1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved.
7 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
9 * Few modifications for Realtek's Wi-Fi drivers by
12 * A special thanks goes to Realtek for their support !
14 #include <linux/compiler.h>
15 #include <linux/errno.h>
16 #include <linux/if_arp.h>
17 #include <linux/in6.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/netdevice.h>
23 #include <linux/pci.h>
24 #include <linux/proc_fs.h>
25 #include <linux/skbuff.h>
26 #include <linux/slab.h>
27 #include <linux/tcp.h>
28 #include <linux/types.h>
29 #include <linux/wireless.h>
30 #include <linux/etherdevice.h>
31 #include <linux/uaccess.h>
32 #include <linux/if_vlan.h>
39 * 802.11 frame_control for data frames - 2 bytes
40 * ,--------------------------------------------------------------------.
41 * bits | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e |
42 * |---|---|---|---|---|---|---|---|---|----|----|-----|-----|-----|----|
43 * val | 0 | 0 | 0 | 1 | x | 0 | 0 | 0 | 1 | 0 | x | x | x | x | x |
44 * |---|---|---|---|---|---|---|---|---|----|----|-----|-----|-----|----|
45 * desc | ver | type | ^-subtype-^ |to |from|more|retry| pwr |more |wep |
46 * | | | x=0 data |DS | DS |frag| | mgm |data | |
47 * | | | x=1 data+ack | | | | | | | |
48 * '--------------------------------------------------------------------'
52 * ,--------- 'ctrl' expands to >---'
54 * ,--'---,-------------------------------------------------------------.
55 * Bytes | 2 | 2 | 6 | 6 | 6 | 2 | 0..2312 | 4 |
56 * |------|------|---------|---------|---------|------|---------|------|
57 * Desc. | ctrl | dura | DA/RA | TA | SA | Sequ | Frame | fcs |
58 * | | tion | (BSSID) | | | ence | data | |
59 * `--------------------------------------------------| |------'
60 * Total: 28 non-data bytes `----.----'
62 * .- 'Frame data' expands to <---------------------------'
65 * ,---------------------------------------------------.
66 * Bytes | 1 | 1 | 1 | 3 | 2 | 0-2304 |
67 * |------|------|---------|----------|------|---------|
68 * Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP |
69 * | DSAP | SSAP | | | | Packet |
70 * | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8| | |
71 * `-----------------------------------------| |
72 * Total: 8 non-data bytes `----.----'
74 * .- 'IP Packet' expands, if WEP enabled, to <--'
77 * ,-----------------------.
78 * Bytes | 4 | 0-2296 | 4 |
79 * |-----|-----------|-----|
80 * Desc. | IV | Encrypted | ICV |
82 * `-----------------------'
83 * Total: 8 non-data bytes
86 * 802.3 Ethernet Data Frame
88 * ,-----------------------------------------.
89 * Bytes | 6 | 6 | 2 | Variable | 4 |
90 * |-------|-------|------|-----------|------|
91 * Desc. | Dest. | Source| Type | IP Packet | fcs |
93 * `-----------------------------------------'
94 * Total: 18 non-data bytes
96 * In the event that fragmentation is required, the incoming payload is split
97 * into N parts of size ieee->fts. The first fragment contains the SNAP header
98 * and the remaining packets are just data.
100 * If encryption is enabled, each fragment payload size is reduced by enough
101 * space to add the prefix and postfix (IV and ICV totalling 8 bytes in
102 * the case of WEP) So if you have 1500 bytes of payload with ieee->fts set to
103 * 500 without encryption it will take 3 frames. With WEP it will take 4 frames
104 * as the payload of each frame is reduced to 492 bytes.
110 * | ETHERNET HEADER ,-<-- PAYLOAD
111 * | | 14 bytes from skb->data
112 * | 2 bytes for Type --> ,T. | (sizeof ethhdr)
114 * |,-Dest.--. ,--Src.---. | | |
115 * | 6 bytes| | 6 bytes | | | |
118 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
121 * | | | | `T' <---- 2 bytes for Type
123 * | | '---SNAP--' <-------- 6 bytes for SNAP
125 * `-IV--' <-------------------- 4 bytes for IV (WEP)
131 static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 };
132 static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 };
134 static int rtllib_put_snap(u8 *data, u16 h_proto)
136 struct rtllib_snap_hdr *snap;
139 snap = (struct rtllib_snap_hdr *)data;
144 if (h_proto == 0x8137 || h_proto == 0x80f3)
148 snap->oui[0] = oui[0];
149 snap->oui[1] = oui[1];
150 snap->oui[2] = oui[2];
152 *(__be16 *)(data + SNAP_SIZE) = htons(h_proto);
154 return SNAP_SIZE + sizeof(u16);
157 int rtllib_encrypt_fragment(struct rtllib_device *ieee, struct sk_buff *frag,
160 struct lib80211_crypt_data *crypt = NULL;
163 crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx];
165 if (!(crypt && crypt->ops)) {
166 netdev_info(ieee->dev, "=========>%s(), crypt is null\n",
170 /* To encrypt, frame format is:
171 * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes)
174 /* Host-based IEEE 802.11 fragmentation for TX is not yet supported, so
175 * call both MSDU and MPDU encryption functions from here.
177 atomic_inc(&crypt->refcnt);
179 if (crypt->ops->encrypt_msdu)
180 res = crypt->ops->encrypt_msdu(frag, hdr_len, crypt->priv);
181 if (res == 0 && crypt->ops->encrypt_mpdu)
182 res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv);
184 atomic_dec(&crypt->refcnt);
186 netdev_info(ieee->dev, "%s: Encryption failed: len=%d.\n",
187 ieee->dev->name, frag->len);
194 void rtllib_txb_free(struct rtllib_txb *txb)
201 static struct rtllib_txb *rtllib_alloc_txb(int nr_frags, int txb_size,
204 struct rtllib_txb *txb;
207 txb = kzalloc(struct_size(txb, fragments, nr_frags), gfp_mask);
211 txb->nr_frags = nr_frags;
212 txb->frag_size = cpu_to_le16(txb_size);
214 for (i = 0; i < nr_frags; i++) {
215 txb->fragments[i] = dev_alloc_skb(txb_size);
216 if (unlikely(!txb->fragments[i]))
218 memset(txb->fragments[i]->cb, 0, sizeof(txb->fragments[i]->cb));
225 dev_kfree_skb_any(txb->fragments[i]);
231 static int rtllib_classify(struct sk_buff *skb, u8 bIsAmsdu)
236 eth = (struct ethhdr *)skb->data;
237 if (eth->h_proto != htons(ETH_P_IP))
241 print_hex_dump_bytes("%s: ", __func__, DUMP_PREFIX_NONE, skb->data,
245 switch (ip->tos & 0xfc) {
265 static void rtllib_tx_query_agg_cap(struct rtllib_device *ieee,
267 struct cb_desc *tcb_desc)
269 struct rt_hi_throughput *ht_info = ieee->ht_info;
270 struct tx_ts_record *pTxTs = NULL;
271 struct rtllib_hdr_1addr *hdr = (struct rtllib_hdr_1addr *)skb->data;
273 if (rtllib_act_scanning(ieee, false))
276 if (!ht_info->bCurrentHTSupport || !ht_info->enable_ht)
278 if (!IsQoSDataFrame(skb->data))
280 if (is_multicast_ether_addr(hdr->addr1))
283 if (tcb_desc->bdhcp || ieee->CntAfterLink < 2)
286 if (ht_info->iot_action & HT_IOT_ACT_TX_NO_AGGREGATION)
289 if (!ieee->GetNmodeSupportBySecCfg(ieee->dev))
291 if (ht_info->bCurrentAMPDUEnable) {
292 if (!GetTs(ieee, (struct ts_common_info **)(&pTxTs), hdr->addr1,
293 skb->priority, TX_DIR, true)) {
294 netdev_info(ieee->dev, "%s: can't get TS\n", __func__);
297 if (!pTxTs->TxAdmittedBARecord.b_valid) {
298 if (ieee->wpa_ie_len && (ieee->pairwise_key_type ==
301 } else if (tcb_desc->bdhcp == 1) {
303 } else if (!pTxTs->bDisable_AddBa) {
304 TsStartAddBaProcess(ieee, pTxTs);
306 goto FORCED_AGG_SETTING;
307 } else if (!pTxTs->bUsingBa) {
308 if (SN_LESS(pTxTs->TxAdmittedBARecord.ba_start_seq_ctrl.field.seq_num,
309 (pTxTs->TxCurSeq + 1) % 4096))
310 pTxTs->bUsingBa = true;
312 goto FORCED_AGG_SETTING;
314 if (ieee->iw_mode == IW_MODE_INFRA) {
315 tcb_desc->bAMPDUEnable = true;
316 tcb_desc->ampdu_factor = ht_info->CurrentAMPDUFactor;
317 tcb_desc->ampdu_density = ht_info->current_mpdu_density;
321 switch (ht_info->ForcedAMPDUMode) {
325 case HT_AGG_FORCE_ENABLE:
326 tcb_desc->bAMPDUEnable = true;
327 tcb_desc->ampdu_density = ht_info->forced_mpdu_density;
328 tcb_desc->ampdu_factor = ht_info->forced_ampdu_factor;
331 case HT_AGG_FORCE_DISABLE:
332 tcb_desc->bAMPDUEnable = false;
333 tcb_desc->ampdu_density = 0;
334 tcb_desc->ampdu_factor = 0;
339 static void rtllib_query_ShortPreambleMode(struct rtllib_device *ieee,
340 struct cb_desc *tcb_desc)
342 tcb_desc->bUseShortPreamble = false;
343 if (tcb_desc->data_rate == 2)
345 else if (ieee->current_network.capability &
346 WLAN_CAPABILITY_SHORT_PREAMBLE)
347 tcb_desc->bUseShortPreamble = true;
350 static void rtllib_query_HTCapShortGI(struct rtllib_device *ieee,
351 struct cb_desc *tcb_desc)
353 struct rt_hi_throughput *ht_info = ieee->ht_info;
355 tcb_desc->bUseShortGI = false;
357 if (!ht_info->bCurrentHTSupport || !ht_info->enable_ht)
360 if (ht_info->forced_short_gi) {
361 tcb_desc->bUseShortGI = true;
365 if (ht_info->bCurBW40MHz && ht_info->bCurShortGI40MHz)
366 tcb_desc->bUseShortGI = true;
367 else if (!ht_info->bCurBW40MHz && ht_info->bCurShortGI20MHz)
368 tcb_desc->bUseShortGI = true;
371 static void rtllib_query_BandwidthMode(struct rtllib_device *ieee,
372 struct cb_desc *tcb_desc)
374 struct rt_hi_throughput *ht_info = ieee->ht_info;
376 tcb_desc->bPacketBW = false;
378 if (!ht_info->bCurrentHTSupport || !ht_info->enable_ht)
381 if (tcb_desc->bMulticast || tcb_desc->bBroadcast)
384 if ((tcb_desc->data_rate & 0x80) == 0)
386 if (ht_info->bCurBW40MHz && ht_info->cur_tx_bw40mhz &&
387 !ieee->bandwidth_auto_switch.bforced_tx20Mhz)
388 tcb_desc->bPacketBW = true;
391 static void rtllib_query_protectionmode(struct rtllib_device *ieee,
392 struct cb_desc *tcb_desc,
395 struct rt_hi_throughput *ht_info;
397 tcb_desc->bRTSSTBC = false;
398 tcb_desc->bRTSUseShortGI = false;
399 tcb_desc->bCTSEnable = false;
401 tcb_desc->bRTSBW = false;
403 if (tcb_desc->bBroadcast || tcb_desc->bMulticast)
406 if (is_broadcast_ether_addr(skb->data + 16))
409 if (ieee->mode < IEEE_N_24G) {
410 if (skb->len > ieee->rts) {
411 tcb_desc->bRTSEnable = true;
412 tcb_desc->rts_rate = MGN_24M;
413 } else if (ieee->current_network.buseprotection) {
414 tcb_desc->bRTSEnable = true;
415 tcb_desc->bCTSEnable = true;
416 tcb_desc->rts_rate = MGN_24M;
421 ht_info = ieee->ht_info;
424 if (ht_info->iot_action & HT_IOT_ACT_FORCED_CTS2SELF) {
425 tcb_desc->bCTSEnable = true;
426 tcb_desc->rts_rate = MGN_24M;
427 tcb_desc->bRTSEnable = true;
429 } else if (ht_info->iot_action & (HT_IOT_ACT_FORCED_RTS |
430 HT_IOT_ACT_PURE_N_MODE)) {
431 tcb_desc->bRTSEnable = true;
432 tcb_desc->rts_rate = MGN_24M;
435 if (ieee->current_network.buseprotection) {
436 tcb_desc->bRTSEnable = true;
437 tcb_desc->bCTSEnable = true;
438 tcb_desc->rts_rate = MGN_24M;
441 if (ht_info->bCurrentHTSupport && ht_info->enable_ht) {
442 u8 HTOpMode = ht_info->current_op_mode;
444 if ((ht_info->bCurBW40MHz && (HTOpMode == 2 ||
446 (!ht_info->bCurBW40MHz && HTOpMode == 3)) {
447 tcb_desc->rts_rate = MGN_24M;
448 tcb_desc->bRTSEnable = true;
452 if (skb->len > ieee->rts) {
453 tcb_desc->rts_rate = MGN_24M;
454 tcb_desc->bRTSEnable = true;
457 if (tcb_desc->bAMPDUEnable) {
458 tcb_desc->rts_rate = MGN_24M;
459 tcb_desc->bRTSEnable = false;
464 if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
465 tcb_desc->bUseShortPreamble = true;
466 if (ieee->iw_mode == IW_MODE_MASTER)
470 tcb_desc->bRTSEnable = false;
471 tcb_desc->bCTSEnable = false;
472 tcb_desc->rts_rate = 0;
474 tcb_desc->bRTSBW = false;
477 static void rtllib_txrate_selectmode(struct rtllib_device *ieee,
478 struct cb_desc *tcb_desc)
480 if (ieee->tx_dis_rate_fallback)
481 tcb_desc->tx_dis_rate_fallback = true;
483 if (ieee->tx_use_drv_assinged_rate)
484 tcb_desc->tx_use_drv_assinged_rate = true;
485 if (!tcb_desc->tx_dis_rate_fallback ||
486 !tcb_desc->tx_use_drv_assinged_rate) {
487 if (ieee->iw_mode == IW_MODE_INFRA ||
488 ieee->iw_mode == IW_MODE_ADHOC)
489 tcb_desc->RATRIndex = 0;
493 static u16 rtllib_query_seqnum(struct rtllib_device *ieee, struct sk_buff *skb,
498 if (is_multicast_ether_addr(dst))
500 if (IsQoSDataFrame(skb->data)) {
501 struct tx_ts_record *pTS = NULL;
503 if (!GetTs(ieee, (struct ts_common_info **)(&pTS), dst,
504 skb->priority, TX_DIR, true))
506 seqnum = pTS->TxCurSeq;
507 pTS->TxCurSeq = (pTS->TxCurSeq + 1) % 4096;
513 static int wme_downgrade_ac(struct sk_buff *skb)
515 switch (skb->priority) {
518 skb->priority = 5; /* VO -> VI */
522 skb->priority = 3; /* VI -> BE */
526 skb->priority = 1; /* BE -> BK */
533 static u8 rtllib_current_rate(struct rtllib_device *ieee)
535 if (ieee->mode & IEEE_MODE_MASK)
538 if (ieee->HTCurrentOperaRate)
539 return ieee->HTCurrentOperaRate;
541 return ieee->rate & 0x7F;
544 static int rtllib_xmit_inter(struct sk_buff *skb, struct net_device *dev)
546 struct rtllib_device *ieee = (struct rtllib_device *)
547 netdev_priv_rsl(dev);
548 struct rtllib_txb *txb = NULL;
549 struct rtllib_hdr_3addrqos *frag_hdr;
550 int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size;
552 struct net_device_stats *stats = &ieee->stats;
553 int ether_type = 0, encrypt;
554 int bytes, fc, qos_ctl = 0, hdr_len;
555 struct sk_buff *skb_frag;
556 struct rtllib_hdr_3addrqos header = { /* Ensure zero initialized */
561 int qos_activated = ieee->current_network.qos_data.active;
564 struct lib80211_crypt_data *crypt = NULL;
565 struct cb_desc *tcb_desc;
566 u8 bIsMulticast = false;
570 spin_lock_irqsave(&ieee->lock, flags);
572 /* If there is no driver handler to take the TXB, don't bother
575 if ((!ieee->hard_start_xmit && !(ieee->softmac_features &
576 IEEE_SOFTMAC_TX_QUEUE)) ||
577 ((!ieee->softmac_data_hard_start_xmit &&
578 (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE)))) {
579 netdev_warn(ieee->dev, "No xmit handler.\n");
583 if (likely(ieee->raw_tx == 0)) {
584 if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) {
585 netdev_warn(ieee->dev, "skb too small (%d).\n",
589 /* Save source and destination addresses */
590 ether_addr_copy(dest, skb->data);
591 ether_addr_copy(src, skb->data + ETH_ALEN);
593 memset(skb->cb, 0, sizeof(skb->cb));
594 ether_type = ntohs(((struct ethhdr *)skb->data)->h_proto);
596 if (ieee->iw_mode == IW_MODE_MONITOR) {
597 txb = rtllib_alloc_txb(1, skb->len, GFP_ATOMIC);
598 if (unlikely(!txb)) {
599 netdev_warn(ieee->dev,
600 "Could not allocate TXB\n");
605 txb->payload_size = cpu_to_le16(skb->len);
606 skb_put_data(txb->fragments[0], skb->data, skb->len);
611 if (skb->len > 282) {
612 if (ether_type == ETH_P_IP) {
613 const struct iphdr *ip = (struct iphdr *)
614 ((u8 *)skb->data + 14);
615 if (ip->protocol == IPPROTO_UDP) {
618 udp = (struct udphdr *)((u8 *)ip +
620 if (((((u8 *)udp)[1] == 68) &&
621 (((u8 *)udp)[3] == 67)) ||
622 ((((u8 *)udp)[1] == 67) &&
623 (((u8 *)udp)[3] == 68))) {
625 ieee->LPSDelayCnt = 200;
628 } else if (ether_type == ETH_P_ARP) {
629 netdev_info(ieee->dev,
630 "=================>DHCP Protocol start tx ARP pkt!!\n");
633 ieee->current_network.tim.tim_count;
637 skb->priority = rtllib_classify(skb, IsAmsdu);
638 crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx];
639 encrypt = !(ether_type == ETH_P_PAE && ieee->ieee802_1x) &&
640 ieee->host_encrypt && crypt && crypt->ops;
641 if (!encrypt && ieee->ieee802_1x &&
642 ieee->drop_unencrypted && ether_type != ETH_P_PAE) {
646 if (crypt && !encrypt && ether_type == ETH_P_PAE) {
647 struct eapol *eap = (struct eapol *)(skb->data +
648 sizeof(struct ethhdr) - SNAP_SIZE -
650 netdev_dbg(ieee->dev,
651 "TX: IEEE 802.11 EAPOL frame: %s\n",
652 eap_get_type(eap->type));
655 /* Advance the SKB to the start of the payload */
656 skb_pull(skb, sizeof(struct ethhdr));
658 /* Determine total amount of storage required for TXB packets */
659 bytes = skb->len + SNAP_SIZE + sizeof(u16);
662 fc = RTLLIB_FTYPE_DATA | RTLLIB_FCTL_WEP;
664 fc = RTLLIB_FTYPE_DATA;
667 fc |= RTLLIB_STYPE_QOS_DATA;
669 fc |= RTLLIB_STYPE_DATA;
671 if (ieee->iw_mode == IW_MODE_INFRA) {
672 fc |= RTLLIB_FCTL_TODS;
673 /* To DS: Addr1 = BSSID, Addr2 = SA,
676 ether_addr_copy(header.addr1,
677 ieee->current_network.bssid);
678 ether_addr_copy(header.addr2, src);
680 ether_addr_copy(header.addr3,
681 ieee->current_network.bssid);
683 ether_addr_copy(header.addr3, dest);
684 } else if (ieee->iw_mode == IW_MODE_ADHOC) {
685 /* not From/To DS: Addr1 = DA, Addr2 = SA,
688 ether_addr_copy(header.addr1, dest);
689 ether_addr_copy(header.addr2, src);
690 ether_addr_copy(header.addr3,
691 ieee->current_network.bssid);
694 bIsMulticast = is_multicast_ether_addr(header.addr1);
696 header.frame_ctl = cpu_to_le16(fc);
698 /* Determine fragmentation size based on destination (multicast
699 * and broadcast are not fragmented)
702 frag_size = MAX_FRAG_THRESHOLD;
703 qos_ctl |= QOS_CTL_NOTCONTAIN_ACK;
705 frag_size = ieee->fts;
710 hdr_len = RTLLIB_3ADDR_LEN + 2;
712 /* in case we are a client verify acm is not set for this ac */
713 while (unlikely(ieee->wmm_acm & (0x01 << skb->priority))) {
714 netdev_info(ieee->dev, "skb->priority = %x\n",
716 if (wme_downgrade_ac(skb))
718 netdev_info(ieee->dev, "converted skb->priority = %x\n",
722 qos_ctl |= skb->priority;
723 header.qos_ctl = cpu_to_le16(qos_ctl & RTLLIB_QOS_TID);
726 hdr_len = RTLLIB_3ADDR_LEN;
728 /* Determine amount of payload per fragment. Regardless of if
729 * this stack is providing the full 802.11 header, one will
730 * eventually be affixed to this fragment -- so we must account
731 * for it when determining the amount of payload space.
733 bytes_per_frag = frag_size - hdr_len;
735 (CFG_RTLLIB_COMPUTE_FCS | CFG_RTLLIB_RESERVE_FCS))
736 bytes_per_frag -= RTLLIB_FCS_LEN;
738 /* Each fragment may need to have room for encrypting
742 bytes_per_frag -= crypt->ops->extra_mpdu_prefix_len +
743 crypt->ops->extra_mpdu_postfix_len +
744 crypt->ops->extra_msdu_prefix_len +
745 crypt->ops->extra_msdu_postfix_len;
747 /* Number of fragments is the total bytes_per_frag /
748 * payload_per_fragment
750 nr_frags = bytes / bytes_per_frag;
751 bytes_last_frag = bytes % bytes_per_frag;
755 bytes_last_frag = bytes_per_frag;
757 /* When we allocate the TXB we allocate enough space for the
758 * reserve and full fragment bytes (bytes_per_frag doesn't
759 * include prefix, postfix, header, FCS, etc.)
761 txb = rtllib_alloc_txb(nr_frags, frag_size +
762 ieee->tx_headroom, GFP_ATOMIC);
763 if (unlikely(!txb)) {
764 netdev_warn(ieee->dev, "Could not allocate TXB\n");
767 txb->encrypted = encrypt;
768 txb->payload_size = cpu_to_le16(bytes);
771 txb->queue_index = UP2AC(skb->priority);
773 txb->queue_index = WME_AC_BE;
775 for (i = 0; i < nr_frags; i++) {
776 skb_frag = txb->fragments[i];
777 tcb_desc = (struct cb_desc *)(skb_frag->cb +
780 skb_frag->priority = skb->priority;
781 tcb_desc->queue_index = UP2AC(skb->priority);
783 skb_frag->priority = WME_AC_BE;
784 tcb_desc->queue_index = WME_AC_BE;
786 skb_reserve(skb_frag, ieee->tx_headroom);
789 if (ieee->hwsec_active)
790 tcb_desc->bHwSec = 1;
792 tcb_desc->bHwSec = 0;
793 skb_reserve(skb_frag,
794 crypt->ops->extra_mpdu_prefix_len +
795 crypt->ops->extra_msdu_prefix_len);
797 tcb_desc->bHwSec = 0;
799 frag_hdr = skb_put_data(skb_frag, &header, hdr_len);
801 /* If this is not the last fragment, then add the
802 * MOREFRAGS bit to the frame control
804 if (i != nr_frags - 1) {
805 frag_hdr->frame_ctl = cpu_to_le16(fc |
806 RTLLIB_FCTL_MOREFRAGS);
807 bytes = bytes_per_frag;
810 /* The last fragment has the remaining length */
811 bytes = bytes_last_frag;
813 if ((qos_activated) && (!bIsMulticast)) {
815 cpu_to_le16(rtllib_query_seqnum(ieee, skb_frag,
818 cpu_to_le16(le16_to_cpu(frag_hdr->seq_ctl) << 4 | i);
821 cpu_to_le16(ieee->seq_ctrl[0] << 4 | i);
823 /* Put a SNAP header on the first fragment */
825 rtllib_put_snap(skb_put(skb_frag,
827 sizeof(u16)), ether_type);
828 bytes -= SNAP_SIZE + sizeof(u16);
831 skb_put_data(skb_frag, skb->data, bytes);
833 /* Advance the SKB... */
834 skb_pull(skb, bytes);
836 /* Encryption routine will move the header forward in
837 * order to insert the IV between the header and the
841 rtllib_encrypt_fragment(ieee, skb_frag,
844 (CFG_RTLLIB_COMPUTE_FCS | CFG_RTLLIB_RESERVE_FCS))
845 skb_put(skb_frag, 4);
848 if ((qos_activated) && (!bIsMulticast)) {
849 if (ieee->seq_ctrl[UP2AC(skb->priority) + 1] == 0xFFF)
850 ieee->seq_ctrl[UP2AC(skb->priority) + 1] = 0;
852 ieee->seq_ctrl[UP2AC(skb->priority) + 1]++;
854 if (ieee->seq_ctrl[0] == 0xFFF)
855 ieee->seq_ctrl[0] = 0;
860 if (unlikely(skb->len < sizeof(struct rtllib_hdr_3addr))) {
861 netdev_warn(ieee->dev, "skb too small (%d).\n",
866 txb = rtllib_alloc_txb(1, skb->len, GFP_ATOMIC);
868 netdev_warn(ieee->dev, "Could not allocate TXB\n");
873 txb->payload_size = cpu_to_le16(skb->len);
874 skb_put_data(txb->fragments[0], skb->data, skb->len);
879 tcb_desc = (struct cb_desc *)
880 (txb->fragments[0]->cb + MAX_DEV_ADDR_SIZE);
881 tcb_desc->bTxEnableFwCalcDur = 1;
882 tcb_desc->priority = skb->priority;
884 if (ether_type == ETH_P_PAE) {
885 if (ieee->ht_info->iot_action &
886 HT_IOT_ACT_WA_IOT_Broadcom) {
887 tcb_desc->data_rate =
888 MgntQuery_TxRateExcludeCCKRates(ieee);
889 tcb_desc->tx_dis_rate_fallback = false;
891 tcb_desc->data_rate = ieee->basic_rate;
892 tcb_desc->tx_dis_rate_fallback = 1;
895 tcb_desc->RATRIndex = 7;
896 tcb_desc->tx_use_drv_assinged_rate = 1;
898 if (is_multicast_ether_addr(header.addr1))
899 tcb_desc->bMulticast = 1;
900 if (is_broadcast_ether_addr(header.addr1))
901 tcb_desc->bBroadcast = 1;
902 rtllib_txrate_selectmode(ieee, tcb_desc);
903 if (tcb_desc->bMulticast || tcb_desc->bBroadcast)
904 tcb_desc->data_rate = ieee->basic_rate;
906 tcb_desc->data_rate = rtllib_current_rate(ieee);
909 if (ieee->ht_info->iot_action &
910 HT_IOT_ACT_WA_IOT_Broadcom) {
911 tcb_desc->data_rate =
912 MgntQuery_TxRateExcludeCCKRates(ieee);
913 tcb_desc->tx_dis_rate_fallback = false;
915 tcb_desc->data_rate = MGN_1M;
916 tcb_desc->tx_dis_rate_fallback = 1;
919 tcb_desc->RATRIndex = 7;
920 tcb_desc->tx_use_drv_assinged_rate = 1;
924 rtllib_query_ShortPreambleMode(ieee, tcb_desc);
925 rtllib_tx_query_agg_cap(ieee, txb->fragments[0],
927 rtllib_query_HTCapShortGI(ieee, tcb_desc);
928 rtllib_query_BandwidthMode(ieee, tcb_desc);
929 rtllib_query_protectionmode(ieee, tcb_desc,
933 spin_unlock_irqrestore(&ieee->lock, flags);
934 dev_kfree_skb_any(skb);
936 if (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE) {
937 dev->stats.tx_packets++;
938 dev->stats.tx_bytes += le16_to_cpu(txb->payload_size);
939 rtllib_softmac_xmit(txb, ieee);
941 if ((*ieee->hard_start_xmit)(txb, dev) == 0) {
943 stats->tx_bytes += le16_to_cpu(txb->payload_size);
946 rtllib_txb_free(txb);
953 spin_unlock_irqrestore(&ieee->lock, flags);
954 netif_stop_queue(dev);
959 netdev_tx_t rtllib_xmit(struct sk_buff *skb, struct net_device *dev)
961 memset(skb->cb, 0, sizeof(skb->cb));
962 return rtllib_xmit_inter(skb, dev) ? NETDEV_TX_BUSY : NETDEV_TX_OK;
964 EXPORT_SYMBOL(rtllib_xmit);