1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/vmscan.h>
66 /* How many pages shrink_list() should reclaim */
67 unsigned long nr_to_reclaim;
70 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 * The memory cgroup that hit its limit and as a result is the
77 * primary target of this reclaim invocation.
79 struct mem_cgroup *target_mem_cgroup;
81 /* Writepage batching in laptop mode; RECLAIM_WRITE */
82 unsigned int may_writepage:1;
84 /* Can mapped pages be reclaimed? */
85 unsigned int may_unmap:1;
87 /* Can pages be swapped as part of reclaim? */
88 unsigned int may_swap:1;
91 * Cgroups are not reclaimed below their configured memory.low,
92 * unless we threaten to OOM. If any cgroups are skipped due to
93 * memory.low and nothing was reclaimed, go back for memory.low.
95 unsigned int memcg_low_reclaim:1;
96 unsigned int memcg_low_skipped:1;
98 unsigned int hibernation_mode:1;
100 /* One of the zones is ready for compaction */
101 unsigned int compaction_ready:1;
103 /* Allocation order */
106 /* Scan (total_size >> priority) pages at once */
109 /* The highest zone to isolate pages for reclaim from */
112 /* This context's GFP mask */
115 /* Incremented by the number of inactive pages that were scanned */
116 unsigned long nr_scanned;
118 /* Number of pages freed so far during a call to shrink_zones() */
119 unsigned long nr_reclaimed;
123 unsigned int unqueued_dirty;
124 unsigned int congested;
125 unsigned int writeback;
126 unsigned int immediate;
127 unsigned int file_taken;
132 #ifdef ARCH_HAS_PREFETCH
133 #define prefetch_prev_lru_page(_page, _base, _field) \
135 if ((_page)->lru.prev != _base) { \
138 prev = lru_to_page(&(_page->lru)); \
139 prefetch(&prev->_field); \
143 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
146 #ifdef ARCH_HAS_PREFETCHW
147 #define prefetchw_prev_lru_page(_page, _base, _field) \
149 if ((_page)->lru.prev != _base) { \
152 prev = lru_to_page(&(_page->lru)); \
153 prefetchw(&prev->_field); \
157 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
161 * From 0 .. 100. Higher means more swappy.
163 int vm_swappiness = 60;
165 * The total number of pages which are beyond the high watermark within all
168 unsigned long vm_total_pages;
170 static LIST_HEAD(shrinker_list);
171 static DECLARE_RWSEM(shrinker_rwsem);
173 #ifdef CONFIG_MEMCG_KMEM
176 * We allow subsystems to populate their shrinker-related
177 * LRU lists before register_shrinker_prepared() is called
178 * for the shrinker, since we don't want to impose
179 * restrictions on their internal registration order.
180 * In this case shrink_slab_memcg() may find corresponding
181 * bit is set in the shrinkers map.
183 * This value is used by the function to detect registering
184 * shrinkers and to skip do_shrink_slab() calls for them.
186 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
188 static DEFINE_IDR(shrinker_idr);
189 static int shrinker_nr_max;
191 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
193 int id, ret = -ENOMEM;
195 down_write(&shrinker_rwsem);
196 /* This may call shrinker, so it must use down_read_trylock() */
197 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
201 if (id >= shrinker_nr_max) {
202 if (memcg_expand_shrinker_maps(id)) {
203 idr_remove(&shrinker_idr, id);
207 shrinker_nr_max = id + 1;
212 up_write(&shrinker_rwsem);
216 static void unregister_memcg_shrinker(struct shrinker *shrinker)
218 int id = shrinker->id;
222 down_write(&shrinker_rwsem);
223 idr_remove(&shrinker_idr, id);
224 up_write(&shrinker_rwsem);
226 #else /* CONFIG_MEMCG_KMEM */
227 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
232 static void unregister_memcg_shrinker(struct shrinker *shrinker)
235 #endif /* CONFIG_MEMCG_KMEM */
238 static bool global_reclaim(struct scan_control *sc)
240 return !sc->target_mem_cgroup;
244 * sane_reclaim - is the usual dirty throttling mechanism operational?
245 * @sc: scan_control in question
247 * The normal page dirty throttling mechanism in balance_dirty_pages() is
248 * completely broken with the legacy memcg and direct stalling in
249 * shrink_page_list() is used for throttling instead, which lacks all the
250 * niceties such as fairness, adaptive pausing, bandwidth proportional
251 * allocation and configurability.
253 * This function tests whether the vmscan currently in progress can assume
254 * that the normal dirty throttling mechanism is operational.
256 static bool sane_reclaim(struct scan_control *sc)
258 struct mem_cgroup *memcg = sc->target_mem_cgroup;
262 #ifdef CONFIG_CGROUP_WRITEBACK
263 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
269 static void set_memcg_congestion(pg_data_t *pgdat,
270 struct mem_cgroup *memcg,
273 struct mem_cgroup_per_node *mn;
278 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
279 WRITE_ONCE(mn->congested, congested);
282 static bool memcg_congested(pg_data_t *pgdat,
283 struct mem_cgroup *memcg)
285 struct mem_cgroup_per_node *mn;
287 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
288 return READ_ONCE(mn->congested);
292 static bool global_reclaim(struct scan_control *sc)
297 static bool sane_reclaim(struct scan_control *sc)
302 static inline void set_memcg_congestion(struct pglist_data *pgdat,
303 struct mem_cgroup *memcg, bool congested)
307 static inline bool memcg_congested(struct pglist_data *pgdat,
308 struct mem_cgroup *memcg)
316 * This misses isolated pages which are not accounted for to save counters.
317 * As the data only determines if reclaim or compaction continues, it is
318 * not expected that isolated pages will be a dominating factor.
320 unsigned long zone_reclaimable_pages(struct zone *zone)
324 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
325 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
326 if (get_nr_swap_pages() > 0)
327 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
328 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
334 * lruvec_lru_size - Returns the number of pages on the given LRU list.
335 * @lruvec: lru vector
337 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
339 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
341 unsigned long lru_size;
344 if (!mem_cgroup_disabled())
345 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
347 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
349 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
350 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
353 if (!managed_zone(zone))
356 if (!mem_cgroup_disabled())
357 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
359 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
360 NR_ZONE_LRU_BASE + lru);
361 lru_size -= min(size, lru_size);
369 * Add a shrinker callback to be called from the vm.
371 int prealloc_shrinker(struct shrinker *shrinker)
373 size_t size = sizeof(*shrinker->nr_deferred);
375 if (shrinker->flags & SHRINKER_NUMA_AWARE)
378 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
379 if (!shrinker->nr_deferred)
382 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
383 if (prealloc_memcg_shrinker(shrinker))
390 kfree(shrinker->nr_deferred);
391 shrinker->nr_deferred = NULL;
395 void free_prealloced_shrinker(struct shrinker *shrinker)
397 if (!shrinker->nr_deferred)
400 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
401 unregister_memcg_shrinker(shrinker);
403 kfree(shrinker->nr_deferred);
404 shrinker->nr_deferred = NULL;
407 void register_shrinker_prepared(struct shrinker *shrinker)
409 down_write(&shrinker_rwsem);
410 list_add_tail(&shrinker->list, &shrinker_list);
411 #ifdef CONFIG_MEMCG_KMEM
412 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
413 idr_replace(&shrinker_idr, shrinker, shrinker->id);
415 up_write(&shrinker_rwsem);
418 int register_shrinker(struct shrinker *shrinker)
420 int err = prealloc_shrinker(shrinker);
424 register_shrinker_prepared(shrinker);
427 EXPORT_SYMBOL(register_shrinker);
432 void unregister_shrinker(struct shrinker *shrinker)
434 if (!shrinker->nr_deferred)
436 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
437 unregister_memcg_shrinker(shrinker);
438 down_write(&shrinker_rwsem);
439 list_del(&shrinker->list);
440 up_write(&shrinker_rwsem);
441 kfree(shrinker->nr_deferred);
442 shrinker->nr_deferred = NULL;
444 EXPORT_SYMBOL(unregister_shrinker);
446 #define SHRINK_BATCH 128
448 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
449 struct shrinker *shrinker, int priority)
451 unsigned long freed = 0;
452 unsigned long long delta;
457 int nid = shrinkctl->nid;
458 long batch_size = shrinker->batch ? shrinker->batch
460 long scanned = 0, next_deferred;
462 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
465 freeable = shrinker->count_objects(shrinker, shrinkctl);
466 if (freeable == 0 || freeable == SHRINK_EMPTY)
470 * copy the current shrinker scan count into a local variable
471 * and zero it so that other concurrent shrinker invocations
472 * don't also do this scanning work.
474 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
477 delta = freeable >> priority;
479 do_div(delta, shrinker->seeks);
482 * Make sure we apply some minimal pressure on default priority
483 * even on small cgroups. Stale objects are not only consuming memory
484 * by themselves, but can also hold a reference to a dying cgroup,
485 * preventing it from being reclaimed. A dying cgroup with all
486 * corresponding structures like per-cpu stats and kmem caches
487 * can be really big, so it may lead to a significant waste of memory.
489 delta = max_t(unsigned long long, delta, min(freeable, batch_size));
492 if (total_scan < 0) {
493 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
494 shrinker->scan_objects, total_scan);
495 total_scan = freeable;
498 next_deferred = total_scan;
501 * We need to avoid excessive windup on filesystem shrinkers
502 * due to large numbers of GFP_NOFS allocations causing the
503 * shrinkers to return -1 all the time. This results in a large
504 * nr being built up so when a shrink that can do some work
505 * comes along it empties the entire cache due to nr >>>
506 * freeable. This is bad for sustaining a working set in
509 * Hence only allow the shrinker to scan the entire cache when
510 * a large delta change is calculated directly.
512 if (delta < freeable / 4)
513 total_scan = min(total_scan, freeable / 2);
516 * Avoid risking looping forever due to too large nr value:
517 * never try to free more than twice the estimate number of
520 if (total_scan > freeable * 2)
521 total_scan = freeable * 2;
523 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
524 freeable, delta, total_scan, priority);
527 * Normally, we should not scan less than batch_size objects in one
528 * pass to avoid too frequent shrinker calls, but if the slab has less
529 * than batch_size objects in total and we are really tight on memory,
530 * we will try to reclaim all available objects, otherwise we can end
531 * up failing allocations although there are plenty of reclaimable
532 * objects spread over several slabs with usage less than the
535 * We detect the "tight on memory" situations by looking at the total
536 * number of objects we want to scan (total_scan). If it is greater
537 * than the total number of objects on slab (freeable), we must be
538 * scanning at high prio and therefore should try to reclaim as much as
541 while (total_scan >= batch_size ||
542 total_scan >= freeable) {
544 unsigned long nr_to_scan = min(batch_size, total_scan);
546 shrinkctl->nr_to_scan = nr_to_scan;
547 shrinkctl->nr_scanned = nr_to_scan;
548 ret = shrinker->scan_objects(shrinker, shrinkctl);
549 if (ret == SHRINK_STOP)
553 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
554 total_scan -= shrinkctl->nr_scanned;
555 scanned += shrinkctl->nr_scanned;
560 if (next_deferred >= scanned)
561 next_deferred -= scanned;
565 * move the unused scan count back into the shrinker in a
566 * manner that handles concurrent updates. If we exhausted the
567 * scan, there is no need to do an update.
569 if (next_deferred > 0)
570 new_nr = atomic_long_add_return(next_deferred,
571 &shrinker->nr_deferred[nid]);
573 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
575 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
579 #ifdef CONFIG_MEMCG_KMEM
580 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
581 struct mem_cgroup *memcg, int priority)
583 struct memcg_shrinker_map *map;
584 unsigned long ret, freed = 0;
587 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
590 if (!down_read_trylock(&shrinker_rwsem))
593 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
598 for_each_set_bit(i, map->map, shrinker_nr_max) {
599 struct shrink_control sc = {
600 .gfp_mask = gfp_mask,
604 struct shrinker *shrinker;
606 shrinker = idr_find(&shrinker_idr, i);
607 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
609 clear_bit(i, map->map);
613 ret = do_shrink_slab(&sc, shrinker, priority);
614 if (ret == SHRINK_EMPTY) {
615 clear_bit(i, map->map);
617 * After the shrinker reported that it had no objects to
618 * free, but before we cleared the corresponding bit in
619 * the memcg shrinker map, a new object might have been
620 * added. To make sure, we have the bit set in this
621 * case, we invoke the shrinker one more time and reset
622 * the bit if it reports that it is not empty anymore.
623 * The memory barrier here pairs with the barrier in
624 * memcg_set_shrinker_bit():
626 * list_lru_add() shrink_slab_memcg()
627 * list_add_tail() clear_bit()
629 * set_bit() do_shrink_slab()
631 smp_mb__after_atomic();
632 ret = do_shrink_slab(&sc, shrinker, priority);
633 if (ret == SHRINK_EMPTY)
636 memcg_set_shrinker_bit(memcg, nid, i);
640 if (rwsem_is_contended(&shrinker_rwsem)) {
646 up_read(&shrinker_rwsem);
649 #else /* CONFIG_MEMCG_KMEM */
650 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
651 struct mem_cgroup *memcg, int priority)
655 #endif /* CONFIG_MEMCG_KMEM */
658 * shrink_slab - shrink slab caches
659 * @gfp_mask: allocation context
660 * @nid: node whose slab caches to target
661 * @memcg: memory cgroup whose slab caches to target
662 * @priority: the reclaim priority
664 * Call the shrink functions to age shrinkable caches.
666 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
667 * unaware shrinkers will receive a node id of 0 instead.
669 * @memcg specifies the memory cgroup to target. Unaware shrinkers
670 * are called only if it is the root cgroup.
672 * @priority is sc->priority, we take the number of objects and >> by priority
673 * in order to get the scan target.
675 * Returns the number of reclaimed slab objects.
677 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
678 struct mem_cgroup *memcg,
681 unsigned long ret, freed = 0;
682 struct shrinker *shrinker;
684 if (!mem_cgroup_is_root(memcg))
685 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
687 if (!down_read_trylock(&shrinker_rwsem))
690 list_for_each_entry(shrinker, &shrinker_list, list) {
691 struct shrink_control sc = {
692 .gfp_mask = gfp_mask,
697 ret = do_shrink_slab(&sc, shrinker, priority);
698 if (ret == SHRINK_EMPTY)
702 * Bail out if someone want to register a new shrinker to
703 * prevent the regsitration from being stalled for long periods
704 * by parallel ongoing shrinking.
706 if (rwsem_is_contended(&shrinker_rwsem)) {
712 up_read(&shrinker_rwsem);
718 void drop_slab_node(int nid)
723 struct mem_cgroup *memcg = NULL;
726 memcg = mem_cgroup_iter(NULL, NULL, NULL);
728 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
729 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
730 } while (freed > 10);
737 for_each_online_node(nid)
741 static inline int is_page_cache_freeable(struct page *page)
744 * A freeable page cache page is referenced only by the caller
745 * that isolated the page, the page cache radix tree and
746 * optional buffer heads at page->private.
748 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
750 return page_count(page) - page_has_private(page) == 1 + radix_pins;
753 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
755 if (current->flags & PF_SWAPWRITE)
757 if (!inode_write_congested(inode))
759 if (inode_to_bdi(inode) == current->backing_dev_info)
765 * We detected a synchronous write error writing a page out. Probably
766 * -ENOSPC. We need to propagate that into the address_space for a subsequent
767 * fsync(), msync() or close().
769 * The tricky part is that after writepage we cannot touch the mapping: nothing
770 * prevents it from being freed up. But we have a ref on the page and once
771 * that page is locked, the mapping is pinned.
773 * We're allowed to run sleeping lock_page() here because we know the caller has
776 static void handle_write_error(struct address_space *mapping,
777 struct page *page, int error)
780 if (page_mapping(page) == mapping)
781 mapping_set_error(mapping, error);
785 /* possible outcome of pageout() */
787 /* failed to write page out, page is locked */
789 /* move page to the active list, page is locked */
791 /* page has been sent to the disk successfully, page is unlocked */
793 /* page is clean and locked */
798 * pageout is called by shrink_page_list() for each dirty page.
799 * Calls ->writepage().
801 static pageout_t pageout(struct page *page, struct address_space *mapping,
802 struct scan_control *sc)
805 * If the page is dirty, only perform writeback if that write
806 * will be non-blocking. To prevent this allocation from being
807 * stalled by pagecache activity. But note that there may be
808 * stalls if we need to run get_block(). We could test
809 * PagePrivate for that.
811 * If this process is currently in __generic_file_write_iter() against
812 * this page's queue, we can perform writeback even if that
815 * If the page is swapcache, write it back even if that would
816 * block, for some throttling. This happens by accident, because
817 * swap_backing_dev_info is bust: it doesn't reflect the
818 * congestion state of the swapdevs. Easy to fix, if needed.
820 if (!is_page_cache_freeable(page))
824 * Some data journaling orphaned pages can have
825 * page->mapping == NULL while being dirty with clean buffers.
827 if (page_has_private(page)) {
828 if (try_to_free_buffers(page)) {
829 ClearPageDirty(page);
830 pr_info("%s: orphaned page\n", __func__);
836 if (mapping->a_ops->writepage == NULL)
837 return PAGE_ACTIVATE;
838 if (!may_write_to_inode(mapping->host, sc))
841 if (clear_page_dirty_for_io(page)) {
843 struct writeback_control wbc = {
844 .sync_mode = WB_SYNC_NONE,
845 .nr_to_write = SWAP_CLUSTER_MAX,
847 .range_end = LLONG_MAX,
851 SetPageReclaim(page);
852 res = mapping->a_ops->writepage(page, &wbc);
854 handle_write_error(mapping, page, res);
855 if (res == AOP_WRITEPAGE_ACTIVATE) {
856 ClearPageReclaim(page);
857 return PAGE_ACTIVATE;
860 if (!PageWriteback(page)) {
861 /* synchronous write or broken a_ops? */
862 ClearPageReclaim(page);
864 trace_mm_vmscan_writepage(page);
865 inc_node_page_state(page, NR_VMSCAN_WRITE);
873 * Same as remove_mapping, but if the page is removed from the mapping, it
874 * gets returned with a refcount of 0.
876 static int __remove_mapping(struct address_space *mapping, struct page *page,
882 BUG_ON(!PageLocked(page));
883 BUG_ON(mapping != page_mapping(page));
885 xa_lock_irqsave(&mapping->i_pages, flags);
887 * The non racy check for a busy page.
889 * Must be careful with the order of the tests. When someone has
890 * a ref to the page, it may be possible that they dirty it then
891 * drop the reference. So if PageDirty is tested before page_count
892 * here, then the following race may occur:
894 * get_user_pages(&page);
895 * [user mapping goes away]
897 * !PageDirty(page) [good]
898 * SetPageDirty(page);
900 * !page_count(page) [good, discard it]
902 * [oops, our write_to data is lost]
904 * Reversing the order of the tests ensures such a situation cannot
905 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
906 * load is not satisfied before that of page->_refcount.
908 * Note that if SetPageDirty is always performed via set_page_dirty,
909 * and thus under the i_pages lock, then this ordering is not required.
911 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
912 refcount = 1 + HPAGE_PMD_NR;
915 if (!page_ref_freeze(page, refcount))
917 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
918 if (unlikely(PageDirty(page))) {
919 page_ref_unfreeze(page, refcount);
923 if (PageSwapCache(page)) {
924 swp_entry_t swap = { .val = page_private(page) };
925 mem_cgroup_swapout(page, swap);
926 __delete_from_swap_cache(page);
927 xa_unlock_irqrestore(&mapping->i_pages, flags);
928 put_swap_page(page, swap);
930 void (*freepage)(struct page *);
933 freepage = mapping->a_ops->freepage;
935 * Remember a shadow entry for reclaimed file cache in
936 * order to detect refaults, thus thrashing, later on.
938 * But don't store shadows in an address space that is
939 * already exiting. This is not just an optizimation,
940 * inode reclaim needs to empty out the radix tree or
941 * the nodes are lost. Don't plant shadows behind its
944 * We also don't store shadows for DAX mappings because the
945 * only page cache pages found in these are zero pages
946 * covering holes, and because we don't want to mix DAX
947 * exceptional entries and shadow exceptional entries in the
948 * same address_space.
950 if (reclaimed && page_is_file_cache(page) &&
951 !mapping_exiting(mapping) && !dax_mapping(mapping))
952 shadow = workingset_eviction(mapping, page);
953 __delete_from_page_cache(page, shadow);
954 xa_unlock_irqrestore(&mapping->i_pages, flags);
956 if (freepage != NULL)
963 xa_unlock_irqrestore(&mapping->i_pages, flags);
968 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
969 * someone else has a ref on the page, abort and return 0. If it was
970 * successfully detached, return 1. Assumes the caller has a single ref on
973 int remove_mapping(struct address_space *mapping, struct page *page)
975 if (__remove_mapping(mapping, page, false)) {
977 * Unfreezing the refcount with 1 rather than 2 effectively
978 * drops the pagecache ref for us without requiring another
981 page_ref_unfreeze(page, 1);
988 * putback_lru_page - put previously isolated page onto appropriate LRU list
989 * @page: page to be put back to appropriate lru list
991 * Add previously isolated @page to appropriate LRU list.
992 * Page may still be unevictable for other reasons.
994 * lru_lock must not be held, interrupts must be enabled.
996 void putback_lru_page(struct page *page)
999 put_page(page); /* drop ref from isolate */
1002 enum page_references {
1004 PAGEREF_RECLAIM_CLEAN,
1009 static enum page_references page_check_references(struct page *page,
1010 struct scan_control *sc)
1012 int referenced_ptes, referenced_page;
1013 unsigned long vm_flags;
1015 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1017 referenced_page = TestClearPageReferenced(page);
1020 * Mlock lost the isolation race with us. Let try_to_unmap()
1021 * move the page to the unevictable list.
1023 if (vm_flags & VM_LOCKED)
1024 return PAGEREF_RECLAIM;
1026 if (referenced_ptes) {
1027 if (PageSwapBacked(page))
1028 return PAGEREF_ACTIVATE;
1030 * All mapped pages start out with page table
1031 * references from the instantiating fault, so we need
1032 * to look twice if a mapped file page is used more
1035 * Mark it and spare it for another trip around the
1036 * inactive list. Another page table reference will
1037 * lead to its activation.
1039 * Note: the mark is set for activated pages as well
1040 * so that recently deactivated but used pages are
1041 * quickly recovered.
1043 SetPageReferenced(page);
1045 if (referenced_page || referenced_ptes > 1)
1046 return PAGEREF_ACTIVATE;
1049 * Activate file-backed executable pages after first usage.
1051 if (vm_flags & VM_EXEC)
1052 return PAGEREF_ACTIVATE;
1054 return PAGEREF_KEEP;
1057 /* Reclaim if clean, defer dirty pages to writeback */
1058 if (referenced_page && !PageSwapBacked(page))
1059 return PAGEREF_RECLAIM_CLEAN;
1061 return PAGEREF_RECLAIM;
1064 /* Check if a page is dirty or under writeback */
1065 static void page_check_dirty_writeback(struct page *page,
1066 bool *dirty, bool *writeback)
1068 struct address_space *mapping;
1071 * Anonymous pages are not handled by flushers and must be written
1072 * from reclaim context. Do not stall reclaim based on them
1074 if (!page_is_file_cache(page) ||
1075 (PageAnon(page) && !PageSwapBacked(page))) {
1081 /* By default assume that the page flags are accurate */
1082 *dirty = PageDirty(page);
1083 *writeback = PageWriteback(page);
1085 /* Verify dirty/writeback state if the filesystem supports it */
1086 if (!page_has_private(page))
1089 mapping = page_mapping(page);
1090 if (mapping && mapping->a_ops->is_dirty_writeback)
1091 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1095 * shrink_page_list() returns the number of reclaimed pages
1097 static unsigned long shrink_page_list(struct list_head *page_list,
1098 struct pglist_data *pgdat,
1099 struct scan_control *sc,
1100 enum ttu_flags ttu_flags,
1101 struct reclaim_stat *stat,
1104 LIST_HEAD(ret_pages);
1105 LIST_HEAD(free_pages);
1107 unsigned nr_unqueued_dirty = 0;
1108 unsigned nr_dirty = 0;
1109 unsigned nr_congested = 0;
1110 unsigned nr_reclaimed = 0;
1111 unsigned nr_writeback = 0;
1112 unsigned nr_immediate = 0;
1113 unsigned nr_ref_keep = 0;
1114 unsigned nr_unmap_fail = 0;
1118 while (!list_empty(page_list)) {
1119 struct address_space *mapping;
1122 enum page_references references = PAGEREF_RECLAIM_CLEAN;
1123 bool dirty, writeback;
1127 page = lru_to_page(page_list);
1128 list_del(&page->lru);
1130 if (!trylock_page(page))
1133 VM_BUG_ON_PAGE(PageActive(page), page);
1137 if (unlikely(!page_evictable(page)))
1138 goto activate_locked;
1140 if (!sc->may_unmap && page_mapped(page))
1143 /* Double the slab pressure for mapped and swapcache pages */
1144 if ((page_mapped(page) || PageSwapCache(page)) &&
1145 !(PageAnon(page) && !PageSwapBacked(page)))
1148 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1149 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1152 * The number of dirty pages determines if a node is marked
1153 * reclaim_congested which affects wait_iff_congested. kswapd
1154 * will stall and start writing pages if the tail of the LRU
1155 * is all dirty unqueued pages.
1157 page_check_dirty_writeback(page, &dirty, &writeback);
1158 if (dirty || writeback)
1161 if (dirty && !writeback)
1162 nr_unqueued_dirty++;
1165 * Treat this page as congested if the underlying BDI is or if
1166 * pages are cycling through the LRU so quickly that the
1167 * pages marked for immediate reclaim are making it to the
1168 * end of the LRU a second time.
1170 mapping = page_mapping(page);
1171 if (((dirty || writeback) && mapping &&
1172 inode_write_congested(mapping->host)) ||
1173 (writeback && PageReclaim(page)))
1177 * If a page at the tail of the LRU is under writeback, there
1178 * are three cases to consider.
1180 * 1) If reclaim is encountering an excessive number of pages
1181 * under writeback and this page is both under writeback and
1182 * PageReclaim then it indicates that pages are being queued
1183 * for IO but are being recycled through the LRU before the
1184 * IO can complete. Waiting on the page itself risks an
1185 * indefinite stall if it is impossible to writeback the
1186 * page due to IO error or disconnected storage so instead
1187 * note that the LRU is being scanned too quickly and the
1188 * caller can stall after page list has been processed.
1190 * 2) Global or new memcg reclaim encounters a page that is
1191 * not marked for immediate reclaim, or the caller does not
1192 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1193 * not to fs). In this case mark the page for immediate
1194 * reclaim and continue scanning.
1196 * Require may_enter_fs because we would wait on fs, which
1197 * may not have submitted IO yet. And the loop driver might
1198 * enter reclaim, and deadlock if it waits on a page for
1199 * which it is needed to do the write (loop masks off
1200 * __GFP_IO|__GFP_FS for this reason); but more thought
1201 * would probably show more reasons.
1203 * 3) Legacy memcg encounters a page that is already marked
1204 * PageReclaim. memcg does not have any dirty pages
1205 * throttling so we could easily OOM just because too many
1206 * pages are in writeback and there is nothing else to
1207 * reclaim. Wait for the writeback to complete.
1209 * In cases 1) and 2) we activate the pages to get them out of
1210 * the way while we continue scanning for clean pages on the
1211 * inactive list and refilling from the active list. The
1212 * observation here is that waiting for disk writes is more
1213 * expensive than potentially causing reloads down the line.
1214 * Since they're marked for immediate reclaim, they won't put
1215 * memory pressure on the cache working set any longer than it
1216 * takes to write them to disk.
1218 if (PageWriteback(page)) {
1220 if (current_is_kswapd() &&
1221 PageReclaim(page) &&
1222 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1224 goto activate_locked;
1227 } else if (sane_reclaim(sc) ||
1228 !PageReclaim(page) || !may_enter_fs) {
1230 * This is slightly racy - end_page_writeback()
1231 * might have just cleared PageReclaim, then
1232 * setting PageReclaim here end up interpreted
1233 * as PageReadahead - but that does not matter
1234 * enough to care. What we do want is for this
1235 * page to have PageReclaim set next time memcg
1236 * reclaim reaches the tests above, so it will
1237 * then wait_on_page_writeback() to avoid OOM;
1238 * and it's also appropriate in global reclaim.
1240 SetPageReclaim(page);
1242 goto activate_locked;
1247 wait_on_page_writeback(page);
1248 /* then go back and try same page again */
1249 list_add_tail(&page->lru, page_list);
1255 references = page_check_references(page, sc);
1257 switch (references) {
1258 case PAGEREF_ACTIVATE:
1259 goto activate_locked;
1263 case PAGEREF_RECLAIM:
1264 case PAGEREF_RECLAIM_CLEAN:
1265 ; /* try to reclaim the page below */
1269 * Anonymous process memory has backing store?
1270 * Try to allocate it some swap space here.
1271 * Lazyfree page could be freed directly
1273 if (PageAnon(page) && PageSwapBacked(page)) {
1274 if (!PageSwapCache(page)) {
1275 if (!(sc->gfp_mask & __GFP_IO))
1277 if (PageTransHuge(page)) {
1278 /* cannot split THP, skip it */
1279 if (!can_split_huge_page(page, NULL))
1280 goto activate_locked;
1282 * Split pages without a PMD map right
1283 * away. Chances are some or all of the
1284 * tail pages can be freed without IO.
1286 if (!compound_mapcount(page) &&
1287 split_huge_page_to_list(page,
1289 goto activate_locked;
1291 if (!add_to_swap(page)) {
1292 if (!PageTransHuge(page))
1293 goto activate_locked;
1294 /* Fallback to swap normal pages */
1295 if (split_huge_page_to_list(page,
1297 goto activate_locked;
1298 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1299 count_vm_event(THP_SWPOUT_FALLBACK);
1301 if (!add_to_swap(page))
1302 goto activate_locked;
1307 /* Adding to swap updated mapping */
1308 mapping = page_mapping(page);
1310 } else if (unlikely(PageTransHuge(page))) {
1311 /* Split file THP */
1312 if (split_huge_page_to_list(page, page_list))
1317 * The page is mapped into the page tables of one or more
1318 * processes. Try to unmap it here.
1320 if (page_mapped(page)) {
1321 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1323 if (unlikely(PageTransHuge(page)))
1324 flags |= TTU_SPLIT_HUGE_PMD;
1325 if (!try_to_unmap(page, flags)) {
1327 goto activate_locked;
1331 if (PageDirty(page)) {
1333 * Only kswapd can writeback filesystem pages
1334 * to avoid risk of stack overflow. But avoid
1335 * injecting inefficient single-page IO into
1336 * flusher writeback as much as possible: only
1337 * write pages when we've encountered many
1338 * dirty pages, and when we've already scanned
1339 * the rest of the LRU for clean pages and see
1340 * the same dirty pages again (PageReclaim).
1342 if (page_is_file_cache(page) &&
1343 (!current_is_kswapd() || !PageReclaim(page) ||
1344 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1346 * Immediately reclaim when written back.
1347 * Similar in principal to deactivate_page()
1348 * except we already have the page isolated
1349 * and know it's dirty
1351 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1352 SetPageReclaim(page);
1354 goto activate_locked;
1357 if (references == PAGEREF_RECLAIM_CLEAN)
1361 if (!sc->may_writepage)
1365 * Page is dirty. Flush the TLB if a writable entry
1366 * potentially exists to avoid CPU writes after IO
1367 * starts and then write it out here.
1369 try_to_unmap_flush_dirty();
1370 switch (pageout(page, mapping, sc)) {
1374 goto activate_locked;
1376 if (PageWriteback(page))
1378 if (PageDirty(page))
1382 * A synchronous write - probably a ramdisk. Go
1383 * ahead and try to reclaim the page.
1385 if (!trylock_page(page))
1387 if (PageDirty(page) || PageWriteback(page))
1389 mapping = page_mapping(page);
1391 ; /* try to free the page below */
1396 * If the page has buffers, try to free the buffer mappings
1397 * associated with this page. If we succeed we try to free
1400 * We do this even if the page is PageDirty().
1401 * try_to_release_page() does not perform I/O, but it is
1402 * possible for a page to have PageDirty set, but it is actually
1403 * clean (all its buffers are clean). This happens if the
1404 * buffers were written out directly, with submit_bh(). ext3
1405 * will do this, as well as the blockdev mapping.
1406 * try_to_release_page() will discover that cleanness and will
1407 * drop the buffers and mark the page clean - it can be freed.
1409 * Rarely, pages can have buffers and no ->mapping. These are
1410 * the pages which were not successfully invalidated in
1411 * truncate_complete_page(). We try to drop those buffers here
1412 * and if that worked, and the page is no longer mapped into
1413 * process address space (page_count == 1) it can be freed.
1414 * Otherwise, leave the page on the LRU so it is swappable.
1416 if (page_has_private(page)) {
1417 if (!try_to_release_page(page, sc->gfp_mask))
1418 goto activate_locked;
1419 if (!mapping && page_count(page) == 1) {
1421 if (put_page_testzero(page))
1425 * rare race with speculative reference.
1426 * the speculative reference will free
1427 * this page shortly, so we may
1428 * increment nr_reclaimed here (and
1429 * leave it off the LRU).
1437 if (PageAnon(page) && !PageSwapBacked(page)) {
1438 /* follow __remove_mapping for reference */
1439 if (!page_ref_freeze(page, 1))
1441 if (PageDirty(page)) {
1442 page_ref_unfreeze(page, 1);
1446 count_vm_event(PGLAZYFREED);
1447 count_memcg_page_event(page, PGLAZYFREED);
1448 } else if (!mapping || !__remove_mapping(mapping, page, true))
1451 * At this point, we have no other references and there is
1452 * no way to pick any more up (removed from LRU, removed
1453 * from pagecache). Can use non-atomic bitops now (and
1454 * we obviously don't have to worry about waking up a process
1455 * waiting on the page lock, because there are no references.
1457 __ClearPageLocked(page);
1462 * Is there need to periodically free_page_list? It would
1463 * appear not as the counts should be low
1465 if (unlikely(PageTransHuge(page))) {
1466 mem_cgroup_uncharge(page);
1467 (*get_compound_page_dtor(page))(page);
1469 list_add(&page->lru, &free_pages);
1473 /* Not a candidate for swapping, so reclaim swap space. */
1474 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1476 try_to_free_swap(page);
1477 VM_BUG_ON_PAGE(PageActive(page), page);
1478 if (!PageMlocked(page)) {
1479 SetPageActive(page);
1481 count_memcg_page_event(page, PGACTIVATE);
1486 list_add(&page->lru, &ret_pages);
1487 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1490 mem_cgroup_uncharge_list(&free_pages);
1491 try_to_unmap_flush();
1492 free_unref_page_list(&free_pages);
1494 list_splice(&ret_pages, page_list);
1495 count_vm_events(PGACTIVATE, pgactivate);
1498 stat->nr_dirty = nr_dirty;
1499 stat->nr_congested = nr_congested;
1500 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1501 stat->nr_writeback = nr_writeback;
1502 stat->nr_immediate = nr_immediate;
1503 stat->nr_activate = pgactivate;
1504 stat->nr_ref_keep = nr_ref_keep;
1505 stat->nr_unmap_fail = nr_unmap_fail;
1507 return nr_reclaimed;
1510 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1511 struct list_head *page_list)
1513 struct scan_control sc = {
1514 .gfp_mask = GFP_KERNEL,
1515 .priority = DEF_PRIORITY,
1519 struct page *page, *next;
1520 LIST_HEAD(clean_pages);
1522 list_for_each_entry_safe(page, next, page_list, lru) {
1523 if (page_is_file_cache(page) && !PageDirty(page) &&
1524 !__PageMovable(page)) {
1525 ClearPageActive(page);
1526 list_move(&page->lru, &clean_pages);
1530 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1531 TTU_IGNORE_ACCESS, NULL, true);
1532 list_splice(&clean_pages, page_list);
1533 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1538 * Attempt to remove the specified page from its LRU. Only take this page
1539 * if it is of the appropriate PageActive status. Pages which are being
1540 * freed elsewhere are also ignored.
1542 * page: page to consider
1543 * mode: one of the LRU isolation modes defined above
1545 * returns 0 on success, -ve errno on failure.
1547 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1551 /* Only take pages on the LRU. */
1555 /* Compaction should not handle unevictable pages but CMA can do so */
1556 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1562 * To minimise LRU disruption, the caller can indicate that it only
1563 * wants to isolate pages it will be able to operate on without
1564 * blocking - clean pages for the most part.
1566 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1567 * that it is possible to migrate without blocking
1569 if (mode & ISOLATE_ASYNC_MIGRATE) {
1570 /* All the caller can do on PageWriteback is block */
1571 if (PageWriteback(page))
1574 if (PageDirty(page)) {
1575 struct address_space *mapping;
1579 * Only pages without mappings or that have a
1580 * ->migratepage callback are possible to migrate
1581 * without blocking. However, we can be racing with
1582 * truncation so it's necessary to lock the page
1583 * to stabilise the mapping as truncation holds
1584 * the page lock until after the page is removed
1585 * from the page cache.
1587 if (!trylock_page(page))
1590 mapping = page_mapping(page);
1591 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1598 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1601 if (likely(get_page_unless_zero(page))) {
1603 * Be careful not to clear PageLRU until after we're
1604 * sure the page is not being freed elsewhere -- the
1605 * page release code relies on it.
1616 * Update LRU sizes after isolating pages. The LRU size updates must
1617 * be complete before mem_cgroup_update_lru_size due to a santity check.
1619 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1620 enum lru_list lru, unsigned long *nr_zone_taken)
1624 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1625 if (!nr_zone_taken[zid])
1628 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1630 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1637 * zone_lru_lock is heavily contended. Some of the functions that
1638 * shrink the lists perform better by taking out a batch of pages
1639 * and working on them outside the LRU lock.
1641 * For pagecache intensive workloads, this function is the hottest
1642 * spot in the kernel (apart from copy_*_user functions).
1644 * Appropriate locks must be held before calling this function.
1646 * @nr_to_scan: The number of eligible pages to look through on the list.
1647 * @lruvec: The LRU vector to pull pages from.
1648 * @dst: The temp list to put pages on to.
1649 * @nr_scanned: The number of pages that were scanned.
1650 * @sc: The scan_control struct for this reclaim session
1651 * @mode: One of the LRU isolation modes
1652 * @lru: LRU list id for isolating
1654 * returns how many pages were moved onto *@dst.
1656 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1657 struct lruvec *lruvec, struct list_head *dst,
1658 unsigned long *nr_scanned, struct scan_control *sc,
1659 isolate_mode_t mode, enum lru_list lru)
1661 struct list_head *src = &lruvec->lists[lru];
1662 unsigned long nr_taken = 0;
1663 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1664 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1665 unsigned long skipped = 0;
1666 unsigned long scan, total_scan, nr_pages;
1667 LIST_HEAD(pages_skipped);
1670 for (total_scan = 0;
1671 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1675 page = lru_to_page(src);
1676 prefetchw_prev_lru_page(page, src, flags);
1678 VM_BUG_ON_PAGE(!PageLRU(page), page);
1680 if (page_zonenum(page) > sc->reclaim_idx) {
1681 list_move(&page->lru, &pages_skipped);
1682 nr_skipped[page_zonenum(page)]++;
1687 * Do not count skipped pages because that makes the function
1688 * return with no isolated pages if the LRU mostly contains
1689 * ineligible pages. This causes the VM to not reclaim any
1690 * pages, triggering a premature OOM.
1693 switch (__isolate_lru_page(page, mode)) {
1695 nr_pages = hpage_nr_pages(page);
1696 nr_taken += nr_pages;
1697 nr_zone_taken[page_zonenum(page)] += nr_pages;
1698 list_move(&page->lru, dst);
1702 /* else it is being freed elsewhere */
1703 list_move(&page->lru, src);
1712 * Splice any skipped pages to the start of the LRU list. Note that
1713 * this disrupts the LRU order when reclaiming for lower zones but
1714 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1715 * scanning would soon rescan the same pages to skip and put the
1716 * system at risk of premature OOM.
1718 if (!list_empty(&pages_skipped)) {
1721 list_splice(&pages_skipped, src);
1722 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1723 if (!nr_skipped[zid])
1726 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1727 skipped += nr_skipped[zid];
1730 *nr_scanned = total_scan;
1731 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1732 total_scan, skipped, nr_taken, mode, lru);
1733 update_lru_sizes(lruvec, lru, nr_zone_taken);
1738 * isolate_lru_page - tries to isolate a page from its LRU list
1739 * @page: page to isolate from its LRU list
1741 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1742 * vmstat statistic corresponding to whatever LRU list the page was on.
1744 * Returns 0 if the page was removed from an LRU list.
1745 * Returns -EBUSY if the page was not on an LRU list.
1747 * The returned page will have PageLRU() cleared. If it was found on
1748 * the active list, it will have PageActive set. If it was found on
1749 * the unevictable list, it will have the PageUnevictable bit set. That flag
1750 * may need to be cleared by the caller before letting the page go.
1752 * The vmstat statistic corresponding to the list on which the page was
1753 * found will be decremented.
1757 * (1) Must be called with an elevated refcount on the page. This is a
1758 * fundamentnal difference from isolate_lru_pages (which is called
1759 * without a stable reference).
1760 * (2) the lru_lock must not be held.
1761 * (3) interrupts must be enabled.
1763 int isolate_lru_page(struct page *page)
1767 VM_BUG_ON_PAGE(!page_count(page), page);
1768 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1770 if (PageLRU(page)) {
1771 struct zone *zone = page_zone(page);
1772 struct lruvec *lruvec;
1774 spin_lock_irq(zone_lru_lock(zone));
1775 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1776 if (PageLRU(page)) {
1777 int lru = page_lru(page);
1780 del_page_from_lru_list(page, lruvec, lru);
1783 spin_unlock_irq(zone_lru_lock(zone));
1789 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1790 * then get resheduled. When there are massive number of tasks doing page
1791 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1792 * the LRU list will go small and be scanned faster than necessary, leading to
1793 * unnecessary swapping, thrashing and OOM.
1795 static int too_many_isolated(struct pglist_data *pgdat, int file,
1796 struct scan_control *sc)
1798 unsigned long inactive, isolated;
1800 if (current_is_kswapd())
1803 if (!sane_reclaim(sc))
1807 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1808 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1810 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1811 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1815 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1816 * won't get blocked by normal direct-reclaimers, forming a circular
1819 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1822 return isolated > inactive;
1825 static noinline_for_stack void
1826 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1828 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1829 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1830 LIST_HEAD(pages_to_free);
1833 * Put back any unfreeable pages.
1835 while (!list_empty(page_list)) {
1836 struct page *page = lru_to_page(page_list);
1839 VM_BUG_ON_PAGE(PageLRU(page), page);
1840 list_del(&page->lru);
1841 if (unlikely(!page_evictable(page))) {
1842 spin_unlock_irq(&pgdat->lru_lock);
1843 putback_lru_page(page);
1844 spin_lock_irq(&pgdat->lru_lock);
1848 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1851 lru = page_lru(page);
1852 add_page_to_lru_list(page, lruvec, lru);
1854 if (is_active_lru(lru)) {
1855 int file = is_file_lru(lru);
1856 int numpages = hpage_nr_pages(page);
1857 reclaim_stat->recent_rotated[file] += numpages;
1859 if (put_page_testzero(page)) {
1860 __ClearPageLRU(page);
1861 __ClearPageActive(page);
1862 del_page_from_lru_list(page, lruvec, lru);
1864 if (unlikely(PageCompound(page))) {
1865 spin_unlock_irq(&pgdat->lru_lock);
1866 mem_cgroup_uncharge(page);
1867 (*get_compound_page_dtor(page))(page);
1868 spin_lock_irq(&pgdat->lru_lock);
1870 list_add(&page->lru, &pages_to_free);
1875 * To save our caller's stack, now use input list for pages to free.
1877 list_splice(&pages_to_free, page_list);
1881 * If a kernel thread (such as nfsd for loop-back mounts) services
1882 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1883 * In that case we should only throttle if the backing device it is
1884 * writing to is congested. In other cases it is safe to throttle.
1886 static int current_may_throttle(void)
1888 return !(current->flags & PF_LESS_THROTTLE) ||
1889 current->backing_dev_info == NULL ||
1890 bdi_write_congested(current->backing_dev_info);
1894 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1895 * of reclaimed pages
1897 static noinline_for_stack unsigned long
1898 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1899 struct scan_control *sc, enum lru_list lru)
1901 LIST_HEAD(page_list);
1902 unsigned long nr_scanned;
1903 unsigned long nr_reclaimed = 0;
1904 unsigned long nr_taken;
1905 struct reclaim_stat stat = {};
1906 isolate_mode_t isolate_mode = 0;
1907 int file = is_file_lru(lru);
1908 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1909 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1910 bool stalled = false;
1912 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1916 /* wait a bit for the reclaimer. */
1920 /* We are about to die and free our memory. Return now. */
1921 if (fatal_signal_pending(current))
1922 return SWAP_CLUSTER_MAX;
1928 isolate_mode |= ISOLATE_UNMAPPED;
1930 spin_lock_irq(&pgdat->lru_lock);
1932 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1933 &nr_scanned, sc, isolate_mode, lru);
1935 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1936 reclaim_stat->recent_scanned[file] += nr_taken;
1938 if (current_is_kswapd()) {
1939 if (global_reclaim(sc))
1940 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1941 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1944 if (global_reclaim(sc))
1945 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1946 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1949 spin_unlock_irq(&pgdat->lru_lock);
1954 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1957 spin_lock_irq(&pgdat->lru_lock);
1959 if (current_is_kswapd()) {
1960 if (global_reclaim(sc))
1961 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1962 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1965 if (global_reclaim(sc))
1966 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1967 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1971 putback_inactive_pages(lruvec, &page_list);
1973 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1975 spin_unlock_irq(&pgdat->lru_lock);
1977 mem_cgroup_uncharge_list(&page_list);
1978 free_unref_page_list(&page_list);
1981 * If dirty pages are scanned that are not queued for IO, it
1982 * implies that flushers are not doing their job. This can
1983 * happen when memory pressure pushes dirty pages to the end of
1984 * the LRU before the dirty limits are breached and the dirty
1985 * data has expired. It can also happen when the proportion of
1986 * dirty pages grows not through writes but through memory
1987 * pressure reclaiming all the clean cache. And in some cases,
1988 * the flushers simply cannot keep up with the allocation
1989 * rate. Nudge the flusher threads in case they are asleep.
1991 if (stat.nr_unqueued_dirty == nr_taken)
1992 wakeup_flusher_threads(WB_REASON_VMSCAN);
1994 sc->nr.dirty += stat.nr_dirty;
1995 sc->nr.congested += stat.nr_congested;
1996 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1997 sc->nr.writeback += stat.nr_writeback;
1998 sc->nr.immediate += stat.nr_immediate;
1999 sc->nr.taken += nr_taken;
2001 sc->nr.file_taken += nr_taken;
2003 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2004 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2005 return nr_reclaimed;
2009 * This moves pages from the active list to the inactive list.
2011 * We move them the other way if the page is referenced by one or more
2012 * processes, from rmap.
2014 * If the pages are mostly unmapped, the processing is fast and it is
2015 * appropriate to hold zone_lru_lock across the whole operation. But if
2016 * the pages are mapped, the processing is slow (page_referenced()) so we
2017 * should drop zone_lru_lock around each page. It's impossible to balance
2018 * this, so instead we remove the pages from the LRU while processing them.
2019 * It is safe to rely on PG_active against the non-LRU pages in here because
2020 * nobody will play with that bit on a non-LRU page.
2022 * The downside is that we have to touch page->_refcount against each page.
2023 * But we had to alter page->flags anyway.
2025 * Returns the number of pages moved to the given lru.
2028 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2029 struct list_head *list,
2030 struct list_head *pages_to_free,
2033 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2038 while (!list_empty(list)) {
2039 page = lru_to_page(list);
2040 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2042 VM_BUG_ON_PAGE(PageLRU(page), page);
2045 nr_pages = hpage_nr_pages(page);
2046 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2047 list_move(&page->lru, &lruvec->lists[lru]);
2049 if (put_page_testzero(page)) {
2050 __ClearPageLRU(page);
2051 __ClearPageActive(page);
2052 del_page_from_lru_list(page, lruvec, lru);
2054 if (unlikely(PageCompound(page))) {
2055 spin_unlock_irq(&pgdat->lru_lock);
2056 mem_cgroup_uncharge(page);
2057 (*get_compound_page_dtor(page))(page);
2058 spin_lock_irq(&pgdat->lru_lock);
2060 list_add(&page->lru, pages_to_free);
2062 nr_moved += nr_pages;
2066 if (!is_active_lru(lru)) {
2067 __count_vm_events(PGDEACTIVATE, nr_moved);
2068 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2075 static void shrink_active_list(unsigned long nr_to_scan,
2076 struct lruvec *lruvec,
2077 struct scan_control *sc,
2080 unsigned long nr_taken;
2081 unsigned long nr_scanned;
2082 unsigned long vm_flags;
2083 LIST_HEAD(l_hold); /* The pages which were snipped off */
2084 LIST_HEAD(l_active);
2085 LIST_HEAD(l_inactive);
2087 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2088 unsigned nr_deactivate, nr_activate;
2089 unsigned nr_rotated = 0;
2090 isolate_mode_t isolate_mode = 0;
2091 int file = is_file_lru(lru);
2092 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2097 isolate_mode |= ISOLATE_UNMAPPED;
2099 spin_lock_irq(&pgdat->lru_lock);
2101 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2102 &nr_scanned, sc, isolate_mode, lru);
2104 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2105 reclaim_stat->recent_scanned[file] += nr_taken;
2107 __count_vm_events(PGREFILL, nr_scanned);
2108 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2110 spin_unlock_irq(&pgdat->lru_lock);
2112 while (!list_empty(&l_hold)) {
2114 page = lru_to_page(&l_hold);
2115 list_del(&page->lru);
2117 if (unlikely(!page_evictable(page))) {
2118 putback_lru_page(page);
2122 if (unlikely(buffer_heads_over_limit)) {
2123 if (page_has_private(page) && trylock_page(page)) {
2124 if (page_has_private(page))
2125 try_to_release_page(page, 0);
2130 if (page_referenced(page, 0, sc->target_mem_cgroup,
2132 nr_rotated += hpage_nr_pages(page);
2134 * Identify referenced, file-backed active pages and
2135 * give them one more trip around the active list. So
2136 * that executable code get better chances to stay in
2137 * memory under moderate memory pressure. Anon pages
2138 * are not likely to be evicted by use-once streaming
2139 * IO, plus JVM can create lots of anon VM_EXEC pages,
2140 * so we ignore them here.
2142 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2143 list_add(&page->lru, &l_active);
2148 ClearPageActive(page); /* we are de-activating */
2149 SetPageWorkingset(page);
2150 list_add(&page->lru, &l_inactive);
2154 * Move pages back to the lru list.
2156 spin_lock_irq(&pgdat->lru_lock);
2158 * Count referenced pages from currently used mappings as rotated,
2159 * even though only some of them are actually re-activated. This
2160 * helps balance scan pressure between file and anonymous pages in
2163 reclaim_stat->recent_rotated[file] += nr_rotated;
2165 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2166 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2167 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2168 spin_unlock_irq(&pgdat->lru_lock);
2170 mem_cgroup_uncharge_list(&l_hold);
2171 free_unref_page_list(&l_hold);
2172 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2173 nr_deactivate, nr_rotated, sc->priority, file);
2177 * The inactive anon list should be small enough that the VM never has
2178 * to do too much work.
2180 * The inactive file list should be small enough to leave most memory
2181 * to the established workingset on the scan-resistant active list,
2182 * but large enough to avoid thrashing the aggregate readahead window.
2184 * Both inactive lists should also be large enough that each inactive
2185 * page has a chance to be referenced again before it is reclaimed.
2187 * If that fails and refaulting is observed, the inactive list grows.
2189 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2190 * on this LRU, maintained by the pageout code. An inactive_ratio
2191 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2194 * memory ratio inactive
2195 * -------------------------------------
2204 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2205 struct mem_cgroup *memcg,
2206 struct scan_control *sc, bool actual_reclaim)
2208 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2209 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2210 enum lru_list inactive_lru = file * LRU_FILE;
2211 unsigned long inactive, active;
2212 unsigned long inactive_ratio;
2213 unsigned long refaults;
2217 * If we don't have swap space, anonymous page deactivation
2220 if (!file && !total_swap_pages)
2223 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2224 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2227 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2229 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2232 * When refaults are being observed, it means a new workingset
2233 * is being established. Disable active list protection to get
2234 * rid of the stale workingset quickly.
2236 if (file && actual_reclaim && lruvec->refaults != refaults) {
2239 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2241 inactive_ratio = int_sqrt(10 * gb);
2247 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2248 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2249 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2250 inactive_ratio, file);
2252 return inactive * inactive_ratio < active;
2255 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2256 struct lruvec *lruvec, struct mem_cgroup *memcg,
2257 struct scan_control *sc)
2259 if (is_active_lru(lru)) {
2260 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2262 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2266 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2277 * Determine how aggressively the anon and file LRU lists should be
2278 * scanned. The relative value of each set of LRU lists is determined
2279 * by looking at the fraction of the pages scanned we did rotate back
2280 * onto the active list instead of evict.
2282 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2283 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2285 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2286 struct scan_control *sc, unsigned long *nr,
2287 unsigned long *lru_pages)
2289 int swappiness = mem_cgroup_swappiness(memcg);
2290 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2292 u64 denominator = 0; /* gcc */
2293 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2294 unsigned long anon_prio, file_prio;
2295 enum scan_balance scan_balance;
2296 unsigned long anon, file;
2297 unsigned long ap, fp;
2300 /* If we have no swap space, do not bother scanning anon pages. */
2301 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2302 scan_balance = SCAN_FILE;
2307 * Global reclaim will swap to prevent OOM even with no
2308 * swappiness, but memcg users want to use this knob to
2309 * disable swapping for individual groups completely when
2310 * using the memory controller's swap limit feature would be
2313 if (!global_reclaim(sc) && !swappiness) {
2314 scan_balance = SCAN_FILE;
2319 * Do not apply any pressure balancing cleverness when the
2320 * system is close to OOM, scan both anon and file equally
2321 * (unless the swappiness setting disagrees with swapping).
2323 if (!sc->priority && swappiness) {
2324 scan_balance = SCAN_EQUAL;
2329 * Prevent the reclaimer from falling into the cache trap: as
2330 * cache pages start out inactive, every cache fault will tip
2331 * the scan balance towards the file LRU. And as the file LRU
2332 * shrinks, so does the window for rotation from references.
2333 * This means we have a runaway feedback loop where a tiny
2334 * thrashing file LRU becomes infinitely more attractive than
2335 * anon pages. Try to detect this based on file LRU size.
2337 if (global_reclaim(sc)) {
2338 unsigned long pgdatfile;
2339 unsigned long pgdatfree;
2341 unsigned long total_high_wmark = 0;
2343 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2344 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2345 node_page_state(pgdat, NR_INACTIVE_FILE);
2347 for (z = 0; z < MAX_NR_ZONES; z++) {
2348 struct zone *zone = &pgdat->node_zones[z];
2349 if (!managed_zone(zone))
2352 total_high_wmark += high_wmark_pages(zone);
2355 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2357 * Force SCAN_ANON if there are enough inactive
2358 * anonymous pages on the LRU in eligible zones.
2359 * Otherwise, the small LRU gets thrashed.
2361 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2362 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2364 scan_balance = SCAN_ANON;
2371 * If there is enough inactive page cache, i.e. if the size of the
2372 * inactive list is greater than that of the active list *and* the
2373 * inactive list actually has some pages to scan on this priority, we
2374 * do not reclaim anything from the anonymous working set right now.
2375 * Without the second condition we could end up never scanning an
2376 * lruvec even if it has plenty of old anonymous pages unless the
2377 * system is under heavy pressure.
2379 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2380 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2381 scan_balance = SCAN_FILE;
2385 scan_balance = SCAN_FRACT;
2388 * With swappiness at 100, anonymous and file have the same priority.
2389 * This scanning priority is essentially the inverse of IO cost.
2391 anon_prio = swappiness;
2392 file_prio = 200 - anon_prio;
2395 * OK, so we have swap space and a fair amount of page cache
2396 * pages. We use the recently rotated / recently scanned
2397 * ratios to determine how valuable each cache is.
2399 * Because workloads change over time (and to avoid overflow)
2400 * we keep these statistics as a floating average, which ends
2401 * up weighing recent references more than old ones.
2403 * anon in [0], file in [1]
2406 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2407 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2408 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2409 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2411 spin_lock_irq(&pgdat->lru_lock);
2412 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2413 reclaim_stat->recent_scanned[0] /= 2;
2414 reclaim_stat->recent_rotated[0] /= 2;
2417 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2418 reclaim_stat->recent_scanned[1] /= 2;
2419 reclaim_stat->recent_rotated[1] /= 2;
2423 * The amount of pressure on anon vs file pages is inversely
2424 * proportional to the fraction of recently scanned pages on
2425 * each list that were recently referenced and in active use.
2427 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2428 ap /= reclaim_stat->recent_rotated[0] + 1;
2430 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2431 fp /= reclaim_stat->recent_rotated[1] + 1;
2432 spin_unlock_irq(&pgdat->lru_lock);
2436 denominator = ap + fp + 1;
2439 for_each_evictable_lru(lru) {
2440 int file = is_file_lru(lru);
2444 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2445 scan = size >> sc->priority;
2447 * If the cgroup's already been deleted, make sure to
2448 * scrape out the remaining cache.
2450 if (!scan && !mem_cgroup_online(memcg))
2451 scan = min(size, SWAP_CLUSTER_MAX);
2453 switch (scan_balance) {
2455 /* Scan lists relative to size */
2459 * Scan types proportional to swappiness and
2460 * their relative recent reclaim efficiency.
2461 * Make sure we don't miss the last page
2462 * because of a round-off error.
2464 scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2469 /* Scan one type exclusively */
2470 if ((scan_balance == SCAN_FILE) != file) {
2476 /* Look ma, no brain */
2486 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2488 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2489 struct scan_control *sc, unsigned long *lru_pages)
2491 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2492 unsigned long nr[NR_LRU_LISTS];
2493 unsigned long targets[NR_LRU_LISTS];
2494 unsigned long nr_to_scan;
2496 unsigned long nr_reclaimed = 0;
2497 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2498 struct blk_plug plug;
2501 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2503 /* Record the original scan target for proportional adjustments later */
2504 memcpy(targets, nr, sizeof(nr));
2507 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2508 * event that can occur when there is little memory pressure e.g.
2509 * multiple streaming readers/writers. Hence, we do not abort scanning
2510 * when the requested number of pages are reclaimed when scanning at
2511 * DEF_PRIORITY on the assumption that the fact we are direct
2512 * reclaiming implies that kswapd is not keeping up and it is best to
2513 * do a batch of work at once. For memcg reclaim one check is made to
2514 * abort proportional reclaim if either the file or anon lru has already
2515 * dropped to zero at the first pass.
2517 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2518 sc->priority == DEF_PRIORITY);
2520 blk_start_plug(&plug);
2521 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2522 nr[LRU_INACTIVE_FILE]) {
2523 unsigned long nr_anon, nr_file, percentage;
2524 unsigned long nr_scanned;
2526 for_each_evictable_lru(lru) {
2528 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2529 nr[lru] -= nr_to_scan;
2531 nr_reclaimed += shrink_list(lru, nr_to_scan,
2538 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2542 * For kswapd and memcg, reclaim at least the number of pages
2543 * requested. Ensure that the anon and file LRUs are scanned
2544 * proportionally what was requested by get_scan_count(). We
2545 * stop reclaiming one LRU and reduce the amount scanning
2546 * proportional to the original scan target.
2548 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2549 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2552 * It's just vindictive to attack the larger once the smaller
2553 * has gone to zero. And given the way we stop scanning the
2554 * smaller below, this makes sure that we only make one nudge
2555 * towards proportionality once we've got nr_to_reclaim.
2557 if (!nr_file || !nr_anon)
2560 if (nr_file > nr_anon) {
2561 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2562 targets[LRU_ACTIVE_ANON] + 1;
2564 percentage = nr_anon * 100 / scan_target;
2566 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2567 targets[LRU_ACTIVE_FILE] + 1;
2569 percentage = nr_file * 100 / scan_target;
2572 /* Stop scanning the smaller of the LRU */
2574 nr[lru + LRU_ACTIVE] = 0;
2577 * Recalculate the other LRU scan count based on its original
2578 * scan target and the percentage scanning already complete
2580 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2581 nr_scanned = targets[lru] - nr[lru];
2582 nr[lru] = targets[lru] * (100 - percentage) / 100;
2583 nr[lru] -= min(nr[lru], nr_scanned);
2586 nr_scanned = targets[lru] - nr[lru];
2587 nr[lru] = targets[lru] * (100 - percentage) / 100;
2588 nr[lru] -= min(nr[lru], nr_scanned);
2590 scan_adjusted = true;
2592 blk_finish_plug(&plug);
2593 sc->nr_reclaimed += nr_reclaimed;
2596 * Even if we did not try to evict anon pages at all, we want to
2597 * rebalance the anon lru active/inactive ratio.
2599 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2600 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2601 sc, LRU_ACTIVE_ANON);
2604 /* Use reclaim/compaction for costly allocs or under memory pressure */
2605 static bool in_reclaim_compaction(struct scan_control *sc)
2607 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2608 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2609 sc->priority < DEF_PRIORITY - 2))
2616 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2617 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2618 * true if more pages should be reclaimed such that when the page allocator
2619 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2620 * It will give up earlier than that if there is difficulty reclaiming pages.
2622 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2623 unsigned long nr_reclaimed,
2624 unsigned long nr_scanned,
2625 struct scan_control *sc)
2627 unsigned long pages_for_compaction;
2628 unsigned long inactive_lru_pages;
2631 /* If not in reclaim/compaction mode, stop */
2632 if (!in_reclaim_compaction(sc))
2635 /* Consider stopping depending on scan and reclaim activity */
2636 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2638 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2639 * full LRU list has been scanned and we are still failing
2640 * to reclaim pages. This full LRU scan is potentially
2641 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2643 if (!nr_reclaimed && !nr_scanned)
2647 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2648 * fail without consequence, stop if we failed to reclaim
2649 * any pages from the last SWAP_CLUSTER_MAX number of
2650 * pages that were scanned. This will return to the
2651 * caller faster at the risk reclaim/compaction and
2652 * the resulting allocation attempt fails
2659 * If we have not reclaimed enough pages for compaction and the
2660 * inactive lists are large enough, continue reclaiming
2662 pages_for_compaction = compact_gap(sc->order);
2663 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2664 if (get_nr_swap_pages() > 0)
2665 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2666 if (sc->nr_reclaimed < pages_for_compaction &&
2667 inactive_lru_pages > pages_for_compaction)
2670 /* If compaction would go ahead or the allocation would succeed, stop */
2671 for (z = 0; z <= sc->reclaim_idx; z++) {
2672 struct zone *zone = &pgdat->node_zones[z];
2673 if (!managed_zone(zone))
2676 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2677 case COMPACT_SUCCESS:
2678 case COMPACT_CONTINUE:
2681 /* check next zone */
2688 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2690 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2691 (memcg && memcg_congested(pgdat, memcg));
2694 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2696 struct reclaim_state *reclaim_state = current->reclaim_state;
2697 unsigned long nr_reclaimed, nr_scanned;
2698 bool reclaimable = false;
2701 struct mem_cgroup *root = sc->target_mem_cgroup;
2702 struct mem_cgroup_reclaim_cookie reclaim = {
2704 .priority = sc->priority,
2706 unsigned long node_lru_pages = 0;
2707 struct mem_cgroup *memcg;
2709 memset(&sc->nr, 0, sizeof(sc->nr));
2711 nr_reclaimed = sc->nr_reclaimed;
2712 nr_scanned = sc->nr_scanned;
2714 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2716 unsigned long lru_pages;
2717 unsigned long reclaimed;
2718 unsigned long scanned;
2720 switch (mem_cgroup_protected(root, memcg)) {
2721 case MEMCG_PROT_MIN:
2724 * If there is no reclaimable memory, OOM.
2727 case MEMCG_PROT_LOW:
2730 * Respect the protection only as long as
2731 * there is an unprotected supply
2732 * of reclaimable memory from other cgroups.
2734 if (!sc->memcg_low_reclaim) {
2735 sc->memcg_low_skipped = 1;
2738 memcg_memory_event(memcg, MEMCG_LOW);
2740 case MEMCG_PROT_NONE:
2744 reclaimed = sc->nr_reclaimed;
2745 scanned = sc->nr_scanned;
2746 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2747 node_lru_pages += lru_pages;
2749 shrink_slab(sc->gfp_mask, pgdat->node_id,
2750 memcg, sc->priority);
2752 /* Record the group's reclaim efficiency */
2753 vmpressure(sc->gfp_mask, memcg, false,
2754 sc->nr_scanned - scanned,
2755 sc->nr_reclaimed - reclaimed);
2758 * Direct reclaim and kswapd have to scan all memory
2759 * cgroups to fulfill the overall scan target for the
2762 * Limit reclaim, on the other hand, only cares about
2763 * nr_to_reclaim pages to be reclaimed and it will
2764 * retry with decreasing priority if one round over the
2765 * whole hierarchy is not sufficient.
2767 if (!global_reclaim(sc) &&
2768 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2769 mem_cgroup_iter_break(root, memcg);
2772 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2774 if (reclaim_state) {
2775 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2776 reclaim_state->reclaimed_slab = 0;
2779 /* Record the subtree's reclaim efficiency */
2780 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2781 sc->nr_scanned - nr_scanned,
2782 sc->nr_reclaimed - nr_reclaimed);
2784 if (sc->nr_reclaimed - nr_reclaimed)
2787 if (current_is_kswapd()) {
2789 * If reclaim is isolating dirty pages under writeback,
2790 * it implies that the long-lived page allocation rate
2791 * is exceeding the page laundering rate. Either the
2792 * global limits are not being effective at throttling
2793 * processes due to the page distribution throughout
2794 * zones or there is heavy usage of a slow backing
2795 * device. The only option is to throttle from reclaim
2796 * context which is not ideal as there is no guarantee
2797 * the dirtying process is throttled in the same way
2798 * balance_dirty_pages() manages.
2800 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2801 * count the number of pages under pages flagged for
2802 * immediate reclaim and stall if any are encountered
2803 * in the nr_immediate check below.
2805 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2806 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2809 * Tag a node as congested if all the dirty pages
2810 * scanned were backed by a congested BDI and
2811 * wait_iff_congested will stall.
2813 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2814 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2816 /* Allow kswapd to start writing pages during reclaim.*/
2817 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2818 set_bit(PGDAT_DIRTY, &pgdat->flags);
2821 * If kswapd scans pages marked marked for immediate
2822 * reclaim and under writeback (nr_immediate), it
2823 * implies that pages are cycling through the LRU
2824 * faster than they are written so also forcibly stall.
2826 if (sc->nr.immediate)
2827 congestion_wait(BLK_RW_ASYNC, HZ/10);
2831 * Legacy memcg will stall in page writeback so avoid forcibly
2832 * stalling in wait_iff_congested().
2834 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2835 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2836 set_memcg_congestion(pgdat, root, true);
2839 * Stall direct reclaim for IO completions if underlying BDIs
2840 * and node is congested. Allow kswapd to continue until it
2841 * starts encountering unqueued dirty pages or cycling through
2842 * the LRU too quickly.
2844 if (!sc->hibernation_mode && !current_is_kswapd() &&
2845 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2846 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2848 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2849 sc->nr_scanned - nr_scanned, sc));
2852 * Kswapd gives up on balancing particular nodes after too
2853 * many failures to reclaim anything from them and goes to
2854 * sleep. On reclaim progress, reset the failure counter. A
2855 * successful direct reclaim run will revive a dormant kswapd.
2858 pgdat->kswapd_failures = 0;
2864 * Returns true if compaction should go ahead for a costly-order request, or
2865 * the allocation would already succeed without compaction. Return false if we
2866 * should reclaim first.
2868 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2870 unsigned long watermark;
2871 enum compact_result suitable;
2873 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2874 if (suitable == COMPACT_SUCCESS)
2875 /* Allocation should succeed already. Don't reclaim. */
2877 if (suitable == COMPACT_SKIPPED)
2878 /* Compaction cannot yet proceed. Do reclaim. */
2882 * Compaction is already possible, but it takes time to run and there
2883 * are potentially other callers using the pages just freed. So proceed
2884 * with reclaim to make a buffer of free pages available to give
2885 * compaction a reasonable chance of completing and allocating the page.
2886 * Note that we won't actually reclaim the whole buffer in one attempt
2887 * as the target watermark in should_continue_reclaim() is lower. But if
2888 * we are already above the high+gap watermark, don't reclaim at all.
2890 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2892 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2896 * This is the direct reclaim path, for page-allocating processes. We only
2897 * try to reclaim pages from zones which will satisfy the caller's allocation
2900 * If a zone is deemed to be full of pinned pages then just give it a light
2901 * scan then give up on it.
2903 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2907 unsigned long nr_soft_reclaimed;
2908 unsigned long nr_soft_scanned;
2910 pg_data_t *last_pgdat = NULL;
2913 * If the number of buffer_heads in the machine exceeds the maximum
2914 * allowed level, force direct reclaim to scan the highmem zone as
2915 * highmem pages could be pinning lowmem pages storing buffer_heads
2917 orig_mask = sc->gfp_mask;
2918 if (buffer_heads_over_limit) {
2919 sc->gfp_mask |= __GFP_HIGHMEM;
2920 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2923 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2924 sc->reclaim_idx, sc->nodemask) {
2926 * Take care memory controller reclaiming has small influence
2929 if (global_reclaim(sc)) {
2930 if (!cpuset_zone_allowed(zone,
2931 GFP_KERNEL | __GFP_HARDWALL))
2935 * If we already have plenty of memory free for
2936 * compaction in this zone, don't free any more.
2937 * Even though compaction is invoked for any
2938 * non-zero order, only frequent costly order
2939 * reclamation is disruptive enough to become a
2940 * noticeable problem, like transparent huge
2943 if (IS_ENABLED(CONFIG_COMPACTION) &&
2944 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2945 compaction_ready(zone, sc)) {
2946 sc->compaction_ready = true;
2951 * Shrink each node in the zonelist once. If the
2952 * zonelist is ordered by zone (not the default) then a
2953 * node may be shrunk multiple times but in that case
2954 * the user prefers lower zones being preserved.
2956 if (zone->zone_pgdat == last_pgdat)
2960 * This steals pages from memory cgroups over softlimit
2961 * and returns the number of reclaimed pages and
2962 * scanned pages. This works for global memory pressure
2963 * and balancing, not for a memcg's limit.
2965 nr_soft_scanned = 0;
2966 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2967 sc->order, sc->gfp_mask,
2969 sc->nr_reclaimed += nr_soft_reclaimed;
2970 sc->nr_scanned += nr_soft_scanned;
2971 /* need some check for avoid more shrink_zone() */
2974 /* See comment about same check for global reclaim above */
2975 if (zone->zone_pgdat == last_pgdat)
2977 last_pgdat = zone->zone_pgdat;
2978 shrink_node(zone->zone_pgdat, sc);
2982 * Restore to original mask to avoid the impact on the caller if we
2983 * promoted it to __GFP_HIGHMEM.
2985 sc->gfp_mask = orig_mask;
2988 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2990 struct mem_cgroup *memcg;
2992 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2994 unsigned long refaults;
2995 struct lruvec *lruvec;
2998 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
3000 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
3002 lruvec = mem_cgroup_lruvec(pgdat, memcg);
3003 lruvec->refaults = refaults;
3004 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
3008 * This is the main entry point to direct page reclaim.
3010 * If a full scan of the inactive list fails to free enough memory then we
3011 * are "out of memory" and something needs to be killed.
3013 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3014 * high - the zone may be full of dirty or under-writeback pages, which this
3015 * caller can't do much about. We kick the writeback threads and take explicit
3016 * naps in the hope that some of these pages can be written. But if the
3017 * allocating task holds filesystem locks which prevent writeout this might not
3018 * work, and the allocation attempt will fail.
3020 * returns: 0, if no pages reclaimed
3021 * else, the number of pages reclaimed
3023 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3024 struct scan_control *sc)
3026 int initial_priority = sc->priority;
3027 pg_data_t *last_pgdat;
3031 delayacct_freepages_start();
3033 if (global_reclaim(sc))
3034 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3037 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3040 shrink_zones(zonelist, sc);
3042 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3045 if (sc->compaction_ready)
3049 * If we're getting trouble reclaiming, start doing
3050 * writepage even in laptop mode.
3052 if (sc->priority < DEF_PRIORITY - 2)
3053 sc->may_writepage = 1;
3054 } while (--sc->priority >= 0);
3057 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3059 if (zone->zone_pgdat == last_pgdat)
3061 last_pgdat = zone->zone_pgdat;
3062 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3063 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3066 delayacct_freepages_end();
3068 if (sc->nr_reclaimed)
3069 return sc->nr_reclaimed;
3071 /* Aborted reclaim to try compaction? don't OOM, then */
3072 if (sc->compaction_ready)
3075 /* Untapped cgroup reserves? Don't OOM, retry. */
3076 if (sc->memcg_low_skipped) {
3077 sc->priority = initial_priority;
3078 sc->memcg_low_reclaim = 1;
3079 sc->memcg_low_skipped = 0;
3086 static bool allow_direct_reclaim(pg_data_t *pgdat)
3089 unsigned long pfmemalloc_reserve = 0;
3090 unsigned long free_pages = 0;
3094 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3097 for (i = 0; i <= ZONE_NORMAL; i++) {
3098 zone = &pgdat->node_zones[i];
3099 if (!managed_zone(zone))
3102 if (!zone_reclaimable_pages(zone))
3105 pfmemalloc_reserve += min_wmark_pages(zone);
3106 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3109 /* If there are no reserves (unexpected config) then do not throttle */
3110 if (!pfmemalloc_reserve)
3113 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3115 /* kswapd must be awake if processes are being throttled */
3116 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3117 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3118 (enum zone_type)ZONE_NORMAL);
3119 wake_up_interruptible(&pgdat->kswapd_wait);
3126 * Throttle direct reclaimers if backing storage is backed by the network
3127 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3128 * depleted. kswapd will continue to make progress and wake the processes
3129 * when the low watermark is reached.
3131 * Returns true if a fatal signal was delivered during throttling. If this
3132 * happens, the page allocator should not consider triggering the OOM killer.
3134 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3135 nodemask_t *nodemask)
3139 pg_data_t *pgdat = NULL;
3142 * Kernel threads should not be throttled as they may be indirectly
3143 * responsible for cleaning pages necessary for reclaim to make forward
3144 * progress. kjournald for example may enter direct reclaim while
3145 * committing a transaction where throttling it could forcing other
3146 * processes to block on log_wait_commit().
3148 if (current->flags & PF_KTHREAD)
3152 * If a fatal signal is pending, this process should not throttle.
3153 * It should return quickly so it can exit and free its memory
3155 if (fatal_signal_pending(current))
3159 * Check if the pfmemalloc reserves are ok by finding the first node
3160 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3161 * GFP_KERNEL will be required for allocating network buffers when
3162 * swapping over the network so ZONE_HIGHMEM is unusable.
3164 * Throttling is based on the first usable node and throttled processes
3165 * wait on a queue until kswapd makes progress and wakes them. There
3166 * is an affinity then between processes waking up and where reclaim
3167 * progress has been made assuming the process wakes on the same node.
3168 * More importantly, processes running on remote nodes will not compete
3169 * for remote pfmemalloc reserves and processes on different nodes
3170 * should make reasonable progress.
3172 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3173 gfp_zone(gfp_mask), nodemask) {
3174 if (zone_idx(zone) > ZONE_NORMAL)
3177 /* Throttle based on the first usable node */
3178 pgdat = zone->zone_pgdat;
3179 if (allow_direct_reclaim(pgdat))
3184 /* If no zone was usable by the allocation flags then do not throttle */
3188 /* Account for the throttling */
3189 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3192 * If the caller cannot enter the filesystem, it's possible that it
3193 * is due to the caller holding an FS lock or performing a journal
3194 * transaction in the case of a filesystem like ext[3|4]. In this case,
3195 * it is not safe to block on pfmemalloc_wait as kswapd could be
3196 * blocked waiting on the same lock. Instead, throttle for up to a
3197 * second before continuing.
3199 if (!(gfp_mask & __GFP_FS)) {
3200 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3201 allow_direct_reclaim(pgdat), HZ);
3206 /* Throttle until kswapd wakes the process */
3207 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3208 allow_direct_reclaim(pgdat));
3211 if (fatal_signal_pending(current))
3218 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3219 gfp_t gfp_mask, nodemask_t *nodemask)
3221 unsigned long nr_reclaimed;
3222 struct scan_control sc = {
3223 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3224 .gfp_mask = current_gfp_context(gfp_mask),
3225 .reclaim_idx = gfp_zone(gfp_mask),
3227 .nodemask = nodemask,
3228 .priority = DEF_PRIORITY,
3229 .may_writepage = !laptop_mode,
3235 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3236 * Confirm they are large enough for max values.
3238 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3239 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3240 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3243 * Do not enter reclaim if fatal signal was delivered while throttled.
3244 * 1 is returned so that the page allocator does not OOM kill at this
3247 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3250 trace_mm_vmscan_direct_reclaim_begin(order,
3255 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3257 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3259 return nr_reclaimed;
3264 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3265 gfp_t gfp_mask, bool noswap,
3267 unsigned long *nr_scanned)
3269 struct scan_control sc = {
3270 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3271 .target_mem_cgroup = memcg,
3272 .may_writepage = !laptop_mode,
3274 .reclaim_idx = MAX_NR_ZONES - 1,
3275 .may_swap = !noswap,
3277 unsigned long lru_pages;
3279 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3280 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3282 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3288 * NOTE: Although we can get the priority field, using it
3289 * here is not a good idea, since it limits the pages we can scan.
3290 * if we don't reclaim here, the shrink_node from balance_pgdat
3291 * will pick up pages from other mem cgroup's as well. We hack
3292 * the priority and make it zero.
3294 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3296 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3298 *nr_scanned = sc.nr_scanned;
3299 return sc.nr_reclaimed;
3302 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3303 unsigned long nr_pages,
3307 struct zonelist *zonelist;
3308 unsigned long nr_reclaimed;
3309 unsigned long pflags;
3311 unsigned int noreclaim_flag;
3312 struct scan_control sc = {
3313 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3314 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3315 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3316 .reclaim_idx = MAX_NR_ZONES - 1,
3317 .target_mem_cgroup = memcg,
3318 .priority = DEF_PRIORITY,
3319 .may_writepage = !laptop_mode,
3321 .may_swap = may_swap,
3325 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3326 * take care of from where we get pages. So the node where we start the
3327 * scan does not need to be the current node.
3329 nid = mem_cgroup_select_victim_node(memcg);
3331 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3333 trace_mm_vmscan_memcg_reclaim_begin(0,
3338 psi_memstall_enter(&pflags);
3339 noreclaim_flag = memalloc_noreclaim_save();
3341 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3343 memalloc_noreclaim_restore(noreclaim_flag);
3344 psi_memstall_leave(&pflags);
3346 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3348 return nr_reclaimed;
3352 static void age_active_anon(struct pglist_data *pgdat,
3353 struct scan_control *sc)
3355 struct mem_cgroup *memcg;
3357 if (!total_swap_pages)
3360 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3362 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3364 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3365 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3366 sc, LRU_ACTIVE_ANON);
3368 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3373 * Returns true if there is an eligible zone balanced for the request order
3376 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3379 unsigned long mark = -1;
3382 for (i = 0; i <= classzone_idx; i++) {
3383 zone = pgdat->node_zones + i;
3385 if (!managed_zone(zone))
3388 mark = high_wmark_pages(zone);
3389 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3394 * If a node has no populated zone within classzone_idx, it does not
3395 * need balancing by definition. This can happen if a zone-restricted
3396 * allocation tries to wake a remote kswapd.
3404 /* Clear pgdat state for congested, dirty or under writeback. */
3405 static void clear_pgdat_congested(pg_data_t *pgdat)
3407 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3408 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3409 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3413 * Prepare kswapd for sleeping. This verifies that there are no processes
3414 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3416 * Returns true if kswapd is ready to sleep
3418 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3421 * The throttled processes are normally woken up in balance_pgdat() as
3422 * soon as allow_direct_reclaim() is true. But there is a potential
3423 * race between when kswapd checks the watermarks and a process gets
3424 * throttled. There is also a potential race if processes get
3425 * throttled, kswapd wakes, a large process exits thereby balancing the
3426 * zones, which causes kswapd to exit balance_pgdat() before reaching
3427 * the wake up checks. If kswapd is going to sleep, no process should
3428 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3429 * the wake up is premature, processes will wake kswapd and get
3430 * throttled again. The difference from wake ups in balance_pgdat() is
3431 * that here we are under prepare_to_wait().
3433 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3434 wake_up_all(&pgdat->pfmemalloc_wait);
3436 /* Hopeless node, leave it to direct reclaim */
3437 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3440 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3441 clear_pgdat_congested(pgdat);
3449 * kswapd shrinks a node of pages that are at or below the highest usable
3450 * zone that is currently unbalanced.
3452 * Returns true if kswapd scanned at least the requested number of pages to
3453 * reclaim or if the lack of progress was due to pages under writeback.
3454 * This is used to determine if the scanning priority needs to be raised.
3456 static bool kswapd_shrink_node(pg_data_t *pgdat,
3457 struct scan_control *sc)
3462 /* Reclaim a number of pages proportional to the number of zones */
3463 sc->nr_to_reclaim = 0;
3464 for (z = 0; z <= sc->reclaim_idx; z++) {
3465 zone = pgdat->node_zones + z;
3466 if (!managed_zone(zone))
3469 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3473 * Historically care was taken to put equal pressure on all zones but
3474 * now pressure is applied based on node LRU order.
3476 shrink_node(pgdat, sc);
3479 * Fragmentation may mean that the system cannot be rebalanced for
3480 * high-order allocations. If twice the allocation size has been
3481 * reclaimed then recheck watermarks only at order-0 to prevent
3482 * excessive reclaim. Assume that a process requested a high-order
3483 * can direct reclaim/compact.
3485 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3488 return sc->nr_scanned >= sc->nr_to_reclaim;
3492 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3493 * that are eligible for use by the caller until at least one zone is
3496 * Returns the order kswapd finished reclaiming at.
3498 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3499 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3500 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3501 * or lower is eligible for reclaim until at least one usable zone is
3504 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3507 unsigned long nr_soft_reclaimed;
3508 unsigned long nr_soft_scanned;
3509 unsigned long pflags;
3511 struct scan_control sc = {
3512 .gfp_mask = GFP_KERNEL,
3514 .priority = DEF_PRIORITY,
3515 .may_writepage = !laptop_mode,
3520 psi_memstall_enter(&pflags);
3521 __fs_reclaim_acquire();
3523 count_vm_event(PAGEOUTRUN);
3526 unsigned long nr_reclaimed = sc.nr_reclaimed;
3527 bool raise_priority = true;
3530 sc.reclaim_idx = classzone_idx;
3533 * If the number of buffer_heads exceeds the maximum allowed
3534 * then consider reclaiming from all zones. This has a dual
3535 * purpose -- on 64-bit systems it is expected that
3536 * buffer_heads are stripped during active rotation. On 32-bit
3537 * systems, highmem pages can pin lowmem memory and shrinking
3538 * buffers can relieve lowmem pressure. Reclaim may still not
3539 * go ahead if all eligible zones for the original allocation
3540 * request are balanced to avoid excessive reclaim from kswapd.
3542 if (buffer_heads_over_limit) {
3543 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3544 zone = pgdat->node_zones + i;
3545 if (!managed_zone(zone))
3554 * Only reclaim if there are no eligible zones. Note that
3555 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3558 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3562 * Do some background aging of the anon list, to give
3563 * pages a chance to be referenced before reclaiming. All
3564 * pages are rotated regardless of classzone as this is
3565 * about consistent aging.
3567 age_active_anon(pgdat, &sc);
3570 * If we're getting trouble reclaiming, start doing writepage
3571 * even in laptop mode.
3573 if (sc.priority < DEF_PRIORITY - 2)
3574 sc.may_writepage = 1;
3576 /* Call soft limit reclaim before calling shrink_node. */
3578 nr_soft_scanned = 0;
3579 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3580 sc.gfp_mask, &nr_soft_scanned);
3581 sc.nr_reclaimed += nr_soft_reclaimed;
3584 * There should be no need to raise the scanning priority if
3585 * enough pages are already being scanned that that high
3586 * watermark would be met at 100% efficiency.
3588 if (kswapd_shrink_node(pgdat, &sc))
3589 raise_priority = false;
3592 * If the low watermark is met there is no need for processes
3593 * to be throttled on pfmemalloc_wait as they should not be
3594 * able to safely make forward progress. Wake them
3596 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3597 allow_direct_reclaim(pgdat))
3598 wake_up_all(&pgdat->pfmemalloc_wait);
3600 /* Check if kswapd should be suspending */
3601 __fs_reclaim_release();
3602 ret = try_to_freeze();
3603 __fs_reclaim_acquire();
3604 if (ret || kthread_should_stop())
3608 * Raise priority if scanning rate is too low or there was no
3609 * progress in reclaiming pages
3611 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3612 if (raise_priority || !nr_reclaimed)
3614 } while (sc.priority >= 1);
3616 if (!sc.nr_reclaimed)
3617 pgdat->kswapd_failures++;
3620 snapshot_refaults(NULL, pgdat);
3621 __fs_reclaim_release();
3622 psi_memstall_leave(&pflags);
3624 * Return the order kswapd stopped reclaiming at as
3625 * prepare_kswapd_sleep() takes it into account. If another caller
3626 * entered the allocator slow path while kswapd was awake, order will
3627 * remain at the higher level.
3633 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3634 * allocation request woke kswapd for. When kswapd has not woken recently,
3635 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3636 * given classzone and returns it or the highest classzone index kswapd
3637 * was recently woke for.
3639 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3640 enum zone_type classzone_idx)
3642 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3643 return classzone_idx;
3645 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3648 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3649 unsigned int classzone_idx)
3654 if (freezing(current) || kthread_should_stop())
3657 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3660 * Try to sleep for a short interval. Note that kcompactd will only be
3661 * woken if it is possible to sleep for a short interval. This is
3662 * deliberate on the assumption that if reclaim cannot keep an
3663 * eligible zone balanced that it's also unlikely that compaction will
3666 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3668 * Compaction records what page blocks it recently failed to
3669 * isolate pages from and skips them in the future scanning.
3670 * When kswapd is going to sleep, it is reasonable to assume
3671 * that pages and compaction may succeed so reset the cache.
3673 reset_isolation_suitable(pgdat);
3676 * We have freed the memory, now we should compact it to make
3677 * allocation of the requested order possible.
3679 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3681 remaining = schedule_timeout(HZ/10);
3684 * If woken prematurely then reset kswapd_classzone_idx and
3685 * order. The values will either be from a wakeup request or
3686 * the previous request that slept prematurely.
3689 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3690 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3693 finish_wait(&pgdat->kswapd_wait, &wait);
3694 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3698 * After a short sleep, check if it was a premature sleep. If not, then
3699 * go fully to sleep until explicitly woken up.
3702 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3703 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3706 * vmstat counters are not perfectly accurate and the estimated
3707 * value for counters such as NR_FREE_PAGES can deviate from the
3708 * true value by nr_online_cpus * threshold. To avoid the zone
3709 * watermarks being breached while under pressure, we reduce the
3710 * per-cpu vmstat threshold while kswapd is awake and restore
3711 * them before going back to sleep.
3713 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3715 if (!kthread_should_stop())
3718 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3721 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3723 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3725 finish_wait(&pgdat->kswapd_wait, &wait);
3729 * The background pageout daemon, started as a kernel thread
3730 * from the init process.
3732 * This basically trickles out pages so that we have _some_
3733 * free memory available even if there is no other activity
3734 * that frees anything up. This is needed for things like routing
3735 * etc, where we otherwise might have all activity going on in
3736 * asynchronous contexts that cannot page things out.
3738 * If there are applications that are active memory-allocators
3739 * (most normal use), this basically shouldn't matter.
3741 static int kswapd(void *p)
3743 unsigned int alloc_order, reclaim_order;
3744 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3745 pg_data_t *pgdat = (pg_data_t*)p;
3746 struct task_struct *tsk = current;
3748 struct reclaim_state reclaim_state = {
3749 .reclaimed_slab = 0,
3751 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3753 if (!cpumask_empty(cpumask))
3754 set_cpus_allowed_ptr(tsk, cpumask);
3755 current->reclaim_state = &reclaim_state;
3758 * Tell the memory management that we're a "memory allocator",
3759 * and that if we need more memory we should get access to it
3760 * regardless (see "__alloc_pages()"). "kswapd" should
3761 * never get caught in the normal page freeing logic.
3763 * (Kswapd normally doesn't need memory anyway, but sometimes
3764 * you need a small amount of memory in order to be able to
3765 * page out something else, and this flag essentially protects
3766 * us from recursively trying to free more memory as we're
3767 * trying to free the first piece of memory in the first place).
3769 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3772 pgdat->kswapd_order = 0;
3773 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3777 alloc_order = reclaim_order = pgdat->kswapd_order;
3778 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3781 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3784 /* Read the new order and classzone_idx */
3785 alloc_order = reclaim_order = pgdat->kswapd_order;
3786 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3787 pgdat->kswapd_order = 0;
3788 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3790 ret = try_to_freeze();
3791 if (kthread_should_stop())
3795 * We can speed up thawing tasks if we don't call balance_pgdat
3796 * after returning from the refrigerator
3802 * Reclaim begins at the requested order but if a high-order
3803 * reclaim fails then kswapd falls back to reclaiming for
3804 * order-0. If that happens, kswapd will consider sleeping
3805 * for the order it finished reclaiming at (reclaim_order)
3806 * but kcompactd is woken to compact for the original
3807 * request (alloc_order).
3809 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3811 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3812 if (reclaim_order < alloc_order)
3813 goto kswapd_try_sleep;
3816 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3817 current->reclaim_state = NULL;
3823 * A zone is low on free memory or too fragmented for high-order memory. If
3824 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3825 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3826 * has failed or is not needed, still wake up kcompactd if only compaction is
3829 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3830 enum zone_type classzone_idx)
3834 if (!managed_zone(zone))
3837 if (!cpuset_zone_allowed(zone, gfp_flags))
3839 pgdat = zone->zone_pgdat;
3840 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3842 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3843 if (!waitqueue_active(&pgdat->kswapd_wait))
3846 /* Hopeless node, leave it to direct reclaim if possible */
3847 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3848 pgdat_balanced(pgdat, order, classzone_idx)) {
3850 * There may be plenty of free memory available, but it's too
3851 * fragmented for high-order allocations. Wake up kcompactd
3852 * and rely on compaction_suitable() to determine if it's
3853 * needed. If it fails, it will defer subsequent attempts to
3854 * ratelimit its work.
3856 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3857 wakeup_kcompactd(pgdat, order, classzone_idx);
3861 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3863 wake_up_interruptible(&pgdat->kswapd_wait);
3866 #ifdef CONFIG_HIBERNATION
3868 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3871 * Rather than trying to age LRUs the aim is to preserve the overall
3872 * LRU order by reclaiming preferentially
3873 * inactive > active > active referenced > active mapped
3875 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3877 struct reclaim_state reclaim_state;
3878 struct scan_control sc = {
3879 .nr_to_reclaim = nr_to_reclaim,
3880 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3881 .reclaim_idx = MAX_NR_ZONES - 1,
3882 .priority = DEF_PRIORITY,
3886 .hibernation_mode = 1,
3888 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3889 struct task_struct *p = current;
3890 unsigned long nr_reclaimed;
3891 unsigned int noreclaim_flag;
3893 fs_reclaim_acquire(sc.gfp_mask);
3894 noreclaim_flag = memalloc_noreclaim_save();
3895 reclaim_state.reclaimed_slab = 0;
3896 p->reclaim_state = &reclaim_state;
3898 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3900 p->reclaim_state = NULL;
3901 memalloc_noreclaim_restore(noreclaim_flag);
3902 fs_reclaim_release(sc.gfp_mask);
3904 return nr_reclaimed;
3906 #endif /* CONFIG_HIBERNATION */
3908 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3909 not required for correctness. So if the last cpu in a node goes
3910 away, we get changed to run anywhere: as the first one comes back,
3911 restore their cpu bindings. */
3912 static int kswapd_cpu_online(unsigned int cpu)
3916 for_each_node_state(nid, N_MEMORY) {
3917 pg_data_t *pgdat = NODE_DATA(nid);
3918 const struct cpumask *mask;
3920 mask = cpumask_of_node(pgdat->node_id);
3922 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3923 /* One of our CPUs online: restore mask */
3924 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3930 * This kswapd start function will be called by init and node-hot-add.
3931 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3933 int kswapd_run(int nid)
3935 pg_data_t *pgdat = NODE_DATA(nid);
3941 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3942 if (IS_ERR(pgdat->kswapd)) {
3943 /* failure at boot is fatal */
3944 BUG_ON(system_state < SYSTEM_RUNNING);
3945 pr_err("Failed to start kswapd on node %d\n", nid);
3946 ret = PTR_ERR(pgdat->kswapd);
3947 pgdat->kswapd = NULL;
3953 * Called by memory hotplug when all memory in a node is offlined. Caller must
3954 * hold mem_hotplug_begin/end().
3956 void kswapd_stop(int nid)
3958 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3961 kthread_stop(kswapd);
3962 NODE_DATA(nid)->kswapd = NULL;
3966 static int __init kswapd_init(void)
3971 for_each_node_state(nid, N_MEMORY)
3973 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3974 "mm/vmscan:online", kswapd_cpu_online,
3980 module_init(kswapd_init)
3986 * If non-zero call node_reclaim when the number of free pages falls below
3989 int node_reclaim_mode __read_mostly;
3991 #define RECLAIM_OFF 0
3992 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3993 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3994 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3997 * Priority for NODE_RECLAIM. This determines the fraction of pages
3998 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4001 #define NODE_RECLAIM_PRIORITY 4
4004 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4007 int sysctl_min_unmapped_ratio = 1;
4010 * If the number of slab pages in a zone grows beyond this percentage then
4011 * slab reclaim needs to occur.
4013 int sysctl_min_slab_ratio = 5;
4015 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4017 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4018 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4019 node_page_state(pgdat, NR_ACTIVE_FILE);
4022 * It's possible for there to be more file mapped pages than
4023 * accounted for by the pages on the file LRU lists because
4024 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4026 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4029 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4030 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4032 unsigned long nr_pagecache_reclaimable;
4033 unsigned long delta = 0;
4036 * If RECLAIM_UNMAP is set, then all file pages are considered
4037 * potentially reclaimable. Otherwise, we have to worry about
4038 * pages like swapcache and node_unmapped_file_pages() provides
4041 if (node_reclaim_mode & RECLAIM_UNMAP)
4042 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4044 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4046 /* If we can't clean pages, remove dirty pages from consideration */
4047 if (!(node_reclaim_mode & RECLAIM_WRITE))
4048 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4050 /* Watch for any possible underflows due to delta */
4051 if (unlikely(delta > nr_pagecache_reclaimable))
4052 delta = nr_pagecache_reclaimable;
4054 return nr_pagecache_reclaimable - delta;
4058 * Try to free up some pages from this node through reclaim.
4060 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4062 /* Minimum pages needed in order to stay on node */
4063 const unsigned long nr_pages = 1 << order;
4064 struct task_struct *p = current;
4065 struct reclaim_state reclaim_state;
4066 unsigned int noreclaim_flag;
4067 struct scan_control sc = {
4068 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4069 .gfp_mask = current_gfp_context(gfp_mask),
4071 .priority = NODE_RECLAIM_PRIORITY,
4072 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4073 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4075 .reclaim_idx = gfp_zone(gfp_mask),
4079 fs_reclaim_acquire(sc.gfp_mask);
4081 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4082 * and we also need to be able to write out pages for RECLAIM_WRITE
4083 * and RECLAIM_UNMAP.
4085 noreclaim_flag = memalloc_noreclaim_save();
4086 p->flags |= PF_SWAPWRITE;
4087 reclaim_state.reclaimed_slab = 0;
4088 p->reclaim_state = &reclaim_state;
4090 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4092 * Free memory by calling shrink node with increasing
4093 * priorities until we have enough memory freed.
4096 shrink_node(pgdat, &sc);
4097 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4100 p->reclaim_state = NULL;
4101 current->flags &= ~PF_SWAPWRITE;
4102 memalloc_noreclaim_restore(noreclaim_flag);
4103 fs_reclaim_release(sc.gfp_mask);
4104 return sc.nr_reclaimed >= nr_pages;
4107 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4112 * Node reclaim reclaims unmapped file backed pages and
4113 * slab pages if we are over the defined limits.
4115 * A small portion of unmapped file backed pages is needed for
4116 * file I/O otherwise pages read by file I/O will be immediately
4117 * thrown out if the node is overallocated. So we do not reclaim
4118 * if less than a specified percentage of the node is used by
4119 * unmapped file backed pages.
4121 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4122 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4123 return NODE_RECLAIM_FULL;
4126 * Do not scan if the allocation should not be delayed.
4128 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4129 return NODE_RECLAIM_NOSCAN;
4132 * Only run node reclaim on the local node or on nodes that do not
4133 * have associated processors. This will favor the local processor
4134 * over remote processors and spread off node memory allocations
4135 * as wide as possible.
4137 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4138 return NODE_RECLAIM_NOSCAN;
4140 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4141 return NODE_RECLAIM_NOSCAN;
4143 ret = __node_reclaim(pgdat, gfp_mask, order);
4144 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4147 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4154 * page_evictable - test whether a page is evictable
4155 * @page: the page to test
4157 * Test whether page is evictable--i.e., should be placed on active/inactive
4158 * lists vs unevictable list.
4160 * Reasons page might not be evictable:
4161 * (1) page's mapping marked unevictable
4162 * (2) page is part of an mlocked VMA
4165 int page_evictable(struct page *page)
4169 /* Prevent address_space of inode and swap cache from being freed */
4171 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4178 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
4179 * @pages: array of pages to check
4180 * @nr_pages: number of pages to check
4182 * Checks pages for evictability and moves them to the appropriate lru list.
4184 * This function is only used for SysV IPC SHM_UNLOCK.
4186 void check_move_unevictable_pages(struct page **pages, int nr_pages)
4188 struct lruvec *lruvec;
4189 struct pglist_data *pgdat = NULL;
4194 for (i = 0; i < nr_pages; i++) {
4195 struct page *page = pages[i];
4196 struct pglist_data *pagepgdat = page_pgdat(page);
4199 if (pagepgdat != pgdat) {
4201 spin_unlock_irq(&pgdat->lru_lock);
4203 spin_lock_irq(&pgdat->lru_lock);
4205 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4207 if (!PageLRU(page) || !PageUnevictable(page))
4210 if (page_evictable(page)) {
4211 enum lru_list lru = page_lru_base_type(page);
4213 VM_BUG_ON_PAGE(PageActive(page), page);
4214 ClearPageUnevictable(page);
4215 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4216 add_page_to_lru_list(page, lruvec, lru);
4222 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4223 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4224 spin_unlock_irq(&pgdat->lru_lock);
4227 #endif /* CONFIG_SHMEM */