1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/fs/nfs/direct.c
7 * High-performance uncached I/O for the Linux NFS client
9 * There are important applications whose performance or correctness
10 * depends on uncached access to file data. Database clusters
11 * (multiple copies of the same instance running on separate hosts)
12 * implement their own cache coherency protocol that subsumes file
13 * system cache protocols. Applications that process datasets
14 * considerably larger than the client's memory do not always benefit
15 * from a local cache. A streaming video server, for instance, has no
16 * need to cache the contents of a file.
18 * When an application requests uncached I/O, all read and write requests
19 * are made directly to the server; data stored or fetched via these
20 * requests is not cached in the Linux page cache. The client does not
21 * correct unaligned requests from applications. All requested bytes are
22 * held on permanent storage before a direct write system call returns to
25 * Solaris implements an uncached I/O facility called directio() that
26 * is used for backups and sequential I/O to very large files. Solaris
27 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
28 * an undocumented mount option.
30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
31 * help from Andrew Morton.
33 * 18 Dec 2001 Initial implementation for 2.4 --cel
34 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
35 * 08 Jun 2003 Port to 2.5 APIs --cel
36 * 31 Mar 2004 Handle direct I/O without VFS support --cel
37 * 15 Sep 2004 Parallel async reads --cel
38 * 04 May 2005 support O_DIRECT with aio --cel
42 #include <linux/errno.h>
43 #include <linux/sched.h>
44 #include <linux/kernel.h>
45 #include <linux/file.h>
46 #include <linux/pagemap.h>
47 #include <linux/kref.h>
48 #include <linux/slab.h>
49 #include <linux/task_io_accounting_ops.h>
50 #include <linux/module.h>
52 #include <linux/nfs_fs.h>
53 #include <linux/nfs_page.h>
54 #include <linux/sunrpc/clnt.h>
56 #include <linux/uaccess.h>
57 #include <linux/atomic.h>
64 #define NFSDBG_FACILITY NFSDBG_VFS
66 static struct kmem_cache *nfs_direct_cachep;
68 struct nfs_direct_req {
69 struct kref kref; /* release manager */
72 struct nfs_open_context *ctx; /* file open context info */
73 struct nfs_lock_context *l_ctx; /* Lock context info */
74 struct kiocb * iocb; /* controlling i/o request */
75 struct inode * inode; /* target file of i/o */
77 /* completion state */
78 atomic_t io_count; /* i/os we're waiting for */
79 spinlock_t lock; /* protect completion state */
81 loff_t io_start; /* Start offset for I/O */
82 ssize_t count, /* bytes actually processed */
83 max_count, /* max expected count */
84 bytes_left, /* bytes left to be sent */
85 error; /* any reported error */
86 struct completion completion; /* wait for i/o completion */
89 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
90 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
91 struct work_struct work;
94 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
95 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
97 #define NFS_ODIRECT_SHOULD_DIRTY (3) /* dirty user-space page after read */
98 #define NFS_ODIRECT_DONE INT_MAX /* write verification failed */
101 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
102 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
103 static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
104 static void nfs_direct_write_schedule_work(struct work_struct *work);
106 static inline void get_dreq(struct nfs_direct_req *dreq)
108 atomic_inc(&dreq->io_count);
111 static inline int put_dreq(struct nfs_direct_req *dreq)
113 return atomic_dec_and_test(&dreq->io_count);
117 nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
118 const struct nfs_pgio_header *hdr,
121 if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
122 test_bit(NFS_IOHDR_EOF, &hdr->flags)))
124 if (dreq->max_count >= dreq_len) {
125 dreq->max_count = dreq_len;
126 if (dreq->count > dreq_len)
127 dreq->count = dreq_len;
129 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags))
130 dreq->error = hdr->error;
131 else /* Clear outstanding error if this is EOF */
137 nfs_direct_count_bytes(struct nfs_direct_req *dreq,
138 const struct nfs_pgio_header *hdr)
140 loff_t hdr_end = hdr->io_start + hdr->good_bytes;
141 ssize_t dreq_len = 0;
143 if (hdr_end > dreq->io_start)
144 dreq_len = hdr_end - dreq->io_start;
146 nfs_direct_handle_truncated(dreq, hdr, dreq_len);
148 if (dreq_len > dreq->max_count)
149 dreq_len = dreq->max_count;
151 if (dreq->count < dreq_len)
152 dreq->count = dreq_len;
156 * nfs_direct_IO - NFS address space operation for direct I/O
157 * @iocb: target I/O control block
160 * The presence of this routine in the address space ops vector means
161 * the NFS client supports direct I/O. However, for most direct IO, we
162 * shunt off direct read and write requests before the VFS gets them,
163 * so this method is only ever called for swap.
165 ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
167 struct inode *inode = iocb->ki_filp->f_mapping->host;
169 /* we only support swap file calling nfs_direct_IO */
170 if (!IS_SWAPFILE(inode))
173 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
175 if (iov_iter_rw(iter) == READ)
176 return nfs_file_direct_read(iocb, iter, true);
177 return nfs_file_direct_write(iocb, iter, true);
180 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
183 for (i = 0; i < npages; i++)
187 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
188 struct nfs_direct_req *dreq)
190 cinfo->inode = dreq->inode;
191 cinfo->mds = &dreq->mds_cinfo;
192 cinfo->ds = &dreq->ds_cinfo;
194 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
197 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
199 struct nfs_direct_req *dreq;
201 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
205 kref_init(&dreq->kref);
206 kref_get(&dreq->kref);
207 init_completion(&dreq->completion);
208 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
209 pnfs_init_ds_commit_info(&dreq->ds_cinfo);
210 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
211 spin_lock_init(&dreq->lock);
216 static void nfs_direct_req_free(struct kref *kref)
218 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
220 pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode);
221 if (dreq->l_ctx != NULL)
222 nfs_put_lock_context(dreq->l_ctx);
223 if (dreq->ctx != NULL)
224 put_nfs_open_context(dreq->ctx);
225 kmem_cache_free(nfs_direct_cachep, dreq);
228 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
230 kref_put(&dreq->kref, nfs_direct_req_free);
233 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
235 return dreq->bytes_left;
237 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
240 * Collects and returns the final error value/byte-count.
242 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
244 ssize_t result = -EIOCBQUEUED;
246 /* Async requests don't wait here */
250 result = wait_for_completion_killable(&dreq->completion);
253 result = dreq->count;
254 WARN_ON_ONCE(dreq->count < 0);
257 result = dreq->error;
260 return (ssize_t) result;
264 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
265 * the iocb is still valid here if this is a synchronous request.
267 static void nfs_direct_complete(struct nfs_direct_req *dreq)
269 struct inode *inode = dreq->inode;
271 inode_dio_end(inode);
274 long res = (long) dreq->error;
275 if (dreq->count != 0) {
276 res = (long) dreq->count;
277 WARN_ON_ONCE(dreq->count < 0);
279 dreq->iocb->ki_complete(dreq->iocb, res);
282 complete(&dreq->completion);
284 nfs_direct_req_release(dreq);
287 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
289 unsigned long bytes = 0;
290 struct nfs_direct_req *dreq = hdr->dreq;
292 spin_lock(&dreq->lock);
293 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
294 spin_unlock(&dreq->lock);
298 nfs_direct_count_bytes(dreq, hdr);
299 spin_unlock(&dreq->lock);
301 while (!list_empty(&hdr->pages)) {
302 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
303 struct page *page = req->wb_page;
305 if (!PageCompound(page) && bytes < hdr->good_bytes &&
306 (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
307 set_page_dirty(page);
308 bytes += req->wb_bytes;
309 nfs_list_remove_request(req);
310 nfs_release_request(req);
314 nfs_direct_complete(dreq);
318 static void nfs_read_sync_pgio_error(struct list_head *head, int error)
320 struct nfs_page *req;
322 while (!list_empty(head)) {
323 req = nfs_list_entry(head->next);
324 nfs_list_remove_request(req);
325 nfs_release_request(req);
329 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
334 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
335 .error_cleanup = nfs_read_sync_pgio_error,
336 .init_hdr = nfs_direct_pgio_init,
337 .completion = nfs_direct_read_completion,
341 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
342 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
343 * bail and stop sending more reads. Read length accounting is
344 * handled automatically by nfs_direct_read_result(). Otherwise, if
345 * no requests have been sent, just return an error.
348 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
349 struct iov_iter *iter,
352 struct nfs_pageio_descriptor desc;
353 struct inode *inode = dreq->inode;
354 ssize_t result = -EINVAL;
355 size_t requested_bytes = 0;
356 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
358 nfs_pageio_init_read(&desc, dreq->inode, false,
359 &nfs_direct_read_completion_ops);
362 inode_dio_begin(inode);
364 while (iov_iter_count(iter)) {
365 struct page **pagevec;
370 result = iov_iter_get_pages_alloc(iter, &pagevec,
376 iov_iter_advance(iter, bytes);
377 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
378 for (i = 0; i < npages; i++) {
379 struct nfs_page *req;
380 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
381 /* XXX do we need to do the eof zeroing found in async_filler? */
382 req = nfs_create_request(dreq->ctx, pagevec[i],
385 result = PTR_ERR(req);
388 req->wb_index = pos >> PAGE_SHIFT;
389 req->wb_offset = pos & ~PAGE_MASK;
390 if (!nfs_pageio_add_request(&desc, req)) {
391 result = desc.pg_error;
392 nfs_release_request(req);
397 requested_bytes += req_len;
399 dreq->bytes_left -= req_len;
401 nfs_direct_release_pages(pagevec, npages);
407 nfs_pageio_complete(&desc);
410 * If no bytes were started, return the error, and let the
411 * generic layer handle the completion.
413 if (requested_bytes == 0) {
414 inode_dio_end(inode);
415 nfs_direct_req_release(dreq);
416 return result < 0 ? result : -EIO;
420 nfs_direct_complete(dreq);
421 return requested_bytes;
425 * nfs_file_direct_read - file direct read operation for NFS files
426 * @iocb: target I/O control block
427 * @iter: vector of user buffers into which to read data
428 * @swap: flag indicating this is swap IO, not O_DIRECT IO
430 * We use this function for direct reads instead of calling
431 * generic_file_aio_read() in order to avoid gfar's check to see if
432 * the request starts before the end of the file. For that check
433 * to work, we must generate a GETATTR before each direct read, and
434 * even then there is a window between the GETATTR and the subsequent
435 * READ where the file size could change. Our preference is simply
436 * to do all reads the application wants, and the server will take
437 * care of managing the end of file boundary.
439 * This function also eliminates unnecessarily updating the file's
440 * atime locally, as the NFS server sets the file's atime, and this
441 * client must read the updated atime from the server back into its
444 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
447 struct file *file = iocb->ki_filp;
448 struct address_space *mapping = file->f_mapping;
449 struct inode *inode = mapping->host;
450 struct nfs_direct_req *dreq;
451 struct nfs_lock_context *l_ctx;
452 ssize_t result, requested;
453 size_t count = iov_iter_count(iter);
454 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
456 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
457 file, count, (long long) iocb->ki_pos);
463 task_io_account_read(count);
466 dreq = nfs_direct_req_alloc();
471 dreq->bytes_left = dreq->max_count = count;
472 dreq->io_start = iocb->ki_pos;
473 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
474 l_ctx = nfs_get_lock_context(dreq->ctx);
476 result = PTR_ERR(l_ctx);
477 nfs_direct_req_release(dreq);
481 if (!is_sync_kiocb(iocb))
484 if (iter_is_iovec(iter))
485 dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
488 nfs_start_io_direct(inode);
490 NFS_I(inode)->read_io += count;
491 requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
494 nfs_end_io_direct(inode);
497 result = nfs_direct_wait(dreq);
500 iocb->ki_pos += result;
502 iov_iter_revert(iter, requested);
508 nfs_direct_req_release(dreq);
514 nfs_direct_join_group(struct list_head *list, struct inode *inode)
516 struct nfs_page *req, *next;
518 list_for_each_entry(req, list, wb_list) {
519 if (req->wb_head != req || req->wb_this_page == req)
521 for (next = req->wb_this_page;
522 next != req->wb_head;
523 next = next->wb_this_page) {
524 nfs_list_remove_request(next);
525 nfs_release_request(next);
527 nfs_join_page_group(req, inode);
532 nfs_direct_write_scan_commit_list(struct inode *inode,
533 struct list_head *list,
534 struct nfs_commit_info *cinfo)
536 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
537 pnfs_recover_commit_reqs(list, cinfo);
538 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
539 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
542 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
544 struct nfs_pageio_descriptor desc;
545 struct nfs_page *req, *tmp;
547 struct nfs_commit_info cinfo;
550 nfs_init_cinfo_from_dreq(&cinfo, dreq);
551 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
553 nfs_direct_join_group(&reqs, dreq->inode);
557 list_for_each_entry(req, &reqs, wb_list)
558 dreq->max_count += req->wb_bytes;
559 nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
562 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
563 &nfs_direct_write_completion_ops);
566 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
567 /* Bump the transmission count */
569 if (!nfs_pageio_add_request(&desc, req)) {
570 nfs_list_move_request(req, &failed);
571 spin_lock(&cinfo.inode->i_lock);
573 if (desc.pg_error < 0)
574 dreq->error = desc.pg_error;
577 spin_unlock(&cinfo.inode->i_lock);
579 nfs_release_request(req);
581 nfs_pageio_complete(&desc);
583 while (!list_empty(&failed)) {
584 req = nfs_list_entry(failed.next);
585 nfs_list_remove_request(req);
586 nfs_unlock_and_release_request(req);
590 nfs_direct_write_complete(dreq);
593 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
595 const struct nfs_writeverf *verf = data->res.verf;
596 struct nfs_direct_req *dreq = data->dreq;
597 struct nfs_commit_info cinfo;
598 struct nfs_page *req;
599 int status = data->task.tk_status;
602 /* Errors in commit are fatal */
603 dreq->error = status;
606 dreq->flags = NFS_ODIRECT_DONE;
607 } else if (dreq->flags == NFS_ODIRECT_DONE)
608 status = dreq->error;
610 nfs_init_cinfo_from_dreq(&cinfo, dreq);
612 while (!list_empty(&data->pages)) {
613 req = nfs_list_entry(data->pages.next);
614 nfs_list_remove_request(req);
615 if (status >= 0 && !nfs_write_match_verf(verf, req)) {
616 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
618 * Despite the reboot, the write was successful,
622 nfs_mark_request_commit(req, NULL, &cinfo, 0);
623 } else /* Error or match */
624 nfs_release_request(req);
625 nfs_unlock_and_release_request(req);
628 if (nfs_commit_end(cinfo.mds))
629 nfs_direct_write_complete(dreq);
632 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
633 struct nfs_page *req)
635 struct nfs_direct_req *dreq = cinfo->dreq;
637 spin_lock(&dreq->lock);
638 if (dreq->flags != NFS_ODIRECT_DONE)
639 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
640 spin_unlock(&dreq->lock);
641 nfs_mark_request_commit(req, NULL, cinfo, 0);
644 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
645 .completion = nfs_direct_commit_complete,
646 .resched_write = nfs_direct_resched_write,
649 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
652 struct nfs_commit_info cinfo;
655 nfs_init_cinfo_from_dreq(&cinfo, dreq);
656 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
657 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
658 if (res < 0) /* res == -ENOMEM */
659 nfs_direct_write_reschedule(dreq);
662 static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq)
664 struct nfs_commit_info cinfo;
665 struct nfs_page *req;
668 nfs_init_cinfo_from_dreq(&cinfo, dreq);
669 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
671 while (!list_empty(&reqs)) {
672 req = nfs_list_entry(reqs.next);
673 nfs_list_remove_request(req);
674 nfs_release_request(req);
675 nfs_unlock_and_release_request(req);
679 static void nfs_direct_write_schedule_work(struct work_struct *work)
681 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
682 int flags = dreq->flags;
686 case NFS_ODIRECT_DO_COMMIT:
687 nfs_direct_commit_schedule(dreq);
689 case NFS_ODIRECT_RESCHED_WRITES:
690 nfs_direct_write_reschedule(dreq);
693 nfs_direct_write_clear_reqs(dreq);
694 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
695 nfs_direct_complete(dreq);
699 static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
701 queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
704 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
706 struct nfs_direct_req *dreq = hdr->dreq;
707 struct nfs_commit_info cinfo;
708 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
709 int flags = NFS_ODIRECT_DONE;
711 nfs_init_cinfo_from_dreq(&cinfo, dreq);
713 spin_lock(&dreq->lock);
714 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
715 spin_unlock(&dreq->lock);
719 nfs_direct_count_bytes(dreq, hdr);
720 if (hdr->good_bytes != 0 && nfs_write_need_commit(hdr)) {
722 dreq->flags = NFS_ODIRECT_DO_COMMIT;
725 spin_unlock(&dreq->lock);
727 while (!list_empty(&hdr->pages)) {
729 req = nfs_list_entry(hdr->pages.next);
730 nfs_list_remove_request(req);
731 if (flags == NFS_ODIRECT_DO_COMMIT) {
732 kref_get(&req->wb_kref);
733 memcpy(&req->wb_verf, &hdr->verf.verifier,
734 sizeof(req->wb_verf));
735 nfs_mark_request_commit(req, hdr->lseg, &cinfo,
737 } else if (flags == NFS_ODIRECT_RESCHED_WRITES) {
738 kref_get(&req->wb_kref);
739 nfs_mark_request_commit(req, NULL, &cinfo, 0);
741 nfs_unlock_and_release_request(req);
746 nfs_direct_write_complete(dreq);
750 static void nfs_write_sync_pgio_error(struct list_head *head, int error)
752 struct nfs_page *req;
754 while (!list_empty(head)) {
755 req = nfs_list_entry(head->next);
756 nfs_list_remove_request(req);
757 nfs_unlock_and_release_request(req);
761 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
763 struct nfs_direct_req *dreq = hdr->dreq;
765 spin_lock(&dreq->lock);
766 if (dreq->error == 0) {
767 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
768 /* fake unstable write to let common nfs resend pages */
769 hdr->verf.committed = NFS_UNSTABLE;
770 hdr->good_bytes = hdr->args.offset + hdr->args.count -
773 spin_unlock(&dreq->lock);
776 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
777 .error_cleanup = nfs_write_sync_pgio_error,
778 .init_hdr = nfs_direct_pgio_init,
779 .completion = nfs_direct_write_completion,
780 .reschedule_io = nfs_direct_write_reschedule_io,
785 * NB: Return the value of the first error return code. Subsequent
786 * errors after the first one are ignored.
789 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
790 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
791 * bail and stop sending more writes. Write length accounting is
792 * handled automatically by nfs_direct_write_result(). Otherwise, if
793 * no requests have been sent, just return an error.
795 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
796 struct iov_iter *iter,
797 loff_t pos, int ioflags)
799 struct nfs_pageio_descriptor desc;
800 struct inode *inode = dreq->inode;
802 size_t requested_bytes = 0;
803 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
805 nfs_pageio_init_write(&desc, inode, ioflags, false,
806 &nfs_direct_write_completion_ops);
809 inode_dio_begin(inode);
811 NFS_I(inode)->write_io += iov_iter_count(iter);
812 while (iov_iter_count(iter)) {
813 struct page **pagevec;
818 result = iov_iter_get_pages_alloc(iter, &pagevec,
824 iov_iter_advance(iter, bytes);
825 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
826 for (i = 0; i < npages; i++) {
827 struct nfs_page *req;
828 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
830 req = nfs_create_request(dreq->ctx, pagevec[i],
833 result = PTR_ERR(req);
837 if (desc.pg_error < 0) {
838 nfs_free_request(req);
839 result = desc.pg_error;
843 nfs_lock_request(req);
844 req->wb_index = pos >> PAGE_SHIFT;
845 req->wb_offset = pos & ~PAGE_MASK;
846 if (!nfs_pageio_add_request(&desc, req)) {
847 result = desc.pg_error;
848 nfs_unlock_and_release_request(req);
853 requested_bytes += req_len;
855 dreq->bytes_left -= req_len;
857 nfs_direct_release_pages(pagevec, npages);
862 nfs_pageio_complete(&desc);
865 * If no bytes were started, return the error, and let the
866 * generic layer handle the completion.
868 if (requested_bytes == 0) {
869 inode_dio_end(inode);
870 nfs_direct_req_release(dreq);
871 return result < 0 ? result : -EIO;
875 nfs_direct_write_complete(dreq);
876 return requested_bytes;
880 * nfs_file_direct_write - file direct write operation for NFS files
881 * @iocb: target I/O control block
882 * @iter: vector of user buffers from which to write data
883 * @swap: flag indicating this is swap IO, not O_DIRECT IO
885 * We use this function for direct writes instead of calling
886 * generic_file_aio_write() in order to avoid taking the inode
887 * semaphore and updating the i_size. The NFS server will set
888 * the new i_size and this client must read the updated size
889 * back into its cache. We let the server do generic write
890 * parameter checking and report problems.
892 * We eliminate local atime updates, see direct read above.
894 * We avoid unnecessary page cache invalidations for normal cached
895 * readers of this file.
897 * Note that O_APPEND is not supported for NFS direct writes, as there
898 * is no atomic O_APPEND write facility in the NFS protocol.
900 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
903 ssize_t result, requested;
905 struct file *file = iocb->ki_filp;
906 struct address_space *mapping = file->f_mapping;
907 struct inode *inode = mapping->host;
908 struct nfs_direct_req *dreq;
909 struct nfs_lock_context *l_ctx;
912 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
913 file, iov_iter_count(iter), (long long) iocb->ki_pos);
916 /* bypass generic checks */
917 result = iov_iter_count(iter);
919 result = generic_write_checks(iocb, iter);
923 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
926 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
928 task_io_account_write(count);
931 dreq = nfs_direct_req_alloc();
936 dreq->bytes_left = dreq->max_count = count;
937 dreq->io_start = pos;
938 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
939 l_ctx = nfs_get_lock_context(dreq->ctx);
941 result = PTR_ERR(l_ctx);
942 nfs_direct_req_release(dreq);
946 if (!is_sync_kiocb(iocb))
948 pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode);
951 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
954 nfs_start_io_direct(inode);
956 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
959 if (mapping->nrpages) {
960 invalidate_inode_pages2_range(mapping,
961 pos >> PAGE_SHIFT, end);
964 nfs_end_io_direct(inode);
968 result = nfs_direct_wait(dreq);
971 iocb->ki_pos = pos + result;
972 /* XXX: should check the generic_write_sync retval */
973 generic_write_sync(iocb, result);
975 iov_iter_revert(iter, requested);
979 nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE);
981 nfs_direct_req_release(dreq);
987 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
990 int __init nfs_init_directcache(void)
992 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
993 sizeof(struct nfs_direct_req),
994 0, (SLAB_RECLAIM_ACCOUNT|
997 if (nfs_direct_cachep == NULL)
1004 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1007 void nfs_destroy_directcache(void)
1009 kmem_cache_destroy(nfs_direct_cachep);