]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c
Merge tag 'drm-intel-gt-next-2024-04-26' of https://anongit.freedesktop.org/git/drm...
[linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <[email protected]>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50
51 #include <drm/amdgpu_drm.h>
52
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63
64 MODULE_IMPORT_NS(DMA_BUF);
65
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ     ((size_t)128)
67
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69                                    struct ttm_tt *ttm,
70                                    struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72                                       struct ttm_tt *ttm);
73
74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75                                     unsigned int type,
76                                     uint64_t size_in_page)
77 {
78         return ttm_range_man_init(&adev->mman.bdev, type,
79                                   false, size_in_page);
80 }
81
82 /**
83  * amdgpu_evict_flags - Compute placement flags
84  *
85  * @bo: The buffer object to evict
86  * @placement: Possible destination(s) for evicted BO
87  *
88  * Fill in placement data when ttm_bo_evict() is called
89  */
90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91                                 struct ttm_placement *placement)
92 {
93         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94         struct amdgpu_bo *abo;
95         static const struct ttm_place placements = {
96                 .fpfn = 0,
97                 .lpfn = 0,
98                 .mem_type = TTM_PL_SYSTEM,
99                 .flags = 0
100         };
101
102         /* Don't handle scatter gather BOs */
103         if (bo->type == ttm_bo_type_sg) {
104                 placement->num_placement = 0;
105                 return;
106         }
107
108         /* Object isn't an AMDGPU object so ignore */
109         if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110                 placement->placement = &placements;
111                 placement->num_placement = 1;
112                 return;
113         }
114
115         abo = ttm_to_amdgpu_bo(bo);
116         if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117                 placement->num_placement = 0;
118                 return;
119         }
120
121         switch (bo->resource->mem_type) {
122         case AMDGPU_PL_GDS:
123         case AMDGPU_PL_GWS:
124         case AMDGPU_PL_OA:
125         case AMDGPU_PL_DOORBELL:
126                 placement->num_placement = 0;
127                 return;
128
129         case TTM_PL_VRAM:
130                 if (!adev->mman.buffer_funcs_enabled) {
131                         /* Move to system memory */
132                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
133
134                 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
135                            !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
136                            amdgpu_res_cpu_visible(adev, bo->resource)) {
137
138                         /* Try evicting to the CPU inaccessible part of VRAM
139                          * first, but only set GTT as busy placement, so this
140                          * BO will be evicted to GTT rather than causing other
141                          * BOs to be evicted from VRAM
142                          */
143                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
144                                                         AMDGPU_GEM_DOMAIN_GTT |
145                                                         AMDGPU_GEM_DOMAIN_CPU);
146                         abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
147                         abo->placements[0].lpfn = 0;
148                         abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
149                 } else {
150                         /* Move to GTT memory */
151                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
152                                                         AMDGPU_GEM_DOMAIN_CPU);
153                 }
154                 break;
155         case TTM_PL_TT:
156         case AMDGPU_PL_PREEMPT:
157         default:
158                 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
159                 break;
160         }
161         *placement = abo->placement;
162 }
163
164 /**
165  * amdgpu_ttm_map_buffer - Map memory into the GART windows
166  * @bo: buffer object to map
167  * @mem: memory object to map
168  * @mm_cur: range to map
169  * @window: which GART window to use
170  * @ring: DMA ring to use for the copy
171  * @tmz: if we should setup a TMZ enabled mapping
172  * @size: in number of bytes to map, out number of bytes mapped
173  * @addr: resulting address inside the MC address space
174  *
175  * Setup one of the GART windows to access a specific piece of memory or return
176  * the physical address for local memory.
177  */
178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
179                                  struct ttm_resource *mem,
180                                  struct amdgpu_res_cursor *mm_cur,
181                                  unsigned int window, struct amdgpu_ring *ring,
182                                  bool tmz, uint64_t *size, uint64_t *addr)
183 {
184         struct amdgpu_device *adev = ring->adev;
185         unsigned int offset, num_pages, num_dw, num_bytes;
186         uint64_t src_addr, dst_addr;
187         struct amdgpu_job *job;
188         void *cpu_addr;
189         uint64_t flags;
190         unsigned int i;
191         int r;
192
193         BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
194                AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
195
196         if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
197                 return -EINVAL;
198
199         /* Map only what can't be accessed directly */
200         if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
201                 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
202                         mm_cur->start;
203                 return 0;
204         }
205
206
207         /*
208          * If start begins at an offset inside the page, then adjust the size
209          * and addr accordingly
210          */
211         offset = mm_cur->start & ~PAGE_MASK;
212
213         num_pages = PFN_UP(*size + offset);
214         num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
215
216         *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
217
218         *addr = adev->gmc.gart_start;
219         *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220                 AMDGPU_GPU_PAGE_SIZE;
221         *addr += offset;
222
223         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224         num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
225
226         r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
227                                      AMDGPU_FENCE_OWNER_UNDEFINED,
228                                      num_dw * 4 + num_bytes,
229                                      AMDGPU_IB_POOL_DELAYED, &job);
230         if (r)
231                 return r;
232
233         src_addr = num_dw * 4;
234         src_addr += job->ibs[0].gpu_addr;
235
236         dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
237         dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
238         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
239                                 dst_addr, num_bytes, false);
240
241         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
242         WARN_ON(job->ibs[0].length_dw > num_dw);
243
244         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
245         if (tmz)
246                 flags |= AMDGPU_PTE_TMZ;
247
248         cpu_addr = &job->ibs[0].ptr[num_dw];
249
250         if (mem->mem_type == TTM_PL_TT) {
251                 dma_addr_t *dma_addr;
252
253                 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
254                 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
255         } else {
256                 dma_addr_t dma_address;
257
258                 dma_address = mm_cur->start;
259                 dma_address += adev->vm_manager.vram_base_offset;
260
261                 for (i = 0; i < num_pages; ++i) {
262                         amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
263                                         flags, cpu_addr);
264                         dma_address += PAGE_SIZE;
265                 }
266         }
267
268         dma_fence_put(amdgpu_job_submit(job));
269         return 0;
270 }
271
272 /**
273  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
274  * @adev: amdgpu device
275  * @src: buffer/address where to read from
276  * @dst: buffer/address where to write to
277  * @size: number of bytes to copy
278  * @tmz: if a secure copy should be used
279  * @resv: resv object to sync to
280  * @f: Returns the last fence if multiple jobs are submitted.
281  *
282  * The function copies @size bytes from {src->mem + src->offset} to
283  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
284  * move and different for a BO to BO copy.
285  *
286  */
287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
288                                const struct amdgpu_copy_mem *src,
289                                const struct amdgpu_copy_mem *dst,
290                                uint64_t size, bool tmz,
291                                struct dma_resv *resv,
292                                struct dma_fence **f)
293 {
294         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
295         struct amdgpu_res_cursor src_mm, dst_mm;
296         struct dma_fence *fence = NULL;
297         int r = 0;
298
299         if (!adev->mman.buffer_funcs_enabled) {
300                 DRM_ERROR("Trying to move memory with ring turned off.\n");
301                 return -EINVAL;
302         }
303
304         amdgpu_res_first(src->mem, src->offset, size, &src_mm);
305         amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
306
307         mutex_lock(&adev->mman.gtt_window_lock);
308         while (src_mm.remaining) {
309                 uint64_t from, to, cur_size;
310                 struct dma_fence *next;
311
312                 /* Never copy more than 256MiB at once to avoid a timeout */
313                 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
314
315                 /* Map src to window 0 and dst to window 1. */
316                 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
317                                           0, ring, tmz, &cur_size, &from);
318                 if (r)
319                         goto error;
320
321                 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
322                                           1, ring, tmz, &cur_size, &to);
323                 if (r)
324                         goto error;
325
326                 r = amdgpu_copy_buffer(ring, from, to, cur_size,
327                                        resv, &next, false, true, tmz);
328                 if (r)
329                         goto error;
330
331                 dma_fence_put(fence);
332                 fence = next;
333
334                 amdgpu_res_next(&src_mm, cur_size);
335                 amdgpu_res_next(&dst_mm, cur_size);
336         }
337 error:
338         mutex_unlock(&adev->mman.gtt_window_lock);
339         if (f)
340                 *f = dma_fence_get(fence);
341         dma_fence_put(fence);
342         return r;
343 }
344
345 /*
346  * amdgpu_move_blit - Copy an entire buffer to another buffer
347  *
348  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
349  * help move buffers to and from VRAM.
350  */
351 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
352                             bool evict,
353                             struct ttm_resource *new_mem,
354                             struct ttm_resource *old_mem)
355 {
356         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
357         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
358         struct amdgpu_copy_mem src, dst;
359         struct dma_fence *fence = NULL;
360         int r;
361
362         src.bo = bo;
363         dst.bo = bo;
364         src.mem = old_mem;
365         dst.mem = new_mem;
366         src.offset = 0;
367         dst.offset = 0;
368
369         r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
370                                        new_mem->size,
371                                        amdgpu_bo_encrypted(abo),
372                                        bo->base.resv, &fence);
373         if (r)
374                 goto error;
375
376         /* clear the space being freed */
377         if (old_mem->mem_type == TTM_PL_VRAM &&
378             (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
379                 struct dma_fence *wipe_fence = NULL;
380
381                 r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence,
382                                        false);
383                 if (r) {
384                         goto error;
385                 } else if (wipe_fence) {
386                         amdgpu_vram_mgr_set_cleared(bo->resource);
387                         dma_fence_put(fence);
388                         fence = wipe_fence;
389                 }
390         }
391
392         /* Always block for VM page tables before committing the new location */
393         if (bo->type == ttm_bo_type_kernel)
394                 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
395         else
396                 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
397         dma_fence_put(fence);
398         return r;
399
400 error:
401         if (fence)
402                 dma_fence_wait(fence, false);
403         dma_fence_put(fence);
404         return r;
405 }
406
407 /**
408  * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
409  * @adev: amdgpu device
410  * @res: the resource to check
411  *
412  * Returns: true if the full resource is CPU visible, false otherwise.
413  */
414 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
415                             struct ttm_resource *res)
416 {
417         struct amdgpu_res_cursor cursor;
418
419         if (!res)
420                 return false;
421
422         if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
423             res->mem_type == AMDGPU_PL_PREEMPT)
424                 return true;
425
426         if (res->mem_type != TTM_PL_VRAM)
427                 return false;
428
429         amdgpu_res_first(res, 0, res->size, &cursor);
430         while (cursor.remaining) {
431                 if ((cursor.start + cursor.size) >= adev->gmc.visible_vram_size)
432                         return false;
433                 amdgpu_res_next(&cursor, cursor.size);
434         }
435
436         return true;
437 }
438
439 /*
440  * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
441  *
442  * Called by amdgpu_bo_move()
443  */
444 static bool amdgpu_res_copyable(struct amdgpu_device *adev,
445                                 struct ttm_resource *mem)
446 {
447         if (!amdgpu_res_cpu_visible(adev, mem))
448                 return false;
449
450         /* ttm_resource_ioremap only supports contiguous memory */
451         if (mem->mem_type == TTM_PL_VRAM &&
452             !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
453                 return false;
454
455         return true;
456 }
457
458 /*
459  * amdgpu_bo_move - Move a buffer object to a new memory location
460  *
461  * Called by ttm_bo_handle_move_mem()
462  */
463 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
464                           struct ttm_operation_ctx *ctx,
465                           struct ttm_resource *new_mem,
466                           struct ttm_place *hop)
467 {
468         struct amdgpu_device *adev;
469         struct amdgpu_bo *abo;
470         struct ttm_resource *old_mem = bo->resource;
471         int r;
472
473         if (new_mem->mem_type == TTM_PL_TT ||
474             new_mem->mem_type == AMDGPU_PL_PREEMPT) {
475                 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
476                 if (r)
477                         return r;
478         }
479
480         abo = ttm_to_amdgpu_bo(bo);
481         adev = amdgpu_ttm_adev(bo->bdev);
482
483         if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
484                          bo->ttm == NULL)) {
485                 ttm_bo_move_null(bo, new_mem);
486                 goto out;
487         }
488         if (old_mem->mem_type == TTM_PL_SYSTEM &&
489             (new_mem->mem_type == TTM_PL_TT ||
490              new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
491                 ttm_bo_move_null(bo, new_mem);
492                 goto out;
493         }
494         if ((old_mem->mem_type == TTM_PL_TT ||
495              old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
496             new_mem->mem_type == TTM_PL_SYSTEM) {
497                 r = ttm_bo_wait_ctx(bo, ctx);
498                 if (r)
499                         return r;
500
501                 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
502                 ttm_resource_free(bo, &bo->resource);
503                 ttm_bo_assign_mem(bo, new_mem);
504                 goto out;
505         }
506
507         if (old_mem->mem_type == AMDGPU_PL_GDS ||
508             old_mem->mem_type == AMDGPU_PL_GWS ||
509             old_mem->mem_type == AMDGPU_PL_OA ||
510             old_mem->mem_type == AMDGPU_PL_DOORBELL ||
511             new_mem->mem_type == AMDGPU_PL_GDS ||
512             new_mem->mem_type == AMDGPU_PL_GWS ||
513             new_mem->mem_type == AMDGPU_PL_OA ||
514             new_mem->mem_type == AMDGPU_PL_DOORBELL) {
515                 /* Nothing to save here */
516                 ttm_bo_move_null(bo, new_mem);
517                 goto out;
518         }
519
520         if (bo->type == ttm_bo_type_device &&
521             new_mem->mem_type == TTM_PL_VRAM &&
522             old_mem->mem_type != TTM_PL_VRAM) {
523                 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
524                  * accesses the BO after it's moved.
525                  */
526                 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
527         }
528
529         if (adev->mman.buffer_funcs_enabled) {
530                 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
531                       new_mem->mem_type == TTM_PL_VRAM) ||
532                      (old_mem->mem_type == TTM_PL_VRAM &&
533                       new_mem->mem_type == TTM_PL_SYSTEM))) {
534                         hop->fpfn = 0;
535                         hop->lpfn = 0;
536                         hop->mem_type = TTM_PL_TT;
537                         hop->flags = TTM_PL_FLAG_TEMPORARY;
538                         return -EMULTIHOP;
539                 }
540
541                 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
542         } else {
543                 r = -ENODEV;
544         }
545
546         if (r) {
547                 /* Check that all memory is CPU accessible */
548                 if (!amdgpu_res_copyable(adev, old_mem) ||
549                     !amdgpu_res_copyable(adev, new_mem)) {
550                         pr_err("Move buffer fallback to memcpy unavailable\n");
551                         return r;
552                 }
553
554                 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
555                 if (r)
556                         return r;
557         }
558
559         trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type);
560 out:
561         /* update statistics */
562         atomic64_add(bo->base.size, &adev->num_bytes_moved);
563         amdgpu_bo_move_notify(bo, evict);
564         return 0;
565 }
566
567 /*
568  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
569  *
570  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
571  */
572 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
573                                      struct ttm_resource *mem)
574 {
575         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
576
577         switch (mem->mem_type) {
578         case TTM_PL_SYSTEM:
579                 /* system memory */
580                 return 0;
581         case TTM_PL_TT:
582         case AMDGPU_PL_PREEMPT:
583                 break;
584         case TTM_PL_VRAM:
585                 mem->bus.offset = mem->start << PAGE_SHIFT;
586
587                 if (adev->mman.aper_base_kaddr &&
588                     mem->placement & TTM_PL_FLAG_CONTIGUOUS)
589                         mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
590                                         mem->bus.offset;
591
592                 mem->bus.offset += adev->gmc.aper_base;
593                 mem->bus.is_iomem = true;
594                 break;
595         case AMDGPU_PL_DOORBELL:
596                 mem->bus.offset = mem->start << PAGE_SHIFT;
597                 mem->bus.offset += adev->doorbell.base;
598                 mem->bus.is_iomem = true;
599                 mem->bus.caching = ttm_uncached;
600                 break;
601         default:
602                 return -EINVAL;
603         }
604         return 0;
605 }
606
607 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
608                                            unsigned long page_offset)
609 {
610         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
611         struct amdgpu_res_cursor cursor;
612
613         amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
614                          &cursor);
615
616         if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
617                 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
618
619         return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
620 }
621
622 /**
623  * amdgpu_ttm_domain_start - Returns GPU start address
624  * @adev: amdgpu device object
625  * @type: type of the memory
626  *
627  * Returns:
628  * GPU start address of a memory domain
629  */
630
631 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
632 {
633         switch (type) {
634         case TTM_PL_TT:
635                 return adev->gmc.gart_start;
636         case TTM_PL_VRAM:
637                 return adev->gmc.vram_start;
638         }
639
640         return 0;
641 }
642
643 /*
644  * TTM backend functions.
645  */
646 struct amdgpu_ttm_tt {
647         struct ttm_tt   ttm;
648         struct drm_gem_object   *gobj;
649         u64                     offset;
650         uint64_t                userptr;
651         struct task_struct      *usertask;
652         uint32_t                userflags;
653         bool                    bound;
654         int32_t                 pool_id;
655 };
656
657 #define ttm_to_amdgpu_ttm_tt(ptr)       container_of(ptr, struct amdgpu_ttm_tt, ttm)
658
659 #ifdef CONFIG_DRM_AMDGPU_USERPTR
660 /*
661  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
662  * memory and start HMM tracking CPU page table update
663  *
664  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
665  * once afterwards to stop HMM tracking
666  */
667 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
668                                  struct hmm_range **range)
669 {
670         struct ttm_tt *ttm = bo->tbo.ttm;
671         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
672         unsigned long start = gtt->userptr;
673         struct vm_area_struct *vma;
674         struct mm_struct *mm;
675         bool readonly;
676         int r = 0;
677
678         /* Make sure get_user_pages_done() can cleanup gracefully */
679         *range = NULL;
680
681         mm = bo->notifier.mm;
682         if (unlikely(!mm)) {
683                 DRM_DEBUG_DRIVER("BO is not registered?\n");
684                 return -EFAULT;
685         }
686
687         if (!mmget_not_zero(mm)) /* Happens during process shutdown */
688                 return -ESRCH;
689
690         mmap_read_lock(mm);
691         vma = vma_lookup(mm, start);
692         if (unlikely(!vma)) {
693                 r = -EFAULT;
694                 goto out_unlock;
695         }
696         if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
697                 vma->vm_file)) {
698                 r = -EPERM;
699                 goto out_unlock;
700         }
701
702         readonly = amdgpu_ttm_tt_is_readonly(ttm);
703         r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
704                                        readonly, NULL, pages, range);
705 out_unlock:
706         mmap_read_unlock(mm);
707         if (r)
708                 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
709
710         mmput(mm);
711
712         return r;
713 }
714
715 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
716  */
717 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
718                                       struct hmm_range *range)
719 {
720         struct amdgpu_ttm_tt *gtt = (void *)ttm;
721
722         if (gtt && gtt->userptr && range)
723                 amdgpu_hmm_range_get_pages_done(range);
724 }
725
726 /*
727  * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
728  * Check if the pages backing this ttm range have been invalidated
729  *
730  * Returns: true if pages are still valid
731  */
732 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
733                                        struct hmm_range *range)
734 {
735         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
736
737         if (!gtt || !gtt->userptr || !range)
738                 return false;
739
740         DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
741                 gtt->userptr, ttm->num_pages);
742
743         WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
744
745         return !amdgpu_hmm_range_get_pages_done(range);
746 }
747 #endif
748
749 /*
750  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
751  *
752  * Called by amdgpu_cs_list_validate(). This creates the page list
753  * that backs user memory and will ultimately be mapped into the device
754  * address space.
755  */
756 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
757 {
758         unsigned long i;
759
760         for (i = 0; i < ttm->num_pages; ++i)
761                 ttm->pages[i] = pages ? pages[i] : NULL;
762 }
763
764 /*
765  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
766  *
767  * Called by amdgpu_ttm_backend_bind()
768  **/
769 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
770                                      struct ttm_tt *ttm)
771 {
772         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
773         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
774         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
775         enum dma_data_direction direction = write ?
776                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
777         int r;
778
779         /* Allocate an SG array and squash pages into it */
780         r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
781                                       (u64)ttm->num_pages << PAGE_SHIFT,
782                                       GFP_KERNEL);
783         if (r)
784                 goto release_sg;
785
786         /* Map SG to device */
787         r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
788         if (r)
789                 goto release_sg;
790
791         /* convert SG to linear array of pages and dma addresses */
792         drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
793                                        ttm->num_pages);
794
795         return 0;
796
797 release_sg:
798         kfree(ttm->sg);
799         ttm->sg = NULL;
800         return r;
801 }
802
803 /*
804  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
805  */
806 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
807                                         struct ttm_tt *ttm)
808 {
809         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
810         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
811         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
812         enum dma_data_direction direction = write ?
813                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
814
815         /* double check that we don't free the table twice */
816         if (!ttm->sg || !ttm->sg->sgl)
817                 return;
818
819         /* unmap the pages mapped to the device */
820         dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
821         sg_free_table(ttm->sg);
822 }
823
824 /*
825  * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
826  * MQDn+CtrlStackn where n is the number of XCCs per partition.
827  * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
828  * and uses memory type default, UC. The rest of pages_per_xcc are
829  * Ctrl stack and modify their memory type to NC.
830  */
831 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
832                                 struct ttm_tt *ttm, uint64_t flags)
833 {
834         struct amdgpu_ttm_tt *gtt = (void *)ttm;
835         uint64_t total_pages = ttm->num_pages;
836         int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
837         uint64_t page_idx, pages_per_xcc;
838         int i;
839         uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
840                         AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
841
842         pages_per_xcc = total_pages;
843         do_div(pages_per_xcc, num_xcc);
844
845         for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
846                 /* MQD page: use default flags */
847                 amdgpu_gart_bind(adev,
848                                 gtt->offset + (page_idx << PAGE_SHIFT),
849                                 1, &gtt->ttm.dma_address[page_idx], flags);
850                 /*
851                  * Ctrl pages - modify the memory type to NC (ctrl_flags) from
852                  * the second page of the BO onward.
853                  */
854                 amdgpu_gart_bind(adev,
855                                 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
856                                 pages_per_xcc - 1,
857                                 &gtt->ttm.dma_address[page_idx + 1],
858                                 ctrl_flags);
859         }
860 }
861
862 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
863                                  struct ttm_buffer_object *tbo,
864                                  uint64_t flags)
865 {
866         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
867         struct ttm_tt *ttm = tbo->ttm;
868         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
869
870         if (amdgpu_bo_encrypted(abo))
871                 flags |= AMDGPU_PTE_TMZ;
872
873         if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
874                 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
875         } else {
876                 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
877                                  gtt->ttm.dma_address, flags);
878         }
879         gtt->bound = true;
880 }
881
882 /*
883  * amdgpu_ttm_backend_bind - Bind GTT memory
884  *
885  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
886  * This handles binding GTT memory to the device address space.
887  */
888 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
889                                    struct ttm_tt *ttm,
890                                    struct ttm_resource *bo_mem)
891 {
892         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
893         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
894         uint64_t flags;
895         int r;
896
897         if (!bo_mem)
898                 return -EINVAL;
899
900         if (gtt->bound)
901                 return 0;
902
903         if (gtt->userptr) {
904                 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
905                 if (r) {
906                         DRM_ERROR("failed to pin userptr\n");
907                         return r;
908                 }
909         } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
910                 if (!ttm->sg) {
911                         struct dma_buf_attachment *attach;
912                         struct sg_table *sgt;
913
914                         attach = gtt->gobj->import_attach;
915                         sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
916                         if (IS_ERR(sgt))
917                                 return PTR_ERR(sgt);
918
919                         ttm->sg = sgt;
920                 }
921
922                 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
923                                                ttm->num_pages);
924         }
925
926         if (!ttm->num_pages) {
927                 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
928                      ttm->num_pages, bo_mem, ttm);
929         }
930
931         if (bo_mem->mem_type != TTM_PL_TT ||
932             !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
933                 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
934                 return 0;
935         }
936
937         /* compute PTE flags relevant to this BO memory */
938         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
939
940         /* bind pages into GART page tables */
941         gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
942         amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
943                          gtt->ttm.dma_address, flags);
944         gtt->bound = true;
945         return 0;
946 }
947
948 /*
949  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
950  * through AGP or GART aperture.
951  *
952  * If bo is accessible through AGP aperture, then use AGP aperture
953  * to access bo; otherwise allocate logical space in GART aperture
954  * and map bo to GART aperture.
955  */
956 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
957 {
958         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
959         struct ttm_operation_ctx ctx = { false, false };
960         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
961         struct ttm_placement placement;
962         struct ttm_place placements;
963         struct ttm_resource *tmp;
964         uint64_t addr, flags;
965         int r;
966
967         if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
968                 return 0;
969
970         addr = amdgpu_gmc_agp_addr(bo);
971         if (addr != AMDGPU_BO_INVALID_OFFSET)
972                 return 0;
973
974         /* allocate GART space */
975         placement.num_placement = 1;
976         placement.placement = &placements;
977         placements.fpfn = 0;
978         placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
979         placements.mem_type = TTM_PL_TT;
980         placements.flags = bo->resource->placement;
981
982         r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
983         if (unlikely(r))
984                 return r;
985
986         /* compute PTE flags for this buffer object */
987         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
988
989         /* Bind pages */
990         gtt->offset = (u64)tmp->start << PAGE_SHIFT;
991         amdgpu_ttm_gart_bind(adev, bo, flags);
992         amdgpu_gart_invalidate_tlb(adev);
993         ttm_resource_free(bo, &bo->resource);
994         ttm_bo_assign_mem(bo, tmp);
995
996         return 0;
997 }
998
999 /*
1000  * amdgpu_ttm_recover_gart - Rebind GTT pages
1001  *
1002  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1003  * rebind GTT pages during a GPU reset.
1004  */
1005 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1006 {
1007         struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1008         uint64_t flags;
1009
1010         if (!tbo->ttm)
1011                 return;
1012
1013         flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1014         amdgpu_ttm_gart_bind(adev, tbo, flags);
1015 }
1016
1017 /*
1018  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1019  *
1020  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1021  * ttm_tt_destroy().
1022  */
1023 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1024                                       struct ttm_tt *ttm)
1025 {
1026         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1027         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1028
1029         /* if the pages have userptr pinning then clear that first */
1030         if (gtt->userptr) {
1031                 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1032         } else if (ttm->sg && gtt->gobj->import_attach) {
1033                 struct dma_buf_attachment *attach;
1034
1035                 attach = gtt->gobj->import_attach;
1036                 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1037                 ttm->sg = NULL;
1038         }
1039
1040         if (!gtt->bound)
1041                 return;
1042
1043         if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1044                 return;
1045
1046         /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1047         amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1048         gtt->bound = false;
1049 }
1050
1051 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1052                                        struct ttm_tt *ttm)
1053 {
1054         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1055
1056         if (gtt->usertask)
1057                 put_task_struct(gtt->usertask);
1058
1059         ttm_tt_fini(&gtt->ttm);
1060         kfree(gtt);
1061 }
1062
1063 /**
1064  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1065  *
1066  * @bo: The buffer object to create a GTT ttm_tt object around
1067  * @page_flags: Page flags to be added to the ttm_tt object
1068  *
1069  * Called by ttm_tt_create().
1070  */
1071 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1072                                            uint32_t page_flags)
1073 {
1074         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1075         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1076         struct amdgpu_ttm_tt *gtt;
1077         enum ttm_caching caching;
1078
1079         gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1080         if (!gtt)
1081                 return NULL;
1082
1083         gtt->gobj = &bo->base;
1084         if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1085                 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1086         else
1087                 gtt->pool_id = abo->xcp_id;
1088
1089         if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1090                 caching = ttm_write_combined;
1091         else
1092                 caching = ttm_cached;
1093
1094         /* allocate space for the uninitialized page entries */
1095         if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1096                 kfree(gtt);
1097                 return NULL;
1098         }
1099         return &gtt->ttm;
1100 }
1101
1102 /*
1103  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1104  *
1105  * Map the pages of a ttm_tt object to an address space visible
1106  * to the underlying device.
1107  */
1108 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1109                                   struct ttm_tt *ttm,
1110                                   struct ttm_operation_ctx *ctx)
1111 {
1112         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1113         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1114         struct ttm_pool *pool;
1115         pgoff_t i;
1116         int ret;
1117
1118         /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1119         if (gtt->userptr) {
1120                 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1121                 if (!ttm->sg)
1122                         return -ENOMEM;
1123                 return 0;
1124         }
1125
1126         if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1127                 return 0;
1128
1129         if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1130                 pool = &adev->mman.ttm_pools[gtt->pool_id];
1131         else
1132                 pool = &adev->mman.bdev.pool;
1133         ret = ttm_pool_alloc(pool, ttm, ctx);
1134         if (ret)
1135                 return ret;
1136
1137         for (i = 0; i < ttm->num_pages; ++i)
1138                 ttm->pages[i]->mapping = bdev->dev_mapping;
1139
1140         return 0;
1141 }
1142
1143 /*
1144  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1145  *
1146  * Unmaps pages of a ttm_tt object from the device address space and
1147  * unpopulates the page array backing it.
1148  */
1149 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1150                                      struct ttm_tt *ttm)
1151 {
1152         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1153         struct amdgpu_device *adev;
1154         struct ttm_pool *pool;
1155         pgoff_t i;
1156
1157         amdgpu_ttm_backend_unbind(bdev, ttm);
1158
1159         if (gtt->userptr) {
1160                 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1161                 kfree(ttm->sg);
1162                 ttm->sg = NULL;
1163                 return;
1164         }
1165
1166         if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1167                 return;
1168
1169         for (i = 0; i < ttm->num_pages; ++i)
1170                 ttm->pages[i]->mapping = NULL;
1171
1172         adev = amdgpu_ttm_adev(bdev);
1173
1174         if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1175                 pool = &adev->mman.ttm_pools[gtt->pool_id];
1176         else
1177                 pool = &adev->mman.bdev.pool;
1178
1179         return ttm_pool_free(pool, ttm);
1180 }
1181
1182 /**
1183  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1184  * task
1185  *
1186  * @tbo: The ttm_buffer_object that contains the userptr
1187  * @user_addr:  The returned value
1188  */
1189 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1190                               uint64_t *user_addr)
1191 {
1192         struct amdgpu_ttm_tt *gtt;
1193
1194         if (!tbo->ttm)
1195                 return -EINVAL;
1196
1197         gtt = (void *)tbo->ttm;
1198         *user_addr = gtt->userptr;
1199         return 0;
1200 }
1201
1202 /**
1203  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1204  * task
1205  *
1206  * @bo: The ttm_buffer_object to bind this userptr to
1207  * @addr:  The address in the current tasks VM space to use
1208  * @flags: Requirements of userptr object.
1209  *
1210  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1211  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1212  * initialize GPU VM for a KFD process.
1213  */
1214 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1215                               uint64_t addr, uint32_t flags)
1216 {
1217         struct amdgpu_ttm_tt *gtt;
1218
1219         if (!bo->ttm) {
1220                 /* TODO: We want a separate TTM object type for userptrs */
1221                 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1222                 if (bo->ttm == NULL)
1223                         return -ENOMEM;
1224         }
1225
1226         /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1227         bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1228
1229         gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1230         gtt->userptr = addr;
1231         gtt->userflags = flags;
1232
1233         if (gtt->usertask)
1234                 put_task_struct(gtt->usertask);
1235         gtt->usertask = current->group_leader;
1236         get_task_struct(gtt->usertask);
1237
1238         return 0;
1239 }
1240
1241 /*
1242  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1243  */
1244 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1245 {
1246         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1247
1248         if (gtt == NULL)
1249                 return NULL;
1250
1251         if (gtt->usertask == NULL)
1252                 return NULL;
1253
1254         return gtt->usertask->mm;
1255 }
1256
1257 /*
1258  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1259  * address range for the current task.
1260  *
1261  */
1262 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1263                                   unsigned long end, unsigned long *userptr)
1264 {
1265         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1266         unsigned long size;
1267
1268         if (gtt == NULL || !gtt->userptr)
1269                 return false;
1270
1271         /* Return false if no part of the ttm_tt object lies within
1272          * the range
1273          */
1274         size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1275         if (gtt->userptr > end || gtt->userptr + size <= start)
1276                 return false;
1277
1278         if (userptr)
1279                 *userptr = gtt->userptr;
1280         return true;
1281 }
1282
1283 /*
1284  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1285  */
1286 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1287 {
1288         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1289
1290         if (gtt == NULL || !gtt->userptr)
1291                 return false;
1292
1293         return true;
1294 }
1295
1296 /*
1297  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1298  */
1299 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1300 {
1301         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1302
1303         if (gtt == NULL)
1304                 return false;
1305
1306         return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1307 }
1308
1309 /**
1310  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1311  *
1312  * @ttm: The ttm_tt object to compute the flags for
1313  * @mem: The memory registry backing this ttm_tt object
1314  *
1315  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1316  */
1317 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1318 {
1319         uint64_t flags = 0;
1320
1321         if (mem && mem->mem_type != TTM_PL_SYSTEM)
1322                 flags |= AMDGPU_PTE_VALID;
1323
1324         if (mem && (mem->mem_type == TTM_PL_TT ||
1325                     mem->mem_type == AMDGPU_PL_DOORBELL ||
1326                     mem->mem_type == AMDGPU_PL_PREEMPT)) {
1327                 flags |= AMDGPU_PTE_SYSTEM;
1328
1329                 if (ttm->caching == ttm_cached)
1330                         flags |= AMDGPU_PTE_SNOOPED;
1331         }
1332
1333         if (mem && mem->mem_type == TTM_PL_VRAM &&
1334                         mem->bus.caching == ttm_cached)
1335                 flags |= AMDGPU_PTE_SNOOPED;
1336
1337         return flags;
1338 }
1339
1340 /**
1341  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1342  *
1343  * @adev: amdgpu_device pointer
1344  * @ttm: The ttm_tt object to compute the flags for
1345  * @mem: The memory registry backing this ttm_tt object
1346  *
1347  * Figure out the flags to use for a VM PTE (Page Table Entry).
1348  */
1349 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1350                                  struct ttm_resource *mem)
1351 {
1352         uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1353
1354         flags |= adev->gart.gart_pte_flags;
1355         flags |= AMDGPU_PTE_READABLE;
1356
1357         if (!amdgpu_ttm_tt_is_readonly(ttm))
1358                 flags |= AMDGPU_PTE_WRITEABLE;
1359
1360         return flags;
1361 }
1362
1363 /*
1364  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1365  * object.
1366  *
1367  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1368  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1369  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1370  * used to clean out a memory space.
1371  */
1372 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1373                                             const struct ttm_place *place)
1374 {
1375         struct dma_resv_iter resv_cursor;
1376         struct dma_fence *f;
1377
1378         if (!amdgpu_bo_is_amdgpu_bo(bo))
1379                 return ttm_bo_eviction_valuable(bo, place);
1380
1381         /* Swapout? */
1382         if (bo->resource->mem_type == TTM_PL_SYSTEM)
1383                 return true;
1384
1385         if (bo->type == ttm_bo_type_kernel &&
1386             !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1387                 return false;
1388
1389         /* If bo is a KFD BO, check if the bo belongs to the current process.
1390          * If true, then return false as any KFD process needs all its BOs to
1391          * be resident to run successfully
1392          */
1393         dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1394                                 DMA_RESV_USAGE_BOOKKEEP, f) {
1395                 if (amdkfd_fence_check_mm(f, current->mm))
1396                         return false;
1397         }
1398
1399         /* Preemptible BOs don't own system resources managed by the
1400          * driver (pages, VRAM, GART space). They point to resources
1401          * owned by someone else (e.g. pageable memory in user mode
1402          * or a DMABuf). They are used in a preemptible context so we
1403          * can guarantee no deadlocks and good QoS in case of MMU
1404          * notifiers or DMABuf move notifiers from the resource owner.
1405          */
1406         if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1407                 return false;
1408
1409         if (bo->resource->mem_type == TTM_PL_TT &&
1410             amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1411                 return false;
1412
1413         return ttm_bo_eviction_valuable(bo, place);
1414 }
1415
1416 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1417                                       void *buf, size_t size, bool write)
1418 {
1419         while (size) {
1420                 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1421                 uint64_t bytes = 4 - (pos & 0x3);
1422                 uint32_t shift = (pos & 0x3) * 8;
1423                 uint32_t mask = 0xffffffff << shift;
1424                 uint32_t value = 0;
1425
1426                 if (size < bytes) {
1427                         mask &= 0xffffffff >> (bytes - size) * 8;
1428                         bytes = size;
1429                 }
1430
1431                 if (mask != 0xffffffff) {
1432                         amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1433                         if (write) {
1434                                 value &= ~mask;
1435                                 value |= (*(uint32_t *)buf << shift) & mask;
1436                                 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1437                         } else {
1438                                 value = (value & mask) >> shift;
1439                                 memcpy(buf, &value, bytes);
1440                         }
1441                 } else {
1442                         amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1443                 }
1444
1445                 pos += bytes;
1446                 buf += bytes;
1447                 size -= bytes;
1448         }
1449 }
1450
1451 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1452                                         unsigned long offset, void *buf,
1453                                         int len, int write)
1454 {
1455         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1456         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1457         struct amdgpu_res_cursor src_mm;
1458         struct amdgpu_job *job;
1459         struct dma_fence *fence;
1460         uint64_t src_addr, dst_addr;
1461         unsigned int num_dw;
1462         int r, idx;
1463
1464         if (len != PAGE_SIZE)
1465                 return -EINVAL;
1466
1467         if (!adev->mman.sdma_access_ptr)
1468                 return -EACCES;
1469
1470         if (!drm_dev_enter(adev_to_drm(adev), &idx))
1471                 return -ENODEV;
1472
1473         if (write)
1474                 memcpy(adev->mman.sdma_access_ptr, buf, len);
1475
1476         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1477         r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1478                                      AMDGPU_FENCE_OWNER_UNDEFINED,
1479                                      num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1480                                      &job);
1481         if (r)
1482                 goto out;
1483
1484         amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1485         src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1486                 src_mm.start;
1487         dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1488         if (write)
1489                 swap(src_addr, dst_addr);
1490
1491         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1492                                 PAGE_SIZE, false);
1493
1494         amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1495         WARN_ON(job->ibs[0].length_dw > num_dw);
1496
1497         fence = amdgpu_job_submit(job);
1498
1499         if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1500                 r = -ETIMEDOUT;
1501         dma_fence_put(fence);
1502
1503         if (!(r || write))
1504                 memcpy(buf, adev->mman.sdma_access_ptr, len);
1505 out:
1506         drm_dev_exit(idx);
1507         return r;
1508 }
1509
1510 /**
1511  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1512  *
1513  * @bo:  The buffer object to read/write
1514  * @offset:  Offset into buffer object
1515  * @buf:  Secondary buffer to write/read from
1516  * @len: Length in bytes of access
1517  * @write:  true if writing
1518  *
1519  * This is used to access VRAM that backs a buffer object via MMIO
1520  * access for debugging purposes.
1521  */
1522 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1523                                     unsigned long offset, void *buf, int len,
1524                                     int write)
1525 {
1526         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1527         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1528         struct amdgpu_res_cursor cursor;
1529         int ret = 0;
1530
1531         if (bo->resource->mem_type != TTM_PL_VRAM)
1532                 return -EIO;
1533
1534         if (amdgpu_device_has_timeouts_enabled(adev) &&
1535                         !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1536                 return len;
1537
1538         amdgpu_res_first(bo->resource, offset, len, &cursor);
1539         while (cursor.remaining) {
1540                 size_t count, size = cursor.size;
1541                 loff_t pos = cursor.start;
1542
1543                 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1544                 size -= count;
1545                 if (size) {
1546                         /* using MM to access rest vram and handle un-aligned address */
1547                         pos += count;
1548                         buf += count;
1549                         amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1550                 }
1551
1552                 ret += cursor.size;
1553                 buf += cursor.size;
1554                 amdgpu_res_next(&cursor, cursor.size);
1555         }
1556
1557         return ret;
1558 }
1559
1560 static void
1561 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1562 {
1563         amdgpu_bo_move_notify(bo, false);
1564 }
1565
1566 static struct ttm_device_funcs amdgpu_bo_driver = {
1567         .ttm_tt_create = &amdgpu_ttm_tt_create,
1568         .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1569         .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1570         .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1571         .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1572         .evict_flags = &amdgpu_evict_flags,
1573         .move = &amdgpu_bo_move,
1574         .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1575         .release_notify = &amdgpu_bo_release_notify,
1576         .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1577         .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1578         .access_memory = &amdgpu_ttm_access_memory,
1579 };
1580
1581 /*
1582  * Firmware Reservation functions
1583  */
1584 /**
1585  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1586  *
1587  * @adev: amdgpu_device pointer
1588  *
1589  * free fw reserved vram if it has been reserved.
1590  */
1591 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1592 {
1593         amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1594                 NULL, &adev->mman.fw_vram_usage_va);
1595 }
1596
1597 /*
1598  * Driver Reservation functions
1599  */
1600 /**
1601  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1602  *
1603  * @adev: amdgpu_device pointer
1604  *
1605  * free drv reserved vram if it has been reserved.
1606  */
1607 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1608 {
1609         amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1610                                                   NULL,
1611                                                   &adev->mman.drv_vram_usage_va);
1612 }
1613
1614 /**
1615  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1616  *
1617  * @adev: amdgpu_device pointer
1618  *
1619  * create bo vram reservation from fw.
1620  */
1621 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1622 {
1623         uint64_t vram_size = adev->gmc.visible_vram_size;
1624
1625         adev->mman.fw_vram_usage_va = NULL;
1626         adev->mman.fw_vram_usage_reserved_bo = NULL;
1627
1628         if (adev->mman.fw_vram_usage_size == 0 ||
1629             adev->mman.fw_vram_usage_size > vram_size)
1630                 return 0;
1631
1632         return amdgpu_bo_create_kernel_at(adev,
1633                                           adev->mman.fw_vram_usage_start_offset,
1634                                           adev->mman.fw_vram_usage_size,
1635                                           &adev->mman.fw_vram_usage_reserved_bo,
1636                                           &adev->mman.fw_vram_usage_va);
1637 }
1638
1639 /**
1640  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1641  *
1642  * @adev: amdgpu_device pointer
1643  *
1644  * create bo vram reservation from drv.
1645  */
1646 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1647 {
1648         u64 vram_size = adev->gmc.visible_vram_size;
1649
1650         adev->mman.drv_vram_usage_va = NULL;
1651         adev->mman.drv_vram_usage_reserved_bo = NULL;
1652
1653         if (adev->mman.drv_vram_usage_size == 0 ||
1654             adev->mman.drv_vram_usage_size > vram_size)
1655                 return 0;
1656
1657         return amdgpu_bo_create_kernel_at(adev,
1658                                           adev->mman.drv_vram_usage_start_offset,
1659                                           adev->mman.drv_vram_usage_size,
1660                                           &adev->mman.drv_vram_usage_reserved_bo,
1661                                           &adev->mman.drv_vram_usage_va);
1662 }
1663
1664 /*
1665  * Memoy training reservation functions
1666  */
1667
1668 /**
1669  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1670  *
1671  * @adev: amdgpu_device pointer
1672  *
1673  * free memory training reserved vram if it has been reserved.
1674  */
1675 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1676 {
1677         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1678
1679         ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1680         amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1681         ctx->c2p_bo = NULL;
1682
1683         return 0;
1684 }
1685
1686 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1687                                                 uint32_t reserve_size)
1688 {
1689         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1690
1691         memset(ctx, 0, sizeof(*ctx));
1692
1693         ctx->c2p_train_data_offset =
1694                 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1695         ctx->p2c_train_data_offset =
1696                 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1697         ctx->train_data_size =
1698                 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1699
1700         DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1701                         ctx->train_data_size,
1702                         ctx->p2c_train_data_offset,
1703                         ctx->c2p_train_data_offset);
1704 }
1705
1706 /*
1707  * reserve TMR memory at the top of VRAM which holds
1708  * IP Discovery data and is protected by PSP.
1709  */
1710 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1711 {
1712         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1713         bool mem_train_support = false;
1714         uint32_t reserve_size = 0;
1715         int ret;
1716
1717         if (adev->bios && !amdgpu_sriov_vf(adev)) {
1718                 if (amdgpu_atomfirmware_mem_training_supported(adev))
1719                         mem_train_support = true;
1720                 else
1721                         DRM_DEBUG("memory training does not support!\n");
1722         }
1723
1724         /*
1725          * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1726          * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1727          *
1728          * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1729          * discovery data and G6 memory training data respectively
1730          */
1731         if (adev->bios)
1732                 reserve_size =
1733                         amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1734
1735         if (!adev->bios &&
1736             amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3))
1737                 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1738         else if (!reserve_size)
1739                 reserve_size = DISCOVERY_TMR_OFFSET;
1740
1741         if (mem_train_support) {
1742                 /* reserve vram for mem train according to TMR location */
1743                 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1744                 ret = amdgpu_bo_create_kernel_at(adev,
1745                                                  ctx->c2p_train_data_offset,
1746                                                  ctx->train_data_size,
1747                                                  &ctx->c2p_bo,
1748                                                  NULL);
1749                 if (ret) {
1750                         DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1751                         amdgpu_ttm_training_reserve_vram_fini(adev);
1752                         return ret;
1753                 }
1754                 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1755         }
1756
1757         if (!adev->gmc.is_app_apu) {
1758                 ret = amdgpu_bo_create_kernel_at(
1759                         adev, adev->gmc.real_vram_size - reserve_size,
1760                         reserve_size, &adev->mman.fw_reserved_memory, NULL);
1761                 if (ret) {
1762                         DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1763                         amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1764                                               NULL, NULL);
1765                         return ret;
1766                 }
1767         } else {
1768                 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1769         }
1770
1771         return 0;
1772 }
1773
1774 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1775 {
1776         int i;
1777
1778         if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1779                 return 0;
1780
1781         adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1782                                        sizeof(*adev->mman.ttm_pools),
1783                                        GFP_KERNEL);
1784         if (!adev->mman.ttm_pools)
1785                 return -ENOMEM;
1786
1787         for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1788                 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1789                               adev->gmc.mem_partitions[i].numa.node,
1790                               false, false);
1791         }
1792         return 0;
1793 }
1794
1795 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1796 {
1797         int i;
1798
1799         if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1800                 return;
1801
1802         for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1803                 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1804
1805         kfree(adev->mman.ttm_pools);
1806         adev->mman.ttm_pools = NULL;
1807 }
1808
1809 /*
1810  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1811  * gtt/vram related fields.
1812  *
1813  * This initializes all of the memory space pools that the TTM layer
1814  * will need such as the GTT space (system memory mapped to the device),
1815  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1816  * can be mapped per VMID.
1817  */
1818 int amdgpu_ttm_init(struct amdgpu_device *adev)
1819 {
1820         uint64_t gtt_size;
1821         int r;
1822
1823         mutex_init(&adev->mman.gtt_window_lock);
1824
1825         /* No others user of address space so set it to 0 */
1826         r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1827                                adev_to_drm(adev)->anon_inode->i_mapping,
1828                                adev_to_drm(adev)->vma_offset_manager,
1829                                adev->need_swiotlb,
1830                                dma_addressing_limited(adev->dev));
1831         if (r) {
1832                 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1833                 return r;
1834         }
1835
1836         r = amdgpu_ttm_pools_init(adev);
1837         if (r) {
1838                 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1839                 return r;
1840         }
1841         adev->mman.initialized = true;
1842
1843         /* Initialize VRAM pool with all of VRAM divided into pages */
1844         r = amdgpu_vram_mgr_init(adev);
1845         if (r) {
1846                 DRM_ERROR("Failed initializing VRAM heap.\n");
1847                 return r;
1848         }
1849
1850         /* Change the size here instead of the init above so only lpfn is affected */
1851         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1852 #ifdef CONFIG_64BIT
1853 #ifdef CONFIG_X86
1854         if (adev->gmc.xgmi.connected_to_cpu)
1855                 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1856                                 adev->gmc.visible_vram_size);
1857
1858         else if (adev->gmc.is_app_apu)
1859                 DRM_DEBUG_DRIVER(
1860                         "No need to ioremap when real vram size is 0\n");
1861         else
1862 #endif
1863                 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1864                                 adev->gmc.visible_vram_size);
1865 #endif
1866
1867         /*
1868          *The reserved vram for firmware must be pinned to the specified
1869          *place on the VRAM, so reserve it early.
1870          */
1871         r = amdgpu_ttm_fw_reserve_vram_init(adev);
1872         if (r)
1873                 return r;
1874
1875         /*
1876          *The reserved vram for driver must be pinned to the specified
1877          *place on the VRAM, so reserve it early.
1878          */
1879         r = amdgpu_ttm_drv_reserve_vram_init(adev);
1880         if (r)
1881                 return r;
1882
1883         /*
1884          * only NAVI10 and onwards ASIC support for IP discovery.
1885          * If IP discovery enabled, a block of memory should be
1886          * reserved for IP discovey.
1887          */
1888         if (adev->mman.discovery_bin) {
1889                 r = amdgpu_ttm_reserve_tmr(adev);
1890                 if (r)
1891                         return r;
1892         }
1893
1894         /* allocate memory as required for VGA
1895          * This is used for VGA emulation and pre-OS scanout buffers to
1896          * avoid display artifacts while transitioning between pre-OS
1897          * and driver.
1898          */
1899         if (!adev->gmc.is_app_apu) {
1900                 r = amdgpu_bo_create_kernel_at(adev, 0,
1901                                                adev->mman.stolen_vga_size,
1902                                                &adev->mman.stolen_vga_memory,
1903                                                NULL);
1904                 if (r)
1905                         return r;
1906
1907                 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1908                                                adev->mman.stolen_extended_size,
1909                                                &adev->mman.stolen_extended_memory,
1910                                                NULL);
1911
1912                 if (r)
1913                         return r;
1914
1915                 r = amdgpu_bo_create_kernel_at(adev,
1916                                                adev->mman.stolen_reserved_offset,
1917                                                adev->mman.stolen_reserved_size,
1918                                                &adev->mman.stolen_reserved_memory,
1919                                                NULL);
1920                 if (r)
1921                         return r;
1922         } else {
1923                 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1924         }
1925
1926         DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1927                  (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1928
1929         /* Compute GTT size, either based on TTM limit
1930          * or whatever the user passed on module init.
1931          */
1932         if (amdgpu_gtt_size == -1)
1933                 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1934         else
1935                 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1936
1937         /* Initialize GTT memory pool */
1938         r = amdgpu_gtt_mgr_init(adev, gtt_size);
1939         if (r) {
1940                 DRM_ERROR("Failed initializing GTT heap.\n");
1941                 return r;
1942         }
1943         DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1944                  (unsigned int)(gtt_size / (1024 * 1024)));
1945
1946         /* Initiailize doorbell pool on PCI BAR */
1947         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1948         if (r) {
1949                 DRM_ERROR("Failed initializing doorbell heap.\n");
1950                 return r;
1951         }
1952
1953         /* Create a boorbell page for kernel usages */
1954         r = amdgpu_doorbell_create_kernel_doorbells(adev);
1955         if (r) {
1956                 DRM_ERROR("Failed to initialize kernel doorbells.\n");
1957                 return r;
1958         }
1959
1960         /* Initialize preemptible memory pool */
1961         r = amdgpu_preempt_mgr_init(adev);
1962         if (r) {
1963                 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1964                 return r;
1965         }
1966
1967         /* Initialize various on-chip memory pools */
1968         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1969         if (r) {
1970                 DRM_ERROR("Failed initializing GDS heap.\n");
1971                 return r;
1972         }
1973
1974         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1975         if (r) {
1976                 DRM_ERROR("Failed initializing gws heap.\n");
1977                 return r;
1978         }
1979
1980         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1981         if (r) {
1982                 DRM_ERROR("Failed initializing oa heap.\n");
1983                 return r;
1984         }
1985         if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1986                                 AMDGPU_GEM_DOMAIN_GTT,
1987                                 &adev->mman.sdma_access_bo, NULL,
1988                                 &adev->mman.sdma_access_ptr))
1989                 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1990
1991         return 0;
1992 }
1993
1994 /*
1995  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1996  */
1997 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1998 {
1999         int idx;
2000
2001         if (!adev->mman.initialized)
2002                 return;
2003
2004         amdgpu_ttm_pools_fini(adev);
2005
2006         amdgpu_ttm_training_reserve_vram_fini(adev);
2007         /* return the stolen vga memory back to VRAM */
2008         if (!adev->gmc.is_app_apu) {
2009                 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2010                 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2011                 /* return the FW reserved memory back to VRAM */
2012                 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2013                                       NULL);
2014                 if (adev->mman.stolen_reserved_size)
2015                         amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2016                                               NULL, NULL);
2017         }
2018         amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2019                                         &adev->mman.sdma_access_ptr);
2020         amdgpu_ttm_fw_reserve_vram_fini(adev);
2021         amdgpu_ttm_drv_reserve_vram_fini(adev);
2022
2023         if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2024
2025                 if (adev->mman.aper_base_kaddr)
2026                         iounmap(adev->mman.aper_base_kaddr);
2027                 adev->mman.aper_base_kaddr = NULL;
2028
2029                 drm_dev_exit(idx);
2030         }
2031
2032         amdgpu_vram_mgr_fini(adev);
2033         amdgpu_gtt_mgr_fini(adev);
2034         amdgpu_preempt_mgr_fini(adev);
2035         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2036         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2037         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2038         ttm_device_fini(&adev->mman.bdev);
2039         adev->mman.initialized = false;
2040         DRM_INFO("amdgpu: ttm finalized\n");
2041 }
2042
2043 /**
2044  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2045  *
2046  * @adev: amdgpu_device pointer
2047  * @enable: true when we can use buffer functions.
2048  *
2049  * Enable/disable use of buffer functions during suspend/resume. This should
2050  * only be called at bootup or when userspace isn't running.
2051  */
2052 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2053 {
2054         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2055         uint64_t size;
2056         int r;
2057
2058         if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2059             adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2060                 return;
2061
2062         if (enable) {
2063                 struct amdgpu_ring *ring;
2064                 struct drm_gpu_scheduler *sched;
2065
2066                 ring = adev->mman.buffer_funcs_ring;
2067                 sched = &ring->sched;
2068                 r = drm_sched_entity_init(&adev->mman.high_pr,
2069                                           DRM_SCHED_PRIORITY_KERNEL, &sched,
2070                                           1, NULL);
2071                 if (r) {
2072                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2073                                   r);
2074                         return;
2075                 }
2076
2077                 r = drm_sched_entity_init(&adev->mman.low_pr,
2078                                           DRM_SCHED_PRIORITY_NORMAL, &sched,
2079                                           1, NULL);
2080                 if (r) {
2081                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2082                                   r);
2083                         goto error_free_entity;
2084                 }
2085         } else {
2086                 drm_sched_entity_destroy(&adev->mman.high_pr);
2087                 drm_sched_entity_destroy(&adev->mman.low_pr);
2088                 dma_fence_put(man->move);
2089                 man->move = NULL;
2090         }
2091
2092         /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2093         if (enable)
2094                 size = adev->gmc.real_vram_size;
2095         else
2096                 size = adev->gmc.visible_vram_size;
2097         man->size = size;
2098         adev->mman.buffer_funcs_enabled = enable;
2099
2100         return;
2101
2102 error_free_entity:
2103         drm_sched_entity_destroy(&adev->mman.high_pr);
2104 }
2105
2106 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2107                                   bool direct_submit,
2108                                   unsigned int num_dw,
2109                                   struct dma_resv *resv,
2110                                   bool vm_needs_flush,
2111                                   struct amdgpu_job **job,
2112                                   bool delayed)
2113 {
2114         enum amdgpu_ib_pool_type pool = direct_submit ?
2115                 AMDGPU_IB_POOL_DIRECT :
2116                 AMDGPU_IB_POOL_DELAYED;
2117         int r;
2118         struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2119                                                     &adev->mman.high_pr;
2120         r = amdgpu_job_alloc_with_ib(adev, entity,
2121                                      AMDGPU_FENCE_OWNER_UNDEFINED,
2122                                      num_dw * 4, pool, job);
2123         if (r)
2124                 return r;
2125
2126         if (vm_needs_flush) {
2127                 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2128                                                         adev->gmc.pdb0_bo :
2129                                                         adev->gart.bo);
2130                 (*job)->vm_needs_flush = true;
2131         }
2132         if (!resv)
2133                 return 0;
2134
2135         return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2136                                                    DMA_RESV_USAGE_BOOKKEEP);
2137 }
2138
2139 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2140                        uint64_t dst_offset, uint32_t byte_count,
2141                        struct dma_resv *resv,
2142                        struct dma_fence **fence, bool direct_submit,
2143                        bool vm_needs_flush, bool tmz)
2144 {
2145         struct amdgpu_device *adev = ring->adev;
2146         unsigned int num_loops, num_dw;
2147         struct amdgpu_job *job;
2148         uint32_t max_bytes;
2149         unsigned int i;
2150         int r;
2151
2152         if (!direct_submit && !ring->sched.ready) {
2153                 DRM_ERROR("Trying to move memory with ring turned off.\n");
2154                 return -EINVAL;
2155         }
2156
2157         max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2158         num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2159         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2160         r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2161                                    resv, vm_needs_flush, &job, false);
2162         if (r)
2163                 return r;
2164
2165         for (i = 0; i < num_loops; i++) {
2166                 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2167
2168                 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2169                                         dst_offset, cur_size_in_bytes, tmz);
2170
2171                 src_offset += cur_size_in_bytes;
2172                 dst_offset += cur_size_in_bytes;
2173                 byte_count -= cur_size_in_bytes;
2174         }
2175
2176         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2177         WARN_ON(job->ibs[0].length_dw > num_dw);
2178         if (direct_submit)
2179                 r = amdgpu_job_submit_direct(job, ring, fence);
2180         else
2181                 *fence = amdgpu_job_submit(job);
2182         if (r)
2183                 goto error_free;
2184
2185         return r;
2186
2187 error_free:
2188         amdgpu_job_free(job);
2189         DRM_ERROR("Error scheduling IBs (%d)\n", r);
2190         return r;
2191 }
2192
2193 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2194                                uint64_t dst_addr, uint32_t byte_count,
2195                                struct dma_resv *resv,
2196                                struct dma_fence **fence,
2197                                bool vm_needs_flush, bool delayed)
2198 {
2199         struct amdgpu_device *adev = ring->adev;
2200         unsigned int num_loops, num_dw;
2201         struct amdgpu_job *job;
2202         uint32_t max_bytes;
2203         unsigned int i;
2204         int r;
2205
2206         max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2207         num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2208         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2209         r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2210                                    &job, delayed);
2211         if (r)
2212                 return r;
2213
2214         for (i = 0; i < num_loops; i++) {
2215                 uint32_t cur_size = min(byte_count, max_bytes);
2216
2217                 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2218                                         cur_size);
2219
2220                 dst_addr += cur_size;
2221                 byte_count -= cur_size;
2222         }
2223
2224         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2225         WARN_ON(job->ibs[0].length_dw > num_dw);
2226         *fence = amdgpu_job_submit(job);
2227         return 0;
2228 }
2229
2230 /**
2231  * amdgpu_ttm_clear_buffer - clear memory buffers
2232  * @bo: amdgpu buffer object
2233  * @resv: reservation object
2234  * @fence: dma_fence associated with the operation
2235  *
2236  * Clear the memory buffer resource.
2237  *
2238  * Returns:
2239  * 0 for success or a negative error code on failure.
2240  */
2241 int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo,
2242                             struct dma_resv *resv,
2243                             struct dma_fence **fence)
2244 {
2245         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2246         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2247         struct amdgpu_res_cursor cursor;
2248         u64 addr;
2249         int r;
2250
2251         if (!adev->mman.buffer_funcs_enabled)
2252                 return -EINVAL;
2253
2254         if (!fence)
2255                 return -EINVAL;
2256
2257         *fence = dma_fence_get_stub();
2258
2259         amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor);
2260
2261         mutex_lock(&adev->mman.gtt_window_lock);
2262         while (cursor.remaining) {
2263                 struct dma_fence *next = NULL;
2264                 u64 size;
2265
2266                 if (amdgpu_res_cleared(&cursor)) {
2267                         amdgpu_res_next(&cursor, cursor.size);
2268                         continue;
2269                 }
2270
2271                 /* Never clear more than 256MiB at once to avoid timeouts */
2272                 size = min(cursor.size, 256ULL << 20);
2273
2274                 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor,
2275                                           1, ring, false, &size, &addr);
2276                 if (r)
2277                         goto err;
2278
2279                 r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv,
2280                                         &next, true, true);
2281                 if (r)
2282                         goto err;
2283
2284                 dma_fence_put(*fence);
2285                 *fence = next;
2286
2287                 amdgpu_res_next(&cursor, size);
2288         }
2289 err:
2290         mutex_unlock(&adev->mman.gtt_window_lock);
2291
2292         return r;
2293 }
2294
2295 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2296                         uint32_t src_data,
2297                         struct dma_resv *resv,
2298                         struct dma_fence **f,
2299                         bool delayed)
2300 {
2301         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2302         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2303         struct dma_fence *fence = NULL;
2304         struct amdgpu_res_cursor dst;
2305         int r;
2306
2307         if (!adev->mman.buffer_funcs_enabled) {
2308                 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2309                 return -EINVAL;
2310         }
2311
2312         amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2313
2314         mutex_lock(&adev->mman.gtt_window_lock);
2315         while (dst.remaining) {
2316                 struct dma_fence *next;
2317                 uint64_t cur_size, to;
2318
2319                 /* Never fill more than 256MiB at once to avoid timeouts */
2320                 cur_size = min(dst.size, 256ULL << 20);
2321
2322                 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2323                                           1, ring, false, &cur_size, &to);
2324                 if (r)
2325                         goto error;
2326
2327                 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2328                                         &next, true, delayed);
2329                 if (r)
2330                         goto error;
2331
2332                 dma_fence_put(fence);
2333                 fence = next;
2334
2335                 amdgpu_res_next(&dst, cur_size);
2336         }
2337 error:
2338         mutex_unlock(&adev->mman.gtt_window_lock);
2339         if (f)
2340                 *f = dma_fence_get(fence);
2341         dma_fence_put(fence);
2342         return r;
2343 }
2344
2345 /**
2346  * amdgpu_ttm_evict_resources - evict memory buffers
2347  * @adev: amdgpu device object
2348  * @mem_type: evicted BO's memory type
2349  *
2350  * Evicts all @mem_type buffers on the lru list of the memory type.
2351  *
2352  * Returns:
2353  * 0 for success or a negative error code on failure.
2354  */
2355 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2356 {
2357         struct ttm_resource_manager *man;
2358
2359         switch (mem_type) {
2360         case TTM_PL_VRAM:
2361         case TTM_PL_TT:
2362         case AMDGPU_PL_GWS:
2363         case AMDGPU_PL_GDS:
2364         case AMDGPU_PL_OA:
2365                 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2366                 break;
2367         default:
2368                 DRM_ERROR("Trying to evict invalid memory type\n");
2369                 return -EINVAL;
2370         }
2371
2372         return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2373 }
2374
2375 #if defined(CONFIG_DEBUG_FS)
2376
2377 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2378 {
2379         struct amdgpu_device *adev = m->private;
2380
2381         return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2382 }
2383
2384 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2385
2386 /*
2387  * amdgpu_ttm_vram_read - Linear read access to VRAM
2388  *
2389  * Accesses VRAM via MMIO for debugging purposes.
2390  */
2391 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2392                                     size_t size, loff_t *pos)
2393 {
2394         struct amdgpu_device *adev = file_inode(f)->i_private;
2395         ssize_t result = 0;
2396
2397         if (size & 0x3 || *pos & 0x3)
2398                 return -EINVAL;
2399
2400         if (*pos >= adev->gmc.mc_vram_size)
2401                 return -ENXIO;
2402
2403         size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2404         while (size) {
2405                 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2406                 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2407
2408                 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2409                 if (copy_to_user(buf, value, bytes))
2410                         return -EFAULT;
2411
2412                 result += bytes;
2413                 buf += bytes;
2414                 *pos += bytes;
2415                 size -= bytes;
2416         }
2417
2418         return result;
2419 }
2420
2421 /*
2422  * amdgpu_ttm_vram_write - Linear write access to VRAM
2423  *
2424  * Accesses VRAM via MMIO for debugging purposes.
2425  */
2426 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2427                                     size_t size, loff_t *pos)
2428 {
2429         struct amdgpu_device *adev = file_inode(f)->i_private;
2430         ssize_t result = 0;
2431         int r;
2432
2433         if (size & 0x3 || *pos & 0x3)
2434                 return -EINVAL;
2435
2436         if (*pos >= adev->gmc.mc_vram_size)
2437                 return -ENXIO;
2438
2439         while (size) {
2440                 uint32_t value;
2441
2442                 if (*pos >= adev->gmc.mc_vram_size)
2443                         return result;
2444
2445                 r = get_user(value, (uint32_t *)buf);
2446                 if (r)
2447                         return r;
2448
2449                 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2450
2451                 result += 4;
2452                 buf += 4;
2453                 *pos += 4;
2454                 size -= 4;
2455         }
2456
2457         return result;
2458 }
2459
2460 static const struct file_operations amdgpu_ttm_vram_fops = {
2461         .owner = THIS_MODULE,
2462         .read = amdgpu_ttm_vram_read,
2463         .write = amdgpu_ttm_vram_write,
2464         .llseek = default_llseek,
2465 };
2466
2467 /*
2468  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2469  *
2470  * This function is used to read memory that has been mapped to the
2471  * GPU and the known addresses are not physical addresses but instead
2472  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2473  */
2474 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2475                                  size_t size, loff_t *pos)
2476 {
2477         struct amdgpu_device *adev = file_inode(f)->i_private;
2478         struct iommu_domain *dom;
2479         ssize_t result = 0;
2480         int r;
2481
2482         /* retrieve the IOMMU domain if any for this device */
2483         dom = iommu_get_domain_for_dev(adev->dev);
2484
2485         while (size) {
2486                 phys_addr_t addr = *pos & PAGE_MASK;
2487                 loff_t off = *pos & ~PAGE_MASK;
2488                 size_t bytes = PAGE_SIZE - off;
2489                 unsigned long pfn;
2490                 struct page *p;
2491                 void *ptr;
2492
2493                 bytes = min(bytes, size);
2494
2495                 /* Translate the bus address to a physical address.  If
2496                  * the domain is NULL it means there is no IOMMU active
2497                  * and the address translation is the identity
2498                  */
2499                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2500
2501                 pfn = addr >> PAGE_SHIFT;
2502                 if (!pfn_valid(pfn))
2503                         return -EPERM;
2504
2505                 p = pfn_to_page(pfn);
2506                 if (p->mapping != adev->mman.bdev.dev_mapping)
2507                         return -EPERM;
2508
2509                 ptr = kmap_local_page(p);
2510                 r = copy_to_user(buf, ptr + off, bytes);
2511                 kunmap_local(ptr);
2512                 if (r)
2513                         return -EFAULT;
2514
2515                 size -= bytes;
2516                 *pos += bytes;
2517                 result += bytes;
2518         }
2519
2520         return result;
2521 }
2522
2523 /*
2524  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2525  *
2526  * This function is used to write memory that has been mapped to the
2527  * GPU and the known addresses are not physical addresses but instead
2528  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2529  */
2530 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2531                                  size_t size, loff_t *pos)
2532 {
2533         struct amdgpu_device *adev = file_inode(f)->i_private;
2534         struct iommu_domain *dom;
2535         ssize_t result = 0;
2536         int r;
2537
2538         dom = iommu_get_domain_for_dev(adev->dev);
2539
2540         while (size) {
2541                 phys_addr_t addr = *pos & PAGE_MASK;
2542                 loff_t off = *pos & ~PAGE_MASK;
2543                 size_t bytes = PAGE_SIZE - off;
2544                 unsigned long pfn;
2545                 struct page *p;
2546                 void *ptr;
2547
2548                 bytes = min(bytes, size);
2549
2550                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2551
2552                 pfn = addr >> PAGE_SHIFT;
2553                 if (!pfn_valid(pfn))
2554                         return -EPERM;
2555
2556                 p = pfn_to_page(pfn);
2557                 if (p->mapping != adev->mman.bdev.dev_mapping)
2558                         return -EPERM;
2559
2560                 ptr = kmap_local_page(p);
2561                 r = copy_from_user(ptr + off, buf, bytes);
2562                 kunmap_local(ptr);
2563                 if (r)
2564                         return -EFAULT;
2565
2566                 size -= bytes;
2567                 *pos += bytes;
2568                 result += bytes;
2569         }
2570
2571         return result;
2572 }
2573
2574 static const struct file_operations amdgpu_ttm_iomem_fops = {
2575         .owner = THIS_MODULE,
2576         .read = amdgpu_iomem_read,
2577         .write = amdgpu_iomem_write,
2578         .llseek = default_llseek
2579 };
2580
2581 #endif
2582
2583 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2584 {
2585 #if defined(CONFIG_DEBUG_FS)
2586         struct drm_minor *minor = adev_to_drm(adev)->primary;
2587         struct dentry *root = minor->debugfs_root;
2588
2589         debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2590                                  &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2591         debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2592                             &amdgpu_ttm_iomem_fops);
2593         debugfs_create_file("ttm_page_pool", 0444, root, adev,
2594                             &amdgpu_ttm_page_pool_fops);
2595         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2596                                                              TTM_PL_VRAM),
2597                                             root, "amdgpu_vram_mm");
2598         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2599                                                              TTM_PL_TT),
2600                                             root, "amdgpu_gtt_mm");
2601         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2602                                                              AMDGPU_PL_GDS),
2603                                             root, "amdgpu_gds_mm");
2604         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2605                                                              AMDGPU_PL_GWS),
2606                                             root, "amdgpu_gws_mm");
2607         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2608                                                              AMDGPU_PL_OA),
2609                                             root, "amdgpu_oa_mm");
2610
2611 #endif
2612 }
This page took 0.1973 seconds and 4 git commands to generate.