1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2015 Broadcom
9 * The Hardware Video Scaler (HVS) is the piece of hardware that does
10 * translation, scaling, colorspace conversion, and compositing of
11 * pixels stored in framebuffers into a FIFO of pixels going out to
12 * the Pixel Valve (CRTC). It operates at the system clock rate (the
13 * system audio clock gate, specifically), which is much higher than
14 * the pixel clock rate.
16 * There is a single global HVS, with multiple output FIFOs that can
17 * be consumed by the PVs. This file just manages the resources for
18 * the HVS, while the vc4_crtc.c code actually drives HVS setup for
22 #include <linux/bitfield.h>
23 #include <linux/clk.h>
24 #include <linux/component.h>
25 #include <linux/platform_device.h>
27 #include <drm/drm_atomic_helper.h>
28 #include <drm/drm_drv.h>
29 #include <drm/drm_vblank.h>
34 static const struct debugfs_reg32 hvs_regs[] = {
35 VC4_REG32(SCALER_DISPCTRL),
36 VC4_REG32(SCALER_DISPSTAT),
37 VC4_REG32(SCALER_DISPID),
38 VC4_REG32(SCALER_DISPECTRL),
39 VC4_REG32(SCALER_DISPPROF),
40 VC4_REG32(SCALER_DISPDITHER),
41 VC4_REG32(SCALER_DISPEOLN),
42 VC4_REG32(SCALER_DISPLIST0),
43 VC4_REG32(SCALER_DISPLIST1),
44 VC4_REG32(SCALER_DISPLIST2),
45 VC4_REG32(SCALER_DISPLSTAT),
46 VC4_REG32(SCALER_DISPLACT0),
47 VC4_REG32(SCALER_DISPLACT1),
48 VC4_REG32(SCALER_DISPLACT2),
49 VC4_REG32(SCALER_DISPCTRL0),
50 VC4_REG32(SCALER_DISPBKGND0),
51 VC4_REG32(SCALER_DISPSTAT0),
52 VC4_REG32(SCALER_DISPBASE0),
53 VC4_REG32(SCALER_DISPCTRL1),
54 VC4_REG32(SCALER_DISPBKGND1),
55 VC4_REG32(SCALER_DISPSTAT1),
56 VC4_REG32(SCALER_DISPBASE1),
57 VC4_REG32(SCALER_DISPCTRL2),
58 VC4_REG32(SCALER_DISPBKGND2),
59 VC4_REG32(SCALER_DISPSTAT2),
60 VC4_REG32(SCALER_DISPBASE2),
61 VC4_REG32(SCALER_DISPALPHA2),
62 VC4_REG32(SCALER_OLEDOFFS),
63 VC4_REG32(SCALER_OLEDCOEF0),
64 VC4_REG32(SCALER_OLEDCOEF1),
65 VC4_REG32(SCALER_OLEDCOEF2),
68 void vc4_hvs_dump_state(struct vc4_hvs *hvs)
70 struct drm_device *drm = &hvs->vc4->base;
71 struct drm_printer p = drm_info_printer(&hvs->pdev->dev);
74 if (!drm_dev_enter(drm, &idx))
77 drm_print_regset32(&p, &hvs->regset);
79 DRM_INFO("HVS ctx:\n");
80 for (i = 0; i < 64; i += 4) {
81 DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
82 i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
83 readl((u32 __iomem *)hvs->dlist + i + 0),
84 readl((u32 __iomem *)hvs->dlist + i + 1),
85 readl((u32 __iomem *)hvs->dlist + i + 2),
86 readl((u32 __iomem *)hvs->dlist + i + 3));
92 static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
94 struct drm_info_node *node = m->private;
95 struct drm_device *dev = node->minor->dev;
96 struct vc4_dev *vc4 = to_vc4_dev(dev);
97 struct drm_printer p = drm_seq_file_printer(m);
99 drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
104 static int vc4_hvs_debugfs_dlist(struct seq_file *m, void *data)
106 struct drm_info_node *node = m->private;
107 struct drm_device *dev = node->minor->dev;
108 struct vc4_dev *vc4 = to_vc4_dev(dev);
109 struct vc4_hvs *hvs = vc4->hvs;
110 struct drm_printer p = drm_seq_file_printer(m);
111 unsigned int next_entry_start = 0;
113 u32 dlist_word, dispstat;
115 for (i = 0; i < SCALER_CHANNELS_COUNT; i++) {
116 dispstat = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(i)),
117 SCALER_DISPSTATX_MODE);
118 if (dispstat == SCALER_DISPSTATX_MODE_DISABLED ||
119 dispstat == SCALER_DISPSTATX_MODE_EOF) {
120 drm_printf(&p, "HVS chan %u disabled\n", i);
124 drm_printf(&p, "HVS chan %u:\n", i);
126 for (j = HVS_READ(SCALER_DISPLISTX(i)); j < 256; j++) {
127 dlist_word = readl((u32 __iomem *)vc4->hvs->dlist + j);
128 drm_printf(&p, "dlist: %02d: 0x%08x\n", j,
130 if (!next_entry_start ||
131 next_entry_start == j) {
132 if (dlist_word & SCALER_CTL0_END)
134 next_entry_start = j +
135 VC4_GET_FIELD(dlist_word,
144 /* The filter kernel is composed of dwords each containing 3 9-bit
145 * signed integers packed next to each other.
147 #define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
148 #define VC4_PPF_FILTER_WORD(c0, c1, c2) \
149 ((((c0) & 0x1ff) << 0) | \
150 (((c1) & 0x1ff) << 9) | \
151 (((c2) & 0x1ff) << 18))
153 /* The whole filter kernel is arranged as the coefficients 0-16 going
154 * up, then a pad, then 17-31 going down and reversed within the
155 * dwords. This means that a linear phase kernel (where it's
156 * symmetrical at the boundary between 15 and 16) has the last 5
157 * dwords matching the first 5, but reversed.
159 #define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8, \
160 c9, c10, c11, c12, c13, c14, c15) \
161 {VC4_PPF_FILTER_WORD(c0, c1, c2), \
162 VC4_PPF_FILTER_WORD(c3, c4, c5), \
163 VC4_PPF_FILTER_WORD(c6, c7, c8), \
164 VC4_PPF_FILTER_WORD(c9, c10, c11), \
165 VC4_PPF_FILTER_WORD(c12, c13, c14), \
166 VC4_PPF_FILTER_WORD(c15, c15, 0)}
168 #define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
169 #define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
171 /* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
172 * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
174 static const u32 mitchell_netravali_1_3_1_3_kernel[] =
175 VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
176 50, 82, 119, 155, 187, 213, 227);
178 static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
179 struct drm_mm_node *space,
183 u32 __iomem *dst_kernel;
186 * NOTE: We don't need a call to drm_dev_enter()/drm_dev_exit()
187 * here since that function is only called from vc4_hvs_bind().
190 ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
192 DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
197 dst_kernel = hvs->dlist + space->start;
199 for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
200 if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
201 writel(kernel[i], &dst_kernel[i]);
203 writel(kernel[VC4_KERNEL_DWORDS - i - 1],
211 static void vc4_hvs_lut_load(struct vc4_hvs *hvs,
212 struct vc4_crtc *vc4_crtc)
214 struct drm_device *drm = &hvs->vc4->base;
215 struct drm_crtc *crtc = &vc4_crtc->base;
216 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
220 if (!drm_dev_enter(drm, &idx))
223 /* The LUT memory is laid out with each HVS channel in order,
224 * each of which takes 256 writes for R, 256 for G, then 256
227 HVS_WRITE(SCALER_GAMADDR,
228 SCALER_GAMADDR_AUTOINC |
229 (vc4_state->assigned_channel * 3 * crtc->gamma_size));
231 for (i = 0; i < crtc->gamma_size; i++)
232 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
233 for (i = 0; i < crtc->gamma_size; i++)
234 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
235 for (i = 0; i < crtc->gamma_size; i++)
236 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
241 static void vc4_hvs_update_gamma_lut(struct vc4_hvs *hvs,
242 struct vc4_crtc *vc4_crtc)
244 struct drm_crtc_state *crtc_state = vc4_crtc->base.state;
245 struct drm_color_lut *lut = crtc_state->gamma_lut->data;
246 u32 length = drm_color_lut_size(crtc_state->gamma_lut);
249 for (i = 0; i < length; i++) {
250 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
251 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
252 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
255 vc4_hvs_lut_load(hvs, vc4_crtc);
258 u8 vc4_hvs_get_fifo_frame_count(struct vc4_hvs *hvs, unsigned int fifo)
260 struct drm_device *drm = &hvs->vc4->base;
264 if (!drm_dev_enter(drm, &idx))
269 field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
270 SCALER_DISPSTAT1_FRCNT0);
273 field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
274 SCALER_DISPSTAT1_FRCNT1);
277 field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT2),
278 SCALER_DISPSTAT2_FRCNT2);
286 int vc4_hvs_get_fifo_from_output(struct vc4_hvs *hvs, unsigned int output)
288 struct vc4_dev *vc4 = hvs->vc4;
296 * NOTE: We should probably use drm_dev_enter()/drm_dev_exit()
297 * here, but this function is only used during the DRM device
298 * initialization, so we should be fine.
309 reg = HVS_READ(SCALER_DISPECTRL);
310 ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg);
317 reg = HVS_READ(SCALER_DISPCTRL);
318 ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg);
325 reg = HVS_READ(SCALER_DISPEOLN);
326 ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg);
333 reg = HVS_READ(SCALER_DISPDITHER);
334 ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg);
345 static int vc4_hvs_init_channel(struct vc4_hvs *hvs, struct drm_crtc *crtc,
346 struct drm_display_mode *mode, bool oneshot)
348 struct vc4_dev *vc4 = hvs->vc4;
349 struct drm_device *drm = &vc4->base;
350 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
351 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
352 unsigned int chan = vc4_crtc_state->assigned_channel;
353 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
358 if (!drm_dev_enter(drm, &idx))
361 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
362 HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
363 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
365 /* Turn on the scaler, which will wait for vstart to start
367 * When feeding the transposer, we should operate in oneshot
370 dispctrl = SCALER_DISPCTRLX_ENABLE;
373 dispctrl |= VC4_SET_FIELD(mode->hdisplay,
374 SCALER_DISPCTRLX_WIDTH) |
375 VC4_SET_FIELD(mode->vdisplay,
376 SCALER_DISPCTRLX_HEIGHT) |
377 (oneshot ? SCALER_DISPCTRLX_ONESHOT : 0);
379 dispctrl |= VC4_SET_FIELD(mode->hdisplay,
380 SCALER5_DISPCTRLX_WIDTH) |
381 VC4_SET_FIELD(mode->vdisplay,
382 SCALER5_DISPCTRLX_HEIGHT) |
383 (oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0);
385 HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl);
387 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan));
388 dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
389 dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE;
391 HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx |
392 SCALER_DISPBKGND_AUTOHS |
393 ((!vc4->is_vc5) ? SCALER_DISPBKGND_GAMMA : 0) |
394 (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
396 /* Reload the LUT, since the SRAMs would have been disabled if
397 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
399 vc4_hvs_lut_load(hvs, vc4_crtc);
406 void vc4_hvs_stop_channel(struct vc4_hvs *hvs, unsigned int chan)
408 struct drm_device *drm = &hvs->vc4->base;
411 if (!drm_dev_enter(drm, &idx))
414 if (HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE)
417 HVS_WRITE(SCALER_DISPCTRLX(chan),
418 HVS_READ(SCALER_DISPCTRLX(chan)) | SCALER_DISPCTRLX_RESET);
419 HVS_WRITE(SCALER_DISPCTRLX(chan),
420 HVS_READ(SCALER_DISPCTRLX(chan)) & ~SCALER_DISPCTRLX_ENABLE);
422 /* Once we leave, the scaler should be disabled and its fifo empty. */
423 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
425 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
426 SCALER_DISPSTATX_MODE) !=
427 SCALER_DISPSTATX_MODE_DISABLED);
429 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
430 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
431 SCALER_DISPSTATX_EMPTY);
437 int vc4_hvs_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state)
439 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
440 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
441 struct drm_device *dev = crtc->dev;
442 struct vc4_dev *vc4 = to_vc4_dev(dev);
443 struct drm_plane *plane;
445 const struct drm_plane_state *plane_state;
449 /* The pixelvalve can only feed one encoder (and encoders are
450 * 1:1 with connectors.)
452 if (hweight32(crtc_state->connector_mask) > 1)
455 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state)
456 dlist_count += vc4_plane_dlist_size(plane_state);
458 dlist_count++; /* Account for SCALER_CTL0_END. */
460 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
461 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
463 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
470 static void vc4_hvs_install_dlist(struct drm_crtc *crtc)
472 struct drm_device *dev = crtc->dev;
473 struct vc4_dev *vc4 = to_vc4_dev(dev);
474 struct vc4_hvs *hvs = vc4->hvs;
475 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
478 if (!drm_dev_enter(dev, &idx))
481 HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
482 vc4_state->mm.start);
487 static void vc4_hvs_update_dlist(struct drm_crtc *crtc)
489 struct drm_device *dev = crtc->dev;
490 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
491 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
494 if (crtc->state->event) {
495 crtc->state->event->pipe = drm_crtc_index(crtc);
497 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
499 spin_lock_irqsave(&dev->event_lock, flags);
501 if (!vc4_crtc->feeds_txp || vc4_state->txp_armed) {
502 vc4_crtc->event = crtc->state->event;
503 crtc->state->event = NULL;
506 spin_unlock_irqrestore(&dev->event_lock, flags);
509 spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
510 vc4_crtc->current_dlist = vc4_state->mm.start;
511 spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
514 void vc4_hvs_atomic_begin(struct drm_crtc *crtc,
515 struct drm_atomic_state *state)
517 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
518 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
521 spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
522 vc4_crtc->current_hvs_channel = vc4_state->assigned_channel;
523 spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
526 void vc4_hvs_atomic_enable(struct drm_crtc *crtc,
527 struct drm_atomic_state *state)
529 struct drm_device *dev = crtc->dev;
530 struct vc4_dev *vc4 = to_vc4_dev(dev);
531 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
532 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
533 bool oneshot = vc4_crtc->feeds_txp;
535 vc4_hvs_install_dlist(crtc);
536 vc4_hvs_update_dlist(crtc);
537 vc4_hvs_init_channel(vc4->hvs, crtc, mode, oneshot);
540 void vc4_hvs_atomic_disable(struct drm_crtc *crtc,
541 struct drm_atomic_state *state)
543 struct drm_device *dev = crtc->dev;
544 struct vc4_dev *vc4 = to_vc4_dev(dev);
545 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc);
546 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state);
547 unsigned int chan = vc4_state->assigned_channel;
549 vc4_hvs_stop_channel(vc4->hvs, chan);
552 void vc4_hvs_atomic_flush(struct drm_crtc *crtc,
553 struct drm_atomic_state *state)
555 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
557 struct drm_device *dev = crtc->dev;
558 struct vc4_dev *vc4 = to_vc4_dev(dev);
559 struct vc4_hvs *hvs = vc4->hvs;
560 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
561 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
562 unsigned int channel = vc4_state->assigned_channel;
563 struct drm_plane *plane;
564 struct vc4_plane_state *vc4_plane_state;
565 bool debug_dump_regs = false;
566 bool enable_bg_fill = false;
567 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
568 u32 __iomem *dlist_next = dlist_start;
571 if (!drm_dev_enter(dev, &idx)) {
572 vc4_crtc_send_vblank(crtc);
576 if (debug_dump_regs) {
577 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
578 vc4_hvs_dump_state(hvs);
581 /* Copy all the active planes' dlist contents to the hardware dlist. */
582 drm_atomic_crtc_for_each_plane(plane, crtc) {
583 /* Is this the first active plane? */
584 if (dlist_next == dlist_start) {
585 /* We need to enable background fill when a plane
586 * could be alpha blending from the background, i.e.
587 * where no other plane is underneath. It suffices to
588 * consider the first active plane here since we set
589 * needs_bg_fill such that either the first plane
590 * already needs it or all planes on top blend from
591 * the first or a lower plane.
593 vc4_plane_state = to_vc4_plane_state(plane->state);
594 enable_bg_fill = vc4_plane_state->needs_bg_fill;
597 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
600 writel(SCALER_CTL0_END, dlist_next);
603 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
606 /* This sets a black background color fill, as is the case
607 * with other DRM drivers.
609 HVS_WRITE(SCALER_DISPBKGNDX(channel),
610 HVS_READ(SCALER_DISPBKGNDX(channel)) |
611 SCALER_DISPBKGND_FILL);
613 /* Only update DISPLIST if the CRTC was already running and is not
615 * vc4_crtc_enable() takes care of updating the dlist just after
616 * re-enabling VBLANK interrupts and before enabling the engine.
617 * If the CRTC is being disabled, there's no point in updating this
620 if (crtc->state->active && old_state->active) {
621 vc4_hvs_install_dlist(crtc);
622 vc4_hvs_update_dlist(crtc);
625 if (crtc->state->color_mgmt_changed) {
626 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(channel));
628 if (crtc->state->gamma_lut) {
629 vc4_hvs_update_gamma_lut(hvs, vc4_crtc);
630 dispbkgndx |= SCALER_DISPBKGND_GAMMA;
632 /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
633 * in hardware, which is the same as a linear lut that
634 * DRM expects us to use in absence of a user lut.
636 dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
638 HVS_WRITE(SCALER_DISPBKGNDX(channel), dispbkgndx);
641 if (debug_dump_regs) {
642 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
643 vc4_hvs_dump_state(hvs);
649 void vc4_hvs_mask_underrun(struct vc4_hvs *hvs, int channel)
651 struct drm_device *drm = &hvs->vc4->base;
655 if (!drm_dev_enter(drm, &idx))
658 dispctrl = HVS_READ(SCALER_DISPCTRL);
659 dispctrl &= ~SCALER_DISPCTRL_DSPEISLUR(channel);
661 HVS_WRITE(SCALER_DISPCTRL, dispctrl);
666 void vc4_hvs_unmask_underrun(struct vc4_hvs *hvs, int channel)
668 struct drm_device *drm = &hvs->vc4->base;
672 if (!drm_dev_enter(drm, &idx))
675 dispctrl = HVS_READ(SCALER_DISPCTRL);
676 dispctrl |= SCALER_DISPCTRL_DSPEISLUR(channel);
678 HVS_WRITE(SCALER_DISPSTAT,
679 SCALER_DISPSTAT_EUFLOW(channel));
680 HVS_WRITE(SCALER_DISPCTRL, dispctrl);
685 static void vc4_hvs_report_underrun(struct drm_device *dev)
687 struct vc4_dev *vc4 = to_vc4_dev(dev);
689 atomic_inc(&vc4->underrun);
690 DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
693 static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
695 struct drm_device *dev = data;
696 struct vc4_dev *vc4 = to_vc4_dev(dev);
697 struct vc4_hvs *hvs = vc4->hvs;
698 irqreturn_t irqret = IRQ_NONE;
704 * NOTE: We don't need to protect the register access using
705 * drm_dev_enter() there because the interrupt handler lifetime
706 * is tied to the device itself, and not to the DRM device.
708 * So when the device will be gone, one of the first thing we
709 * will be doing will be to unregister the interrupt handler,
710 * and then unregister the DRM device. drm_dev_enter() would
711 * thus always succeed if we are here.
714 status = HVS_READ(SCALER_DISPSTAT);
715 control = HVS_READ(SCALER_DISPCTRL);
717 for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
718 /* Interrupt masking is not always honored, so check it here. */
719 if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
720 control & SCALER_DISPCTRL_DSPEISLUR(channel)) {
721 vc4_hvs_mask_underrun(hvs, channel);
722 vc4_hvs_report_underrun(dev);
724 irqret = IRQ_HANDLED;
728 /* Clear every per-channel interrupt flag. */
729 HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
730 SCALER_DISPSTAT_IRQMASK(1) |
731 SCALER_DISPSTAT_IRQMASK(2));
736 int vc4_hvs_debugfs_init(struct drm_minor *minor)
738 struct drm_device *drm = minor->dev;
739 struct vc4_dev *vc4 = to_vc4_dev(drm);
740 struct vc4_hvs *hvs = vc4->hvs;
747 debugfs_create_bool("hvs_load_tracker", S_IRUGO | S_IWUSR,
749 &vc4->load_tracker_enabled);
751 ret = vc4_debugfs_add_file(minor, "hvs_dlists",
752 vc4_hvs_debugfs_dlist, NULL);
756 ret = vc4_debugfs_add_file(minor, "hvs_underrun",
757 vc4_hvs_debugfs_underrun, NULL);
761 ret = vc4_debugfs_add_regset32(minor, "hvs_regs",
769 static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
771 struct platform_device *pdev = to_platform_device(dev);
772 struct drm_device *drm = dev_get_drvdata(master);
773 struct vc4_dev *vc4 = to_vc4_dev(drm);
774 struct vc4_hvs *hvs = NULL;
779 hvs = drmm_kzalloc(drm, sizeof(*hvs), GFP_KERNEL);
785 hvs->regs = vc4_ioremap_regs(pdev, 0);
786 if (IS_ERR(hvs->regs))
787 return PTR_ERR(hvs->regs);
789 hvs->regset.base = hvs->regs;
790 hvs->regset.regs = hvs_regs;
791 hvs->regset.nregs = ARRAY_SIZE(hvs_regs);
794 hvs->core_clk = devm_clk_get(&pdev->dev, NULL);
795 if (IS_ERR(hvs->core_clk)) {
796 dev_err(&pdev->dev, "Couldn't get core clock\n");
797 return PTR_ERR(hvs->core_clk);
800 ret = clk_prepare_enable(hvs->core_clk);
802 dev_err(&pdev->dev, "Couldn't enable the core clock\n");
808 hvs->dlist = hvs->regs + SCALER_DLIST_START;
810 hvs->dlist = hvs->regs + SCALER5_DLIST_START;
812 spin_lock_init(&hvs->mm_lock);
814 /* Set up the HVS display list memory manager. We never
815 * overwrite the setup from the bootloader (just 128b out of
816 * our 16K), since we don't want to scramble the screen when
817 * transitioning from the firmware's boot setup to runtime.
819 drm_mm_init(&hvs->dlist_mm,
820 HVS_BOOTLOADER_DLIST_END,
821 (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
823 /* Set up the HVS LBM memory manager. We could have some more
824 * complicated data structure that allowed reuse of LBM areas
825 * between planes when they don't overlap on the screen, but
826 * for now we just allocate globally.
829 /* 48k words of 2x12-bit pixels */
830 drm_mm_init(&hvs->lbm_mm, 0, 48 * 1024);
832 /* 60k words of 4x12-bit pixels */
833 drm_mm_init(&hvs->lbm_mm, 0, 60 * 1024);
835 /* Upload filter kernels. We only have the one for now, so we
836 * keep it around for the lifetime of the driver.
838 ret = vc4_hvs_upload_linear_kernel(hvs,
839 &hvs->mitchell_netravali_filter,
840 mitchell_netravali_1_3_1_3_kernel);
846 reg = HVS_READ(SCALER_DISPECTRL);
847 reg &= ~SCALER_DISPECTRL_DSP2_MUX_MASK;
848 HVS_WRITE(SCALER_DISPECTRL,
849 reg | VC4_SET_FIELD(0, SCALER_DISPECTRL_DSP2_MUX));
851 reg = HVS_READ(SCALER_DISPCTRL);
852 reg &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
853 HVS_WRITE(SCALER_DISPCTRL,
854 reg | VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX));
856 reg = HVS_READ(SCALER_DISPEOLN);
857 reg &= ~SCALER_DISPEOLN_DSP4_MUX_MASK;
858 HVS_WRITE(SCALER_DISPEOLN,
859 reg | VC4_SET_FIELD(3, SCALER_DISPEOLN_DSP4_MUX));
861 reg = HVS_READ(SCALER_DISPDITHER);
862 reg &= ~SCALER_DISPDITHER_DSP5_MUX_MASK;
863 HVS_WRITE(SCALER_DISPDITHER,
864 reg | VC4_SET_FIELD(3, SCALER_DISPDITHER_DSP5_MUX));
866 dispctrl = HVS_READ(SCALER_DISPCTRL);
868 dispctrl |= SCALER_DISPCTRL_ENABLE;
869 dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
870 SCALER_DISPCTRL_DISPEIRQ(1) |
871 SCALER_DISPCTRL_DISPEIRQ(2);
873 dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
874 SCALER_DISPCTRL_SLVWREIRQ |
875 SCALER_DISPCTRL_SLVRDEIRQ |
876 SCALER_DISPCTRL_DSPEIEOF(0) |
877 SCALER_DISPCTRL_DSPEIEOF(1) |
878 SCALER_DISPCTRL_DSPEIEOF(2) |
879 SCALER_DISPCTRL_DSPEIEOLN(0) |
880 SCALER_DISPCTRL_DSPEIEOLN(1) |
881 SCALER_DISPCTRL_DSPEIEOLN(2) |
882 SCALER_DISPCTRL_DSPEISLUR(0) |
883 SCALER_DISPCTRL_DSPEISLUR(1) |
884 SCALER_DISPCTRL_DSPEISLUR(2) |
885 SCALER_DISPCTRL_SCLEIRQ);
887 HVS_WRITE(SCALER_DISPCTRL, dispctrl);
889 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
890 vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
897 static void vc4_hvs_unbind(struct device *dev, struct device *master,
900 struct drm_device *drm = dev_get_drvdata(master);
901 struct vc4_dev *vc4 = to_vc4_dev(drm);
902 struct vc4_hvs *hvs = vc4->hvs;
903 struct drm_mm_node *node, *next;
905 if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter))
906 drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
908 drm_mm_for_each_node_safe(node, next, &vc4->hvs->dlist_mm)
909 drm_mm_remove_node(node);
911 drm_mm_takedown(&vc4->hvs->dlist_mm);
913 drm_mm_for_each_node_safe(node, next, &vc4->hvs->lbm_mm)
914 drm_mm_remove_node(node);
915 drm_mm_takedown(&vc4->hvs->lbm_mm);
917 clk_disable_unprepare(hvs->core_clk);
922 static const struct component_ops vc4_hvs_ops = {
923 .bind = vc4_hvs_bind,
924 .unbind = vc4_hvs_unbind,
927 static int vc4_hvs_dev_probe(struct platform_device *pdev)
929 return component_add(&pdev->dev, &vc4_hvs_ops);
932 static int vc4_hvs_dev_remove(struct platform_device *pdev)
934 component_del(&pdev->dev, &vc4_hvs_ops);
938 static const struct of_device_id vc4_hvs_dt_match[] = {
939 { .compatible = "brcm,bcm2711-hvs" },
940 { .compatible = "brcm,bcm2835-hvs" },
944 struct platform_driver vc4_hvs_driver = {
945 .probe = vc4_hvs_dev_probe,
946 .remove = vc4_hvs_dev_remove,
949 .of_match_table = vc4_hvs_dt_match,