1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2010 Exar Corp.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_max_pkts: This parameter defines maximum number of packets can be
42 * aggregated as a single large packet
43 * napi: This parameter used to enable/disable NAPI (polling Rx)
44 * Possible values '1' for enable and '0' for disable. Default is '1'
45 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
46 * Possible values '1' for enable , '0' for disable.
47 * Default is '2' - which means disable in promisc mode
48 * and enable in non-promiscuous mode.
49 * multiq: This parameter used to enable/disable MULTIQUEUE support.
50 * Possible values '1' for enable and '0' for disable. Default is '0'
51 ************************************************************************/
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/mdio.h>
65 #include <linux/skbuff.h>
66 #include <linux/init.h>
67 #include <linux/delay.h>
68 #include <linux/stddef.h>
69 #include <linux/ioctl.h>
70 #include <linux/timex.h>
71 #include <linux/ethtool.h>
72 #include <linux/workqueue.h>
73 #include <linux/if_vlan.h>
75 #include <linux/tcp.h>
76 #include <linux/uaccess.h>
78 #include <linux/io-64-nonatomic-lo-hi.h>
79 #include <linux/slab.h>
80 #include <linux/prefetch.h>
82 #include <net/checksum.h>
84 #include <asm/div64.h>
89 #include "s2io-regs.h"
91 #define DRV_VERSION "2.0.26.28"
93 /* S2io Driver name & version. */
94 static const char s2io_driver_name[] = "Neterion";
95 static const char s2io_driver_version[] = DRV_VERSION;
97 static const int rxd_size[2] = {32, 48};
98 static const int rxd_count[2] = {127, 85};
100 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
104 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
105 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
111 * Cards with following subsystem_id have a link state indication
112 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
113 * macro below identifies these cards given the subsystem_id.
115 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
116 (dev_type == XFRAME_I_DEVICE) ? \
117 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
118 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
120 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
121 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
123 static inline int is_s2io_card_up(const struct s2io_nic *sp)
125 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
128 /* Ethtool related variables and Macros. */
129 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
130 "Register test\t(offline)",
131 "Eeprom test\t(offline)",
132 "Link test\t(online)",
133 "RLDRAM test\t(offline)",
134 "BIST Test\t(offline)"
137 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
139 {"tmac_data_octets"},
143 {"tmac_pause_ctrl_frms"},
147 {"tmac_any_err_frms"},
148 {"tmac_ttl_less_fb_octets"},
149 {"tmac_vld_ip_octets"},
157 {"rmac_data_octets"},
158 {"rmac_fcs_err_frms"},
160 {"rmac_vld_mcst_frms"},
161 {"rmac_vld_bcst_frms"},
162 {"rmac_in_rng_len_err_frms"},
163 {"rmac_out_rng_len_err_frms"},
165 {"rmac_pause_ctrl_frms"},
166 {"rmac_unsup_ctrl_frms"},
168 {"rmac_accepted_ucst_frms"},
169 {"rmac_accepted_nucst_frms"},
170 {"rmac_discarded_frms"},
171 {"rmac_drop_events"},
172 {"rmac_ttl_less_fb_octets"},
174 {"rmac_usized_frms"},
175 {"rmac_osized_frms"},
177 {"rmac_jabber_frms"},
178 {"rmac_ttl_64_frms"},
179 {"rmac_ttl_65_127_frms"},
180 {"rmac_ttl_128_255_frms"},
181 {"rmac_ttl_256_511_frms"},
182 {"rmac_ttl_512_1023_frms"},
183 {"rmac_ttl_1024_1518_frms"},
191 {"rmac_err_drp_udp"},
192 {"rmac_xgmii_err_sym"},
210 {"rmac_xgmii_data_err_cnt"},
211 {"rmac_xgmii_ctrl_err_cnt"},
212 {"rmac_accepted_ip"},
216 {"new_rd_req_rtry_cnt"},
218 {"wr_rtry_rd_ack_cnt"},
221 {"new_wr_req_rtry_cnt"},
224 {"rd_rtry_wr_ack_cnt"},
234 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
235 {"rmac_ttl_1519_4095_frms"},
236 {"rmac_ttl_4096_8191_frms"},
237 {"rmac_ttl_8192_max_frms"},
238 {"rmac_ttl_gt_max_frms"},
239 {"rmac_osized_alt_frms"},
240 {"rmac_jabber_alt_frms"},
241 {"rmac_gt_max_alt_frms"},
243 {"rmac_len_discard"},
244 {"rmac_fcs_discard"},
247 {"rmac_red_discard"},
248 {"rmac_rts_discard"},
249 {"rmac_ingm_full_discard"},
253 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
254 {"\n DRIVER STATISTICS"},
255 {"single_bit_ecc_errs"},
256 {"double_bit_ecc_errs"},
269 {"alarm_transceiver_temp_high"},
270 {"alarm_transceiver_temp_low"},
271 {"alarm_laser_bias_current_high"},
272 {"alarm_laser_bias_current_low"},
273 {"alarm_laser_output_power_high"},
274 {"alarm_laser_output_power_low"},
275 {"warn_transceiver_temp_high"},
276 {"warn_transceiver_temp_low"},
277 {"warn_laser_bias_current_high"},
278 {"warn_laser_bias_current_low"},
279 {"warn_laser_output_power_high"},
280 {"warn_laser_output_power_low"},
281 {"lro_aggregated_pkts"},
282 {"lro_flush_both_count"},
283 {"lro_out_of_sequence_pkts"},
284 {"lro_flush_due_to_max_pkts"},
285 {"lro_avg_aggr_pkts"},
286 {"mem_alloc_fail_cnt"},
287 {"pci_map_fail_cnt"},
288 {"watchdog_timer_cnt"},
295 {"tx_tcode_buf_abort_cnt"},
296 {"tx_tcode_desc_abort_cnt"},
297 {"tx_tcode_parity_err_cnt"},
298 {"tx_tcode_link_loss_cnt"},
299 {"tx_tcode_list_proc_err_cnt"},
300 {"rx_tcode_parity_err_cnt"},
301 {"rx_tcode_abort_cnt"},
302 {"rx_tcode_parity_abort_cnt"},
303 {"rx_tcode_rda_fail_cnt"},
304 {"rx_tcode_unkn_prot_cnt"},
305 {"rx_tcode_fcs_err_cnt"},
306 {"rx_tcode_buf_size_err_cnt"},
307 {"rx_tcode_rxd_corrupt_cnt"},
308 {"rx_tcode_unkn_err_cnt"},
316 {"mac_tmac_err_cnt"},
317 {"mac_rmac_err_cnt"},
318 {"xgxs_txgxs_err_cnt"},
319 {"xgxs_rxgxs_err_cnt"},
321 {"prc_pcix_err_cnt"},
328 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
329 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
330 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
332 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
333 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
335 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
336 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
338 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
339 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
341 /* copy mac addr to def_mac_addr array */
342 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
344 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
345 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
346 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
347 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
348 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
349 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
353 * Constants to be programmed into the Xena's registers, to configure
358 static const u64 herc_act_dtx_cfg[] = {
360 0x8000051536750000ULL, 0x80000515367500E0ULL,
362 0x8000051536750004ULL, 0x80000515367500E4ULL,
364 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
366 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
368 0x801205150D440000ULL, 0x801205150D4400E0ULL,
370 0x801205150D440004ULL, 0x801205150D4400E4ULL,
372 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
374 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
379 static const u64 xena_dtx_cfg[] = {
381 0x8000051500000000ULL, 0x80000515000000E0ULL,
383 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
385 0x8001051500000000ULL, 0x80010515000000E0ULL,
387 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
389 0x8002051500000000ULL, 0x80020515000000E0ULL,
391 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
396 * Constants for Fixing the MacAddress problem seen mostly on
399 static const u64 fix_mac[] = {
400 0x0060000000000000ULL, 0x0060600000000000ULL,
401 0x0040600000000000ULL, 0x0000600000000000ULL,
402 0x0020600000000000ULL, 0x0060600000000000ULL,
403 0x0020600000000000ULL, 0x0060600000000000ULL,
404 0x0020600000000000ULL, 0x0060600000000000ULL,
405 0x0020600000000000ULL, 0x0060600000000000ULL,
406 0x0020600000000000ULL, 0x0060600000000000ULL,
407 0x0020600000000000ULL, 0x0060600000000000ULL,
408 0x0020600000000000ULL, 0x0060600000000000ULL,
409 0x0020600000000000ULL, 0x0060600000000000ULL,
410 0x0020600000000000ULL, 0x0060600000000000ULL,
411 0x0020600000000000ULL, 0x0060600000000000ULL,
412 0x0020600000000000ULL, 0x0000600000000000ULL,
413 0x0040600000000000ULL, 0x0060600000000000ULL,
417 MODULE_LICENSE("GPL");
418 MODULE_VERSION(DRV_VERSION);
421 /* Module Loadable parameters. */
422 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
423 S2IO_PARM_INT(rx_ring_num, 1);
424 S2IO_PARM_INT(multiq, 0);
425 S2IO_PARM_INT(rx_ring_mode, 1);
426 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
427 S2IO_PARM_INT(rmac_pause_time, 0x100);
428 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
429 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
430 S2IO_PARM_INT(shared_splits, 0);
431 S2IO_PARM_INT(tmac_util_period, 5);
432 S2IO_PARM_INT(rmac_util_period, 5);
433 S2IO_PARM_INT(l3l4hdr_size, 128);
434 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
435 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
436 /* Frequency of Rx desc syncs expressed as power of 2 */
437 S2IO_PARM_INT(rxsync_frequency, 3);
438 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
439 S2IO_PARM_INT(intr_type, 2);
440 /* Large receive offload feature */
442 /* Max pkts to be aggregated by LRO at one time. If not specified,
443 * aggregation happens until we hit max IP pkt size(64K)
445 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
446 S2IO_PARM_INT(indicate_max_pkts, 0);
448 S2IO_PARM_INT(napi, 1);
449 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
451 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
452 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
453 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
454 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
455 static unsigned int rts_frm_len[MAX_RX_RINGS] =
456 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
458 module_param_array(tx_fifo_len, uint, NULL, 0);
459 module_param_array(rx_ring_sz, uint, NULL, 0);
460 module_param_array(rts_frm_len, uint, NULL, 0);
464 * This table lists all the devices that this driver supports.
466 static const struct pci_device_id s2io_tbl[] = {
467 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
468 PCI_ANY_ID, PCI_ANY_ID},
469 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
470 PCI_ANY_ID, PCI_ANY_ID},
471 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
472 PCI_ANY_ID, PCI_ANY_ID},
473 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
474 PCI_ANY_ID, PCI_ANY_ID},
478 MODULE_DEVICE_TABLE(pci, s2io_tbl);
480 static const struct pci_error_handlers s2io_err_handler = {
481 .error_detected = s2io_io_error_detected,
482 .slot_reset = s2io_io_slot_reset,
483 .resume = s2io_io_resume,
486 static struct pci_driver s2io_driver = {
488 .id_table = s2io_tbl,
489 .probe = s2io_init_nic,
490 .remove = s2io_rem_nic,
491 .err_handler = &s2io_err_handler,
494 /* A simplifier macro used both by init and free shared_mem Fns(). */
495 #define TXD_MEM_PAGE_CNT(len, per_each) DIV_ROUND_UP(len, per_each)
497 /* netqueue manipulation helper functions */
498 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
500 if (!sp->config.multiq) {
503 for (i = 0; i < sp->config.tx_fifo_num; i++)
504 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
506 netif_tx_stop_all_queues(sp->dev);
509 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
511 if (!sp->config.multiq)
512 sp->mac_control.fifos[fifo_no].queue_state =
515 netif_tx_stop_all_queues(sp->dev);
518 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
520 if (!sp->config.multiq) {
523 for (i = 0; i < sp->config.tx_fifo_num; i++)
524 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
526 netif_tx_start_all_queues(sp->dev);
529 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
531 if (!sp->config.multiq) {
534 for (i = 0; i < sp->config.tx_fifo_num; i++)
535 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
537 netif_tx_wake_all_queues(sp->dev);
540 static inline void s2io_wake_tx_queue(
541 struct fifo_info *fifo, int cnt, u8 multiq)
545 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
546 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
547 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
548 if (netif_queue_stopped(fifo->dev)) {
549 fifo->queue_state = FIFO_QUEUE_START;
550 netif_wake_queue(fifo->dev);
556 * init_shared_mem - Allocation and Initialization of Memory
557 * @nic: Device private variable.
558 * Description: The function allocates all the memory areas shared
559 * between the NIC and the driver. This includes Tx descriptors,
560 * Rx descriptors and the statistics block.
563 static int init_shared_mem(struct s2io_nic *nic)
566 void *tmp_v_addr, *tmp_v_addr_next;
567 dma_addr_t tmp_p_addr, tmp_p_addr_next;
568 struct RxD_block *pre_rxd_blk = NULL;
570 int lst_size, lst_per_page;
571 struct net_device *dev = nic->dev;
574 struct config_param *config = &nic->config;
575 struct mac_info *mac_control = &nic->mac_control;
576 unsigned long long mem_allocated = 0;
578 /* Allocation and initialization of TXDLs in FIFOs */
580 for (i = 0; i < config->tx_fifo_num; i++) {
581 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
583 size += tx_cfg->fifo_len;
585 if (size > MAX_AVAILABLE_TXDS) {
587 "Too many TxDs requested: %d, max supported: %d\n",
588 size, MAX_AVAILABLE_TXDS);
593 for (i = 0; i < config->tx_fifo_num; i++) {
594 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
596 size = tx_cfg->fifo_len;
598 * Legal values are from 2 to 8192
601 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
602 "Valid lengths are 2 through 8192\n",
608 lst_size = (sizeof(struct TxD) * config->max_txds);
609 lst_per_page = PAGE_SIZE / lst_size;
611 for (i = 0; i < config->tx_fifo_num; i++) {
612 struct fifo_info *fifo = &mac_control->fifos[i];
613 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
614 int fifo_len = tx_cfg->fifo_len;
615 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
617 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
618 if (!fifo->list_info) {
619 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
622 mem_allocated += list_holder_size;
624 for (i = 0; i < config->tx_fifo_num; i++) {
625 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
627 struct fifo_info *fifo = &mac_control->fifos[i];
628 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
630 fifo->tx_curr_put_info.offset = 0;
631 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
632 fifo->tx_curr_get_info.offset = 0;
633 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
636 fifo->max_txds = MAX_SKB_FRAGS + 2;
639 for (j = 0; j < page_num; j++) {
643 tmp_v = dma_alloc_coherent(&nic->pdev->dev, PAGE_SIZE,
647 "dma_alloc_coherent failed for TxDL\n");
650 /* If we got a zero DMA address(can happen on
651 * certain platforms like PPC), reallocate.
652 * Store virtual address of page we don't want,
656 mac_control->zerodma_virt_addr = tmp_v;
658 "%s: Zero DMA address for TxDL. "
659 "Virtual address %p\n",
661 tmp_v = dma_alloc_coherent(&nic->pdev->dev,
666 "dma_alloc_coherent failed for TxDL\n");
669 mem_allocated += PAGE_SIZE;
671 while (k < lst_per_page) {
672 int l = (j * lst_per_page) + k;
673 if (l == tx_cfg->fifo_len)
675 fifo->list_info[l].list_virt_addr =
676 tmp_v + (k * lst_size);
677 fifo->list_info[l].list_phy_addr =
678 tmp_p + (k * lst_size);
684 for (i = 0; i < config->tx_fifo_num; i++) {
685 struct fifo_info *fifo = &mac_control->fifos[i];
686 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
688 size = tx_cfg->fifo_len;
689 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
690 if (!fifo->ufo_in_band_v)
692 mem_allocated += (size * sizeof(u64));
695 /* Allocation and initialization of RXDs in Rings */
697 for (i = 0; i < config->rx_ring_num; i++) {
698 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
699 struct ring_info *ring = &mac_control->rings[i];
701 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
702 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
703 "multiple of RxDs per Block\n",
707 size += rx_cfg->num_rxd;
708 ring->block_count = rx_cfg->num_rxd /
709 (rxd_count[nic->rxd_mode] + 1);
710 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
712 if (nic->rxd_mode == RXD_MODE_1)
713 size = (size * (sizeof(struct RxD1)));
715 size = (size * (sizeof(struct RxD3)));
717 for (i = 0; i < config->rx_ring_num; i++) {
718 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
719 struct ring_info *ring = &mac_control->rings[i];
721 ring->rx_curr_get_info.block_index = 0;
722 ring->rx_curr_get_info.offset = 0;
723 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
724 ring->rx_curr_put_info.block_index = 0;
725 ring->rx_curr_put_info.offset = 0;
726 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
730 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
731 /* Allocating all the Rx blocks */
732 for (j = 0; j < blk_cnt; j++) {
733 struct rx_block_info *rx_blocks;
736 rx_blocks = &ring->rx_blocks[j];
737 size = SIZE_OF_BLOCK; /* size is always page size */
738 tmp_v_addr = dma_alloc_coherent(&nic->pdev->dev, size,
739 &tmp_p_addr, GFP_KERNEL);
740 if (tmp_v_addr == NULL) {
742 * In case of failure, free_shared_mem()
743 * is called, which should free any
744 * memory that was alloced till the
747 rx_blocks->block_virt_addr = tmp_v_addr;
750 mem_allocated += size;
752 size = sizeof(struct rxd_info) *
753 rxd_count[nic->rxd_mode];
754 rx_blocks->block_virt_addr = tmp_v_addr;
755 rx_blocks->block_dma_addr = tmp_p_addr;
756 rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
757 if (!rx_blocks->rxds)
759 mem_allocated += size;
760 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
761 rx_blocks->rxds[l].virt_addr =
762 rx_blocks->block_virt_addr +
763 (rxd_size[nic->rxd_mode] * l);
764 rx_blocks->rxds[l].dma_addr =
765 rx_blocks->block_dma_addr +
766 (rxd_size[nic->rxd_mode] * l);
769 /* Interlinking all Rx Blocks */
770 for (j = 0; j < blk_cnt; j++) {
771 int next = (j + 1) % blk_cnt;
772 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
773 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
774 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
775 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
777 pre_rxd_blk = tmp_v_addr;
778 pre_rxd_blk->reserved_2_pNext_RxD_block =
779 (unsigned long)tmp_v_addr_next;
780 pre_rxd_blk->pNext_RxD_Blk_physical =
781 (u64)tmp_p_addr_next;
784 if (nic->rxd_mode == RXD_MODE_3B) {
786 * Allocation of Storages for buffer addresses in 2BUFF mode
787 * and the buffers as well.
789 for (i = 0; i < config->rx_ring_num; i++) {
790 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
791 struct ring_info *ring = &mac_control->rings[i];
793 blk_cnt = rx_cfg->num_rxd /
794 (rxd_count[nic->rxd_mode] + 1);
795 size = sizeof(struct buffAdd *) * blk_cnt;
796 ring->ba = kmalloc(size, GFP_KERNEL);
799 mem_allocated += size;
800 for (j = 0; j < blk_cnt; j++) {
803 size = sizeof(struct buffAdd) *
804 (rxd_count[nic->rxd_mode] + 1);
805 ring->ba[j] = kmalloc(size, GFP_KERNEL);
808 mem_allocated += size;
809 while (k != rxd_count[nic->rxd_mode]) {
810 ba = &ring->ba[j][k];
811 size = BUF0_LEN + ALIGN_SIZE;
812 ba->ba_0_org = kmalloc(size, GFP_KERNEL);
815 mem_allocated += size;
816 tmp = (unsigned long)ba->ba_0_org;
818 tmp &= ~((unsigned long)ALIGN_SIZE);
819 ba->ba_0 = (void *)tmp;
821 size = BUF1_LEN + ALIGN_SIZE;
822 ba->ba_1_org = kmalloc(size, GFP_KERNEL);
825 mem_allocated += size;
826 tmp = (unsigned long)ba->ba_1_org;
828 tmp &= ~((unsigned long)ALIGN_SIZE);
829 ba->ba_1 = (void *)tmp;
836 /* Allocation and initialization of Statistics block */
837 size = sizeof(struct stat_block);
838 mac_control->stats_mem =
839 dma_alloc_coherent(&nic->pdev->dev, size,
840 &mac_control->stats_mem_phy, GFP_KERNEL);
842 if (!mac_control->stats_mem) {
844 * In case of failure, free_shared_mem() is called, which
845 * should free any memory that was alloced till the
850 mem_allocated += size;
851 mac_control->stats_mem_sz = size;
853 tmp_v_addr = mac_control->stats_mem;
854 mac_control->stats_info = tmp_v_addr;
855 memset(tmp_v_addr, 0, size);
856 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
857 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
858 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
863 * free_shared_mem - Free the allocated Memory
864 * @nic: Device private variable.
865 * Description: This function is to free all memory locations allocated by
866 * the init_shared_mem() function and return it to the kernel.
869 static void free_shared_mem(struct s2io_nic *nic)
871 int i, j, blk_cnt, size;
873 dma_addr_t tmp_p_addr;
874 int lst_size, lst_per_page;
875 struct net_device *dev;
877 struct config_param *config;
878 struct mac_info *mac_control;
879 struct stat_block *stats;
880 struct swStat *swstats;
887 config = &nic->config;
888 mac_control = &nic->mac_control;
889 stats = mac_control->stats_info;
890 swstats = &stats->sw_stat;
892 lst_size = sizeof(struct TxD) * config->max_txds;
893 lst_per_page = PAGE_SIZE / lst_size;
895 for (i = 0; i < config->tx_fifo_num; i++) {
896 struct fifo_info *fifo = &mac_control->fifos[i];
897 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
899 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
900 for (j = 0; j < page_num; j++) {
901 int mem_blks = (j * lst_per_page);
902 struct list_info_hold *fli;
904 if (!fifo->list_info)
907 fli = &fifo->list_info[mem_blks];
908 if (!fli->list_virt_addr)
910 dma_free_coherent(&nic->pdev->dev, PAGE_SIZE,
913 swstats->mem_freed += PAGE_SIZE;
915 /* If we got a zero DMA address during allocation,
918 if (mac_control->zerodma_virt_addr) {
919 dma_free_coherent(&nic->pdev->dev, PAGE_SIZE,
920 mac_control->zerodma_virt_addr,
923 "%s: Freeing TxDL with zero DMA address. "
924 "Virtual address %p\n",
925 dev->name, mac_control->zerodma_virt_addr);
926 swstats->mem_freed += PAGE_SIZE;
928 kfree(fifo->list_info);
929 swstats->mem_freed += tx_cfg->fifo_len *
930 sizeof(struct list_info_hold);
933 size = SIZE_OF_BLOCK;
934 for (i = 0; i < config->rx_ring_num; i++) {
935 struct ring_info *ring = &mac_control->rings[i];
937 blk_cnt = ring->block_count;
938 for (j = 0; j < blk_cnt; j++) {
939 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
940 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
941 if (tmp_v_addr == NULL)
943 dma_free_coherent(&nic->pdev->dev, size, tmp_v_addr,
945 swstats->mem_freed += size;
946 kfree(ring->rx_blocks[j].rxds);
947 swstats->mem_freed += sizeof(struct rxd_info) *
948 rxd_count[nic->rxd_mode];
952 if (nic->rxd_mode == RXD_MODE_3B) {
953 /* Freeing buffer storage addresses in 2BUFF mode. */
954 for (i = 0; i < config->rx_ring_num; i++) {
955 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
956 struct ring_info *ring = &mac_control->rings[i];
958 blk_cnt = rx_cfg->num_rxd /
959 (rxd_count[nic->rxd_mode] + 1);
960 for (j = 0; j < blk_cnt; j++) {
964 while (k != rxd_count[nic->rxd_mode]) {
965 struct buffAdd *ba = &ring->ba[j][k];
967 swstats->mem_freed +=
968 BUF0_LEN + ALIGN_SIZE;
970 swstats->mem_freed +=
971 BUF1_LEN + ALIGN_SIZE;
975 swstats->mem_freed += sizeof(struct buffAdd) *
976 (rxd_count[nic->rxd_mode] + 1);
979 swstats->mem_freed += sizeof(struct buffAdd *) *
984 for (i = 0; i < nic->config.tx_fifo_num; i++) {
985 struct fifo_info *fifo = &mac_control->fifos[i];
986 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
988 if (fifo->ufo_in_band_v) {
989 swstats->mem_freed += tx_cfg->fifo_len *
991 kfree(fifo->ufo_in_band_v);
995 if (mac_control->stats_mem) {
996 swstats->mem_freed += mac_control->stats_mem_sz;
997 dma_free_coherent(&nic->pdev->dev, mac_control->stats_mem_sz,
998 mac_control->stats_mem,
999 mac_control->stats_mem_phy);
1004 * s2io_verify_pci_mode -
1007 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1009 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1010 register u64 val64 = 0;
1013 val64 = readq(&bar0->pci_mode);
1014 mode = (u8)GET_PCI_MODE(val64);
1016 if (val64 & PCI_MODE_UNKNOWN_MODE)
1017 return -1; /* Unknown PCI mode */
1021 #define NEC_VENID 0x1033
1022 #define NEC_DEVID 0x0125
1023 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1025 struct pci_dev *tdev = NULL;
1026 for_each_pci_dev(tdev) {
1027 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1028 if (tdev->bus == s2io_pdev->bus->parent) {
1037 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1039 * s2io_print_pci_mode -
1041 static int s2io_print_pci_mode(struct s2io_nic *nic)
1043 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1044 register u64 val64 = 0;
1046 struct config_param *config = &nic->config;
1047 const char *pcimode;
1049 val64 = readq(&bar0->pci_mode);
1050 mode = (u8)GET_PCI_MODE(val64);
1052 if (val64 & PCI_MODE_UNKNOWN_MODE)
1053 return -1; /* Unknown PCI mode */
1055 config->bus_speed = bus_speed[mode];
1057 if (s2io_on_nec_bridge(nic->pdev)) {
1058 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1064 case PCI_MODE_PCI_33:
1065 pcimode = "33MHz PCI bus";
1067 case PCI_MODE_PCI_66:
1068 pcimode = "66MHz PCI bus";
1070 case PCI_MODE_PCIX_M1_66:
1071 pcimode = "66MHz PCIX(M1) bus";
1073 case PCI_MODE_PCIX_M1_100:
1074 pcimode = "100MHz PCIX(M1) bus";
1076 case PCI_MODE_PCIX_M1_133:
1077 pcimode = "133MHz PCIX(M1) bus";
1079 case PCI_MODE_PCIX_M2_66:
1080 pcimode = "133MHz PCIX(M2) bus";
1082 case PCI_MODE_PCIX_M2_100:
1083 pcimode = "200MHz PCIX(M2) bus";
1085 case PCI_MODE_PCIX_M2_133:
1086 pcimode = "266MHz PCIX(M2) bus";
1089 pcimode = "unsupported bus!";
1093 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1094 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1100 * init_tti - Initialization transmit traffic interrupt scheme
1101 * @nic: device private variable
1102 * @link: link status (UP/DOWN) used to enable/disable continuous
1103 * transmit interrupts
1104 * @may_sleep: parameter indicates if sleeping when waiting for
1106 * Description: The function configures transmit traffic interrupts
1107 * Return Value: SUCCESS on success and
1111 static int init_tti(struct s2io_nic *nic, int link, bool may_sleep)
1113 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1114 register u64 val64 = 0;
1116 struct config_param *config = &nic->config;
1118 for (i = 0; i < config->tx_fifo_num; i++) {
1120 * TTI Initialization. Default Tx timer gets us about
1121 * 250 interrupts per sec. Continuous interrupts are enabled
1124 if (nic->device_type == XFRAME_II_DEVICE) {
1125 int count = (nic->config.bus_speed * 125)/2;
1126 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1128 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1130 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1131 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1132 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1133 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1135 if (use_continuous_tx_intrs && (link == LINK_UP))
1136 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1137 writeq(val64, &bar0->tti_data1_mem);
1139 if (nic->config.intr_type == MSI_X) {
1140 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1141 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1142 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1143 TTI_DATA2_MEM_TX_UFC_D(0x300);
1145 if ((nic->config.tx_steering_type ==
1146 TX_DEFAULT_STEERING) &&
1147 (config->tx_fifo_num > 1) &&
1148 (i >= nic->udp_fifo_idx) &&
1149 (i < (nic->udp_fifo_idx +
1150 nic->total_udp_fifos)))
1151 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1152 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1153 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1154 TTI_DATA2_MEM_TX_UFC_D(0x120);
1156 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1157 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1158 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1159 TTI_DATA2_MEM_TX_UFC_D(0x80);
1162 writeq(val64, &bar0->tti_data2_mem);
1164 val64 = TTI_CMD_MEM_WE |
1165 TTI_CMD_MEM_STROBE_NEW_CMD |
1166 TTI_CMD_MEM_OFFSET(i);
1167 writeq(val64, &bar0->tti_command_mem);
1169 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1170 TTI_CMD_MEM_STROBE_NEW_CMD,
1171 S2IO_BIT_RESET, may_sleep) != SUCCESS)
1179 * init_nic - Initialization of hardware
1180 * @nic: device private variable
1181 * Description: The function sequentially configures every block
1182 * of the H/W from their reset values.
1183 * Return Value: SUCCESS on success and
1184 * '-1' on failure (endian settings incorrect).
1187 static int init_nic(struct s2io_nic *nic)
1189 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1190 struct net_device *dev = nic->dev;
1191 register u64 val64 = 0;
1196 unsigned long long mem_share;
1198 struct config_param *config = &nic->config;
1199 struct mac_info *mac_control = &nic->mac_control;
1201 /* to set the swapper controle on the card */
1202 if (s2io_set_swapper(nic)) {
1203 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1208 * Herc requires EOI to be removed from reset before XGXS, so..
1210 if (nic->device_type & XFRAME_II_DEVICE) {
1211 val64 = 0xA500000000ULL;
1212 writeq(val64, &bar0->sw_reset);
1214 val64 = readq(&bar0->sw_reset);
1217 /* Remove XGXS from reset state */
1219 writeq(val64, &bar0->sw_reset);
1221 val64 = readq(&bar0->sw_reset);
1223 /* Ensure that it's safe to access registers by checking
1224 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1226 if (nic->device_type == XFRAME_II_DEVICE) {
1227 for (i = 0; i < 50; i++) {
1228 val64 = readq(&bar0->adapter_status);
1229 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1237 /* Enable Receiving broadcasts */
1238 add = &bar0->mac_cfg;
1239 val64 = readq(&bar0->mac_cfg);
1240 val64 |= MAC_RMAC_BCAST_ENABLE;
1241 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1242 writel((u32)val64, add);
1243 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1244 writel((u32) (val64 >> 32), (add + 4));
1246 /* Read registers in all blocks */
1247 val64 = readq(&bar0->mac_int_mask);
1248 val64 = readq(&bar0->mc_int_mask);
1249 val64 = readq(&bar0->xgxs_int_mask);
1253 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1255 if (nic->device_type & XFRAME_II_DEVICE) {
1256 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1257 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1258 &bar0->dtx_control, UF);
1260 msleep(1); /* Necessary!! */
1264 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1265 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1266 &bar0->dtx_control, UF);
1267 val64 = readq(&bar0->dtx_control);
1272 /* Tx DMA Initialization */
1274 writeq(val64, &bar0->tx_fifo_partition_0);
1275 writeq(val64, &bar0->tx_fifo_partition_1);
1276 writeq(val64, &bar0->tx_fifo_partition_2);
1277 writeq(val64, &bar0->tx_fifo_partition_3);
1279 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1280 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1282 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1283 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1285 if (i == (config->tx_fifo_num - 1)) {
1292 writeq(val64, &bar0->tx_fifo_partition_0);
1297 writeq(val64, &bar0->tx_fifo_partition_1);
1302 writeq(val64, &bar0->tx_fifo_partition_2);
1307 writeq(val64, &bar0->tx_fifo_partition_3);
1318 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1319 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1321 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1322 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1324 val64 = readq(&bar0->tx_fifo_partition_0);
1325 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1326 &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1329 * Initialization of Tx_PA_CONFIG register to ignore packet
1330 * integrity checking.
1332 val64 = readq(&bar0->tx_pa_cfg);
1333 val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1334 TX_PA_CFG_IGNORE_SNAP_OUI |
1335 TX_PA_CFG_IGNORE_LLC_CTRL |
1336 TX_PA_CFG_IGNORE_L2_ERR;
1337 writeq(val64, &bar0->tx_pa_cfg);
1339 /* Rx DMA initialization. */
1341 for (i = 0; i < config->rx_ring_num; i++) {
1342 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1344 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1346 writeq(val64, &bar0->rx_queue_priority);
1349 * Allocating equal share of memory to all the
1353 if (nic->device_type & XFRAME_II_DEVICE)
1358 for (i = 0; i < config->rx_ring_num; i++) {
1361 mem_share = (mem_size / config->rx_ring_num +
1362 mem_size % config->rx_ring_num);
1363 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1366 mem_share = (mem_size / config->rx_ring_num);
1367 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1370 mem_share = (mem_size / config->rx_ring_num);
1371 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1374 mem_share = (mem_size / config->rx_ring_num);
1375 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1378 mem_share = (mem_size / config->rx_ring_num);
1379 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1382 mem_share = (mem_size / config->rx_ring_num);
1383 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1386 mem_share = (mem_size / config->rx_ring_num);
1387 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1390 mem_share = (mem_size / config->rx_ring_num);
1391 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1395 writeq(val64, &bar0->rx_queue_cfg);
1398 * Filling Tx round robin registers
1399 * as per the number of FIFOs for equal scheduling priority
1401 switch (config->tx_fifo_num) {
1404 writeq(val64, &bar0->tx_w_round_robin_0);
1405 writeq(val64, &bar0->tx_w_round_robin_1);
1406 writeq(val64, &bar0->tx_w_round_robin_2);
1407 writeq(val64, &bar0->tx_w_round_robin_3);
1408 writeq(val64, &bar0->tx_w_round_robin_4);
1411 val64 = 0x0001000100010001ULL;
1412 writeq(val64, &bar0->tx_w_round_robin_0);
1413 writeq(val64, &bar0->tx_w_round_robin_1);
1414 writeq(val64, &bar0->tx_w_round_robin_2);
1415 writeq(val64, &bar0->tx_w_round_robin_3);
1416 val64 = 0x0001000100000000ULL;
1417 writeq(val64, &bar0->tx_w_round_robin_4);
1420 val64 = 0x0001020001020001ULL;
1421 writeq(val64, &bar0->tx_w_round_robin_0);
1422 val64 = 0x0200010200010200ULL;
1423 writeq(val64, &bar0->tx_w_round_robin_1);
1424 val64 = 0x0102000102000102ULL;
1425 writeq(val64, &bar0->tx_w_round_robin_2);
1426 val64 = 0x0001020001020001ULL;
1427 writeq(val64, &bar0->tx_w_round_robin_3);
1428 val64 = 0x0200010200000000ULL;
1429 writeq(val64, &bar0->tx_w_round_robin_4);
1432 val64 = 0x0001020300010203ULL;
1433 writeq(val64, &bar0->tx_w_round_robin_0);
1434 writeq(val64, &bar0->tx_w_round_robin_1);
1435 writeq(val64, &bar0->tx_w_round_robin_2);
1436 writeq(val64, &bar0->tx_w_round_robin_3);
1437 val64 = 0x0001020300000000ULL;
1438 writeq(val64, &bar0->tx_w_round_robin_4);
1441 val64 = 0x0001020304000102ULL;
1442 writeq(val64, &bar0->tx_w_round_robin_0);
1443 val64 = 0x0304000102030400ULL;
1444 writeq(val64, &bar0->tx_w_round_robin_1);
1445 val64 = 0x0102030400010203ULL;
1446 writeq(val64, &bar0->tx_w_round_robin_2);
1447 val64 = 0x0400010203040001ULL;
1448 writeq(val64, &bar0->tx_w_round_robin_3);
1449 val64 = 0x0203040000000000ULL;
1450 writeq(val64, &bar0->tx_w_round_robin_4);
1453 val64 = 0x0001020304050001ULL;
1454 writeq(val64, &bar0->tx_w_round_robin_0);
1455 val64 = 0x0203040500010203ULL;
1456 writeq(val64, &bar0->tx_w_round_robin_1);
1457 val64 = 0x0405000102030405ULL;
1458 writeq(val64, &bar0->tx_w_round_robin_2);
1459 val64 = 0x0001020304050001ULL;
1460 writeq(val64, &bar0->tx_w_round_robin_3);
1461 val64 = 0x0203040500000000ULL;
1462 writeq(val64, &bar0->tx_w_round_robin_4);
1465 val64 = 0x0001020304050600ULL;
1466 writeq(val64, &bar0->tx_w_round_robin_0);
1467 val64 = 0x0102030405060001ULL;
1468 writeq(val64, &bar0->tx_w_round_robin_1);
1469 val64 = 0x0203040506000102ULL;
1470 writeq(val64, &bar0->tx_w_round_robin_2);
1471 val64 = 0x0304050600010203ULL;
1472 writeq(val64, &bar0->tx_w_round_robin_3);
1473 val64 = 0x0405060000000000ULL;
1474 writeq(val64, &bar0->tx_w_round_robin_4);
1477 val64 = 0x0001020304050607ULL;
1478 writeq(val64, &bar0->tx_w_round_robin_0);
1479 writeq(val64, &bar0->tx_w_round_robin_1);
1480 writeq(val64, &bar0->tx_w_round_robin_2);
1481 writeq(val64, &bar0->tx_w_round_robin_3);
1482 val64 = 0x0001020300000000ULL;
1483 writeq(val64, &bar0->tx_w_round_robin_4);
1487 /* Enable all configured Tx FIFO partitions */
1488 val64 = readq(&bar0->tx_fifo_partition_0);
1489 val64 |= (TX_FIFO_PARTITION_EN);
1490 writeq(val64, &bar0->tx_fifo_partition_0);
1492 /* Filling the Rx round robin registers as per the
1493 * number of Rings and steering based on QoS with
1496 switch (config->rx_ring_num) {
1499 writeq(val64, &bar0->rx_w_round_robin_0);
1500 writeq(val64, &bar0->rx_w_round_robin_1);
1501 writeq(val64, &bar0->rx_w_round_robin_2);
1502 writeq(val64, &bar0->rx_w_round_robin_3);
1503 writeq(val64, &bar0->rx_w_round_robin_4);
1505 val64 = 0x8080808080808080ULL;
1506 writeq(val64, &bar0->rts_qos_steering);
1509 val64 = 0x0001000100010001ULL;
1510 writeq(val64, &bar0->rx_w_round_robin_0);
1511 writeq(val64, &bar0->rx_w_round_robin_1);
1512 writeq(val64, &bar0->rx_w_round_robin_2);
1513 writeq(val64, &bar0->rx_w_round_robin_3);
1514 val64 = 0x0001000100000000ULL;
1515 writeq(val64, &bar0->rx_w_round_robin_4);
1517 val64 = 0x8080808040404040ULL;
1518 writeq(val64, &bar0->rts_qos_steering);
1521 val64 = 0x0001020001020001ULL;
1522 writeq(val64, &bar0->rx_w_round_robin_0);
1523 val64 = 0x0200010200010200ULL;
1524 writeq(val64, &bar0->rx_w_round_robin_1);
1525 val64 = 0x0102000102000102ULL;
1526 writeq(val64, &bar0->rx_w_round_robin_2);
1527 val64 = 0x0001020001020001ULL;
1528 writeq(val64, &bar0->rx_w_round_robin_3);
1529 val64 = 0x0200010200000000ULL;
1530 writeq(val64, &bar0->rx_w_round_robin_4);
1532 val64 = 0x8080804040402020ULL;
1533 writeq(val64, &bar0->rts_qos_steering);
1536 val64 = 0x0001020300010203ULL;
1537 writeq(val64, &bar0->rx_w_round_robin_0);
1538 writeq(val64, &bar0->rx_w_round_robin_1);
1539 writeq(val64, &bar0->rx_w_round_robin_2);
1540 writeq(val64, &bar0->rx_w_round_robin_3);
1541 val64 = 0x0001020300000000ULL;
1542 writeq(val64, &bar0->rx_w_round_robin_4);
1544 val64 = 0x8080404020201010ULL;
1545 writeq(val64, &bar0->rts_qos_steering);
1548 val64 = 0x0001020304000102ULL;
1549 writeq(val64, &bar0->rx_w_round_robin_0);
1550 val64 = 0x0304000102030400ULL;
1551 writeq(val64, &bar0->rx_w_round_robin_1);
1552 val64 = 0x0102030400010203ULL;
1553 writeq(val64, &bar0->rx_w_round_robin_2);
1554 val64 = 0x0400010203040001ULL;
1555 writeq(val64, &bar0->rx_w_round_robin_3);
1556 val64 = 0x0203040000000000ULL;
1557 writeq(val64, &bar0->rx_w_round_robin_4);
1559 val64 = 0x8080404020201008ULL;
1560 writeq(val64, &bar0->rts_qos_steering);
1563 val64 = 0x0001020304050001ULL;
1564 writeq(val64, &bar0->rx_w_round_robin_0);
1565 val64 = 0x0203040500010203ULL;
1566 writeq(val64, &bar0->rx_w_round_robin_1);
1567 val64 = 0x0405000102030405ULL;
1568 writeq(val64, &bar0->rx_w_round_robin_2);
1569 val64 = 0x0001020304050001ULL;
1570 writeq(val64, &bar0->rx_w_round_robin_3);
1571 val64 = 0x0203040500000000ULL;
1572 writeq(val64, &bar0->rx_w_round_robin_4);
1574 val64 = 0x8080404020100804ULL;
1575 writeq(val64, &bar0->rts_qos_steering);
1578 val64 = 0x0001020304050600ULL;
1579 writeq(val64, &bar0->rx_w_round_robin_0);
1580 val64 = 0x0102030405060001ULL;
1581 writeq(val64, &bar0->rx_w_round_robin_1);
1582 val64 = 0x0203040506000102ULL;
1583 writeq(val64, &bar0->rx_w_round_robin_2);
1584 val64 = 0x0304050600010203ULL;
1585 writeq(val64, &bar0->rx_w_round_robin_3);
1586 val64 = 0x0405060000000000ULL;
1587 writeq(val64, &bar0->rx_w_round_robin_4);
1589 val64 = 0x8080402010080402ULL;
1590 writeq(val64, &bar0->rts_qos_steering);
1593 val64 = 0x0001020304050607ULL;
1594 writeq(val64, &bar0->rx_w_round_robin_0);
1595 writeq(val64, &bar0->rx_w_round_robin_1);
1596 writeq(val64, &bar0->rx_w_round_robin_2);
1597 writeq(val64, &bar0->rx_w_round_robin_3);
1598 val64 = 0x0001020300000000ULL;
1599 writeq(val64, &bar0->rx_w_round_robin_4);
1601 val64 = 0x8040201008040201ULL;
1602 writeq(val64, &bar0->rts_qos_steering);
1608 for (i = 0; i < 8; i++)
1609 writeq(val64, &bar0->rts_frm_len_n[i]);
1611 /* Set the default rts frame length for the rings configured */
1612 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1613 for (i = 0 ; i < config->rx_ring_num ; i++)
1614 writeq(val64, &bar0->rts_frm_len_n[i]);
1616 /* Set the frame length for the configured rings
1617 * desired by the user
1619 for (i = 0; i < config->rx_ring_num; i++) {
1620 /* If rts_frm_len[i] == 0 then it is assumed that user not
1621 * specified frame length steering.
1622 * If the user provides the frame length then program
1623 * the rts_frm_len register for those values or else
1624 * leave it as it is.
1626 if (rts_frm_len[i] != 0) {
1627 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1628 &bar0->rts_frm_len_n[i]);
1632 /* Disable differentiated services steering logic */
1633 for (i = 0; i < 64; i++) {
1634 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1636 "%s: rts_ds_steer failed on codepoint %d\n",
1642 /* Program statistics memory */
1643 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1645 if (nic->device_type == XFRAME_II_DEVICE) {
1646 val64 = STAT_BC(0x320);
1647 writeq(val64, &bar0->stat_byte_cnt);
1651 * Initializing the sampling rate for the device to calculate the
1652 * bandwidth utilization.
1654 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1655 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1656 writeq(val64, &bar0->mac_link_util);
1659 * Initializing the Transmit and Receive Traffic Interrupt
1663 /* Initialize TTI */
1664 if (SUCCESS != init_tti(nic, nic->last_link_state, true))
1667 /* RTI Initialization */
1668 if (nic->device_type == XFRAME_II_DEVICE) {
1670 * Programmed to generate Apprx 500 Intrs per
1673 int count = (nic->config.bus_speed * 125)/4;
1674 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1676 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1677 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1678 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1679 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1680 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1682 writeq(val64, &bar0->rti_data1_mem);
1684 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1685 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1686 if (nic->config.intr_type == MSI_X)
1687 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1688 RTI_DATA2_MEM_RX_UFC_D(0x40));
1690 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1691 RTI_DATA2_MEM_RX_UFC_D(0x80));
1692 writeq(val64, &bar0->rti_data2_mem);
1694 for (i = 0; i < config->rx_ring_num; i++) {
1695 val64 = RTI_CMD_MEM_WE |
1696 RTI_CMD_MEM_STROBE_NEW_CMD |
1697 RTI_CMD_MEM_OFFSET(i);
1698 writeq(val64, &bar0->rti_command_mem);
1701 * Once the operation completes, the Strobe bit of the
1702 * command register will be reset. We poll for this
1703 * particular condition. We wait for a maximum of 500ms
1704 * for the operation to complete, if it's not complete
1705 * by then we return error.
1709 val64 = readq(&bar0->rti_command_mem);
1710 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1714 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1724 * Initializing proper values as Pause threshold into all
1725 * the 8 Queues on Rx side.
1727 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1728 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1730 /* Disable RMAC PAD STRIPPING */
1731 add = &bar0->mac_cfg;
1732 val64 = readq(&bar0->mac_cfg);
1733 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1734 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1735 writel((u32) (val64), add);
1736 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1737 writel((u32) (val64 >> 32), (add + 4));
1738 val64 = readq(&bar0->mac_cfg);
1740 /* Enable FCS stripping by adapter */
1741 add = &bar0->mac_cfg;
1742 val64 = readq(&bar0->mac_cfg);
1743 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1744 if (nic->device_type == XFRAME_II_DEVICE)
1745 writeq(val64, &bar0->mac_cfg);
1747 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1748 writel((u32) (val64), add);
1749 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1750 writel((u32) (val64 >> 32), (add + 4));
1754 * Set the time value to be inserted in the pause frame
1755 * generated by xena.
1757 val64 = readq(&bar0->rmac_pause_cfg);
1758 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1759 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1760 writeq(val64, &bar0->rmac_pause_cfg);
1763 * Set the Threshold Limit for Generating the pause frame
1764 * If the amount of data in any Queue exceeds ratio of
1765 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1766 * pause frame is generated
1769 for (i = 0; i < 4; i++) {
1770 val64 |= (((u64)0xFF00 |
1771 nic->mac_control.mc_pause_threshold_q0q3)
1774 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1777 for (i = 0; i < 4; i++) {
1778 val64 |= (((u64)0xFF00 |
1779 nic->mac_control.mc_pause_threshold_q4q7)
1782 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1785 * TxDMA will stop Read request if the number of read split has
1786 * exceeded the limit pointed by shared_splits
1788 val64 = readq(&bar0->pic_control);
1789 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1790 writeq(val64, &bar0->pic_control);
1792 if (nic->config.bus_speed == 266) {
1793 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1794 writeq(0x0, &bar0->read_retry_delay);
1795 writeq(0x0, &bar0->write_retry_delay);
1799 * Programming the Herc to split every write transaction
1800 * that does not start on an ADB to reduce disconnects.
1802 if (nic->device_type == XFRAME_II_DEVICE) {
1803 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1804 MISC_LINK_STABILITY_PRD(3);
1805 writeq(val64, &bar0->misc_control);
1806 val64 = readq(&bar0->pic_control2);
1807 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1808 writeq(val64, &bar0->pic_control2);
1810 if (strstr(nic->product_name, "CX4")) {
1811 val64 = TMAC_AVG_IPG(0x17);
1812 writeq(val64, &bar0->tmac_avg_ipg);
1817 #define LINK_UP_DOWN_INTERRUPT 1
1818 #define MAC_RMAC_ERR_TIMER 2
1820 static int s2io_link_fault_indication(struct s2io_nic *nic)
1822 if (nic->device_type == XFRAME_II_DEVICE)
1823 return LINK_UP_DOWN_INTERRUPT;
1825 return MAC_RMAC_ERR_TIMER;
1829 * do_s2io_write_bits - update alarm bits in alarm register
1830 * @value: alarm bits
1831 * @flag: interrupt status
1832 * @addr: address value
1833 * Description: update alarm bits in alarm register
1837 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1841 temp64 = readq(addr);
1843 if (flag == ENABLE_INTRS)
1844 temp64 &= ~((u64)value);
1846 temp64 |= ((u64)value);
1847 writeq(temp64, addr);
1850 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1852 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1853 register u64 gen_int_mask = 0;
1856 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1857 if (mask & TX_DMA_INTR) {
1858 gen_int_mask |= TXDMA_INT_M;
1860 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1861 TXDMA_PCC_INT | TXDMA_TTI_INT |
1862 TXDMA_LSO_INT | TXDMA_TPA_INT |
1863 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1865 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1866 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1867 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1868 &bar0->pfc_err_mask);
1870 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1871 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1872 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1874 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1875 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1876 PCC_N_SERR | PCC_6_COF_OV_ERR |
1877 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1878 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1880 flag, &bar0->pcc_err_mask);
1882 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1883 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1885 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1886 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1887 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1888 flag, &bar0->lso_err_mask);
1890 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1891 flag, &bar0->tpa_err_mask);
1893 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1896 if (mask & TX_MAC_INTR) {
1897 gen_int_mask |= TXMAC_INT_M;
1898 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1899 &bar0->mac_int_mask);
1900 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1901 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1902 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1903 flag, &bar0->mac_tmac_err_mask);
1906 if (mask & TX_XGXS_INTR) {
1907 gen_int_mask |= TXXGXS_INT_M;
1908 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1909 &bar0->xgxs_int_mask);
1910 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1911 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1912 flag, &bar0->xgxs_txgxs_err_mask);
1915 if (mask & RX_DMA_INTR) {
1916 gen_int_mask |= RXDMA_INT_M;
1917 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1918 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1919 flag, &bar0->rxdma_int_mask);
1920 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1921 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1922 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1923 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1924 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1925 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1926 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1927 &bar0->prc_pcix_err_mask);
1928 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1929 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1930 &bar0->rpa_err_mask);
1931 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1932 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1933 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1934 RDA_FRM_ECC_SG_ERR |
1935 RDA_MISC_ERR|RDA_PCIX_ERR,
1936 flag, &bar0->rda_err_mask);
1937 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1938 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1939 flag, &bar0->rti_err_mask);
1942 if (mask & RX_MAC_INTR) {
1943 gen_int_mask |= RXMAC_INT_M;
1944 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1945 &bar0->mac_int_mask);
1946 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1947 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1948 RMAC_DOUBLE_ECC_ERR);
1949 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
1950 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
1951 do_s2io_write_bits(interruptible,
1952 flag, &bar0->mac_rmac_err_mask);
1955 if (mask & RX_XGXS_INTR) {
1956 gen_int_mask |= RXXGXS_INT_M;
1957 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1958 &bar0->xgxs_int_mask);
1959 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1960 &bar0->xgxs_rxgxs_err_mask);
1963 if (mask & MC_INTR) {
1964 gen_int_mask |= MC_INT_M;
1965 do_s2io_write_bits(MC_INT_MASK_MC_INT,
1966 flag, &bar0->mc_int_mask);
1967 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1968 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1969 &bar0->mc_err_mask);
1971 nic->general_int_mask = gen_int_mask;
1973 /* Remove this line when alarm interrupts are enabled */
1974 nic->general_int_mask = 0;
1978 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1979 * @nic: device private variable,
1980 * @mask: A mask indicating which Intr block must be modified and,
1981 * @flag: A flag indicating whether to enable or disable the Intrs.
1982 * Description: This function will either disable or enable the interrupts
1983 * depending on the flag argument. The mask argument can be used to
1984 * enable/disable any Intr block.
1985 * Return Value: NONE.
1988 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1990 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1991 register u64 temp64 = 0, intr_mask = 0;
1993 intr_mask = nic->general_int_mask;
1995 /* Top level interrupt classification */
1996 /* PIC Interrupts */
1997 if (mask & TX_PIC_INTR) {
1998 /* Enable PIC Intrs in the general intr mask register */
1999 intr_mask |= TXPIC_INT_M;
2000 if (flag == ENABLE_INTRS) {
2002 * If Hercules adapter enable GPIO otherwise
2003 * disable all PCIX, Flash, MDIO, IIC and GPIO
2004 * interrupts for now.
2007 if (s2io_link_fault_indication(nic) ==
2008 LINK_UP_DOWN_INTERRUPT) {
2009 do_s2io_write_bits(PIC_INT_GPIO, flag,
2010 &bar0->pic_int_mask);
2011 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2012 &bar0->gpio_int_mask);
2014 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2015 } else if (flag == DISABLE_INTRS) {
2017 * Disable PIC Intrs in the general
2018 * intr mask register
2020 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2024 /* Tx traffic interrupts */
2025 if (mask & TX_TRAFFIC_INTR) {
2026 intr_mask |= TXTRAFFIC_INT_M;
2027 if (flag == ENABLE_INTRS) {
2029 * Enable all the Tx side interrupts
2030 * writing 0 Enables all 64 TX interrupt levels
2032 writeq(0x0, &bar0->tx_traffic_mask);
2033 } else if (flag == DISABLE_INTRS) {
2035 * Disable Tx Traffic Intrs in the general intr mask
2038 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2042 /* Rx traffic interrupts */
2043 if (mask & RX_TRAFFIC_INTR) {
2044 intr_mask |= RXTRAFFIC_INT_M;
2045 if (flag == ENABLE_INTRS) {
2046 /* writing 0 Enables all 8 RX interrupt levels */
2047 writeq(0x0, &bar0->rx_traffic_mask);
2048 } else if (flag == DISABLE_INTRS) {
2050 * Disable Rx Traffic Intrs in the general intr mask
2053 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2057 temp64 = readq(&bar0->general_int_mask);
2058 if (flag == ENABLE_INTRS)
2059 temp64 &= ~((u64)intr_mask);
2061 temp64 = DISABLE_ALL_INTRS;
2062 writeq(temp64, &bar0->general_int_mask);
2064 nic->general_int_mask = readq(&bar0->general_int_mask);
2068 * verify_pcc_quiescent- Checks for PCC quiescent state
2069 * @sp : private member of the device structure, which is a pointer to the
2070 * s2io_nic structure.
2071 * @flag: boolean controlling function path
2072 * Return: 1 If PCC is quiescence
2073 * 0 If PCC is not quiescence
2075 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2078 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2079 u64 val64 = readq(&bar0->adapter_status);
2081 herc = (sp->device_type == XFRAME_II_DEVICE);
2083 if (flag == false) {
2084 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2085 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2088 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2092 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2093 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2094 ADAPTER_STATUS_RMAC_PCC_IDLE))
2097 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2098 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2106 * verify_xena_quiescence - Checks whether the H/W is ready
2107 * @sp : private member of the device structure, which is a pointer to the
2108 * s2io_nic structure.
2109 * Description: Returns whether the H/W is ready to go or not. Depending
2110 * on whether adapter enable bit was written or not the comparison
2111 * differs and the calling function passes the input argument flag to
2113 * Return: 1 If xena is quiescence
2114 * 0 If Xena is not quiescence
2117 static int verify_xena_quiescence(struct s2io_nic *sp)
2120 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2121 u64 val64 = readq(&bar0->adapter_status);
2122 mode = s2io_verify_pci_mode(sp);
2124 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2125 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2128 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2129 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2132 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2133 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2136 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2137 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2140 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2141 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2144 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2145 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2148 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2149 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2152 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2153 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2158 * In PCI 33 mode, the P_PLL is not used, and therefore,
2159 * the P_PLL_LOCK bit in the adapter_status register will
2162 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2163 sp->device_type == XFRAME_II_DEVICE &&
2164 mode != PCI_MODE_PCI_33) {
2165 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2168 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2169 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2170 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2177 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2178 * @sp: Pointer to device specifc structure
2180 * New procedure to clear mac address reading problems on Alpha platforms
2184 static void fix_mac_address(struct s2io_nic *sp)
2186 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2189 while (fix_mac[i] != END_SIGN) {
2190 writeq(fix_mac[i++], &bar0->gpio_control);
2192 (void) readq(&bar0->gpio_control);
2197 * start_nic - Turns the device on
2198 * @nic : device private variable.
2200 * This function actually turns the device on. Before this function is
2201 * called,all Registers are configured from their reset states
2202 * and shared memory is allocated but the NIC is still quiescent. On
2203 * calling this function, the device interrupts are cleared and the NIC is
2204 * literally switched on by writing into the adapter control register.
2206 * SUCCESS on success and -1 on failure.
2209 static int start_nic(struct s2io_nic *nic)
2211 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2212 struct net_device *dev = nic->dev;
2213 register u64 val64 = 0;
2215 struct config_param *config = &nic->config;
2216 struct mac_info *mac_control = &nic->mac_control;
2218 /* PRC Initialization and configuration */
2219 for (i = 0; i < config->rx_ring_num; i++) {
2220 struct ring_info *ring = &mac_control->rings[i];
2222 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2223 &bar0->prc_rxd0_n[i]);
2225 val64 = readq(&bar0->prc_ctrl_n[i]);
2226 if (nic->rxd_mode == RXD_MODE_1)
2227 val64 |= PRC_CTRL_RC_ENABLED;
2229 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2230 if (nic->device_type == XFRAME_II_DEVICE)
2231 val64 |= PRC_CTRL_GROUP_READS;
2232 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2233 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2234 writeq(val64, &bar0->prc_ctrl_n[i]);
2237 if (nic->rxd_mode == RXD_MODE_3B) {
2238 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2239 val64 = readq(&bar0->rx_pa_cfg);
2240 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2241 writeq(val64, &bar0->rx_pa_cfg);
2244 if (vlan_tag_strip == 0) {
2245 val64 = readq(&bar0->rx_pa_cfg);
2246 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2247 writeq(val64, &bar0->rx_pa_cfg);
2248 nic->vlan_strip_flag = 0;
2252 * Enabling MC-RLDRAM. After enabling the device, we timeout
2253 * for around 100ms, which is approximately the time required
2254 * for the device to be ready for operation.
2256 val64 = readq(&bar0->mc_rldram_mrs);
2257 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2258 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2259 val64 = readq(&bar0->mc_rldram_mrs);
2261 msleep(100); /* Delay by around 100 ms. */
2263 /* Enabling ECC Protection. */
2264 val64 = readq(&bar0->adapter_control);
2265 val64 &= ~ADAPTER_ECC_EN;
2266 writeq(val64, &bar0->adapter_control);
2269 * Verify if the device is ready to be enabled, if so enable
2272 val64 = readq(&bar0->adapter_status);
2273 if (!verify_xena_quiescence(nic)) {
2274 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2275 "Adapter status reads: 0x%llx\n",
2276 dev->name, (unsigned long long)val64);
2281 * With some switches, link might be already up at this point.
2282 * Because of this weird behavior, when we enable laser,
2283 * we may not get link. We need to handle this. We cannot
2284 * figure out which switch is misbehaving. So we are forced to
2285 * make a global change.
2288 /* Enabling Laser. */
2289 val64 = readq(&bar0->adapter_control);
2290 val64 |= ADAPTER_EOI_TX_ON;
2291 writeq(val64, &bar0->adapter_control);
2293 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2295 * Dont see link state interrupts initially on some switches,
2296 * so directly scheduling the link state task here.
2298 schedule_work(&nic->set_link_task);
2300 /* SXE-002: Initialize link and activity LED */
2301 subid = nic->pdev->subsystem_device;
2302 if (((subid & 0xFF) >= 0x07) &&
2303 (nic->device_type == XFRAME_I_DEVICE)) {
2304 val64 = readq(&bar0->gpio_control);
2305 val64 |= 0x0000800000000000ULL;
2306 writeq(val64, &bar0->gpio_control);
2307 val64 = 0x0411040400000000ULL;
2308 writeq(val64, (void __iomem *)bar0 + 0x2700);
2314 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2315 * @fifo_data: fifo data pointer
2316 * @txdlp: descriptor
2319 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2320 struct TxD *txdlp, int get_off)
2322 struct s2io_nic *nic = fifo_data->nic;
2323 struct sk_buff *skb;
2328 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2329 dma_unmap_single(&nic->pdev->dev,
2330 (dma_addr_t)txds->Buffer_Pointer,
2331 sizeof(u64), DMA_TO_DEVICE);
2335 skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2337 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2340 dma_unmap_single(&nic->pdev->dev, (dma_addr_t)txds->Buffer_Pointer,
2341 skb_headlen(skb), DMA_TO_DEVICE);
2342 frg_cnt = skb_shinfo(skb)->nr_frags;
2345 for (j = 0; j < frg_cnt; j++, txds++) {
2346 const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2347 if (!txds->Buffer_Pointer)
2349 dma_unmap_page(&nic->pdev->dev,
2350 (dma_addr_t)txds->Buffer_Pointer,
2351 skb_frag_size(frag), DMA_TO_DEVICE);
2354 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2359 * free_tx_buffers - Free all queued Tx buffers
2360 * @nic : device private variable.
2362 * Free all queued Tx buffers.
2363 * Return Value: void
2366 static void free_tx_buffers(struct s2io_nic *nic)
2368 struct net_device *dev = nic->dev;
2369 struct sk_buff *skb;
2373 struct config_param *config = &nic->config;
2374 struct mac_info *mac_control = &nic->mac_control;
2375 struct stat_block *stats = mac_control->stats_info;
2376 struct swStat *swstats = &stats->sw_stat;
2378 for (i = 0; i < config->tx_fifo_num; i++) {
2379 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2380 struct fifo_info *fifo = &mac_control->fifos[i];
2381 unsigned long flags;
2383 spin_lock_irqsave(&fifo->tx_lock, flags);
2384 for (j = 0; j < tx_cfg->fifo_len; j++) {
2385 txdp = fifo->list_info[j].list_virt_addr;
2386 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2388 swstats->mem_freed += skb->truesize;
2389 dev_kfree_skb_irq(skb);
2394 "%s: forcibly freeing %d skbs on FIFO%d\n",
2396 fifo->tx_curr_get_info.offset = 0;
2397 fifo->tx_curr_put_info.offset = 0;
2398 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2403 * stop_nic - To stop the nic
2404 * @nic : device private variable.
2406 * This function does exactly the opposite of what the start_nic()
2407 * function does. This function is called to stop the device.
2412 static void stop_nic(struct s2io_nic *nic)
2414 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2415 register u64 val64 = 0;
2418 /* Disable all interrupts */
2419 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2420 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2421 interruptible |= TX_PIC_INTR;
2422 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2424 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2425 val64 = readq(&bar0->adapter_control);
2426 val64 &= ~(ADAPTER_CNTL_EN);
2427 writeq(val64, &bar0->adapter_control);
2431 * fill_rx_buffers - Allocates the Rx side skbs
2432 * @nic : device private variable.
2433 * @ring: per ring structure
2434 * @from_card_up: If this is true, we will map the buffer to get
2435 * the dma address for buf0 and buf1 to give it to the card.
2436 * Else we will sync the already mapped buffer to give it to the card.
2438 * The function allocates Rx side skbs and puts the physical
2439 * address of these buffers into the RxD buffer pointers, so that the NIC
2440 * can DMA the received frame into these locations.
2441 * The NIC supports 3 receive modes, viz
2443 * 2. three buffer and
2444 * 3. Five buffer modes.
2445 * Each mode defines how many fragments the received frame will be split
2446 * up into by the NIC. The frame is split into L3 header, L4 Header,
2447 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2448 * is split into 3 fragments. As of now only single buffer mode is
2451 * SUCCESS on success or an appropriate -ve value on failure.
2453 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2456 struct sk_buff *skb;
2458 int off, size, block_no, block_no1;
2463 struct RxD_t *first_rxdp = NULL;
2464 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2467 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2469 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2471 block_no1 = ring->rx_curr_get_info.block_index;
2472 while (alloc_tab < alloc_cnt) {
2473 block_no = ring->rx_curr_put_info.block_index;
2475 off = ring->rx_curr_put_info.offset;
2477 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2479 if ((block_no == block_no1) &&
2480 (off == ring->rx_curr_get_info.offset) &&
2481 (rxdp->Host_Control)) {
2482 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2486 if (off && (off == ring->rxd_count)) {
2487 ring->rx_curr_put_info.block_index++;
2488 if (ring->rx_curr_put_info.block_index ==
2490 ring->rx_curr_put_info.block_index = 0;
2491 block_no = ring->rx_curr_put_info.block_index;
2493 ring->rx_curr_put_info.offset = off;
2494 rxdp = ring->rx_blocks[block_no].block_virt_addr;
2495 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2496 ring->dev->name, rxdp);
2500 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2501 ((ring->rxd_mode == RXD_MODE_3B) &&
2502 (rxdp->Control_2 & s2BIT(0)))) {
2503 ring->rx_curr_put_info.offset = off;
2506 /* calculate size of skb based on ring mode */
2508 HEADER_ETHERNET_II_802_3_SIZE +
2509 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2510 if (ring->rxd_mode == RXD_MODE_1)
2511 size += NET_IP_ALIGN;
2513 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2516 skb = netdev_alloc_skb(nic->dev, size);
2518 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2522 first_rxdp->Control_1 |= RXD_OWN_XENA;
2524 swstats->mem_alloc_fail_cnt++;
2528 swstats->mem_allocated += skb->truesize;
2530 if (ring->rxd_mode == RXD_MODE_1) {
2531 /* 1 buffer mode - normal operation mode */
2532 rxdp1 = (struct RxD1 *)rxdp;
2533 memset(rxdp, 0, sizeof(struct RxD1));
2534 skb_reserve(skb, NET_IP_ALIGN);
2535 rxdp1->Buffer0_ptr =
2536 dma_map_single(&ring->pdev->dev, skb->data,
2537 size - NET_IP_ALIGN,
2539 if (dma_mapping_error(&nic->pdev->dev, rxdp1->Buffer0_ptr))
2540 goto pci_map_failed;
2543 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2544 rxdp->Host_Control = (unsigned long)skb;
2545 } else if (ring->rxd_mode == RXD_MODE_3B) {
2548 * 2 buffer mode provides 128
2549 * byte aligned receive buffers.
2552 rxdp3 = (struct RxD3 *)rxdp;
2553 /* save buffer pointers to avoid frequent dma mapping */
2554 Buffer0_ptr = rxdp3->Buffer0_ptr;
2555 Buffer1_ptr = rxdp3->Buffer1_ptr;
2556 memset(rxdp, 0, sizeof(struct RxD3));
2557 /* restore the buffer pointers for dma sync*/
2558 rxdp3->Buffer0_ptr = Buffer0_ptr;
2559 rxdp3->Buffer1_ptr = Buffer1_ptr;
2561 ba = &ring->ba[block_no][off];
2562 skb_reserve(skb, BUF0_LEN);
2563 tmp = (u64)(unsigned long)skb->data;
2566 skb->data = (void *) (unsigned long)tmp;
2567 skb_reset_tail_pointer(skb);
2570 rxdp3->Buffer0_ptr =
2571 dma_map_single(&ring->pdev->dev,
2574 if (dma_mapping_error(&nic->pdev->dev, rxdp3->Buffer0_ptr))
2575 goto pci_map_failed;
2577 dma_sync_single_for_device(&ring->pdev->dev,
2578 (dma_addr_t)rxdp3->Buffer0_ptr,
2582 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2583 if (ring->rxd_mode == RXD_MODE_3B) {
2584 /* Two buffer mode */
2587 * Buffer2 will have L3/L4 header plus
2590 rxdp3->Buffer2_ptr = dma_map_single(&ring->pdev->dev,
2595 if (dma_mapping_error(&nic->pdev->dev, rxdp3->Buffer2_ptr))
2596 goto pci_map_failed;
2599 rxdp3->Buffer1_ptr =
2600 dma_map_single(&ring->pdev->dev,
2605 if (dma_mapping_error(&nic->pdev->dev,
2606 rxdp3->Buffer1_ptr)) {
2607 dma_unmap_single(&ring->pdev->dev,
2608 (dma_addr_t)(unsigned long)
2612 goto pci_map_failed;
2615 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2616 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2619 rxdp->Control_2 |= s2BIT(0);
2620 rxdp->Host_Control = (unsigned long) (skb);
2622 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2623 rxdp->Control_1 |= RXD_OWN_XENA;
2625 if (off == (ring->rxd_count + 1))
2627 ring->rx_curr_put_info.offset = off;
2629 rxdp->Control_2 |= SET_RXD_MARKER;
2630 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2633 first_rxdp->Control_1 |= RXD_OWN_XENA;
2637 ring->rx_bufs_left += 1;
2642 /* Transfer ownership of first descriptor to adapter just before
2643 * exiting. Before that, use memory barrier so that ownership
2644 * and other fields are seen by adapter correctly.
2648 first_rxdp->Control_1 |= RXD_OWN_XENA;
2654 swstats->pci_map_fail_cnt++;
2655 swstats->mem_freed += skb->truesize;
2656 dev_kfree_skb_irq(skb);
2660 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2662 struct net_device *dev = sp->dev;
2664 struct sk_buff *skb;
2668 struct mac_info *mac_control = &sp->mac_control;
2669 struct stat_block *stats = mac_control->stats_info;
2670 struct swStat *swstats = &stats->sw_stat;
2672 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2673 rxdp = mac_control->rings[ring_no].
2674 rx_blocks[blk].rxds[j].virt_addr;
2675 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2678 if (sp->rxd_mode == RXD_MODE_1) {
2679 rxdp1 = (struct RxD1 *)rxdp;
2680 dma_unmap_single(&sp->pdev->dev,
2681 (dma_addr_t)rxdp1->Buffer0_ptr,
2683 HEADER_ETHERNET_II_802_3_SIZE +
2684 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2686 memset(rxdp, 0, sizeof(struct RxD1));
2687 } else if (sp->rxd_mode == RXD_MODE_3B) {
2688 rxdp3 = (struct RxD3 *)rxdp;
2689 dma_unmap_single(&sp->pdev->dev,
2690 (dma_addr_t)rxdp3->Buffer0_ptr,
2691 BUF0_LEN, DMA_FROM_DEVICE);
2692 dma_unmap_single(&sp->pdev->dev,
2693 (dma_addr_t)rxdp3->Buffer1_ptr,
2694 BUF1_LEN, DMA_FROM_DEVICE);
2695 dma_unmap_single(&sp->pdev->dev,
2696 (dma_addr_t)rxdp3->Buffer2_ptr,
2697 dev->mtu + 4, DMA_FROM_DEVICE);
2698 memset(rxdp, 0, sizeof(struct RxD3));
2700 swstats->mem_freed += skb->truesize;
2702 mac_control->rings[ring_no].rx_bufs_left -= 1;
2707 * free_rx_buffers - Frees all Rx buffers
2708 * @sp: device private variable.
2710 * This function will free all Rx buffers allocated by host.
2715 static void free_rx_buffers(struct s2io_nic *sp)
2717 struct net_device *dev = sp->dev;
2718 int i, blk = 0, buf_cnt = 0;
2719 struct config_param *config = &sp->config;
2720 struct mac_info *mac_control = &sp->mac_control;
2722 for (i = 0; i < config->rx_ring_num; i++) {
2723 struct ring_info *ring = &mac_control->rings[i];
2725 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2726 free_rxd_blk(sp, i, blk);
2728 ring->rx_curr_put_info.block_index = 0;
2729 ring->rx_curr_get_info.block_index = 0;
2730 ring->rx_curr_put_info.offset = 0;
2731 ring->rx_curr_get_info.offset = 0;
2732 ring->rx_bufs_left = 0;
2733 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2734 dev->name, buf_cnt, i);
2738 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2740 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2741 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2748 * s2io_poll_msix - Rx interrupt handler for NAPI support
2749 * @napi : pointer to the napi structure.
2750 * @budget : The number of packets that were budgeted to be processed
2751 * during one pass through the 'Poll" function.
2753 * Comes into picture only if NAPI support has been incorporated. It does
2754 * the same thing that rx_intr_handler does, but not in a interrupt context
2755 * also It will process only a given number of packets.
2757 * 0 on success and 1 if there are No Rx packets to be processed.
2760 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2762 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2763 struct net_device *dev = ring->dev;
2764 int pkts_processed = 0;
2765 u8 __iomem *addr = NULL;
2767 struct s2io_nic *nic = netdev_priv(dev);
2768 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2769 int budget_org = budget;
2771 if (unlikely(!is_s2io_card_up(nic)))
2774 pkts_processed = rx_intr_handler(ring, budget);
2775 s2io_chk_rx_buffers(nic, ring);
2777 if (pkts_processed < budget_org) {
2778 napi_complete_done(napi, pkts_processed);
2779 /*Re Enable MSI-Rx Vector*/
2780 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2781 addr += 7 - ring->ring_no;
2782 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2786 return pkts_processed;
2789 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2791 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2792 int pkts_processed = 0;
2793 int ring_pkts_processed, i;
2794 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2795 int budget_org = budget;
2796 struct config_param *config = &nic->config;
2797 struct mac_info *mac_control = &nic->mac_control;
2799 if (unlikely(!is_s2io_card_up(nic)))
2802 for (i = 0; i < config->rx_ring_num; i++) {
2803 struct ring_info *ring = &mac_control->rings[i];
2804 ring_pkts_processed = rx_intr_handler(ring, budget);
2805 s2io_chk_rx_buffers(nic, ring);
2806 pkts_processed += ring_pkts_processed;
2807 budget -= ring_pkts_processed;
2811 if (pkts_processed < budget_org) {
2812 napi_complete_done(napi, pkts_processed);
2813 /* Re enable the Rx interrupts for the ring */
2814 writeq(0, &bar0->rx_traffic_mask);
2815 readl(&bar0->rx_traffic_mask);
2817 return pkts_processed;
2820 #ifdef CONFIG_NET_POLL_CONTROLLER
2822 * s2io_netpoll - netpoll event handler entry point
2823 * @dev : pointer to the device structure.
2825 * This function will be called by upper layer to check for events on the
2826 * interface in situations where interrupts are disabled. It is used for
2827 * specific in-kernel networking tasks, such as remote consoles and kernel
2828 * debugging over the network (example netdump in RedHat).
2830 static void s2io_netpoll(struct net_device *dev)
2832 struct s2io_nic *nic = netdev_priv(dev);
2833 const int irq = nic->pdev->irq;
2834 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2835 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2837 struct config_param *config = &nic->config;
2838 struct mac_info *mac_control = &nic->mac_control;
2840 if (pci_channel_offline(nic->pdev))
2845 writeq(val64, &bar0->rx_traffic_int);
2846 writeq(val64, &bar0->tx_traffic_int);
2848 /* we need to free up the transmitted skbufs or else netpoll will
2849 * run out of skbs and will fail and eventually netpoll application such
2850 * as netdump will fail.
2852 for (i = 0; i < config->tx_fifo_num; i++)
2853 tx_intr_handler(&mac_control->fifos[i]);
2855 /* check for received packet and indicate up to network */
2856 for (i = 0; i < config->rx_ring_num; i++) {
2857 struct ring_info *ring = &mac_control->rings[i];
2859 rx_intr_handler(ring, 0);
2862 for (i = 0; i < config->rx_ring_num; i++) {
2863 struct ring_info *ring = &mac_control->rings[i];
2865 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2867 "%s: Out of memory in Rx Netpoll!!\n",
2877 * rx_intr_handler - Rx interrupt handler
2878 * @ring_data: per ring structure.
2879 * @budget: budget for napi processing.
2881 * If the interrupt is because of a received frame or if the
2882 * receive ring contains fresh as yet un-processed frames,this function is
2883 * called. It picks out the RxD at which place the last Rx processing had
2884 * stopped and sends the skb to the OSM's Rx handler and then increments
2887 * No. of napi packets processed.
2889 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2891 int get_block, put_block;
2892 struct rx_curr_get_info get_info, put_info;
2894 struct sk_buff *skb;
2895 int pkt_cnt = 0, napi_pkts = 0;
2903 get_info = ring_data->rx_curr_get_info;
2904 get_block = get_info.block_index;
2905 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2906 put_block = put_info.block_index;
2907 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2909 while (RXD_IS_UP2DT(rxdp)) {
2911 * If your are next to put index then it's
2912 * FIFO full condition
2914 if ((get_block == put_block) &&
2915 (get_info.offset + 1) == put_info.offset) {
2916 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2917 ring_data->dev->name);
2920 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2922 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2923 ring_data->dev->name);
2926 if (ring_data->rxd_mode == RXD_MODE_1) {
2927 rxdp1 = (struct RxD1 *)rxdp;
2928 dma_unmap_single(&ring_data->pdev->dev,
2929 (dma_addr_t)rxdp1->Buffer0_ptr,
2931 HEADER_ETHERNET_II_802_3_SIZE +
2935 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
2936 rxdp3 = (struct RxD3 *)rxdp;
2937 dma_sync_single_for_cpu(&ring_data->pdev->dev,
2938 (dma_addr_t)rxdp3->Buffer0_ptr,
2939 BUF0_LEN, DMA_FROM_DEVICE);
2940 dma_unmap_single(&ring_data->pdev->dev,
2941 (dma_addr_t)rxdp3->Buffer2_ptr,
2942 ring_data->mtu + 4, DMA_FROM_DEVICE);
2944 prefetch(skb->data);
2945 rx_osm_handler(ring_data, rxdp);
2947 ring_data->rx_curr_get_info.offset = get_info.offset;
2948 rxdp = ring_data->rx_blocks[get_block].
2949 rxds[get_info.offset].virt_addr;
2950 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
2951 get_info.offset = 0;
2952 ring_data->rx_curr_get_info.offset = get_info.offset;
2954 if (get_block == ring_data->block_count)
2956 ring_data->rx_curr_get_info.block_index = get_block;
2957 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2960 if (ring_data->nic->config.napi) {
2967 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2970 if (ring_data->lro) {
2971 /* Clear all LRO sessions before exiting */
2972 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
2973 struct lro *lro = &ring_data->lro0_n[i];
2975 update_L3L4_header(ring_data->nic, lro);
2976 queue_rx_frame(lro->parent, lro->vlan_tag);
2977 clear_lro_session(lro);
2985 * tx_intr_handler - Transmit interrupt handler
2986 * @fifo_data : fifo data pointer
2988 * If an interrupt was raised to indicate DMA complete of the
2989 * Tx packet, this function is called. It identifies the last TxD
2990 * whose buffer was freed and frees all skbs whose data have already
2991 * DMA'ed into the NICs internal memory.
2996 static void tx_intr_handler(struct fifo_info *fifo_data)
2998 struct s2io_nic *nic = fifo_data->nic;
2999 struct tx_curr_get_info get_info, put_info;
3000 struct sk_buff *skb = NULL;
3003 unsigned long flags = 0;
3005 struct stat_block *stats = nic->mac_control.stats_info;
3006 struct swStat *swstats = &stats->sw_stat;
3008 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3011 get_info = fifo_data->tx_curr_get_info;
3012 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3013 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3014 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3015 (get_info.offset != put_info.offset) &&
3016 (txdlp->Host_Control)) {
3017 /* Check for TxD errors */
3018 if (txdlp->Control_1 & TXD_T_CODE) {
3019 unsigned long long err;
3020 err = txdlp->Control_1 & TXD_T_CODE;
3022 swstats->parity_err_cnt++;
3025 /* update t_code statistics */
3026 err_mask = err >> 48;
3029 swstats->tx_buf_abort_cnt++;
3033 swstats->tx_desc_abort_cnt++;
3037 swstats->tx_parity_err_cnt++;
3041 swstats->tx_link_loss_cnt++;
3045 swstats->tx_list_proc_err_cnt++;
3050 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3052 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3053 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3059 /* Updating the statistics block */
3060 swstats->mem_freed += skb->truesize;
3061 dev_consume_skb_irq(skb);
3064 if (get_info.offset == get_info.fifo_len + 1)
3065 get_info.offset = 0;
3066 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3067 fifo_data->tx_curr_get_info.offset = get_info.offset;
3070 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3072 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3076 * s2io_mdio_write - Function to write in to MDIO registers
3077 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3078 * @addr : address value
3079 * @value : data value
3080 * @dev : pointer to net_device structure
3082 * This function is used to write values to the MDIO registers
3085 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3086 struct net_device *dev)
3089 struct s2io_nic *sp = netdev_priv(dev);
3090 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3092 /* address transaction */
3093 val64 = MDIO_MMD_INDX_ADDR(addr) |
3094 MDIO_MMD_DEV_ADDR(mmd_type) |
3095 MDIO_MMS_PRT_ADDR(0x0);
3096 writeq(val64, &bar0->mdio_control);
3097 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3098 writeq(val64, &bar0->mdio_control);
3101 /* Data transaction */
3102 val64 = MDIO_MMD_INDX_ADDR(addr) |
3103 MDIO_MMD_DEV_ADDR(mmd_type) |
3104 MDIO_MMS_PRT_ADDR(0x0) |
3105 MDIO_MDIO_DATA(value) |
3106 MDIO_OP(MDIO_OP_WRITE_TRANS);
3107 writeq(val64, &bar0->mdio_control);
3108 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3109 writeq(val64, &bar0->mdio_control);
3112 val64 = MDIO_MMD_INDX_ADDR(addr) |
3113 MDIO_MMD_DEV_ADDR(mmd_type) |
3114 MDIO_MMS_PRT_ADDR(0x0) |
3115 MDIO_OP(MDIO_OP_READ_TRANS);
3116 writeq(val64, &bar0->mdio_control);
3117 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3118 writeq(val64, &bar0->mdio_control);
3123 * s2io_mdio_read - Function to write in to MDIO registers
3124 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3125 * @addr : address value
3126 * @dev : pointer to net_device structure
3128 * This function is used to read values to the MDIO registers
3131 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3135 struct s2io_nic *sp = netdev_priv(dev);
3136 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3138 /* address transaction */
3139 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3140 | MDIO_MMD_DEV_ADDR(mmd_type)
3141 | MDIO_MMS_PRT_ADDR(0x0));
3142 writeq(val64, &bar0->mdio_control);
3143 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3144 writeq(val64, &bar0->mdio_control);
3147 /* Data transaction */
3148 val64 = MDIO_MMD_INDX_ADDR(addr) |
3149 MDIO_MMD_DEV_ADDR(mmd_type) |
3150 MDIO_MMS_PRT_ADDR(0x0) |
3151 MDIO_OP(MDIO_OP_READ_TRANS);
3152 writeq(val64, &bar0->mdio_control);
3153 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3154 writeq(val64, &bar0->mdio_control);
3157 /* Read the value from regs */
3158 rval64 = readq(&bar0->mdio_control);
3159 rval64 = rval64 & 0xFFFF0000;
3160 rval64 = rval64 >> 16;
3165 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3166 * @counter : counter value to be updated
3167 * @regs_stat : registers status
3169 * @flag : flag to indicate the status
3170 * @type : counter type
3172 * This function is to check the status of the xpak counters value
3176 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3182 for (i = 0; i < index; i++)
3186 *counter = *counter + 1;
3187 val64 = *regs_stat & mask;
3188 val64 = val64 >> (index * 0x2);
3194 "Take Xframe NIC out of service.\n");
3196 "Excessive temperatures may result in premature transceiver failure.\n");
3200 "Take Xframe NIC out of service.\n");
3202 "Excessive bias currents may indicate imminent laser diode failure.\n");
3206 "Take Xframe NIC out of service.\n");
3208 "Excessive laser output power may saturate far-end receiver.\n");
3212 "Incorrect XPAK Alarm type\n");
3216 val64 = val64 << (index * 0x2);
3217 *regs_stat = (*regs_stat & (~mask)) | (val64);
3220 *regs_stat = *regs_stat & (~mask);
3225 * s2io_updt_xpak_counter - Function to update the xpak counters
3226 * @dev : pointer to net_device struct
3228 * This function is to upate the status of the xpak counters value
3231 static void s2io_updt_xpak_counter(struct net_device *dev)
3239 struct s2io_nic *sp = netdev_priv(dev);
3240 struct stat_block *stats = sp->mac_control.stats_info;
3241 struct xpakStat *xstats = &stats->xpak_stat;
3243 /* Check the communication with the MDIO slave */
3246 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3247 if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3249 "ERR: MDIO slave access failed - Returned %llx\n",
3250 (unsigned long long)val64);
3254 /* Check for the expected value of control reg 1 */
3255 if (val64 != MDIO_CTRL1_SPEED10G) {
3256 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3257 "Returned: %llx- Expected: 0x%x\n",
3258 (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3262 /* Loading the DOM register to MDIO register */
3264 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3265 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3267 /* Reading the Alarm flags */
3270 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3272 flag = CHECKBIT(val64, 0x7);
3274 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3275 &xstats->xpak_regs_stat,
3278 if (CHECKBIT(val64, 0x6))
3279 xstats->alarm_transceiver_temp_low++;
3281 flag = CHECKBIT(val64, 0x3);
3283 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3284 &xstats->xpak_regs_stat,
3287 if (CHECKBIT(val64, 0x2))
3288 xstats->alarm_laser_bias_current_low++;
3290 flag = CHECKBIT(val64, 0x1);
3292 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3293 &xstats->xpak_regs_stat,
3296 if (CHECKBIT(val64, 0x0))
3297 xstats->alarm_laser_output_power_low++;
3299 /* Reading the Warning flags */
3302 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3304 if (CHECKBIT(val64, 0x7))
3305 xstats->warn_transceiver_temp_high++;
3307 if (CHECKBIT(val64, 0x6))
3308 xstats->warn_transceiver_temp_low++;
3310 if (CHECKBIT(val64, 0x3))
3311 xstats->warn_laser_bias_current_high++;
3313 if (CHECKBIT(val64, 0x2))
3314 xstats->warn_laser_bias_current_low++;
3316 if (CHECKBIT(val64, 0x1))
3317 xstats->warn_laser_output_power_high++;
3319 if (CHECKBIT(val64, 0x0))
3320 xstats->warn_laser_output_power_low++;
3324 * wait_for_cmd_complete - waits for a command to complete.
3326 * @busy_bit: bit to check for busy
3327 * @bit_state: state to check
3328 * @may_sleep: parameter indicates if sleeping when waiting for
3330 * Description: Function that waits for a command to Write into RMAC
3331 * ADDR DATA registers to be completed and returns either success or
3332 * error depending on whether the command was complete or not.
3334 * SUCCESS on success and FAILURE on failure.
3337 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3338 int bit_state, bool may_sleep)
3340 int ret = FAILURE, cnt = 0, delay = 1;
3343 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3347 val64 = readq(addr);
3348 if (bit_state == S2IO_BIT_RESET) {
3349 if (!(val64 & busy_bit)) {
3354 if (val64 & busy_bit) {
3371 * check_pci_device_id - Checks if the device id is supported
3373 * Description: Function to check if the pci device id is supported by driver.
3374 * Return value: Actual device id if supported else PCI_ANY_ID
3376 static u16 check_pci_device_id(u16 id)
3379 case PCI_DEVICE_ID_HERC_WIN:
3380 case PCI_DEVICE_ID_HERC_UNI:
3381 return XFRAME_II_DEVICE;
3382 case PCI_DEVICE_ID_S2IO_UNI:
3383 case PCI_DEVICE_ID_S2IO_WIN:
3384 return XFRAME_I_DEVICE;
3391 * s2io_reset - Resets the card.
3392 * @sp : private member of the device structure.
3393 * Description: Function to Reset the card. This function then also
3394 * restores the previously saved PCI configuration space registers as
3395 * the card reset also resets the configuration space.
3400 static void s2io_reset(struct s2io_nic *sp)
3402 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3407 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3408 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3409 struct stat_block *stats;
3410 struct swStat *swstats;
3412 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3413 __func__, pci_name(sp->pdev));
3415 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3416 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3418 val64 = SW_RESET_ALL;
3419 writeq(val64, &bar0->sw_reset);
3420 if (strstr(sp->product_name, "CX4"))
3423 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3425 /* Restore the PCI state saved during initialization. */
3426 pci_restore_state(sp->pdev);
3427 pci_save_state(sp->pdev);
3428 pci_read_config_word(sp->pdev, 0x2, &val16);
3429 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3434 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3435 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3437 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3441 /* Set swapper to enable I/O register access */
3442 s2io_set_swapper(sp);
3444 /* restore mac_addr entries */
3445 do_s2io_restore_unicast_mc(sp);
3447 /* Restore the MSIX table entries from local variables */
3448 restore_xmsi_data(sp);
3450 /* Clear certain PCI/PCI-X fields after reset */
3451 if (sp->device_type == XFRAME_II_DEVICE) {
3452 /* Clear "detected parity error" bit */
3453 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3455 /* Clearing PCIX Ecc status register */
3456 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3458 /* Clearing PCI_STATUS error reflected here */
3459 writeq(s2BIT(62), &bar0->txpic_int_reg);
3462 /* Reset device statistics maintained by OS */
3463 memset(&sp->stats, 0, sizeof(struct net_device_stats));
3465 stats = sp->mac_control.stats_info;
3466 swstats = &stats->sw_stat;
3468 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3469 up_cnt = swstats->link_up_cnt;
3470 down_cnt = swstats->link_down_cnt;
3471 up_time = swstats->link_up_time;
3472 down_time = swstats->link_down_time;
3473 reset_cnt = swstats->soft_reset_cnt;
3474 mem_alloc_cnt = swstats->mem_allocated;
3475 mem_free_cnt = swstats->mem_freed;
3476 watchdog_cnt = swstats->watchdog_timer_cnt;
3478 memset(stats, 0, sizeof(struct stat_block));
3480 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3481 swstats->link_up_cnt = up_cnt;
3482 swstats->link_down_cnt = down_cnt;
3483 swstats->link_up_time = up_time;
3484 swstats->link_down_time = down_time;
3485 swstats->soft_reset_cnt = reset_cnt;
3486 swstats->mem_allocated = mem_alloc_cnt;
3487 swstats->mem_freed = mem_free_cnt;
3488 swstats->watchdog_timer_cnt = watchdog_cnt;
3490 /* SXE-002: Configure link and activity LED to turn it off */
3491 subid = sp->pdev->subsystem_device;
3492 if (((subid & 0xFF) >= 0x07) &&
3493 (sp->device_type == XFRAME_I_DEVICE)) {
3494 val64 = readq(&bar0->gpio_control);
3495 val64 |= 0x0000800000000000ULL;
3496 writeq(val64, &bar0->gpio_control);
3497 val64 = 0x0411040400000000ULL;
3498 writeq(val64, (void __iomem *)bar0 + 0x2700);
3502 * Clear spurious ECC interrupts that would have occurred on
3503 * XFRAME II cards after reset.
3505 if (sp->device_type == XFRAME_II_DEVICE) {
3506 val64 = readq(&bar0->pcc_err_reg);
3507 writeq(val64, &bar0->pcc_err_reg);
3510 sp->device_enabled_once = false;
3514 * s2io_set_swapper - to set the swapper controle on the card
3515 * @sp : private member of the device structure,
3516 * pointer to the s2io_nic structure.
3517 * Description: Function to set the swapper control on the card
3518 * correctly depending on the 'endianness' of the system.
3520 * SUCCESS on success and FAILURE on failure.
3523 static int s2io_set_swapper(struct s2io_nic *sp)
3525 struct net_device *dev = sp->dev;
3526 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3527 u64 val64, valt, valr;
3530 * Set proper endian settings and verify the same by reading
3531 * the PIF Feed-back register.
3534 val64 = readq(&bar0->pif_rd_swapper_fb);
3535 if (val64 != 0x0123456789ABCDEFULL) {
3537 static const u64 value[] = {
3538 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3539 0x8100008181000081ULL, /* FE=1, SE=0 */
3540 0x4200004242000042ULL, /* FE=0, SE=1 */
3545 writeq(value[i], &bar0->swapper_ctrl);
3546 val64 = readq(&bar0->pif_rd_swapper_fb);
3547 if (val64 == 0x0123456789ABCDEFULL)
3552 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3553 "feedback read %llx\n",
3554 dev->name, (unsigned long long)val64);
3559 valr = readq(&bar0->swapper_ctrl);
3562 valt = 0x0123456789ABCDEFULL;
3563 writeq(valt, &bar0->xmsi_address);
3564 val64 = readq(&bar0->xmsi_address);
3566 if (val64 != valt) {
3568 static const u64 value[] = {
3569 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3570 0x0081810000818100ULL, /* FE=1, SE=0 */
3571 0x0042420000424200ULL, /* FE=0, SE=1 */
3576 writeq((value[i] | valr), &bar0->swapper_ctrl);
3577 writeq(valt, &bar0->xmsi_address);
3578 val64 = readq(&bar0->xmsi_address);
3584 unsigned long long x = val64;
3586 "Write failed, Xmsi_addr reads:0x%llx\n", x);
3590 val64 = readq(&bar0->swapper_ctrl);
3591 val64 &= 0xFFFF000000000000ULL;
3595 * The device by default set to a big endian format, so a
3596 * big endian driver need not set anything.
3598 val64 |= (SWAPPER_CTRL_TXP_FE |
3599 SWAPPER_CTRL_TXP_SE |
3600 SWAPPER_CTRL_TXD_R_FE |
3601 SWAPPER_CTRL_TXD_W_FE |
3602 SWAPPER_CTRL_TXF_R_FE |
3603 SWAPPER_CTRL_RXD_R_FE |
3604 SWAPPER_CTRL_RXD_W_FE |
3605 SWAPPER_CTRL_RXF_W_FE |
3606 SWAPPER_CTRL_XMSI_FE |
3607 SWAPPER_CTRL_STATS_FE |
3608 SWAPPER_CTRL_STATS_SE);
3609 if (sp->config.intr_type == INTA)
3610 val64 |= SWAPPER_CTRL_XMSI_SE;
3611 writeq(val64, &bar0->swapper_ctrl);
3614 * Initially we enable all bits to make it accessible by the
3615 * driver, then we selectively enable only those bits that
3618 val64 |= (SWAPPER_CTRL_TXP_FE |
3619 SWAPPER_CTRL_TXP_SE |
3620 SWAPPER_CTRL_TXD_R_FE |
3621 SWAPPER_CTRL_TXD_R_SE |
3622 SWAPPER_CTRL_TXD_W_FE |
3623 SWAPPER_CTRL_TXD_W_SE |
3624 SWAPPER_CTRL_TXF_R_FE |
3625 SWAPPER_CTRL_RXD_R_FE |
3626 SWAPPER_CTRL_RXD_R_SE |
3627 SWAPPER_CTRL_RXD_W_FE |
3628 SWAPPER_CTRL_RXD_W_SE |
3629 SWAPPER_CTRL_RXF_W_FE |
3630 SWAPPER_CTRL_XMSI_FE |
3631 SWAPPER_CTRL_STATS_FE |
3632 SWAPPER_CTRL_STATS_SE);
3633 if (sp->config.intr_type == INTA)
3634 val64 |= SWAPPER_CTRL_XMSI_SE;
3635 writeq(val64, &bar0->swapper_ctrl);
3637 val64 = readq(&bar0->swapper_ctrl);
3640 * Verifying if endian settings are accurate by reading a
3641 * feedback register.
3643 val64 = readq(&bar0->pif_rd_swapper_fb);
3644 if (val64 != 0x0123456789ABCDEFULL) {
3645 /* Endian settings are incorrect, calls for another dekko. */
3647 "%s: Endian settings are wrong, feedback read %llx\n",
3648 dev->name, (unsigned long long)val64);
3655 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3657 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3659 int ret = 0, cnt = 0;
3662 val64 = readq(&bar0->xmsi_access);
3663 if (!(val64 & s2BIT(15)))
3669 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3676 static void restore_xmsi_data(struct s2io_nic *nic)
3678 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3682 if (nic->device_type == XFRAME_I_DEVICE)
3685 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3686 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3687 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3688 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3689 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3690 writeq(val64, &bar0->xmsi_access);
3691 if (wait_for_msix_trans(nic, msix_index))
3692 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3693 __func__, msix_index);
3697 static void store_xmsi_data(struct s2io_nic *nic)
3699 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3700 u64 val64, addr, data;
3703 if (nic->device_type == XFRAME_I_DEVICE)
3706 /* Store and display */
3707 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3708 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3709 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3710 writeq(val64, &bar0->xmsi_access);
3711 if (wait_for_msix_trans(nic, msix_index)) {
3712 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3713 __func__, msix_index);
3716 addr = readq(&bar0->xmsi_address);
3717 data = readq(&bar0->xmsi_data);
3719 nic->msix_info[i].addr = addr;
3720 nic->msix_info[i].data = data;
3725 static int s2io_enable_msi_x(struct s2io_nic *nic)
3727 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3729 u16 msi_control; /* Temp variable */
3730 int ret, i, j, msix_indx = 1;
3732 struct stat_block *stats = nic->mac_control.stats_info;
3733 struct swStat *swstats = &stats->sw_stat;
3735 size = nic->num_entries * sizeof(struct msix_entry);
3736 nic->entries = kzalloc(size, GFP_KERNEL);
3737 if (!nic->entries) {
3738 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3740 swstats->mem_alloc_fail_cnt++;
3743 swstats->mem_allocated += size;
3745 size = nic->num_entries * sizeof(struct s2io_msix_entry);
3746 nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3747 if (!nic->s2io_entries) {
3748 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3750 swstats->mem_alloc_fail_cnt++;
3751 kfree(nic->entries);
3753 += (nic->num_entries * sizeof(struct msix_entry));
3756 swstats->mem_allocated += size;
3758 nic->entries[0].entry = 0;
3759 nic->s2io_entries[0].entry = 0;
3760 nic->s2io_entries[0].in_use = MSIX_FLG;
3761 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3762 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3764 for (i = 1; i < nic->num_entries; i++) {
3765 nic->entries[i].entry = ((i - 1) * 8) + 1;
3766 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3767 nic->s2io_entries[i].arg = NULL;
3768 nic->s2io_entries[i].in_use = 0;
3771 rx_mat = readq(&bar0->rx_mat);
3772 for (j = 0; j < nic->config.rx_ring_num; j++) {
3773 rx_mat |= RX_MAT_SET(j, msix_indx);
3774 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3775 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3776 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3779 writeq(rx_mat, &bar0->rx_mat);
3780 readq(&bar0->rx_mat);
3782 ret = pci_enable_msix_range(nic->pdev, nic->entries,
3783 nic->num_entries, nic->num_entries);
3784 /* We fail init if error or we get less vectors than min required */
3786 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3787 kfree(nic->entries);
3788 swstats->mem_freed += nic->num_entries *
3789 sizeof(struct msix_entry);
3790 kfree(nic->s2io_entries);
3791 swstats->mem_freed += nic->num_entries *
3792 sizeof(struct s2io_msix_entry);
3793 nic->entries = NULL;
3794 nic->s2io_entries = NULL;
3799 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3800 * in the herc NIC. (Temp change, needs to be removed later)
3802 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3803 msi_control |= 0x1; /* Enable MSI */
3804 pci_write_config_word(nic->pdev, 0x42, msi_control);
3809 /* Handle software interrupt used during MSI(X) test */
3810 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3812 struct s2io_nic *sp = dev_id;
3814 sp->msi_detected = 1;
3815 wake_up(&sp->msi_wait);
3820 /* Test interrupt path by forcing a software IRQ */
3821 static int s2io_test_msi(struct s2io_nic *sp)
3823 struct pci_dev *pdev = sp->pdev;
3824 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3828 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3831 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3832 sp->dev->name, pci_name(pdev), pdev->irq);
3836 init_waitqueue_head(&sp->msi_wait);
3837 sp->msi_detected = 0;
3839 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3840 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3841 val64 |= SCHED_INT_CTRL_TIMER_EN;
3842 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3843 writeq(val64, &bar0->scheduled_int_ctrl);
3845 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3847 if (!sp->msi_detected) {
3848 /* MSI(X) test failed, go back to INTx mode */
3849 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3850 "using MSI(X) during test\n",
3851 sp->dev->name, pci_name(pdev));
3856 free_irq(sp->entries[1].vector, sp);
3858 writeq(saved64, &bar0->scheduled_int_ctrl);
3863 static void remove_msix_isr(struct s2io_nic *sp)
3868 for (i = 0; i < sp->num_entries; i++) {
3869 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3870 int vector = sp->entries[i].vector;
3871 void *arg = sp->s2io_entries[i].arg;
3872 free_irq(vector, arg);
3877 kfree(sp->s2io_entries);
3879 sp->s2io_entries = NULL;
3881 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3882 msi_control &= 0xFFFE; /* Disable MSI */
3883 pci_write_config_word(sp->pdev, 0x42, msi_control);
3885 pci_disable_msix(sp->pdev);
3888 static void remove_inta_isr(struct s2io_nic *sp)
3890 free_irq(sp->pdev->irq, sp->dev);
3893 /* ********************************************************* *
3894 * Functions defined below concern the OS part of the driver *
3895 * ********************************************************* */
3898 * s2io_open - open entry point of the driver
3899 * @dev : pointer to the device structure.
3901 * This function is the open entry point of the driver. It mainly calls a
3902 * function to allocate Rx buffers and inserts them into the buffer
3903 * descriptors and then enables the Rx part of the NIC.
3905 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3909 static int s2io_open(struct net_device *dev)
3911 struct s2io_nic *sp = netdev_priv(dev);
3912 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3916 * Make sure you have link off by default every time
3917 * Nic is initialized
3919 netif_carrier_off(dev);
3920 sp->last_link_state = 0;
3922 /* Initialize H/W and enable interrupts */
3923 err = s2io_card_up(sp);
3925 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3927 goto hw_init_failed;
3930 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3931 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3934 goto hw_init_failed;
3936 s2io_start_all_tx_queue(sp);
3940 if (sp->config.intr_type == MSI_X) {
3943 swstats->mem_freed += sp->num_entries *
3944 sizeof(struct msix_entry);
3946 if (sp->s2io_entries) {
3947 kfree(sp->s2io_entries);
3948 swstats->mem_freed += sp->num_entries *
3949 sizeof(struct s2io_msix_entry);
3956 * s2io_close -close entry point of the driver
3957 * @dev : device pointer.
3959 * This is the stop entry point of the driver. It needs to undo exactly
3960 * whatever was done by the open entry point,thus it's usually referred to
3961 * as the close function.Among other things this function mainly stops the
3962 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3964 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3968 static int s2io_close(struct net_device *dev)
3970 struct s2io_nic *sp = netdev_priv(dev);
3971 struct config_param *config = &sp->config;
3975 /* Return if the device is already closed *
3976 * Can happen when s2io_card_up failed in change_mtu *
3978 if (!is_s2io_card_up(sp))
3981 s2io_stop_all_tx_queue(sp);
3982 /* delete all populated mac entries */
3983 for (offset = 1; offset < config->max_mc_addr; offset++) {
3984 tmp64 = do_s2io_read_unicast_mc(sp, offset);
3985 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3986 do_s2io_delete_unicast_mc(sp, tmp64);
3995 * s2io_xmit - Tx entry point of te driver
3996 * @skb : the socket buffer containing the Tx data.
3997 * @dev : device pointer.
3999 * This function is the Tx entry point of the driver. S2IO NIC supports
4000 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4001 * NOTE: when device can't queue the pkt,just the trans_start variable will
4004 * 0 on success & 1 on failure.
4007 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4009 struct s2io_nic *sp = netdev_priv(dev);
4010 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4013 struct TxFIFO_element __iomem *tx_fifo;
4014 unsigned long flags = 0;
4016 struct fifo_info *fifo = NULL;
4018 int enable_per_list_interrupt = 0;
4019 struct config_param *config = &sp->config;
4020 struct mac_info *mac_control = &sp->mac_control;
4021 struct stat_block *stats = mac_control->stats_info;
4022 struct swStat *swstats = &stats->sw_stat;
4024 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4026 if (unlikely(skb->len <= 0)) {
4027 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4028 dev_kfree_skb_any(skb);
4029 return NETDEV_TX_OK;
4032 if (!is_s2io_card_up(sp)) {
4033 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4035 dev_kfree_skb_any(skb);
4036 return NETDEV_TX_OK;
4040 if (skb_vlan_tag_present(skb))
4041 vlan_tag = skb_vlan_tag_get(skb);
4042 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4043 if (skb->protocol == htons(ETH_P_IP)) {
4048 if (!ip_is_fragment(ip)) {
4049 th = (struct tcphdr *)(((unsigned char *)ip) +
4052 if (ip->protocol == IPPROTO_TCP) {
4053 queue_len = sp->total_tcp_fifos;
4054 queue = (ntohs(th->source) +
4056 sp->fifo_selector[queue_len - 1];
4057 if (queue >= queue_len)
4058 queue = queue_len - 1;
4059 } else if (ip->protocol == IPPROTO_UDP) {
4060 queue_len = sp->total_udp_fifos;
4061 queue = (ntohs(th->source) +
4063 sp->fifo_selector[queue_len - 1];
4064 if (queue >= queue_len)
4065 queue = queue_len - 1;
4066 queue += sp->udp_fifo_idx;
4067 if (skb->len > 1024)
4068 enable_per_list_interrupt = 1;
4072 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4073 /* get fifo number based on skb->priority value */
4074 queue = config->fifo_mapping
4075 [skb->priority & (MAX_TX_FIFOS - 1)];
4076 fifo = &mac_control->fifos[queue];
4078 spin_lock_irqsave(&fifo->tx_lock, flags);
4080 if (sp->config.multiq) {
4081 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4082 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4083 return NETDEV_TX_BUSY;
4085 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4086 if (netif_queue_stopped(dev)) {
4087 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4088 return NETDEV_TX_BUSY;
4092 put_off = (u16)fifo->tx_curr_put_info.offset;
4093 get_off = (u16)fifo->tx_curr_get_info.offset;
4094 txdp = fifo->list_info[put_off].list_virt_addr;
4096 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4097 /* Avoid "put" pointer going beyond "get" pointer */
4098 if (txdp->Host_Control ||
4099 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4100 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4101 s2io_stop_tx_queue(sp, fifo->fifo_no);
4102 dev_kfree_skb_any(skb);
4103 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4104 return NETDEV_TX_OK;
4107 offload_type = s2io_offload_type(skb);
4108 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4109 txdp->Control_1 |= TXD_TCP_LSO_EN;
4110 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4112 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4113 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4117 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4118 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4119 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4120 if (enable_per_list_interrupt)
4121 if (put_off & (queue_len >> 5))
4122 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4124 txdp->Control_2 |= TXD_VLAN_ENABLE;
4125 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4128 frg_len = skb_headlen(skb);
4129 txdp->Buffer_Pointer = dma_map_single(&sp->pdev->dev, skb->data,
4130 frg_len, DMA_TO_DEVICE);
4131 if (dma_mapping_error(&sp->pdev->dev, txdp->Buffer_Pointer))
4132 goto pci_map_failed;
4134 txdp->Host_Control = (unsigned long)skb;
4135 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4137 frg_cnt = skb_shinfo(skb)->nr_frags;
4138 /* For fragmented SKB. */
4139 for (i = 0; i < frg_cnt; i++) {
4140 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4141 /* A '0' length fragment will be ignored */
4142 if (!skb_frag_size(frag))
4145 txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
4147 skb_frag_size(frag),
4149 txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
4151 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4153 tx_fifo = mac_control->tx_FIFO_start[queue];
4154 val64 = fifo->list_info[put_off].list_phy_addr;
4155 writeq(val64, &tx_fifo->TxDL_Pointer);
4157 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4160 val64 |= TX_FIFO_SPECIAL_FUNC;
4162 writeq(val64, &tx_fifo->List_Control);
4165 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4167 fifo->tx_curr_put_info.offset = put_off;
4169 /* Avoid "put" pointer going beyond "get" pointer */
4170 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4171 swstats->fifo_full_cnt++;
4173 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4175 s2io_stop_tx_queue(sp, fifo->fifo_no);
4177 swstats->mem_allocated += skb->truesize;
4178 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4180 if (sp->config.intr_type == MSI_X)
4181 tx_intr_handler(fifo);
4183 return NETDEV_TX_OK;
4186 swstats->pci_map_fail_cnt++;
4187 s2io_stop_tx_queue(sp, fifo->fifo_no);
4188 swstats->mem_freed += skb->truesize;
4189 dev_kfree_skb_any(skb);
4190 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4191 return NETDEV_TX_OK;
4195 s2io_alarm_handle(struct timer_list *t)
4197 struct s2io_nic *sp = from_timer(sp, t, alarm_timer);
4198 struct net_device *dev = sp->dev;
4200 s2io_handle_errors(dev);
4201 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4204 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4206 struct ring_info *ring = (struct ring_info *)dev_id;
4207 struct s2io_nic *sp = ring->nic;
4208 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4210 if (unlikely(!is_s2io_card_up(sp)))
4213 if (sp->config.napi) {
4214 u8 __iomem *addr = NULL;
4217 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4218 addr += (7 - ring->ring_no);
4219 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4222 napi_schedule(&ring->napi);
4224 rx_intr_handler(ring, 0);
4225 s2io_chk_rx_buffers(sp, ring);
4231 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4234 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4235 struct s2io_nic *sp = fifos->nic;
4236 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4237 struct config_param *config = &sp->config;
4240 if (unlikely(!is_s2io_card_up(sp)))
4243 reason = readq(&bar0->general_int_status);
4244 if (unlikely(reason == S2IO_MINUS_ONE))
4245 /* Nothing much can be done. Get out */
4248 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4249 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4251 if (reason & GEN_INTR_TXPIC)
4252 s2io_txpic_intr_handle(sp);
4254 if (reason & GEN_INTR_TXTRAFFIC)
4255 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4257 for (i = 0; i < config->tx_fifo_num; i++)
4258 tx_intr_handler(&fifos[i]);
4260 writeq(sp->general_int_mask, &bar0->general_int_mask);
4261 readl(&bar0->general_int_status);
4264 /* The interrupt was not raised by us */
4268 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4270 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4273 val64 = readq(&bar0->pic_int_status);
4274 if (val64 & PIC_INT_GPIO) {
4275 val64 = readq(&bar0->gpio_int_reg);
4276 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4277 (val64 & GPIO_INT_REG_LINK_UP)) {
4279 * This is unstable state so clear both up/down
4280 * interrupt and adapter to re-evaluate the link state.
4282 val64 |= GPIO_INT_REG_LINK_DOWN;
4283 val64 |= GPIO_INT_REG_LINK_UP;
4284 writeq(val64, &bar0->gpio_int_reg);
4285 val64 = readq(&bar0->gpio_int_mask);
4286 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4287 GPIO_INT_MASK_LINK_DOWN);
4288 writeq(val64, &bar0->gpio_int_mask);
4289 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4290 val64 = readq(&bar0->adapter_status);
4291 /* Enable Adapter */
4292 val64 = readq(&bar0->adapter_control);
4293 val64 |= ADAPTER_CNTL_EN;
4294 writeq(val64, &bar0->adapter_control);
4295 val64 |= ADAPTER_LED_ON;
4296 writeq(val64, &bar0->adapter_control);
4297 if (!sp->device_enabled_once)
4298 sp->device_enabled_once = 1;
4300 s2io_link(sp, LINK_UP);
4302 * unmask link down interrupt and mask link-up
4305 val64 = readq(&bar0->gpio_int_mask);
4306 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4307 val64 |= GPIO_INT_MASK_LINK_UP;
4308 writeq(val64, &bar0->gpio_int_mask);
4310 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4311 val64 = readq(&bar0->adapter_status);
4312 s2io_link(sp, LINK_DOWN);
4313 /* Link is down so unmaks link up interrupt */
4314 val64 = readq(&bar0->gpio_int_mask);
4315 val64 &= ~GPIO_INT_MASK_LINK_UP;
4316 val64 |= GPIO_INT_MASK_LINK_DOWN;
4317 writeq(val64, &bar0->gpio_int_mask);
4320 val64 = readq(&bar0->adapter_control);
4321 val64 = val64 & (~ADAPTER_LED_ON);
4322 writeq(val64, &bar0->adapter_control);
4325 val64 = readq(&bar0->gpio_int_mask);
4329 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4330 * @value: alarm bits
4331 * @addr: address value
4332 * @cnt: counter variable
4333 * Description: Check for alarm and increment the counter
4335 * 1 - if alarm bit set
4336 * 0 - if alarm bit is not set
4338 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4339 unsigned long long *cnt)
4342 val64 = readq(addr);
4343 if (val64 & value) {
4344 writeq(val64, addr);
4353 * s2io_handle_errors - Xframe error indication handler
4354 * @dev_id: opaque handle to dev
4355 * Description: Handle alarms such as loss of link, single or
4356 * double ECC errors, critical and serious errors.
4360 static void s2io_handle_errors(void *dev_id)
4362 struct net_device *dev = (struct net_device *)dev_id;
4363 struct s2io_nic *sp = netdev_priv(dev);
4364 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4365 u64 temp64 = 0, val64 = 0;
4368 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4369 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4371 if (!is_s2io_card_up(sp))
4374 if (pci_channel_offline(sp->pdev))
4377 memset(&sw_stat->ring_full_cnt, 0,
4378 sizeof(sw_stat->ring_full_cnt));
4380 /* Handling the XPAK counters update */
4381 if (stats->xpak_timer_count < 72000) {
4382 /* waiting for an hour */
4383 stats->xpak_timer_count++;
4385 s2io_updt_xpak_counter(dev);
4386 /* reset the count to zero */
4387 stats->xpak_timer_count = 0;
4390 /* Handling link status change error Intr */
4391 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4392 val64 = readq(&bar0->mac_rmac_err_reg);
4393 writeq(val64, &bar0->mac_rmac_err_reg);
4394 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4395 schedule_work(&sp->set_link_task);
4398 /* In case of a serious error, the device will be Reset. */
4399 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4400 &sw_stat->serious_err_cnt))
4403 /* Check for data parity error */
4404 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4405 &sw_stat->parity_err_cnt))
4408 /* Check for ring full counter */
4409 if (sp->device_type == XFRAME_II_DEVICE) {
4410 val64 = readq(&bar0->ring_bump_counter1);
4411 for (i = 0; i < 4; i++) {
4412 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4413 temp64 >>= 64 - ((i+1)*16);
4414 sw_stat->ring_full_cnt[i] += temp64;
4417 val64 = readq(&bar0->ring_bump_counter2);
4418 for (i = 0; i < 4; i++) {
4419 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4420 temp64 >>= 64 - ((i+1)*16);
4421 sw_stat->ring_full_cnt[i+4] += temp64;
4425 val64 = readq(&bar0->txdma_int_status);
4426 /*check for pfc_err*/
4427 if (val64 & TXDMA_PFC_INT) {
4428 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4429 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4432 &sw_stat->pfc_err_cnt))
4434 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4436 &sw_stat->pfc_err_cnt);
4439 /*check for tda_err*/
4440 if (val64 & TXDMA_TDA_INT) {
4441 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4445 &sw_stat->tda_err_cnt))
4447 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4449 &sw_stat->tda_err_cnt);
4451 /*check for pcc_err*/
4452 if (val64 & TXDMA_PCC_INT) {
4453 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4454 PCC_N_SERR | PCC_6_COF_OV_ERR |
4455 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4456 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4459 &sw_stat->pcc_err_cnt))
4461 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4463 &sw_stat->pcc_err_cnt);
4466 /*check for tti_err*/
4467 if (val64 & TXDMA_TTI_INT) {
4468 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4470 &sw_stat->tti_err_cnt))
4472 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4474 &sw_stat->tti_err_cnt);
4477 /*check for lso_err*/
4478 if (val64 & TXDMA_LSO_INT) {
4479 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4480 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4482 &sw_stat->lso_err_cnt))
4484 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4486 &sw_stat->lso_err_cnt);
4489 /*check for tpa_err*/
4490 if (val64 & TXDMA_TPA_INT) {
4491 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4493 &sw_stat->tpa_err_cnt))
4495 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4497 &sw_stat->tpa_err_cnt);
4500 /*check for sm_err*/
4501 if (val64 & TXDMA_SM_INT) {
4502 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4504 &sw_stat->sm_err_cnt))
4508 val64 = readq(&bar0->mac_int_status);
4509 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4510 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4511 &bar0->mac_tmac_err_reg,
4512 &sw_stat->mac_tmac_err_cnt))
4514 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4515 TMAC_DESC_ECC_SG_ERR |
4516 TMAC_DESC_ECC_DB_ERR,
4517 &bar0->mac_tmac_err_reg,
4518 &sw_stat->mac_tmac_err_cnt);
4521 val64 = readq(&bar0->xgxs_int_status);
4522 if (val64 & XGXS_INT_STATUS_TXGXS) {
4523 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4524 &bar0->xgxs_txgxs_err_reg,
4525 &sw_stat->xgxs_txgxs_err_cnt))
4527 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4528 &bar0->xgxs_txgxs_err_reg,
4529 &sw_stat->xgxs_txgxs_err_cnt);
4532 val64 = readq(&bar0->rxdma_int_status);
4533 if (val64 & RXDMA_INT_RC_INT_M) {
4534 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4536 RC_PRCn_SM_ERR_ALARM |
4537 RC_FTC_SM_ERR_ALARM,
4539 &sw_stat->rc_err_cnt))
4541 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4543 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4544 &sw_stat->rc_err_cnt);
4545 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4548 &bar0->prc_pcix_err_reg,
4549 &sw_stat->prc_pcix_err_cnt))
4551 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4554 &bar0->prc_pcix_err_reg,
4555 &sw_stat->prc_pcix_err_cnt);
4558 if (val64 & RXDMA_INT_RPA_INT_M) {
4559 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4561 &sw_stat->rpa_err_cnt))
4563 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4565 &sw_stat->rpa_err_cnt);
4568 if (val64 & RXDMA_INT_RDA_INT_M) {
4569 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4570 RDA_FRM_ECC_DB_N_AERR |
4573 RDA_RXD_ECC_DB_SERR,
4575 &sw_stat->rda_err_cnt))
4577 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4578 RDA_FRM_ECC_SG_ERR |
4582 &sw_stat->rda_err_cnt);
4585 if (val64 & RXDMA_INT_RTI_INT_M) {
4586 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4588 &sw_stat->rti_err_cnt))
4590 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4592 &sw_stat->rti_err_cnt);
4595 val64 = readq(&bar0->mac_int_status);
4596 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4597 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4598 &bar0->mac_rmac_err_reg,
4599 &sw_stat->mac_rmac_err_cnt))
4601 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4602 RMAC_SINGLE_ECC_ERR |
4603 RMAC_DOUBLE_ECC_ERR,
4604 &bar0->mac_rmac_err_reg,
4605 &sw_stat->mac_rmac_err_cnt);
4608 val64 = readq(&bar0->xgxs_int_status);
4609 if (val64 & XGXS_INT_STATUS_RXGXS) {
4610 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4611 &bar0->xgxs_rxgxs_err_reg,
4612 &sw_stat->xgxs_rxgxs_err_cnt))
4616 val64 = readq(&bar0->mc_int_status);
4617 if (val64 & MC_INT_STATUS_MC_INT) {
4618 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4620 &sw_stat->mc_err_cnt))
4623 /* Handling Ecc errors */
4624 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4625 writeq(val64, &bar0->mc_err_reg);
4626 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4627 sw_stat->double_ecc_errs++;
4628 if (sp->device_type != XFRAME_II_DEVICE) {
4630 * Reset XframeI only if critical error
4633 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4634 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4638 sw_stat->single_ecc_errs++;
4644 s2io_stop_all_tx_queue(sp);
4645 schedule_work(&sp->rst_timer_task);
4646 sw_stat->soft_reset_cnt++;
4650 * s2io_isr - ISR handler of the device .
4651 * @irq: the irq of the device.
4652 * @dev_id: a void pointer to the dev structure of the NIC.
4653 * Description: This function is the ISR handler of the device. It
4654 * identifies the reason for the interrupt and calls the relevant
4655 * service routines. As a contongency measure, this ISR allocates the
4656 * recv buffers, if their numbers are below the panic value which is
4657 * presently set to 25% of the original number of rcv buffers allocated.
4659 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4660 * IRQ_NONE: will be returned if interrupt is not from our device
4662 static irqreturn_t s2io_isr(int irq, void *dev_id)
4664 struct net_device *dev = (struct net_device *)dev_id;
4665 struct s2io_nic *sp = netdev_priv(dev);
4666 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4669 struct mac_info *mac_control;
4670 struct config_param *config;
4672 /* Pretend we handled any irq's from a disconnected card */
4673 if (pci_channel_offline(sp->pdev))
4676 if (!is_s2io_card_up(sp))
4679 config = &sp->config;
4680 mac_control = &sp->mac_control;
4683 * Identify the cause for interrupt and call the appropriate
4684 * interrupt handler. Causes for the interrupt could be;
4689 reason = readq(&bar0->general_int_status);
4691 if (unlikely(reason == S2IO_MINUS_ONE))
4692 return IRQ_HANDLED; /* Nothing much can be done. Get out */
4695 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4696 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4699 if (reason & GEN_INTR_RXTRAFFIC) {
4700 napi_schedule(&sp->napi);
4701 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4702 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4703 readl(&bar0->rx_traffic_int);
4707 * rx_traffic_int reg is an R1 register, writing all 1's
4708 * will ensure that the actual interrupt causing bit
4709 * get's cleared and hence a read can be avoided.
4711 if (reason & GEN_INTR_RXTRAFFIC)
4712 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4714 for (i = 0; i < config->rx_ring_num; i++) {
4715 struct ring_info *ring = &mac_control->rings[i];
4717 rx_intr_handler(ring, 0);
4722 * tx_traffic_int reg is an R1 register, writing all 1's
4723 * will ensure that the actual interrupt causing bit get's
4724 * cleared and hence a read can be avoided.
4726 if (reason & GEN_INTR_TXTRAFFIC)
4727 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4729 for (i = 0; i < config->tx_fifo_num; i++)
4730 tx_intr_handler(&mac_control->fifos[i]);
4732 if (reason & GEN_INTR_TXPIC)
4733 s2io_txpic_intr_handle(sp);
4736 * Reallocate the buffers from the interrupt handler itself.
4738 if (!config->napi) {
4739 for (i = 0; i < config->rx_ring_num; i++) {
4740 struct ring_info *ring = &mac_control->rings[i];
4742 s2io_chk_rx_buffers(sp, ring);
4745 writeq(sp->general_int_mask, &bar0->general_int_mask);
4746 readl(&bar0->general_int_status);
4750 } else if (!reason) {
4751 /* The interrupt was not raised by us */
4761 static void s2io_updt_stats(struct s2io_nic *sp)
4763 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4767 if (is_s2io_card_up(sp)) {
4768 /* Apprx 30us on a 133 MHz bus */
4769 val64 = SET_UPDT_CLICKS(10) |
4770 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4771 writeq(val64, &bar0->stat_cfg);
4774 val64 = readq(&bar0->stat_cfg);
4775 if (!(val64 & s2BIT(0)))
4779 break; /* Updt failed */
4785 * s2io_get_stats - Updates the device statistics structure.
4786 * @dev : pointer to the device structure.
4788 * This function updates the device statistics structure in the s2io_nic
4789 * structure and returns a pointer to the same.
4791 * pointer to the updated net_device_stats structure.
4793 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4795 struct s2io_nic *sp = netdev_priv(dev);
4796 struct mac_info *mac_control = &sp->mac_control;
4797 struct stat_block *stats = mac_control->stats_info;
4800 /* Configure Stats for immediate updt */
4801 s2io_updt_stats(sp);
4803 /* A device reset will cause the on-adapter statistics to be zero'ed.
4804 * This can be done while running by changing the MTU. To prevent the
4805 * system from having the stats zero'ed, the driver keeps a copy of the
4806 * last update to the system (which is also zero'ed on reset). This
4807 * enables the driver to accurately know the delta between the last
4808 * update and the current update.
4810 delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4811 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4812 sp->stats.rx_packets += delta;
4813 dev->stats.rx_packets += delta;
4815 delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4816 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4817 sp->stats.tx_packets += delta;
4818 dev->stats.tx_packets += delta;
4820 delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4821 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4822 sp->stats.rx_bytes += delta;
4823 dev->stats.rx_bytes += delta;
4825 delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4826 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4827 sp->stats.tx_bytes += delta;
4828 dev->stats.tx_bytes += delta;
4830 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4831 sp->stats.rx_errors += delta;
4832 dev->stats.rx_errors += delta;
4834 delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4835 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4836 sp->stats.tx_errors += delta;
4837 dev->stats.tx_errors += delta;
4839 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4840 sp->stats.rx_dropped += delta;
4841 dev->stats.rx_dropped += delta;
4843 delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4844 sp->stats.tx_dropped += delta;
4845 dev->stats.tx_dropped += delta;
4847 /* The adapter MAC interprets pause frames as multicast packets, but
4848 * does not pass them up. This erroneously increases the multicast
4849 * packet count and needs to be deducted when the multicast frame count
4852 delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4853 le32_to_cpu(stats->rmac_vld_mcst_frms);
4854 delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4855 delta -= sp->stats.multicast;
4856 sp->stats.multicast += delta;
4857 dev->stats.multicast += delta;
4859 delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4860 le32_to_cpu(stats->rmac_usized_frms)) +
4861 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4862 sp->stats.rx_length_errors += delta;
4863 dev->stats.rx_length_errors += delta;
4865 delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4866 sp->stats.rx_crc_errors += delta;
4867 dev->stats.rx_crc_errors += delta;
4873 * s2io_set_multicast - entry point for multicast address enable/disable.
4874 * @dev : pointer to the device structure
4875 * @may_sleep: parameter indicates if sleeping when waiting for command
4878 * This function is a driver entry point which gets called by the kernel
4879 * whenever multicast addresses must be enabled/disabled. This also gets
4880 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4881 * determine, if multicast address must be enabled or if promiscuous mode
4882 * is to be disabled etc.
4886 static void s2io_set_multicast(struct net_device *dev, bool may_sleep)
4889 struct netdev_hw_addr *ha;
4890 struct s2io_nic *sp = netdev_priv(dev);
4891 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4892 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4894 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4896 struct config_param *config = &sp->config;
4898 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4899 /* Enable all Multicast addresses */
4900 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4901 &bar0->rmac_addr_data0_mem);
4902 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4903 &bar0->rmac_addr_data1_mem);
4904 val64 = RMAC_ADDR_CMD_MEM_WE |
4905 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4906 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4907 writeq(val64, &bar0->rmac_addr_cmd_mem);
4908 /* Wait till command completes */
4909 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4910 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4911 S2IO_BIT_RESET, may_sleep);
4914 sp->all_multi_pos = config->max_mc_addr - 1;
4915 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4916 /* Disable all Multicast addresses */
4917 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4918 &bar0->rmac_addr_data0_mem);
4919 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4920 &bar0->rmac_addr_data1_mem);
4921 val64 = RMAC_ADDR_CMD_MEM_WE |
4922 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4923 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4924 writeq(val64, &bar0->rmac_addr_cmd_mem);
4925 /* Wait till command completes */
4926 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4927 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4928 S2IO_BIT_RESET, may_sleep);
4931 sp->all_multi_pos = 0;
4934 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4935 /* Put the NIC into promiscuous mode */
4936 add = &bar0->mac_cfg;
4937 val64 = readq(&bar0->mac_cfg);
4938 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4940 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4941 writel((u32)val64, add);
4942 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4943 writel((u32) (val64 >> 32), (add + 4));
4945 if (vlan_tag_strip != 1) {
4946 val64 = readq(&bar0->rx_pa_cfg);
4947 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4948 writeq(val64, &bar0->rx_pa_cfg);
4949 sp->vlan_strip_flag = 0;
4952 val64 = readq(&bar0->mac_cfg);
4953 sp->promisc_flg = 1;
4954 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4956 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4957 /* Remove the NIC from promiscuous mode */
4958 add = &bar0->mac_cfg;
4959 val64 = readq(&bar0->mac_cfg);
4960 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4962 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4963 writel((u32)val64, add);
4964 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4965 writel((u32) (val64 >> 32), (add + 4));
4967 if (vlan_tag_strip != 0) {
4968 val64 = readq(&bar0->rx_pa_cfg);
4969 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4970 writeq(val64, &bar0->rx_pa_cfg);
4971 sp->vlan_strip_flag = 1;
4974 val64 = readq(&bar0->mac_cfg);
4975 sp->promisc_flg = 0;
4976 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
4979 /* Update individual M_CAST address list */
4980 if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
4981 if (netdev_mc_count(dev) >
4982 (config->max_mc_addr - config->max_mac_addr)) {
4984 "%s: No more Rx filters can be added - "
4985 "please enable ALL_MULTI instead\n",
4990 prev_cnt = sp->mc_addr_count;
4991 sp->mc_addr_count = netdev_mc_count(dev);
4993 /* Clear out the previous list of Mc in the H/W. */
4994 for (i = 0; i < prev_cnt; i++) {
4995 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4996 &bar0->rmac_addr_data0_mem);
4997 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4998 &bar0->rmac_addr_data1_mem);
4999 val64 = RMAC_ADDR_CMD_MEM_WE |
5000 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5001 RMAC_ADDR_CMD_MEM_OFFSET
5002 (config->mc_start_offset + i);
5003 writeq(val64, &bar0->rmac_addr_cmd_mem);
5005 /* Wait for command completes */
5006 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5007 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5008 S2IO_BIT_RESET, may_sleep)) {
5010 "%s: Adding Multicasts failed\n",
5016 /* Create the new Rx filter list and update the same in H/W. */
5018 netdev_for_each_mc_addr(ha, dev) {
5020 for (j = 0; j < ETH_ALEN; j++) {
5021 mac_addr |= ha->addr[j];
5025 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5026 &bar0->rmac_addr_data0_mem);
5027 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5028 &bar0->rmac_addr_data1_mem);
5029 val64 = RMAC_ADDR_CMD_MEM_WE |
5030 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5031 RMAC_ADDR_CMD_MEM_OFFSET
5032 (i + config->mc_start_offset);
5033 writeq(val64, &bar0->rmac_addr_cmd_mem);
5035 /* Wait for command completes */
5036 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5037 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5038 S2IO_BIT_RESET, may_sleep)) {
5040 "%s: Adding Multicasts failed\n",
5049 /* NDO wrapper for s2io_set_multicast */
5050 static void s2io_ndo_set_multicast(struct net_device *dev)
5052 s2io_set_multicast(dev, false);
5055 /* read from CAM unicast & multicast addresses and store it in
5056 * def_mac_addr structure
5058 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5062 struct config_param *config = &sp->config;
5064 /* store unicast & multicast mac addresses */
5065 for (offset = 0; offset < config->max_mc_addr; offset++) {
5066 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5067 /* if read fails disable the entry */
5068 if (mac_addr == FAILURE)
5069 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5070 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5074 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5075 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5078 struct config_param *config = &sp->config;
5079 /* restore unicast mac address */
5080 for (offset = 0; offset < config->max_mac_addr; offset++)
5081 do_s2io_prog_unicast(sp->dev,
5082 sp->def_mac_addr[offset].mac_addr);
5084 /* restore multicast mac address */
5085 for (offset = config->mc_start_offset;
5086 offset < config->max_mc_addr; offset++)
5087 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5090 /* add a multicast MAC address to CAM */
5091 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5095 struct config_param *config = &sp->config;
5097 for (i = 0; i < ETH_ALEN; i++) {
5099 mac_addr |= addr[i];
5101 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5104 /* check if the multicast mac already preset in CAM */
5105 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5107 tmp64 = do_s2io_read_unicast_mc(sp, i);
5108 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5111 if (tmp64 == mac_addr)
5114 if (i == config->max_mc_addr) {
5116 "CAM full no space left for multicast MAC\n");
5119 /* Update the internal structure with this new mac address */
5120 do_s2io_copy_mac_addr(sp, i, mac_addr);
5122 return do_s2io_add_mac(sp, mac_addr, i);
5125 /* add MAC address to CAM */
5126 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5129 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5131 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5132 &bar0->rmac_addr_data0_mem);
5134 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5135 RMAC_ADDR_CMD_MEM_OFFSET(off);
5136 writeq(val64, &bar0->rmac_addr_cmd_mem);
5138 /* Wait till command completes */
5139 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5140 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5141 S2IO_BIT_RESET, true)) {
5142 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5147 /* deletes a specified unicast/multicast mac entry from CAM */
5148 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5151 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5152 struct config_param *config = &sp->config;
5155 offset < config->max_mc_addr; offset++) {
5156 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5157 if (tmp64 == addr) {
5158 /* disable the entry by writing 0xffffffffffffULL */
5159 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5161 /* store the new mac list from CAM */
5162 do_s2io_store_unicast_mc(sp);
5166 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5167 (unsigned long long)addr);
5171 /* read mac entries from CAM */
5172 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5175 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5178 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5179 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5180 writeq(val64, &bar0->rmac_addr_cmd_mem);
5182 /* Wait till command completes */
5183 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5184 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5185 S2IO_BIT_RESET, true)) {
5186 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5189 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5195 * s2io_set_mac_addr - driver entry point
5198 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5200 struct sockaddr *addr = p;
5202 if (!is_valid_ether_addr(addr->sa_data))
5203 return -EADDRNOTAVAIL;
5205 eth_hw_addr_set(dev, addr->sa_data);
5207 /* store the MAC address in CAM */
5208 return do_s2io_prog_unicast(dev, dev->dev_addr);
5211 * do_s2io_prog_unicast - Programs the Xframe mac address
5212 * @dev : pointer to the device structure.
5213 * @addr: a uchar pointer to the new mac address which is to be set.
5214 * Description : This procedure will program the Xframe to receive
5215 * frames with new Mac Address
5216 * Return value: SUCCESS on success and an appropriate (-)ve integer
5217 * as defined in errno.h file on failure.
5220 static int do_s2io_prog_unicast(struct net_device *dev, const u8 *addr)
5222 struct s2io_nic *sp = netdev_priv(dev);
5223 register u64 mac_addr = 0, perm_addr = 0;
5226 struct config_param *config = &sp->config;
5229 * Set the new MAC address as the new unicast filter and reflect this
5230 * change on the device address registered with the OS. It will be
5233 for (i = 0; i < ETH_ALEN; i++) {
5235 mac_addr |= addr[i];
5237 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5240 /* check if the dev_addr is different than perm_addr */
5241 if (mac_addr == perm_addr)
5244 /* check if the mac already preset in CAM */
5245 for (i = 1; i < config->max_mac_addr; i++) {
5246 tmp64 = do_s2io_read_unicast_mc(sp, i);
5247 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5250 if (tmp64 == mac_addr) {
5252 "MAC addr:0x%llx already present in CAM\n",
5253 (unsigned long long)mac_addr);
5257 if (i == config->max_mac_addr) {
5258 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5261 /* Update the internal structure with this new mac address */
5262 do_s2io_copy_mac_addr(sp, i, mac_addr);
5264 return do_s2io_add_mac(sp, mac_addr, i);
5268 * s2io_ethtool_set_link_ksettings - Sets different link parameters.
5269 * @dev : pointer to netdev
5270 * @cmd: pointer to the structure with parameters given by ethtool to set
5273 * The function sets different link parameters provided by the user onto
5280 s2io_ethtool_set_link_ksettings(struct net_device *dev,
5281 const struct ethtool_link_ksettings *cmd)
5283 struct s2io_nic *sp = netdev_priv(dev);
5284 if ((cmd->base.autoneg == AUTONEG_ENABLE) ||
5285 (cmd->base.speed != SPEED_10000) ||
5286 (cmd->base.duplex != DUPLEX_FULL))
5289 s2io_close(sp->dev);
5297 * s2io_ethtool_get_link_ksettings - Return link specific information.
5298 * @dev: pointer to netdev
5299 * @cmd : pointer to the structure with parameters given by ethtool
5300 * to return link information.
5302 * Returns link specific information like speed, duplex etc.. to ethtool.
5304 * return 0 on success.
5308 s2io_ethtool_get_link_ksettings(struct net_device *dev,
5309 struct ethtool_link_ksettings *cmd)
5311 struct s2io_nic *sp = netdev_priv(dev);
5313 ethtool_link_ksettings_zero_link_mode(cmd, supported);
5314 ethtool_link_ksettings_add_link_mode(cmd, supported, 10000baseT_Full);
5315 ethtool_link_ksettings_add_link_mode(cmd, supported, FIBRE);
5317 ethtool_link_ksettings_zero_link_mode(cmd, advertising);
5318 ethtool_link_ksettings_add_link_mode(cmd, advertising, 10000baseT_Full);
5319 ethtool_link_ksettings_add_link_mode(cmd, advertising, FIBRE);
5321 cmd->base.port = PORT_FIBRE;
5323 if (netif_carrier_ok(sp->dev)) {
5324 cmd->base.speed = SPEED_10000;
5325 cmd->base.duplex = DUPLEX_FULL;
5327 cmd->base.speed = SPEED_UNKNOWN;
5328 cmd->base.duplex = DUPLEX_UNKNOWN;
5331 cmd->base.autoneg = AUTONEG_DISABLE;
5336 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5337 * @dev: pointer to netdev
5338 * @info : pointer to the structure with parameters given by ethtool to
5339 * return driver information.
5341 * Returns driver specefic information like name, version etc.. to ethtool.
5346 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5347 struct ethtool_drvinfo *info)
5349 struct s2io_nic *sp = netdev_priv(dev);
5351 strscpy(info->driver, s2io_driver_name, sizeof(info->driver));
5352 strscpy(info->version, s2io_driver_version, sizeof(info->version));
5353 strscpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5357 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5358 * @dev: pointer to netdev
5359 * @regs : pointer to the structure with parameters given by ethtool for
5360 * dumping the registers.
5361 * @space: The input argument into which all the registers are dumped.
5363 * Dumps the entire register space of xFrame NIC into the user given
5369 static void s2io_ethtool_gregs(struct net_device *dev,
5370 struct ethtool_regs *regs, void *space)
5374 u8 *reg_space = (u8 *)space;
5375 struct s2io_nic *sp = netdev_priv(dev);
5377 regs->len = XENA_REG_SPACE;
5378 regs->version = sp->pdev->subsystem_device;
5380 for (i = 0; i < regs->len; i += 8) {
5381 reg = readq(sp->bar0 + i);
5382 memcpy((reg_space + i), ®, 8);
5387 * s2io_set_led - control NIC led
5389 static void s2io_set_led(struct s2io_nic *sp, bool on)
5391 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5392 u16 subid = sp->pdev->subsystem_device;
5395 if ((sp->device_type == XFRAME_II_DEVICE) ||
5396 ((subid & 0xFF) >= 0x07)) {
5397 val64 = readq(&bar0->gpio_control);
5399 val64 |= GPIO_CTRL_GPIO_0;
5401 val64 &= ~GPIO_CTRL_GPIO_0;
5403 writeq(val64, &bar0->gpio_control);
5405 val64 = readq(&bar0->adapter_control);
5407 val64 |= ADAPTER_LED_ON;
5409 val64 &= ~ADAPTER_LED_ON;
5411 writeq(val64, &bar0->adapter_control);
5417 * s2io_ethtool_set_led - To physically identify the nic on the system.
5418 * @dev : network device
5419 * @state: led setting
5421 * Description: Used to physically identify the NIC on the system.
5422 * The Link LED will blink for a time specified by the user for
5424 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5425 * identification is possible only if it's link is up.
5428 static int s2io_ethtool_set_led(struct net_device *dev,
5429 enum ethtool_phys_id_state state)
5431 struct s2io_nic *sp = netdev_priv(dev);
5432 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5433 u16 subid = sp->pdev->subsystem_device;
5435 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5436 u64 val64 = readq(&bar0->adapter_control);
5437 if (!(val64 & ADAPTER_CNTL_EN)) {
5438 pr_err("Adapter Link down, cannot blink LED\n");
5444 case ETHTOOL_ID_ACTIVE:
5445 sp->adapt_ctrl_org = readq(&bar0->gpio_control);
5446 return 1; /* cycle on/off once per second */
5449 s2io_set_led(sp, true);
5452 case ETHTOOL_ID_OFF:
5453 s2io_set_led(sp, false);
5456 case ETHTOOL_ID_INACTIVE:
5457 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5458 writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
5465 s2io_ethtool_gringparam(struct net_device *dev,
5466 struct ethtool_ringparam *ering,
5467 struct kernel_ethtool_ringparam *kernel_ering,
5468 struct netlink_ext_ack *extack)
5470 struct s2io_nic *sp = netdev_priv(dev);
5471 int i, tx_desc_count = 0, rx_desc_count = 0;
5473 if (sp->rxd_mode == RXD_MODE_1) {
5474 ering->rx_max_pending = MAX_RX_DESC_1;
5475 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5477 ering->rx_max_pending = MAX_RX_DESC_2;
5478 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5481 ering->tx_max_pending = MAX_TX_DESC;
5483 for (i = 0; i < sp->config.rx_ring_num; i++)
5484 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5485 ering->rx_pending = rx_desc_count;
5486 ering->rx_jumbo_pending = rx_desc_count;
5488 for (i = 0; i < sp->config.tx_fifo_num; i++)
5489 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5490 ering->tx_pending = tx_desc_count;
5491 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5495 * s2io_ethtool_getpause_data -Pause frame generation and reception.
5496 * @dev: pointer to netdev
5497 * @ep : pointer to the structure with pause parameters given by ethtool.
5499 * Returns the Pause frame generation and reception capability of the NIC.
5503 static void s2io_ethtool_getpause_data(struct net_device *dev,
5504 struct ethtool_pauseparam *ep)
5507 struct s2io_nic *sp = netdev_priv(dev);
5508 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5510 val64 = readq(&bar0->rmac_pause_cfg);
5511 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5512 ep->tx_pause = true;
5513 if (val64 & RMAC_PAUSE_RX_ENABLE)
5514 ep->rx_pause = true;
5515 ep->autoneg = false;
5519 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5520 * @dev: pointer to netdev
5521 * @ep : pointer to the structure with pause parameters given by ethtool.
5523 * It can be used to set or reset Pause frame generation or reception
5524 * support of the NIC.
5526 * int, returns 0 on Success
5529 static int s2io_ethtool_setpause_data(struct net_device *dev,
5530 struct ethtool_pauseparam *ep)
5533 struct s2io_nic *sp = netdev_priv(dev);
5534 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5536 val64 = readq(&bar0->rmac_pause_cfg);
5538 val64 |= RMAC_PAUSE_GEN_ENABLE;
5540 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5542 val64 |= RMAC_PAUSE_RX_ENABLE;
5544 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5545 writeq(val64, &bar0->rmac_pause_cfg);
5549 #define S2IO_DEV_ID 5
5551 * read_eeprom - reads 4 bytes of data from user given offset.
5552 * @sp : private member of the device structure, which is a pointer to the
5553 * s2io_nic structure.
5554 * @off : offset at which the data must be written
5555 * @data : Its an output parameter where the data read at the given
5558 * Will read 4 bytes of data from the user given offset and return the
5560 * NOTE: Will allow to read only part of the EEPROM visible through the
5563 * -1 on failure and 0 on success.
5565 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5570 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5572 if (sp->device_type == XFRAME_I_DEVICE) {
5573 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5574 I2C_CONTROL_ADDR(off) |
5575 I2C_CONTROL_BYTE_CNT(0x3) |
5577 I2C_CONTROL_CNTL_START;
5578 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5580 while (exit_cnt < 5) {
5581 val64 = readq(&bar0->i2c_control);
5582 if (I2C_CONTROL_CNTL_END(val64)) {
5583 *data = I2C_CONTROL_GET_DATA(val64);
5592 if (sp->device_type == XFRAME_II_DEVICE) {
5593 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5594 SPI_CONTROL_BYTECNT(0x3) |
5595 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5596 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5597 val64 |= SPI_CONTROL_REQ;
5598 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5599 while (exit_cnt < 5) {
5600 val64 = readq(&bar0->spi_control);
5601 if (val64 & SPI_CONTROL_NACK) {
5604 } else if (val64 & SPI_CONTROL_DONE) {
5605 *data = readq(&bar0->spi_data);
5618 * write_eeprom - actually writes the relevant part of the data value.
5619 * @sp : private member of the device structure, which is a pointer to the
5620 * s2io_nic structure.
5621 * @off : offset at which the data must be written
5622 * @data : The data that is to be written
5623 * @cnt : Number of bytes of the data that are actually to be written into
5624 * the Eeprom. (max of 3)
5626 * Actually writes the relevant part of the data value into the Eeprom
5627 * through the I2C bus.
5629 * 0 on success, -1 on failure.
5632 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5634 int exit_cnt = 0, ret = -1;
5636 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5638 if (sp->device_type == XFRAME_I_DEVICE) {
5639 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5640 I2C_CONTROL_ADDR(off) |
5641 I2C_CONTROL_BYTE_CNT(cnt) |
5642 I2C_CONTROL_SET_DATA((u32)data) |
5643 I2C_CONTROL_CNTL_START;
5644 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5646 while (exit_cnt < 5) {
5647 val64 = readq(&bar0->i2c_control);
5648 if (I2C_CONTROL_CNTL_END(val64)) {
5649 if (!(val64 & I2C_CONTROL_NACK))
5658 if (sp->device_type == XFRAME_II_DEVICE) {
5659 int write_cnt = (cnt == 8) ? 0 : cnt;
5660 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5662 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5663 SPI_CONTROL_BYTECNT(write_cnt) |
5664 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5665 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5666 val64 |= SPI_CONTROL_REQ;
5667 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5668 while (exit_cnt < 5) {
5669 val64 = readq(&bar0->spi_control);
5670 if (val64 & SPI_CONTROL_NACK) {
5673 } else if (val64 & SPI_CONTROL_DONE) {
5683 static void s2io_vpd_read(struct s2io_nic *nic)
5687 int i = 0, cnt, len, fail = 0;
5688 int vpd_addr = 0x80;
5689 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5691 if (nic->device_type == XFRAME_II_DEVICE) {
5692 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5695 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5698 strcpy(nic->serial_num, "NOT AVAILABLE");
5700 vpd_data = kmalloc(256, GFP_KERNEL);
5702 swstats->mem_alloc_fail_cnt++;
5705 swstats->mem_allocated += 256;
5707 for (i = 0; i < 256; i += 4) {
5708 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5709 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5710 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5711 for (cnt = 0; cnt < 5; cnt++) {
5713 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5718 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5722 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5723 (u32 *)&vpd_data[i]);
5727 /* read serial number of adapter */
5728 for (cnt = 0; cnt < 252; cnt++) {
5729 if ((vpd_data[cnt] == 'S') &&
5730 (vpd_data[cnt+1] == 'N')) {
5731 len = vpd_data[cnt+2];
5732 if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5733 memcpy(nic->serial_num,
5736 memset(nic->serial_num+len,
5738 VPD_STRING_LEN-len);
5745 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5747 memcpy(nic->product_name, &vpd_data[3], len);
5748 nic->product_name[len] = 0;
5751 swstats->mem_freed += 256;
5755 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5756 * @dev: pointer to netdev
5757 * @eeprom : pointer to the user level structure provided by ethtool,
5758 * containing all relevant information.
5759 * @data_buf : user defined value to be written into Eeprom.
5760 * Description: Reads the values stored in the Eeprom at given offset
5761 * for a given length. Stores these values int the input argument data
5762 * buffer 'data_buf' and returns these to the caller (ethtool.)
5767 static int s2io_ethtool_geeprom(struct net_device *dev,
5768 struct ethtool_eeprom *eeprom, u8 * data_buf)
5772 struct s2io_nic *sp = netdev_priv(dev);
5774 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5776 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5777 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5779 for (i = 0; i < eeprom->len; i += 4) {
5780 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5781 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5785 memcpy((data_buf + i), &valid, 4);
5791 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5792 * @dev: pointer to netdev
5793 * @eeprom : pointer to the user level structure provided by ethtool,
5794 * containing all relevant information.
5795 * @data_buf : user defined value to be written into Eeprom.
5797 * Tries to write the user provided value in the Eeprom, at the offset
5798 * given by the user.
5800 * 0 on success, -EFAULT on failure.
5803 static int s2io_ethtool_seeprom(struct net_device *dev,
5804 struct ethtool_eeprom *eeprom,
5807 int len = eeprom->len, cnt = 0;
5808 u64 valid = 0, data;
5809 struct s2io_nic *sp = netdev_priv(dev);
5811 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5813 "ETHTOOL_WRITE_EEPROM Err: "
5814 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5815 (sp->pdev->vendor | (sp->pdev->device << 16)),
5821 data = (u32)data_buf[cnt] & 0x000000FF;
5823 valid = (u32)(data << 24);
5827 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5829 "ETHTOOL_WRITE_EEPROM Err: "
5830 "Cannot write into the specified offset\n");
5841 * s2io_register_test - reads and writes into all clock domains.
5842 * @sp : private member of the device structure, which is a pointer to the
5843 * s2io_nic structure.
5844 * @data : variable that returns the result of each of the test conducted b
5847 * Read and write into all clock domains. The NIC has 3 clock domains,
5848 * see that registers in all the three regions are accessible.
5853 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5855 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5856 u64 val64 = 0, exp_val;
5859 val64 = readq(&bar0->pif_rd_swapper_fb);
5860 if (val64 != 0x123456789abcdefULL) {
5862 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5865 val64 = readq(&bar0->rmac_pause_cfg);
5866 if (val64 != 0xc000ffff00000000ULL) {
5868 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5871 val64 = readq(&bar0->rx_queue_cfg);
5872 if (sp->device_type == XFRAME_II_DEVICE)
5873 exp_val = 0x0404040404040404ULL;
5875 exp_val = 0x0808080808080808ULL;
5876 if (val64 != exp_val) {
5878 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5881 val64 = readq(&bar0->xgxs_efifo_cfg);
5882 if (val64 != 0x000000001923141EULL) {
5884 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5887 val64 = 0x5A5A5A5A5A5A5A5AULL;
5888 writeq(val64, &bar0->xmsi_data);
5889 val64 = readq(&bar0->xmsi_data);
5890 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5892 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5895 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5896 writeq(val64, &bar0->xmsi_data);
5897 val64 = readq(&bar0->xmsi_data);
5898 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5900 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5908 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5909 * @sp : private member of the device structure, which is a pointer to the
5910 * s2io_nic structure.
5911 * @data:variable that returns the result of each of the test conducted by
5914 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5920 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5923 u64 ret_data, org_4F0, org_7F0;
5924 u8 saved_4F0 = 0, saved_7F0 = 0;
5925 struct net_device *dev = sp->dev;
5927 /* Test Write Error at offset 0 */
5928 /* Note that SPI interface allows write access to all areas
5929 * of EEPROM. Hence doing all negative testing only for Xframe I.
5931 if (sp->device_type == XFRAME_I_DEVICE)
5932 if (!write_eeprom(sp, 0, 0, 3))
5935 /* Save current values at offsets 0x4F0 and 0x7F0 */
5936 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5938 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5941 /* Test Write at offset 4f0 */
5942 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5944 if (read_eeprom(sp, 0x4F0, &ret_data))
5947 if (ret_data != 0x012345) {
5948 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5949 "Data written %llx Data read %llx\n",
5950 dev->name, (unsigned long long)0x12345,
5951 (unsigned long long)ret_data);
5955 /* Reset the EEPROM data go FFFF */
5956 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5958 /* Test Write Request Error at offset 0x7c */
5959 if (sp->device_type == XFRAME_I_DEVICE)
5960 if (!write_eeprom(sp, 0x07C, 0, 3))
5963 /* Test Write Request at offset 0x7f0 */
5964 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5966 if (read_eeprom(sp, 0x7F0, &ret_data))
5969 if (ret_data != 0x012345) {
5970 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5971 "Data written %llx Data read %llx\n",
5972 dev->name, (unsigned long long)0x12345,
5973 (unsigned long long)ret_data);
5977 /* Reset the EEPROM data go FFFF */
5978 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5980 if (sp->device_type == XFRAME_I_DEVICE) {
5981 /* Test Write Error at offset 0x80 */
5982 if (!write_eeprom(sp, 0x080, 0, 3))
5985 /* Test Write Error at offset 0xfc */
5986 if (!write_eeprom(sp, 0x0FC, 0, 3))
5989 /* Test Write Error at offset 0x100 */
5990 if (!write_eeprom(sp, 0x100, 0, 3))
5993 /* Test Write Error at offset 4ec */
5994 if (!write_eeprom(sp, 0x4EC, 0, 3))
5998 /* Restore values at offsets 0x4F0 and 0x7F0 */
6000 write_eeprom(sp, 0x4F0, org_4F0, 3);
6002 write_eeprom(sp, 0x7F0, org_7F0, 3);
6009 * s2io_bist_test - invokes the MemBist test of the card .
6010 * @sp : private member of the device structure, which is a pointer to the
6011 * s2io_nic structure.
6012 * @data:variable that returns the result of each of the test conducted by
6015 * This invokes the MemBist test of the card. We give around
6016 * 2 secs time for the Test to complete. If it's still not complete
6017 * within this peiod, we consider that the test failed.
6019 * 0 on success and -1 on failure.
6022 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6025 int cnt = 0, ret = -1;
6027 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6028 bist |= PCI_BIST_START;
6029 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6032 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6033 if (!(bist & PCI_BIST_START)) {
6034 *data = (bist & PCI_BIST_CODE_MASK);
6046 * s2io_link_test - verifies the link state of the nic
6047 * @sp: private member of the device structure, which is a pointer to the
6048 * s2io_nic structure.
6049 * @data: variable that returns the result of each of the test conducted by
6052 * The function verifies the link state of the NIC and updates the input
6053 * argument 'data' appropriately.
6058 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6060 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6063 val64 = readq(&bar0->adapter_status);
6064 if (!(LINK_IS_UP(val64)))
6073 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6074 * @sp: private member of the device structure, which is a pointer to the
6075 * s2io_nic structure.
6076 * @data: variable that returns the result of each of the test
6077 * conducted by the driver.
6079 * This is one of the offline test that tests the read and write
6080 * access to the RldRam chip on the NIC.
6085 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6087 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6089 int cnt, iteration = 0, test_fail = 0;
6091 val64 = readq(&bar0->adapter_control);
6092 val64 &= ~ADAPTER_ECC_EN;
6093 writeq(val64, &bar0->adapter_control);
6095 val64 = readq(&bar0->mc_rldram_test_ctrl);
6096 val64 |= MC_RLDRAM_TEST_MODE;
6097 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6099 val64 = readq(&bar0->mc_rldram_mrs);
6100 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6101 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6103 val64 |= MC_RLDRAM_MRS_ENABLE;
6104 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6106 while (iteration < 2) {
6107 val64 = 0x55555555aaaa0000ULL;
6109 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6110 writeq(val64, &bar0->mc_rldram_test_d0);
6112 val64 = 0xaaaa5a5555550000ULL;
6114 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6115 writeq(val64, &bar0->mc_rldram_test_d1);
6117 val64 = 0x55aaaaaaaa5a0000ULL;
6119 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6120 writeq(val64, &bar0->mc_rldram_test_d2);
6122 val64 = (u64) (0x0000003ffffe0100ULL);
6123 writeq(val64, &bar0->mc_rldram_test_add);
6125 val64 = MC_RLDRAM_TEST_MODE |
6126 MC_RLDRAM_TEST_WRITE |
6128 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6130 for (cnt = 0; cnt < 5; cnt++) {
6131 val64 = readq(&bar0->mc_rldram_test_ctrl);
6132 if (val64 & MC_RLDRAM_TEST_DONE)
6140 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6141 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6143 for (cnt = 0; cnt < 5; cnt++) {
6144 val64 = readq(&bar0->mc_rldram_test_ctrl);
6145 if (val64 & MC_RLDRAM_TEST_DONE)
6153 val64 = readq(&bar0->mc_rldram_test_ctrl);
6154 if (!(val64 & MC_RLDRAM_TEST_PASS))
6162 /* Bring the adapter out of test mode */
6163 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6169 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6170 * @dev: pointer to netdev
6171 * @ethtest : pointer to a ethtool command specific structure that will be
6172 * returned to the user.
6173 * @data : variable that returns the result of each of the test
6174 * conducted by the driver.
6176 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6177 * the health of the card.
6182 static void s2io_ethtool_test(struct net_device *dev,
6183 struct ethtool_test *ethtest,
6186 struct s2io_nic *sp = netdev_priv(dev);
6187 int orig_state = netif_running(sp->dev);
6189 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6190 /* Offline Tests. */
6192 s2io_close(sp->dev);
6194 if (s2io_register_test(sp, &data[0]))
6195 ethtest->flags |= ETH_TEST_FL_FAILED;
6199 if (s2io_rldram_test(sp, &data[3]))
6200 ethtest->flags |= ETH_TEST_FL_FAILED;
6204 if (s2io_eeprom_test(sp, &data[1]))
6205 ethtest->flags |= ETH_TEST_FL_FAILED;
6207 if (s2io_bist_test(sp, &data[4]))
6208 ethtest->flags |= ETH_TEST_FL_FAILED;
6217 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6226 if (s2io_link_test(sp, &data[2]))
6227 ethtest->flags |= ETH_TEST_FL_FAILED;
6236 static void s2io_get_ethtool_stats(struct net_device *dev,
6237 struct ethtool_stats *estats,
6241 struct s2io_nic *sp = netdev_priv(dev);
6242 struct stat_block *stats = sp->mac_control.stats_info;
6243 struct swStat *swstats = &stats->sw_stat;
6244 struct xpakStat *xstats = &stats->xpak_stat;
6246 s2io_updt_stats(sp);
6248 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 |
6249 le32_to_cpu(stats->tmac_frms);
6251 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6252 le32_to_cpu(stats->tmac_data_octets);
6253 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6255 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6256 le32_to_cpu(stats->tmac_mcst_frms);
6258 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6259 le32_to_cpu(stats->tmac_bcst_frms);
6260 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6262 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6263 le32_to_cpu(stats->tmac_ttl_octets);
6265 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6266 le32_to_cpu(stats->tmac_ucst_frms);
6268 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6269 le32_to_cpu(stats->tmac_nucst_frms);
6271 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6272 le32_to_cpu(stats->tmac_any_err_frms);
6273 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6274 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6276 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6277 le32_to_cpu(stats->tmac_vld_ip);
6279 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6280 le32_to_cpu(stats->tmac_drop_ip);
6282 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6283 le32_to_cpu(stats->tmac_icmp);
6285 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6286 le32_to_cpu(stats->tmac_rst_tcp);
6287 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6288 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6289 le32_to_cpu(stats->tmac_udp);
6291 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6292 le32_to_cpu(stats->rmac_vld_frms);
6294 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6295 le32_to_cpu(stats->rmac_data_octets);
6296 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6297 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6299 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6300 le32_to_cpu(stats->rmac_vld_mcst_frms);
6302 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6303 le32_to_cpu(stats->rmac_vld_bcst_frms);
6304 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6305 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6306 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6307 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6308 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6310 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6311 le32_to_cpu(stats->rmac_ttl_octets);
6313 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6314 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6316 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6317 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6319 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6320 le32_to_cpu(stats->rmac_discarded_frms);
6322 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6323 << 32 | le32_to_cpu(stats->rmac_drop_events);
6324 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6325 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6327 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6328 le32_to_cpu(stats->rmac_usized_frms);
6330 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6331 le32_to_cpu(stats->rmac_osized_frms);
6333 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6334 le32_to_cpu(stats->rmac_frag_frms);
6336 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6337 le32_to_cpu(stats->rmac_jabber_frms);
6338 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6339 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6340 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6341 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6342 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6343 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6345 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6346 le32_to_cpu(stats->rmac_ip);
6347 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6348 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6350 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6351 le32_to_cpu(stats->rmac_drop_ip);
6353 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6354 le32_to_cpu(stats->rmac_icmp);
6355 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6357 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6358 le32_to_cpu(stats->rmac_udp);
6360 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6361 le32_to_cpu(stats->rmac_err_drp_udp);
6362 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6363 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6364 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6365 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6366 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6367 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6368 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6369 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6370 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6371 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6372 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6373 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6374 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6375 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6376 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6377 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6378 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6380 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6381 le32_to_cpu(stats->rmac_pause_cnt);
6382 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6383 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6385 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6386 le32_to_cpu(stats->rmac_accepted_ip);
6387 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6388 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6389 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6390 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6391 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6392 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6393 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6394 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6395 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6396 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6397 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6398 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6399 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6400 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6401 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6402 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6403 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6404 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6405 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6407 /* Enhanced statistics exist only for Hercules */
6408 if (sp->device_type == XFRAME_II_DEVICE) {
6410 le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6412 le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6414 le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6415 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6416 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6417 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6418 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6419 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6420 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6421 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6422 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6423 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6424 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6425 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6426 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6427 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6431 tmp_stats[i++] = swstats->single_ecc_errs;
6432 tmp_stats[i++] = swstats->double_ecc_errs;
6433 tmp_stats[i++] = swstats->parity_err_cnt;
6434 tmp_stats[i++] = swstats->serious_err_cnt;
6435 tmp_stats[i++] = swstats->soft_reset_cnt;
6436 tmp_stats[i++] = swstats->fifo_full_cnt;
6437 for (k = 0; k < MAX_RX_RINGS; k++)
6438 tmp_stats[i++] = swstats->ring_full_cnt[k];
6439 tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6440 tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6441 tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6442 tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6443 tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6444 tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6445 tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6446 tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6447 tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6448 tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6449 tmp_stats[i++] = xstats->warn_laser_output_power_high;
6450 tmp_stats[i++] = xstats->warn_laser_output_power_low;
6451 tmp_stats[i++] = swstats->clubbed_frms_cnt;
6452 tmp_stats[i++] = swstats->sending_both;
6453 tmp_stats[i++] = swstats->outof_sequence_pkts;
6454 tmp_stats[i++] = swstats->flush_max_pkts;
6455 if (swstats->num_aggregations) {
6456 u64 tmp = swstats->sum_avg_pkts_aggregated;
6459 * Since 64-bit divide does not work on all platforms,
6460 * do repeated subtraction.
6462 while (tmp >= swstats->num_aggregations) {
6463 tmp -= swstats->num_aggregations;
6466 tmp_stats[i++] = count;
6469 tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6470 tmp_stats[i++] = swstats->pci_map_fail_cnt;
6471 tmp_stats[i++] = swstats->watchdog_timer_cnt;
6472 tmp_stats[i++] = swstats->mem_allocated;
6473 tmp_stats[i++] = swstats->mem_freed;
6474 tmp_stats[i++] = swstats->link_up_cnt;
6475 tmp_stats[i++] = swstats->link_down_cnt;
6476 tmp_stats[i++] = swstats->link_up_time;
6477 tmp_stats[i++] = swstats->link_down_time;
6479 tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6480 tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6481 tmp_stats[i++] = swstats->tx_parity_err_cnt;
6482 tmp_stats[i++] = swstats->tx_link_loss_cnt;
6483 tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6485 tmp_stats[i++] = swstats->rx_parity_err_cnt;
6486 tmp_stats[i++] = swstats->rx_abort_cnt;
6487 tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6488 tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6489 tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6490 tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6491 tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6492 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6493 tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6494 tmp_stats[i++] = swstats->tda_err_cnt;
6495 tmp_stats[i++] = swstats->pfc_err_cnt;
6496 tmp_stats[i++] = swstats->pcc_err_cnt;
6497 tmp_stats[i++] = swstats->tti_err_cnt;
6498 tmp_stats[i++] = swstats->tpa_err_cnt;
6499 tmp_stats[i++] = swstats->sm_err_cnt;
6500 tmp_stats[i++] = swstats->lso_err_cnt;
6501 tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6502 tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6503 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6504 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6505 tmp_stats[i++] = swstats->rc_err_cnt;
6506 tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6507 tmp_stats[i++] = swstats->rpa_err_cnt;
6508 tmp_stats[i++] = swstats->rda_err_cnt;
6509 tmp_stats[i++] = swstats->rti_err_cnt;
6510 tmp_stats[i++] = swstats->mc_err_cnt;
6513 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6515 return XENA_REG_SPACE;
6519 static int s2io_get_eeprom_len(struct net_device *dev)
6521 return XENA_EEPROM_SPACE;
6524 static int s2io_get_sset_count(struct net_device *dev, int sset)
6526 struct s2io_nic *sp = netdev_priv(dev);
6530 return S2IO_TEST_LEN;
6532 switch (sp->device_type) {
6533 case XFRAME_I_DEVICE:
6534 return XFRAME_I_STAT_LEN;
6535 case XFRAME_II_DEVICE:
6536 return XFRAME_II_STAT_LEN;
6545 static void s2io_ethtool_get_strings(struct net_device *dev,
6546 u32 stringset, u8 *data)
6549 struct s2io_nic *sp = netdev_priv(dev);
6551 switch (stringset) {
6553 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6556 stat_size = sizeof(ethtool_xena_stats_keys);
6557 memcpy(data, ðtool_xena_stats_keys, stat_size);
6558 if (sp->device_type == XFRAME_II_DEVICE) {
6559 memcpy(data + stat_size,
6560 ðtool_enhanced_stats_keys,
6561 sizeof(ethtool_enhanced_stats_keys));
6562 stat_size += sizeof(ethtool_enhanced_stats_keys);
6565 memcpy(data + stat_size, ðtool_driver_stats_keys,
6566 sizeof(ethtool_driver_stats_keys));
6570 static int s2io_set_features(struct net_device *dev, netdev_features_t features)
6572 struct s2io_nic *sp = netdev_priv(dev);
6573 netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO;
6575 if (changed && netif_running(dev)) {
6578 s2io_stop_all_tx_queue(sp);
6580 dev->features = features;
6581 rc = s2io_card_up(sp);
6585 s2io_start_all_tx_queue(sp);
6593 static const struct ethtool_ops netdev_ethtool_ops = {
6594 .get_drvinfo = s2io_ethtool_gdrvinfo,
6595 .get_regs_len = s2io_ethtool_get_regs_len,
6596 .get_regs = s2io_ethtool_gregs,
6597 .get_link = ethtool_op_get_link,
6598 .get_eeprom_len = s2io_get_eeprom_len,
6599 .get_eeprom = s2io_ethtool_geeprom,
6600 .set_eeprom = s2io_ethtool_seeprom,
6601 .get_ringparam = s2io_ethtool_gringparam,
6602 .get_pauseparam = s2io_ethtool_getpause_data,
6603 .set_pauseparam = s2io_ethtool_setpause_data,
6604 .self_test = s2io_ethtool_test,
6605 .get_strings = s2io_ethtool_get_strings,
6606 .set_phys_id = s2io_ethtool_set_led,
6607 .get_ethtool_stats = s2io_get_ethtool_stats,
6608 .get_sset_count = s2io_get_sset_count,
6609 .get_link_ksettings = s2io_ethtool_get_link_ksettings,
6610 .set_link_ksettings = s2io_ethtool_set_link_ksettings,
6614 * s2io_ioctl - Entry point for the Ioctl
6615 * @dev : Device pointer.
6616 * @rq : An IOCTL specefic structure, that can contain a pointer to
6617 * a proprietary structure used to pass information to the driver.
6618 * @cmd : This is used to distinguish between the different commands that
6619 * can be passed to the IOCTL functions.
6621 * Currently there are no special functionality supported in IOCTL, hence
6622 * function always return EOPNOTSUPPORTED
6625 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6631 * s2io_change_mtu - entry point to change MTU size for the device.
6632 * @dev : device pointer.
6633 * @new_mtu : the new MTU size for the device.
6634 * Description: A driver entry point to change MTU size for the device.
6635 * Before changing the MTU the device must be stopped.
6637 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6641 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6643 struct s2io_nic *sp = netdev_priv(dev);
6647 if (netif_running(dev)) {
6648 s2io_stop_all_tx_queue(sp);
6650 ret = s2io_card_up(sp);
6652 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6656 s2io_wake_all_tx_queue(sp);
6657 } else { /* Device is down */
6658 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6659 u64 val64 = new_mtu;
6661 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6668 * s2io_set_link - Set the LInk status
6669 * @work: work struct containing a pointer to device private structure
6670 * Description: Sets the link status for the adapter
6673 static void s2io_set_link(struct work_struct *work)
6675 struct s2io_nic *nic = container_of(work, struct s2io_nic,
6677 struct net_device *dev = nic->dev;
6678 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6684 if (!netif_running(dev))
6687 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6688 /* The card is being reset, no point doing anything */
6692 subid = nic->pdev->subsystem_device;
6693 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6695 * Allow a small delay for the NICs self initiated
6696 * cleanup to complete.
6701 val64 = readq(&bar0->adapter_status);
6702 if (LINK_IS_UP(val64)) {
6703 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6704 if (verify_xena_quiescence(nic)) {
6705 val64 = readq(&bar0->adapter_control);
6706 val64 |= ADAPTER_CNTL_EN;
6707 writeq(val64, &bar0->adapter_control);
6708 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6709 nic->device_type, subid)) {
6710 val64 = readq(&bar0->gpio_control);
6711 val64 |= GPIO_CTRL_GPIO_0;
6712 writeq(val64, &bar0->gpio_control);
6713 val64 = readq(&bar0->gpio_control);
6715 val64 |= ADAPTER_LED_ON;
6716 writeq(val64, &bar0->adapter_control);
6718 nic->device_enabled_once = true;
6721 "%s: Error: device is not Quiescent\n",
6723 s2io_stop_all_tx_queue(nic);
6726 val64 = readq(&bar0->adapter_control);
6727 val64 |= ADAPTER_LED_ON;
6728 writeq(val64, &bar0->adapter_control);
6729 s2io_link(nic, LINK_UP);
6731 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6733 val64 = readq(&bar0->gpio_control);
6734 val64 &= ~GPIO_CTRL_GPIO_0;
6735 writeq(val64, &bar0->gpio_control);
6736 val64 = readq(&bar0->gpio_control);
6739 val64 = readq(&bar0->adapter_control);
6740 val64 = val64 & (~ADAPTER_LED_ON);
6741 writeq(val64, &bar0->adapter_control);
6742 s2io_link(nic, LINK_DOWN);
6744 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6750 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6752 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6753 u64 *temp2, int size)
6755 struct net_device *dev = sp->dev;
6756 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6758 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6759 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6762 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6764 * As Rx frame are not going to be processed,
6765 * using same mapped address for the Rxd
6768 rxdp1->Buffer0_ptr = *temp0;
6770 *skb = netdev_alloc_skb(dev, size);
6773 "%s: Out of memory to allocate %s\n",
6774 dev->name, "1 buf mode SKBs");
6775 stats->mem_alloc_fail_cnt++;
6778 stats->mem_allocated += (*skb)->truesize;
6779 /* storing the mapped addr in a temp variable
6780 * such it will be used for next rxd whose
6781 * Host Control is NULL
6783 rxdp1->Buffer0_ptr = *temp0 =
6784 dma_map_single(&sp->pdev->dev, (*skb)->data,
6785 size - NET_IP_ALIGN,
6787 if (dma_mapping_error(&sp->pdev->dev, rxdp1->Buffer0_ptr))
6788 goto memalloc_failed;
6789 rxdp->Host_Control = (unsigned long) (*skb);
6791 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6792 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6793 /* Two buffer Mode */
6795 rxdp3->Buffer2_ptr = *temp2;
6796 rxdp3->Buffer0_ptr = *temp0;
6797 rxdp3->Buffer1_ptr = *temp1;
6799 *skb = netdev_alloc_skb(dev, size);
6802 "%s: Out of memory to allocate %s\n",
6805 stats->mem_alloc_fail_cnt++;
6808 stats->mem_allocated += (*skb)->truesize;
6809 rxdp3->Buffer2_ptr = *temp2 =
6810 dma_map_single(&sp->pdev->dev, (*skb)->data,
6811 dev->mtu + 4, DMA_FROM_DEVICE);
6812 if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer2_ptr))
6813 goto memalloc_failed;
6814 rxdp3->Buffer0_ptr = *temp0 =
6815 dma_map_single(&sp->pdev->dev, ba->ba_0,
6816 BUF0_LEN, DMA_FROM_DEVICE);
6817 if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer0_ptr)) {
6818 dma_unmap_single(&sp->pdev->dev,
6819 (dma_addr_t)rxdp3->Buffer2_ptr,
6822 goto memalloc_failed;
6824 rxdp->Host_Control = (unsigned long) (*skb);
6826 /* Buffer-1 will be dummy buffer not used */
6827 rxdp3->Buffer1_ptr = *temp1 =
6828 dma_map_single(&sp->pdev->dev, ba->ba_1,
6829 BUF1_LEN, DMA_FROM_DEVICE);
6830 if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer1_ptr)) {
6831 dma_unmap_single(&sp->pdev->dev,
6832 (dma_addr_t)rxdp3->Buffer0_ptr,
6833 BUF0_LEN, DMA_FROM_DEVICE);
6834 dma_unmap_single(&sp->pdev->dev,
6835 (dma_addr_t)rxdp3->Buffer2_ptr,
6838 goto memalloc_failed;
6845 stats->pci_map_fail_cnt++;
6846 stats->mem_freed += (*skb)->truesize;
6847 dev_kfree_skb(*skb);
6851 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6854 struct net_device *dev = sp->dev;
6855 if (sp->rxd_mode == RXD_MODE_1) {
6856 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6857 } else if (sp->rxd_mode == RXD_MODE_3B) {
6858 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6859 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6860 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6864 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6866 int i, j, k, blk_cnt = 0, size;
6867 struct config_param *config = &sp->config;
6868 struct mac_info *mac_control = &sp->mac_control;
6869 struct net_device *dev = sp->dev;
6870 struct RxD_t *rxdp = NULL;
6871 struct sk_buff *skb = NULL;
6872 struct buffAdd *ba = NULL;
6873 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6875 /* Calculate the size based on ring mode */
6876 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6877 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6878 if (sp->rxd_mode == RXD_MODE_1)
6879 size += NET_IP_ALIGN;
6880 else if (sp->rxd_mode == RXD_MODE_3B)
6881 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6883 for (i = 0; i < config->rx_ring_num; i++) {
6884 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6885 struct ring_info *ring = &mac_control->rings[i];
6887 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6889 for (j = 0; j < blk_cnt; j++) {
6890 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6891 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
6892 if (sp->rxd_mode == RXD_MODE_3B)
6893 ba = &ring->ba[j][k];
6894 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
6902 set_rxd_buffer_size(sp, rxdp, size);
6904 /* flip the Ownership bit to Hardware */
6905 rxdp->Control_1 |= RXD_OWN_XENA;
6913 static int s2io_add_isr(struct s2io_nic *sp)
6916 struct net_device *dev = sp->dev;
6919 if (sp->config.intr_type == MSI_X)
6920 ret = s2io_enable_msi_x(sp);
6922 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6923 sp->config.intr_type = INTA;
6927 * Store the values of the MSIX table in
6928 * the struct s2io_nic structure
6930 store_xmsi_data(sp);
6932 /* After proper initialization of H/W, register ISR */
6933 if (sp->config.intr_type == MSI_X) {
6934 int i, msix_rx_cnt = 0;
6936 for (i = 0; i < sp->num_entries; i++) {
6937 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
6938 if (sp->s2io_entries[i].type ==
6940 snprintf(sp->desc[i],
6941 sizeof(sp->desc[i]),
6944 err = request_irq(sp->entries[i].vector,
6945 s2io_msix_ring_handle,
6948 sp->s2io_entries[i].arg);
6949 } else if (sp->s2io_entries[i].type ==
6951 snprintf(sp->desc[i],
6952 sizeof(sp->desc[i]),
6955 err = request_irq(sp->entries[i].vector,
6956 s2io_msix_fifo_handle,
6959 sp->s2io_entries[i].arg);
6962 /* if either data or addr is zero print it. */
6963 if (!(sp->msix_info[i].addr &&
6964 sp->msix_info[i].data)) {
6966 "%s @Addr:0x%llx Data:0x%llx\n",
6968 (unsigned long long)
6969 sp->msix_info[i].addr,
6970 (unsigned long long)
6971 ntohl(sp->msix_info[i].data));
6975 remove_msix_isr(sp);
6978 "%s:MSI-X-%d registration "
6979 "failed\n", dev->name, i);
6982 "%s: Defaulting to INTA\n",
6984 sp->config.intr_type = INTA;
6987 sp->s2io_entries[i].in_use =
6988 MSIX_REGISTERED_SUCCESS;
6992 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
6994 "MSI-X-TX entries enabled through alarm vector\n");
6997 if (sp->config.intr_type == INTA) {
6998 err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED,
7001 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7009 static void s2io_rem_isr(struct s2io_nic *sp)
7011 if (sp->config.intr_type == MSI_X)
7012 remove_msix_isr(sp);
7014 remove_inta_isr(sp);
7017 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7020 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7021 register u64 val64 = 0;
7022 struct config_param *config;
7023 config = &sp->config;
7025 if (!is_s2io_card_up(sp))
7028 del_timer_sync(&sp->alarm_timer);
7029 /* If s2io_set_link task is executing, wait till it completes. */
7030 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7032 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7035 if (sp->config.napi) {
7037 if (config->intr_type == MSI_X) {
7038 for (; off < sp->config.rx_ring_num; off++)
7039 napi_disable(&sp->mac_control.rings[off].napi);
7042 napi_disable(&sp->napi);
7045 /* disable Tx and Rx traffic on the NIC */
7051 /* stop the tx queue, indicate link down */
7052 s2io_link(sp, LINK_DOWN);
7054 /* Check if the device is Quiescent and then Reset the NIC */
7056 /* As per the HW requirement we need to replenish the
7057 * receive buffer to avoid the ring bump. Since there is
7058 * no intention of processing the Rx frame at this pointwe are
7059 * just setting the ownership bit of rxd in Each Rx
7060 * ring to HW and set the appropriate buffer size
7061 * based on the ring mode
7063 rxd_owner_bit_reset(sp);
7065 val64 = readq(&bar0->adapter_status);
7066 if (verify_xena_quiescence(sp)) {
7067 if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7074 DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7075 "adapter status reads 0x%llx\n",
7076 (unsigned long long)val64);
7083 /* Free all Tx buffers */
7084 free_tx_buffers(sp);
7086 /* Free all Rx buffers */
7087 free_rx_buffers(sp);
7089 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7092 static void s2io_card_down(struct s2io_nic *sp)
7094 do_s2io_card_down(sp, 1);
7097 static int s2io_card_up(struct s2io_nic *sp)
7100 struct config_param *config;
7101 struct mac_info *mac_control;
7102 struct net_device *dev = sp->dev;
7105 /* Initialize the H/W I/O registers */
7108 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7116 * Initializing the Rx buffers. For now we are considering only 1
7117 * Rx ring and initializing buffers into 30 Rx blocks
7119 config = &sp->config;
7120 mac_control = &sp->mac_control;
7122 for (i = 0; i < config->rx_ring_num; i++) {
7123 struct ring_info *ring = &mac_control->rings[i];
7125 ring->mtu = dev->mtu;
7126 ring->lro = !!(dev->features & NETIF_F_LRO);
7127 ret = fill_rx_buffers(sp, ring, 1);
7129 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7134 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7135 ring->rx_bufs_left);
7138 /* Initialise napi */
7140 if (config->intr_type == MSI_X) {
7141 for (i = 0; i < sp->config.rx_ring_num; i++)
7142 napi_enable(&sp->mac_control.rings[i].napi);
7144 napi_enable(&sp->napi);
7148 /* Maintain the state prior to the open */
7149 if (sp->promisc_flg)
7150 sp->promisc_flg = 0;
7151 if (sp->m_cast_flg) {
7153 sp->all_multi_pos = 0;
7156 /* Setting its receive mode */
7157 s2io_set_multicast(dev, true);
7159 if (dev->features & NETIF_F_LRO) {
7160 /* Initialize max aggregatable pkts per session based on MTU */
7161 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7162 /* Check if we can use (if specified) user provided value */
7163 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7164 sp->lro_max_aggr_per_sess = lro_max_pkts;
7167 /* Enable Rx Traffic and interrupts on the NIC */
7168 if (start_nic(sp)) {
7169 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7174 /* Add interrupt service routine */
7175 if (s2io_add_isr(sp) != 0) {
7176 if (sp->config.intr_type == MSI_X)
7182 timer_setup(&sp->alarm_timer, s2io_alarm_handle, 0);
7183 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
7185 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7187 /* Enable select interrupts */
7188 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7189 if (sp->config.intr_type != INTA) {
7190 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7191 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7193 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7194 interruptible |= TX_PIC_INTR;
7195 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7202 if (config->intr_type == MSI_X) {
7203 for (i = 0; i < sp->config.rx_ring_num; i++)
7204 napi_disable(&sp->mac_control.rings[i].napi);
7206 napi_disable(&sp->napi);
7211 free_rx_buffers(sp);
7216 * s2io_restart_nic - Resets the NIC.
7217 * @work : work struct containing a pointer to the device private structure
7219 * This function is scheduled to be run by the s2io_tx_watchdog
7220 * function after 0.5 secs to reset the NIC. The idea is to reduce
7221 * the run time of the watch dog routine which is run holding a
7225 static void s2io_restart_nic(struct work_struct *work)
7227 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7228 struct net_device *dev = sp->dev;
7232 if (!netif_running(dev))
7236 if (s2io_card_up(sp)) {
7237 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7239 s2io_wake_all_tx_queue(sp);
7240 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7246 * s2io_tx_watchdog - Watchdog for transmit side.
7247 * @dev : Pointer to net device structure
7248 * @txqueue: index of the hanging queue
7250 * This function is triggered if the Tx Queue is stopped
7251 * for a pre-defined amount of time when the Interface is still up.
7252 * If the Interface is jammed in such a situation, the hardware is
7253 * reset (by s2io_close) and restarted again (by s2io_open) to
7254 * overcome any problem that might have been caused in the hardware.
7259 static void s2io_tx_watchdog(struct net_device *dev, unsigned int txqueue)
7261 struct s2io_nic *sp = netdev_priv(dev);
7262 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7264 if (netif_carrier_ok(dev)) {
7265 swstats->watchdog_timer_cnt++;
7266 schedule_work(&sp->rst_timer_task);
7267 swstats->soft_reset_cnt++;
7272 * rx_osm_handler - To perform some OS related operations on SKB.
7273 * @ring_data : the ring from which this RxD was extracted.
7276 * This function is called by the Rx interrupt serivce routine to perform
7277 * some OS related operations on the SKB before passing it to the upper
7278 * layers. It mainly checks if the checksum is OK, if so adds it to the
7279 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7280 * to the upper layer. If the checksum is wrong, it increments the Rx
7281 * packet error count, frees the SKB and returns error.
7283 * SUCCESS on success and -1 on failure.
7285 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7287 struct s2io_nic *sp = ring_data->nic;
7288 struct net_device *dev = ring_data->dev;
7289 struct sk_buff *skb = (struct sk_buff *)
7290 ((unsigned long)rxdp->Host_Control);
7291 int ring_no = ring_data->ring_no;
7292 u16 l3_csum, l4_csum;
7293 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7296 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7301 /* Check for parity error */
7303 swstats->parity_err_cnt++;
7305 err_mask = err >> 48;
7308 swstats->rx_parity_err_cnt++;
7312 swstats->rx_abort_cnt++;
7316 swstats->rx_parity_abort_cnt++;
7320 swstats->rx_rda_fail_cnt++;
7324 swstats->rx_unkn_prot_cnt++;
7328 swstats->rx_fcs_err_cnt++;
7332 swstats->rx_buf_size_err_cnt++;
7336 swstats->rx_rxd_corrupt_cnt++;
7340 swstats->rx_unkn_err_cnt++;
7344 * Drop the packet if bad transfer code. Exception being
7345 * 0x5, which could be due to unsupported IPv6 extension header.
7346 * In this case, we let stack handle the packet.
7347 * Note that in this case, since checksum will be incorrect,
7348 * stack will validate the same.
7350 if (err_mask != 0x5) {
7351 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7352 dev->name, err_mask);
7353 dev->stats.rx_crc_errors++;
7357 ring_data->rx_bufs_left -= 1;
7358 rxdp->Host_Control = 0;
7363 rxdp->Host_Control = 0;
7364 if (sp->rxd_mode == RXD_MODE_1) {
7365 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7368 } else if (sp->rxd_mode == RXD_MODE_3B) {
7369 int get_block = ring_data->rx_curr_get_info.block_index;
7370 int get_off = ring_data->rx_curr_get_info.offset;
7371 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7372 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7374 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7375 skb_put_data(skb, ba->ba_0, buf0_len);
7376 skb_put(skb, buf2_len);
7379 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7380 ((!ring_data->lro) ||
7381 (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG))) &&
7382 (dev->features & NETIF_F_RXCSUM)) {
7383 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7384 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7385 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7387 * NIC verifies if the Checksum of the received
7388 * frame is Ok or not and accordingly returns
7389 * a flag in the RxD.
7391 skb->ip_summed = CHECKSUM_UNNECESSARY;
7392 if (ring_data->lro) {
7397 ret = s2io_club_tcp_session(ring_data,
7402 case 3: /* Begin anew */
7405 case 1: /* Aggregate */
7406 lro_append_pkt(sp, lro, skb, tcp_len);
7408 case 4: /* Flush session */
7409 lro_append_pkt(sp, lro, skb, tcp_len);
7410 queue_rx_frame(lro->parent,
7412 clear_lro_session(lro);
7413 swstats->flush_max_pkts++;
7415 case 2: /* Flush both */
7416 lro->parent->data_len = lro->frags_len;
7417 swstats->sending_both++;
7418 queue_rx_frame(lro->parent,
7420 clear_lro_session(lro);
7422 case 0: /* sessions exceeded */
7423 case -1: /* non-TCP or not L2 aggregatable */
7425 * First pkt in session not
7426 * L3/L4 aggregatable
7431 "%s: Samadhana!!\n",
7438 * Packet with erroneous checksum, let the
7439 * upper layers deal with it.
7441 skb_checksum_none_assert(skb);
7444 skb_checksum_none_assert(skb);
7446 swstats->mem_freed += skb->truesize;
7448 skb_record_rx_queue(skb, ring_no);
7449 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7451 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7456 * s2io_link - stops/starts the Tx queue.
7457 * @sp : private member of the device structure, which is a pointer to the
7458 * s2io_nic structure.
7459 * @link : inidicates whether link is UP/DOWN.
7461 * This function stops/starts the Tx queue depending on whether the link
7462 * status of the NIC is down or up. This is called by the Alarm
7463 * interrupt handler whenever a link change interrupt comes up.
7468 static void s2io_link(struct s2io_nic *sp, int link)
7470 struct net_device *dev = sp->dev;
7471 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7473 if (link != sp->last_link_state) {
7474 init_tti(sp, link, false);
7475 if (link == LINK_DOWN) {
7476 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7477 s2io_stop_all_tx_queue(sp);
7478 netif_carrier_off(dev);
7479 if (swstats->link_up_cnt)
7480 swstats->link_up_time =
7481 jiffies - sp->start_time;
7482 swstats->link_down_cnt++;
7484 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7485 if (swstats->link_down_cnt)
7486 swstats->link_down_time =
7487 jiffies - sp->start_time;
7488 swstats->link_up_cnt++;
7489 netif_carrier_on(dev);
7490 s2io_wake_all_tx_queue(sp);
7493 sp->last_link_state = link;
7494 sp->start_time = jiffies;
7498 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7499 * @sp : private member of the device structure, which is a pointer to the
7500 * s2io_nic structure.
7502 * This function initializes a few of the PCI and PCI-X configuration registers
7503 * with recommended values.
7508 static void s2io_init_pci(struct s2io_nic *sp)
7510 u16 pci_cmd = 0, pcix_cmd = 0;
7512 /* Enable Data Parity Error Recovery in PCI-X command register. */
7513 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7515 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7517 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7520 /* Set the PErr Response bit in PCI command register. */
7521 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7522 pci_write_config_word(sp->pdev, PCI_COMMAND,
7523 (pci_cmd | PCI_COMMAND_PARITY));
7524 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7527 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7532 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7533 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7534 "(%d) not supported\n", tx_fifo_num);
7536 if (tx_fifo_num < 1)
7539 tx_fifo_num = MAX_TX_FIFOS;
7541 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7545 *dev_multiq = multiq;
7547 if (tx_steering_type && (1 == tx_fifo_num)) {
7548 if (tx_steering_type != TX_DEFAULT_STEERING)
7550 "Tx steering is not supported with "
7551 "one fifo. Disabling Tx steering.\n");
7552 tx_steering_type = NO_STEERING;
7555 if ((tx_steering_type < NO_STEERING) ||
7556 (tx_steering_type > TX_DEFAULT_STEERING)) {
7558 "Requested transmit steering not supported\n");
7559 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7560 tx_steering_type = NO_STEERING;
7563 if (rx_ring_num > MAX_RX_RINGS) {
7565 "Requested number of rx rings not supported\n");
7566 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7568 rx_ring_num = MAX_RX_RINGS;
7571 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7572 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7573 "Defaulting to INTA\n");
7574 *dev_intr_type = INTA;
7577 if ((*dev_intr_type == MSI_X) &&
7578 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7579 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7580 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7581 "Defaulting to INTA\n");
7582 *dev_intr_type = INTA;
7585 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7586 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7587 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7591 for (i = 0; i < MAX_RX_RINGS; i++)
7592 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7593 DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7594 "supported\nDefaulting to %d\n",
7595 MAX_RX_BLOCKS_PER_RING);
7596 rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7603 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS or Traffic class respectively.
7604 * @nic: device private variable
7605 * @ds_codepoint: data
7607 * Description: The function configures the receive steering to
7608 * desired receive ring.
7609 * Return Value: SUCCESS on success and
7610 * '-1' on failure (endian settings incorrect).
7612 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7614 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7615 register u64 val64 = 0;
7617 if (ds_codepoint > 63)
7620 val64 = RTS_DS_MEM_DATA(ring);
7621 writeq(val64, &bar0->rts_ds_mem_data);
7623 val64 = RTS_DS_MEM_CTRL_WE |
7624 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7625 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7627 writeq(val64, &bar0->rts_ds_mem_ctrl);
7629 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7630 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7631 S2IO_BIT_RESET, true);
7634 static const struct net_device_ops s2io_netdev_ops = {
7635 .ndo_open = s2io_open,
7636 .ndo_stop = s2io_close,
7637 .ndo_get_stats = s2io_get_stats,
7638 .ndo_start_xmit = s2io_xmit,
7639 .ndo_validate_addr = eth_validate_addr,
7640 .ndo_set_rx_mode = s2io_ndo_set_multicast,
7641 .ndo_eth_ioctl = s2io_ioctl,
7642 .ndo_set_mac_address = s2io_set_mac_addr,
7643 .ndo_change_mtu = s2io_change_mtu,
7644 .ndo_set_features = s2io_set_features,
7645 .ndo_tx_timeout = s2io_tx_watchdog,
7646 #ifdef CONFIG_NET_POLL_CONTROLLER
7647 .ndo_poll_controller = s2io_netpoll,
7652 * s2io_init_nic - Initialization of the adapter .
7653 * @pdev : structure containing the PCI related information of the device.
7654 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7656 * The function initializes an adapter identified by the pci_dec structure.
7657 * All OS related initialization including memory and device structure and
7658 * initlaization of the device private variable is done. Also the swapper
7659 * control register is initialized to enable read and write into the I/O
7660 * registers of the device.
7662 * returns 0 on success and negative on failure.
7666 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7668 struct s2io_nic *sp;
7669 struct net_device *dev;
7671 u32 mac_up, mac_down;
7672 u64 val64 = 0, tmp64 = 0;
7673 struct XENA_dev_config __iomem *bar0 = NULL;
7675 struct config_param *config;
7676 struct mac_info *mac_control;
7678 u8 dev_intr_type = intr_type;
7681 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7685 ret = pci_enable_device(pdev);
7688 "%s: pci_enable_device failed\n", __func__);
7692 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
7693 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7695 pci_disable_device(pdev);
7698 ret = pci_request_regions(pdev, s2io_driver_name);
7700 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7702 pci_disable_device(pdev);
7706 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7708 dev = alloc_etherdev(sizeof(struct s2io_nic));
7710 pci_disable_device(pdev);
7711 pci_release_regions(pdev);
7715 pci_set_master(pdev);
7716 pci_set_drvdata(pdev, dev);
7717 SET_NETDEV_DEV(dev, &pdev->dev);
7719 /* Private member variable initialized to s2io NIC structure */
7720 sp = netdev_priv(dev);
7723 sp->device_enabled_once = false;
7724 if (rx_ring_mode == 1)
7725 sp->rxd_mode = RXD_MODE_1;
7726 if (rx_ring_mode == 2)
7727 sp->rxd_mode = RXD_MODE_3B;
7729 sp->config.intr_type = dev_intr_type;
7731 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7732 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7733 sp->device_type = XFRAME_II_DEVICE;
7735 sp->device_type = XFRAME_I_DEVICE;
7738 /* Initialize some PCI/PCI-X fields of the NIC. */
7742 * Setting the device configuration parameters.
7743 * Most of these parameters can be specified by the user during
7744 * module insertion as they are module loadable parameters. If
7745 * these parameters are not specified during load time, they
7746 * are initialized with default values.
7748 config = &sp->config;
7749 mac_control = &sp->mac_control;
7751 config->napi = napi;
7752 config->tx_steering_type = tx_steering_type;
7754 /* Tx side parameters. */
7755 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7756 config->tx_fifo_num = MAX_TX_FIFOS;
7758 config->tx_fifo_num = tx_fifo_num;
7760 /* Initialize the fifos used for tx steering */
7761 if (config->tx_fifo_num < 5) {
7762 if (config->tx_fifo_num == 1)
7763 sp->total_tcp_fifos = 1;
7765 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7766 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7767 sp->total_udp_fifos = 1;
7768 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7770 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7771 FIFO_OTHER_MAX_NUM);
7772 sp->udp_fifo_idx = sp->total_tcp_fifos;
7773 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7774 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7777 config->multiq = dev_multiq;
7778 for (i = 0; i < config->tx_fifo_num; i++) {
7779 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7781 tx_cfg->fifo_len = tx_fifo_len[i];
7782 tx_cfg->fifo_priority = i;
7785 /* mapping the QoS priority to the configured fifos */
7786 for (i = 0; i < MAX_TX_FIFOS; i++)
7787 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7789 /* map the hashing selector table to the configured fifos */
7790 for (i = 0; i < config->tx_fifo_num; i++)
7791 sp->fifo_selector[i] = fifo_selector[i];
7794 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7795 for (i = 0; i < config->tx_fifo_num; i++) {
7796 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7798 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7799 if (tx_cfg->fifo_len < 65) {
7800 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7804 /* + 2 because one Txd for skb->data and one Txd for UFO */
7805 config->max_txds = MAX_SKB_FRAGS + 2;
7807 /* Rx side parameters. */
7808 config->rx_ring_num = rx_ring_num;
7809 for (i = 0; i < config->rx_ring_num; i++) {
7810 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7811 struct ring_info *ring = &mac_control->rings[i];
7813 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7814 rx_cfg->ring_priority = i;
7815 ring->rx_bufs_left = 0;
7816 ring->rxd_mode = sp->rxd_mode;
7817 ring->rxd_count = rxd_count[sp->rxd_mode];
7818 ring->pdev = sp->pdev;
7819 ring->dev = sp->dev;
7822 for (i = 0; i < rx_ring_num; i++) {
7823 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7825 rx_cfg->ring_org = RING_ORG_BUFF1;
7826 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7829 /* Setting Mac Control parameters */
7830 mac_control->rmac_pause_time = rmac_pause_time;
7831 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7832 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7835 /* initialize the shared memory used by the NIC and the host */
7836 if (init_shared_mem(sp)) {
7837 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7839 goto mem_alloc_failed;
7842 sp->bar0 = pci_ioremap_bar(pdev, 0);
7844 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7847 goto bar0_remap_failed;
7850 sp->bar1 = pci_ioremap_bar(pdev, 2);
7852 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7855 goto bar1_remap_failed;
7858 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7859 for (j = 0; j < MAX_TX_FIFOS; j++) {
7860 mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
7863 /* Driver entry points */
7864 dev->netdev_ops = &s2io_netdev_ops;
7865 dev->ethtool_ops = &netdev_ethtool_ops;
7866 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7867 NETIF_F_TSO | NETIF_F_TSO6 |
7868 NETIF_F_RXCSUM | NETIF_F_LRO;
7869 dev->features |= dev->hw_features |
7870 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
7872 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7873 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7874 INIT_WORK(&sp->set_link_task, s2io_set_link);
7876 pci_save_state(sp->pdev);
7878 /* Setting swapper control on the NIC, for proper reset operation */
7879 if (s2io_set_swapper(sp)) {
7880 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
7883 goto set_swap_failed;
7886 /* Verify if the Herc works on the slot its placed into */
7887 if (sp->device_type & XFRAME_II_DEVICE) {
7888 mode = s2io_verify_pci_mode(sp);
7890 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
7893 goto set_swap_failed;
7897 if (sp->config.intr_type == MSI_X) {
7898 sp->num_entries = config->rx_ring_num + 1;
7899 ret = s2io_enable_msi_x(sp);
7902 ret = s2io_test_msi(sp);
7903 /* rollback MSI-X, will re-enable during add_isr() */
7904 remove_msix_isr(sp);
7909 "MSI-X requested but failed to enable\n");
7910 sp->config.intr_type = INTA;
7914 if (config->intr_type == MSI_X) {
7915 for (i = 0; i < config->rx_ring_num ; i++) {
7916 struct ring_info *ring = &mac_control->rings[i];
7918 netif_napi_add(dev, &ring->napi, s2io_poll_msix);
7921 netif_napi_add(dev, &sp->napi, s2io_poll_inta);
7924 /* Not needed for Herc */
7925 if (sp->device_type & XFRAME_I_DEVICE) {
7927 * Fix for all "FFs" MAC address problems observed on
7930 fix_mac_address(sp);
7935 * MAC address initialization.
7936 * For now only one mac address will be read and used.
7939 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7940 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
7941 writeq(val64, &bar0->rmac_addr_cmd_mem);
7942 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7943 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
7944 S2IO_BIT_RESET, true);
7945 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7946 mac_down = (u32)tmp64;
7947 mac_up = (u32) (tmp64 >> 32);
7949 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7950 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7951 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7952 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7953 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7954 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7956 /* Set the factory defined MAC address initially */
7957 dev->addr_len = ETH_ALEN;
7958 eth_hw_addr_set(dev, sp->def_mac_addr[0].mac_addr);
7960 /* initialize number of multicast & unicast MAC entries variables */
7961 if (sp->device_type == XFRAME_I_DEVICE) {
7962 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
7963 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
7964 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
7965 } else if (sp->device_type == XFRAME_II_DEVICE) {
7966 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
7967 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
7968 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
7971 /* MTU range: 46 - 9600 */
7972 dev->min_mtu = MIN_MTU;
7973 dev->max_mtu = S2IO_JUMBO_SIZE;
7975 /* store mac addresses from CAM to s2io_nic structure */
7976 do_s2io_store_unicast_mc(sp);
7978 /* Configure MSIX vector for number of rings configured plus one */
7979 if ((sp->device_type == XFRAME_II_DEVICE) &&
7980 (config->intr_type == MSI_X))
7981 sp->num_entries = config->rx_ring_num + 1;
7983 /* Store the values of the MSIX table in the s2io_nic structure */
7984 store_xmsi_data(sp);
7985 /* reset Nic and bring it to known state */
7989 * Initialize link state flags
7990 * and the card state parameter
7994 /* Initialize spinlocks */
7995 for (i = 0; i < sp->config.tx_fifo_num; i++) {
7996 struct fifo_info *fifo = &mac_control->fifos[i];
7998 spin_lock_init(&fifo->tx_lock);
8002 * SXE-002: Configure link and activity LED to init state
8005 subid = sp->pdev->subsystem_device;
8006 if ((subid & 0xFF) >= 0x07) {
8007 val64 = readq(&bar0->gpio_control);
8008 val64 |= 0x0000800000000000ULL;
8009 writeq(val64, &bar0->gpio_control);
8010 val64 = 0x0411040400000000ULL;
8011 writeq(val64, (void __iomem *)bar0 + 0x2700);
8012 val64 = readq(&bar0->gpio_control);
8015 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8017 if (register_netdev(dev)) {
8018 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8020 goto register_failed;
8023 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8024 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8025 sp->product_name, pdev->revision);
8026 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8027 s2io_driver_version);
8028 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8029 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8030 if (sp->device_type & XFRAME_II_DEVICE) {
8031 mode = s2io_print_pci_mode(sp);
8034 unregister_netdev(dev);
8035 goto set_swap_failed;
8038 switch (sp->rxd_mode) {
8040 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8044 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8049 switch (sp->config.napi) {
8051 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8054 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8058 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8059 sp->config.tx_fifo_num);
8061 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8062 sp->config.rx_ring_num);
8064 switch (sp->config.intr_type) {
8066 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8069 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8072 if (sp->config.multiq) {
8073 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8074 struct fifo_info *fifo = &mac_control->fifos[i];
8076 fifo->multiq = config->multiq;
8078 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8081 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8084 switch (sp->config.tx_steering_type) {
8086 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8089 case TX_PRIORITY_STEERING:
8091 "%s: Priority steering enabled for transmit\n",
8094 case TX_DEFAULT_STEERING:
8096 "%s: Default steering enabled for transmit\n",
8100 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8102 /* Initialize device name */
8103 snprintf(sp->name, sizeof(sp->name), "%s Neterion %s", dev->name,
8107 sp->vlan_strip_flag = 1;
8109 sp->vlan_strip_flag = 0;
8112 * Make Link state as off at this point, when the Link change
8113 * interrupt comes the state will be automatically changed to
8116 netif_carrier_off(dev);
8127 free_shared_mem(sp);
8128 pci_disable_device(pdev);
8129 pci_release_regions(pdev);
8136 * s2io_rem_nic - Free the PCI device
8137 * @pdev: structure containing the PCI related information of the device.
8138 * Description: This function is called by the Pci subsystem to release a
8139 * PCI device and free up all resource held up by the device. This could
8140 * be in response to a Hot plug event or when the driver is to be removed
8144 static void s2io_rem_nic(struct pci_dev *pdev)
8146 struct net_device *dev = pci_get_drvdata(pdev);
8147 struct s2io_nic *sp;
8150 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8154 sp = netdev_priv(dev);
8156 cancel_work_sync(&sp->rst_timer_task);
8157 cancel_work_sync(&sp->set_link_task);
8159 unregister_netdev(dev);
8161 free_shared_mem(sp);
8164 pci_release_regions(pdev);
8166 pci_disable_device(pdev);
8169 module_pci_driver(s2io_driver);
8171 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8172 struct tcphdr **tcp, struct RxD_t *rxdp,
8173 struct s2io_nic *sp)
8176 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8178 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8180 "%s: Non-TCP frames not supported for LRO\n",
8185 /* Checking for DIX type or DIX type with VLAN */
8186 if ((l2_type == 0) || (l2_type == 4)) {
8187 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8189 * If vlan stripping is disabled and the frame is VLAN tagged,
8190 * shift the offset by the VLAN header size bytes.
8192 if ((!sp->vlan_strip_flag) &&
8193 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8194 ip_off += HEADER_VLAN_SIZE;
8196 /* LLC, SNAP etc are considered non-mergeable */
8200 *ip = (struct iphdr *)(buffer + ip_off);
8201 ip_len = (u8)((*ip)->ihl);
8203 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8208 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8211 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8212 if ((lro->iph->saddr != ip->saddr) ||
8213 (lro->iph->daddr != ip->daddr) ||
8214 (lro->tcph->source != tcp->source) ||
8215 (lro->tcph->dest != tcp->dest))
8220 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8222 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8225 static void initiate_new_session(struct lro *lro, u8 *l2h,
8226 struct iphdr *ip, struct tcphdr *tcp,
8227 u32 tcp_pyld_len, u16 vlan_tag)
8229 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8233 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8234 lro->tcp_ack = tcp->ack_seq;
8236 lro->total_len = ntohs(ip->tot_len);
8238 lro->vlan_tag = vlan_tag;
8240 * Check if we saw TCP timestamp.
8241 * Other consistency checks have already been done.
8243 if (tcp->doff == 8) {
8245 ptr = (__be32 *)(tcp+1);
8247 lro->cur_tsval = ntohl(*(ptr+1));
8248 lro->cur_tsecr = *(ptr+2);
8253 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8255 struct iphdr *ip = lro->iph;
8256 struct tcphdr *tcp = lro->tcph;
8257 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8259 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8261 /* Update L3 header */
8262 csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len));
8263 ip->tot_len = htons(lro->total_len);
8265 /* Update L4 header */
8266 tcp->ack_seq = lro->tcp_ack;
8267 tcp->window = lro->window;
8269 /* Update tsecr field if this session has timestamps enabled */
8271 __be32 *ptr = (__be32 *)(tcp + 1);
8272 *(ptr+2) = lro->cur_tsecr;
8275 /* Update counters required for calculation of
8276 * average no. of packets aggregated.
8278 swstats->sum_avg_pkts_aggregated += lro->sg_num;
8279 swstats->num_aggregations++;
8282 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8283 struct tcphdr *tcp, u32 l4_pyld)
8285 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8286 lro->total_len += l4_pyld;
8287 lro->frags_len += l4_pyld;
8288 lro->tcp_next_seq += l4_pyld;
8291 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8292 lro->tcp_ack = tcp->ack_seq;
8293 lro->window = tcp->window;
8297 /* Update tsecr and tsval from this packet */
8298 ptr = (__be32 *)(tcp+1);
8299 lro->cur_tsval = ntohl(*(ptr+1));
8300 lro->cur_tsecr = *(ptr + 2);
8304 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8305 struct tcphdr *tcp, u32 tcp_pyld_len)
8309 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8311 if (!tcp_pyld_len) {
8312 /* Runt frame or a pure ack */
8316 if (ip->ihl != 5) /* IP has options */
8319 /* If we see CE codepoint in IP header, packet is not mergeable */
8320 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8323 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8324 if (tcp->urg || tcp->psh || tcp->rst ||
8325 tcp->syn || tcp->fin ||
8326 tcp->ece || tcp->cwr || !tcp->ack) {
8328 * Currently recognize only the ack control word and
8329 * any other control field being set would result in
8330 * flushing the LRO session
8336 * Allow only one TCP timestamp option. Don't aggregate if
8337 * any other options are detected.
8339 if (tcp->doff != 5 && tcp->doff != 8)
8342 if (tcp->doff == 8) {
8343 ptr = (u8 *)(tcp + 1);
8344 while (*ptr == TCPOPT_NOP)
8346 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8349 /* Ensure timestamp value increases monotonically */
8351 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8354 /* timestamp echo reply should be non-zero */
8355 if (*((__be32 *)(ptr+6)) == 0)
8362 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8363 u8 **tcp, u32 *tcp_len, struct lro **lro,
8364 struct RxD_t *rxdp, struct s2io_nic *sp)
8367 struct tcphdr *tcph;
8370 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8372 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8377 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8379 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8380 tcph = (struct tcphdr *)*tcp;
8381 *tcp_len = get_l4_pyld_length(ip, tcph);
8382 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8383 struct lro *l_lro = &ring_data->lro0_n[i];
8384 if (l_lro->in_use) {
8385 if (check_for_socket_match(l_lro, ip, tcph))
8387 /* Sock pair matched */
8390 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8391 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8392 "expected 0x%x, actual 0x%x\n",
8394 (*lro)->tcp_next_seq,
8397 swstats->outof_sequence_pkts++;
8402 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8404 ret = 1; /* Aggregate */
8406 ret = 2; /* Flush both */
8412 /* Before searching for available LRO objects,
8413 * check if the pkt is L3/L4 aggregatable. If not
8414 * don't create new LRO session. Just send this
8417 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8420 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8421 struct lro *l_lro = &ring_data->lro0_n[i];
8422 if (!(l_lro->in_use)) {
8424 ret = 3; /* Begin anew */
8430 if (ret == 0) { /* sessions exceeded */
8431 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8439 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8443 update_L3L4_header(sp, *lro);
8446 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8447 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8448 update_L3L4_header(sp, *lro);
8449 ret = 4; /* Flush the LRO */
8453 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8460 static void clear_lro_session(struct lro *lro)
8462 static u16 lro_struct_size = sizeof(struct lro);
8464 memset(lro, 0, lro_struct_size);
8467 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8469 struct net_device *dev = skb->dev;
8470 struct s2io_nic *sp = netdev_priv(dev);
8472 skb->protocol = eth_type_trans(skb, dev);
8473 if (vlan_tag && sp->vlan_strip_flag)
8474 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
8475 if (sp->config.napi)
8476 netif_receive_skb(skb);
8481 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8482 struct sk_buff *skb, u32 tcp_len)
8484 struct sk_buff *first = lro->parent;
8485 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8487 first->len += tcp_len;
8488 first->data_len = lro->frags_len;
8489 skb_pull(skb, (skb->len - tcp_len));
8490 if (skb_shinfo(first)->frag_list)
8491 lro->last_frag->next = skb;
8493 skb_shinfo(first)->frag_list = skb;
8494 first->truesize += skb->truesize;
8495 lro->last_frag = skb;
8496 swstats->clubbed_frms_cnt++;
8500 * s2io_io_error_detected - called when PCI error is detected
8501 * @pdev: Pointer to PCI device
8502 * @state: The current pci connection state
8504 * This function is called after a PCI bus error affecting
8505 * this device has been detected.
8507 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8508 pci_channel_state_t state)
8510 struct net_device *netdev = pci_get_drvdata(pdev);
8511 struct s2io_nic *sp = netdev_priv(netdev);
8513 netif_device_detach(netdev);
8515 if (state == pci_channel_io_perm_failure)
8516 return PCI_ERS_RESULT_DISCONNECT;
8518 if (netif_running(netdev)) {
8519 /* Bring down the card, while avoiding PCI I/O */
8520 do_s2io_card_down(sp, 0);
8522 pci_disable_device(pdev);
8524 return PCI_ERS_RESULT_NEED_RESET;
8528 * s2io_io_slot_reset - called after the pci bus has been reset.
8529 * @pdev: Pointer to PCI device
8531 * Restart the card from scratch, as if from a cold-boot.
8532 * At this point, the card has exprienced a hard reset,
8533 * followed by fixups by BIOS, and has its config space
8534 * set up identically to what it was at cold boot.
8536 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8538 struct net_device *netdev = pci_get_drvdata(pdev);
8539 struct s2io_nic *sp = netdev_priv(netdev);
8541 if (pci_enable_device(pdev)) {
8542 pr_err("Cannot re-enable PCI device after reset.\n");
8543 return PCI_ERS_RESULT_DISCONNECT;
8546 pci_set_master(pdev);
8549 return PCI_ERS_RESULT_RECOVERED;
8553 * s2io_io_resume - called when traffic can start flowing again.
8554 * @pdev: Pointer to PCI device
8556 * This callback is called when the error recovery driver tells
8557 * us that its OK to resume normal operation.
8559 static void s2io_io_resume(struct pci_dev *pdev)
8561 struct net_device *netdev = pci_get_drvdata(pdev);
8562 struct s2io_nic *sp = netdev_priv(netdev);
8564 if (netif_running(netdev)) {
8565 if (s2io_card_up(sp)) {
8566 pr_err("Can't bring device back up after reset.\n");
8570 if (do_s2io_prog_unicast(netdev, netdev->dev_addr) == FAILURE) {
8572 pr_err("Can't restore mac addr after reset.\n");
8577 netif_device_attach(netdev);
8578 netif_tx_wake_all_queues(netdev);