]> Git Repo - linux.git/blob - drivers/net/ethernet/sun/cassini.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[linux.git] / drivers / net / ethernet / sun / cassini.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3  *
4  * Copyright (C) 2004 Sun Microsystems Inc.
5  * Copyright (C) 2003 Adrian Sun ([email protected])
6  *
7  * This driver uses the sungem driver (c) David Miller
8  * ([email protected]) as its basis.
9  *
10  * The cassini chip has a number of features that distinguish it from
11  * the gem chip:
12  *  4 transmit descriptor rings that are used for either QoS (VLAN) or
13  *      load balancing (non-VLAN mode)
14  *  batching of multiple packets
15  *  multiple CPU dispatching
16  *  page-based RX descriptor engine with separate completion rings
17  *  Gigabit support (GMII and PCS interface)
18  *  MIF link up/down detection works
19  *
20  * RX is handled by page sized buffers that are attached as fragments to
21  * the skb. here's what's done:
22  *  -- driver allocates pages at a time and keeps reference counts
23  *     on them.
24  *  -- the upper protocol layers assume that the header is in the skb
25  *     itself. as a result, cassini will copy a small amount (64 bytes)
26  *     to make them happy.
27  *  -- driver appends the rest of the data pages as frags to skbuffs
28  *     and increments the reference count
29  *  -- on page reclamation, the driver swaps the page with a spare page.
30  *     if that page is still in use, it frees its reference to that page,
31  *     and allocates a new page for use. otherwise, it just recycles the
32  *     page.
33  *
34  * NOTE: cassini can parse the header. however, it's not worth it
35  *       as long as the network stack requires a header copy.
36  *
37  * TX has 4 queues. currently these queues are used in a round-robin
38  * fashion for load balancing. They can also be used for QoS. for that
39  * to work, however, QoS information needs to be exposed down to the driver
40  * level so that subqueues get targeted to particular transmit rings.
41  * alternatively, the queues can be configured via use of the all-purpose
42  * ioctl.
43  *
44  * RX DATA: the rx completion ring has all the info, but the rx desc
45  * ring has all of the data. RX can conceivably come in under multiple
46  * interrupts, but the INT# assignment needs to be set up properly by
47  * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
48  * that. also, the two descriptor rings are designed to distinguish between
49  * encrypted and non-encrypted packets, but we use them for buffering
50  * instead.
51  *
52  * by default, the selective clear mask is set up to process rx packets.
53  */
54
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56
57 #include <linux/module.h>
58 #include <linux/kernel.h>
59 #include <linux/types.h>
60 #include <linux/compiler.h>
61 #include <linux/slab.h>
62 #include <linux/delay.h>
63 #include <linux/init.h>
64 #include <linux/interrupt.h>
65 #include <linux/vmalloc.h>
66 #include <linux/ioport.h>
67 #include <linux/pci.h>
68 #include <linux/mm.h>
69 #include <linux/highmem.h>
70 #include <linux/list.h>
71 #include <linux/dma-mapping.h>
72
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/ethtool.h>
77 #include <linux/crc32.h>
78 #include <linux/random.h>
79 #include <linux/mii.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/mutex.h>
83 #include <linux/firmware.h>
84
85 #include <net/checksum.h>
86
87 #include <linux/atomic.h>
88 #include <asm/io.h>
89 #include <asm/byteorder.h>
90 #include <linux/uaccess.h>
91 #include <linux/jiffies.h>
92
93 #define CAS_NCPUS            num_online_cpus()
94
95 #define cas_skb_release(x)  netif_rx(x)
96
97 /* select which firmware to use */
98 #define USE_HP_WORKAROUND
99 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
100 #define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
101
102 #include "cassini.h"
103
104 #define USE_TX_COMPWB      /* use completion writeback registers */
105 #define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
106 #define USE_RX_BLANK       /* hw interrupt mitigation */
107 #undef USE_ENTROPY_DEV     /* don't test for entropy device */
108
109 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
110  * also, we need to make cp->lock finer-grained.
111  */
112 #undef  USE_PCI_INTB
113 #undef  USE_PCI_INTC
114 #undef  USE_PCI_INTD
115 #undef  USE_QOS
116
117 #undef  USE_VPD_DEBUG       /* debug vpd information if defined */
118
119 /* rx processing options */
120 #define USE_PAGE_ORDER      /* specify to allocate large rx pages */
121 #define RX_DONT_BATCH  0    /* if 1, don't batch flows */
122 #define RX_COPY_ALWAYS 0    /* if 0, use frags */
123 #define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
124 #undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
125
126 #define DRV_MODULE_NAME         "cassini"
127 #define DRV_MODULE_VERSION      "1.6"
128 #define DRV_MODULE_RELDATE      "21 May 2008"
129
130 #define CAS_DEF_MSG_ENABLE        \
131         (NETIF_MSG_DRV          | \
132          NETIF_MSG_PROBE        | \
133          NETIF_MSG_LINK         | \
134          NETIF_MSG_TIMER        | \
135          NETIF_MSG_IFDOWN       | \
136          NETIF_MSG_IFUP         | \
137          NETIF_MSG_RX_ERR       | \
138          NETIF_MSG_TX_ERR)
139
140 /* length of time before we decide the hardware is borked,
141  * and dev->tx_timeout() should be called to fix the problem
142  */
143 #define CAS_TX_TIMEOUT                  (HZ)
144 #define CAS_LINK_TIMEOUT                (22*HZ/10)
145 #define CAS_LINK_FAST_TIMEOUT           (1)
146
147 /* timeout values for state changing. these specify the number
148  * of 10us delays to be used before giving up.
149  */
150 #define STOP_TRIES_PHY 1000
151 #define STOP_TRIES     5000
152
153 /* specify a minimum frame size to deal with some fifo issues
154  * max mtu == 2 * page size - ethernet header - 64 - swivel =
155  *            2 * page_size - 0x50
156  */
157 #define CAS_MIN_FRAME                   97
158 #define CAS_1000MB_MIN_FRAME            255
159 #define CAS_MIN_MTU                     60
160 #define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
161
162 #if 1
163 /*
164  * Eliminate these and use separate atomic counters for each, to
165  * avoid a race condition.
166  */
167 #else
168 #define CAS_RESET_MTU                   1
169 #define CAS_RESET_ALL                   2
170 #define CAS_RESET_SPARE                 3
171 #endif
172
173 static char version[] =
174         DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
175
176 static int cassini_debug = -1;  /* -1 == use CAS_DEF_MSG_ENABLE as value */
177 static int link_mode;
178
179 MODULE_AUTHOR("Adrian Sun ([email protected])");
180 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
181 MODULE_LICENSE("GPL");
182 MODULE_FIRMWARE("sun/cassini.bin");
183 module_param(cassini_debug, int, 0);
184 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
185 module_param(link_mode, int, 0);
186 MODULE_PARM_DESC(link_mode, "default link mode");
187
188 /*
189  * Work around for a PCS bug in which the link goes down due to the chip
190  * being confused and never showing a link status of "up."
191  */
192 #define DEFAULT_LINKDOWN_TIMEOUT 5
193 /*
194  * Value in seconds, for user input.
195  */
196 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
197 module_param(linkdown_timeout, int, 0);
198 MODULE_PARM_DESC(linkdown_timeout,
199 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
200
201 /*
202  * value in 'ticks' (units used by jiffies). Set when we init the
203  * module because 'HZ' in actually a function call on some flavors of
204  * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
205  */
206 static int link_transition_timeout;
207
208
209
210 static u16 link_modes[] = {
211         BMCR_ANENABLE,                   /* 0 : autoneg */
212         0,                               /* 1 : 10bt half duplex */
213         BMCR_SPEED100,                   /* 2 : 100bt half duplex */
214         BMCR_FULLDPLX,                   /* 3 : 10bt full duplex */
215         BMCR_SPEED100|BMCR_FULLDPLX,     /* 4 : 100bt full duplex */
216         CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
217 };
218
219 static const struct pci_device_id cas_pci_tbl[] = {
220         { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
221           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
222         { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
223           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
224         { 0, }
225 };
226
227 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
228
229 static void cas_set_link_modes(struct cas *cp);
230
231 static inline void cas_lock_tx(struct cas *cp)
232 {
233         int i;
234
235         for (i = 0; i < N_TX_RINGS; i++)
236                 spin_lock_nested(&cp->tx_lock[i], i);
237 }
238
239 /* WTZ: QA was finding deadlock problems with the previous
240  * versions after long test runs with multiple cards per machine.
241  * See if replacing cas_lock_all with safer versions helps. The
242  * symptoms QA is reporting match those we'd expect if interrupts
243  * aren't being properly restored, and we fixed a previous deadlock
244  * with similar symptoms by using save/restore versions in other
245  * places.
246  */
247 #define cas_lock_all_save(cp, flags) \
248 do { \
249         struct cas *xxxcp = (cp); \
250         spin_lock_irqsave(&xxxcp->lock, flags); \
251         cas_lock_tx(xxxcp); \
252 } while (0)
253
254 static inline void cas_unlock_tx(struct cas *cp)
255 {
256         int i;
257
258         for (i = N_TX_RINGS; i > 0; i--)
259                 spin_unlock(&cp->tx_lock[i - 1]);
260 }
261
262 #define cas_unlock_all_restore(cp, flags) \
263 do { \
264         struct cas *xxxcp = (cp); \
265         cas_unlock_tx(xxxcp); \
266         spin_unlock_irqrestore(&xxxcp->lock, flags); \
267 } while (0)
268
269 static void cas_disable_irq(struct cas *cp, const int ring)
270 {
271         /* Make sure we won't get any more interrupts */
272         if (ring == 0) {
273                 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
274                 return;
275         }
276
277         /* disable completion interrupts and selectively mask */
278         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
279                 switch (ring) {
280 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
281 #ifdef USE_PCI_INTB
282                 case 1:
283 #endif
284 #ifdef USE_PCI_INTC
285                 case 2:
286 #endif
287 #ifdef USE_PCI_INTD
288                 case 3:
289 #endif
290                         writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
291                                cp->regs + REG_PLUS_INTRN_MASK(ring));
292                         break;
293 #endif
294                 default:
295                         writel(INTRN_MASK_CLEAR_ALL, cp->regs +
296                                REG_PLUS_INTRN_MASK(ring));
297                         break;
298                 }
299         }
300 }
301
302 static inline void cas_mask_intr(struct cas *cp)
303 {
304         int i;
305
306         for (i = 0; i < N_RX_COMP_RINGS; i++)
307                 cas_disable_irq(cp, i);
308 }
309
310 static void cas_enable_irq(struct cas *cp, const int ring)
311 {
312         if (ring == 0) { /* all but TX_DONE */
313                 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
314                 return;
315         }
316
317         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
318                 switch (ring) {
319 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
320 #ifdef USE_PCI_INTB
321                 case 1:
322 #endif
323 #ifdef USE_PCI_INTC
324                 case 2:
325 #endif
326 #ifdef USE_PCI_INTD
327                 case 3:
328 #endif
329                         writel(INTRN_MASK_RX_EN, cp->regs +
330                                REG_PLUS_INTRN_MASK(ring));
331                         break;
332 #endif
333                 default:
334                         break;
335                 }
336         }
337 }
338
339 static inline void cas_unmask_intr(struct cas *cp)
340 {
341         int i;
342
343         for (i = 0; i < N_RX_COMP_RINGS; i++)
344                 cas_enable_irq(cp, i);
345 }
346
347 static inline void cas_entropy_gather(struct cas *cp)
348 {
349 #ifdef USE_ENTROPY_DEV
350         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
351                 return;
352
353         batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
354                             readl(cp->regs + REG_ENTROPY_IV),
355                             sizeof(uint64_t)*8);
356 #endif
357 }
358
359 static inline void cas_entropy_reset(struct cas *cp)
360 {
361 #ifdef USE_ENTROPY_DEV
362         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
363                 return;
364
365         writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
366                cp->regs + REG_BIM_LOCAL_DEV_EN);
367         writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
368         writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
369
370         /* if we read back 0x0, we don't have an entropy device */
371         if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
372                 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
373 #endif
374 }
375
376 /* access to the phy. the following assumes that we've initialized the MIF to
377  * be in frame rather than bit-bang mode
378  */
379 static u16 cas_phy_read(struct cas *cp, int reg)
380 {
381         u32 cmd;
382         int limit = STOP_TRIES_PHY;
383
384         cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
385         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
386         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
387         cmd |= MIF_FRAME_TURN_AROUND_MSB;
388         writel(cmd, cp->regs + REG_MIF_FRAME);
389
390         /* poll for completion */
391         while (limit-- > 0) {
392                 udelay(10);
393                 cmd = readl(cp->regs + REG_MIF_FRAME);
394                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
395                         return cmd & MIF_FRAME_DATA_MASK;
396         }
397         return 0xFFFF; /* -1 */
398 }
399
400 static int cas_phy_write(struct cas *cp, int reg, u16 val)
401 {
402         int limit = STOP_TRIES_PHY;
403         u32 cmd;
404
405         cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
406         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
407         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
408         cmd |= MIF_FRAME_TURN_AROUND_MSB;
409         cmd |= val & MIF_FRAME_DATA_MASK;
410         writel(cmd, cp->regs + REG_MIF_FRAME);
411
412         /* poll for completion */
413         while (limit-- > 0) {
414                 udelay(10);
415                 cmd = readl(cp->regs + REG_MIF_FRAME);
416                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
417                         return 0;
418         }
419         return -1;
420 }
421
422 static void cas_phy_powerup(struct cas *cp)
423 {
424         u16 ctl = cas_phy_read(cp, MII_BMCR);
425
426         if ((ctl & BMCR_PDOWN) == 0)
427                 return;
428         ctl &= ~BMCR_PDOWN;
429         cas_phy_write(cp, MII_BMCR, ctl);
430 }
431
432 static void cas_phy_powerdown(struct cas *cp)
433 {
434         u16 ctl = cas_phy_read(cp, MII_BMCR);
435
436         if (ctl & BMCR_PDOWN)
437                 return;
438         ctl |= BMCR_PDOWN;
439         cas_phy_write(cp, MII_BMCR, ctl);
440 }
441
442 /* cp->lock held. note: the last put_page will free the buffer */
443 static int cas_page_free(struct cas *cp, cas_page_t *page)
444 {
445         dma_unmap_page(&cp->pdev->dev, page->dma_addr, cp->page_size,
446                        DMA_FROM_DEVICE);
447         __free_pages(page->buffer, cp->page_order);
448         kfree(page);
449         return 0;
450 }
451
452 #ifdef RX_COUNT_BUFFERS
453 #define RX_USED_ADD(x, y)       ((x)->used += (y))
454 #define RX_USED_SET(x, y)       ((x)->used  = (y))
455 #else
456 #define RX_USED_ADD(x, y) do { } while(0)
457 #define RX_USED_SET(x, y) do { } while(0)
458 #endif
459
460 /* local page allocation routines for the receive buffers. jumbo pages
461  * require at least 8K contiguous and 8K aligned buffers.
462  */
463 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
464 {
465         cas_page_t *page;
466
467         page = kmalloc(sizeof(cas_page_t), flags);
468         if (!page)
469                 return NULL;
470
471         INIT_LIST_HEAD(&page->list);
472         RX_USED_SET(page, 0);
473         page->buffer = alloc_pages(flags, cp->page_order);
474         if (!page->buffer)
475                 goto page_err;
476         page->dma_addr = dma_map_page(&cp->pdev->dev, page->buffer, 0,
477                                       cp->page_size, DMA_FROM_DEVICE);
478         return page;
479
480 page_err:
481         kfree(page);
482         return NULL;
483 }
484
485 /* initialize spare pool of rx buffers, but allocate during the open */
486 static void cas_spare_init(struct cas *cp)
487 {
488         spin_lock(&cp->rx_inuse_lock);
489         INIT_LIST_HEAD(&cp->rx_inuse_list);
490         spin_unlock(&cp->rx_inuse_lock);
491
492         spin_lock(&cp->rx_spare_lock);
493         INIT_LIST_HEAD(&cp->rx_spare_list);
494         cp->rx_spares_needed = RX_SPARE_COUNT;
495         spin_unlock(&cp->rx_spare_lock);
496 }
497
498 /* used on close. free all the spare buffers. */
499 static void cas_spare_free(struct cas *cp)
500 {
501         struct list_head list, *elem, *tmp;
502
503         /* free spare buffers */
504         INIT_LIST_HEAD(&list);
505         spin_lock(&cp->rx_spare_lock);
506         list_splice_init(&cp->rx_spare_list, &list);
507         spin_unlock(&cp->rx_spare_lock);
508         list_for_each_safe(elem, tmp, &list) {
509                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
510         }
511
512         INIT_LIST_HEAD(&list);
513 #if 1
514         /*
515          * Looks like Adrian had protected this with a different
516          * lock than used everywhere else to manipulate this list.
517          */
518         spin_lock(&cp->rx_inuse_lock);
519         list_splice_init(&cp->rx_inuse_list, &list);
520         spin_unlock(&cp->rx_inuse_lock);
521 #else
522         spin_lock(&cp->rx_spare_lock);
523         list_splice_init(&cp->rx_inuse_list, &list);
524         spin_unlock(&cp->rx_spare_lock);
525 #endif
526         list_for_each_safe(elem, tmp, &list) {
527                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
528         }
529 }
530
531 /* replenish spares if needed */
532 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
533 {
534         struct list_head list, *elem, *tmp;
535         int needed, i;
536
537         /* check inuse list. if we don't need any more free buffers,
538          * just free it
539          */
540
541         /* make a local copy of the list */
542         INIT_LIST_HEAD(&list);
543         spin_lock(&cp->rx_inuse_lock);
544         list_splice_init(&cp->rx_inuse_list, &list);
545         spin_unlock(&cp->rx_inuse_lock);
546
547         list_for_each_safe(elem, tmp, &list) {
548                 cas_page_t *page = list_entry(elem, cas_page_t, list);
549
550                 /*
551                  * With the lockless pagecache, cassini buffering scheme gets
552                  * slightly less accurate: we might find that a page has an
553                  * elevated reference count here, due to a speculative ref,
554                  * and skip it as in-use. Ideally we would be able to reclaim
555                  * it. However this would be such a rare case, it doesn't
556                  * matter too much as we should pick it up the next time round.
557                  *
558                  * Importantly, if we find that the page has a refcount of 1
559                  * here (our refcount), then we know it is definitely not inuse
560                  * so we can reuse it.
561                  */
562                 if (page_count(page->buffer) > 1)
563                         continue;
564
565                 list_del(elem);
566                 spin_lock(&cp->rx_spare_lock);
567                 if (cp->rx_spares_needed > 0) {
568                         list_add(elem, &cp->rx_spare_list);
569                         cp->rx_spares_needed--;
570                         spin_unlock(&cp->rx_spare_lock);
571                 } else {
572                         spin_unlock(&cp->rx_spare_lock);
573                         cas_page_free(cp, page);
574                 }
575         }
576
577         /* put any inuse buffers back on the list */
578         if (!list_empty(&list)) {
579                 spin_lock(&cp->rx_inuse_lock);
580                 list_splice(&list, &cp->rx_inuse_list);
581                 spin_unlock(&cp->rx_inuse_lock);
582         }
583
584         spin_lock(&cp->rx_spare_lock);
585         needed = cp->rx_spares_needed;
586         spin_unlock(&cp->rx_spare_lock);
587         if (!needed)
588                 return;
589
590         /* we still need spares, so try to allocate some */
591         INIT_LIST_HEAD(&list);
592         i = 0;
593         while (i < needed) {
594                 cas_page_t *spare = cas_page_alloc(cp, flags);
595                 if (!spare)
596                         break;
597                 list_add(&spare->list, &list);
598                 i++;
599         }
600
601         spin_lock(&cp->rx_spare_lock);
602         list_splice(&list, &cp->rx_spare_list);
603         cp->rx_spares_needed -= i;
604         spin_unlock(&cp->rx_spare_lock);
605 }
606
607 /* pull a page from the list. */
608 static cas_page_t *cas_page_dequeue(struct cas *cp)
609 {
610         struct list_head *entry;
611         int recover;
612
613         spin_lock(&cp->rx_spare_lock);
614         if (list_empty(&cp->rx_spare_list)) {
615                 /* try to do a quick recovery */
616                 spin_unlock(&cp->rx_spare_lock);
617                 cas_spare_recover(cp, GFP_ATOMIC);
618                 spin_lock(&cp->rx_spare_lock);
619                 if (list_empty(&cp->rx_spare_list)) {
620                         netif_err(cp, rx_err, cp->dev,
621                                   "no spare buffers available\n");
622                         spin_unlock(&cp->rx_spare_lock);
623                         return NULL;
624                 }
625         }
626
627         entry = cp->rx_spare_list.next;
628         list_del(entry);
629         recover = ++cp->rx_spares_needed;
630         spin_unlock(&cp->rx_spare_lock);
631
632         /* trigger the timer to do the recovery */
633         if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
634 #if 1
635                 atomic_inc(&cp->reset_task_pending);
636                 atomic_inc(&cp->reset_task_pending_spare);
637                 schedule_work(&cp->reset_task);
638 #else
639                 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
640                 schedule_work(&cp->reset_task);
641 #endif
642         }
643         return list_entry(entry, cas_page_t, list);
644 }
645
646
647 static void cas_mif_poll(struct cas *cp, const int enable)
648 {
649         u32 cfg;
650
651         cfg  = readl(cp->regs + REG_MIF_CFG);
652         cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
653
654         if (cp->phy_type & CAS_PHY_MII_MDIO1)
655                 cfg |= MIF_CFG_PHY_SELECT;
656
657         /* poll and interrupt on link status change. */
658         if (enable) {
659                 cfg |= MIF_CFG_POLL_EN;
660                 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
661                 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
662         }
663         writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
664                cp->regs + REG_MIF_MASK);
665         writel(cfg, cp->regs + REG_MIF_CFG);
666 }
667
668 /* Must be invoked under cp->lock */
669 static void cas_begin_auto_negotiation(struct cas *cp,
670                                        const struct ethtool_link_ksettings *ep)
671 {
672         u16 ctl;
673 #if 1
674         int lcntl;
675         int changed = 0;
676         int oldstate = cp->lstate;
677         int link_was_not_down = !(oldstate == link_down);
678 #endif
679         /* Setup link parameters */
680         if (!ep)
681                 goto start_aneg;
682         lcntl = cp->link_cntl;
683         if (ep->base.autoneg == AUTONEG_ENABLE) {
684                 cp->link_cntl = BMCR_ANENABLE;
685         } else {
686                 u32 speed = ep->base.speed;
687                 cp->link_cntl = 0;
688                 if (speed == SPEED_100)
689                         cp->link_cntl |= BMCR_SPEED100;
690                 else if (speed == SPEED_1000)
691                         cp->link_cntl |= CAS_BMCR_SPEED1000;
692                 if (ep->base.duplex == DUPLEX_FULL)
693                         cp->link_cntl |= BMCR_FULLDPLX;
694         }
695 #if 1
696         changed = (lcntl != cp->link_cntl);
697 #endif
698 start_aneg:
699         if (cp->lstate == link_up) {
700                 netdev_info(cp->dev, "PCS link down\n");
701         } else {
702                 if (changed) {
703                         netdev_info(cp->dev, "link configuration changed\n");
704                 }
705         }
706         cp->lstate = link_down;
707         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
708         if (!cp->hw_running)
709                 return;
710 #if 1
711         /*
712          * WTZ: If the old state was link_up, we turn off the carrier
713          * to replicate everything we do elsewhere on a link-down
714          * event when we were already in a link-up state..
715          */
716         if (oldstate == link_up)
717                 netif_carrier_off(cp->dev);
718         if (changed  && link_was_not_down) {
719                 /*
720                  * WTZ: This branch will simply schedule a full reset after
721                  * we explicitly changed link modes in an ioctl. See if this
722                  * fixes the link-problems we were having for forced mode.
723                  */
724                 atomic_inc(&cp->reset_task_pending);
725                 atomic_inc(&cp->reset_task_pending_all);
726                 schedule_work(&cp->reset_task);
727                 cp->timer_ticks = 0;
728                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
729                 return;
730         }
731 #endif
732         if (cp->phy_type & CAS_PHY_SERDES) {
733                 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
734
735                 if (cp->link_cntl & BMCR_ANENABLE) {
736                         val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
737                         cp->lstate = link_aneg;
738                 } else {
739                         if (cp->link_cntl & BMCR_FULLDPLX)
740                                 val |= PCS_MII_CTRL_DUPLEX;
741                         val &= ~PCS_MII_AUTONEG_EN;
742                         cp->lstate = link_force_ok;
743                 }
744                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
745                 writel(val, cp->regs + REG_PCS_MII_CTRL);
746
747         } else {
748                 cas_mif_poll(cp, 0);
749                 ctl = cas_phy_read(cp, MII_BMCR);
750                 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
751                          CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
752                 ctl |= cp->link_cntl;
753                 if (ctl & BMCR_ANENABLE) {
754                         ctl |= BMCR_ANRESTART;
755                         cp->lstate = link_aneg;
756                 } else {
757                         cp->lstate = link_force_ok;
758                 }
759                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
760                 cas_phy_write(cp, MII_BMCR, ctl);
761                 cas_mif_poll(cp, 1);
762         }
763
764         cp->timer_ticks = 0;
765         mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
766 }
767
768 /* Must be invoked under cp->lock. */
769 static int cas_reset_mii_phy(struct cas *cp)
770 {
771         int limit = STOP_TRIES_PHY;
772         u16 val;
773
774         cas_phy_write(cp, MII_BMCR, BMCR_RESET);
775         udelay(100);
776         while (--limit) {
777                 val = cas_phy_read(cp, MII_BMCR);
778                 if ((val & BMCR_RESET) == 0)
779                         break;
780                 udelay(10);
781         }
782         return limit <= 0;
783 }
784
785 static void cas_saturn_firmware_init(struct cas *cp)
786 {
787         const struct firmware *fw;
788         const char fw_name[] = "sun/cassini.bin";
789         int err;
790
791         if (PHY_NS_DP83065 != cp->phy_id)
792                 return;
793
794         err = request_firmware(&fw, fw_name, &cp->pdev->dev);
795         if (err) {
796                 pr_err("Failed to load firmware \"%s\"\n",
797                        fw_name);
798                 return;
799         }
800         if (fw->size < 2) {
801                 pr_err("bogus length %zu in \"%s\"\n",
802                        fw->size, fw_name);
803                 goto out;
804         }
805         cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
806         cp->fw_size = fw->size - 2;
807         cp->fw_data = vmalloc(cp->fw_size);
808         if (!cp->fw_data)
809                 goto out;
810         memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
811 out:
812         release_firmware(fw);
813 }
814
815 static void cas_saturn_firmware_load(struct cas *cp)
816 {
817         int i;
818
819         if (!cp->fw_data)
820                 return;
821
822         cas_phy_powerdown(cp);
823
824         /* expanded memory access mode */
825         cas_phy_write(cp, DP83065_MII_MEM, 0x0);
826
827         /* pointer configuration for new firmware */
828         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
829         cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
830         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
831         cas_phy_write(cp, DP83065_MII_REGD, 0x82);
832         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
833         cas_phy_write(cp, DP83065_MII_REGD, 0x0);
834         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
835         cas_phy_write(cp, DP83065_MII_REGD, 0x39);
836
837         /* download new firmware */
838         cas_phy_write(cp, DP83065_MII_MEM, 0x1);
839         cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
840         for (i = 0; i < cp->fw_size; i++)
841                 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
842
843         /* enable firmware */
844         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
845         cas_phy_write(cp, DP83065_MII_REGD, 0x1);
846 }
847
848
849 /* phy initialization */
850 static void cas_phy_init(struct cas *cp)
851 {
852         u16 val;
853
854         /* if we're in MII/GMII mode, set up phy */
855         if (CAS_PHY_MII(cp->phy_type)) {
856                 writel(PCS_DATAPATH_MODE_MII,
857                        cp->regs + REG_PCS_DATAPATH_MODE);
858
859                 cas_mif_poll(cp, 0);
860                 cas_reset_mii_phy(cp); /* take out of isolate mode */
861
862                 if (PHY_LUCENT_B0 == cp->phy_id) {
863                         /* workaround link up/down issue with lucent */
864                         cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
865                         cas_phy_write(cp, MII_BMCR, 0x00f1);
866                         cas_phy_write(cp, LUCENT_MII_REG, 0x0);
867
868                 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
869                         /* workarounds for broadcom phy */
870                         cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
871                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
872                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
873                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
874                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
875                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
876                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
877                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
878                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
879                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
880                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
881
882                 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
883                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
884                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
885                         if (val & 0x0080) {
886                                 /* link workaround */
887                                 cas_phy_write(cp, BROADCOM_MII_REG4,
888                                               val & ~0x0080);
889                         }
890
891                 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
892                         writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
893                                SATURN_PCFG_FSI : 0x0,
894                                cp->regs + REG_SATURN_PCFG);
895
896                         /* load firmware to address 10Mbps auto-negotiation
897                          * issue. NOTE: this will need to be changed if the
898                          * default firmware gets fixed.
899                          */
900                         if (PHY_NS_DP83065 == cp->phy_id) {
901                                 cas_saturn_firmware_load(cp);
902                         }
903                         cas_phy_powerup(cp);
904                 }
905
906                 /* advertise capabilities */
907                 val = cas_phy_read(cp, MII_BMCR);
908                 val &= ~BMCR_ANENABLE;
909                 cas_phy_write(cp, MII_BMCR, val);
910                 udelay(10);
911
912                 cas_phy_write(cp, MII_ADVERTISE,
913                               cas_phy_read(cp, MII_ADVERTISE) |
914                               (ADVERTISE_10HALF | ADVERTISE_10FULL |
915                                ADVERTISE_100HALF | ADVERTISE_100FULL |
916                                CAS_ADVERTISE_PAUSE |
917                                CAS_ADVERTISE_ASYM_PAUSE));
918
919                 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
920                         /* make sure that we don't advertise half
921                          * duplex to avoid a chip issue
922                          */
923                         val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
924                         val &= ~CAS_ADVERTISE_1000HALF;
925                         val |= CAS_ADVERTISE_1000FULL;
926                         cas_phy_write(cp, CAS_MII_1000_CTRL, val);
927                 }
928
929         } else {
930                 /* reset pcs for serdes */
931                 u32 val;
932                 int limit;
933
934                 writel(PCS_DATAPATH_MODE_SERDES,
935                        cp->regs + REG_PCS_DATAPATH_MODE);
936
937                 /* enable serdes pins on saturn */
938                 if (cp->cas_flags & CAS_FLAG_SATURN)
939                         writel(0, cp->regs + REG_SATURN_PCFG);
940
941                 /* Reset PCS unit. */
942                 val = readl(cp->regs + REG_PCS_MII_CTRL);
943                 val |= PCS_MII_RESET;
944                 writel(val, cp->regs + REG_PCS_MII_CTRL);
945
946                 limit = STOP_TRIES;
947                 while (--limit > 0) {
948                         udelay(10);
949                         if ((readl(cp->regs + REG_PCS_MII_CTRL) &
950                              PCS_MII_RESET) == 0)
951                                 break;
952                 }
953                 if (limit <= 0)
954                         netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
955                                     readl(cp->regs + REG_PCS_STATE_MACHINE));
956
957                 /* Make sure PCS is disabled while changing advertisement
958                  * configuration.
959                  */
960                 writel(0x0, cp->regs + REG_PCS_CFG);
961
962                 /* Advertise all capabilities except half-duplex. */
963                 val  = readl(cp->regs + REG_PCS_MII_ADVERT);
964                 val &= ~PCS_MII_ADVERT_HD;
965                 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
966                         PCS_MII_ADVERT_ASYM_PAUSE);
967                 writel(val, cp->regs + REG_PCS_MII_ADVERT);
968
969                 /* enable PCS */
970                 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
971
972                 /* pcs workaround: enable sync detect */
973                 writel(PCS_SERDES_CTRL_SYNCD_EN,
974                        cp->regs + REG_PCS_SERDES_CTRL);
975         }
976 }
977
978
979 static int cas_pcs_link_check(struct cas *cp)
980 {
981         u32 stat, state_machine;
982         int retval = 0;
983
984         /* The link status bit latches on zero, so you must
985          * read it twice in such a case to see a transition
986          * to the link being up.
987          */
988         stat = readl(cp->regs + REG_PCS_MII_STATUS);
989         if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
990                 stat = readl(cp->regs + REG_PCS_MII_STATUS);
991
992         /* The remote-fault indication is only valid
993          * when autoneg has completed.
994          */
995         if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
996                      PCS_MII_STATUS_REMOTE_FAULT)) ==
997             (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
998                 netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
999
1000         /* work around link detection issue by querying the PCS state
1001          * machine directly.
1002          */
1003         state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1004         if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1005                 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1006         } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1007                 stat |= PCS_MII_STATUS_LINK_STATUS;
1008         }
1009
1010         if (stat & PCS_MII_STATUS_LINK_STATUS) {
1011                 if (cp->lstate != link_up) {
1012                         if (cp->opened) {
1013                                 cp->lstate = link_up;
1014                                 cp->link_transition = LINK_TRANSITION_LINK_UP;
1015
1016                                 cas_set_link_modes(cp);
1017                                 netif_carrier_on(cp->dev);
1018                         }
1019                 }
1020         } else if (cp->lstate == link_up) {
1021                 cp->lstate = link_down;
1022                 if (link_transition_timeout != 0 &&
1023                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1024                     !cp->link_transition_jiffies_valid) {
1025                         /*
1026                          * force a reset, as a workaround for the
1027                          * link-failure problem. May want to move this to a
1028                          * point a bit earlier in the sequence. If we had
1029                          * generated a reset a short time ago, we'll wait for
1030                          * the link timer to check the status until a
1031                          * timer expires (link_transistion_jiffies_valid is
1032                          * true when the timer is running.)  Instead of using
1033                          * a system timer, we just do a check whenever the
1034                          * link timer is running - this clears the flag after
1035                          * a suitable delay.
1036                          */
1037                         retval = 1;
1038                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1039                         cp->link_transition_jiffies = jiffies;
1040                         cp->link_transition_jiffies_valid = 1;
1041                 } else {
1042                         cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1043                 }
1044                 netif_carrier_off(cp->dev);
1045                 if (cp->opened)
1046                         netif_info(cp, link, cp->dev, "PCS link down\n");
1047
1048                 /* Cassini only: if you force a mode, there can be
1049                  * sync problems on link down. to fix that, the following
1050                  * things need to be checked:
1051                  * 1) read serialink state register
1052                  * 2) read pcs status register to verify link down.
1053                  * 3) if link down and serial link == 0x03, then you need
1054                  *    to global reset the chip.
1055                  */
1056                 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1057                         /* should check to see if we're in a forced mode */
1058                         stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1059                         if (stat == 0x03)
1060                                 return 1;
1061                 }
1062         } else if (cp->lstate == link_down) {
1063                 if (link_transition_timeout != 0 &&
1064                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1065                     !cp->link_transition_jiffies_valid) {
1066                         /* force a reset, as a workaround for the
1067                          * link-failure problem.  May want to move
1068                          * this to a point a bit earlier in the
1069                          * sequence.
1070                          */
1071                         retval = 1;
1072                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1073                         cp->link_transition_jiffies = jiffies;
1074                         cp->link_transition_jiffies_valid = 1;
1075                 } else {
1076                         cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1077                 }
1078         }
1079
1080         return retval;
1081 }
1082
1083 static int cas_pcs_interrupt(struct net_device *dev,
1084                              struct cas *cp, u32 status)
1085 {
1086         u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1087
1088         if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1089                 return 0;
1090         return cas_pcs_link_check(cp);
1091 }
1092
1093 static int cas_txmac_interrupt(struct net_device *dev,
1094                                struct cas *cp, u32 status)
1095 {
1096         u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1097
1098         if (!txmac_stat)
1099                 return 0;
1100
1101         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1102                      "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1103
1104         /* Defer timer expiration is quite normal,
1105          * don't even log the event.
1106          */
1107         if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1108             !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1109                 return 0;
1110
1111         spin_lock(&cp->stat_lock[0]);
1112         if (txmac_stat & MAC_TX_UNDERRUN) {
1113                 netdev_err(dev, "TX MAC xmit underrun\n");
1114                 cp->net_stats[0].tx_fifo_errors++;
1115         }
1116
1117         if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1118                 netdev_err(dev, "TX MAC max packet size error\n");
1119                 cp->net_stats[0].tx_errors++;
1120         }
1121
1122         /* The rest are all cases of one of the 16-bit TX
1123          * counters expiring.
1124          */
1125         if (txmac_stat & MAC_TX_COLL_NORMAL)
1126                 cp->net_stats[0].collisions += 0x10000;
1127
1128         if (txmac_stat & MAC_TX_COLL_EXCESS) {
1129                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1130                 cp->net_stats[0].collisions += 0x10000;
1131         }
1132
1133         if (txmac_stat & MAC_TX_COLL_LATE) {
1134                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1135                 cp->net_stats[0].collisions += 0x10000;
1136         }
1137         spin_unlock(&cp->stat_lock[0]);
1138
1139         /* We do not keep track of MAC_TX_COLL_FIRST and
1140          * MAC_TX_PEAK_ATTEMPTS events.
1141          */
1142         return 0;
1143 }
1144
1145 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1146 {
1147         cas_hp_inst_t *inst;
1148         u32 val;
1149         int i;
1150
1151         i = 0;
1152         while ((inst = firmware) && inst->note) {
1153                 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1154
1155                 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1156                 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1157                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1158
1159                 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1160                 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1161                 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1162                 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1163                 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1164                 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1165                 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1166                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1167
1168                 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1169                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1170                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1171                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1172                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1173                 ++firmware;
1174                 ++i;
1175         }
1176 }
1177
1178 static void cas_init_rx_dma(struct cas *cp)
1179 {
1180         u64 desc_dma = cp->block_dvma;
1181         u32 val;
1182         int i, size;
1183
1184         /* rx free descriptors */
1185         val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1186         val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1187         val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1188         if ((N_RX_DESC_RINGS > 1) &&
1189             (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1190                 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1191         writel(val, cp->regs + REG_RX_CFG);
1192
1193         val = (unsigned long) cp->init_rxds[0] -
1194                 (unsigned long) cp->init_block;
1195         writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1196         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1197         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1198
1199         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1200                 /* rx desc 2 is for IPSEC packets. however,
1201                  * we don't it that for that purpose.
1202                  */
1203                 val = (unsigned long) cp->init_rxds[1] -
1204                         (unsigned long) cp->init_block;
1205                 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1206                 writel((desc_dma + val) & 0xffffffff, cp->regs +
1207                        REG_PLUS_RX_DB1_LOW);
1208                 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1209                        REG_PLUS_RX_KICK1);
1210         }
1211
1212         /* rx completion registers */
1213         val = (unsigned long) cp->init_rxcs[0] -
1214                 (unsigned long) cp->init_block;
1215         writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1216         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1217
1218         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1219                 /* rx comp 2-4 */
1220                 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1221                         val = (unsigned long) cp->init_rxcs[i] -
1222                                 (unsigned long) cp->init_block;
1223                         writel((desc_dma + val) >> 32, cp->regs +
1224                                REG_PLUS_RX_CBN_HI(i));
1225                         writel((desc_dma + val) & 0xffffffff, cp->regs +
1226                                REG_PLUS_RX_CBN_LOW(i));
1227                 }
1228         }
1229
1230         /* read selective clear regs to prevent spurious interrupts
1231          * on reset because complete == kick.
1232          * selective clear set up to prevent interrupts on resets
1233          */
1234         readl(cp->regs + REG_INTR_STATUS_ALIAS);
1235         writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1236
1237         /* set up pause thresholds */
1238         val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1239                         cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1240         val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1241                         cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1242         writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1243
1244         /* zero out dma reassembly buffers */
1245         for (i = 0; i < 64; i++) {
1246                 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1247                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1248                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1249                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1250         }
1251
1252         /* make sure address register is 0 for normal operation */
1253         writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1254         writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1255
1256         /* interrupt mitigation */
1257 #ifdef USE_RX_BLANK
1258         val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1259         val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1260         writel(val, cp->regs + REG_RX_BLANK);
1261 #else
1262         writel(0x0, cp->regs + REG_RX_BLANK);
1263 #endif
1264
1265         /* interrupt generation as a function of low water marks for
1266          * free desc and completion entries. these are used to trigger
1267          * housekeeping for rx descs. we don't use the free interrupt
1268          * as it's not very useful
1269          */
1270         /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1271         val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1272         writel(val, cp->regs + REG_RX_AE_THRESH);
1273         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1274                 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1275                 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1276         }
1277
1278         /* Random early detect registers. useful for congestion avoidance.
1279          * this should be tunable.
1280          */
1281         writel(0x0, cp->regs + REG_RX_RED);
1282
1283         /* receive page sizes. default == 2K (0x800) */
1284         val = 0;
1285         if (cp->page_size == 0x1000)
1286                 val = 0x1;
1287         else if (cp->page_size == 0x2000)
1288                 val = 0x2;
1289         else if (cp->page_size == 0x4000)
1290                 val = 0x3;
1291
1292         /* round mtu + offset. constrain to page size. */
1293         size = cp->dev->mtu + 64;
1294         if (size > cp->page_size)
1295                 size = cp->page_size;
1296
1297         if (size <= 0x400)
1298                 i = 0x0;
1299         else if (size <= 0x800)
1300                 i = 0x1;
1301         else if (size <= 0x1000)
1302                 i = 0x2;
1303         else
1304                 i = 0x3;
1305
1306         cp->mtu_stride = 1 << (i + 10);
1307         val  = CAS_BASE(RX_PAGE_SIZE, val);
1308         val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1309         val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1310         val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1311         writel(val, cp->regs + REG_RX_PAGE_SIZE);
1312
1313         /* enable the header parser if desired */
1314         if (&CAS_HP_FIRMWARE[0] == &cas_prog_null[0])
1315                 return;
1316
1317         val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1318         val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1319         val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1320         writel(val, cp->regs + REG_HP_CFG);
1321 }
1322
1323 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1324 {
1325         memset(rxc, 0, sizeof(*rxc));
1326         rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1327 }
1328
1329 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1330  * flipping is protected by the fact that the chip will not
1331  * hand back the same page index while it's being processed.
1332  */
1333 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1334 {
1335         cas_page_t *page = cp->rx_pages[1][index];
1336         cas_page_t *new;
1337
1338         if (page_count(page->buffer) == 1)
1339                 return page;
1340
1341         new = cas_page_dequeue(cp);
1342         if (new) {
1343                 spin_lock(&cp->rx_inuse_lock);
1344                 list_add(&page->list, &cp->rx_inuse_list);
1345                 spin_unlock(&cp->rx_inuse_lock);
1346         }
1347         return new;
1348 }
1349
1350 /* this needs to be changed if we actually use the ENC RX DESC ring */
1351 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1352                                  const int index)
1353 {
1354         cas_page_t **page0 = cp->rx_pages[0];
1355         cas_page_t **page1 = cp->rx_pages[1];
1356
1357         /* swap if buffer is in use */
1358         if (page_count(page0[index]->buffer) > 1) {
1359                 cas_page_t *new = cas_page_spare(cp, index);
1360                 if (new) {
1361                         page1[index] = page0[index];
1362                         page0[index] = new;
1363                 }
1364         }
1365         RX_USED_SET(page0[index], 0);
1366         return page0[index];
1367 }
1368
1369 static void cas_clean_rxds(struct cas *cp)
1370 {
1371         /* only clean ring 0 as ring 1 is used for spare buffers */
1372         struct cas_rx_desc *rxd = cp->init_rxds[0];
1373         int i, size;
1374
1375         /* release all rx flows */
1376         for (i = 0; i < N_RX_FLOWS; i++) {
1377                 struct sk_buff *skb;
1378                 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1379                         cas_skb_release(skb);
1380                 }
1381         }
1382
1383         /* initialize descriptors */
1384         size = RX_DESC_RINGN_SIZE(0);
1385         for (i = 0; i < size; i++) {
1386                 cas_page_t *page = cas_page_swap(cp, 0, i);
1387                 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1388                 rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1389                                             CAS_BASE(RX_INDEX_RING, 0));
1390         }
1391
1392         cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1393         cp->rx_last[0] = 0;
1394         cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1395 }
1396
1397 static void cas_clean_rxcs(struct cas *cp)
1398 {
1399         int i, j;
1400
1401         /* take ownership of rx comp descriptors */
1402         memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1403         memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1404         for (i = 0; i < N_RX_COMP_RINGS; i++) {
1405                 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1406                 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1407                         cas_rxc_init(rxc + j);
1408                 }
1409         }
1410 }
1411
1412 #if 0
1413 /* When we get a RX fifo overflow, the RX unit is probably hung
1414  * so we do the following.
1415  *
1416  * If any part of the reset goes wrong, we return 1 and that causes the
1417  * whole chip to be reset.
1418  */
1419 static int cas_rxmac_reset(struct cas *cp)
1420 {
1421         struct net_device *dev = cp->dev;
1422         int limit;
1423         u32 val;
1424
1425         /* First, reset MAC RX. */
1426         writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1427         for (limit = 0; limit < STOP_TRIES; limit++) {
1428                 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1429                         break;
1430                 udelay(10);
1431         }
1432         if (limit == STOP_TRIES) {
1433                 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1434                 return 1;
1435         }
1436
1437         /* Second, disable RX DMA. */
1438         writel(0, cp->regs + REG_RX_CFG);
1439         for (limit = 0; limit < STOP_TRIES; limit++) {
1440                 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1441                         break;
1442                 udelay(10);
1443         }
1444         if (limit == STOP_TRIES) {
1445                 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1446                 return 1;
1447         }
1448
1449         mdelay(5);
1450
1451         /* Execute RX reset command. */
1452         writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1453         for (limit = 0; limit < STOP_TRIES; limit++) {
1454                 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1455                         break;
1456                 udelay(10);
1457         }
1458         if (limit == STOP_TRIES) {
1459                 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1460                 return 1;
1461         }
1462
1463         /* reset driver rx state */
1464         cas_clean_rxds(cp);
1465         cas_clean_rxcs(cp);
1466
1467         /* Now, reprogram the rest of RX unit. */
1468         cas_init_rx_dma(cp);
1469
1470         /* re-enable */
1471         val = readl(cp->regs + REG_RX_CFG);
1472         writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1473         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1474         val = readl(cp->regs + REG_MAC_RX_CFG);
1475         writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1476         return 0;
1477 }
1478 #endif
1479
1480 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1481                                u32 status)
1482 {
1483         u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1484
1485         if (!stat)
1486                 return 0;
1487
1488         netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1489
1490         /* these are all rollovers */
1491         spin_lock(&cp->stat_lock[0]);
1492         if (stat & MAC_RX_ALIGN_ERR)
1493                 cp->net_stats[0].rx_frame_errors += 0x10000;
1494
1495         if (stat & MAC_RX_CRC_ERR)
1496                 cp->net_stats[0].rx_crc_errors += 0x10000;
1497
1498         if (stat & MAC_RX_LEN_ERR)
1499                 cp->net_stats[0].rx_length_errors += 0x10000;
1500
1501         if (stat & MAC_RX_OVERFLOW) {
1502                 cp->net_stats[0].rx_over_errors++;
1503                 cp->net_stats[0].rx_fifo_errors++;
1504         }
1505
1506         /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1507          * events.
1508          */
1509         spin_unlock(&cp->stat_lock[0]);
1510         return 0;
1511 }
1512
1513 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1514                              u32 status)
1515 {
1516         u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1517
1518         if (!stat)
1519                 return 0;
1520
1521         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1522                      "mac interrupt, stat: 0x%x\n", stat);
1523
1524         /* This interrupt is just for pause frame and pause
1525          * tracking.  It is useful for diagnostics and debug
1526          * but probably by default we will mask these events.
1527          */
1528         if (stat & MAC_CTRL_PAUSE_STATE)
1529                 cp->pause_entered++;
1530
1531         if (stat & MAC_CTRL_PAUSE_RECEIVED)
1532                 cp->pause_last_time_recvd = (stat >> 16);
1533
1534         return 0;
1535 }
1536
1537
1538 /* Must be invoked under cp->lock. */
1539 static inline int cas_mdio_link_not_up(struct cas *cp)
1540 {
1541         u16 val;
1542
1543         switch (cp->lstate) {
1544         case link_force_ret:
1545                 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1546                 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1547                 cp->timer_ticks = 5;
1548                 cp->lstate = link_force_ok;
1549                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1550                 break;
1551
1552         case link_aneg:
1553                 val = cas_phy_read(cp, MII_BMCR);
1554
1555                 /* Try forced modes. we try things in the following order:
1556                  * 1000 full -> 100 full/half -> 10 half
1557                  */
1558                 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1559                 val |= BMCR_FULLDPLX;
1560                 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1561                         CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1562                 cas_phy_write(cp, MII_BMCR, val);
1563                 cp->timer_ticks = 5;
1564                 cp->lstate = link_force_try;
1565                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1566                 break;
1567
1568         case link_force_try:
1569                 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1570                 val = cas_phy_read(cp, MII_BMCR);
1571                 cp->timer_ticks = 5;
1572                 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1573                         val &= ~CAS_BMCR_SPEED1000;
1574                         val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1575                         cas_phy_write(cp, MII_BMCR, val);
1576                         break;
1577                 }
1578
1579                 if (val & BMCR_SPEED100) {
1580                         if (val & BMCR_FULLDPLX) /* fd failed */
1581                                 val &= ~BMCR_FULLDPLX;
1582                         else { /* 100Mbps failed */
1583                                 val &= ~BMCR_SPEED100;
1584                         }
1585                         cas_phy_write(cp, MII_BMCR, val);
1586                         break;
1587                 }
1588                 break;
1589         default:
1590                 break;
1591         }
1592         return 0;
1593 }
1594
1595
1596 /* must be invoked with cp->lock held */
1597 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1598 {
1599         int restart;
1600
1601         if (bmsr & BMSR_LSTATUS) {
1602                 /* Ok, here we got a link. If we had it due to a forced
1603                  * fallback, and we were configured for autoneg, we
1604                  * retry a short autoneg pass. If you know your hub is
1605                  * broken, use ethtool ;)
1606                  */
1607                 if ((cp->lstate == link_force_try) &&
1608                     (cp->link_cntl & BMCR_ANENABLE)) {
1609                         cp->lstate = link_force_ret;
1610                         cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1611                         cas_mif_poll(cp, 0);
1612                         cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1613                         cp->timer_ticks = 5;
1614                         if (cp->opened)
1615                                 netif_info(cp, link, cp->dev,
1616                                            "Got link after fallback, retrying autoneg once...\n");
1617                         cas_phy_write(cp, MII_BMCR,
1618                                       cp->link_fcntl | BMCR_ANENABLE |
1619                                       BMCR_ANRESTART);
1620                         cas_mif_poll(cp, 1);
1621
1622                 } else if (cp->lstate != link_up) {
1623                         cp->lstate = link_up;
1624                         cp->link_transition = LINK_TRANSITION_LINK_UP;
1625
1626                         if (cp->opened) {
1627                                 cas_set_link_modes(cp);
1628                                 netif_carrier_on(cp->dev);
1629                         }
1630                 }
1631                 return 0;
1632         }
1633
1634         /* link not up. if the link was previously up, we restart the
1635          * whole process
1636          */
1637         restart = 0;
1638         if (cp->lstate == link_up) {
1639                 cp->lstate = link_down;
1640                 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1641
1642                 netif_carrier_off(cp->dev);
1643                 if (cp->opened)
1644                         netif_info(cp, link, cp->dev, "Link down\n");
1645                 restart = 1;
1646
1647         } else if (++cp->timer_ticks > 10)
1648                 cas_mdio_link_not_up(cp);
1649
1650         return restart;
1651 }
1652
1653 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1654                              u32 status)
1655 {
1656         u32 stat = readl(cp->regs + REG_MIF_STATUS);
1657         u16 bmsr;
1658
1659         /* check for a link change */
1660         if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1661                 return 0;
1662
1663         bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1664         return cas_mii_link_check(cp, bmsr);
1665 }
1666
1667 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1668                              u32 status)
1669 {
1670         u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1671
1672         if (!stat)
1673                 return 0;
1674
1675         netdev_err(dev, "PCI error [%04x:%04x]",
1676                    stat, readl(cp->regs + REG_BIM_DIAG));
1677
1678         /* cassini+ has this reserved */
1679         if ((stat & PCI_ERR_BADACK) &&
1680             ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1681                 pr_cont(" <No ACK64# during ABS64 cycle>");
1682
1683         if (stat & PCI_ERR_DTRTO)
1684                 pr_cont(" <Delayed transaction timeout>");
1685         if (stat & PCI_ERR_OTHER)
1686                 pr_cont(" <other>");
1687         if (stat & PCI_ERR_BIM_DMA_WRITE)
1688                 pr_cont(" <BIM DMA 0 write req>");
1689         if (stat & PCI_ERR_BIM_DMA_READ)
1690                 pr_cont(" <BIM DMA 0 read req>");
1691         pr_cont("\n");
1692
1693         if (stat & PCI_ERR_OTHER) {
1694                 int pci_errs;
1695
1696                 /* Interrogate PCI config space for the
1697                  * true cause.
1698                  */
1699                 pci_errs = pci_status_get_and_clear_errors(cp->pdev);
1700
1701                 netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
1702                 if (pci_errs & PCI_STATUS_PARITY)
1703                         netdev_err(dev, "PCI parity error detected\n");
1704                 if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
1705                         netdev_err(dev, "PCI target abort\n");
1706                 if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
1707                         netdev_err(dev, "PCI master acks target abort\n");
1708                 if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
1709                         netdev_err(dev, "PCI master abort\n");
1710                 if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
1711                         netdev_err(dev, "PCI system error SERR#\n");
1712                 if (pci_errs & PCI_STATUS_DETECTED_PARITY)
1713                         netdev_err(dev, "PCI parity error\n");
1714         }
1715
1716         /* For all PCI errors, we should reset the chip. */
1717         return 1;
1718 }
1719
1720 /* All non-normal interrupt conditions get serviced here.
1721  * Returns non-zero if we should just exit the interrupt
1722  * handler right now (ie. if we reset the card which invalidates
1723  * all of the other original irq status bits).
1724  */
1725 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1726                             u32 status)
1727 {
1728         if (status & INTR_RX_TAG_ERROR) {
1729                 /* corrupt RX tag framing */
1730                 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1731                              "corrupt rx tag framing\n");
1732                 spin_lock(&cp->stat_lock[0]);
1733                 cp->net_stats[0].rx_errors++;
1734                 spin_unlock(&cp->stat_lock[0]);
1735                 goto do_reset;
1736         }
1737
1738         if (status & INTR_RX_LEN_MISMATCH) {
1739                 /* length mismatch. */
1740                 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1741                              "length mismatch for rx frame\n");
1742                 spin_lock(&cp->stat_lock[0]);
1743                 cp->net_stats[0].rx_errors++;
1744                 spin_unlock(&cp->stat_lock[0]);
1745                 goto do_reset;
1746         }
1747
1748         if (status & INTR_PCS_STATUS) {
1749                 if (cas_pcs_interrupt(dev, cp, status))
1750                         goto do_reset;
1751         }
1752
1753         if (status & INTR_TX_MAC_STATUS) {
1754                 if (cas_txmac_interrupt(dev, cp, status))
1755                         goto do_reset;
1756         }
1757
1758         if (status & INTR_RX_MAC_STATUS) {
1759                 if (cas_rxmac_interrupt(dev, cp, status))
1760                         goto do_reset;
1761         }
1762
1763         if (status & INTR_MAC_CTRL_STATUS) {
1764                 if (cas_mac_interrupt(dev, cp, status))
1765                         goto do_reset;
1766         }
1767
1768         if (status & INTR_MIF_STATUS) {
1769                 if (cas_mif_interrupt(dev, cp, status))
1770                         goto do_reset;
1771         }
1772
1773         if (status & INTR_PCI_ERROR_STATUS) {
1774                 if (cas_pci_interrupt(dev, cp, status))
1775                         goto do_reset;
1776         }
1777         return 0;
1778
1779 do_reset:
1780 #if 1
1781         atomic_inc(&cp->reset_task_pending);
1782         atomic_inc(&cp->reset_task_pending_all);
1783         netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1784         schedule_work(&cp->reset_task);
1785 #else
1786         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1787         netdev_err(dev, "reset called in cas_abnormal_irq\n");
1788         schedule_work(&cp->reset_task);
1789 #endif
1790         return 1;
1791 }
1792
1793 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1794  *       determining whether to do a netif_stop/wakeup
1795  */
1796 #define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1797 #define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1798 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1799                                   const int len)
1800 {
1801         unsigned long off = addr + len;
1802
1803         if (CAS_TABORT(cp) == 1)
1804                 return 0;
1805         if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1806                 return 0;
1807         return TX_TARGET_ABORT_LEN;
1808 }
1809
1810 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1811 {
1812         struct cas_tx_desc *txds;
1813         struct sk_buff **skbs;
1814         struct net_device *dev = cp->dev;
1815         int entry, count;
1816
1817         spin_lock(&cp->tx_lock[ring]);
1818         txds = cp->init_txds[ring];
1819         skbs = cp->tx_skbs[ring];
1820         entry = cp->tx_old[ring];
1821
1822         count = TX_BUFF_COUNT(ring, entry, limit);
1823         while (entry != limit) {
1824                 struct sk_buff *skb = skbs[entry];
1825                 dma_addr_t daddr;
1826                 u32 dlen;
1827                 int frag;
1828
1829                 if (!skb) {
1830                         /* this should never occur */
1831                         entry = TX_DESC_NEXT(ring, entry);
1832                         continue;
1833                 }
1834
1835                 /* however, we might get only a partial skb release. */
1836                 count -= skb_shinfo(skb)->nr_frags +
1837                         + cp->tx_tiny_use[ring][entry].nbufs + 1;
1838                 if (count < 0)
1839                         break;
1840
1841                 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1842                              "tx[%d] done, slot %d\n", ring, entry);
1843
1844                 skbs[entry] = NULL;
1845                 cp->tx_tiny_use[ring][entry].nbufs = 0;
1846
1847                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1848                         struct cas_tx_desc *txd = txds + entry;
1849
1850                         daddr = le64_to_cpu(txd->buffer);
1851                         dlen = CAS_VAL(TX_DESC_BUFLEN,
1852                                        le64_to_cpu(txd->control));
1853                         dma_unmap_page(&cp->pdev->dev, daddr, dlen,
1854                                        DMA_TO_DEVICE);
1855                         entry = TX_DESC_NEXT(ring, entry);
1856
1857                         /* tiny buffer may follow */
1858                         if (cp->tx_tiny_use[ring][entry].used) {
1859                                 cp->tx_tiny_use[ring][entry].used = 0;
1860                                 entry = TX_DESC_NEXT(ring, entry);
1861                         }
1862                 }
1863
1864                 spin_lock(&cp->stat_lock[ring]);
1865                 cp->net_stats[ring].tx_packets++;
1866                 cp->net_stats[ring].tx_bytes += skb->len;
1867                 spin_unlock(&cp->stat_lock[ring]);
1868                 dev_consume_skb_irq(skb);
1869         }
1870         cp->tx_old[ring] = entry;
1871
1872         /* this is wrong for multiple tx rings. the net device needs
1873          * multiple queues for this to do the right thing.  we wait
1874          * for 2*packets to be available when using tiny buffers
1875          */
1876         if (netif_queue_stopped(dev) &&
1877             (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1878                 netif_wake_queue(dev);
1879         spin_unlock(&cp->tx_lock[ring]);
1880 }
1881
1882 static void cas_tx(struct net_device *dev, struct cas *cp,
1883                    u32 status)
1884 {
1885         int limit, ring;
1886 #ifdef USE_TX_COMPWB
1887         u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1888 #endif
1889         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1890                      "tx interrupt, status: 0x%x, %llx\n",
1891                      status, (unsigned long long)compwb);
1892         /* process all the rings */
1893         for (ring = 0; ring < N_TX_RINGS; ring++) {
1894 #ifdef USE_TX_COMPWB
1895                 /* use the completion writeback registers */
1896                 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1897                         CAS_VAL(TX_COMPWB_LSB, compwb);
1898                 compwb = TX_COMPWB_NEXT(compwb);
1899 #else
1900                 limit = readl(cp->regs + REG_TX_COMPN(ring));
1901 #endif
1902                 if (cp->tx_old[ring] != limit)
1903                         cas_tx_ringN(cp, ring, limit);
1904         }
1905 }
1906
1907
1908 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1909                               int entry, const u64 *words,
1910                               struct sk_buff **skbref)
1911 {
1912         int dlen, hlen, len, i, alloclen;
1913         int off, swivel = RX_SWIVEL_OFF_VAL;
1914         struct cas_page *page;
1915         struct sk_buff *skb;
1916         void *crcaddr;
1917         __sum16 csum;
1918         char *p;
1919
1920         hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1921         dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1922         len  = hlen + dlen;
1923
1924         if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1925                 alloclen = len;
1926         else
1927                 alloclen = max(hlen, RX_COPY_MIN);
1928
1929         skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1930         if (skb == NULL)
1931                 return -1;
1932
1933         *skbref = skb;
1934         skb_reserve(skb, swivel);
1935
1936         p = skb->data;
1937         crcaddr = NULL;
1938         if (hlen) { /* always copy header pages */
1939                 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1940                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1941                 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1942                         swivel;
1943
1944                 i = hlen;
1945                 if (!dlen) /* attach FCS */
1946                         i += cp->crc_size;
1947                 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1948                                         i, DMA_FROM_DEVICE);
1949                 memcpy(p, page_address(page->buffer) + off, i);
1950                 dma_sync_single_for_device(&cp->pdev->dev,
1951                                            page->dma_addr + off, i,
1952                                            DMA_FROM_DEVICE);
1953                 RX_USED_ADD(page, 0x100);
1954                 p += hlen;
1955                 swivel = 0;
1956         }
1957
1958
1959         if (alloclen < (hlen + dlen)) {
1960                 skb_frag_t *frag = skb_shinfo(skb)->frags;
1961
1962                 /* normal or jumbo packets. we use frags */
1963                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
1964                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1965                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
1966
1967                 hlen = min(cp->page_size - off, dlen);
1968                 if (hlen < 0) {
1969                         netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1970                                      "rx page overflow: %d\n", hlen);
1971                         dev_kfree_skb_irq(skb);
1972                         return -1;
1973                 }
1974                 i = hlen;
1975                 if (i == dlen)  /* attach FCS */
1976                         i += cp->crc_size;
1977                 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1978                                         i, DMA_FROM_DEVICE);
1979
1980                 /* make sure we always copy a header */
1981                 swivel = 0;
1982                 if (p == (char *) skb->data) { /* not split */
1983                         memcpy(p, page_address(page->buffer) + off,
1984                                RX_COPY_MIN);
1985                         dma_sync_single_for_device(&cp->pdev->dev,
1986                                                    page->dma_addr + off, i,
1987                                                    DMA_FROM_DEVICE);
1988                         off += RX_COPY_MIN;
1989                         swivel = RX_COPY_MIN;
1990                         RX_USED_ADD(page, cp->mtu_stride);
1991                 } else {
1992                         RX_USED_ADD(page, hlen);
1993                 }
1994                 skb_put(skb, alloclen);
1995
1996                 skb_shinfo(skb)->nr_frags++;
1997                 skb->data_len += hlen - swivel;
1998                 skb->truesize += hlen - swivel;
1999                 skb->len      += hlen - swivel;
2000
2001                 __skb_frag_set_page(frag, page->buffer);
2002                 __skb_frag_ref(frag);
2003                 skb_frag_off_set(frag, off);
2004                 skb_frag_size_set(frag, hlen - swivel);
2005
2006                 /* any more data? */
2007                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2008                         hlen = dlen;
2009                         off = 0;
2010
2011                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2012                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2013                         dma_sync_single_for_cpu(&cp->pdev->dev,
2014                                                 page->dma_addr,
2015                                                 hlen + cp->crc_size,
2016                                                 DMA_FROM_DEVICE);
2017                         dma_sync_single_for_device(&cp->pdev->dev,
2018                                                    page->dma_addr,
2019                                                    hlen + cp->crc_size,
2020                                                    DMA_FROM_DEVICE);
2021
2022                         skb_shinfo(skb)->nr_frags++;
2023                         skb->data_len += hlen;
2024                         skb->len      += hlen;
2025                         frag++;
2026
2027                         __skb_frag_set_page(frag, page->buffer);
2028                         __skb_frag_ref(frag);
2029                         skb_frag_off_set(frag, 0);
2030                         skb_frag_size_set(frag, hlen);
2031                         RX_USED_ADD(page, hlen + cp->crc_size);
2032                 }
2033
2034                 if (cp->crc_size)
2035                         crcaddr = page_address(page->buffer) + off + hlen;
2036
2037         } else {
2038                 /* copying packet */
2039                 if (!dlen)
2040                         goto end_copy_pkt;
2041
2042                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2043                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2044                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2045                 hlen = min(cp->page_size - off, dlen);
2046                 if (hlen < 0) {
2047                         netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2048                                      "rx page overflow: %d\n", hlen);
2049                         dev_kfree_skb_irq(skb);
2050                         return -1;
2051                 }
2052                 i = hlen;
2053                 if (i == dlen) /* attach FCS */
2054                         i += cp->crc_size;
2055                 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
2056                                         i, DMA_FROM_DEVICE);
2057                 memcpy(p, page_address(page->buffer) + off, i);
2058                 dma_sync_single_for_device(&cp->pdev->dev,
2059                                            page->dma_addr + off, i,
2060                                            DMA_FROM_DEVICE);
2061                 if (p == (char *) skb->data) /* not split */
2062                         RX_USED_ADD(page, cp->mtu_stride);
2063                 else
2064                         RX_USED_ADD(page, i);
2065
2066                 /* any more data? */
2067                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2068                         p += hlen;
2069                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2070                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2071                         dma_sync_single_for_cpu(&cp->pdev->dev,
2072                                                 page->dma_addr,
2073                                                 dlen + cp->crc_size,
2074                                                 DMA_FROM_DEVICE);
2075                         memcpy(p, page_address(page->buffer), dlen + cp->crc_size);
2076                         dma_sync_single_for_device(&cp->pdev->dev,
2077                                                    page->dma_addr,
2078                                                    dlen + cp->crc_size,
2079                                                    DMA_FROM_DEVICE);
2080                         RX_USED_ADD(page, dlen + cp->crc_size);
2081                 }
2082 end_copy_pkt:
2083                 if (cp->crc_size)
2084                         crcaddr = skb->data + alloclen;
2085
2086                 skb_put(skb, alloclen);
2087         }
2088
2089         csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2090         if (cp->crc_size) {
2091                 /* checksum includes FCS. strip it out. */
2092                 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2093                                               csum_unfold(csum)));
2094         }
2095         skb->protocol = eth_type_trans(skb, cp->dev);
2096         if (skb->protocol == htons(ETH_P_IP)) {
2097                 skb->csum = csum_unfold(~csum);
2098                 skb->ip_summed = CHECKSUM_COMPLETE;
2099         } else
2100                 skb_checksum_none_assert(skb);
2101         return len;
2102 }
2103
2104
2105 /* we can handle up to 64 rx flows at a time. we do the same thing
2106  * as nonreassm except that we batch up the buffers.
2107  * NOTE: we currently just treat each flow as a bunch of packets that
2108  *       we pass up. a better way would be to coalesce the packets
2109  *       into a jumbo packet. to do that, we need to do the following:
2110  *       1) the first packet will have a clean split between header and
2111  *          data. save both.
2112  *       2) each time the next flow packet comes in, extend the
2113  *          data length and merge the checksums.
2114  *       3) on flow release, fix up the header.
2115  *       4) make sure the higher layer doesn't care.
2116  * because packets get coalesced, we shouldn't run into fragment count
2117  * issues.
2118  */
2119 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2120                                    struct sk_buff *skb)
2121 {
2122         int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2123         struct sk_buff_head *flow = &cp->rx_flows[flowid];
2124
2125         /* this is protected at a higher layer, so no need to
2126          * do any additional locking here. stick the buffer
2127          * at the end.
2128          */
2129         __skb_queue_tail(flow, skb);
2130         if (words[0] & RX_COMP1_RELEASE_FLOW) {
2131                 while ((skb = __skb_dequeue(flow))) {
2132                         cas_skb_release(skb);
2133                 }
2134         }
2135 }
2136
2137 /* put rx descriptor back on ring. if a buffer is in use by a higher
2138  * layer, this will need to put in a replacement.
2139  */
2140 static void cas_post_page(struct cas *cp, const int ring, const int index)
2141 {
2142         cas_page_t *new;
2143         int entry;
2144
2145         entry = cp->rx_old[ring];
2146
2147         new = cas_page_swap(cp, ring, index);
2148         cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2149         cp->init_rxds[ring][entry].index  =
2150                 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2151                             CAS_BASE(RX_INDEX_RING, ring));
2152
2153         entry = RX_DESC_ENTRY(ring, entry + 1);
2154         cp->rx_old[ring] = entry;
2155
2156         if (entry % 4)
2157                 return;
2158
2159         if (ring == 0)
2160                 writel(entry, cp->regs + REG_RX_KICK);
2161         else if ((N_RX_DESC_RINGS > 1) &&
2162                  (cp->cas_flags & CAS_FLAG_REG_PLUS))
2163                 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2164 }
2165
2166
2167 /* only when things are bad */
2168 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2169 {
2170         unsigned int entry, last, count, released;
2171         int cluster;
2172         cas_page_t **page = cp->rx_pages[ring];
2173
2174         entry = cp->rx_old[ring];
2175
2176         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2177                      "rxd[%d] interrupt, done: %d\n", ring, entry);
2178
2179         cluster = -1;
2180         count = entry & 0x3;
2181         last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2182         released = 0;
2183         while (entry != last) {
2184                 /* make a new buffer if it's still in use */
2185                 if (page_count(page[entry]->buffer) > 1) {
2186                         cas_page_t *new = cas_page_dequeue(cp);
2187                         if (!new) {
2188                                 /* let the timer know that we need to
2189                                  * do this again
2190                                  */
2191                                 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2192                                 if (!timer_pending(&cp->link_timer))
2193                                         mod_timer(&cp->link_timer, jiffies +
2194                                                   CAS_LINK_FAST_TIMEOUT);
2195                                 cp->rx_old[ring]  = entry;
2196                                 cp->rx_last[ring] = num ? num - released : 0;
2197                                 return -ENOMEM;
2198                         }
2199                         spin_lock(&cp->rx_inuse_lock);
2200                         list_add(&page[entry]->list, &cp->rx_inuse_list);
2201                         spin_unlock(&cp->rx_inuse_lock);
2202                         cp->init_rxds[ring][entry].buffer =
2203                                 cpu_to_le64(new->dma_addr);
2204                         page[entry] = new;
2205
2206                 }
2207
2208                 if (++count == 4) {
2209                         cluster = entry;
2210                         count = 0;
2211                 }
2212                 released++;
2213                 entry = RX_DESC_ENTRY(ring, entry + 1);
2214         }
2215         cp->rx_old[ring] = entry;
2216
2217         if (cluster < 0)
2218                 return 0;
2219
2220         if (ring == 0)
2221                 writel(cluster, cp->regs + REG_RX_KICK);
2222         else if ((N_RX_DESC_RINGS > 1) &&
2223                  (cp->cas_flags & CAS_FLAG_REG_PLUS))
2224                 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2225         return 0;
2226 }
2227
2228
2229 /* process a completion ring. packets are set up in three basic ways:
2230  * small packets: should be copied header + data in single buffer.
2231  * large packets: header and data in a single buffer.
2232  * split packets: header in a separate buffer from data.
2233  *                data may be in multiple pages. data may be > 256
2234  *                bytes but in a single page.
2235  *
2236  * NOTE: RX page posting is done in this routine as well. while there's
2237  *       the capability of using multiple RX completion rings, it isn't
2238  *       really worthwhile due to the fact that the page posting will
2239  *       force serialization on the single descriptor ring.
2240  */
2241 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2242 {
2243         struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2244         int entry, drops;
2245         int npackets = 0;
2246
2247         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2248                      "rx[%d] interrupt, done: %d/%d\n",
2249                      ring,
2250                      readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2251
2252         entry = cp->rx_new[ring];
2253         drops = 0;
2254         while (1) {
2255                 struct cas_rx_comp *rxc = rxcs + entry;
2256                 struct sk_buff *skb;
2257                 int type, len;
2258                 u64 words[4];
2259                 int i, dring;
2260
2261                 words[0] = le64_to_cpu(rxc->word1);
2262                 words[1] = le64_to_cpu(rxc->word2);
2263                 words[2] = le64_to_cpu(rxc->word3);
2264                 words[3] = le64_to_cpu(rxc->word4);
2265
2266                 /* don't touch if still owned by hw */
2267                 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2268                 if (type == 0)
2269                         break;
2270
2271                 /* hw hasn't cleared the zero bit yet */
2272                 if (words[3] & RX_COMP4_ZERO) {
2273                         break;
2274                 }
2275
2276                 /* get info on the packet */
2277                 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2278                         spin_lock(&cp->stat_lock[ring]);
2279                         cp->net_stats[ring].rx_errors++;
2280                         if (words[3] & RX_COMP4_LEN_MISMATCH)
2281                                 cp->net_stats[ring].rx_length_errors++;
2282                         if (words[3] & RX_COMP4_BAD)
2283                                 cp->net_stats[ring].rx_crc_errors++;
2284                         spin_unlock(&cp->stat_lock[ring]);
2285
2286                         /* We'll just return it to Cassini. */
2287                 drop_it:
2288                         spin_lock(&cp->stat_lock[ring]);
2289                         ++cp->net_stats[ring].rx_dropped;
2290                         spin_unlock(&cp->stat_lock[ring]);
2291                         goto next;
2292                 }
2293
2294                 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2295                 if (len < 0) {
2296                         ++drops;
2297                         goto drop_it;
2298                 }
2299
2300                 /* see if it's a flow re-assembly or not. the driver
2301                  * itself handles release back up.
2302                  */
2303                 if (RX_DONT_BATCH || (type == 0x2)) {
2304                         /* non-reassm: these always get released */
2305                         cas_skb_release(skb);
2306                 } else {
2307                         cas_rx_flow_pkt(cp, words, skb);
2308                 }
2309
2310                 spin_lock(&cp->stat_lock[ring]);
2311                 cp->net_stats[ring].rx_packets++;
2312                 cp->net_stats[ring].rx_bytes += len;
2313                 spin_unlock(&cp->stat_lock[ring]);
2314
2315         next:
2316                 npackets++;
2317
2318                 /* should it be released? */
2319                 if (words[0] & RX_COMP1_RELEASE_HDR) {
2320                         i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2321                         dring = CAS_VAL(RX_INDEX_RING, i);
2322                         i = CAS_VAL(RX_INDEX_NUM, i);
2323                         cas_post_page(cp, dring, i);
2324                 }
2325
2326                 if (words[0] & RX_COMP1_RELEASE_DATA) {
2327                         i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2328                         dring = CAS_VAL(RX_INDEX_RING, i);
2329                         i = CAS_VAL(RX_INDEX_NUM, i);
2330                         cas_post_page(cp, dring, i);
2331                 }
2332
2333                 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2334                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2335                         dring = CAS_VAL(RX_INDEX_RING, i);
2336                         i = CAS_VAL(RX_INDEX_NUM, i);
2337                         cas_post_page(cp, dring, i);
2338                 }
2339
2340                 /* skip to the next entry */
2341                 entry = RX_COMP_ENTRY(ring, entry + 1 +
2342                                       CAS_VAL(RX_COMP1_SKIP, words[0]));
2343 #ifdef USE_NAPI
2344                 if (budget && (npackets >= budget))
2345                         break;
2346 #endif
2347         }
2348         cp->rx_new[ring] = entry;
2349
2350         if (drops)
2351                 netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2352         return npackets;
2353 }
2354
2355
2356 /* put completion entries back on the ring */
2357 static void cas_post_rxcs_ringN(struct net_device *dev,
2358                                 struct cas *cp, int ring)
2359 {
2360         struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2361         int last, entry;
2362
2363         last = cp->rx_cur[ring];
2364         entry = cp->rx_new[ring];
2365         netif_printk(cp, intr, KERN_DEBUG, dev,
2366                      "rxc[%d] interrupt, done: %d/%d\n",
2367                      ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2368
2369         /* zero and re-mark descriptors */
2370         while (last != entry) {
2371                 cas_rxc_init(rxc + last);
2372                 last = RX_COMP_ENTRY(ring, last + 1);
2373         }
2374         cp->rx_cur[ring] = last;
2375
2376         if (ring == 0)
2377                 writel(last, cp->regs + REG_RX_COMP_TAIL);
2378         else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2379                 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2380 }
2381
2382
2383
2384 /* cassini can use all four PCI interrupts for the completion ring.
2385  * rings 3 and 4 are identical
2386  */
2387 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2388 static inline void cas_handle_irqN(struct net_device *dev,
2389                                    struct cas *cp, const u32 status,
2390                                    const int ring)
2391 {
2392         if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2393                 cas_post_rxcs_ringN(dev, cp, ring);
2394 }
2395
2396 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2397 {
2398         struct net_device *dev = dev_id;
2399         struct cas *cp = netdev_priv(dev);
2400         unsigned long flags;
2401         int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2402         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2403
2404         /* check for shared irq */
2405         if (status == 0)
2406                 return IRQ_NONE;
2407
2408         spin_lock_irqsave(&cp->lock, flags);
2409         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2410 #ifdef USE_NAPI
2411                 cas_mask_intr(cp);
2412                 napi_schedule(&cp->napi);
2413 #else
2414                 cas_rx_ringN(cp, ring, 0);
2415 #endif
2416                 status &= ~INTR_RX_DONE_ALT;
2417         }
2418
2419         if (status)
2420                 cas_handle_irqN(dev, cp, status, ring);
2421         spin_unlock_irqrestore(&cp->lock, flags);
2422         return IRQ_HANDLED;
2423 }
2424 #endif
2425
2426 #ifdef USE_PCI_INTB
2427 /* everything but rx packets */
2428 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2429 {
2430         if (status & INTR_RX_BUF_UNAVAIL_1) {
2431                 /* Frame arrived, no free RX buffers available.
2432                  * NOTE: we can get this on a link transition. */
2433                 cas_post_rxds_ringN(cp, 1, 0);
2434                 spin_lock(&cp->stat_lock[1]);
2435                 cp->net_stats[1].rx_dropped++;
2436                 spin_unlock(&cp->stat_lock[1]);
2437         }
2438
2439         if (status & INTR_RX_BUF_AE_1)
2440                 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2441                                     RX_AE_FREEN_VAL(1));
2442
2443         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2444                 cas_post_rxcs_ringN(cp, 1);
2445 }
2446
2447 /* ring 2 handles a few more events than 3 and 4 */
2448 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2449 {
2450         struct net_device *dev = dev_id;
2451         struct cas *cp = netdev_priv(dev);
2452         unsigned long flags;
2453         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2454
2455         /* check for shared interrupt */
2456         if (status == 0)
2457                 return IRQ_NONE;
2458
2459         spin_lock_irqsave(&cp->lock, flags);
2460         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2461 #ifdef USE_NAPI
2462                 cas_mask_intr(cp);
2463                 napi_schedule(&cp->napi);
2464 #else
2465                 cas_rx_ringN(cp, 1, 0);
2466 #endif
2467                 status &= ~INTR_RX_DONE_ALT;
2468         }
2469         if (status)
2470                 cas_handle_irq1(cp, status);
2471         spin_unlock_irqrestore(&cp->lock, flags);
2472         return IRQ_HANDLED;
2473 }
2474 #endif
2475
2476 static inline void cas_handle_irq(struct net_device *dev,
2477                                   struct cas *cp, const u32 status)
2478 {
2479         /* housekeeping interrupts */
2480         if (status & INTR_ERROR_MASK)
2481                 cas_abnormal_irq(dev, cp, status);
2482
2483         if (status & INTR_RX_BUF_UNAVAIL) {
2484                 /* Frame arrived, no free RX buffers available.
2485                  * NOTE: we can get this on a link transition.
2486                  */
2487                 cas_post_rxds_ringN(cp, 0, 0);
2488                 spin_lock(&cp->stat_lock[0]);
2489                 cp->net_stats[0].rx_dropped++;
2490                 spin_unlock(&cp->stat_lock[0]);
2491         } else if (status & INTR_RX_BUF_AE) {
2492                 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2493                                     RX_AE_FREEN_VAL(0));
2494         }
2495
2496         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2497                 cas_post_rxcs_ringN(dev, cp, 0);
2498 }
2499
2500 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2501 {
2502         struct net_device *dev = dev_id;
2503         struct cas *cp = netdev_priv(dev);
2504         unsigned long flags;
2505         u32 status = readl(cp->regs + REG_INTR_STATUS);
2506
2507         if (status == 0)
2508                 return IRQ_NONE;
2509
2510         spin_lock_irqsave(&cp->lock, flags);
2511         if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2512                 cas_tx(dev, cp, status);
2513                 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2514         }
2515
2516         if (status & INTR_RX_DONE) {
2517 #ifdef USE_NAPI
2518                 cas_mask_intr(cp);
2519                 napi_schedule(&cp->napi);
2520 #else
2521                 cas_rx_ringN(cp, 0, 0);
2522 #endif
2523                 status &= ~INTR_RX_DONE;
2524         }
2525
2526         if (status)
2527                 cas_handle_irq(dev, cp, status);
2528         spin_unlock_irqrestore(&cp->lock, flags);
2529         return IRQ_HANDLED;
2530 }
2531
2532
2533 #ifdef USE_NAPI
2534 static int cas_poll(struct napi_struct *napi, int budget)
2535 {
2536         struct cas *cp = container_of(napi, struct cas, napi);
2537         struct net_device *dev = cp->dev;
2538         int i, enable_intr, credits;
2539         u32 status = readl(cp->regs + REG_INTR_STATUS);
2540         unsigned long flags;
2541
2542         spin_lock_irqsave(&cp->lock, flags);
2543         cas_tx(dev, cp, status);
2544         spin_unlock_irqrestore(&cp->lock, flags);
2545
2546         /* NAPI rx packets. we spread the credits across all of the
2547          * rxc rings
2548          *
2549          * to make sure we're fair with the work we loop through each
2550          * ring N_RX_COMP_RING times with a request of
2551          * budget / N_RX_COMP_RINGS
2552          */
2553         enable_intr = 1;
2554         credits = 0;
2555         for (i = 0; i < N_RX_COMP_RINGS; i++) {
2556                 int j;
2557                 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2558                         credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2559                         if (credits >= budget) {
2560                                 enable_intr = 0;
2561                                 goto rx_comp;
2562                         }
2563                 }
2564         }
2565
2566 rx_comp:
2567         /* final rx completion */
2568         spin_lock_irqsave(&cp->lock, flags);
2569         if (status)
2570                 cas_handle_irq(dev, cp, status);
2571
2572 #ifdef USE_PCI_INTB
2573         if (N_RX_COMP_RINGS > 1) {
2574                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2575                 if (status)
2576                         cas_handle_irq1(dev, cp, status);
2577         }
2578 #endif
2579
2580 #ifdef USE_PCI_INTC
2581         if (N_RX_COMP_RINGS > 2) {
2582                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2583                 if (status)
2584                         cas_handle_irqN(dev, cp, status, 2);
2585         }
2586 #endif
2587
2588 #ifdef USE_PCI_INTD
2589         if (N_RX_COMP_RINGS > 3) {
2590                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2591                 if (status)
2592                         cas_handle_irqN(dev, cp, status, 3);
2593         }
2594 #endif
2595         spin_unlock_irqrestore(&cp->lock, flags);
2596         if (enable_intr) {
2597                 napi_complete(napi);
2598                 cas_unmask_intr(cp);
2599         }
2600         return credits;
2601 }
2602 #endif
2603
2604 #ifdef CONFIG_NET_POLL_CONTROLLER
2605 static void cas_netpoll(struct net_device *dev)
2606 {
2607         struct cas *cp = netdev_priv(dev);
2608
2609         cas_disable_irq(cp, 0);
2610         cas_interrupt(cp->pdev->irq, dev);
2611         cas_enable_irq(cp, 0);
2612
2613 #ifdef USE_PCI_INTB
2614         if (N_RX_COMP_RINGS > 1) {
2615                 /* cas_interrupt1(); */
2616         }
2617 #endif
2618 #ifdef USE_PCI_INTC
2619         if (N_RX_COMP_RINGS > 2) {
2620                 /* cas_interruptN(); */
2621         }
2622 #endif
2623 #ifdef USE_PCI_INTD
2624         if (N_RX_COMP_RINGS > 3) {
2625                 /* cas_interruptN(); */
2626         }
2627 #endif
2628 }
2629 #endif
2630
2631 static void cas_tx_timeout(struct net_device *dev, unsigned int txqueue)
2632 {
2633         struct cas *cp = netdev_priv(dev);
2634
2635         netdev_err(dev, "transmit timed out, resetting\n");
2636         if (!cp->hw_running) {
2637                 netdev_err(dev, "hrm.. hw not running!\n");
2638                 return;
2639         }
2640
2641         netdev_err(dev, "MIF_STATE[%08x]\n",
2642                    readl(cp->regs + REG_MIF_STATE_MACHINE));
2643
2644         netdev_err(dev, "MAC_STATE[%08x]\n",
2645                    readl(cp->regs + REG_MAC_STATE_MACHINE));
2646
2647         netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2648                    readl(cp->regs + REG_TX_CFG),
2649                    readl(cp->regs + REG_MAC_TX_STATUS),
2650                    readl(cp->regs + REG_MAC_TX_CFG),
2651                    readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2652                    readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2653                    readl(cp->regs + REG_TX_FIFO_READ_PTR),
2654                    readl(cp->regs + REG_TX_SM_1),
2655                    readl(cp->regs + REG_TX_SM_2));
2656
2657         netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2658                    readl(cp->regs + REG_RX_CFG),
2659                    readl(cp->regs + REG_MAC_RX_STATUS),
2660                    readl(cp->regs + REG_MAC_RX_CFG));
2661
2662         netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2663                    readl(cp->regs + REG_HP_STATE_MACHINE),
2664                    readl(cp->regs + REG_HP_STATUS0),
2665                    readl(cp->regs + REG_HP_STATUS1),
2666                    readl(cp->regs + REG_HP_STATUS2));
2667
2668 #if 1
2669         atomic_inc(&cp->reset_task_pending);
2670         atomic_inc(&cp->reset_task_pending_all);
2671         schedule_work(&cp->reset_task);
2672 #else
2673         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2674         schedule_work(&cp->reset_task);
2675 #endif
2676 }
2677
2678 static inline int cas_intme(int ring, int entry)
2679 {
2680         /* Algorithm: IRQ every 1/2 of descriptors. */
2681         if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2682                 return 1;
2683         return 0;
2684 }
2685
2686
2687 static void cas_write_txd(struct cas *cp, int ring, int entry,
2688                           dma_addr_t mapping, int len, u64 ctrl, int last)
2689 {
2690         struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2691
2692         ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2693         if (cas_intme(ring, entry))
2694                 ctrl |= TX_DESC_INTME;
2695         if (last)
2696                 ctrl |= TX_DESC_EOF;
2697         txd->control = cpu_to_le64(ctrl);
2698         txd->buffer = cpu_to_le64(mapping);
2699 }
2700
2701 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2702                                 const int entry)
2703 {
2704         return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2705 }
2706
2707 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2708                                      const int entry, const int tentry)
2709 {
2710         cp->tx_tiny_use[ring][tentry].nbufs++;
2711         cp->tx_tiny_use[ring][entry].used = 1;
2712         return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2713 }
2714
2715 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2716                                     struct sk_buff *skb)
2717 {
2718         struct net_device *dev = cp->dev;
2719         int entry, nr_frags, frag, tabort, tentry;
2720         dma_addr_t mapping;
2721         unsigned long flags;
2722         u64 ctrl;
2723         u32 len;
2724
2725         spin_lock_irqsave(&cp->tx_lock[ring], flags);
2726
2727         /* This is a hard error, log it. */
2728         if (TX_BUFFS_AVAIL(cp, ring) <=
2729             CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2730                 netif_stop_queue(dev);
2731                 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2732                 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2733                 return 1;
2734         }
2735
2736         ctrl = 0;
2737         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2738                 const u64 csum_start_off = skb_checksum_start_offset(skb);
2739                 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2740
2741                 ctrl =  TX_DESC_CSUM_EN |
2742                         CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2743                         CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2744         }
2745
2746         entry = cp->tx_new[ring];
2747         cp->tx_skbs[ring][entry] = skb;
2748
2749         nr_frags = skb_shinfo(skb)->nr_frags;
2750         len = skb_headlen(skb);
2751         mapping = dma_map_page(&cp->pdev->dev, virt_to_page(skb->data),
2752                                offset_in_page(skb->data), len, DMA_TO_DEVICE);
2753
2754         tentry = entry;
2755         tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2756         if (unlikely(tabort)) {
2757                 /* NOTE: len is always >  tabort */
2758                 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2759                               ctrl | TX_DESC_SOF, 0);
2760                 entry = TX_DESC_NEXT(ring, entry);
2761
2762                 skb_copy_from_linear_data_offset(skb, len - tabort,
2763                               tx_tiny_buf(cp, ring, entry), tabort);
2764                 mapping = tx_tiny_map(cp, ring, entry, tentry);
2765                 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2766                               (nr_frags == 0));
2767         } else {
2768                 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2769                               TX_DESC_SOF, (nr_frags == 0));
2770         }
2771         entry = TX_DESC_NEXT(ring, entry);
2772
2773         for (frag = 0; frag < nr_frags; frag++) {
2774                 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2775
2776                 len = skb_frag_size(fragp);
2777                 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2778                                            DMA_TO_DEVICE);
2779
2780                 tabort = cas_calc_tabort(cp, skb_frag_off(fragp), len);
2781                 if (unlikely(tabort)) {
2782                         /* NOTE: len is always > tabort */
2783                         cas_write_txd(cp, ring, entry, mapping, len - tabort,
2784                                       ctrl, 0);
2785                         entry = TX_DESC_NEXT(ring, entry);
2786                         memcpy_from_page(tx_tiny_buf(cp, ring, entry),
2787                                          skb_frag_page(fragp),
2788                                          skb_frag_off(fragp) + len - tabort,
2789                                          tabort);
2790                         mapping = tx_tiny_map(cp, ring, entry, tentry);
2791                         len     = tabort;
2792                 }
2793
2794                 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2795                               (frag + 1 == nr_frags));
2796                 entry = TX_DESC_NEXT(ring, entry);
2797         }
2798
2799         cp->tx_new[ring] = entry;
2800         if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2801                 netif_stop_queue(dev);
2802
2803         netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2804                      "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2805                      ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2806         writel(entry, cp->regs + REG_TX_KICKN(ring));
2807         spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2808         return 0;
2809 }
2810
2811 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2812 {
2813         struct cas *cp = netdev_priv(dev);
2814
2815         /* this is only used as a load-balancing hint, so it doesn't
2816          * need to be SMP safe
2817          */
2818         static int ring;
2819
2820         if (skb_padto(skb, cp->min_frame_size))
2821                 return NETDEV_TX_OK;
2822
2823         /* XXX: we need some higher-level QoS hooks to steer packets to
2824          *      individual queues.
2825          */
2826         if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2827                 return NETDEV_TX_BUSY;
2828         return NETDEV_TX_OK;
2829 }
2830
2831 static void cas_init_tx_dma(struct cas *cp)
2832 {
2833         u64 desc_dma = cp->block_dvma;
2834         unsigned long off;
2835         u32 val;
2836         int i;
2837
2838         /* set up tx completion writeback registers. must be 8-byte aligned */
2839 #ifdef USE_TX_COMPWB
2840         off = offsetof(struct cas_init_block, tx_compwb);
2841         writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2842         writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2843 #endif
2844
2845         /* enable completion writebacks, enable paced mode,
2846          * disable read pipe, and disable pre-interrupt compwbs
2847          */
2848         val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2849                 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2850                 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2851                 TX_CFG_INTR_COMPWB_DIS;
2852
2853         /* write out tx ring info and tx desc bases */
2854         for (i = 0; i < MAX_TX_RINGS; i++) {
2855                 off = (unsigned long) cp->init_txds[i] -
2856                         (unsigned long) cp->init_block;
2857
2858                 val |= CAS_TX_RINGN_BASE(i);
2859                 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2860                 writel((desc_dma + off) & 0xffffffff, cp->regs +
2861                        REG_TX_DBN_LOW(i));
2862                 /* don't zero out the kick register here as the system
2863                  * will wedge
2864                  */
2865         }
2866         writel(val, cp->regs + REG_TX_CFG);
2867
2868         /* program max burst sizes. these numbers should be different
2869          * if doing QoS.
2870          */
2871 #ifdef USE_QOS
2872         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2873         writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2874         writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2875         writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2876 #else
2877         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2878         writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2879         writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2880         writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2881 #endif
2882 }
2883
2884 /* Must be invoked under cp->lock. */
2885 static inline void cas_init_dma(struct cas *cp)
2886 {
2887         cas_init_tx_dma(cp);
2888         cas_init_rx_dma(cp);
2889 }
2890
2891 static void cas_process_mc_list(struct cas *cp)
2892 {
2893         u16 hash_table[16];
2894         u32 crc;
2895         struct netdev_hw_addr *ha;
2896         int i = 1;
2897
2898         memset(hash_table, 0, sizeof(hash_table));
2899         netdev_for_each_mc_addr(ha, cp->dev) {
2900                 if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2901                         /* use the alternate mac address registers for the
2902                          * first 15 multicast addresses
2903                          */
2904                         writel((ha->addr[4] << 8) | ha->addr[5],
2905                                cp->regs + REG_MAC_ADDRN(i*3 + 0));
2906                         writel((ha->addr[2] << 8) | ha->addr[3],
2907                                cp->regs + REG_MAC_ADDRN(i*3 + 1));
2908                         writel((ha->addr[0] << 8) | ha->addr[1],
2909                                cp->regs + REG_MAC_ADDRN(i*3 + 2));
2910                         i++;
2911                 }
2912                 else {
2913                         /* use hw hash table for the next series of
2914                          * multicast addresses
2915                          */
2916                         crc = ether_crc_le(ETH_ALEN, ha->addr);
2917                         crc >>= 24;
2918                         hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2919                 }
2920         }
2921         for (i = 0; i < 16; i++)
2922                 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2923 }
2924
2925 /* Must be invoked under cp->lock. */
2926 static u32 cas_setup_multicast(struct cas *cp)
2927 {
2928         u32 rxcfg = 0;
2929         int i;
2930
2931         if (cp->dev->flags & IFF_PROMISC) {
2932                 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2933
2934         } else if (cp->dev->flags & IFF_ALLMULTI) {
2935                 for (i=0; i < 16; i++)
2936                         writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2937                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2938
2939         } else {
2940                 cas_process_mc_list(cp);
2941                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2942         }
2943
2944         return rxcfg;
2945 }
2946
2947 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
2948 static void cas_clear_mac_err(struct cas *cp)
2949 {
2950         writel(0, cp->regs + REG_MAC_COLL_NORMAL);
2951         writel(0, cp->regs + REG_MAC_COLL_FIRST);
2952         writel(0, cp->regs + REG_MAC_COLL_EXCESS);
2953         writel(0, cp->regs + REG_MAC_COLL_LATE);
2954         writel(0, cp->regs + REG_MAC_TIMER_DEFER);
2955         writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
2956         writel(0, cp->regs + REG_MAC_RECV_FRAME);
2957         writel(0, cp->regs + REG_MAC_LEN_ERR);
2958         writel(0, cp->regs + REG_MAC_ALIGN_ERR);
2959         writel(0, cp->regs + REG_MAC_FCS_ERR);
2960         writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
2961 }
2962
2963
2964 static void cas_mac_reset(struct cas *cp)
2965 {
2966         int i;
2967
2968         /* do both TX and RX reset */
2969         writel(0x1, cp->regs + REG_MAC_TX_RESET);
2970         writel(0x1, cp->regs + REG_MAC_RX_RESET);
2971
2972         /* wait for TX */
2973         i = STOP_TRIES;
2974         while (i-- > 0) {
2975                 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
2976                         break;
2977                 udelay(10);
2978         }
2979
2980         /* wait for RX */
2981         i = STOP_TRIES;
2982         while (i-- > 0) {
2983                 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
2984                         break;
2985                 udelay(10);
2986         }
2987
2988         if (readl(cp->regs + REG_MAC_TX_RESET) |
2989             readl(cp->regs + REG_MAC_RX_RESET))
2990                 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
2991                            readl(cp->regs + REG_MAC_TX_RESET),
2992                            readl(cp->regs + REG_MAC_RX_RESET),
2993                            readl(cp->regs + REG_MAC_STATE_MACHINE));
2994 }
2995
2996
2997 /* Must be invoked under cp->lock. */
2998 static void cas_init_mac(struct cas *cp)
2999 {
3000         const unsigned char *e = &cp->dev->dev_addr[0];
3001         int i;
3002         cas_mac_reset(cp);
3003
3004         /* setup core arbitration weight register */
3005         writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3006
3007 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3008         /* set the infinite burst register for chips that don't have
3009          * pci issues.
3010          */
3011         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3012                 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3013 #endif
3014
3015         writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3016
3017         writel(0x00, cp->regs + REG_MAC_IPG0);
3018         writel(0x08, cp->regs + REG_MAC_IPG1);
3019         writel(0x04, cp->regs + REG_MAC_IPG2);
3020
3021         /* change later for 802.3z */
3022         writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3023
3024         /* min frame + FCS */
3025         writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3026
3027         /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3028          * specify the maximum frame size to prevent RX tag errors on
3029          * oversized frames.
3030          */
3031         writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3032                CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3033                         (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3034                cp->regs + REG_MAC_FRAMESIZE_MAX);
3035
3036         /* NOTE: crc_size is used as a surrogate for half-duplex.
3037          * workaround saturn half-duplex issue by increasing preamble
3038          * size to 65 bytes.
3039          */
3040         if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3041                 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3042         else
3043                 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3044         writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3045         writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3046         writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3047
3048         writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3049
3050         writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3051         writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3052         writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3053         writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3054         writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3055
3056         /* setup mac address in perfect filter array */
3057         for (i = 0; i < 45; i++)
3058                 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3059
3060         writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3061         writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3062         writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3063
3064         writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3065         writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3066         writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3067
3068         cp->mac_rx_cfg = cas_setup_multicast(cp);
3069
3070         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3071         cas_clear_mac_err(cp);
3072         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3073
3074         /* Setup MAC interrupts.  We want to get all of the interesting
3075          * counter expiration events, but we do not want to hear about
3076          * normal rx/tx as the DMA engine tells us that.
3077          */
3078         writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3079         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3080
3081         /* Don't enable even the PAUSE interrupts for now, we
3082          * make no use of those events other than to record them.
3083          */
3084         writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3085 }
3086
3087 /* Must be invoked under cp->lock. */
3088 static void cas_init_pause_thresholds(struct cas *cp)
3089 {
3090         /* Calculate pause thresholds.  Setting the OFF threshold to the
3091          * full RX fifo size effectively disables PAUSE generation
3092          */
3093         if (cp->rx_fifo_size <= (2 * 1024)) {
3094                 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3095         } else {
3096                 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3097                 if (max_frame * 3 > cp->rx_fifo_size) {
3098                         cp->rx_pause_off = 7104;
3099                         cp->rx_pause_on  = 960;
3100                 } else {
3101                         int off = (cp->rx_fifo_size - (max_frame * 2));
3102                         int on = off - max_frame;
3103                         cp->rx_pause_off = off;
3104                         cp->rx_pause_on = on;
3105                 }
3106         }
3107 }
3108
3109 static int cas_vpd_match(const void __iomem *p, const char *str)
3110 {
3111         int len = strlen(str) + 1;
3112         int i;
3113
3114         for (i = 0; i < len; i++) {
3115                 if (readb(p + i) != str[i])
3116                         return 0;
3117         }
3118         return 1;
3119 }
3120
3121
3122 /* get the mac address by reading the vpd information in the rom.
3123  * also get the phy type and determine if there's an entropy generator.
3124  * NOTE: this is a bit convoluted for the following reasons:
3125  *  1) vpd info has order-dependent mac addresses for multinic cards
3126  *  2) the only way to determine the nic order is to use the slot
3127  *     number.
3128  *  3) fiber cards don't have bridges, so their slot numbers don't
3129  *     mean anything.
3130  *  4) we don't actually know we have a fiber card until after
3131  *     the mac addresses are parsed.
3132  */
3133 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3134                             const int offset)
3135 {
3136         void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3137         void __iomem *base, *kstart;
3138         int i, len;
3139         int found = 0;
3140 #define VPD_FOUND_MAC        0x01
3141 #define VPD_FOUND_PHY        0x02
3142
3143         int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3144         int mac_off  = 0;
3145
3146 #if defined(CONFIG_SPARC)
3147         const unsigned char *addr;
3148 #endif
3149
3150         /* give us access to the PROM */
3151         writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3152                cp->regs + REG_BIM_LOCAL_DEV_EN);
3153
3154         /* check for an expansion rom */
3155         if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3156                 goto use_random_mac_addr;
3157
3158         /* search for beginning of vpd */
3159         base = NULL;
3160         for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3161                 /* check for PCIR */
3162                 if ((readb(p + i + 0) == 0x50) &&
3163                     (readb(p + i + 1) == 0x43) &&
3164                     (readb(p + i + 2) == 0x49) &&
3165                     (readb(p + i + 3) == 0x52)) {
3166                         base = p + (readb(p + i + 8) |
3167                                     (readb(p + i + 9) << 8));
3168                         break;
3169                 }
3170         }
3171
3172         if (!base || (readb(base) != 0x82))
3173                 goto use_random_mac_addr;
3174
3175         i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3176         while (i < EXPANSION_ROM_SIZE) {
3177                 if (readb(base + i) != 0x90) /* no vpd found */
3178                         goto use_random_mac_addr;
3179
3180                 /* found a vpd field */
3181                 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3182
3183                 /* extract keywords */
3184                 kstart = base + i + 3;
3185                 p = kstart;
3186                 while ((p - kstart) < len) {
3187                         int klen = readb(p + 2);
3188                         int j;
3189                         char type;
3190
3191                         p += 3;
3192
3193                         /* look for the following things:
3194                          * -- correct length == 29
3195                          * 3 (type) + 2 (size) +
3196                          * 18 (strlen("local-mac-address") + 1) +
3197                          * 6 (mac addr)
3198                          * -- VPD Instance 'I'
3199                          * -- VPD Type Bytes 'B'
3200                          * -- VPD data length == 6
3201                          * -- property string == local-mac-address
3202                          *
3203                          * -- correct length == 24
3204                          * 3 (type) + 2 (size) +
3205                          * 12 (strlen("entropy-dev") + 1) +
3206                          * 7 (strlen("vms110") + 1)
3207                          * -- VPD Instance 'I'
3208                          * -- VPD Type String 'B'
3209                          * -- VPD data length == 7
3210                          * -- property string == entropy-dev
3211                          *
3212                          * -- correct length == 18
3213                          * 3 (type) + 2 (size) +
3214                          * 9 (strlen("phy-type") + 1) +
3215                          * 4 (strlen("pcs") + 1)
3216                          * -- VPD Instance 'I'
3217                          * -- VPD Type String 'S'
3218                          * -- VPD data length == 4
3219                          * -- property string == phy-type
3220                          *
3221                          * -- correct length == 23
3222                          * 3 (type) + 2 (size) +
3223                          * 14 (strlen("phy-interface") + 1) +
3224                          * 4 (strlen("pcs") + 1)
3225                          * -- VPD Instance 'I'
3226                          * -- VPD Type String 'S'
3227                          * -- VPD data length == 4
3228                          * -- property string == phy-interface
3229                          */
3230                         if (readb(p) != 'I')
3231                                 goto next;
3232
3233                         /* finally, check string and length */
3234                         type = readb(p + 3);
3235                         if (type == 'B') {
3236                                 if ((klen == 29) && readb(p + 4) == 6 &&
3237                                     cas_vpd_match(p + 5,
3238                                                   "local-mac-address")) {
3239                                         if (mac_off++ > offset)
3240                                                 goto next;
3241
3242                                         /* set mac address */
3243                                         for (j = 0; j < 6; j++)
3244                                                 dev_addr[j] =
3245                                                         readb(p + 23 + j);
3246                                         goto found_mac;
3247                                 }
3248                         }
3249
3250                         if (type != 'S')
3251                                 goto next;
3252
3253 #ifdef USE_ENTROPY_DEV
3254                         if ((klen == 24) &&
3255                             cas_vpd_match(p + 5, "entropy-dev") &&
3256                             cas_vpd_match(p + 17, "vms110")) {
3257                                 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3258                                 goto next;
3259                         }
3260 #endif
3261
3262                         if (found & VPD_FOUND_PHY)
3263                                 goto next;
3264
3265                         if ((klen == 18) && readb(p + 4) == 4 &&
3266                             cas_vpd_match(p + 5, "phy-type")) {
3267                                 if (cas_vpd_match(p + 14, "pcs")) {
3268                                         phy_type = CAS_PHY_SERDES;
3269                                         goto found_phy;
3270                                 }
3271                         }
3272
3273                         if ((klen == 23) && readb(p + 4) == 4 &&
3274                             cas_vpd_match(p + 5, "phy-interface")) {
3275                                 if (cas_vpd_match(p + 19, "pcs")) {
3276                                         phy_type = CAS_PHY_SERDES;
3277                                         goto found_phy;
3278                                 }
3279                         }
3280 found_mac:
3281                         found |= VPD_FOUND_MAC;
3282                         goto next;
3283
3284 found_phy:
3285                         found |= VPD_FOUND_PHY;
3286
3287 next:
3288                         p += klen;
3289                 }
3290                 i += len + 3;
3291         }
3292
3293 use_random_mac_addr:
3294         if (found & VPD_FOUND_MAC)
3295                 goto done;
3296
3297 #if defined(CONFIG_SPARC)
3298         addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3299         if (addr != NULL) {
3300                 memcpy(dev_addr, addr, ETH_ALEN);
3301                 goto done;
3302         }
3303 #endif
3304
3305         /* Sun MAC prefix then 3 random bytes. */
3306         pr_info("MAC address not found in ROM VPD\n");
3307         dev_addr[0] = 0x08;
3308         dev_addr[1] = 0x00;
3309         dev_addr[2] = 0x20;
3310         get_random_bytes(dev_addr + 3, 3);
3311
3312 done:
3313         writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3314         return phy_type;
3315 }
3316
3317 /* check pci invariants */
3318 static void cas_check_pci_invariants(struct cas *cp)
3319 {
3320         struct pci_dev *pdev = cp->pdev;
3321
3322         cp->cas_flags = 0;
3323         if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3324             (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3325                 if (pdev->revision >= CAS_ID_REVPLUS)
3326                         cp->cas_flags |= CAS_FLAG_REG_PLUS;
3327                 if (pdev->revision < CAS_ID_REVPLUS02u)
3328                         cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3329
3330                 /* Original Cassini supports HW CSUM, but it's not
3331                  * enabled by default as it can trigger TX hangs.
3332                  */
3333                 if (pdev->revision < CAS_ID_REV2)
3334                         cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3335         } else {
3336                 /* Only sun has original cassini chips.  */
3337                 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3338
3339                 /* We use a flag because the same phy might be externally
3340                  * connected.
3341                  */
3342                 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3343                     (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3344                         cp->cas_flags |= CAS_FLAG_SATURN;
3345         }
3346 }
3347
3348
3349 static int cas_check_invariants(struct cas *cp)
3350 {
3351         struct pci_dev *pdev = cp->pdev;
3352         u8 addr[ETH_ALEN];
3353         u32 cfg;
3354         int i;
3355
3356         /* get page size for rx buffers. */
3357         cp->page_order = 0;
3358 #ifdef USE_PAGE_ORDER
3359         if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3360                 /* see if we can allocate larger pages */
3361                 struct page *page = alloc_pages(GFP_ATOMIC,
3362                                                 CAS_JUMBO_PAGE_SHIFT -
3363                                                 PAGE_SHIFT);
3364                 if (page) {
3365                         __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3366                         cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3367                 } else {
3368                         printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3369                 }
3370         }
3371 #endif
3372         cp->page_size = (PAGE_SIZE << cp->page_order);
3373
3374         /* Fetch the FIFO configurations. */
3375         cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3376         cp->rx_fifo_size = RX_FIFO_SIZE;
3377
3378         /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3379          * they're both connected.
3380          */
3381         cp->phy_type = cas_get_vpd_info(cp, addr, PCI_SLOT(pdev->devfn));
3382         eth_hw_addr_set(cp->dev, addr);
3383         if (cp->phy_type & CAS_PHY_SERDES) {
3384                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3385                 return 0; /* no more checking needed */
3386         }
3387
3388         /* MII */
3389         cfg = readl(cp->regs + REG_MIF_CFG);
3390         if (cfg & MIF_CFG_MDIO_1) {
3391                 cp->phy_type = CAS_PHY_MII_MDIO1;
3392         } else if (cfg & MIF_CFG_MDIO_0) {
3393                 cp->phy_type = CAS_PHY_MII_MDIO0;
3394         }
3395
3396         cas_mif_poll(cp, 0);
3397         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3398
3399         for (i = 0; i < 32; i++) {
3400                 u32 phy_id;
3401                 int j;
3402
3403                 for (j = 0; j < 3; j++) {
3404                         cp->phy_addr = i;
3405                         phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3406                         phy_id |= cas_phy_read(cp, MII_PHYSID2);
3407                         if (phy_id && (phy_id != 0xFFFFFFFF)) {
3408                                 cp->phy_id = phy_id;
3409                                 goto done;
3410                         }
3411                 }
3412         }
3413         pr_err("MII phy did not respond [%08x]\n",
3414                readl(cp->regs + REG_MIF_STATE_MACHINE));
3415         return -1;
3416
3417 done:
3418         /* see if we can do gigabit */
3419         cfg = cas_phy_read(cp, MII_BMSR);
3420         if ((cfg & CAS_BMSR_1000_EXTEND) &&
3421             cas_phy_read(cp, CAS_MII_1000_EXTEND))
3422                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3423         return 0;
3424 }
3425
3426 /* Must be invoked under cp->lock. */
3427 static inline void cas_start_dma(struct cas *cp)
3428 {
3429         int i;
3430         u32 val;
3431         int txfailed = 0;
3432
3433         /* enable dma */
3434         val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3435         writel(val, cp->regs + REG_TX_CFG);
3436         val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3437         writel(val, cp->regs + REG_RX_CFG);
3438
3439         /* enable the mac */
3440         val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3441         writel(val, cp->regs + REG_MAC_TX_CFG);
3442         val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3443         writel(val, cp->regs + REG_MAC_RX_CFG);
3444
3445         i = STOP_TRIES;
3446         while (i-- > 0) {
3447                 val = readl(cp->regs + REG_MAC_TX_CFG);
3448                 if ((val & MAC_TX_CFG_EN))
3449                         break;
3450                 udelay(10);
3451         }
3452         if (i < 0) txfailed = 1;
3453         i = STOP_TRIES;
3454         while (i-- > 0) {
3455                 val = readl(cp->regs + REG_MAC_RX_CFG);
3456                 if ((val & MAC_RX_CFG_EN)) {
3457                         if (txfailed) {
3458                                 netdev_err(cp->dev,
3459                                            "enabling mac failed [tx:%08x:%08x]\n",
3460                                            readl(cp->regs + REG_MIF_STATE_MACHINE),
3461                                            readl(cp->regs + REG_MAC_STATE_MACHINE));
3462                         }
3463                         goto enable_rx_done;
3464                 }
3465                 udelay(10);
3466         }
3467         netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3468                    (txfailed ? "tx,rx" : "rx"),
3469                    readl(cp->regs + REG_MIF_STATE_MACHINE),
3470                    readl(cp->regs + REG_MAC_STATE_MACHINE));
3471
3472 enable_rx_done:
3473         cas_unmask_intr(cp); /* enable interrupts */
3474         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3475         writel(0, cp->regs + REG_RX_COMP_TAIL);
3476
3477         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3478                 if (N_RX_DESC_RINGS > 1)
3479                         writel(RX_DESC_RINGN_SIZE(1) - 4,
3480                                cp->regs + REG_PLUS_RX_KICK1);
3481         }
3482 }
3483
3484 /* Must be invoked under cp->lock. */
3485 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3486                                    int *pause)
3487 {
3488         u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3489         *fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3490         *pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3491         if (val & PCS_MII_LPA_ASYM_PAUSE)
3492                 *pause |= 0x10;
3493         *spd = 1000;
3494 }
3495
3496 /* Must be invoked under cp->lock. */
3497 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3498                                    int *pause)
3499 {
3500         u32 val;
3501
3502         *fd = 0;
3503         *spd = 10;
3504         *pause = 0;
3505
3506         /* use GMII registers */
3507         val = cas_phy_read(cp, MII_LPA);
3508         if (val & CAS_LPA_PAUSE)
3509                 *pause = 0x01;
3510
3511         if (val & CAS_LPA_ASYM_PAUSE)
3512                 *pause |= 0x10;
3513
3514         if (val & LPA_DUPLEX)
3515                 *fd = 1;
3516         if (val & LPA_100)
3517                 *spd = 100;
3518
3519         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3520                 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3521                 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3522                         *spd = 1000;
3523                 if (val & CAS_LPA_1000FULL)
3524                         *fd = 1;
3525         }
3526 }
3527
3528 /* A link-up condition has occurred, initialize and enable the
3529  * rest of the chip.
3530  *
3531  * Must be invoked under cp->lock.
3532  */
3533 static void cas_set_link_modes(struct cas *cp)
3534 {
3535         u32 val;
3536         int full_duplex, speed, pause;
3537
3538         full_duplex = 0;
3539         speed = 10;
3540         pause = 0;
3541
3542         if (CAS_PHY_MII(cp->phy_type)) {
3543                 cas_mif_poll(cp, 0);
3544                 val = cas_phy_read(cp, MII_BMCR);
3545                 if (val & BMCR_ANENABLE) {
3546                         cas_read_mii_link_mode(cp, &full_duplex, &speed,
3547                                                &pause);
3548                 } else {
3549                         if (val & BMCR_FULLDPLX)
3550                                 full_duplex = 1;
3551
3552                         if (val & BMCR_SPEED100)
3553                                 speed = 100;
3554                         else if (val & CAS_BMCR_SPEED1000)
3555                                 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3556                                         1000 : 100;
3557                 }
3558                 cas_mif_poll(cp, 1);
3559
3560         } else {
3561                 val = readl(cp->regs + REG_PCS_MII_CTRL);
3562                 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3563                 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3564                         if (val & PCS_MII_CTRL_DUPLEX)
3565                                 full_duplex = 1;
3566                 }
3567         }
3568
3569         netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3570                    speed, full_duplex ? "full" : "half");
3571
3572         val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3573         if (CAS_PHY_MII(cp->phy_type)) {
3574                 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3575                 if (!full_duplex)
3576                         val |= MAC_XIF_DISABLE_ECHO;
3577         }
3578         if (full_duplex)
3579                 val |= MAC_XIF_FDPLX_LED;
3580         if (speed == 1000)
3581                 val |= MAC_XIF_GMII_MODE;
3582         writel(val, cp->regs + REG_MAC_XIF_CFG);
3583
3584         /* deal with carrier and collision detect. */
3585         val = MAC_TX_CFG_IPG_EN;
3586         if (full_duplex) {
3587                 val |= MAC_TX_CFG_IGNORE_CARRIER;
3588                 val |= MAC_TX_CFG_IGNORE_COLL;
3589         } else {
3590 #ifndef USE_CSMA_CD_PROTO
3591                 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3592                 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3593 #endif
3594         }
3595         /* val now set up for REG_MAC_TX_CFG */
3596
3597         /* If gigabit and half-duplex, enable carrier extension
3598          * mode.  increase slot time to 512 bytes as well.
3599          * else, disable it and make sure slot time is 64 bytes.
3600          * also activate checksum bug workaround
3601          */
3602         if ((speed == 1000) && !full_duplex) {
3603                 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3604                        cp->regs + REG_MAC_TX_CFG);
3605
3606                 val = readl(cp->regs + REG_MAC_RX_CFG);
3607                 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3608                 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3609                        cp->regs + REG_MAC_RX_CFG);
3610
3611                 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3612
3613                 cp->crc_size = 4;
3614                 /* minimum size gigabit frame at half duplex */
3615                 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3616
3617         } else {
3618                 writel(val, cp->regs + REG_MAC_TX_CFG);
3619
3620                 /* checksum bug workaround. don't strip FCS when in
3621                  * half-duplex mode
3622                  */
3623                 val = readl(cp->regs + REG_MAC_RX_CFG);
3624                 if (full_duplex) {
3625                         val |= MAC_RX_CFG_STRIP_FCS;
3626                         cp->crc_size = 0;
3627                         cp->min_frame_size = CAS_MIN_MTU;
3628                 } else {
3629                         val &= ~MAC_RX_CFG_STRIP_FCS;
3630                         cp->crc_size = 4;
3631                         cp->min_frame_size = CAS_MIN_FRAME;
3632                 }
3633                 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3634                        cp->regs + REG_MAC_RX_CFG);
3635                 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3636         }
3637
3638         if (netif_msg_link(cp)) {
3639                 if (pause & 0x01) {
3640                         netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3641                                     cp->rx_fifo_size,
3642                                     cp->rx_pause_off,
3643                                     cp->rx_pause_on);
3644                 } else if (pause & 0x10) {
3645                         netdev_info(cp->dev, "TX pause enabled\n");
3646                 } else {
3647                         netdev_info(cp->dev, "Pause is disabled\n");
3648                 }
3649         }
3650
3651         val = readl(cp->regs + REG_MAC_CTRL_CFG);
3652         val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3653         if (pause) { /* symmetric or asymmetric pause */
3654                 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3655                 if (pause & 0x01) { /* symmetric pause */
3656                         val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3657                 }
3658         }
3659         writel(val, cp->regs + REG_MAC_CTRL_CFG);
3660         cas_start_dma(cp);
3661 }
3662
3663 /* Must be invoked under cp->lock. */
3664 static void cas_init_hw(struct cas *cp, int restart_link)
3665 {
3666         if (restart_link)
3667                 cas_phy_init(cp);
3668
3669         cas_init_pause_thresholds(cp);
3670         cas_init_mac(cp);
3671         cas_init_dma(cp);
3672
3673         if (restart_link) {
3674                 /* Default aneg parameters */
3675                 cp->timer_ticks = 0;
3676                 cas_begin_auto_negotiation(cp, NULL);
3677         } else if (cp->lstate == link_up) {
3678                 cas_set_link_modes(cp);
3679                 netif_carrier_on(cp->dev);
3680         }
3681 }
3682
3683 /* Must be invoked under cp->lock. on earlier cassini boards,
3684  * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3685  * let it settle out, and then restore pci state.
3686  */
3687 static void cas_hard_reset(struct cas *cp)
3688 {
3689         writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3690         udelay(20);
3691         pci_restore_state(cp->pdev);
3692 }
3693
3694
3695 static void cas_global_reset(struct cas *cp, int blkflag)
3696 {
3697         int limit;
3698
3699         /* issue a global reset. don't use RSTOUT. */
3700         if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3701                 /* For PCS, when the blkflag is set, we should set the
3702                  * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3703                  * the last autonegotiation from being cleared.  We'll
3704                  * need some special handling if the chip is set into a
3705                  * loopback mode.
3706                  */
3707                 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3708                        cp->regs + REG_SW_RESET);
3709         } else {
3710                 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3711         }
3712
3713         /* need to wait at least 3ms before polling register */
3714         mdelay(3);
3715
3716         limit = STOP_TRIES;
3717         while (limit-- > 0) {
3718                 u32 val = readl(cp->regs + REG_SW_RESET);
3719                 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3720                         goto done;
3721                 udelay(10);
3722         }
3723         netdev_err(cp->dev, "sw reset failed\n");
3724
3725 done:
3726         /* enable various BIM interrupts */
3727         writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3728                BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3729
3730         /* clear out pci error status mask for handled errors.
3731          * we don't deal with DMA counter overflows as they happen
3732          * all the time.
3733          */
3734         writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3735                                PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3736                                PCI_ERR_BIM_DMA_READ), cp->regs +
3737                REG_PCI_ERR_STATUS_MASK);
3738
3739         /* set up for MII by default to address mac rx reset timeout
3740          * issue
3741          */
3742         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3743 }
3744
3745 static void cas_reset(struct cas *cp, int blkflag)
3746 {
3747         u32 val;
3748
3749         cas_mask_intr(cp);
3750         cas_global_reset(cp, blkflag);
3751         cas_mac_reset(cp);
3752         cas_entropy_reset(cp);
3753
3754         /* disable dma engines. */
3755         val = readl(cp->regs + REG_TX_CFG);
3756         val &= ~TX_CFG_DMA_EN;
3757         writel(val, cp->regs + REG_TX_CFG);
3758
3759         val = readl(cp->regs + REG_RX_CFG);
3760         val &= ~RX_CFG_DMA_EN;
3761         writel(val, cp->regs + REG_RX_CFG);
3762
3763         /* program header parser */
3764         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3765             (&CAS_HP_ALT_FIRMWARE[0] == &cas_prog_null[0])) {
3766                 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3767         } else {
3768                 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3769         }
3770
3771         /* clear out error registers */
3772         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3773         cas_clear_mac_err(cp);
3774         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3775 }
3776
3777 /* Shut down the chip, must be called with pm_mutex held.  */
3778 static void cas_shutdown(struct cas *cp)
3779 {
3780         unsigned long flags;
3781
3782         /* Make us not-running to avoid timers respawning */
3783         cp->hw_running = 0;
3784
3785         del_timer_sync(&cp->link_timer);
3786
3787         /* Stop the reset task */
3788 #if 0
3789         while (atomic_read(&cp->reset_task_pending_mtu) ||
3790                atomic_read(&cp->reset_task_pending_spare) ||
3791                atomic_read(&cp->reset_task_pending_all))
3792                 schedule();
3793
3794 #else
3795         while (atomic_read(&cp->reset_task_pending))
3796                 schedule();
3797 #endif
3798         /* Actually stop the chip */
3799         cas_lock_all_save(cp, flags);
3800         cas_reset(cp, 0);
3801         if (cp->cas_flags & CAS_FLAG_SATURN)
3802                 cas_phy_powerdown(cp);
3803         cas_unlock_all_restore(cp, flags);
3804 }
3805
3806 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3807 {
3808         struct cas *cp = netdev_priv(dev);
3809
3810         dev->mtu = new_mtu;
3811         if (!netif_running(dev) || !netif_device_present(dev))
3812                 return 0;
3813
3814         /* let the reset task handle it */
3815 #if 1
3816         atomic_inc(&cp->reset_task_pending);
3817         if ((cp->phy_type & CAS_PHY_SERDES)) {
3818                 atomic_inc(&cp->reset_task_pending_all);
3819         } else {
3820                 atomic_inc(&cp->reset_task_pending_mtu);
3821         }
3822         schedule_work(&cp->reset_task);
3823 #else
3824         atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3825                    CAS_RESET_ALL : CAS_RESET_MTU);
3826         pr_err("reset called in cas_change_mtu\n");
3827         schedule_work(&cp->reset_task);
3828 #endif
3829
3830         flush_work(&cp->reset_task);
3831         return 0;
3832 }
3833
3834 static void cas_clean_txd(struct cas *cp, int ring)
3835 {
3836         struct cas_tx_desc *txd = cp->init_txds[ring];
3837         struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3838         u64 daddr, dlen;
3839         int i, size;
3840
3841         size = TX_DESC_RINGN_SIZE(ring);
3842         for (i = 0; i < size; i++) {
3843                 int frag;
3844
3845                 if (skbs[i] == NULL)
3846                         continue;
3847
3848                 skb = skbs[i];
3849                 skbs[i] = NULL;
3850
3851                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3852                         int ent = i & (size - 1);
3853
3854                         /* first buffer is never a tiny buffer and so
3855                          * needs to be unmapped.
3856                          */
3857                         daddr = le64_to_cpu(txd[ent].buffer);
3858                         dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3859                                          le64_to_cpu(txd[ent].control));
3860                         dma_unmap_page(&cp->pdev->dev, daddr, dlen,
3861                                        DMA_TO_DEVICE);
3862
3863                         if (frag != skb_shinfo(skb)->nr_frags) {
3864                                 i++;
3865
3866                                 /* next buffer might by a tiny buffer.
3867                                  * skip past it.
3868                                  */
3869                                 ent = i & (size - 1);
3870                                 if (cp->tx_tiny_use[ring][ent].used)
3871                                         i++;
3872                         }
3873                 }
3874                 dev_kfree_skb_any(skb);
3875         }
3876
3877         /* zero out tiny buf usage */
3878         memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3879 }
3880
3881 /* freed on close */
3882 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3883 {
3884         cas_page_t **page = cp->rx_pages[ring];
3885         int i, size;
3886
3887         size = RX_DESC_RINGN_SIZE(ring);
3888         for (i = 0; i < size; i++) {
3889                 if (page[i]) {
3890                         cas_page_free(cp, page[i]);
3891                         page[i] = NULL;
3892                 }
3893         }
3894 }
3895
3896 static void cas_free_rxds(struct cas *cp)
3897 {
3898         int i;
3899
3900         for (i = 0; i < N_RX_DESC_RINGS; i++)
3901                 cas_free_rx_desc(cp, i);
3902 }
3903
3904 /* Must be invoked under cp->lock. */
3905 static void cas_clean_rings(struct cas *cp)
3906 {
3907         int i;
3908
3909         /* need to clean all tx rings */
3910         memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3911         memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3912         for (i = 0; i < N_TX_RINGS; i++)
3913                 cas_clean_txd(cp, i);
3914
3915         /* zero out init block */
3916         memset(cp->init_block, 0, sizeof(struct cas_init_block));
3917         cas_clean_rxds(cp);
3918         cas_clean_rxcs(cp);
3919 }
3920
3921 /* allocated on open */
3922 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3923 {
3924         cas_page_t **page = cp->rx_pages[ring];
3925         int size, i = 0;
3926
3927         size = RX_DESC_RINGN_SIZE(ring);
3928         for (i = 0; i < size; i++) {
3929                 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3930                         return -1;
3931         }
3932         return 0;
3933 }
3934
3935 static int cas_alloc_rxds(struct cas *cp)
3936 {
3937         int i;
3938
3939         for (i = 0; i < N_RX_DESC_RINGS; i++) {
3940                 if (cas_alloc_rx_desc(cp, i) < 0) {
3941                         cas_free_rxds(cp);
3942                         return -1;
3943                 }
3944         }
3945         return 0;
3946 }
3947
3948 static void cas_reset_task(struct work_struct *work)
3949 {
3950         struct cas *cp = container_of(work, struct cas, reset_task);
3951 #if 0
3952         int pending = atomic_read(&cp->reset_task_pending);
3953 #else
3954         int pending_all = atomic_read(&cp->reset_task_pending_all);
3955         int pending_spare = atomic_read(&cp->reset_task_pending_spare);
3956         int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
3957
3958         if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
3959                 /* We can have more tasks scheduled than actually
3960                  * needed.
3961                  */
3962                 atomic_dec(&cp->reset_task_pending);
3963                 return;
3964         }
3965 #endif
3966         /* The link went down, we reset the ring, but keep
3967          * DMA stopped. Use this function for reset
3968          * on error as well.
3969          */
3970         if (cp->hw_running) {
3971                 unsigned long flags;
3972
3973                 /* Make sure we don't get interrupts or tx packets */
3974                 netif_device_detach(cp->dev);
3975                 cas_lock_all_save(cp, flags);
3976
3977                 if (cp->opened) {
3978                         /* We call cas_spare_recover when we call cas_open.
3979                          * but we do not initialize the lists cas_spare_recover
3980                          * uses until cas_open is called.
3981                          */
3982                         cas_spare_recover(cp, GFP_ATOMIC);
3983                 }
3984 #if 1
3985                 /* test => only pending_spare set */
3986                 if (!pending_all && !pending_mtu)
3987                         goto done;
3988 #else
3989                 if (pending == CAS_RESET_SPARE)
3990                         goto done;
3991 #endif
3992                 /* when pending == CAS_RESET_ALL, the following
3993                  * call to cas_init_hw will restart auto negotiation.
3994                  * Setting the second argument of cas_reset to
3995                  * !(pending == CAS_RESET_ALL) will set this argument
3996                  * to 1 (avoiding reinitializing the PHY for the normal
3997                  * PCS case) when auto negotiation is not restarted.
3998                  */
3999 #if 1
4000                 cas_reset(cp, !(pending_all > 0));
4001                 if (cp->opened)
4002                         cas_clean_rings(cp);
4003                 cas_init_hw(cp, (pending_all > 0));
4004 #else
4005                 cas_reset(cp, !(pending == CAS_RESET_ALL));
4006                 if (cp->opened)
4007                         cas_clean_rings(cp);
4008                 cas_init_hw(cp, pending == CAS_RESET_ALL);
4009 #endif
4010
4011 done:
4012                 cas_unlock_all_restore(cp, flags);
4013                 netif_device_attach(cp->dev);
4014         }
4015 #if 1
4016         atomic_sub(pending_all, &cp->reset_task_pending_all);
4017         atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4018         atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4019         atomic_dec(&cp->reset_task_pending);
4020 #else
4021         atomic_set(&cp->reset_task_pending, 0);
4022 #endif
4023 }
4024
4025 static void cas_link_timer(struct timer_list *t)
4026 {
4027         struct cas *cp = from_timer(cp, t, link_timer);
4028         int mask, pending = 0, reset = 0;
4029         unsigned long flags;
4030
4031         if (link_transition_timeout != 0 &&
4032             cp->link_transition_jiffies_valid &&
4033             time_is_before_jiffies(cp->link_transition_jiffies +
4034               link_transition_timeout)) {
4035                 /* One-second counter so link-down workaround doesn't
4036                  * cause resets to occur so fast as to fool the switch
4037                  * into thinking the link is down.
4038                  */
4039                 cp->link_transition_jiffies_valid = 0;
4040         }
4041
4042         if (!cp->hw_running)
4043                 return;
4044
4045         spin_lock_irqsave(&cp->lock, flags);
4046         cas_lock_tx(cp);
4047         cas_entropy_gather(cp);
4048
4049         /* If the link task is still pending, we just
4050          * reschedule the link timer
4051          */
4052 #if 1
4053         if (atomic_read(&cp->reset_task_pending_all) ||
4054             atomic_read(&cp->reset_task_pending_spare) ||
4055             atomic_read(&cp->reset_task_pending_mtu))
4056                 goto done;
4057 #else
4058         if (atomic_read(&cp->reset_task_pending))
4059                 goto done;
4060 #endif
4061
4062         /* check for rx cleaning */
4063         if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4064                 int i, rmask;
4065
4066                 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4067                         rmask = CAS_FLAG_RXD_POST(i);
4068                         if ((mask & rmask) == 0)
4069                                 continue;
4070
4071                         /* post_rxds will do a mod_timer */
4072                         if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4073                                 pending = 1;
4074                                 continue;
4075                         }
4076                         cp->cas_flags &= ~rmask;
4077                 }
4078         }
4079
4080         if (CAS_PHY_MII(cp->phy_type)) {
4081                 u16 bmsr;
4082                 cas_mif_poll(cp, 0);
4083                 bmsr = cas_phy_read(cp, MII_BMSR);
4084                 /* WTZ: Solaris driver reads this twice, but that
4085                  * may be due to the PCS case and the use of a
4086                  * common implementation. Read it twice here to be
4087                  * safe.
4088                  */
4089                 bmsr = cas_phy_read(cp, MII_BMSR);
4090                 cas_mif_poll(cp, 1);
4091                 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4092                 reset = cas_mii_link_check(cp, bmsr);
4093         } else {
4094                 reset = cas_pcs_link_check(cp);
4095         }
4096
4097         if (reset)
4098                 goto done;
4099
4100         /* check for tx state machine confusion */
4101         if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4102                 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4103                 u32 wptr, rptr;
4104                 int tlm  = CAS_VAL(MAC_SM_TLM, val);
4105
4106                 if (((tlm == 0x5) || (tlm == 0x3)) &&
4107                     (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4108                         netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4109                                      "tx err: MAC_STATE[%08x]\n", val);
4110                         reset = 1;
4111                         goto done;
4112                 }
4113
4114                 val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4115                 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4116                 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4117                 if ((val == 0) && (wptr != rptr)) {
4118                         netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4119                                      "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4120                                      val, wptr, rptr);
4121                         reset = 1;
4122                 }
4123
4124                 if (reset)
4125                         cas_hard_reset(cp);
4126         }
4127
4128 done:
4129         if (reset) {
4130 #if 1
4131                 atomic_inc(&cp->reset_task_pending);
4132                 atomic_inc(&cp->reset_task_pending_all);
4133                 schedule_work(&cp->reset_task);
4134 #else
4135                 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4136                 pr_err("reset called in cas_link_timer\n");
4137                 schedule_work(&cp->reset_task);
4138 #endif
4139         }
4140
4141         if (!pending)
4142                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4143         cas_unlock_tx(cp);
4144         spin_unlock_irqrestore(&cp->lock, flags);
4145 }
4146
4147 /* tiny buffers are used to avoid target abort issues with
4148  * older cassini's
4149  */
4150 static void cas_tx_tiny_free(struct cas *cp)
4151 {
4152         struct pci_dev *pdev = cp->pdev;
4153         int i;
4154
4155         for (i = 0; i < N_TX_RINGS; i++) {
4156                 if (!cp->tx_tiny_bufs[i])
4157                         continue;
4158
4159                 dma_free_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
4160                                   cp->tx_tiny_bufs[i], cp->tx_tiny_dvma[i]);
4161                 cp->tx_tiny_bufs[i] = NULL;
4162         }
4163 }
4164
4165 static int cas_tx_tiny_alloc(struct cas *cp)
4166 {
4167         struct pci_dev *pdev = cp->pdev;
4168         int i;
4169
4170         for (i = 0; i < N_TX_RINGS; i++) {
4171                 cp->tx_tiny_bufs[i] =
4172                         dma_alloc_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
4173                                            &cp->tx_tiny_dvma[i], GFP_KERNEL);
4174                 if (!cp->tx_tiny_bufs[i]) {
4175                         cas_tx_tiny_free(cp);
4176                         return -1;
4177                 }
4178         }
4179         return 0;
4180 }
4181
4182
4183 static int cas_open(struct net_device *dev)
4184 {
4185         struct cas *cp = netdev_priv(dev);
4186         int hw_was_up, err;
4187         unsigned long flags;
4188
4189         mutex_lock(&cp->pm_mutex);
4190
4191         hw_was_up = cp->hw_running;
4192
4193         /* The power-management mutex protects the hw_running
4194          * etc. state so it is safe to do this bit without cp->lock
4195          */
4196         if (!cp->hw_running) {
4197                 /* Reset the chip */
4198                 cas_lock_all_save(cp, flags);
4199                 /* We set the second arg to cas_reset to zero
4200                  * because cas_init_hw below will have its second
4201                  * argument set to non-zero, which will force
4202                  * autonegotiation to start.
4203                  */
4204                 cas_reset(cp, 0);
4205                 cp->hw_running = 1;
4206                 cas_unlock_all_restore(cp, flags);
4207         }
4208
4209         err = -ENOMEM;
4210         if (cas_tx_tiny_alloc(cp) < 0)
4211                 goto err_unlock;
4212
4213         /* alloc rx descriptors */
4214         if (cas_alloc_rxds(cp) < 0)
4215                 goto err_tx_tiny;
4216
4217         /* allocate spares */
4218         cas_spare_init(cp);
4219         cas_spare_recover(cp, GFP_KERNEL);
4220
4221         /* We can now request the interrupt as we know it's masked
4222          * on the controller. cassini+ has up to 4 interrupts
4223          * that can be used, but you need to do explicit pci interrupt
4224          * mapping to expose them
4225          */
4226         if (request_irq(cp->pdev->irq, cas_interrupt,
4227                         IRQF_SHARED, dev->name, (void *) dev)) {
4228                 netdev_err(cp->dev, "failed to request irq !\n");
4229                 err = -EAGAIN;
4230                 goto err_spare;
4231         }
4232
4233 #ifdef USE_NAPI
4234         napi_enable(&cp->napi);
4235 #endif
4236         /* init hw */
4237         cas_lock_all_save(cp, flags);
4238         cas_clean_rings(cp);
4239         cas_init_hw(cp, !hw_was_up);
4240         cp->opened = 1;
4241         cas_unlock_all_restore(cp, flags);
4242
4243         netif_start_queue(dev);
4244         mutex_unlock(&cp->pm_mutex);
4245         return 0;
4246
4247 err_spare:
4248         cas_spare_free(cp);
4249         cas_free_rxds(cp);
4250 err_tx_tiny:
4251         cas_tx_tiny_free(cp);
4252 err_unlock:
4253         mutex_unlock(&cp->pm_mutex);
4254         return err;
4255 }
4256
4257 static int cas_close(struct net_device *dev)
4258 {
4259         unsigned long flags;
4260         struct cas *cp = netdev_priv(dev);
4261
4262 #ifdef USE_NAPI
4263         napi_disable(&cp->napi);
4264 #endif
4265         /* Make sure we don't get distracted by suspend/resume */
4266         mutex_lock(&cp->pm_mutex);
4267
4268         netif_stop_queue(dev);
4269
4270         /* Stop traffic, mark us closed */
4271         cas_lock_all_save(cp, flags);
4272         cp->opened = 0;
4273         cas_reset(cp, 0);
4274         cas_phy_init(cp);
4275         cas_begin_auto_negotiation(cp, NULL);
4276         cas_clean_rings(cp);
4277         cas_unlock_all_restore(cp, flags);
4278
4279         free_irq(cp->pdev->irq, (void *) dev);
4280         cas_spare_free(cp);
4281         cas_free_rxds(cp);
4282         cas_tx_tiny_free(cp);
4283         mutex_unlock(&cp->pm_mutex);
4284         return 0;
4285 }
4286
4287 static struct {
4288         const char name[ETH_GSTRING_LEN];
4289 } ethtool_cassini_statnames[] = {
4290         {"collisions"},
4291         {"rx_bytes"},
4292         {"rx_crc_errors"},
4293         {"rx_dropped"},
4294         {"rx_errors"},
4295         {"rx_fifo_errors"},
4296         {"rx_frame_errors"},
4297         {"rx_length_errors"},
4298         {"rx_over_errors"},
4299         {"rx_packets"},
4300         {"tx_aborted_errors"},
4301         {"tx_bytes"},
4302         {"tx_dropped"},
4303         {"tx_errors"},
4304         {"tx_fifo_errors"},
4305         {"tx_packets"}
4306 };
4307 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4308
4309 static struct {
4310         const int offsets;      /* neg. values for 2nd arg to cas_read_phy */
4311 } ethtool_register_table[] = {
4312         {-MII_BMSR},
4313         {-MII_BMCR},
4314         {REG_CAWR},
4315         {REG_INF_BURST},
4316         {REG_BIM_CFG},
4317         {REG_RX_CFG},
4318         {REG_HP_CFG},
4319         {REG_MAC_TX_CFG},
4320         {REG_MAC_RX_CFG},
4321         {REG_MAC_CTRL_CFG},
4322         {REG_MAC_XIF_CFG},
4323         {REG_MIF_CFG},
4324         {REG_PCS_CFG},
4325         {REG_SATURN_PCFG},
4326         {REG_PCS_MII_STATUS},
4327         {REG_PCS_STATE_MACHINE},
4328         {REG_MAC_COLL_EXCESS},
4329         {REG_MAC_COLL_LATE}
4330 };
4331 #define CAS_REG_LEN     ARRAY_SIZE(ethtool_register_table)
4332 #define CAS_MAX_REGS    (sizeof (u32)*CAS_REG_LEN)
4333
4334 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4335 {
4336         u8 *p;
4337         int i;
4338         unsigned long flags;
4339
4340         spin_lock_irqsave(&cp->lock, flags);
4341         for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4342                 u16 hval;
4343                 u32 val;
4344                 if (ethtool_register_table[i].offsets < 0) {
4345                         hval = cas_phy_read(cp,
4346                                     -ethtool_register_table[i].offsets);
4347                         val = hval;
4348                 } else {
4349                         val= readl(cp->regs+ethtool_register_table[i].offsets);
4350                 }
4351                 memcpy(p, (u8 *)&val, sizeof(u32));
4352         }
4353         spin_unlock_irqrestore(&cp->lock, flags);
4354 }
4355
4356 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4357 {
4358         struct cas *cp = netdev_priv(dev);
4359         struct net_device_stats *stats = cp->net_stats;
4360         unsigned long flags;
4361         int i;
4362         unsigned long tmp;
4363
4364         /* we collate all of the stats into net_stats[N_TX_RING] */
4365         if (!cp->hw_running)
4366                 return stats + N_TX_RINGS;
4367
4368         /* collect outstanding stats */
4369         /* WTZ: the Cassini spec gives these as 16 bit counters but
4370          * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4371          * in case the chip somehow puts any garbage in the other bits.
4372          * Also, counter usage didn't seem to mach what Adrian did
4373          * in the parts of the code that set these quantities. Made
4374          * that consistent.
4375          */
4376         spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4377         stats[N_TX_RINGS].rx_crc_errors +=
4378           readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4379         stats[N_TX_RINGS].rx_frame_errors +=
4380                 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4381         stats[N_TX_RINGS].rx_length_errors +=
4382                 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4383 #if 1
4384         tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4385                 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4386         stats[N_TX_RINGS].tx_aborted_errors += tmp;
4387         stats[N_TX_RINGS].collisions +=
4388           tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4389 #else
4390         stats[N_TX_RINGS].tx_aborted_errors +=
4391                 readl(cp->regs + REG_MAC_COLL_EXCESS);
4392         stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4393                 readl(cp->regs + REG_MAC_COLL_LATE);
4394 #endif
4395         cas_clear_mac_err(cp);
4396
4397         /* saved bits that are unique to ring 0 */
4398         spin_lock(&cp->stat_lock[0]);
4399         stats[N_TX_RINGS].collisions        += stats[0].collisions;
4400         stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4401         stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4402         stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4403         stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4404         stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4405         spin_unlock(&cp->stat_lock[0]);
4406
4407         for (i = 0; i < N_TX_RINGS; i++) {
4408                 spin_lock(&cp->stat_lock[i]);
4409                 stats[N_TX_RINGS].rx_length_errors +=
4410                         stats[i].rx_length_errors;
4411                 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4412                 stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4413                 stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4414                 stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4415                 stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4416                 stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4417                 stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4418                 stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4419                 stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4420                 memset(stats + i, 0, sizeof(struct net_device_stats));
4421                 spin_unlock(&cp->stat_lock[i]);
4422         }
4423         spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4424         return stats + N_TX_RINGS;
4425 }
4426
4427
4428 static void cas_set_multicast(struct net_device *dev)
4429 {
4430         struct cas *cp = netdev_priv(dev);
4431         u32 rxcfg, rxcfg_new;
4432         unsigned long flags;
4433         int limit = STOP_TRIES;
4434
4435         if (!cp->hw_running)
4436                 return;
4437
4438         spin_lock_irqsave(&cp->lock, flags);
4439         rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4440
4441         /* disable RX MAC and wait for completion */
4442         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4443         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4444                 if (!limit--)
4445                         break;
4446                 udelay(10);
4447         }
4448
4449         /* disable hash filter and wait for completion */
4450         limit = STOP_TRIES;
4451         rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4452         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4453         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4454                 if (!limit--)
4455                         break;
4456                 udelay(10);
4457         }
4458
4459         /* program hash filters */
4460         cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4461         rxcfg |= rxcfg_new;
4462         writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4463         spin_unlock_irqrestore(&cp->lock, flags);
4464 }
4465
4466 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4467 {
4468         struct cas *cp = netdev_priv(dev);
4469         strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4470         strscpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4471         strscpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4472 }
4473
4474 static int cas_get_link_ksettings(struct net_device *dev,
4475                                   struct ethtool_link_ksettings *cmd)
4476 {
4477         struct cas *cp = netdev_priv(dev);
4478         u16 bmcr;
4479         int full_duplex, speed, pause;
4480         unsigned long flags;
4481         enum link_state linkstate = link_up;
4482         u32 supported, advertising;
4483
4484         advertising = 0;
4485         supported = SUPPORTED_Autoneg;
4486         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4487                 supported |= SUPPORTED_1000baseT_Full;
4488                 advertising |= ADVERTISED_1000baseT_Full;
4489         }
4490
4491         /* Record PHY settings if HW is on. */
4492         spin_lock_irqsave(&cp->lock, flags);
4493         bmcr = 0;
4494         linkstate = cp->lstate;
4495         if (CAS_PHY_MII(cp->phy_type)) {
4496                 cmd->base.port = PORT_MII;
4497                 cmd->base.phy_address = cp->phy_addr;
4498                 advertising |= ADVERTISED_TP | ADVERTISED_MII |
4499                         ADVERTISED_10baseT_Half |
4500                         ADVERTISED_10baseT_Full |
4501                         ADVERTISED_100baseT_Half |
4502                         ADVERTISED_100baseT_Full;
4503
4504                 supported |=
4505                         (SUPPORTED_10baseT_Half |
4506                          SUPPORTED_10baseT_Full |
4507                          SUPPORTED_100baseT_Half |
4508                          SUPPORTED_100baseT_Full |
4509                          SUPPORTED_TP | SUPPORTED_MII);
4510
4511                 if (cp->hw_running) {
4512                         cas_mif_poll(cp, 0);
4513                         bmcr = cas_phy_read(cp, MII_BMCR);
4514                         cas_read_mii_link_mode(cp, &full_duplex,
4515                                                &speed, &pause);
4516                         cas_mif_poll(cp, 1);
4517                 }
4518
4519         } else {
4520                 cmd->base.port = PORT_FIBRE;
4521                 cmd->base.phy_address = 0;
4522                 supported   |= SUPPORTED_FIBRE;
4523                 advertising |= ADVERTISED_FIBRE;
4524
4525                 if (cp->hw_running) {
4526                         /* pcs uses the same bits as mii */
4527                         bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4528                         cas_read_pcs_link_mode(cp, &full_duplex,
4529                                                &speed, &pause);
4530                 }
4531         }
4532         spin_unlock_irqrestore(&cp->lock, flags);
4533
4534         if (bmcr & BMCR_ANENABLE) {
4535                 advertising |= ADVERTISED_Autoneg;
4536                 cmd->base.autoneg = AUTONEG_ENABLE;
4537                 cmd->base.speed =  ((speed == 10) ?
4538                                             SPEED_10 :
4539                                             ((speed == 1000) ?
4540                                              SPEED_1000 : SPEED_100));
4541                 cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4542         } else {
4543                 cmd->base.autoneg = AUTONEG_DISABLE;
4544                 cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ?
4545                                             SPEED_1000 :
4546                                             ((bmcr & BMCR_SPEED100) ?
4547                                              SPEED_100 : SPEED_10));
4548                 cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ?
4549                         DUPLEX_FULL : DUPLEX_HALF;
4550         }
4551         if (linkstate != link_up) {
4552                 /* Force these to "unknown" if the link is not up and
4553                  * autonogotiation in enabled. We can set the link
4554                  * speed to 0, but not cmd->duplex,
4555                  * because its legal values are 0 and 1.  Ethtool will
4556                  * print the value reported in parentheses after the
4557                  * word "Unknown" for unrecognized values.
4558                  *
4559                  * If in forced mode, we report the speed and duplex
4560                  * settings that we configured.
4561                  */
4562                 if (cp->link_cntl & BMCR_ANENABLE) {
4563                         cmd->base.speed = 0;
4564                         cmd->base.duplex = 0xff;
4565                 } else {
4566                         cmd->base.speed = SPEED_10;
4567                         if (cp->link_cntl & BMCR_SPEED100) {
4568                                 cmd->base.speed = SPEED_100;
4569                         } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4570                                 cmd->base.speed = SPEED_1000;
4571                         }
4572                         cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ?
4573                                 DUPLEX_FULL : DUPLEX_HALF;
4574                 }
4575         }
4576
4577         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
4578                                                 supported);
4579         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
4580                                                 advertising);
4581
4582         return 0;
4583 }
4584
4585 static int cas_set_link_ksettings(struct net_device *dev,
4586                                   const struct ethtool_link_ksettings *cmd)
4587 {
4588         struct cas *cp = netdev_priv(dev);
4589         unsigned long flags;
4590         u32 speed = cmd->base.speed;
4591
4592         /* Verify the settings we care about. */
4593         if (cmd->base.autoneg != AUTONEG_ENABLE &&
4594             cmd->base.autoneg != AUTONEG_DISABLE)
4595                 return -EINVAL;
4596
4597         if (cmd->base.autoneg == AUTONEG_DISABLE &&
4598             ((speed != SPEED_1000 &&
4599               speed != SPEED_100 &&
4600               speed != SPEED_10) ||
4601              (cmd->base.duplex != DUPLEX_HALF &&
4602               cmd->base.duplex != DUPLEX_FULL)))
4603                 return -EINVAL;
4604
4605         /* Apply settings and restart link process. */
4606         spin_lock_irqsave(&cp->lock, flags);
4607         cas_begin_auto_negotiation(cp, cmd);
4608         spin_unlock_irqrestore(&cp->lock, flags);
4609         return 0;
4610 }
4611
4612 static int cas_nway_reset(struct net_device *dev)
4613 {
4614         struct cas *cp = netdev_priv(dev);
4615         unsigned long flags;
4616
4617         if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4618                 return -EINVAL;
4619
4620         /* Restart link process. */
4621         spin_lock_irqsave(&cp->lock, flags);
4622         cas_begin_auto_negotiation(cp, NULL);
4623         spin_unlock_irqrestore(&cp->lock, flags);
4624
4625         return 0;
4626 }
4627
4628 static u32 cas_get_link(struct net_device *dev)
4629 {
4630         struct cas *cp = netdev_priv(dev);
4631         return cp->lstate == link_up;
4632 }
4633
4634 static u32 cas_get_msglevel(struct net_device *dev)
4635 {
4636         struct cas *cp = netdev_priv(dev);
4637         return cp->msg_enable;
4638 }
4639
4640 static void cas_set_msglevel(struct net_device *dev, u32 value)
4641 {
4642         struct cas *cp = netdev_priv(dev);
4643         cp->msg_enable = value;
4644 }
4645
4646 static int cas_get_regs_len(struct net_device *dev)
4647 {
4648         struct cas *cp = netdev_priv(dev);
4649         return min_t(int, cp->casreg_len, CAS_MAX_REGS);
4650 }
4651
4652 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4653                              void *p)
4654 {
4655         struct cas *cp = netdev_priv(dev);
4656         regs->version = 0;
4657         /* cas_read_regs handles locks (cp->lock).  */
4658         cas_read_regs(cp, p, regs->len / sizeof(u32));
4659 }
4660
4661 static int cas_get_sset_count(struct net_device *dev, int sset)
4662 {
4663         switch (sset) {
4664         case ETH_SS_STATS:
4665                 return CAS_NUM_STAT_KEYS;
4666         default:
4667                 return -EOPNOTSUPP;
4668         }
4669 }
4670
4671 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4672 {
4673          memcpy(data, &ethtool_cassini_statnames,
4674                                          CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4675 }
4676
4677 static void cas_get_ethtool_stats(struct net_device *dev,
4678                                       struct ethtool_stats *estats, u64 *data)
4679 {
4680         struct cas *cp = netdev_priv(dev);
4681         struct net_device_stats *stats = cas_get_stats(cp->dev);
4682         int i = 0;
4683         data[i++] = stats->collisions;
4684         data[i++] = stats->rx_bytes;
4685         data[i++] = stats->rx_crc_errors;
4686         data[i++] = stats->rx_dropped;
4687         data[i++] = stats->rx_errors;
4688         data[i++] = stats->rx_fifo_errors;
4689         data[i++] = stats->rx_frame_errors;
4690         data[i++] = stats->rx_length_errors;
4691         data[i++] = stats->rx_over_errors;
4692         data[i++] = stats->rx_packets;
4693         data[i++] = stats->tx_aborted_errors;
4694         data[i++] = stats->tx_bytes;
4695         data[i++] = stats->tx_dropped;
4696         data[i++] = stats->tx_errors;
4697         data[i++] = stats->tx_fifo_errors;
4698         data[i++] = stats->tx_packets;
4699         BUG_ON(i != CAS_NUM_STAT_KEYS);
4700 }
4701
4702 static const struct ethtool_ops cas_ethtool_ops = {
4703         .get_drvinfo            = cas_get_drvinfo,
4704         .nway_reset             = cas_nway_reset,
4705         .get_link               = cas_get_link,
4706         .get_msglevel           = cas_get_msglevel,
4707         .set_msglevel           = cas_set_msglevel,
4708         .get_regs_len           = cas_get_regs_len,
4709         .get_regs               = cas_get_regs,
4710         .get_sset_count         = cas_get_sset_count,
4711         .get_strings            = cas_get_strings,
4712         .get_ethtool_stats      = cas_get_ethtool_stats,
4713         .get_link_ksettings     = cas_get_link_ksettings,
4714         .set_link_ksettings     = cas_set_link_ksettings,
4715 };
4716
4717 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4718 {
4719         struct cas *cp = netdev_priv(dev);
4720         struct mii_ioctl_data *data = if_mii(ifr);
4721         unsigned long flags;
4722         int rc = -EOPNOTSUPP;
4723
4724         /* Hold the PM mutex while doing ioctl's or we may collide
4725          * with open/close and power management and oops.
4726          */
4727         mutex_lock(&cp->pm_mutex);
4728         switch (cmd) {
4729         case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
4730                 data->phy_id = cp->phy_addr;
4731                 fallthrough;
4732
4733         case SIOCGMIIREG:               /* Read MII PHY register. */
4734                 spin_lock_irqsave(&cp->lock, flags);
4735                 cas_mif_poll(cp, 0);
4736                 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4737                 cas_mif_poll(cp, 1);
4738                 spin_unlock_irqrestore(&cp->lock, flags);
4739                 rc = 0;
4740                 break;
4741
4742         case SIOCSMIIREG:               /* Write MII PHY register. */
4743                 spin_lock_irqsave(&cp->lock, flags);
4744                 cas_mif_poll(cp, 0);
4745                 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4746                 cas_mif_poll(cp, 1);
4747                 spin_unlock_irqrestore(&cp->lock, flags);
4748                 break;
4749         default:
4750                 break;
4751         }
4752
4753         mutex_unlock(&cp->pm_mutex);
4754         return rc;
4755 }
4756
4757 /* When this chip sits underneath an Intel 31154 bridge, it is the
4758  * only subordinate device and we can tweak the bridge settings to
4759  * reflect that fact.
4760  */
4761 static void cas_program_bridge(struct pci_dev *cas_pdev)
4762 {
4763         struct pci_dev *pdev = cas_pdev->bus->self;
4764         u32 val;
4765
4766         if (!pdev)
4767                 return;
4768
4769         if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4770                 return;
4771
4772         /* Clear bit 10 (Bus Parking Control) in the Secondary
4773          * Arbiter Control/Status Register which lives at offset
4774          * 0x41.  Using a 32-bit word read/modify/write at 0x40
4775          * is much simpler so that's how we do this.
4776          */
4777         pci_read_config_dword(pdev, 0x40, &val);
4778         val &= ~0x00040000;
4779         pci_write_config_dword(pdev, 0x40, val);
4780
4781         /* Max out the Multi-Transaction Timer settings since
4782          * Cassini is the only device present.
4783          *
4784          * The register is 16-bit and lives at 0x50.  When the
4785          * settings are enabled, it extends the GRANT# signal
4786          * for a requestor after a transaction is complete.  This
4787          * allows the next request to run without first needing
4788          * to negotiate the GRANT# signal back.
4789          *
4790          * Bits 12:10 define the grant duration:
4791          *
4792          *      1       --      16 clocks
4793          *      2       --      32 clocks
4794          *      3       --      64 clocks
4795          *      4       --      128 clocks
4796          *      5       --      256 clocks
4797          *
4798          * All other values are illegal.
4799          *
4800          * Bits 09:00 define which REQ/GNT signal pairs get the
4801          * GRANT# signal treatment.  We set them all.
4802          */
4803         pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4804
4805         /* The Read Prefecth Policy register is 16-bit and sits at
4806          * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4807          * enable it and max out all of the settings since only one
4808          * device is sitting underneath and thus bandwidth sharing is
4809          * not an issue.
4810          *
4811          * The register has several 3 bit fields, which indicates a
4812          * multiplier applied to the base amount of prefetching the
4813          * chip would do.  These fields are at:
4814          *
4815          *      15:13   ---     ReRead Primary Bus
4816          *      12:10   ---     FirstRead Primary Bus
4817          *      09:07   ---     ReRead Secondary Bus
4818          *      06:04   ---     FirstRead Secondary Bus
4819          *
4820          * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4821          * get enabled on.  Bit 3 is a grouped enabler which controls
4822          * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4823          * the individual REQ/GNT pairs [2:0].
4824          */
4825         pci_write_config_word(pdev, 0x52,
4826                               (0x7 << 13) |
4827                               (0x7 << 10) |
4828                               (0x7 <<  7) |
4829                               (0x7 <<  4) |
4830                               (0xf <<  0));
4831
4832         /* Force cacheline size to 0x8 */
4833         pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4834
4835         /* Force latency timer to maximum setting so Cassini can
4836          * sit on the bus as long as it likes.
4837          */
4838         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4839 }
4840
4841 static const struct net_device_ops cas_netdev_ops = {
4842         .ndo_open               = cas_open,
4843         .ndo_stop               = cas_close,
4844         .ndo_start_xmit         = cas_start_xmit,
4845         .ndo_get_stats          = cas_get_stats,
4846         .ndo_set_rx_mode        = cas_set_multicast,
4847         .ndo_eth_ioctl          = cas_ioctl,
4848         .ndo_tx_timeout         = cas_tx_timeout,
4849         .ndo_change_mtu         = cas_change_mtu,
4850         .ndo_set_mac_address    = eth_mac_addr,
4851         .ndo_validate_addr      = eth_validate_addr,
4852 #ifdef CONFIG_NET_POLL_CONTROLLER
4853         .ndo_poll_controller    = cas_netpoll,
4854 #endif
4855 };
4856
4857 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4858 {
4859         static int cas_version_printed = 0;
4860         unsigned long casreg_len;
4861         struct net_device *dev;
4862         struct cas *cp;
4863         u16 pci_cmd;
4864         int i, err;
4865         u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4866
4867         if (cas_version_printed++ == 0)
4868                 pr_info("%s", version);
4869
4870         err = pci_enable_device(pdev);
4871         if (err) {
4872                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4873                 return err;
4874         }
4875
4876         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4877                 dev_err(&pdev->dev, "Cannot find proper PCI device "
4878                        "base address, aborting\n");
4879                 err = -ENODEV;
4880                 goto err_out_disable_pdev;
4881         }
4882
4883         dev = alloc_etherdev(sizeof(*cp));
4884         if (!dev) {
4885                 err = -ENOMEM;
4886                 goto err_out_disable_pdev;
4887         }
4888         SET_NETDEV_DEV(dev, &pdev->dev);
4889
4890         err = pci_request_regions(pdev, dev->name);
4891         if (err) {
4892                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4893                 goto err_out_free_netdev;
4894         }
4895         pci_set_master(pdev);
4896
4897         /* we must always turn on parity response or else parity
4898          * doesn't get generated properly. disable SERR/PERR as well.
4899          * in addition, we want to turn MWI on.
4900          */
4901         pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4902         pci_cmd &= ~PCI_COMMAND_SERR;
4903         pci_cmd |= PCI_COMMAND_PARITY;
4904         pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4905         if (pci_try_set_mwi(pdev))
4906                 pr_warn("Could not enable MWI for %s\n", pci_name(pdev));
4907
4908         cas_program_bridge(pdev);
4909
4910         /*
4911          * On some architectures, the default cache line size set
4912          * by pci_try_set_mwi reduces perforamnce.  We have to increase
4913          * it for this case.  To start, we'll print some configuration
4914          * data.
4915          */
4916 #if 1
4917         pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4918                              &orig_cacheline_size);
4919         if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4920                 cas_cacheline_size =
4921                         (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4922                         CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4923                 if (pci_write_config_byte(pdev,
4924                                           PCI_CACHE_LINE_SIZE,
4925                                           cas_cacheline_size)) {
4926                         dev_err(&pdev->dev, "Could not set PCI cache "
4927                                "line size\n");
4928                         goto err_out_free_res;
4929                 }
4930         }
4931 #endif
4932
4933
4934         /* Configure DMA attributes. */
4935         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4936         if (err) {
4937                 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
4938                 goto err_out_free_res;
4939         }
4940
4941         casreg_len = pci_resource_len(pdev, 0);
4942
4943         cp = netdev_priv(dev);
4944         cp->pdev = pdev;
4945 #if 1
4946         /* A value of 0 indicates we never explicitly set it */
4947         cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
4948 #endif
4949         cp->dev = dev;
4950         cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
4951           cassini_debug;
4952
4953 #if defined(CONFIG_SPARC)
4954         cp->of_node = pci_device_to_OF_node(pdev);
4955 #endif
4956
4957         cp->link_transition = LINK_TRANSITION_UNKNOWN;
4958         cp->link_transition_jiffies_valid = 0;
4959
4960         spin_lock_init(&cp->lock);
4961         spin_lock_init(&cp->rx_inuse_lock);
4962         spin_lock_init(&cp->rx_spare_lock);
4963         for (i = 0; i < N_TX_RINGS; i++) {
4964                 spin_lock_init(&cp->stat_lock[i]);
4965                 spin_lock_init(&cp->tx_lock[i]);
4966         }
4967         spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
4968         mutex_init(&cp->pm_mutex);
4969
4970         timer_setup(&cp->link_timer, cas_link_timer, 0);
4971
4972 #if 1
4973         /* Just in case the implementation of atomic operations
4974          * change so that an explicit initialization is necessary.
4975          */
4976         atomic_set(&cp->reset_task_pending, 0);
4977         atomic_set(&cp->reset_task_pending_all, 0);
4978         atomic_set(&cp->reset_task_pending_spare, 0);
4979         atomic_set(&cp->reset_task_pending_mtu, 0);
4980 #endif
4981         INIT_WORK(&cp->reset_task, cas_reset_task);
4982
4983         /* Default link parameters */
4984         if (link_mode >= 0 && link_mode < 6)
4985                 cp->link_cntl = link_modes[link_mode];
4986         else
4987                 cp->link_cntl = BMCR_ANENABLE;
4988         cp->lstate = link_down;
4989         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
4990         netif_carrier_off(cp->dev);
4991         cp->timer_ticks = 0;
4992
4993         /* give us access to cassini registers */
4994         cp->regs = pci_iomap(pdev, 0, casreg_len);
4995         if (!cp->regs) {
4996                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
4997                 goto err_out_free_res;
4998         }
4999         cp->casreg_len = casreg_len;
5000
5001         pci_save_state(pdev);
5002         cas_check_pci_invariants(cp);
5003         cas_hard_reset(cp);
5004         cas_reset(cp, 0);
5005         if (cas_check_invariants(cp))
5006                 goto err_out_iounmap;
5007         if (cp->cas_flags & CAS_FLAG_SATURN)
5008                 cas_saturn_firmware_init(cp);
5009
5010         cp->init_block =
5011                 dma_alloc_coherent(&pdev->dev, sizeof(struct cas_init_block),
5012                                    &cp->block_dvma, GFP_KERNEL);
5013         if (!cp->init_block) {
5014                 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5015                 goto err_out_iounmap;
5016         }
5017
5018         for (i = 0; i < N_TX_RINGS; i++)
5019                 cp->init_txds[i] = cp->init_block->txds[i];
5020
5021         for (i = 0; i < N_RX_DESC_RINGS; i++)
5022                 cp->init_rxds[i] = cp->init_block->rxds[i];
5023
5024         for (i = 0; i < N_RX_COMP_RINGS; i++)
5025                 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5026
5027         for (i = 0; i < N_RX_FLOWS; i++)
5028                 skb_queue_head_init(&cp->rx_flows[i]);
5029
5030         dev->netdev_ops = &cas_netdev_ops;
5031         dev->ethtool_ops = &cas_ethtool_ops;
5032         dev->watchdog_timeo = CAS_TX_TIMEOUT;
5033
5034 #ifdef USE_NAPI
5035         netif_napi_add(dev, &cp->napi, cas_poll);
5036 #endif
5037         dev->irq = pdev->irq;
5038         dev->dma = 0;
5039
5040         /* Cassini features. */
5041         if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5042                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5043
5044         dev->features |= NETIF_F_HIGHDMA;
5045
5046         /* MTU range: 60 - varies or 9000 */
5047         dev->min_mtu = CAS_MIN_MTU;
5048         dev->max_mtu = CAS_MAX_MTU;
5049
5050         if (register_netdev(dev)) {
5051                 dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5052                 goto err_out_free_consistent;
5053         }
5054
5055         i = readl(cp->regs + REG_BIM_CFG);
5056         netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5057                     (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5058                     (i & BIM_CFG_32BIT) ? "32" : "64",
5059                     (i & BIM_CFG_66MHZ) ? "66" : "33",
5060                     (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5061                     dev->dev_addr);
5062
5063         pci_set_drvdata(pdev, dev);
5064         cp->hw_running = 1;
5065         cas_entropy_reset(cp);
5066         cas_phy_init(cp);
5067         cas_begin_auto_negotiation(cp, NULL);
5068         return 0;
5069
5070 err_out_free_consistent:
5071         dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
5072                           cp->init_block, cp->block_dvma);
5073
5074 err_out_iounmap:
5075         mutex_lock(&cp->pm_mutex);
5076         if (cp->hw_running)
5077                 cas_shutdown(cp);
5078         mutex_unlock(&cp->pm_mutex);
5079
5080         pci_iounmap(pdev, cp->regs);
5081
5082
5083 err_out_free_res:
5084         pci_release_regions(pdev);
5085
5086         /* Try to restore it in case the error occurred after we
5087          * set it.
5088          */
5089         pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5090
5091 err_out_free_netdev:
5092         free_netdev(dev);
5093
5094 err_out_disable_pdev:
5095         pci_disable_device(pdev);
5096         return -ENODEV;
5097 }
5098
5099 static void cas_remove_one(struct pci_dev *pdev)
5100 {
5101         struct net_device *dev = pci_get_drvdata(pdev);
5102         struct cas *cp;
5103         if (!dev)
5104                 return;
5105
5106         cp = netdev_priv(dev);
5107         unregister_netdev(dev);
5108
5109         vfree(cp->fw_data);
5110
5111         mutex_lock(&cp->pm_mutex);
5112         cancel_work_sync(&cp->reset_task);
5113         if (cp->hw_running)
5114                 cas_shutdown(cp);
5115         mutex_unlock(&cp->pm_mutex);
5116
5117 #if 1
5118         if (cp->orig_cacheline_size) {
5119                 /* Restore the cache line size if we had modified
5120                  * it.
5121                  */
5122                 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5123                                       cp->orig_cacheline_size);
5124         }
5125 #endif
5126         dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
5127                           cp->init_block, cp->block_dvma);
5128         pci_iounmap(pdev, cp->regs);
5129         free_netdev(dev);
5130         pci_release_regions(pdev);
5131         pci_disable_device(pdev);
5132 }
5133
5134 static int __maybe_unused cas_suspend(struct device *dev_d)
5135 {
5136         struct net_device *dev = dev_get_drvdata(dev_d);
5137         struct cas *cp = netdev_priv(dev);
5138         unsigned long flags;
5139
5140         mutex_lock(&cp->pm_mutex);
5141
5142         /* If the driver is opened, we stop the DMA */
5143         if (cp->opened) {
5144                 netif_device_detach(dev);
5145
5146                 cas_lock_all_save(cp, flags);
5147
5148                 /* We can set the second arg of cas_reset to 0
5149                  * because on resume, we'll call cas_init_hw with
5150                  * its second arg set so that autonegotiation is
5151                  * restarted.
5152                  */
5153                 cas_reset(cp, 0);
5154                 cas_clean_rings(cp);
5155                 cas_unlock_all_restore(cp, flags);
5156         }
5157
5158         if (cp->hw_running)
5159                 cas_shutdown(cp);
5160         mutex_unlock(&cp->pm_mutex);
5161
5162         return 0;
5163 }
5164
5165 static int __maybe_unused cas_resume(struct device *dev_d)
5166 {
5167         struct net_device *dev = dev_get_drvdata(dev_d);
5168         struct cas *cp = netdev_priv(dev);
5169
5170         netdev_info(dev, "resuming\n");
5171
5172         mutex_lock(&cp->pm_mutex);
5173         cas_hard_reset(cp);
5174         if (cp->opened) {
5175                 unsigned long flags;
5176                 cas_lock_all_save(cp, flags);
5177                 cas_reset(cp, 0);
5178                 cp->hw_running = 1;
5179                 cas_clean_rings(cp);
5180                 cas_init_hw(cp, 1);
5181                 cas_unlock_all_restore(cp, flags);
5182
5183                 netif_device_attach(dev);
5184         }
5185         mutex_unlock(&cp->pm_mutex);
5186         return 0;
5187 }
5188
5189 static SIMPLE_DEV_PM_OPS(cas_pm_ops, cas_suspend, cas_resume);
5190
5191 static struct pci_driver cas_driver = {
5192         .name           = DRV_MODULE_NAME,
5193         .id_table       = cas_pci_tbl,
5194         .probe          = cas_init_one,
5195         .remove         = cas_remove_one,
5196         .driver.pm      = &cas_pm_ops,
5197 };
5198
5199 static int __init cas_init(void)
5200 {
5201         if (linkdown_timeout > 0)
5202                 link_transition_timeout = linkdown_timeout * HZ;
5203         else
5204                 link_transition_timeout = 0;
5205
5206         return pci_register_driver(&cas_driver);
5207 }
5208
5209 static void __exit cas_cleanup(void)
5210 {
5211         pci_unregister_driver(&cas_driver);
5212 }
5213
5214 module_init(cas_init);
5215 module_exit(cas_cleanup);
This page took 0.361819 seconds and 4 git commands to generate.