]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gfx_v9.c
Merge tag 'opp-updates-6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/vireshk/pm
[linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_amdkfd_gfx_v9.c
1 /*
2  * Copyright 2014-2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "amdgpu.h"
23 #include "amdgpu_amdkfd.h"
24 #include "gc/gc_9_0_offset.h"
25 #include "gc/gc_9_0_sh_mask.h"
26 #include "vega10_enum.h"
27 #include "sdma0/sdma0_4_0_offset.h"
28 #include "sdma0/sdma0_4_0_sh_mask.h"
29 #include "sdma1/sdma1_4_0_offset.h"
30 #include "sdma1/sdma1_4_0_sh_mask.h"
31 #include "athub/athub_1_0_offset.h"
32 #include "athub/athub_1_0_sh_mask.h"
33 #include "oss/osssys_4_0_offset.h"
34 #include "oss/osssys_4_0_sh_mask.h"
35 #include "soc15_common.h"
36 #include "v9_structs.h"
37 #include "soc15.h"
38 #include "soc15d.h"
39 #include "gfx_v9_0.h"
40 #include "amdgpu_amdkfd_gfx_v9.h"
41
42 enum hqd_dequeue_request_type {
43         NO_ACTION = 0,
44         DRAIN_PIPE,
45         RESET_WAVES,
46         SAVE_WAVES
47 };
48
49 static void lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe,
50                         uint32_t queue, uint32_t vmid)
51 {
52         mutex_lock(&adev->srbm_mutex);
53         soc15_grbm_select(adev, mec, pipe, queue, vmid);
54 }
55
56 static void unlock_srbm(struct amdgpu_device *adev)
57 {
58         soc15_grbm_select(adev, 0, 0, 0, 0);
59         mutex_unlock(&adev->srbm_mutex);
60 }
61
62 static void acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id,
63                                 uint32_t queue_id)
64 {
65         uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
66         uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
67
68         lock_srbm(adev, mec, pipe, queue_id, 0);
69 }
70
71 static uint64_t get_queue_mask(struct amdgpu_device *adev,
72                                uint32_t pipe_id, uint32_t queue_id)
73 {
74         unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
75                         queue_id;
76
77         return 1ull << bit;
78 }
79
80 static void release_queue(struct amdgpu_device *adev)
81 {
82         unlock_srbm(adev);
83 }
84
85 void kgd_gfx_v9_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid,
86                                         uint32_t sh_mem_config,
87                                         uint32_t sh_mem_ape1_base,
88                                         uint32_t sh_mem_ape1_limit,
89                                         uint32_t sh_mem_bases)
90 {
91         lock_srbm(adev, 0, 0, 0, vmid);
92
93         WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_CONFIG), sh_mem_config);
94         WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_BASES), sh_mem_bases);
95         /* APE1 no longer exists on GFX9 */
96
97         unlock_srbm(adev);
98 }
99
100 int kgd_gfx_v9_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid,
101                                         unsigned int vmid)
102 {
103         /*
104          * We have to assume that there is no outstanding mapping.
105          * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
106          * a mapping is in progress or because a mapping finished
107          * and the SW cleared it.
108          * So the protocol is to always wait & clear.
109          */
110         uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
111                         ATC_VMID0_PASID_MAPPING__VALID_MASK;
112
113         /*
114          * need to do this twice, once for gfx and once for mmhub
115          * for ATC add 16 to VMID for mmhub, for IH different registers.
116          * ATC_VMID0..15 registers are separate from ATC_VMID16..31.
117          */
118
119         WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid,
120                pasid_mapping);
121
122         while (!(RREG32(SOC15_REG_OFFSET(
123                                 ATHUB, 0,
124                                 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
125                  (1U << vmid)))
126                 cpu_relax();
127
128         WREG32(SOC15_REG_OFFSET(ATHUB, 0,
129                                 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
130                1U << vmid);
131
132         /* Mapping vmid to pasid also for IH block */
133         WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid,
134                pasid_mapping);
135
136         WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID16_PASID_MAPPING) + vmid,
137                pasid_mapping);
138
139         while (!(RREG32(SOC15_REG_OFFSET(
140                                 ATHUB, 0,
141                                 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
142                  (1U << (vmid + 16))))
143                 cpu_relax();
144
145         WREG32(SOC15_REG_OFFSET(ATHUB, 0,
146                                 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
147                1U << (vmid + 16));
148
149         /* Mapping vmid to pasid also for IH block */
150         WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT_MM) + vmid,
151                pasid_mapping);
152         return 0;
153 }
154
155 /* TODO - RING0 form of field is obsolete, seems to date back to SI
156  * but still works
157  */
158
159 int kgd_gfx_v9_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id)
160 {
161         uint32_t mec;
162         uint32_t pipe;
163
164         mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
165         pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
166
167         lock_srbm(adev, mec, pipe, 0, 0);
168
169         WREG32_SOC15(GC, 0, mmCPC_INT_CNTL,
170                 CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
171                 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
172
173         unlock_srbm(adev);
174
175         return 0;
176 }
177
178 static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
179                                 unsigned int engine_id,
180                                 unsigned int queue_id)
181 {
182         uint32_t sdma_engine_reg_base = 0;
183         uint32_t sdma_rlc_reg_offset;
184
185         switch (engine_id) {
186         default:
187                 dev_warn(adev->dev,
188                          "Invalid sdma engine id (%d), using engine id 0\n",
189                          engine_id);
190                 fallthrough;
191         case 0:
192                 sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0,
193                                 mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
194                 break;
195         case 1:
196                 sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA1, 0,
197                                 mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
198                 break;
199         }
200
201         sdma_rlc_reg_offset = sdma_engine_reg_base
202                 + queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL);
203
204         pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
205                  queue_id, sdma_rlc_reg_offset);
206
207         return sdma_rlc_reg_offset;
208 }
209
210 static inline struct v9_mqd *get_mqd(void *mqd)
211 {
212         return (struct v9_mqd *)mqd;
213 }
214
215 static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd)
216 {
217         return (struct v9_sdma_mqd *)mqd;
218 }
219
220 int kgd_gfx_v9_hqd_load(struct amdgpu_device *adev, void *mqd,
221                         uint32_t pipe_id, uint32_t queue_id,
222                         uint32_t __user *wptr, uint32_t wptr_shift,
223                         uint32_t wptr_mask, struct mm_struct *mm)
224 {
225         struct v9_mqd *m;
226         uint32_t *mqd_hqd;
227         uint32_t reg, hqd_base, data;
228
229         m = get_mqd(mqd);
230
231         acquire_queue(adev, pipe_id, queue_id);
232
233         /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
234         mqd_hqd = &m->cp_mqd_base_addr_lo;
235         hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
236
237         for (reg = hqd_base;
238              reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
239                 WREG32_RLC(reg, mqd_hqd[reg - hqd_base]);
240
241
242         /* Activate doorbell logic before triggering WPTR poll. */
243         data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
244                              CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
245         WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL), data);
246
247         if (wptr) {
248                 /* Don't read wptr with get_user because the user
249                  * context may not be accessible (if this function
250                  * runs in a work queue). Instead trigger a one-shot
251                  * polling read from memory in the CP. This assumes
252                  * that wptr is GPU-accessible in the queue's VMID via
253                  * ATC or SVM. WPTR==RPTR before starting the poll so
254                  * the CP starts fetching new commands from the right
255                  * place.
256                  *
257                  * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
258                  * tricky. Assume that the queue didn't overflow. The
259                  * number of valid bits in the 32-bit RPTR depends on
260                  * the queue size. The remaining bits are taken from
261                  * the saved 64-bit WPTR. If the WPTR wrapped, add the
262                  * queue size.
263                  */
264                 uint32_t queue_size =
265                         2 << REG_GET_FIELD(m->cp_hqd_pq_control,
266                                            CP_HQD_PQ_CONTROL, QUEUE_SIZE);
267                 uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
268
269                 if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
270                         guessed_wptr += queue_size;
271                 guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
272                 guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
273
274                 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_LO),
275                        lower_32_bits(guessed_wptr));
276                 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI),
277                        upper_32_bits(guessed_wptr));
278                 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR),
279                        lower_32_bits((uintptr_t)wptr));
280                 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI),
281                        upper_32_bits((uintptr_t)wptr));
282                 WREG32_SOC15(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1,
283                        (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
284         }
285
286         /* Start the EOP fetcher */
287         WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_EOP_RPTR),
288                REG_SET_FIELD(m->cp_hqd_eop_rptr,
289                              CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
290
291         data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
292         WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE), data);
293
294         release_queue(adev);
295
296         return 0;
297 }
298
299 int kgd_gfx_v9_hiq_mqd_load(struct amdgpu_device *adev, void *mqd,
300                             uint32_t pipe_id, uint32_t queue_id,
301                             uint32_t doorbell_off)
302 {
303         struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring;
304         struct v9_mqd *m;
305         uint32_t mec, pipe;
306         int r;
307
308         m = get_mqd(mqd);
309
310         acquire_queue(adev, pipe_id, queue_id);
311
312         mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
313         pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
314
315         pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
316                  mec, pipe, queue_id);
317
318         spin_lock(&adev->gfx.kiq.ring_lock);
319         r = amdgpu_ring_alloc(kiq_ring, 7);
320         if (r) {
321                 pr_err("Failed to alloc KIQ (%d).\n", r);
322                 goto out_unlock;
323         }
324
325         amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
326         amdgpu_ring_write(kiq_ring,
327                           PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
328                           PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
329                           PACKET3_MAP_QUEUES_QUEUE(queue_id) |
330                           PACKET3_MAP_QUEUES_PIPE(pipe) |
331                           PACKET3_MAP_QUEUES_ME((mec - 1)) |
332                           PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
333                           PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
334                           PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
335                           PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
336         amdgpu_ring_write(kiq_ring,
337                           PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
338         amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
339         amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
340         amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
341         amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
342         amdgpu_ring_commit(kiq_ring);
343
344 out_unlock:
345         spin_unlock(&adev->gfx.kiq.ring_lock);
346         release_queue(adev);
347
348         return r;
349 }
350
351 int kgd_gfx_v9_hqd_dump(struct amdgpu_device *adev,
352                         uint32_t pipe_id, uint32_t queue_id,
353                         uint32_t (**dump)[2], uint32_t *n_regs)
354 {
355         uint32_t i = 0, reg;
356 #define HQD_N_REGS 56
357 #define DUMP_REG(addr) do {                             \
358                 if (WARN_ON_ONCE(i >= HQD_N_REGS))      \
359                         break;                          \
360                 (*dump)[i][0] = (addr) << 2;            \
361                 (*dump)[i++][1] = RREG32(addr);         \
362         } while (0)
363
364         *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
365         if (*dump == NULL)
366                 return -ENOMEM;
367
368         acquire_queue(adev, pipe_id, queue_id);
369
370         for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
371              reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
372                 DUMP_REG(reg);
373
374         release_queue(adev);
375
376         WARN_ON_ONCE(i != HQD_N_REGS);
377         *n_regs = i;
378
379         return 0;
380 }
381
382 static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd,
383                              uint32_t __user *wptr, struct mm_struct *mm)
384 {
385         struct v9_sdma_mqd *m;
386         uint32_t sdma_rlc_reg_offset;
387         unsigned long end_jiffies;
388         uint32_t data;
389         uint64_t data64;
390         uint64_t __user *wptr64 = (uint64_t __user *)wptr;
391
392         m = get_sdma_mqd(mqd);
393         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
394                                             m->sdma_queue_id);
395
396         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
397                 m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
398
399         end_jiffies = msecs_to_jiffies(2000) + jiffies;
400         while (true) {
401                 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
402                 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
403                         break;
404                 if (time_after(jiffies, end_jiffies)) {
405                         pr_err("SDMA RLC not idle in %s\n", __func__);
406                         return -ETIME;
407                 }
408                 usleep_range(500, 1000);
409         }
410
411         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET,
412                m->sdmax_rlcx_doorbell_offset);
413
414         data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
415                              ENABLE, 1);
416         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
417         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
418                                 m->sdmax_rlcx_rb_rptr);
419         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI,
420                                 m->sdmax_rlcx_rb_rptr_hi);
421
422         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
423         if (read_user_wptr(mm, wptr64, data64)) {
424                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
425                        lower_32_bits(data64));
426                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
427                        upper_32_bits(data64));
428         } else {
429                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
430                        m->sdmax_rlcx_rb_rptr);
431                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
432                        m->sdmax_rlcx_rb_rptr_hi);
433         }
434         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
435
436         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
437         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
438                         m->sdmax_rlcx_rb_base_hi);
439         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
440                         m->sdmax_rlcx_rb_rptr_addr_lo);
441         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
442                         m->sdmax_rlcx_rb_rptr_addr_hi);
443
444         data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
445                              RB_ENABLE, 1);
446         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
447
448         return 0;
449 }
450
451 static int kgd_hqd_sdma_dump(struct amdgpu_device *adev,
452                              uint32_t engine_id, uint32_t queue_id,
453                              uint32_t (**dump)[2], uint32_t *n_regs)
454 {
455         uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
456                         engine_id, queue_id);
457         uint32_t i = 0, reg;
458 #undef HQD_N_REGS
459 #define HQD_N_REGS (19+6+7+10)
460
461         *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
462         if (*dump == NULL)
463                 return -ENOMEM;
464
465         for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
466                 DUMP_REG(sdma_rlc_reg_offset + reg);
467         for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
468                 DUMP_REG(sdma_rlc_reg_offset + reg);
469         for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
470              reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
471                 DUMP_REG(sdma_rlc_reg_offset + reg);
472         for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
473              reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
474                 DUMP_REG(sdma_rlc_reg_offset + reg);
475
476         WARN_ON_ONCE(i != HQD_N_REGS);
477         *n_regs = i;
478
479         return 0;
480 }
481
482 bool kgd_gfx_v9_hqd_is_occupied(struct amdgpu_device *adev,
483                                 uint64_t queue_address, uint32_t pipe_id,
484                                 uint32_t queue_id)
485 {
486         uint32_t act;
487         bool retval = false;
488         uint32_t low, high;
489
490         acquire_queue(adev, pipe_id, queue_id);
491         act = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE);
492         if (act) {
493                 low = lower_32_bits(queue_address >> 8);
494                 high = upper_32_bits(queue_address >> 8);
495
496                 if (low == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE) &&
497                    high == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE_HI))
498                         retval = true;
499         }
500         release_queue(adev);
501         return retval;
502 }
503
504 static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd)
505 {
506         struct v9_sdma_mqd *m;
507         uint32_t sdma_rlc_reg_offset;
508         uint32_t sdma_rlc_rb_cntl;
509
510         m = get_sdma_mqd(mqd);
511         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
512                                             m->sdma_queue_id);
513
514         sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
515
516         if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
517                 return true;
518
519         return false;
520 }
521
522 int kgd_gfx_v9_hqd_destroy(struct amdgpu_device *adev, void *mqd,
523                                 enum kfd_preempt_type reset_type,
524                                 unsigned int utimeout, uint32_t pipe_id,
525                                 uint32_t queue_id)
526 {
527         enum hqd_dequeue_request_type type;
528         unsigned long end_jiffies;
529         uint32_t temp;
530         struct v9_mqd *m = get_mqd(mqd);
531
532         if (amdgpu_in_reset(adev))
533                 return -EIO;
534
535         acquire_queue(adev, pipe_id, queue_id);
536
537         if (m->cp_hqd_vmid == 0)
538                 WREG32_FIELD15_RLC(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0);
539
540         switch (reset_type) {
541         case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
542                 type = DRAIN_PIPE;
543                 break;
544         case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
545                 type = RESET_WAVES;
546                 break;
547         case KFD_PREEMPT_TYPE_WAVEFRONT_SAVE:
548                 type = SAVE_WAVES;
549                 break;
550         default:
551                 type = DRAIN_PIPE;
552                 break;
553         }
554
555         WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_DEQUEUE_REQUEST), type);
556
557         end_jiffies = (utimeout * HZ / 1000) + jiffies;
558         while (true) {
559                 temp = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE);
560                 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
561                         break;
562                 if (time_after(jiffies, end_jiffies)) {
563                         pr_err("cp queue preemption time out.\n");
564                         release_queue(adev);
565                         return -ETIME;
566                 }
567                 usleep_range(500, 1000);
568         }
569
570         release_queue(adev);
571         return 0;
572 }
573
574 static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd,
575                                 unsigned int utimeout)
576 {
577         struct v9_sdma_mqd *m;
578         uint32_t sdma_rlc_reg_offset;
579         uint32_t temp;
580         unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
581
582         m = get_sdma_mqd(mqd);
583         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
584                                             m->sdma_queue_id);
585
586         temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
587         temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
588         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
589
590         while (true) {
591                 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
592                 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
593                         break;
594                 if (time_after(jiffies, end_jiffies)) {
595                         pr_err("SDMA RLC not idle in %s\n", __func__);
596                         return -ETIME;
597                 }
598                 usleep_range(500, 1000);
599         }
600
601         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
602         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
603                 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
604                 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
605
606         m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
607         m->sdmax_rlcx_rb_rptr_hi =
608                 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI);
609
610         return 0;
611 }
612
613 bool kgd_gfx_v9_get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev,
614                                         uint8_t vmid, uint16_t *p_pasid)
615 {
616         uint32_t value;
617
618         value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
619                      + vmid);
620         *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
621
622         return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
623 }
624
625 int kgd_gfx_v9_wave_control_execute(struct amdgpu_device *adev,
626                                         uint32_t gfx_index_val,
627                                         uint32_t sq_cmd)
628 {
629         uint32_t data = 0;
630
631         mutex_lock(&adev->grbm_idx_mutex);
632
633         WREG32_SOC15_RLC_SHADOW(GC, 0, mmGRBM_GFX_INDEX, gfx_index_val);
634         WREG32_SOC15(GC, 0, mmSQ_CMD, sq_cmd);
635
636         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
637                 INSTANCE_BROADCAST_WRITES, 1);
638         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
639                 SH_BROADCAST_WRITES, 1);
640         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
641                 SE_BROADCAST_WRITES, 1);
642
643         WREG32_SOC15_RLC_SHADOW(GC, 0, mmGRBM_GFX_INDEX, data);
644         mutex_unlock(&adev->grbm_idx_mutex);
645
646         return 0;
647 }
648
649 void kgd_gfx_v9_set_vm_context_page_table_base(struct amdgpu_device *adev,
650                         uint32_t vmid, uint64_t page_table_base)
651 {
652         if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
653                 pr_err("trying to set page table base for wrong VMID %u\n",
654                        vmid);
655                 return;
656         }
657
658         adev->mmhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
659
660         adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
661 }
662
663 static void lock_spi_csq_mutexes(struct amdgpu_device *adev)
664 {
665         mutex_lock(&adev->srbm_mutex);
666         mutex_lock(&adev->grbm_idx_mutex);
667
668 }
669
670 static void unlock_spi_csq_mutexes(struct amdgpu_device *adev)
671 {
672         mutex_unlock(&adev->grbm_idx_mutex);
673         mutex_unlock(&adev->srbm_mutex);
674 }
675
676 /**
677  * get_wave_count: Read device registers to get number of waves in flight for
678  * a particular queue. The method also returns the VMID associated with the
679  * queue.
680  *
681  * @adev: Handle of device whose registers are to be read
682  * @queue_idx: Index of queue in the queue-map bit-field
683  * @wave_cnt: Output parameter updated with number of waves in flight
684  * @vmid: Output parameter updated with VMID of queue whose wave count
685  * is being collected
686  */
687 static void get_wave_count(struct amdgpu_device *adev, int queue_idx,
688                 int *wave_cnt, int *vmid)
689 {
690         int pipe_idx;
691         int queue_slot;
692         unsigned int reg_val;
693
694         /*
695          * Program GRBM with appropriate MEID, PIPEID, QUEUEID and VMID
696          * parameters to read out waves in flight. Get VMID if there are
697          * non-zero waves in flight.
698          */
699         *vmid = 0xFF;
700         *wave_cnt = 0;
701         pipe_idx = queue_idx / adev->gfx.mec.num_queue_per_pipe;
702         queue_slot = queue_idx % adev->gfx.mec.num_queue_per_pipe;
703         soc15_grbm_select(adev, 1, pipe_idx, queue_slot, 0);
704         reg_val = RREG32_SOC15_IP(GC, SOC15_REG_OFFSET(GC, 0, mmSPI_CSQ_WF_ACTIVE_COUNT_0) +
705                          queue_slot);
706         *wave_cnt = reg_val & SPI_CSQ_WF_ACTIVE_COUNT_0__COUNT_MASK;
707         if (*wave_cnt != 0)
708                 *vmid = (RREG32_SOC15(GC, 0, mmCP_HQD_VMID) &
709                          CP_HQD_VMID__VMID_MASK) >> CP_HQD_VMID__VMID__SHIFT;
710 }
711
712 /**
713  * kgd_gfx_v9_get_cu_occupancy: Reads relevant registers associated with each
714  * shader engine and aggregates the number of waves that are in flight for the
715  * process whose pasid is provided as a parameter. The process could have ZERO
716  * or more queues running and submitting waves to compute units.
717  *
718  * @adev: Handle of device from which to get number of waves in flight
719  * @pasid: Identifies the process for which this query call is invoked
720  * @pasid_wave_cnt: Output parameter updated with number of waves in flight that
721  * belong to process with given pasid
722  * @max_waves_per_cu: Output parameter updated with maximum number of waves
723  * possible per Compute Unit
724  *
725  * Note: It's possible that the device has too many queues (oversubscription)
726  * in which case a VMID could be remapped to a different PASID. This could lead
727  * to an inaccurate wave count. Following is a high-level sequence:
728  *    Time T1: vmid = getVmid(); vmid is associated with Pasid P1
729  *    Time T2: passId = getPasId(vmid); vmid is associated with Pasid P2
730  * In the sequence above wave count obtained from time T1 will be incorrectly
731  * lost or added to total wave count.
732  *
733  * The registers that provide the waves in flight are:
734  *
735  *  SPI_CSQ_WF_ACTIVE_STATUS - bit-map of queues per pipe. The bit is ON if a
736  *  queue is slotted, OFF if there is no queue. A process could have ZERO or
737  *  more queues slotted and submitting waves to be run on compute units. Even
738  *  when there is a queue it is possible there could be zero wave fronts, this
739  *  can happen when queue is waiting on top-of-pipe events - e.g. waitRegMem
740  *  command
741  *
742  *  For each bit that is ON from above:
743  *
744  *    Read (SPI_CSQ_WF_ACTIVE_COUNT_0 + queue_idx) register. It provides the
745  *    number of waves that are in flight for the queue at specified index. The
746  *    index ranges from 0 to 7.
747  *
748  *    If non-zero waves are in flight, read CP_HQD_VMID register to obtain VMID
749  *    of the wave(s).
750  *
751  *    Determine if VMID from above step maps to pasid provided as parameter. If
752  *    it matches agrregate the wave count. That the VMID will not match pasid is
753  *    a normal condition i.e. a device is expected to support multiple queues
754  *    from multiple proceses.
755  *
756  *  Reading registers referenced above involves programming GRBM appropriately
757  */
758 void kgd_gfx_v9_get_cu_occupancy(struct amdgpu_device *adev, int pasid,
759                 int *pasid_wave_cnt, int *max_waves_per_cu)
760 {
761         int qidx;
762         int vmid;
763         int se_idx;
764         int sh_idx;
765         int se_cnt;
766         int sh_cnt;
767         int wave_cnt;
768         int queue_map;
769         int pasid_tmp;
770         int max_queue_cnt;
771         int vmid_wave_cnt = 0;
772         DECLARE_BITMAP(cp_queue_bitmap, KGD_MAX_QUEUES);
773
774         lock_spi_csq_mutexes(adev);
775         soc15_grbm_select(adev, 1, 0, 0, 0);
776
777         /*
778          * Iterate through the shader engines and arrays of the device
779          * to get number of waves in flight
780          */
781         bitmap_complement(cp_queue_bitmap, adev->gfx.mec.queue_bitmap,
782                           KGD_MAX_QUEUES);
783         max_queue_cnt = adev->gfx.mec.num_pipe_per_mec *
784                         adev->gfx.mec.num_queue_per_pipe;
785         sh_cnt = adev->gfx.config.max_sh_per_se;
786         se_cnt = adev->gfx.config.max_shader_engines;
787         for (se_idx = 0; se_idx < se_cnt; se_idx++) {
788                 for (sh_idx = 0; sh_idx < sh_cnt; sh_idx++) {
789
790                         gfx_v9_0_select_se_sh(adev, se_idx, sh_idx, 0xffffffff);
791                         queue_map = RREG32_SOC15(GC, 0, mmSPI_CSQ_WF_ACTIVE_STATUS);
792
793                         /*
794                          * Assumption: queue map encodes following schema: four
795                          * pipes per each micro-engine, with each pipe mapping
796                          * eight queues. This schema is true for GFX9 devices
797                          * and must be verified for newer device families
798                          */
799                         for (qidx = 0; qidx < max_queue_cnt; qidx++) {
800
801                                 /* Skip qeueus that are not associated with
802                                  * compute functions
803                                  */
804                                 if (!test_bit(qidx, cp_queue_bitmap))
805                                         continue;
806
807                                 if (!(queue_map & (1 << qidx)))
808                                         continue;
809
810                                 /* Get number of waves in flight and aggregate them */
811                                 get_wave_count(adev, qidx, &wave_cnt, &vmid);
812                                 if (wave_cnt != 0) {
813                                         pasid_tmp =
814                                           RREG32(SOC15_REG_OFFSET(OSSSYS, 0,
815                                                  mmIH_VMID_0_LUT) + vmid);
816                                         if (pasid_tmp == pasid)
817                                                 vmid_wave_cnt += wave_cnt;
818                                 }
819                         }
820                 }
821         }
822
823         gfx_v9_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
824         soc15_grbm_select(adev, 0, 0, 0, 0);
825         unlock_spi_csq_mutexes(adev);
826
827         /* Update the output parameters and return */
828         *pasid_wave_cnt = vmid_wave_cnt;
829         *max_waves_per_cu = adev->gfx.cu_info.simd_per_cu *
830                                 adev->gfx.cu_info.max_waves_per_simd;
831 }
832
833 void kgd_gfx_v9_program_trap_handler_settings(struct amdgpu_device *adev,
834                         uint32_t vmid, uint64_t tba_addr, uint64_t tma_addr)
835 {
836         lock_srbm(adev, 0, 0, 0, vmid);
837
838         /*
839          * Program TBA registers
840          */
841         WREG32_SOC15(GC, 0, mmSQ_SHADER_TBA_LO,
842                         lower_32_bits(tba_addr >> 8));
843         WREG32_SOC15(GC, 0, mmSQ_SHADER_TBA_HI,
844                         upper_32_bits(tba_addr >> 8));
845
846         /*
847          * Program TMA registers
848          */
849         WREG32_SOC15(GC, 0, mmSQ_SHADER_TMA_LO,
850                         lower_32_bits(tma_addr >> 8));
851         WREG32_SOC15(GC, 0, mmSQ_SHADER_TMA_HI,
852                         upper_32_bits(tma_addr >> 8));
853
854         unlock_srbm(adev);
855 }
856
857 const struct kfd2kgd_calls gfx_v9_kfd2kgd = {
858         .program_sh_mem_settings = kgd_gfx_v9_program_sh_mem_settings,
859         .set_pasid_vmid_mapping = kgd_gfx_v9_set_pasid_vmid_mapping,
860         .init_interrupts = kgd_gfx_v9_init_interrupts,
861         .hqd_load = kgd_gfx_v9_hqd_load,
862         .hiq_mqd_load = kgd_gfx_v9_hiq_mqd_load,
863         .hqd_sdma_load = kgd_hqd_sdma_load,
864         .hqd_dump = kgd_gfx_v9_hqd_dump,
865         .hqd_sdma_dump = kgd_hqd_sdma_dump,
866         .hqd_is_occupied = kgd_gfx_v9_hqd_is_occupied,
867         .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
868         .hqd_destroy = kgd_gfx_v9_hqd_destroy,
869         .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
870         .wave_control_execute = kgd_gfx_v9_wave_control_execute,
871         .get_atc_vmid_pasid_mapping_info =
872                         kgd_gfx_v9_get_atc_vmid_pasid_mapping_info,
873         .set_vm_context_page_table_base = kgd_gfx_v9_set_vm_context_page_table_base,
874         .get_cu_occupancy = kgd_gfx_v9_get_cu_occupancy,
875         .program_trap_handler_settings = kgd_gfx_v9_program_trap_handler_settings,
876 };
This page took 0.085011 seconds and 4 git commands to generate.