 case EXIT_REASON_RDPMC:
5738 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5739 case EXIT_REASON_RDRAND:
5740 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5741 case EXIT_REASON_RDSEED:
5742 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5743 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5744 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5745 case EXIT_REASON_VMREAD:
5746 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5747 vmcs12->vmread_bitmap);
5748 case EXIT_REASON_VMWRITE:
5749 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5750 vmcs12->vmwrite_bitmap);
5751 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5752 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5753 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5754 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5755 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5757 * VMX instructions trap unconditionally. This allows L1 to
5758 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5761 case EXIT_REASON_CR_ACCESS:
5762 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5763 case EXIT_REASON_DR_ACCESS:
5764 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5765 case EXIT_REASON_IO_INSTRUCTION:
5766 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5767 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5768 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5769 case EXIT_REASON_MSR_READ:
5770 case EXIT_REASON_MSR_WRITE:
5771 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5772 case EXIT_REASON_INVALID_STATE:
5774 case EXIT_REASON_MWAIT_INSTRUCTION:
5775 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5776 case EXIT_REASON_MONITOR_TRAP_FLAG:
5777 return nested_vmx_exit_handled_mtf(vmcs12);
5778 case EXIT_REASON_MONITOR_INSTRUCTION:
5779 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5780 case EXIT_REASON_PAUSE_INSTRUCTION:
5781 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5782 nested_cpu_has2(vmcs12,
5783 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5784 case EXIT_REASON_MCE_DURING_VMENTRY:
5786 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5787 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5788 case EXIT_REASON_APIC_ACCESS:
5789 case EXIT_REASON_APIC_WRITE:
5790 case EXIT_REASON_EOI_INDUCED:
5792 * The controls for "virtualize APIC accesses," "APIC-
5793 * register virtualization," and "virtual-interrupt
5794 * delivery" only come from vmcs12.
5797 case EXIT_REASON_INVPCID:
5799 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5800 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5801 case EXIT_REASON_WBINVD:
5802 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5803 case EXIT_REASON_XSETBV:
5805 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5807 * This should never happen, since it is not possible to
5808 * set XSS to a non-zero value---neither in L1 nor in L2.
5809 * If if it were, XSS would have to be checked against
5810 * the XSS exit bitmap in vmcs12.
5812 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5813 case EXIT_REASON_UMWAIT:
5814 case EXIT_REASON_TPAUSE:
5815 return nested_cpu_has2(vmcs12,
5816 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5823 * Conditionally reflect a VM-Exit into L1. Returns %true if the VM-Exit was
5824 * reflected into L1.
5826 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
5828 struct vcpu_vmx *vmx = to_vmx(vcpu);
5829 u32 exit_reason = vmx->exit_reason;
5830 unsigned long exit_qual;
5833 WARN_ON_ONCE(vmx->nested.nested_run_pending);
5836 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
5837 * has already loaded L2's state.
5839 if (unlikely(vmx->fail)) {
5840 trace_kvm_nested_vmenter_failed(
5841 "hardware VM-instruction error: ",
5842 vmcs_read32(VM_INSTRUCTION_ERROR));
5845 goto reflect_vmexit;
5848 exit_intr_info = vmx_get_intr_info(vcpu);
5849 exit_qual = vmx_get_exit_qual(vcpu);
5851 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason, exit_qual,
5852 vmx->idt_vectoring_info, exit_intr_info,
5853 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5856 /* If L0 (KVM) wants the exit, it trumps L1's desires. */
5857 if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
5860 /* If L1 doesn't want the exit, handle it in L0. */
5861 if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
5865 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits. For
5866 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
5867 * need to be synthesized by querying the in-kernel LAPIC, but external
5868 * interrupts are never reflected to L1 so it's a non-issue.
5870 if ((exit_intr_info &
5871 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
5872 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
5873 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5875 vmcs12->vm_exit_intr_error_code =
5876 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5880 nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info, exit_qual);
5884 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5885 struct kvm_nested_state __user *user_kvm_nested_state,
5888 struct vcpu_vmx *vmx;
5889 struct vmcs12 *vmcs12;
5890 struct kvm_nested_state kvm_state = {
5892 .format = KVM_STATE_NESTED_FORMAT_VMX,
5893 .size = sizeof(kvm_state),
5894 .hdr.vmx.vmxon_pa = -1ull,
5895 .hdr.vmx.vmcs12_pa = -1ull,
5897 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5898 &user_kvm_nested_state->data.vmx[0];
5901 return kvm_state.size + sizeof(*user_vmx_nested_state);
5904 vmcs12 = get_vmcs12(vcpu);
5906 if (nested_vmx_allowed(vcpu) &&
5907 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5908 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5909 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
5911 if (vmx_has_valid_vmcs12(vcpu)) {
5912 kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
5914 if (vmx->nested.hv_evmcs)
5915 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5917 if (is_guest_mode(vcpu) &&
5918 nested_cpu_has_shadow_vmcs(vmcs12) &&
5919 vmcs12->vmcs_link_pointer != -1ull)
5920 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
5923 if (vmx->nested.smm.vmxon)
5924 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5926 if (vmx->nested.smm.guest_mode)
5927 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5929 if (is_guest_mode(vcpu)) {
5930 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5932 if (vmx->nested.nested_run_pending)
5933 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5935 if (vmx->nested.mtf_pending)
5936 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
5940 if (user_data_size < kvm_state.size)
5943 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5946 if (!vmx_has_valid_vmcs12(vcpu))
5950 * When running L2, the authoritative vmcs12 state is in the
5951 * vmcs02. When running L1, the authoritative vmcs12 state is
5952 * in the shadow or enlightened vmcs linked to vmcs01, unless
5953 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
5954 * vmcs12 state is in the vmcs12 already.
5956 if (is_guest_mode(vcpu)) {
5957 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
5958 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5959 } else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
5960 if (vmx->nested.hv_evmcs)
5961 copy_enlightened_to_vmcs12(vmx);
5962 else if (enable_shadow_vmcs)
5963 copy_shadow_to_vmcs12(vmx);
5966 BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
5967 BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
5970 * Copy over the full allocated size of vmcs12 rather than just the size
5973 if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
5976 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5977 vmcs12->vmcs_link_pointer != -1ull) {
5978 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
5979 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5984 return kvm_state.size;
5988 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5990 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5992 if (is_guest_mode(vcpu)) {
5993 to_vmx(vcpu)->nested.nested_run_pending = 0;
5994 nested_vmx_vmexit(vcpu, -1, 0, 0);
5999 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6000 struct kvm_nested_state __user *user_kvm_nested_state,
6001 struct kvm_nested_state *kvm_state)
6003 struct vcpu_vmx *vmx = to_vmx(vcpu);
6004 struct vmcs12 *vmcs12;
6005 enum vm_entry_failure_code ignored;
6006 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6007 &user_kvm_nested_state->data.vmx[0];
6010 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6013 if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
6014 if (kvm_state->hdr.vmx.smm.flags)
6017 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
6021 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6022 * enable eVMCS capability on vCPU. However, since then
6023 * code was changed such that flag signals vmcs12 should
6024 * be copied into eVMCS in guest memory.
6026 * To preserve backwards compatability, allow user
6027 * to set this flag even when there is no VMXON region.
6029 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6032 if (!nested_vmx_allowed(vcpu))
6035 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6039 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6040 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6043 if (kvm_state->hdr.vmx.smm.flags &
6044 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6048 * SMM temporarily disables VMX, so we cannot be in guest mode,
6049 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
6054 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6055 : kvm_state->hdr.vmx.smm.flags)
6058 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6059 !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6062 if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6063 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6066 vmx_leave_nested(vcpu);
6068 if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
6071 vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6072 ret = enter_vmx_operation(vcpu);
6076 /* Empty 'VMXON' state is permitted */
6077 if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
6080 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
6081 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6082 !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6085 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6086 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6088 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6089 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6090 * restored yet. EVMCS will be mapped from
6091 * nested_get_vmcs12_pages().
6093 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
6098 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6099 vmx->nested.smm.vmxon = true;
6100 vmx->nested.vmxon = false;
6102 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6103 vmx->nested.smm.guest_mode = true;
6106 vmcs12 = get_vmcs12(vcpu);
6107 if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6110 if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6113 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6116 vmx->nested.nested_run_pending =
6117 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6119 vmx->nested.mtf_pending =
6120 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6123 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6124 vmcs12->vmcs_link_pointer != -1ull) {
6125 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6127 if (kvm_state->size <
6128 sizeof(*kvm_state) +
6129 sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6130 goto error_guest_mode;
6132 if (copy_from_user(shadow_vmcs12,
6133 user_vmx_nested_state->shadow_vmcs12,
6134 sizeof(*shadow_vmcs12))) {
6136 goto error_guest_mode;
6139 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6140 !shadow_vmcs12->hdr.shadow_vmcs)
6141 goto error_guest_mode;
6144 if (nested_vmx_check_controls(vcpu, vmcs12) ||
6145 nested_vmx_check_host_state(vcpu, vmcs12) ||
6146 nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6147 goto error_guest_mode;
6149 vmx->nested.dirty_vmcs12 = true;
6150 ret = nested_vmx_enter_non_root_mode(vcpu, false);
6152 goto error_guest_mode;
6157 vmx->nested.nested_run_pending = 0;
6161 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6163 if (enable_shadow_vmcs) {
6164 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6165 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6170 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6171 * returned for the various VMX controls MSRs when nested VMX is enabled.
6172 * The same values should also be used to verify that vmcs12 control fields are
6173 * valid during nested entry from L1 to L2.
6174 * Each of these control msrs has a low and high 32-bit half: A low bit is on
6175 * if the corresponding bit in the (32-bit) control field *must* be on, and a
6176 * bit in the high half is on if the corresponding bit in the control field
6177 * may be on. See also vmx_control_verify().
6179 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6182 * Note that as a general rule, the high half of the MSRs (bits in
6183 * the control fields which may be 1) should be initialized by the
6184 * intersection of the underlying hardware's MSR (i.e., features which
6185 * can be supported) and the list of features we want to expose -
6186 * because they are known to be properly supported in our code.
6187 * Also, usually, the low half of the MSRs (bits which must be 1) can
6188 * be set to 0, meaning that L1 may turn off any of these bits. The
6189 * reason is that if one of these bits is necessary, it will appear
6190 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6191 * fields of vmcs01 and vmcs02, will turn these bits off - and
6192 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6193 * These rules have exceptions below.
6196 /* pin-based controls */
6197 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6198 msrs->pinbased_ctls_low,
6199 msrs->pinbased_ctls_high);
6200 msrs->pinbased_ctls_low |=
6201 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6202 msrs->pinbased_ctls_high &=
6203 PIN_BASED_EXT_INTR_MASK |
6204 PIN_BASED_NMI_EXITING |
6205 PIN_BASED_VIRTUAL_NMIS |
6206 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6207 msrs->pinbased_ctls_high |=
6208 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6209 PIN_BASED_VMX_PREEMPTION_TIMER;
6212 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6213 msrs->exit_ctls_low,
6214 msrs->exit_ctls_high);
6215 msrs->exit_ctls_low =
6216 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6218 msrs->exit_ctls_high &=
6219 #ifdef CONFIG_X86_64
6220 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6222 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
6223 msrs->exit_ctls_high |=
6224 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6225 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6226 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6228 /* We support free control of debug control saving. */
6229 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6231 /* entry controls */
6232 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6233 msrs->entry_ctls_low,
6234 msrs->entry_ctls_high);
6235 msrs->entry_ctls_low =
6236 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6237 msrs->entry_ctls_high &=
6238 #ifdef CONFIG_X86_64
6239 VM_ENTRY_IA32E_MODE |
6241 VM_ENTRY_LOAD_IA32_PAT;
6242 msrs->entry_ctls_high |=
6243 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6245 /* We support free control of debug control loading. */
6246 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6248 /* cpu-based controls */
6249 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6250 msrs->procbased_ctls_low,
6251 msrs->procbased_ctls_high);
6252 msrs->procbased_ctls_low =
6253 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6254 msrs->procbased_ctls_high &=
6255 CPU_BASED_INTR_WINDOW_EXITING |
6256 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6257 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6258 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6259 CPU_BASED_CR3_STORE_EXITING |
6260 #ifdef CONFIG_X86_64
6261 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6263 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6264 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6265 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6266 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6267 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6269 * We can allow some features even when not supported by the
6270 * hardware. For example, L1 can specify an MSR bitmap - and we
6271 * can use it to avoid exits to L1 - even when L0 runs L2
6272 * without MSR bitmaps.
6274 msrs->procbased_ctls_high |=
6275 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6276 CPU_BASED_USE_MSR_BITMAPS;
6278 /* We support free control of CR3 access interception. */
6279 msrs->procbased_ctls_low &=
6280 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6283 * secondary cpu-based controls. Do not include those that
6284 * depend on CPUID bits, they are added later by vmx_cpuid_update.
6286 if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6287 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6288 msrs->secondary_ctls_low,
6289 msrs->secondary_ctls_high);
6291 msrs->secondary_ctls_low = 0;
6292 msrs->secondary_ctls_high &=
6293 SECONDARY_EXEC_DESC |
6294 SECONDARY_EXEC_RDTSCP |
6295 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6296 SECONDARY_EXEC_WBINVD_EXITING |
6297 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6298 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6299 SECONDARY_EXEC_RDRAND_EXITING |
6300 SECONDARY_EXEC_ENABLE_INVPCID |
6301 SECONDARY_EXEC_RDSEED_EXITING |
6302 SECONDARY_EXEC_XSAVES;
6305 * We can emulate "VMCS shadowing," even if the hardware
6306 * doesn't support it.
6308 msrs->secondary_ctls_high |=
6309 SECONDARY_EXEC_SHADOW_VMCS;
6312 /* nested EPT: emulate EPT also to L1 */
6313 msrs->secondary_ctls_high |=
6314 SECONDARY_EXEC_ENABLE_EPT;
6316 VMX_EPT_PAGE_WALK_4_BIT |
6317 VMX_EPT_PAGE_WALK_5_BIT |
6319 VMX_EPT_INVEPT_BIT |
6320 VMX_EPT_EXECUTE_ONLY_BIT;
6322 msrs->ept_caps &= ept_caps;
6323 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6324 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6325 VMX_EPT_1GB_PAGE_BIT;
6326 if (enable_ept_ad_bits) {
6327 msrs->secondary_ctls_high |=
6328 SECONDARY_EXEC_ENABLE_PML;
6329 msrs->ept_caps |= VMX_EPT_AD_BIT;
6333 if (cpu_has_vmx_vmfunc()) {
6334 msrs->secondary_ctls_high |=
6335 SECONDARY_EXEC_ENABLE_VMFUNC;
6337 * Advertise EPTP switching unconditionally
6338 * since we emulate it
6341 msrs->vmfunc_controls =
6342 VMX_VMFUNC_EPTP_SWITCHING;
6346 * Old versions of KVM use the single-context version without
6347 * checking for support, so declare that it is supported even
6348 * though it is treated as global context. The alternative is
6349 * not failing the single-context invvpid, and it is worse.
6352 msrs->secondary_ctls_high |=
6353 SECONDARY_EXEC_ENABLE_VPID;
6354 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6355 VMX_VPID_EXTENT_SUPPORTED_MASK;
6358 if (enable_unrestricted_guest)
6359 msrs->secondary_ctls_high |=
6360 SECONDARY_EXEC_UNRESTRICTED_GUEST;
6362 if (flexpriority_enabled)
6363 msrs->secondary_ctls_high |=
6364 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6366 /* miscellaneous data */
6367 rdmsr(MSR_IA32_VMX_MISC,
6370 msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6372 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6373 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6374 VMX_MISC_ACTIVITY_HLT;
6375 msrs->misc_high = 0;
6378 * This MSR reports some information about VMX support. We
6379 * should return information about the VMX we emulate for the
6380 * guest, and the VMCS structure we give it - not about the
6381 * VMX support of the underlying hardware.
6385 VMX_BASIC_TRUE_CTLS |
6386 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6387 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6389 if (cpu_has_vmx_basic_inout())
6390 msrs->basic |= VMX_BASIC_INOUT;
6393 * These MSRs specify bits which the guest must keep fixed on
6394 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6395 * We picked the standard core2 setting.
6397 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6398 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
6399 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6400 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6402 /* These MSRs specify bits which the guest must keep fixed off. */
6403 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6404 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6406 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
6407 msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6410 void nested_vmx_hardware_unsetup(void)
6414 if (enable_shadow_vmcs) {
6415 for (i = 0; i < VMX_BITMAP_NR; i++)
6416 free_page((unsigned long)vmx_bitmap[i]);
6420 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6424 if (!cpu_has_vmx_shadow_vmcs())
6425 enable_shadow_vmcs = 0;
6426 if (enable_shadow_vmcs) {
6427 for (i = 0; i < VMX_BITMAP_NR; i++) {
6429 * The vmx_bitmap is not tied to a VM and so should
6430 * not be charged to a memcg.
6432 vmx_bitmap[i] = (unsigned long *)
6433 __get_free_page(GFP_KERNEL);
6434 if (!vmx_bitmap[i]) {
6435 nested_vmx_hardware_unsetup();
6440 init_vmcs_shadow_fields();
6443 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear;
6444 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch;
6445 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld;
6446 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst;
6447 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread;
6448 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume;
6449 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite;
6450 exit_handlers[EXIT_REASON_VMOFF] = handle_vmoff;
6451 exit_handlers[EXIT_REASON_VMON] = handle_vmon;
6452 exit_handlers[EXIT_REASON_INVEPT] = handle_invept;
6453 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid;
6454 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc;
6459 struct kvm_x86_nested_ops vmx_nested_ops = {
6460 .check_events = vmx_check_nested_events,
6461 .hv_timer_pending = nested_vmx_preemption_timer_pending,
6462 .get_state = vmx_get_nested_state,
6463 .set_state = vmx_set_nested_state,
6464 .get_vmcs12_pages = nested_get_vmcs12_pages,
6465 .enable_evmcs = nested_enable_evmcs,
6466 .get_evmcs_version = nested_get_evmcs_version,