2 * NSA Security-Enhanced Linux (SELinux) security module
4 * This file contains the SELinux hook function implementations.
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
26 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
53 #include <net/ip.h> /* for local_port_range[] */
55 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h> /* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/quota.h>
70 #include <linux/un.h> /* for Unix socket types */
71 #include <net/af_unix.h> /* for Unix socket types */
72 #include <linux/parser.h>
73 #include <linux/nfs_mount.h>
75 #include <linux/hugetlb.h>
76 #include <linux/personality.h>
77 #include <linux/audit.h>
78 #include <linux/string.h>
79 #include <linux/selinux.h>
80 #include <linux/mutex.h>
81 #include <linux/posix-timers.h>
82 #include <linux/syslog.h>
83 #include <linux/user_namespace.h>
84 #include <linux/export.h>
85 #include <linux/msg.h>
86 #include <linux/shm.h>
98 extern struct security_operations *security_ops;
100 /* SECMARK reference count */
101 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
103 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
104 int selinux_enforcing;
106 static int __init enforcing_setup(char *str)
108 unsigned long enforcing;
109 if (!strict_strtoul(str, 0, &enforcing))
110 selinux_enforcing = enforcing ? 1 : 0;
113 __setup("enforcing=", enforcing_setup);
116 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
117 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
119 static int __init selinux_enabled_setup(char *str)
121 unsigned long enabled;
122 if (!strict_strtoul(str, 0, &enabled))
123 selinux_enabled = enabled ? 1 : 0;
126 __setup("selinux=", selinux_enabled_setup);
128 int selinux_enabled = 1;
131 static struct kmem_cache *sel_inode_cache;
134 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
137 * This function checks the SECMARK reference counter to see if any SECMARK
138 * targets are currently configured, if the reference counter is greater than
139 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
140 * enabled, false (0) if SECMARK is disabled. If the always_check_network
141 * policy capability is enabled, SECMARK is always considered enabled.
144 static int selinux_secmark_enabled(void)
146 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
150 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
153 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
154 * (1) if any are enabled or false (0) if neither are enabled. If the
155 * always_check_network policy capability is enabled, peer labeling
156 * is always considered enabled.
159 static int selinux_peerlbl_enabled(void)
161 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
165 * initialise the security for the init task
167 static void cred_init_security(void)
169 struct cred *cred = (struct cred *) current->real_cred;
170 struct task_security_struct *tsec;
172 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
174 panic("SELinux: Failed to initialize initial task.\n");
176 tsec->osid = tsec->sid = SECINITSID_KERNEL;
177 cred->security = tsec;
181 * get the security ID of a set of credentials
183 static inline u32 cred_sid(const struct cred *cred)
185 const struct task_security_struct *tsec;
187 tsec = cred->security;
192 * get the objective security ID of a task
194 static inline u32 task_sid(const struct task_struct *task)
199 sid = cred_sid(__task_cred(task));
205 * get the subjective security ID of the current task
207 static inline u32 current_sid(void)
209 const struct task_security_struct *tsec = current_security();
214 /* Allocate and free functions for each kind of security blob. */
216 static int inode_alloc_security(struct inode *inode)
218 struct inode_security_struct *isec;
219 u32 sid = current_sid();
221 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
225 mutex_init(&isec->lock);
226 INIT_LIST_HEAD(&isec->list);
228 isec->sid = SECINITSID_UNLABELED;
229 isec->sclass = SECCLASS_FILE;
230 isec->task_sid = sid;
231 inode->i_security = isec;
236 static void inode_free_rcu(struct rcu_head *head)
238 struct inode_security_struct *isec;
240 isec = container_of(head, struct inode_security_struct, rcu);
241 kmem_cache_free(sel_inode_cache, isec);
244 static void inode_free_security(struct inode *inode)
246 struct inode_security_struct *isec = inode->i_security;
247 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
249 spin_lock(&sbsec->isec_lock);
250 if (!list_empty(&isec->list))
251 list_del_init(&isec->list);
252 spin_unlock(&sbsec->isec_lock);
255 * The inode may still be referenced in a path walk and
256 * a call to selinux_inode_permission() can be made
257 * after inode_free_security() is called. Ideally, the VFS
258 * wouldn't do this, but fixing that is a much harder
259 * job. For now, simply free the i_security via RCU, and
260 * leave the current inode->i_security pointer intact.
261 * The inode will be freed after the RCU grace period too.
263 call_rcu(&isec->rcu, inode_free_rcu);
266 static int file_alloc_security(struct file *file)
268 struct file_security_struct *fsec;
269 u32 sid = current_sid();
271 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
276 fsec->fown_sid = sid;
277 file->f_security = fsec;
282 static void file_free_security(struct file *file)
284 struct file_security_struct *fsec = file->f_security;
285 file->f_security = NULL;
289 static int superblock_alloc_security(struct super_block *sb)
291 struct superblock_security_struct *sbsec;
293 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
297 mutex_init(&sbsec->lock);
298 INIT_LIST_HEAD(&sbsec->isec_head);
299 spin_lock_init(&sbsec->isec_lock);
301 sbsec->sid = SECINITSID_UNLABELED;
302 sbsec->def_sid = SECINITSID_FILE;
303 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
304 sb->s_security = sbsec;
309 static void superblock_free_security(struct super_block *sb)
311 struct superblock_security_struct *sbsec = sb->s_security;
312 sb->s_security = NULL;
316 /* The file system's label must be initialized prior to use. */
318 static const char *labeling_behaviors[7] = {
320 "uses transition SIDs",
322 "uses genfs_contexts",
323 "not configured for labeling",
324 "uses mountpoint labeling",
325 "uses native labeling",
328 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
330 static inline int inode_doinit(struct inode *inode)
332 return inode_doinit_with_dentry(inode, NULL);
341 Opt_labelsupport = 5,
345 #define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
347 static const match_table_t tokens = {
348 {Opt_context, CONTEXT_STR "%s"},
349 {Opt_fscontext, FSCONTEXT_STR "%s"},
350 {Opt_defcontext, DEFCONTEXT_STR "%s"},
351 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
352 {Opt_labelsupport, LABELSUPP_STR},
356 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
358 static int may_context_mount_sb_relabel(u32 sid,
359 struct superblock_security_struct *sbsec,
360 const struct cred *cred)
362 const struct task_security_struct *tsec = cred->security;
365 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
366 FILESYSTEM__RELABELFROM, NULL);
370 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
371 FILESYSTEM__RELABELTO, NULL);
375 static int may_context_mount_inode_relabel(u32 sid,
376 struct superblock_security_struct *sbsec,
377 const struct cred *cred)
379 const struct task_security_struct *tsec = cred->security;
381 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
382 FILESYSTEM__RELABELFROM, NULL);
386 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
387 FILESYSTEM__ASSOCIATE, NULL);
391 static int selinux_is_sblabel_mnt(struct super_block *sb)
393 struct superblock_security_struct *sbsec = sb->s_security;
395 if (sbsec->behavior == SECURITY_FS_USE_XATTR ||
396 sbsec->behavior == SECURITY_FS_USE_TRANS ||
397 sbsec->behavior == SECURITY_FS_USE_TASK)
400 /* Special handling for sysfs. Is genfs but also has setxattr handler*/
401 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
405 * Special handling for rootfs. Is genfs but supports
406 * setting SELinux context on in-core inodes.
408 if (strncmp(sb->s_type->name, "rootfs", sizeof("rootfs")) == 0)
414 static int sb_finish_set_opts(struct super_block *sb)
416 struct superblock_security_struct *sbsec = sb->s_security;
417 struct dentry *root = sb->s_root;
418 struct inode *root_inode = root->d_inode;
421 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
422 /* Make sure that the xattr handler exists and that no
423 error other than -ENODATA is returned by getxattr on
424 the root directory. -ENODATA is ok, as this may be
425 the first boot of the SELinux kernel before we have
426 assigned xattr values to the filesystem. */
427 if (!root_inode->i_op->getxattr) {
428 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
429 "xattr support\n", sb->s_id, sb->s_type->name);
433 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
434 if (rc < 0 && rc != -ENODATA) {
435 if (rc == -EOPNOTSUPP)
436 printk(KERN_WARNING "SELinux: (dev %s, type "
437 "%s) has no security xattr handler\n",
438 sb->s_id, sb->s_type->name);
440 printk(KERN_WARNING "SELinux: (dev %s, type "
441 "%s) getxattr errno %d\n", sb->s_id,
442 sb->s_type->name, -rc);
447 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
448 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
449 sb->s_id, sb->s_type->name);
451 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
452 sb->s_id, sb->s_type->name,
453 labeling_behaviors[sbsec->behavior-1]);
455 sbsec->flags |= SE_SBINITIALIZED;
456 if (selinux_is_sblabel_mnt(sb))
457 sbsec->flags |= SBLABEL_MNT;
459 /* Initialize the root inode. */
460 rc = inode_doinit_with_dentry(root_inode, root);
462 /* Initialize any other inodes associated with the superblock, e.g.
463 inodes created prior to initial policy load or inodes created
464 during get_sb by a pseudo filesystem that directly
466 spin_lock(&sbsec->isec_lock);
468 if (!list_empty(&sbsec->isec_head)) {
469 struct inode_security_struct *isec =
470 list_entry(sbsec->isec_head.next,
471 struct inode_security_struct, list);
472 struct inode *inode = isec->inode;
473 spin_unlock(&sbsec->isec_lock);
474 inode = igrab(inode);
476 if (!IS_PRIVATE(inode))
480 spin_lock(&sbsec->isec_lock);
481 list_del_init(&isec->list);
484 spin_unlock(&sbsec->isec_lock);
490 * This function should allow an FS to ask what it's mount security
491 * options were so it can use those later for submounts, displaying
492 * mount options, or whatever.
494 static int selinux_get_mnt_opts(const struct super_block *sb,
495 struct security_mnt_opts *opts)
498 struct superblock_security_struct *sbsec = sb->s_security;
499 char *context = NULL;
503 security_init_mnt_opts(opts);
505 if (!(sbsec->flags & SE_SBINITIALIZED))
511 /* make sure we always check enough bits to cover the mask */
512 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
514 tmp = sbsec->flags & SE_MNTMASK;
515 /* count the number of mount options for this sb */
516 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
518 opts->num_mnt_opts++;
521 /* Check if the Label support flag is set */
522 if (sbsec->flags & SBLABEL_MNT)
523 opts->num_mnt_opts++;
525 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
526 if (!opts->mnt_opts) {
531 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
532 if (!opts->mnt_opts_flags) {
538 if (sbsec->flags & FSCONTEXT_MNT) {
539 rc = security_sid_to_context(sbsec->sid, &context, &len);
542 opts->mnt_opts[i] = context;
543 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
545 if (sbsec->flags & CONTEXT_MNT) {
546 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
549 opts->mnt_opts[i] = context;
550 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
552 if (sbsec->flags & DEFCONTEXT_MNT) {
553 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
556 opts->mnt_opts[i] = context;
557 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
559 if (sbsec->flags & ROOTCONTEXT_MNT) {
560 struct inode *root = sbsec->sb->s_root->d_inode;
561 struct inode_security_struct *isec = root->i_security;
563 rc = security_sid_to_context(isec->sid, &context, &len);
566 opts->mnt_opts[i] = context;
567 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
569 if (sbsec->flags & SBLABEL_MNT) {
570 opts->mnt_opts[i] = NULL;
571 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
574 BUG_ON(i != opts->num_mnt_opts);
579 security_free_mnt_opts(opts);
583 static int bad_option(struct superblock_security_struct *sbsec, char flag,
584 u32 old_sid, u32 new_sid)
586 char mnt_flags = sbsec->flags & SE_MNTMASK;
588 /* check if the old mount command had the same options */
589 if (sbsec->flags & SE_SBINITIALIZED)
590 if (!(sbsec->flags & flag) ||
591 (old_sid != new_sid))
594 /* check if we were passed the same options twice,
595 * aka someone passed context=a,context=b
597 if (!(sbsec->flags & SE_SBINITIALIZED))
598 if (mnt_flags & flag)
604 * Allow filesystems with binary mount data to explicitly set mount point
605 * labeling information.
607 static int selinux_set_mnt_opts(struct super_block *sb,
608 struct security_mnt_opts *opts,
609 unsigned long kern_flags,
610 unsigned long *set_kern_flags)
612 const struct cred *cred = current_cred();
614 struct superblock_security_struct *sbsec = sb->s_security;
615 const char *name = sb->s_type->name;
616 struct inode *inode = sbsec->sb->s_root->d_inode;
617 struct inode_security_struct *root_isec = inode->i_security;
618 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
619 u32 defcontext_sid = 0;
620 char **mount_options = opts->mnt_opts;
621 int *flags = opts->mnt_opts_flags;
622 int num_opts = opts->num_mnt_opts;
624 mutex_lock(&sbsec->lock);
626 if (!ss_initialized) {
628 /* Defer initialization until selinux_complete_init,
629 after the initial policy is loaded and the security
630 server is ready to handle calls. */
634 printk(KERN_WARNING "SELinux: Unable to set superblock options "
635 "before the security server is initialized\n");
638 if (kern_flags && !set_kern_flags) {
639 /* Specifying internal flags without providing a place to
640 * place the results is not allowed */
646 * Binary mount data FS will come through this function twice. Once
647 * from an explicit call and once from the generic calls from the vfs.
648 * Since the generic VFS calls will not contain any security mount data
649 * we need to skip the double mount verification.
651 * This does open a hole in which we will not notice if the first
652 * mount using this sb set explict options and a second mount using
653 * this sb does not set any security options. (The first options
654 * will be used for both mounts)
656 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
661 * parse the mount options, check if they are valid sids.
662 * also check if someone is trying to mount the same sb more
663 * than once with different security options.
665 for (i = 0; i < num_opts; i++) {
668 if (flags[i] == SBLABEL_MNT)
670 rc = security_context_to_sid(mount_options[i],
671 strlen(mount_options[i]), &sid, GFP_KERNEL);
673 printk(KERN_WARNING "SELinux: security_context_to_sid"
674 "(%s) failed for (dev %s, type %s) errno=%d\n",
675 mount_options[i], sb->s_id, name, rc);
682 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
684 goto out_double_mount;
686 sbsec->flags |= FSCONTEXT_MNT;
691 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
693 goto out_double_mount;
695 sbsec->flags |= CONTEXT_MNT;
697 case ROOTCONTEXT_MNT:
698 rootcontext_sid = sid;
700 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
702 goto out_double_mount;
704 sbsec->flags |= ROOTCONTEXT_MNT;
708 defcontext_sid = sid;
710 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
712 goto out_double_mount;
714 sbsec->flags |= DEFCONTEXT_MNT;
723 if (sbsec->flags & SE_SBINITIALIZED) {
724 /* previously mounted with options, but not on this attempt? */
725 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
726 goto out_double_mount;
731 if (strcmp(sb->s_type->name, "proc") == 0)
732 sbsec->flags |= SE_SBPROC;
734 if (!sbsec->behavior) {
736 * Determine the labeling behavior to use for this
739 rc = security_fs_use(sb);
742 "%s: security_fs_use(%s) returned %d\n",
743 __func__, sb->s_type->name, rc);
747 /* sets the context of the superblock for the fs being mounted. */
749 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
753 sbsec->sid = fscontext_sid;
757 * Switch to using mount point labeling behavior.
758 * sets the label used on all file below the mountpoint, and will set
759 * the superblock context if not already set.
761 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
762 sbsec->behavior = SECURITY_FS_USE_NATIVE;
763 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
767 if (!fscontext_sid) {
768 rc = may_context_mount_sb_relabel(context_sid, sbsec,
772 sbsec->sid = context_sid;
774 rc = may_context_mount_inode_relabel(context_sid, sbsec,
779 if (!rootcontext_sid)
780 rootcontext_sid = context_sid;
782 sbsec->mntpoint_sid = context_sid;
783 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
786 if (rootcontext_sid) {
787 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
792 root_isec->sid = rootcontext_sid;
793 root_isec->initialized = 1;
796 if (defcontext_sid) {
797 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
798 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
800 printk(KERN_WARNING "SELinux: defcontext option is "
801 "invalid for this filesystem type\n");
805 if (defcontext_sid != sbsec->def_sid) {
806 rc = may_context_mount_inode_relabel(defcontext_sid,
812 sbsec->def_sid = defcontext_sid;
815 rc = sb_finish_set_opts(sb);
817 mutex_unlock(&sbsec->lock);
821 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
822 "security settings for (dev %s, type %s)\n", sb->s_id, name);
826 static int selinux_cmp_sb_context(const struct super_block *oldsb,
827 const struct super_block *newsb)
829 struct superblock_security_struct *old = oldsb->s_security;
830 struct superblock_security_struct *new = newsb->s_security;
831 char oldflags = old->flags & SE_MNTMASK;
832 char newflags = new->flags & SE_MNTMASK;
834 if (oldflags != newflags)
836 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
838 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
840 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
842 if (oldflags & ROOTCONTEXT_MNT) {
843 struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security;
844 struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security;
845 if (oldroot->sid != newroot->sid)
850 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
851 "different security settings for (dev %s, "
852 "type %s)\n", newsb->s_id, newsb->s_type->name);
856 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
857 struct super_block *newsb)
859 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
860 struct superblock_security_struct *newsbsec = newsb->s_security;
862 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
863 int set_context = (oldsbsec->flags & CONTEXT_MNT);
864 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
867 * if the parent was able to be mounted it clearly had no special lsm
868 * mount options. thus we can safely deal with this superblock later
873 /* how can we clone if the old one wasn't set up?? */
874 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
876 /* if fs is reusing a sb, make sure that the contexts match */
877 if (newsbsec->flags & SE_SBINITIALIZED)
878 return selinux_cmp_sb_context(oldsb, newsb);
880 mutex_lock(&newsbsec->lock);
882 newsbsec->flags = oldsbsec->flags;
884 newsbsec->sid = oldsbsec->sid;
885 newsbsec->def_sid = oldsbsec->def_sid;
886 newsbsec->behavior = oldsbsec->behavior;
889 u32 sid = oldsbsec->mntpoint_sid;
893 if (!set_rootcontext) {
894 struct inode *newinode = newsb->s_root->d_inode;
895 struct inode_security_struct *newisec = newinode->i_security;
898 newsbsec->mntpoint_sid = sid;
900 if (set_rootcontext) {
901 const struct inode *oldinode = oldsb->s_root->d_inode;
902 const struct inode_security_struct *oldisec = oldinode->i_security;
903 struct inode *newinode = newsb->s_root->d_inode;
904 struct inode_security_struct *newisec = newinode->i_security;
906 newisec->sid = oldisec->sid;
909 sb_finish_set_opts(newsb);
910 mutex_unlock(&newsbsec->lock);
914 static int selinux_parse_opts_str(char *options,
915 struct security_mnt_opts *opts)
918 char *context = NULL, *defcontext = NULL;
919 char *fscontext = NULL, *rootcontext = NULL;
920 int rc, num_mnt_opts = 0;
922 opts->num_mnt_opts = 0;
924 /* Standard string-based options. */
925 while ((p = strsep(&options, "|")) != NULL) {
927 substring_t args[MAX_OPT_ARGS];
932 token = match_token(p, tokens, args);
936 if (context || defcontext) {
938 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
941 context = match_strdup(&args[0]);
951 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
954 fscontext = match_strdup(&args[0]);
961 case Opt_rootcontext:
964 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
967 rootcontext = match_strdup(&args[0]);
975 if (context || defcontext) {
977 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
980 defcontext = match_strdup(&args[0]);
986 case Opt_labelsupport:
990 printk(KERN_WARNING "SELinux: unknown mount option\n");
997 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
1001 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1002 if (!opts->mnt_opts_flags) {
1003 kfree(opts->mnt_opts);
1008 opts->mnt_opts[num_mnt_opts] = fscontext;
1009 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1012 opts->mnt_opts[num_mnt_opts] = context;
1013 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1016 opts->mnt_opts[num_mnt_opts] = rootcontext;
1017 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1020 opts->mnt_opts[num_mnt_opts] = defcontext;
1021 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1024 opts->num_mnt_opts = num_mnt_opts;
1035 * string mount options parsing and call set the sbsec
1037 static int superblock_doinit(struct super_block *sb, void *data)
1040 char *options = data;
1041 struct security_mnt_opts opts;
1043 security_init_mnt_opts(&opts);
1048 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1050 rc = selinux_parse_opts_str(options, &opts);
1055 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1058 security_free_mnt_opts(&opts);
1062 static void selinux_write_opts(struct seq_file *m,
1063 struct security_mnt_opts *opts)
1068 for (i = 0; i < opts->num_mnt_opts; i++) {
1071 if (opts->mnt_opts[i])
1072 has_comma = strchr(opts->mnt_opts[i], ',');
1076 switch (opts->mnt_opts_flags[i]) {
1078 prefix = CONTEXT_STR;
1081 prefix = FSCONTEXT_STR;
1083 case ROOTCONTEXT_MNT:
1084 prefix = ROOTCONTEXT_STR;
1086 case DEFCONTEXT_MNT:
1087 prefix = DEFCONTEXT_STR;
1091 seq_puts(m, LABELSUPP_STR);
1097 /* we need a comma before each option */
1099 seq_puts(m, prefix);
1102 seq_puts(m, opts->mnt_opts[i]);
1108 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1110 struct security_mnt_opts opts;
1113 rc = selinux_get_mnt_opts(sb, &opts);
1115 /* before policy load we may get EINVAL, don't show anything */
1121 selinux_write_opts(m, &opts);
1123 security_free_mnt_opts(&opts);
1128 static inline u16 inode_mode_to_security_class(umode_t mode)
1130 switch (mode & S_IFMT) {
1132 return SECCLASS_SOCK_FILE;
1134 return SECCLASS_LNK_FILE;
1136 return SECCLASS_FILE;
1138 return SECCLASS_BLK_FILE;
1140 return SECCLASS_DIR;
1142 return SECCLASS_CHR_FILE;
1144 return SECCLASS_FIFO_FILE;
1148 return SECCLASS_FILE;
1151 static inline int default_protocol_stream(int protocol)
1153 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1156 static inline int default_protocol_dgram(int protocol)
1158 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1161 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1167 case SOCK_SEQPACKET:
1168 return SECCLASS_UNIX_STREAM_SOCKET;
1170 return SECCLASS_UNIX_DGRAM_SOCKET;
1177 if (default_protocol_stream(protocol))
1178 return SECCLASS_TCP_SOCKET;
1180 return SECCLASS_RAWIP_SOCKET;
1182 if (default_protocol_dgram(protocol))
1183 return SECCLASS_UDP_SOCKET;
1185 return SECCLASS_RAWIP_SOCKET;
1187 return SECCLASS_DCCP_SOCKET;
1189 return SECCLASS_RAWIP_SOCKET;
1195 return SECCLASS_NETLINK_ROUTE_SOCKET;
1196 case NETLINK_FIREWALL:
1197 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1198 case NETLINK_SOCK_DIAG:
1199 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1201 return SECCLASS_NETLINK_NFLOG_SOCKET;
1203 return SECCLASS_NETLINK_XFRM_SOCKET;
1204 case NETLINK_SELINUX:
1205 return SECCLASS_NETLINK_SELINUX_SOCKET;
1207 return SECCLASS_NETLINK_AUDIT_SOCKET;
1208 case NETLINK_IP6_FW:
1209 return SECCLASS_NETLINK_IP6FW_SOCKET;
1210 case NETLINK_DNRTMSG:
1211 return SECCLASS_NETLINK_DNRT_SOCKET;
1212 case NETLINK_KOBJECT_UEVENT:
1213 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1215 return SECCLASS_NETLINK_SOCKET;
1218 return SECCLASS_PACKET_SOCKET;
1220 return SECCLASS_KEY_SOCKET;
1222 return SECCLASS_APPLETALK_SOCKET;
1225 return SECCLASS_SOCKET;
1228 #ifdef CONFIG_PROC_FS
1229 static int selinux_proc_get_sid(struct dentry *dentry,
1234 char *buffer, *path;
1236 buffer = (char *)__get_free_page(GFP_KERNEL);
1240 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1244 /* each process gets a /proc/PID/ entry. Strip off the
1245 * PID part to get a valid selinux labeling.
1246 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1247 while (path[1] >= '0' && path[1] <= '9') {
1251 rc = security_genfs_sid("proc", path, tclass, sid);
1253 free_page((unsigned long)buffer);
1257 static int selinux_proc_get_sid(struct dentry *dentry,
1265 /* The inode's security attributes must be initialized before first use. */
1266 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1268 struct superblock_security_struct *sbsec = NULL;
1269 struct inode_security_struct *isec = inode->i_security;
1271 struct dentry *dentry;
1272 #define INITCONTEXTLEN 255
1273 char *context = NULL;
1277 if (isec->initialized)
1280 mutex_lock(&isec->lock);
1281 if (isec->initialized)
1284 sbsec = inode->i_sb->s_security;
1285 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1286 /* Defer initialization until selinux_complete_init,
1287 after the initial policy is loaded and the security
1288 server is ready to handle calls. */
1289 spin_lock(&sbsec->isec_lock);
1290 if (list_empty(&isec->list))
1291 list_add(&isec->list, &sbsec->isec_head);
1292 spin_unlock(&sbsec->isec_lock);
1296 switch (sbsec->behavior) {
1297 case SECURITY_FS_USE_NATIVE:
1299 case SECURITY_FS_USE_XATTR:
1300 if (!inode->i_op->getxattr) {
1301 isec->sid = sbsec->def_sid;
1305 /* Need a dentry, since the xattr API requires one.
1306 Life would be simpler if we could just pass the inode. */
1308 /* Called from d_instantiate or d_splice_alias. */
1309 dentry = dget(opt_dentry);
1311 /* Called from selinux_complete_init, try to find a dentry. */
1312 dentry = d_find_alias(inode);
1316 * this is can be hit on boot when a file is accessed
1317 * before the policy is loaded. When we load policy we
1318 * may find inodes that have no dentry on the
1319 * sbsec->isec_head list. No reason to complain as these
1320 * will get fixed up the next time we go through
1321 * inode_doinit with a dentry, before these inodes could
1322 * be used again by userspace.
1327 len = INITCONTEXTLEN;
1328 context = kmalloc(len+1, GFP_NOFS);
1334 context[len] = '\0';
1335 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1337 if (rc == -ERANGE) {
1340 /* Need a larger buffer. Query for the right size. */
1341 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1348 context = kmalloc(len+1, GFP_NOFS);
1354 context[len] = '\0';
1355 rc = inode->i_op->getxattr(dentry,
1361 if (rc != -ENODATA) {
1362 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1363 "%d for dev=%s ino=%ld\n", __func__,
1364 -rc, inode->i_sb->s_id, inode->i_ino);
1368 /* Map ENODATA to the default file SID */
1369 sid = sbsec->def_sid;
1372 rc = security_context_to_sid_default(context, rc, &sid,
1376 char *dev = inode->i_sb->s_id;
1377 unsigned long ino = inode->i_ino;
1379 if (rc == -EINVAL) {
1380 if (printk_ratelimit())
1381 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1382 "context=%s. This indicates you may need to relabel the inode or the "
1383 "filesystem in question.\n", ino, dev, context);
1385 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1386 "returned %d for dev=%s ino=%ld\n",
1387 __func__, context, -rc, dev, ino);
1390 /* Leave with the unlabeled SID */
1398 case SECURITY_FS_USE_TASK:
1399 isec->sid = isec->task_sid;
1401 case SECURITY_FS_USE_TRANS:
1402 /* Default to the fs SID. */
1403 isec->sid = sbsec->sid;
1405 /* Try to obtain a transition SID. */
1406 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1407 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1408 isec->sclass, NULL, &sid);
1413 case SECURITY_FS_USE_MNTPOINT:
1414 isec->sid = sbsec->mntpoint_sid;
1417 /* Default to the fs superblock SID. */
1418 isec->sid = sbsec->sid;
1420 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1422 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1423 rc = selinux_proc_get_sid(opt_dentry,
1434 isec->initialized = 1;
1437 mutex_unlock(&isec->lock);
1439 if (isec->sclass == SECCLASS_FILE)
1440 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1444 /* Convert a Linux signal to an access vector. */
1445 static inline u32 signal_to_av(int sig)
1451 /* Commonly granted from child to parent. */
1452 perm = PROCESS__SIGCHLD;
1455 /* Cannot be caught or ignored */
1456 perm = PROCESS__SIGKILL;
1459 /* Cannot be caught or ignored */
1460 perm = PROCESS__SIGSTOP;
1463 /* All other signals. */
1464 perm = PROCESS__SIGNAL;
1472 * Check permission between a pair of credentials
1473 * fork check, ptrace check, etc.
1475 static int cred_has_perm(const struct cred *actor,
1476 const struct cred *target,
1479 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1481 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1485 * Check permission between a pair of tasks, e.g. signal checks,
1486 * fork check, ptrace check, etc.
1487 * tsk1 is the actor and tsk2 is the target
1488 * - this uses the default subjective creds of tsk1
1490 static int task_has_perm(const struct task_struct *tsk1,
1491 const struct task_struct *tsk2,
1494 const struct task_security_struct *__tsec1, *__tsec2;
1498 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1499 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1501 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1505 * Check permission between current and another task, e.g. signal checks,
1506 * fork check, ptrace check, etc.
1507 * current is the actor and tsk2 is the target
1508 * - this uses current's subjective creds
1510 static int current_has_perm(const struct task_struct *tsk,
1515 sid = current_sid();
1516 tsid = task_sid(tsk);
1517 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1520 #if CAP_LAST_CAP > 63
1521 #error Fix SELinux to handle capabilities > 63.
1524 /* Check whether a task is allowed to use a capability. */
1525 static int cred_has_capability(const struct cred *cred,
1528 struct common_audit_data ad;
1529 struct av_decision avd;
1531 u32 sid = cred_sid(cred);
1532 u32 av = CAP_TO_MASK(cap);
1535 ad.type = LSM_AUDIT_DATA_CAP;
1538 switch (CAP_TO_INDEX(cap)) {
1540 sclass = SECCLASS_CAPABILITY;
1543 sclass = SECCLASS_CAPABILITY2;
1547 "SELinux: out of range capability %d\n", cap);
1552 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1553 if (audit == SECURITY_CAP_AUDIT) {
1554 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1561 /* Check whether a task is allowed to use a system operation. */
1562 static int task_has_system(struct task_struct *tsk,
1565 u32 sid = task_sid(tsk);
1567 return avc_has_perm(sid, SECINITSID_KERNEL,
1568 SECCLASS_SYSTEM, perms, NULL);
1571 /* Check whether a task has a particular permission to an inode.
1572 The 'adp' parameter is optional and allows other audit
1573 data to be passed (e.g. the dentry). */
1574 static int inode_has_perm(const struct cred *cred,
1575 struct inode *inode,
1577 struct common_audit_data *adp)
1579 struct inode_security_struct *isec;
1582 validate_creds(cred);
1584 if (unlikely(IS_PRIVATE(inode)))
1587 sid = cred_sid(cred);
1588 isec = inode->i_security;
1590 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1593 /* Same as inode_has_perm, but pass explicit audit data containing
1594 the dentry to help the auditing code to more easily generate the
1595 pathname if needed. */
1596 static inline int dentry_has_perm(const struct cred *cred,
1597 struct dentry *dentry,
1600 struct inode *inode = dentry->d_inode;
1601 struct common_audit_data ad;
1603 ad.type = LSM_AUDIT_DATA_DENTRY;
1604 ad.u.dentry = dentry;
1605 return inode_has_perm(cred, inode, av, &ad);
1608 /* Same as inode_has_perm, but pass explicit audit data containing
1609 the path to help the auditing code to more easily generate the
1610 pathname if needed. */
1611 static inline int path_has_perm(const struct cred *cred,
1615 struct inode *inode = path->dentry->d_inode;
1616 struct common_audit_data ad;
1618 ad.type = LSM_AUDIT_DATA_PATH;
1620 return inode_has_perm(cred, inode, av, &ad);
1623 /* Same as path_has_perm, but uses the inode from the file struct. */
1624 static inline int file_path_has_perm(const struct cred *cred,
1628 struct common_audit_data ad;
1630 ad.type = LSM_AUDIT_DATA_PATH;
1631 ad.u.path = file->f_path;
1632 return inode_has_perm(cred, file_inode(file), av, &ad);
1635 /* Check whether a task can use an open file descriptor to
1636 access an inode in a given way. Check access to the
1637 descriptor itself, and then use dentry_has_perm to
1638 check a particular permission to the file.
1639 Access to the descriptor is implicitly granted if it
1640 has the same SID as the process. If av is zero, then
1641 access to the file is not checked, e.g. for cases
1642 where only the descriptor is affected like seek. */
1643 static int file_has_perm(const struct cred *cred,
1647 struct file_security_struct *fsec = file->f_security;
1648 struct inode *inode = file_inode(file);
1649 struct common_audit_data ad;
1650 u32 sid = cred_sid(cred);
1653 ad.type = LSM_AUDIT_DATA_PATH;
1654 ad.u.path = file->f_path;
1656 if (sid != fsec->sid) {
1657 rc = avc_has_perm(sid, fsec->sid,
1665 /* av is zero if only checking access to the descriptor. */
1668 rc = inode_has_perm(cred, inode, av, &ad);
1674 /* Check whether a task can create a file. */
1675 static int may_create(struct inode *dir,
1676 struct dentry *dentry,
1679 const struct task_security_struct *tsec = current_security();
1680 struct inode_security_struct *dsec;
1681 struct superblock_security_struct *sbsec;
1683 struct common_audit_data ad;
1686 dsec = dir->i_security;
1687 sbsec = dir->i_sb->s_security;
1690 newsid = tsec->create_sid;
1692 ad.type = LSM_AUDIT_DATA_DENTRY;
1693 ad.u.dentry = dentry;
1695 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1696 DIR__ADD_NAME | DIR__SEARCH,
1701 if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
1702 rc = security_transition_sid(sid, dsec->sid, tclass,
1703 &dentry->d_name, &newsid);
1708 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1712 return avc_has_perm(newsid, sbsec->sid,
1713 SECCLASS_FILESYSTEM,
1714 FILESYSTEM__ASSOCIATE, &ad);
1717 /* Check whether a task can create a key. */
1718 static int may_create_key(u32 ksid,
1719 struct task_struct *ctx)
1721 u32 sid = task_sid(ctx);
1723 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1727 #define MAY_UNLINK 1
1730 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1731 static int may_link(struct inode *dir,
1732 struct dentry *dentry,
1736 struct inode_security_struct *dsec, *isec;
1737 struct common_audit_data ad;
1738 u32 sid = current_sid();
1742 dsec = dir->i_security;
1743 isec = dentry->d_inode->i_security;
1745 ad.type = LSM_AUDIT_DATA_DENTRY;
1746 ad.u.dentry = dentry;
1749 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1750 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1765 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1770 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1774 static inline int may_rename(struct inode *old_dir,
1775 struct dentry *old_dentry,
1776 struct inode *new_dir,
1777 struct dentry *new_dentry)
1779 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1780 struct common_audit_data ad;
1781 u32 sid = current_sid();
1783 int old_is_dir, new_is_dir;
1786 old_dsec = old_dir->i_security;
1787 old_isec = old_dentry->d_inode->i_security;
1788 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1789 new_dsec = new_dir->i_security;
1791 ad.type = LSM_AUDIT_DATA_DENTRY;
1793 ad.u.dentry = old_dentry;
1794 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1795 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1798 rc = avc_has_perm(sid, old_isec->sid,
1799 old_isec->sclass, FILE__RENAME, &ad);
1802 if (old_is_dir && new_dir != old_dir) {
1803 rc = avc_has_perm(sid, old_isec->sid,
1804 old_isec->sclass, DIR__REPARENT, &ad);
1809 ad.u.dentry = new_dentry;
1810 av = DIR__ADD_NAME | DIR__SEARCH;
1811 if (new_dentry->d_inode)
1812 av |= DIR__REMOVE_NAME;
1813 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1816 if (new_dentry->d_inode) {
1817 new_isec = new_dentry->d_inode->i_security;
1818 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1819 rc = avc_has_perm(sid, new_isec->sid,
1821 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1829 /* Check whether a task can perform a filesystem operation. */
1830 static int superblock_has_perm(const struct cred *cred,
1831 struct super_block *sb,
1833 struct common_audit_data *ad)
1835 struct superblock_security_struct *sbsec;
1836 u32 sid = cred_sid(cred);
1838 sbsec = sb->s_security;
1839 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1842 /* Convert a Linux mode and permission mask to an access vector. */
1843 static inline u32 file_mask_to_av(int mode, int mask)
1847 if (!S_ISDIR(mode)) {
1848 if (mask & MAY_EXEC)
1849 av |= FILE__EXECUTE;
1850 if (mask & MAY_READ)
1853 if (mask & MAY_APPEND)
1855 else if (mask & MAY_WRITE)
1859 if (mask & MAY_EXEC)
1861 if (mask & MAY_WRITE)
1863 if (mask & MAY_READ)
1870 /* Convert a Linux file to an access vector. */
1871 static inline u32 file_to_av(struct file *file)
1875 if (file->f_mode & FMODE_READ)
1877 if (file->f_mode & FMODE_WRITE) {
1878 if (file->f_flags & O_APPEND)
1885 * Special file opened with flags 3 for ioctl-only use.
1894 * Convert a file to an access vector and include the correct open
1897 static inline u32 open_file_to_av(struct file *file)
1899 u32 av = file_to_av(file);
1901 if (selinux_policycap_openperm)
1907 /* Hook functions begin here. */
1909 static int selinux_ptrace_access_check(struct task_struct *child,
1914 rc = cap_ptrace_access_check(child, mode);
1918 if (mode & PTRACE_MODE_READ) {
1919 u32 sid = current_sid();
1920 u32 csid = task_sid(child);
1921 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1924 return current_has_perm(child, PROCESS__PTRACE);
1927 static int selinux_ptrace_traceme(struct task_struct *parent)
1931 rc = cap_ptrace_traceme(parent);
1935 return task_has_perm(parent, current, PROCESS__PTRACE);
1938 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1939 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1943 error = current_has_perm(target, PROCESS__GETCAP);
1947 return cap_capget(target, effective, inheritable, permitted);
1950 static int selinux_capset(struct cred *new, const struct cred *old,
1951 const kernel_cap_t *effective,
1952 const kernel_cap_t *inheritable,
1953 const kernel_cap_t *permitted)
1957 error = cap_capset(new, old,
1958 effective, inheritable, permitted);
1962 return cred_has_perm(old, new, PROCESS__SETCAP);
1966 * (This comment used to live with the selinux_task_setuid hook,
1967 * which was removed).
1969 * Since setuid only affects the current process, and since the SELinux
1970 * controls are not based on the Linux identity attributes, SELinux does not
1971 * need to control this operation. However, SELinux does control the use of
1972 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1975 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1980 rc = cap_capable(cred, ns, cap, audit);
1984 return cred_has_capability(cred, cap, audit);
1987 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1989 const struct cred *cred = current_cred();
2001 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2006 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2009 rc = 0; /* let the kernel handle invalid cmds */
2015 static int selinux_quota_on(struct dentry *dentry)
2017 const struct cred *cred = current_cred();
2019 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2022 static int selinux_syslog(int type)
2027 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2028 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2029 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2031 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2032 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2033 /* Set level of messages printed to console */
2034 case SYSLOG_ACTION_CONSOLE_LEVEL:
2035 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2037 case SYSLOG_ACTION_CLOSE: /* Close log */
2038 case SYSLOG_ACTION_OPEN: /* Open log */
2039 case SYSLOG_ACTION_READ: /* Read from log */
2040 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
2041 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
2043 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2050 * Check that a process has enough memory to allocate a new virtual
2051 * mapping. 0 means there is enough memory for the allocation to
2052 * succeed and -ENOMEM implies there is not.
2054 * Do not audit the selinux permission check, as this is applied to all
2055 * processes that allocate mappings.
2057 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2059 int rc, cap_sys_admin = 0;
2061 rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
2062 SECURITY_CAP_NOAUDIT);
2066 return __vm_enough_memory(mm, pages, cap_sys_admin);
2069 /* binprm security operations */
2071 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2073 const struct task_security_struct *old_tsec;
2074 struct task_security_struct *new_tsec;
2075 struct inode_security_struct *isec;
2076 struct common_audit_data ad;
2077 struct inode *inode = file_inode(bprm->file);
2080 rc = cap_bprm_set_creds(bprm);
2084 /* SELinux context only depends on initial program or script and not
2085 * the script interpreter */
2086 if (bprm->cred_prepared)
2089 old_tsec = current_security();
2090 new_tsec = bprm->cred->security;
2091 isec = inode->i_security;
2093 /* Default to the current task SID. */
2094 new_tsec->sid = old_tsec->sid;
2095 new_tsec->osid = old_tsec->sid;
2097 /* Reset fs, key, and sock SIDs on execve. */
2098 new_tsec->create_sid = 0;
2099 new_tsec->keycreate_sid = 0;
2100 new_tsec->sockcreate_sid = 0;
2102 if (old_tsec->exec_sid) {
2103 new_tsec->sid = old_tsec->exec_sid;
2104 /* Reset exec SID on execve. */
2105 new_tsec->exec_sid = 0;
2108 * Minimize confusion: if no_new_privs and a transition is
2109 * explicitly requested, then fail the exec.
2111 if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
2114 /* Check for a default transition on this program. */
2115 rc = security_transition_sid(old_tsec->sid, isec->sid,
2116 SECCLASS_PROCESS, NULL,
2122 ad.type = LSM_AUDIT_DATA_PATH;
2123 ad.u.path = bprm->file->f_path;
2125 if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2126 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2127 new_tsec->sid = old_tsec->sid;
2129 if (new_tsec->sid == old_tsec->sid) {
2130 rc = avc_has_perm(old_tsec->sid, isec->sid,
2131 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2135 /* Check permissions for the transition. */
2136 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2137 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2141 rc = avc_has_perm(new_tsec->sid, isec->sid,
2142 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2146 /* Check for shared state */
2147 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2148 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2149 SECCLASS_PROCESS, PROCESS__SHARE,
2155 /* Make sure that anyone attempting to ptrace over a task that
2156 * changes its SID has the appropriate permit */
2158 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2159 struct task_struct *tracer;
2160 struct task_security_struct *sec;
2164 tracer = ptrace_parent(current);
2165 if (likely(tracer != NULL)) {
2166 sec = __task_cred(tracer)->security;
2172 rc = avc_has_perm(ptsid, new_tsec->sid,
2174 PROCESS__PTRACE, NULL);
2180 /* Clear any possibly unsafe personality bits on exec: */
2181 bprm->per_clear |= PER_CLEAR_ON_SETID;
2187 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2189 const struct task_security_struct *tsec = current_security();
2197 /* Enable secure mode for SIDs transitions unless
2198 the noatsecure permission is granted between
2199 the two SIDs, i.e. ahp returns 0. */
2200 atsecure = avc_has_perm(osid, sid,
2202 PROCESS__NOATSECURE, NULL);
2205 return (atsecure || cap_bprm_secureexec(bprm));
2208 static int match_file(const void *p, struct file *file, unsigned fd)
2210 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2213 /* Derived from fs/exec.c:flush_old_files. */
2214 static inline void flush_unauthorized_files(const struct cred *cred,
2215 struct files_struct *files)
2217 struct file *file, *devnull = NULL;
2218 struct tty_struct *tty;
2222 tty = get_current_tty();
2224 spin_lock(&tty_files_lock);
2225 if (!list_empty(&tty->tty_files)) {
2226 struct tty_file_private *file_priv;
2228 /* Revalidate access to controlling tty.
2229 Use file_path_has_perm on the tty path directly
2230 rather than using file_has_perm, as this particular
2231 open file may belong to another process and we are
2232 only interested in the inode-based check here. */
2233 file_priv = list_first_entry(&tty->tty_files,
2234 struct tty_file_private, list);
2235 file = file_priv->file;
2236 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2239 spin_unlock(&tty_files_lock);
2242 /* Reset controlling tty. */
2246 /* Revalidate access to inherited open files. */
2247 n = iterate_fd(files, 0, match_file, cred);
2248 if (!n) /* none found? */
2251 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2252 if (IS_ERR(devnull))
2254 /* replace all the matching ones with this */
2256 replace_fd(n - 1, devnull, 0);
2257 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2263 * Prepare a process for imminent new credential changes due to exec
2265 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2267 struct task_security_struct *new_tsec;
2268 struct rlimit *rlim, *initrlim;
2271 new_tsec = bprm->cred->security;
2272 if (new_tsec->sid == new_tsec->osid)
2275 /* Close files for which the new task SID is not authorized. */
2276 flush_unauthorized_files(bprm->cred, current->files);
2278 /* Always clear parent death signal on SID transitions. */
2279 current->pdeath_signal = 0;
2281 /* Check whether the new SID can inherit resource limits from the old
2282 * SID. If not, reset all soft limits to the lower of the current
2283 * task's hard limit and the init task's soft limit.
2285 * Note that the setting of hard limits (even to lower them) can be
2286 * controlled by the setrlimit check. The inclusion of the init task's
2287 * soft limit into the computation is to avoid resetting soft limits
2288 * higher than the default soft limit for cases where the default is
2289 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2291 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2292 PROCESS__RLIMITINH, NULL);
2294 /* protect against do_prlimit() */
2296 for (i = 0; i < RLIM_NLIMITS; i++) {
2297 rlim = current->signal->rlim + i;
2298 initrlim = init_task.signal->rlim + i;
2299 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2301 task_unlock(current);
2302 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2307 * Clean up the process immediately after the installation of new credentials
2310 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2312 const struct task_security_struct *tsec = current_security();
2313 struct itimerval itimer;
2323 /* Check whether the new SID can inherit signal state from the old SID.
2324 * If not, clear itimers to avoid subsequent signal generation and
2325 * flush and unblock signals.
2327 * This must occur _after_ the task SID has been updated so that any
2328 * kill done after the flush will be checked against the new SID.
2330 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2332 memset(&itimer, 0, sizeof itimer);
2333 for (i = 0; i < 3; i++)
2334 do_setitimer(i, &itimer, NULL);
2335 spin_lock_irq(¤t->sighand->siglock);
2336 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2337 __flush_signals(current);
2338 flush_signal_handlers(current, 1);
2339 sigemptyset(¤t->blocked);
2341 spin_unlock_irq(¤t->sighand->siglock);
2344 /* Wake up the parent if it is waiting so that it can recheck
2345 * wait permission to the new task SID. */
2346 read_lock(&tasklist_lock);
2347 __wake_up_parent(current, current->real_parent);
2348 read_unlock(&tasklist_lock);
2351 /* superblock security operations */
2353 static int selinux_sb_alloc_security(struct super_block *sb)
2355 return superblock_alloc_security(sb);
2358 static void selinux_sb_free_security(struct super_block *sb)
2360 superblock_free_security(sb);
2363 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2368 return !memcmp(prefix, option, plen);
2371 static inline int selinux_option(char *option, int len)
2373 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2374 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2375 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2376 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2377 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2380 static inline void take_option(char **to, char *from, int *first, int len)
2387 memcpy(*to, from, len);
2391 static inline void take_selinux_option(char **to, char *from, int *first,
2394 int current_size = 0;
2402 while (current_size < len) {
2412 static int selinux_sb_copy_data(char *orig, char *copy)
2414 int fnosec, fsec, rc = 0;
2415 char *in_save, *in_curr, *in_end;
2416 char *sec_curr, *nosec_save, *nosec;
2422 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2430 in_save = in_end = orig;
2434 open_quote = !open_quote;
2435 if ((*in_end == ',' && open_quote == 0) ||
2437 int len = in_end - in_curr;
2439 if (selinux_option(in_curr, len))
2440 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2442 take_option(&nosec, in_curr, &fnosec, len);
2444 in_curr = in_end + 1;
2446 } while (*in_end++);
2448 strcpy(in_save, nosec_save);
2449 free_page((unsigned long)nosec_save);
2454 static int selinux_sb_remount(struct super_block *sb, void *data)
2457 struct security_mnt_opts opts;
2458 char *secdata, **mount_options;
2459 struct superblock_security_struct *sbsec = sb->s_security;
2461 if (!(sbsec->flags & SE_SBINITIALIZED))
2467 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2470 security_init_mnt_opts(&opts);
2471 secdata = alloc_secdata();
2474 rc = selinux_sb_copy_data(data, secdata);
2476 goto out_free_secdata;
2478 rc = selinux_parse_opts_str(secdata, &opts);
2480 goto out_free_secdata;
2482 mount_options = opts.mnt_opts;
2483 flags = opts.mnt_opts_flags;
2485 for (i = 0; i < opts.num_mnt_opts; i++) {
2489 if (flags[i] == SBLABEL_MNT)
2491 len = strlen(mount_options[i]);
2492 rc = security_context_to_sid(mount_options[i], len, &sid,
2495 printk(KERN_WARNING "SELinux: security_context_to_sid"
2496 "(%s) failed for (dev %s, type %s) errno=%d\n",
2497 mount_options[i], sb->s_id, sb->s_type->name, rc);
2503 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2504 goto out_bad_option;
2507 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2508 goto out_bad_option;
2510 case ROOTCONTEXT_MNT: {
2511 struct inode_security_struct *root_isec;
2512 root_isec = sb->s_root->d_inode->i_security;
2514 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2515 goto out_bad_option;
2518 case DEFCONTEXT_MNT:
2519 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2520 goto out_bad_option;
2529 security_free_mnt_opts(&opts);
2531 free_secdata(secdata);
2534 printk(KERN_WARNING "SELinux: unable to change security options "
2535 "during remount (dev %s, type=%s)\n", sb->s_id,
2540 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2542 const struct cred *cred = current_cred();
2543 struct common_audit_data ad;
2546 rc = superblock_doinit(sb, data);
2550 /* Allow all mounts performed by the kernel */
2551 if (flags & MS_KERNMOUNT)
2554 ad.type = LSM_AUDIT_DATA_DENTRY;
2555 ad.u.dentry = sb->s_root;
2556 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2559 static int selinux_sb_statfs(struct dentry *dentry)
2561 const struct cred *cred = current_cred();
2562 struct common_audit_data ad;
2564 ad.type = LSM_AUDIT_DATA_DENTRY;
2565 ad.u.dentry = dentry->d_sb->s_root;
2566 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2569 static int selinux_mount(const char *dev_name,
2572 unsigned long flags,
2575 const struct cred *cred = current_cred();
2577 if (flags & MS_REMOUNT)
2578 return superblock_has_perm(cred, path->dentry->d_sb,
2579 FILESYSTEM__REMOUNT, NULL);
2581 return path_has_perm(cred, path, FILE__MOUNTON);
2584 static int selinux_umount(struct vfsmount *mnt, int flags)
2586 const struct cred *cred = current_cred();
2588 return superblock_has_perm(cred, mnt->mnt_sb,
2589 FILESYSTEM__UNMOUNT, NULL);
2592 /* inode security operations */
2594 static int selinux_inode_alloc_security(struct inode *inode)
2596 return inode_alloc_security(inode);
2599 static void selinux_inode_free_security(struct inode *inode)
2601 inode_free_security(inode);
2604 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2605 struct qstr *name, void **ctx,
2608 const struct cred *cred = current_cred();
2609 struct task_security_struct *tsec;
2610 struct inode_security_struct *dsec;
2611 struct superblock_security_struct *sbsec;
2612 struct inode *dir = dentry->d_parent->d_inode;
2616 tsec = cred->security;
2617 dsec = dir->i_security;
2618 sbsec = dir->i_sb->s_security;
2620 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2621 newsid = tsec->create_sid;
2623 rc = security_transition_sid(tsec->sid, dsec->sid,
2624 inode_mode_to_security_class(mode),
2629 "%s: security_transition_sid failed, rc=%d\n",
2635 return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2638 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2639 const struct qstr *qstr,
2641 void **value, size_t *len)
2643 const struct task_security_struct *tsec = current_security();
2644 struct inode_security_struct *dsec;
2645 struct superblock_security_struct *sbsec;
2646 u32 sid, newsid, clen;
2650 dsec = dir->i_security;
2651 sbsec = dir->i_sb->s_security;
2654 newsid = tsec->create_sid;
2656 if ((sbsec->flags & SE_SBINITIALIZED) &&
2657 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2658 newsid = sbsec->mntpoint_sid;
2659 else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
2660 rc = security_transition_sid(sid, dsec->sid,
2661 inode_mode_to_security_class(inode->i_mode),
2664 printk(KERN_WARNING "%s: "
2665 "security_transition_sid failed, rc=%d (dev=%s "
2668 -rc, inode->i_sb->s_id, inode->i_ino);
2673 /* Possibly defer initialization to selinux_complete_init. */
2674 if (sbsec->flags & SE_SBINITIALIZED) {
2675 struct inode_security_struct *isec = inode->i_security;
2676 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2678 isec->initialized = 1;
2681 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2685 *name = XATTR_SELINUX_SUFFIX;
2688 rc = security_sid_to_context_force(newsid, &context, &clen);
2698 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2700 return may_create(dir, dentry, SECCLASS_FILE);
2703 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2705 return may_link(dir, old_dentry, MAY_LINK);
2708 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2710 return may_link(dir, dentry, MAY_UNLINK);
2713 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2715 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2718 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2720 return may_create(dir, dentry, SECCLASS_DIR);
2723 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2725 return may_link(dir, dentry, MAY_RMDIR);
2728 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2730 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2733 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2734 struct inode *new_inode, struct dentry *new_dentry)
2736 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2739 static int selinux_inode_readlink(struct dentry *dentry)
2741 const struct cred *cred = current_cred();
2743 return dentry_has_perm(cred, dentry, FILE__READ);
2746 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2748 const struct cred *cred = current_cred();
2750 return dentry_has_perm(cred, dentry, FILE__READ);
2753 static noinline int audit_inode_permission(struct inode *inode,
2754 u32 perms, u32 audited, u32 denied,
2757 struct common_audit_data ad;
2758 struct inode_security_struct *isec = inode->i_security;
2761 ad.type = LSM_AUDIT_DATA_INODE;
2764 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2765 audited, denied, &ad, flags);
2771 static int selinux_inode_permission(struct inode *inode, int mask)
2773 const struct cred *cred = current_cred();
2776 unsigned flags = mask & MAY_NOT_BLOCK;
2777 struct inode_security_struct *isec;
2779 struct av_decision avd;
2781 u32 audited, denied;
2783 from_access = mask & MAY_ACCESS;
2784 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2786 /* No permission to check. Existence test. */
2790 validate_creds(cred);
2792 if (unlikely(IS_PRIVATE(inode)))
2795 perms = file_mask_to_av(inode->i_mode, mask);
2797 sid = cred_sid(cred);
2798 isec = inode->i_security;
2800 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2801 audited = avc_audit_required(perms, &avd, rc,
2802 from_access ? FILE__AUDIT_ACCESS : 0,
2804 if (likely(!audited))
2807 rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2813 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2815 const struct cred *cred = current_cred();
2816 unsigned int ia_valid = iattr->ia_valid;
2817 __u32 av = FILE__WRITE;
2819 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2820 if (ia_valid & ATTR_FORCE) {
2821 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2827 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2828 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2829 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2831 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2834 return dentry_has_perm(cred, dentry, av);
2837 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2839 const struct cred *cred = current_cred();
2842 path.dentry = dentry;
2845 return path_has_perm(cred, &path, FILE__GETATTR);
2848 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2850 const struct cred *cred = current_cred();
2852 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2853 sizeof XATTR_SECURITY_PREFIX - 1)) {
2854 if (!strcmp(name, XATTR_NAME_CAPS)) {
2855 if (!capable(CAP_SETFCAP))
2857 } else if (!capable(CAP_SYS_ADMIN)) {
2858 /* A different attribute in the security namespace.
2859 Restrict to administrator. */
2864 /* Not an attribute we recognize, so just check the
2865 ordinary setattr permission. */
2866 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2869 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2870 const void *value, size_t size, int flags)
2872 struct inode *inode = dentry->d_inode;
2873 struct inode_security_struct *isec = inode->i_security;
2874 struct superblock_security_struct *sbsec;
2875 struct common_audit_data ad;
2876 u32 newsid, sid = current_sid();
2879 if (strcmp(name, XATTR_NAME_SELINUX))
2880 return selinux_inode_setotherxattr(dentry, name);
2882 sbsec = inode->i_sb->s_security;
2883 if (!(sbsec->flags & SBLABEL_MNT))
2886 if (!inode_owner_or_capable(inode))
2889 ad.type = LSM_AUDIT_DATA_DENTRY;
2890 ad.u.dentry = dentry;
2892 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2893 FILE__RELABELFROM, &ad);
2897 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
2898 if (rc == -EINVAL) {
2899 if (!capable(CAP_MAC_ADMIN)) {
2900 struct audit_buffer *ab;
2904 /* We strip a nul only if it is at the end, otherwise the
2905 * context contains a nul and we should audit that */
2908 if (str[size - 1] == '\0')
2909 audit_size = size - 1;
2916 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2917 audit_log_format(ab, "op=setxattr invalid_context=");
2918 audit_log_n_untrustedstring(ab, value, audit_size);
2923 rc = security_context_to_sid_force(value, size, &newsid);
2928 rc = avc_has_perm(sid, newsid, isec->sclass,
2929 FILE__RELABELTO, &ad);
2933 rc = security_validate_transition(isec->sid, newsid, sid,
2938 return avc_has_perm(newsid,
2940 SECCLASS_FILESYSTEM,
2941 FILESYSTEM__ASSOCIATE,
2945 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2946 const void *value, size_t size,
2949 struct inode *inode = dentry->d_inode;
2950 struct inode_security_struct *isec = inode->i_security;
2954 if (strcmp(name, XATTR_NAME_SELINUX)) {
2955 /* Not an attribute we recognize, so nothing to do. */
2959 rc = security_context_to_sid_force(value, size, &newsid);
2961 printk(KERN_ERR "SELinux: unable to map context to SID"
2962 "for (%s, %lu), rc=%d\n",
2963 inode->i_sb->s_id, inode->i_ino, -rc);
2967 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2969 isec->initialized = 1;
2974 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2976 const struct cred *cred = current_cred();
2978 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2981 static int selinux_inode_listxattr(struct dentry *dentry)
2983 const struct cred *cred = current_cred();
2985 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2988 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2990 if (strcmp(name, XATTR_NAME_SELINUX))
2991 return selinux_inode_setotherxattr(dentry, name);
2993 /* No one is allowed to remove a SELinux security label.
2994 You can change the label, but all data must be labeled. */
2999 * Copy the inode security context value to the user.
3001 * Permission check is handled by selinux_inode_getxattr hook.
3003 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
3007 char *context = NULL;
3008 struct inode_security_struct *isec = inode->i_security;
3010 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3014 * If the caller has CAP_MAC_ADMIN, then get the raw context
3015 * value even if it is not defined by current policy; otherwise,
3016 * use the in-core value under current policy.
3017 * Use the non-auditing forms of the permission checks since
3018 * getxattr may be called by unprivileged processes commonly
3019 * and lack of permission just means that we fall back to the
3020 * in-core context value, not a denial.
3022 error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3023 SECURITY_CAP_NOAUDIT);
3025 error = security_sid_to_context_force(isec->sid, &context,
3028 error = security_sid_to_context(isec->sid, &context, &size);
3041 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3042 const void *value, size_t size, int flags)
3044 struct inode_security_struct *isec = inode->i_security;
3048 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3051 if (!value || !size)
3054 rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL);
3058 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3060 isec->initialized = 1;
3064 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3066 const int len = sizeof(XATTR_NAME_SELINUX);
3067 if (buffer && len <= buffer_size)
3068 memcpy(buffer, XATTR_NAME_SELINUX, len);
3072 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3074 struct inode_security_struct *isec = inode->i_security;
3078 /* file security operations */
3080 static int selinux_revalidate_file_permission(struct file *file, int mask)
3082 const struct cred *cred = current_cred();
3083 struct inode *inode = file_inode(file);
3085 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3086 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3089 return file_has_perm(cred, file,
3090 file_mask_to_av(inode->i_mode, mask));
3093 static int selinux_file_permission(struct file *file, int mask)
3095 struct inode *inode = file_inode(file);
3096 struct file_security_struct *fsec = file->f_security;
3097 struct inode_security_struct *isec = inode->i_security;
3098 u32 sid = current_sid();
3101 /* No permission to check. Existence test. */
3104 if (sid == fsec->sid && fsec->isid == isec->sid &&
3105 fsec->pseqno == avc_policy_seqno())
3106 /* No change since file_open check. */
3109 return selinux_revalidate_file_permission(file, mask);
3112 static int selinux_file_alloc_security(struct file *file)
3114 return file_alloc_security(file);
3117 static void selinux_file_free_security(struct file *file)
3119 file_free_security(file);
3122 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3125 const struct cred *cred = current_cred();
3135 case FS_IOC_GETFLAGS:
3137 case FS_IOC_GETVERSION:
3138 error = file_has_perm(cred, file, FILE__GETATTR);
3141 case FS_IOC_SETFLAGS:
3143 case FS_IOC_SETVERSION:
3144 error = file_has_perm(cred, file, FILE__SETATTR);
3147 /* sys_ioctl() checks */
3151 error = file_has_perm(cred, file, 0);
3156 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3157 SECURITY_CAP_AUDIT);
3160 /* default case assumes that the command will go
3161 * to the file's ioctl() function.
3164 error = file_has_perm(cred, file, FILE__IOCTL);
3169 static int default_noexec;
3171 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3173 const struct cred *cred = current_cred();
3176 if (default_noexec &&
3177 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3179 * We are making executable an anonymous mapping or a
3180 * private file mapping that will also be writable.
3181 * This has an additional check.
3183 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3189 /* read access is always possible with a mapping */
3190 u32 av = FILE__READ;
3192 /* write access only matters if the mapping is shared */
3193 if (shared && (prot & PROT_WRITE))
3196 if (prot & PROT_EXEC)
3197 av |= FILE__EXECUTE;
3199 return file_has_perm(cred, file, av);
3206 static int selinux_mmap_addr(unsigned long addr)
3209 u32 sid = current_sid();
3212 * notice that we are intentionally putting the SELinux check before
3213 * the secondary cap_file_mmap check. This is such a likely attempt
3214 * at bad behaviour/exploit that we always want to get the AVC, even
3215 * if DAC would have also denied the operation.
3217 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3218 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3219 MEMPROTECT__MMAP_ZERO, NULL);
3224 /* do DAC check on address space usage */
3225 return cap_mmap_addr(addr);
3228 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3229 unsigned long prot, unsigned long flags)
3231 if (selinux_checkreqprot)
3234 return file_map_prot_check(file, prot,
3235 (flags & MAP_TYPE) == MAP_SHARED);
3238 static int selinux_file_mprotect(struct vm_area_struct *vma,
3239 unsigned long reqprot,
3242 const struct cred *cred = current_cred();
3244 if (selinux_checkreqprot)
3247 if (default_noexec &&
3248 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3250 if (vma->vm_start >= vma->vm_mm->start_brk &&
3251 vma->vm_end <= vma->vm_mm->brk) {
3252 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3253 } else if (!vma->vm_file &&
3254 vma->vm_start <= vma->vm_mm->start_stack &&
3255 vma->vm_end >= vma->vm_mm->start_stack) {
3256 rc = current_has_perm(current, PROCESS__EXECSTACK);
3257 } else if (vma->vm_file && vma->anon_vma) {
3259 * We are making executable a file mapping that has
3260 * had some COW done. Since pages might have been
3261 * written, check ability to execute the possibly
3262 * modified content. This typically should only
3263 * occur for text relocations.
3265 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3271 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3274 static int selinux_file_lock(struct file *file, unsigned int cmd)
3276 const struct cred *cred = current_cred();
3278 return file_has_perm(cred, file, FILE__LOCK);
3281 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3284 const struct cred *cred = current_cred();
3289 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3290 err = file_has_perm(cred, file, FILE__WRITE);
3299 case F_GETOWNER_UIDS:
3300 /* Just check FD__USE permission */
3301 err = file_has_perm(cred, file, 0);
3306 #if BITS_PER_LONG == 32
3311 err = file_has_perm(cred, file, FILE__LOCK);
3318 static int selinux_file_set_fowner(struct file *file)
3320 struct file_security_struct *fsec;
3322 fsec = file->f_security;
3323 fsec->fown_sid = current_sid();
3328 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3329 struct fown_struct *fown, int signum)
3332 u32 sid = task_sid(tsk);
3334 struct file_security_struct *fsec;
3336 /* struct fown_struct is never outside the context of a struct file */
3337 file = container_of(fown, struct file, f_owner);
3339 fsec = file->f_security;
3342 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3344 perm = signal_to_av(signum);
3346 return avc_has_perm(fsec->fown_sid, sid,
3347 SECCLASS_PROCESS, perm, NULL);
3350 static int selinux_file_receive(struct file *file)
3352 const struct cred *cred = current_cred();
3354 return file_has_perm(cred, file, file_to_av(file));
3357 static int selinux_file_open(struct file *file, const struct cred *cred)
3359 struct file_security_struct *fsec;
3360 struct inode_security_struct *isec;
3362 fsec = file->f_security;
3363 isec = file_inode(file)->i_security;
3365 * Save inode label and policy sequence number
3366 * at open-time so that selinux_file_permission
3367 * can determine whether revalidation is necessary.
3368 * Task label is already saved in the file security
3369 * struct as its SID.
3371 fsec->isid = isec->sid;
3372 fsec->pseqno = avc_policy_seqno();
3374 * Since the inode label or policy seqno may have changed
3375 * between the selinux_inode_permission check and the saving
3376 * of state above, recheck that access is still permitted.
3377 * Otherwise, access might never be revalidated against the
3378 * new inode label or new policy.
3379 * This check is not redundant - do not remove.
3381 return file_path_has_perm(cred, file, open_file_to_av(file));
3384 /* task security operations */
3386 static int selinux_task_create(unsigned long clone_flags)
3388 return current_has_perm(current, PROCESS__FORK);
3392 * allocate the SELinux part of blank credentials
3394 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3396 struct task_security_struct *tsec;
3398 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3402 cred->security = tsec;
3407 * detach and free the LSM part of a set of credentials
3409 static void selinux_cred_free(struct cred *cred)
3411 struct task_security_struct *tsec = cred->security;
3414 * cred->security == NULL if security_cred_alloc_blank() or
3415 * security_prepare_creds() returned an error.
3417 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3418 cred->security = (void *) 0x7UL;
3423 * prepare a new set of credentials for modification
3425 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3428 const struct task_security_struct *old_tsec;
3429 struct task_security_struct *tsec;
3431 old_tsec = old->security;
3433 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3437 new->security = tsec;
3442 * transfer the SELinux data to a blank set of creds
3444 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3446 const struct task_security_struct *old_tsec = old->security;
3447 struct task_security_struct *tsec = new->security;
3453 * set the security data for a kernel service
3454 * - all the creation contexts are set to unlabelled
3456 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3458 struct task_security_struct *tsec = new->security;
3459 u32 sid = current_sid();
3462 ret = avc_has_perm(sid, secid,
3463 SECCLASS_KERNEL_SERVICE,
3464 KERNEL_SERVICE__USE_AS_OVERRIDE,
3468 tsec->create_sid = 0;
3469 tsec->keycreate_sid = 0;
3470 tsec->sockcreate_sid = 0;
3476 * set the file creation context in a security record to the same as the
3477 * objective context of the specified inode
3479 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3481 struct inode_security_struct *isec = inode->i_security;
3482 struct task_security_struct *tsec = new->security;
3483 u32 sid = current_sid();
3486 ret = avc_has_perm(sid, isec->sid,
3487 SECCLASS_KERNEL_SERVICE,
3488 KERNEL_SERVICE__CREATE_FILES_AS,
3492 tsec->create_sid = isec->sid;
3496 static int selinux_kernel_module_request(char *kmod_name)
3499 struct common_audit_data ad;
3501 sid = task_sid(current);
3503 ad.type = LSM_AUDIT_DATA_KMOD;
3504 ad.u.kmod_name = kmod_name;
3506 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3507 SYSTEM__MODULE_REQUEST, &ad);
3510 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3512 return current_has_perm(p, PROCESS__SETPGID);
3515 static int selinux_task_getpgid(struct task_struct *p)
3517 return current_has_perm(p, PROCESS__GETPGID);
3520 static int selinux_task_getsid(struct task_struct *p)
3522 return current_has_perm(p, PROCESS__GETSESSION);
3525 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3527 *secid = task_sid(p);
3530 static int selinux_task_setnice(struct task_struct *p, int nice)
3534 rc = cap_task_setnice(p, nice);
3538 return current_has_perm(p, PROCESS__SETSCHED);
3541 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3545 rc = cap_task_setioprio(p, ioprio);
3549 return current_has_perm(p, PROCESS__SETSCHED);
3552 static int selinux_task_getioprio(struct task_struct *p)
3554 return current_has_perm(p, PROCESS__GETSCHED);
3557 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3558 struct rlimit *new_rlim)
3560 struct rlimit *old_rlim = p->signal->rlim + resource;
3562 /* Control the ability to change the hard limit (whether
3563 lowering or raising it), so that the hard limit can
3564 later be used as a safe reset point for the soft limit
3565 upon context transitions. See selinux_bprm_committing_creds. */
3566 if (old_rlim->rlim_max != new_rlim->rlim_max)
3567 return current_has_perm(p, PROCESS__SETRLIMIT);
3572 static int selinux_task_setscheduler(struct task_struct *p)
3576 rc = cap_task_setscheduler(p);
3580 return current_has_perm(p, PROCESS__SETSCHED);
3583 static int selinux_task_getscheduler(struct task_struct *p)
3585 return current_has_perm(p, PROCESS__GETSCHED);
3588 static int selinux_task_movememory(struct task_struct *p)
3590 return current_has_perm(p, PROCESS__SETSCHED);
3593 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3600 perm = PROCESS__SIGNULL; /* null signal; existence test */
3602 perm = signal_to_av(sig);
3604 rc = avc_has_perm(secid, task_sid(p),
3605 SECCLASS_PROCESS, perm, NULL);
3607 rc = current_has_perm(p, perm);
3611 static int selinux_task_wait(struct task_struct *p)
3613 return task_has_perm(p, current, PROCESS__SIGCHLD);
3616 static void selinux_task_to_inode(struct task_struct *p,
3617 struct inode *inode)
3619 struct inode_security_struct *isec = inode->i_security;
3620 u32 sid = task_sid(p);
3623 isec->initialized = 1;
3626 /* Returns error only if unable to parse addresses */
3627 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3628 struct common_audit_data *ad, u8 *proto)
3630 int offset, ihlen, ret = -EINVAL;
3631 struct iphdr _iph, *ih;
3633 offset = skb_network_offset(skb);
3634 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3638 ihlen = ih->ihl * 4;
3639 if (ihlen < sizeof(_iph))
3642 ad->u.net->v4info.saddr = ih->saddr;
3643 ad->u.net->v4info.daddr = ih->daddr;
3647 *proto = ih->protocol;
3649 switch (ih->protocol) {
3651 struct tcphdr _tcph, *th;
3653 if (ntohs(ih->frag_off) & IP_OFFSET)
3657 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3661 ad->u.net->sport = th->source;
3662 ad->u.net->dport = th->dest;
3667 struct udphdr _udph, *uh;
3669 if (ntohs(ih->frag_off) & IP_OFFSET)
3673 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3677 ad->u.net->sport = uh->source;
3678 ad->u.net->dport = uh->dest;
3682 case IPPROTO_DCCP: {
3683 struct dccp_hdr _dccph, *dh;
3685 if (ntohs(ih->frag_off) & IP_OFFSET)
3689 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3693 ad->u.net->sport = dh->dccph_sport;
3694 ad->u.net->dport = dh->dccph_dport;
3705 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3707 /* Returns error only if unable to parse addresses */
3708 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3709 struct common_audit_data *ad, u8 *proto)
3712 int ret = -EINVAL, offset;
3713 struct ipv6hdr _ipv6h, *ip6;
3716 offset = skb_network_offset(skb);
3717 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3721 ad->u.net->v6info.saddr = ip6->saddr;
3722 ad->u.net->v6info.daddr = ip6->daddr;
3725 nexthdr = ip6->nexthdr;
3726 offset += sizeof(_ipv6h);
3727 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3736 struct tcphdr _tcph, *th;
3738 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3742 ad->u.net->sport = th->source;
3743 ad->u.net->dport = th->dest;
3748 struct udphdr _udph, *uh;
3750 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3754 ad->u.net->sport = uh->source;
3755 ad->u.net->dport = uh->dest;
3759 case IPPROTO_DCCP: {
3760 struct dccp_hdr _dccph, *dh;
3762 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3766 ad->u.net->sport = dh->dccph_sport;
3767 ad->u.net->dport = dh->dccph_dport;
3771 /* includes fragments */
3781 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3782 char **_addrp, int src, u8 *proto)
3787 switch (ad->u.net->family) {
3789 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3792 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3793 &ad->u.net->v4info.daddr);
3796 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3798 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3801 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3802 &ad->u.net->v6info.daddr);
3812 "SELinux: failure in selinux_parse_skb(),"
3813 " unable to parse packet\n");
3823 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3825 * @family: protocol family
3826 * @sid: the packet's peer label SID
3829 * Check the various different forms of network peer labeling and determine
3830 * the peer label/SID for the packet; most of the magic actually occurs in
3831 * the security server function security_net_peersid_cmp(). The function
3832 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3833 * or -EACCES if @sid is invalid due to inconsistencies with the different
3837 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3844 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
3847 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3851 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3852 if (unlikely(err)) {
3854 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3855 " unable to determine packet's peer label\n");
3863 * selinux_conn_sid - Determine the child socket label for a connection
3864 * @sk_sid: the parent socket's SID
3865 * @skb_sid: the packet's SID
3866 * @conn_sid: the resulting connection SID
3868 * If @skb_sid is valid then the user:role:type information from @sk_sid is
3869 * combined with the MLS information from @skb_sid in order to create
3870 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
3871 * of @sk_sid. Returns zero on success, negative values on failure.
3874 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
3878 if (skb_sid != SECSID_NULL)
3879 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
3886 /* socket security operations */
3888 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3889 u16 secclass, u32 *socksid)
3891 if (tsec->sockcreate_sid > SECSID_NULL) {
3892 *socksid = tsec->sockcreate_sid;
3896 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3900 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3902 struct sk_security_struct *sksec = sk->sk_security;
3903 struct common_audit_data ad;
3904 struct lsm_network_audit net = {0,};
3905 u32 tsid = task_sid(task);
3907 if (sksec->sid == SECINITSID_KERNEL)
3910 ad.type = LSM_AUDIT_DATA_NET;
3914 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3917 static int selinux_socket_create(int family, int type,
3918 int protocol, int kern)
3920 const struct task_security_struct *tsec = current_security();
3928 secclass = socket_type_to_security_class(family, type, protocol);
3929 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3933 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3936 static int selinux_socket_post_create(struct socket *sock, int family,
3937 int type, int protocol, int kern)
3939 const struct task_security_struct *tsec = current_security();
3940 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3941 struct sk_security_struct *sksec;
3944 isec->sclass = socket_type_to_security_class(family, type, protocol);
3947 isec->sid = SECINITSID_KERNEL;
3949 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3954 isec->initialized = 1;
3957 sksec = sock->sk->sk_security;
3958 sksec->sid = isec->sid;
3959 sksec->sclass = isec->sclass;
3960 err = selinux_netlbl_socket_post_create(sock->sk, family);
3966 /* Range of port numbers used to automatically bind.
3967 Need to determine whether we should perform a name_bind
3968 permission check between the socket and the port number. */
3970 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3972 struct sock *sk = sock->sk;
3976 err = sock_has_perm(current, sk, SOCKET__BIND);
3981 * If PF_INET or PF_INET6, check name_bind permission for the port.
3982 * Multiple address binding for SCTP is not supported yet: we just
3983 * check the first address now.
3985 family = sk->sk_family;
3986 if (family == PF_INET || family == PF_INET6) {
3988 struct sk_security_struct *sksec = sk->sk_security;
3989 struct common_audit_data ad;
3990 struct lsm_network_audit net = {0,};
3991 struct sockaddr_in *addr4 = NULL;
3992 struct sockaddr_in6 *addr6 = NULL;
3993 unsigned short snum;
3996 if (family == PF_INET) {
3997 addr4 = (struct sockaddr_in *)address;
3998 snum = ntohs(addr4->sin_port);
3999 addrp = (char *)&addr4->sin_addr.s_addr;
4001 addr6 = (struct sockaddr_in6 *)address;
4002 snum = ntohs(addr6->sin6_port);
4003 addrp = (char *)&addr6->sin6_addr.s6_addr;
4009 inet_get_local_port_range(sock_net(sk), &low, &high);
4011 if (snum < max(PROT_SOCK, low) || snum > high) {
4012 err = sel_netport_sid(sk->sk_protocol,
4016 ad.type = LSM_AUDIT_DATA_NET;
4018 ad.u.net->sport = htons(snum);
4019 ad.u.net->family = family;
4020 err = avc_has_perm(sksec->sid, sid,
4022 SOCKET__NAME_BIND, &ad);
4028 switch (sksec->sclass) {
4029 case SECCLASS_TCP_SOCKET:
4030 node_perm = TCP_SOCKET__NODE_BIND;
4033 case SECCLASS_UDP_SOCKET:
4034 node_perm = UDP_SOCKET__NODE_BIND;
4037 case SECCLASS_DCCP_SOCKET:
4038 node_perm = DCCP_SOCKET__NODE_BIND;
4042 node_perm = RAWIP_SOCKET__NODE_BIND;
4046 err = sel_netnode_sid(addrp, family, &sid);
4050 ad.type = LSM_AUDIT_DATA_NET;
4052 ad.u.net->sport = htons(snum);
4053 ad.u.net->family = family;
4055 if (family == PF_INET)
4056 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4058 ad.u.net->v6info.saddr = addr6->sin6_addr;
4060 err = avc_has_perm(sksec->sid, sid,
4061 sksec->sclass, node_perm, &ad);
4069 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4071 struct sock *sk = sock->sk;
4072 struct sk_security_struct *sksec = sk->sk_security;
4075 err = sock_has_perm(current, sk, SOCKET__CONNECT);
4080 * If a TCP or DCCP socket, check name_connect permission for the port.
4082 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4083 sksec->sclass == SECCLASS_DCCP_SOCKET) {
4084 struct common_audit_data ad;
4085 struct lsm_network_audit net = {0,};
4086 struct sockaddr_in *addr4 = NULL;
4087 struct sockaddr_in6 *addr6 = NULL;
4088 unsigned short snum;
4091 if (sk->sk_family == PF_INET) {
4092 addr4 = (struct sockaddr_in *)address;
4093 if (addrlen < sizeof(struct sockaddr_in))
4095 snum = ntohs(addr4->sin_port);
4097 addr6 = (struct sockaddr_in6 *)address;
4098 if (addrlen < SIN6_LEN_RFC2133)
4100 snum = ntohs(addr6->sin6_port);
4103 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4107 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4108 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4110 ad.type = LSM_AUDIT_DATA_NET;
4112 ad.u.net->dport = htons(snum);
4113 ad.u.net->family = sk->sk_family;
4114 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4119 err = selinux_netlbl_socket_connect(sk, address);
4125 static int selinux_socket_listen(struct socket *sock, int backlog)
4127 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4130 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4133 struct inode_security_struct *isec;
4134 struct inode_security_struct *newisec;
4136 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4140 newisec = SOCK_INODE(newsock)->i_security;
4142 isec = SOCK_INODE(sock)->i_security;
4143 newisec->sclass = isec->sclass;
4144 newisec->sid = isec->sid;
4145 newisec->initialized = 1;
4150 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4153 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4156 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4157 int size, int flags)
4159 return sock_has_perm(current, sock->sk, SOCKET__READ);
4162 static int selinux_socket_getsockname(struct socket *sock)
4164 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4167 static int selinux_socket_getpeername(struct socket *sock)
4169 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4172 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4176 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4180 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4183 static int selinux_socket_getsockopt(struct socket *sock, int level,
4186 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4189 static int selinux_socket_shutdown(struct socket *sock, int how)
4191 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4194 static int selinux_socket_unix_stream_connect(struct sock *sock,
4198 struct sk_security_struct *sksec_sock = sock->sk_security;
4199 struct sk_security_struct *sksec_other = other->sk_security;
4200 struct sk_security_struct *sksec_new = newsk->sk_security;
4201 struct common_audit_data ad;
4202 struct lsm_network_audit net = {0,};
4205 ad.type = LSM_AUDIT_DATA_NET;
4207 ad.u.net->sk = other;
4209 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4210 sksec_other->sclass,
4211 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4215 /* server child socket */
4216 sksec_new->peer_sid = sksec_sock->sid;
4217 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4222 /* connecting socket */
4223 sksec_sock->peer_sid = sksec_new->sid;
4228 static int selinux_socket_unix_may_send(struct socket *sock,
4229 struct socket *other)
4231 struct sk_security_struct *ssec = sock->sk->sk_security;
4232 struct sk_security_struct *osec = other->sk->sk_security;
4233 struct common_audit_data ad;
4234 struct lsm_network_audit net = {0,};
4236 ad.type = LSM_AUDIT_DATA_NET;
4238 ad.u.net->sk = other->sk;
4240 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4244 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4246 struct common_audit_data *ad)
4252 err = sel_netif_sid(ifindex, &if_sid);
4255 err = avc_has_perm(peer_sid, if_sid,
4256 SECCLASS_NETIF, NETIF__INGRESS, ad);
4260 err = sel_netnode_sid(addrp, family, &node_sid);
4263 return avc_has_perm(peer_sid, node_sid,
4264 SECCLASS_NODE, NODE__RECVFROM, ad);
4267 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4271 struct sk_security_struct *sksec = sk->sk_security;
4272 u32 sk_sid = sksec->sid;
4273 struct common_audit_data ad;
4274 struct lsm_network_audit net = {0,};
4277 ad.type = LSM_AUDIT_DATA_NET;
4279 ad.u.net->netif = skb->skb_iif;
4280 ad.u.net->family = family;
4281 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4285 if (selinux_secmark_enabled()) {
4286 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4292 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4295 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4300 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4303 struct sk_security_struct *sksec = sk->sk_security;
4304 u16 family = sk->sk_family;
4305 u32 sk_sid = sksec->sid;
4306 struct common_audit_data ad;
4307 struct lsm_network_audit net = {0,};
4312 if (family != PF_INET && family != PF_INET6)
4315 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4316 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4319 /* If any sort of compatibility mode is enabled then handoff processing
4320 * to the selinux_sock_rcv_skb_compat() function to deal with the
4321 * special handling. We do this in an attempt to keep this function
4322 * as fast and as clean as possible. */
4323 if (!selinux_policycap_netpeer)
4324 return selinux_sock_rcv_skb_compat(sk, skb, family);
4326 secmark_active = selinux_secmark_enabled();
4327 peerlbl_active = selinux_peerlbl_enabled();
4328 if (!secmark_active && !peerlbl_active)
4331 ad.type = LSM_AUDIT_DATA_NET;
4333 ad.u.net->netif = skb->skb_iif;
4334 ad.u.net->family = family;
4335 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4339 if (peerlbl_active) {
4342 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4345 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4348 selinux_netlbl_err(skb, err, 0);
4351 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4354 selinux_netlbl_err(skb, err, 0);
4359 if (secmark_active) {
4360 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4369 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4370 int __user *optlen, unsigned len)
4375 struct sk_security_struct *sksec = sock->sk->sk_security;
4376 u32 peer_sid = SECSID_NULL;
4378 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4379 sksec->sclass == SECCLASS_TCP_SOCKET)
4380 peer_sid = sksec->peer_sid;
4381 if (peer_sid == SECSID_NULL)
4382 return -ENOPROTOOPT;
4384 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4388 if (scontext_len > len) {
4393 if (copy_to_user(optval, scontext, scontext_len))
4397 if (put_user(scontext_len, optlen))
4403 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4405 u32 peer_secid = SECSID_NULL;
4408 if (skb && skb->protocol == htons(ETH_P_IP))
4410 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4413 family = sock->sk->sk_family;
4417 if (sock && family == PF_UNIX)
4418 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4420 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4423 *secid = peer_secid;
4424 if (peer_secid == SECSID_NULL)
4429 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4431 struct sk_security_struct *sksec;
4433 sksec = kzalloc(sizeof(*sksec), priority);
4437 sksec->peer_sid = SECINITSID_UNLABELED;
4438 sksec->sid = SECINITSID_UNLABELED;
4439 selinux_netlbl_sk_security_reset(sksec);
4440 sk->sk_security = sksec;
4445 static void selinux_sk_free_security(struct sock *sk)
4447 struct sk_security_struct *sksec = sk->sk_security;
4449 sk->sk_security = NULL;
4450 selinux_netlbl_sk_security_free(sksec);
4454 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4456 struct sk_security_struct *sksec = sk->sk_security;
4457 struct sk_security_struct *newsksec = newsk->sk_security;
4459 newsksec->sid = sksec->sid;
4460 newsksec->peer_sid = sksec->peer_sid;
4461 newsksec->sclass = sksec->sclass;
4463 selinux_netlbl_sk_security_reset(newsksec);
4466 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4469 *secid = SECINITSID_ANY_SOCKET;
4471 struct sk_security_struct *sksec = sk->sk_security;
4473 *secid = sksec->sid;
4477 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4479 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4480 struct sk_security_struct *sksec = sk->sk_security;
4482 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4483 sk->sk_family == PF_UNIX)
4484 isec->sid = sksec->sid;
4485 sksec->sclass = isec->sclass;
4488 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4489 struct request_sock *req)
4491 struct sk_security_struct *sksec = sk->sk_security;
4493 u16 family = req->rsk_ops->family;
4497 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4500 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4503 req->secid = connsid;
4504 req->peer_secid = peersid;
4506 return selinux_netlbl_inet_conn_request(req, family);
4509 static void selinux_inet_csk_clone(struct sock *newsk,
4510 const struct request_sock *req)
4512 struct sk_security_struct *newsksec = newsk->sk_security;
4514 newsksec->sid = req->secid;
4515 newsksec->peer_sid = req->peer_secid;
4516 /* NOTE: Ideally, we should also get the isec->sid for the
4517 new socket in sync, but we don't have the isec available yet.
4518 So we will wait until sock_graft to do it, by which
4519 time it will have been created and available. */
4521 /* We don't need to take any sort of lock here as we are the only
4522 * thread with access to newsksec */
4523 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4526 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4528 u16 family = sk->sk_family;
4529 struct sk_security_struct *sksec = sk->sk_security;
4531 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4532 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4535 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4538 static void selinux_skb_owned_by(struct sk_buff *skb, struct sock *sk)
4540 skb_set_owner_w(skb, sk);
4543 static int selinux_secmark_relabel_packet(u32 sid)
4545 const struct task_security_struct *__tsec;
4548 __tsec = current_security();
4551 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4554 static void selinux_secmark_refcount_inc(void)
4556 atomic_inc(&selinux_secmark_refcount);
4559 static void selinux_secmark_refcount_dec(void)
4561 atomic_dec(&selinux_secmark_refcount);
4564 static void selinux_req_classify_flow(const struct request_sock *req,
4567 fl->flowi_secid = req->secid;
4570 static int selinux_tun_dev_alloc_security(void **security)
4572 struct tun_security_struct *tunsec;
4574 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4577 tunsec->sid = current_sid();
4583 static void selinux_tun_dev_free_security(void *security)
4588 static int selinux_tun_dev_create(void)
4590 u32 sid = current_sid();
4592 /* we aren't taking into account the "sockcreate" SID since the socket
4593 * that is being created here is not a socket in the traditional sense,
4594 * instead it is a private sock, accessible only to the kernel, and
4595 * representing a wide range of network traffic spanning multiple
4596 * connections unlike traditional sockets - check the TUN driver to
4597 * get a better understanding of why this socket is special */
4599 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4603 static int selinux_tun_dev_attach_queue(void *security)
4605 struct tun_security_struct *tunsec = security;
4607 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4608 TUN_SOCKET__ATTACH_QUEUE, NULL);
4611 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4613 struct tun_security_struct *tunsec = security;
4614 struct sk_security_struct *sksec = sk->sk_security;
4616 /* we don't currently perform any NetLabel based labeling here and it
4617 * isn't clear that we would want to do so anyway; while we could apply
4618 * labeling without the support of the TUN user the resulting labeled
4619 * traffic from the other end of the connection would almost certainly
4620 * cause confusion to the TUN user that had no idea network labeling
4621 * protocols were being used */
4623 sksec->sid = tunsec->sid;
4624 sksec->sclass = SECCLASS_TUN_SOCKET;
4629 static int selinux_tun_dev_open(void *security)
4631 struct tun_security_struct *tunsec = security;
4632 u32 sid = current_sid();
4635 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4636 TUN_SOCKET__RELABELFROM, NULL);
4639 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4640 TUN_SOCKET__RELABELTO, NULL);
4648 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4652 struct nlmsghdr *nlh;
4653 struct sk_security_struct *sksec = sk->sk_security;
4655 if (skb->len < NLMSG_HDRLEN) {
4659 nlh = nlmsg_hdr(skb);
4661 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4663 if (err == -EINVAL) {
4664 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4665 "SELinux: unrecognized netlink message"
4666 " type=%hu for sclass=%hu\n",
4667 nlh->nlmsg_type, sksec->sclass);
4668 if (!selinux_enforcing || security_get_allow_unknown())
4678 err = sock_has_perm(current, sk, perm);
4683 #ifdef CONFIG_NETFILTER
4685 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4691 struct common_audit_data ad;
4692 struct lsm_network_audit net = {0,};
4697 if (!selinux_policycap_netpeer)
4700 secmark_active = selinux_secmark_enabled();
4701 netlbl_active = netlbl_enabled();
4702 peerlbl_active = selinux_peerlbl_enabled();
4703 if (!secmark_active && !peerlbl_active)
4706 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4709 ad.type = LSM_AUDIT_DATA_NET;
4711 ad.u.net->netif = ifindex;
4712 ad.u.net->family = family;
4713 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4716 if (peerlbl_active) {
4717 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4720 selinux_netlbl_err(skb, err, 1);
4726 if (avc_has_perm(peer_sid, skb->secmark,
4727 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4731 /* we do this in the FORWARD path and not the POST_ROUTING
4732 * path because we want to make sure we apply the necessary
4733 * labeling before IPsec is applied so we can leverage AH
4735 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4741 static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops,
4742 struct sk_buff *skb,
4743 const struct net_device *in,
4744 const struct net_device *out,
4745 int (*okfn)(struct sk_buff *))
4747 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4750 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4751 static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops,
4752 struct sk_buff *skb,
4753 const struct net_device *in,
4754 const struct net_device *out,
4755 int (*okfn)(struct sk_buff *))
4757 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4761 static unsigned int selinux_ip_output(struct sk_buff *skb,
4767 if (!netlbl_enabled())
4770 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4771 * because we want to make sure we apply the necessary labeling
4772 * before IPsec is applied so we can leverage AH protection */
4775 struct sk_security_struct *sksec;
4777 if (sk->sk_state == TCP_LISTEN)
4778 /* if the socket is the listening state then this
4779 * packet is a SYN-ACK packet which means it needs to
4780 * be labeled based on the connection/request_sock and
4781 * not the parent socket. unfortunately, we can't
4782 * lookup the request_sock yet as it isn't queued on
4783 * the parent socket until after the SYN-ACK is sent.
4784 * the "solution" is to simply pass the packet as-is
4785 * as any IP option based labeling should be copied
4786 * from the initial connection request (in the IP
4787 * layer). it is far from ideal, but until we get a
4788 * security label in the packet itself this is the
4789 * best we can do. */
4792 /* standard practice, label using the parent socket */
4793 sksec = sk->sk_security;
4796 sid = SECINITSID_KERNEL;
4797 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4803 static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops,
4804 struct sk_buff *skb,
4805 const struct net_device *in,
4806 const struct net_device *out,
4807 int (*okfn)(struct sk_buff *))
4809 return selinux_ip_output(skb, PF_INET);
4812 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4816 struct sock *sk = skb->sk;
4817 struct sk_security_struct *sksec;
4818 struct common_audit_data ad;
4819 struct lsm_network_audit net = {0,};
4825 sksec = sk->sk_security;
4827 ad.type = LSM_AUDIT_DATA_NET;
4829 ad.u.net->netif = ifindex;
4830 ad.u.net->family = family;
4831 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4834 if (selinux_secmark_enabled())
4835 if (avc_has_perm(sksec->sid, skb->secmark,
4836 SECCLASS_PACKET, PACKET__SEND, &ad))
4837 return NF_DROP_ERR(-ECONNREFUSED);
4839 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4840 return NF_DROP_ERR(-ECONNREFUSED);
4845 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4851 struct common_audit_data ad;
4852 struct lsm_network_audit net = {0,};
4857 /* If any sort of compatibility mode is enabled then handoff processing
4858 * to the selinux_ip_postroute_compat() function to deal with the
4859 * special handling. We do this in an attempt to keep this function
4860 * as fast and as clean as possible. */
4861 if (!selinux_policycap_netpeer)
4862 return selinux_ip_postroute_compat(skb, ifindex, family);
4864 secmark_active = selinux_secmark_enabled();
4865 peerlbl_active = selinux_peerlbl_enabled();
4866 if (!secmark_active && !peerlbl_active)
4872 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4873 * packet transformation so allow the packet to pass without any checks
4874 * since we'll have another chance to perform access control checks
4875 * when the packet is on it's final way out.
4876 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4877 * is NULL, in this case go ahead and apply access control.
4878 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
4879 * TCP listening state we cannot wait until the XFRM processing
4880 * is done as we will miss out on the SA label if we do;
4881 * unfortunately, this means more work, but it is only once per
4883 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
4884 !(sk != NULL && sk->sk_state == TCP_LISTEN))
4889 /* Without an associated socket the packet is either coming
4890 * from the kernel or it is being forwarded; check the packet
4891 * to determine which and if the packet is being forwarded
4892 * query the packet directly to determine the security label. */
4894 secmark_perm = PACKET__FORWARD_OUT;
4895 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4898 secmark_perm = PACKET__SEND;
4899 peer_sid = SECINITSID_KERNEL;
4901 } else if (sk->sk_state == TCP_LISTEN) {
4902 /* Locally generated packet but the associated socket is in the
4903 * listening state which means this is a SYN-ACK packet. In
4904 * this particular case the correct security label is assigned
4905 * to the connection/request_sock but unfortunately we can't
4906 * query the request_sock as it isn't queued on the parent
4907 * socket until after the SYN-ACK packet is sent; the only
4908 * viable choice is to regenerate the label like we do in
4909 * selinux_inet_conn_request(). See also selinux_ip_output()
4910 * for similar problems. */
4912 struct sk_security_struct *sksec = sk->sk_security;
4913 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
4915 /* At this point, if the returned skb peerlbl is SECSID_NULL
4916 * and the packet has been through at least one XFRM
4917 * transformation then we must be dealing with the "final"
4918 * form of labeled IPsec packet; since we've already applied
4919 * all of our access controls on this packet we can safely
4920 * pass the packet. */
4921 if (skb_sid == SECSID_NULL) {
4924 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
4928 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
4931 return NF_DROP_ERR(-ECONNREFUSED);
4934 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
4936 secmark_perm = PACKET__SEND;
4938 /* Locally generated packet, fetch the security label from the
4939 * associated socket. */
4940 struct sk_security_struct *sksec = sk->sk_security;
4941 peer_sid = sksec->sid;
4942 secmark_perm = PACKET__SEND;
4945 ad.type = LSM_AUDIT_DATA_NET;
4947 ad.u.net->netif = ifindex;
4948 ad.u.net->family = family;
4949 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4953 if (avc_has_perm(peer_sid, skb->secmark,
4954 SECCLASS_PACKET, secmark_perm, &ad))
4955 return NF_DROP_ERR(-ECONNREFUSED);
4957 if (peerlbl_active) {
4961 if (sel_netif_sid(ifindex, &if_sid))
4963 if (avc_has_perm(peer_sid, if_sid,
4964 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4965 return NF_DROP_ERR(-ECONNREFUSED);
4967 if (sel_netnode_sid(addrp, family, &node_sid))
4969 if (avc_has_perm(peer_sid, node_sid,
4970 SECCLASS_NODE, NODE__SENDTO, &ad))
4971 return NF_DROP_ERR(-ECONNREFUSED);
4977 static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops,
4978 struct sk_buff *skb,
4979 const struct net_device *in,
4980 const struct net_device *out,
4981 int (*okfn)(struct sk_buff *))
4983 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4986 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4987 static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops,
4988 struct sk_buff *skb,
4989 const struct net_device *in,
4990 const struct net_device *out,
4991 int (*okfn)(struct sk_buff *))
4993 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4997 #endif /* CONFIG_NETFILTER */
4999 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5003 err = cap_netlink_send(sk, skb);
5007 return selinux_nlmsg_perm(sk, skb);
5010 static int ipc_alloc_security(struct task_struct *task,
5011 struct kern_ipc_perm *perm,
5014 struct ipc_security_struct *isec;
5017 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5021 sid = task_sid(task);
5022 isec->sclass = sclass;
5024 perm->security = isec;
5029 static void ipc_free_security(struct kern_ipc_perm *perm)
5031 struct ipc_security_struct *isec = perm->security;
5032 perm->security = NULL;
5036 static int msg_msg_alloc_security(struct msg_msg *msg)
5038 struct msg_security_struct *msec;
5040 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5044 msec->sid = SECINITSID_UNLABELED;
5045 msg->security = msec;
5050 static void msg_msg_free_security(struct msg_msg *msg)
5052 struct msg_security_struct *msec = msg->security;
5054 msg->security = NULL;
5058 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5061 struct ipc_security_struct *isec;
5062 struct common_audit_data ad;
5063 u32 sid = current_sid();
5065 isec = ipc_perms->security;
5067 ad.type = LSM_AUDIT_DATA_IPC;
5068 ad.u.ipc_id = ipc_perms->key;
5070 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5073 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5075 return msg_msg_alloc_security(msg);
5078 static void selinux_msg_msg_free_security(struct msg_msg *msg)
5080 msg_msg_free_security(msg);
5083 /* message queue security operations */
5084 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5086 struct ipc_security_struct *isec;
5087 struct common_audit_data ad;
5088 u32 sid = current_sid();
5091 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5095 isec = msq->q_perm.security;
5097 ad.type = LSM_AUDIT_DATA_IPC;
5098 ad.u.ipc_id = msq->q_perm.key;
5100 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5103 ipc_free_security(&msq->q_perm);
5109 static void selinux_msg_queue_free_security(struct msg_queue *msq)
5111 ipc_free_security(&msq->q_perm);
5114 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5116 struct ipc_security_struct *isec;
5117 struct common_audit_data ad;
5118 u32 sid = current_sid();
5120 isec = msq->q_perm.security;
5122 ad.type = LSM_AUDIT_DATA_IPC;
5123 ad.u.ipc_id = msq->q_perm.key;
5125 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5126 MSGQ__ASSOCIATE, &ad);
5129 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5137 /* No specific object, just general system-wide information. */
5138 return task_has_system(current, SYSTEM__IPC_INFO);
5141 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5144 perms = MSGQ__SETATTR;
5147 perms = MSGQ__DESTROY;
5153 err = ipc_has_perm(&msq->q_perm, perms);
5157 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5159 struct ipc_security_struct *isec;
5160 struct msg_security_struct *msec;
5161 struct common_audit_data ad;
5162 u32 sid = current_sid();
5165 isec = msq->q_perm.security;
5166 msec = msg->security;
5169 * First time through, need to assign label to the message
5171 if (msec->sid == SECINITSID_UNLABELED) {
5173 * Compute new sid based on current process and
5174 * message queue this message will be stored in
5176 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5182 ad.type = LSM_AUDIT_DATA_IPC;
5183 ad.u.ipc_id = msq->q_perm.key;
5185 /* Can this process write to the queue? */
5186 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5189 /* Can this process send the message */
5190 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5193 /* Can the message be put in the queue? */
5194 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5195 MSGQ__ENQUEUE, &ad);
5200 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5201 struct task_struct *target,
5202 long type, int mode)
5204 struct ipc_security_struct *isec;
5205 struct msg_security_struct *msec;
5206 struct common_audit_data ad;
5207 u32 sid = task_sid(target);
5210 isec = msq->q_perm.security;
5211 msec = msg->security;
5213 ad.type = LSM_AUDIT_DATA_IPC;
5214 ad.u.ipc_id = msq->q_perm.key;
5216 rc = avc_has_perm(sid, isec->sid,
5217 SECCLASS_MSGQ, MSGQ__READ, &ad);
5219 rc = avc_has_perm(sid, msec->sid,
5220 SECCLASS_MSG, MSG__RECEIVE, &ad);
5224 /* Shared Memory security operations */
5225 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5227 struct ipc_security_struct *isec;
5228 struct common_audit_data ad;
5229 u32 sid = current_sid();
5232 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5236 isec = shp->shm_perm.security;
5238 ad.type = LSM_AUDIT_DATA_IPC;
5239 ad.u.ipc_id = shp->shm_perm.key;
5241 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5244 ipc_free_security(&shp->shm_perm);
5250 static void selinux_shm_free_security(struct shmid_kernel *shp)
5252 ipc_free_security(&shp->shm_perm);
5255 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5257 struct ipc_security_struct *isec;
5258 struct common_audit_data ad;
5259 u32 sid = current_sid();
5261 isec = shp->shm_perm.security;
5263 ad.type = LSM_AUDIT_DATA_IPC;
5264 ad.u.ipc_id = shp->shm_perm.key;
5266 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5267 SHM__ASSOCIATE, &ad);
5270 /* Note, at this point, shp is locked down */
5271 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5279 /* No specific object, just general system-wide information. */
5280 return task_has_system(current, SYSTEM__IPC_INFO);
5283 perms = SHM__GETATTR | SHM__ASSOCIATE;
5286 perms = SHM__SETATTR;
5293 perms = SHM__DESTROY;
5299 err = ipc_has_perm(&shp->shm_perm, perms);
5303 static int selinux_shm_shmat(struct shmid_kernel *shp,
5304 char __user *shmaddr, int shmflg)
5308 if (shmflg & SHM_RDONLY)
5311 perms = SHM__READ | SHM__WRITE;
5313 return ipc_has_perm(&shp->shm_perm, perms);
5316 /* Semaphore security operations */
5317 static int selinux_sem_alloc_security(struct sem_array *sma)
5319 struct ipc_security_struct *isec;
5320 struct common_audit_data ad;
5321 u32 sid = current_sid();
5324 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5328 isec = sma->sem_perm.security;
5330 ad.type = LSM_AUDIT_DATA_IPC;
5331 ad.u.ipc_id = sma->sem_perm.key;
5333 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5336 ipc_free_security(&sma->sem_perm);
5342 static void selinux_sem_free_security(struct sem_array *sma)
5344 ipc_free_security(&sma->sem_perm);
5347 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5349 struct ipc_security_struct *isec;
5350 struct common_audit_data ad;
5351 u32 sid = current_sid();
5353 isec = sma->sem_perm.security;
5355 ad.type = LSM_AUDIT_DATA_IPC;
5356 ad.u.ipc_id = sma->sem_perm.key;
5358 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5359 SEM__ASSOCIATE, &ad);
5362 /* Note, at this point, sma is locked down */
5363 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5371 /* No specific object, just general system-wide information. */
5372 return task_has_system(current, SYSTEM__IPC_INFO);
5376 perms = SEM__GETATTR;
5387 perms = SEM__DESTROY;
5390 perms = SEM__SETATTR;
5394 perms = SEM__GETATTR | SEM__ASSOCIATE;
5400 err = ipc_has_perm(&sma->sem_perm, perms);
5404 static int selinux_sem_semop(struct sem_array *sma,
5405 struct sembuf *sops, unsigned nsops, int alter)
5410 perms = SEM__READ | SEM__WRITE;
5414 return ipc_has_perm(&sma->sem_perm, perms);
5417 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5423 av |= IPC__UNIX_READ;
5425 av |= IPC__UNIX_WRITE;
5430 return ipc_has_perm(ipcp, av);
5433 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5435 struct ipc_security_struct *isec = ipcp->security;
5439 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5442 inode_doinit_with_dentry(inode, dentry);
5445 static int selinux_getprocattr(struct task_struct *p,
5446 char *name, char **value)
5448 const struct task_security_struct *__tsec;
5454 error = current_has_perm(p, PROCESS__GETATTR);
5460 __tsec = __task_cred(p)->security;
5462 if (!strcmp(name, "current"))
5464 else if (!strcmp(name, "prev"))
5466 else if (!strcmp(name, "exec"))
5467 sid = __tsec->exec_sid;
5468 else if (!strcmp(name, "fscreate"))
5469 sid = __tsec->create_sid;
5470 else if (!strcmp(name, "keycreate"))
5471 sid = __tsec->keycreate_sid;
5472 else if (!strcmp(name, "sockcreate"))
5473 sid = __tsec->sockcreate_sid;
5481 error = security_sid_to_context(sid, value, &len);
5491 static int selinux_setprocattr(struct task_struct *p,
5492 char *name, void *value, size_t size)
5494 struct task_security_struct *tsec;
5495 struct task_struct *tracer;
5502 /* SELinux only allows a process to change its own
5503 security attributes. */
5508 * Basic control over ability to set these attributes at all.
5509 * current == p, but we'll pass them separately in case the
5510 * above restriction is ever removed.
5512 if (!strcmp(name, "exec"))
5513 error = current_has_perm(p, PROCESS__SETEXEC);
5514 else if (!strcmp(name, "fscreate"))
5515 error = current_has_perm(p, PROCESS__SETFSCREATE);
5516 else if (!strcmp(name, "keycreate"))
5517 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5518 else if (!strcmp(name, "sockcreate"))
5519 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5520 else if (!strcmp(name, "current"))
5521 error = current_has_perm(p, PROCESS__SETCURRENT);
5527 /* Obtain a SID for the context, if one was specified. */
5528 if (size && str[1] && str[1] != '\n') {
5529 if (str[size-1] == '\n') {
5533 error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5534 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5535 if (!capable(CAP_MAC_ADMIN)) {
5536 struct audit_buffer *ab;
5539 /* We strip a nul only if it is at the end, otherwise the
5540 * context contains a nul and we should audit that */
5541 if (str[size - 1] == '\0')
5542 audit_size = size - 1;
5545 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5546 audit_log_format(ab, "op=fscreate invalid_context=");
5547 audit_log_n_untrustedstring(ab, value, audit_size);
5552 error = security_context_to_sid_force(value, size,
5559 new = prepare_creds();
5563 /* Permission checking based on the specified context is
5564 performed during the actual operation (execve,
5565 open/mkdir/...), when we know the full context of the
5566 operation. See selinux_bprm_set_creds for the execve
5567 checks and may_create for the file creation checks. The
5568 operation will then fail if the context is not permitted. */
5569 tsec = new->security;
5570 if (!strcmp(name, "exec")) {
5571 tsec->exec_sid = sid;
5572 } else if (!strcmp(name, "fscreate")) {
5573 tsec->create_sid = sid;
5574 } else if (!strcmp(name, "keycreate")) {
5575 error = may_create_key(sid, p);
5578 tsec->keycreate_sid = sid;
5579 } else if (!strcmp(name, "sockcreate")) {
5580 tsec->sockcreate_sid = sid;
5581 } else if (!strcmp(name, "current")) {
5586 /* Only allow single threaded processes to change context */
5588 if (!current_is_single_threaded()) {
5589 error = security_bounded_transition(tsec->sid, sid);
5594 /* Check permissions for the transition. */
5595 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5596 PROCESS__DYNTRANSITION, NULL);
5600 /* Check for ptracing, and update the task SID if ok.
5601 Otherwise, leave SID unchanged and fail. */
5604 tracer = ptrace_parent(p);
5606 ptsid = task_sid(tracer);
5610 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5611 PROCESS__PTRACE, NULL);
5630 static int selinux_ismaclabel(const char *name)
5632 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5635 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5637 return security_sid_to_context(secid, secdata, seclen);
5640 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5642 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5645 static void selinux_release_secctx(char *secdata, u32 seclen)
5651 * called with inode->i_mutex locked
5653 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5655 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5659 * called with inode->i_mutex locked
5661 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5663 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5666 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5669 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5678 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5679 unsigned long flags)
5681 const struct task_security_struct *tsec;
5682 struct key_security_struct *ksec;
5684 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5688 tsec = cred->security;
5689 if (tsec->keycreate_sid)
5690 ksec->sid = tsec->keycreate_sid;
5692 ksec->sid = tsec->sid;
5698 static void selinux_key_free(struct key *k)
5700 struct key_security_struct *ksec = k->security;
5706 static int selinux_key_permission(key_ref_t key_ref,
5707 const struct cred *cred,
5711 struct key_security_struct *ksec;
5714 /* if no specific permissions are requested, we skip the
5715 permission check. No serious, additional covert channels
5716 appear to be created. */
5720 sid = cred_sid(cred);
5722 key = key_ref_to_ptr(key_ref);
5723 ksec = key->security;
5725 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5728 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5730 struct key_security_struct *ksec = key->security;
5731 char *context = NULL;
5735 rc = security_sid_to_context(ksec->sid, &context, &len);
5744 static struct security_operations selinux_ops = {
5747 .ptrace_access_check = selinux_ptrace_access_check,
5748 .ptrace_traceme = selinux_ptrace_traceme,
5749 .capget = selinux_capget,
5750 .capset = selinux_capset,
5751 .capable = selinux_capable,
5752 .quotactl = selinux_quotactl,
5753 .quota_on = selinux_quota_on,
5754 .syslog = selinux_syslog,
5755 .vm_enough_memory = selinux_vm_enough_memory,
5757 .netlink_send = selinux_netlink_send,
5759 .bprm_set_creds = selinux_bprm_set_creds,
5760 .bprm_committing_creds = selinux_bprm_committing_creds,
5761 .bprm_committed_creds = selinux_bprm_committed_creds,
5762 .bprm_secureexec = selinux_bprm_secureexec,
5764 .sb_alloc_security = selinux_sb_alloc_security,
5765 .sb_free_security = selinux_sb_free_security,
5766 .sb_copy_data = selinux_sb_copy_data,
5767 .sb_remount = selinux_sb_remount,
5768 .sb_kern_mount = selinux_sb_kern_mount,
5769 .sb_show_options = selinux_sb_show_options,
5770 .sb_statfs = selinux_sb_statfs,
5771 .sb_mount = selinux_mount,
5772 .sb_umount = selinux_umount,
5773 .sb_set_mnt_opts = selinux_set_mnt_opts,
5774 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5775 .sb_parse_opts_str = selinux_parse_opts_str,
5777 .dentry_init_security = selinux_dentry_init_security,
5779 .inode_alloc_security = selinux_inode_alloc_security,
5780 .inode_free_security = selinux_inode_free_security,
5781 .inode_init_security = selinux_inode_init_security,
5782 .inode_create = selinux_inode_create,
5783 .inode_link = selinux_inode_link,
5784 .inode_unlink = selinux_inode_unlink,
5785 .inode_symlink = selinux_inode_symlink,
5786 .inode_mkdir = selinux_inode_mkdir,
5787 .inode_rmdir = selinux_inode_rmdir,
5788 .inode_mknod = selinux_inode_mknod,
5789 .inode_rename = selinux_inode_rename,
5790 .inode_readlink = selinux_inode_readlink,
5791 .inode_follow_link = selinux_inode_follow_link,
5792 .inode_permission = selinux_inode_permission,
5793 .inode_setattr = selinux_inode_setattr,
5794 .inode_getattr = selinux_inode_getattr,
5795 .inode_setxattr = selinux_inode_setxattr,
5796 .inode_post_setxattr = selinux_inode_post_setxattr,
5797 .inode_getxattr = selinux_inode_getxattr,
5798 .inode_listxattr = selinux_inode_listxattr,
5799 .inode_removexattr = selinux_inode_removexattr,
5800 .inode_getsecurity = selinux_inode_getsecurity,
5801 .inode_setsecurity = selinux_inode_setsecurity,
5802 .inode_listsecurity = selinux_inode_listsecurity,
5803 .inode_getsecid = selinux_inode_getsecid,
5805 .file_permission = selinux_file_permission,
5806 .file_alloc_security = selinux_file_alloc_security,
5807 .file_free_security = selinux_file_free_security,
5808 .file_ioctl = selinux_file_ioctl,
5809 .mmap_file = selinux_mmap_file,
5810 .mmap_addr = selinux_mmap_addr,
5811 .file_mprotect = selinux_file_mprotect,
5812 .file_lock = selinux_file_lock,
5813 .file_fcntl = selinux_file_fcntl,
5814 .file_set_fowner = selinux_file_set_fowner,
5815 .file_send_sigiotask = selinux_file_send_sigiotask,
5816 .file_receive = selinux_file_receive,
5818 .file_open = selinux_file_open,
5820 .task_create = selinux_task_create,
5821 .cred_alloc_blank = selinux_cred_alloc_blank,
5822 .cred_free = selinux_cred_free,
5823 .cred_prepare = selinux_cred_prepare,
5824 .cred_transfer = selinux_cred_transfer,
5825 .kernel_act_as = selinux_kernel_act_as,
5826 .kernel_create_files_as = selinux_kernel_create_files_as,
5827 .kernel_module_request = selinux_kernel_module_request,
5828 .task_setpgid = selinux_task_setpgid,
5829 .task_getpgid = selinux_task_getpgid,
5830 .task_getsid = selinux_task_getsid,
5831 .task_getsecid = selinux_task_getsecid,
5832 .task_setnice = selinux_task_setnice,
5833 .task_setioprio = selinux_task_setioprio,
5834 .task_getioprio = selinux_task_getioprio,
5835 .task_setrlimit = selinux_task_setrlimit,
5836 .task_setscheduler = selinux_task_setscheduler,
5837 .task_getscheduler = selinux_task_getscheduler,
5838 .task_movememory = selinux_task_movememory,
5839 .task_kill = selinux_task_kill,
5840 .task_wait = selinux_task_wait,
5841 .task_to_inode = selinux_task_to_inode,
5843 .ipc_permission = selinux_ipc_permission,
5844 .ipc_getsecid = selinux_ipc_getsecid,
5846 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5847 .msg_msg_free_security = selinux_msg_msg_free_security,
5849 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5850 .msg_queue_free_security = selinux_msg_queue_free_security,
5851 .msg_queue_associate = selinux_msg_queue_associate,
5852 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5853 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5854 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5856 .shm_alloc_security = selinux_shm_alloc_security,
5857 .shm_free_security = selinux_shm_free_security,
5858 .shm_associate = selinux_shm_associate,
5859 .shm_shmctl = selinux_shm_shmctl,
5860 .shm_shmat = selinux_shm_shmat,
5862 .sem_alloc_security = selinux_sem_alloc_security,
5863 .sem_free_security = selinux_sem_free_security,
5864 .sem_associate = selinux_sem_associate,
5865 .sem_semctl = selinux_sem_semctl,
5866 .sem_semop = selinux_sem_semop,
5868 .d_instantiate = selinux_d_instantiate,
5870 .getprocattr = selinux_getprocattr,
5871 .setprocattr = selinux_setprocattr,
5873 .ismaclabel = selinux_ismaclabel,
5874 .secid_to_secctx = selinux_secid_to_secctx,
5875 .secctx_to_secid = selinux_secctx_to_secid,
5876 .release_secctx = selinux_release_secctx,
5877 .inode_notifysecctx = selinux_inode_notifysecctx,
5878 .inode_setsecctx = selinux_inode_setsecctx,
5879 .inode_getsecctx = selinux_inode_getsecctx,
5881 .unix_stream_connect = selinux_socket_unix_stream_connect,
5882 .unix_may_send = selinux_socket_unix_may_send,
5884 .socket_create = selinux_socket_create,
5885 .socket_post_create = selinux_socket_post_create,
5886 .socket_bind = selinux_socket_bind,
5887 .socket_connect = selinux_socket_connect,
5888 .socket_listen = selinux_socket_listen,
5889 .socket_accept = selinux_socket_accept,
5890 .socket_sendmsg = selinux_socket_sendmsg,
5891 .socket_recvmsg = selinux_socket_recvmsg,
5892 .socket_getsockname = selinux_socket_getsockname,
5893 .socket_getpeername = selinux_socket_getpeername,
5894 .socket_getsockopt = selinux_socket_getsockopt,
5895 .socket_setsockopt = selinux_socket_setsockopt,
5896 .socket_shutdown = selinux_socket_shutdown,
5897 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5898 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5899 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5900 .sk_alloc_security = selinux_sk_alloc_security,
5901 .sk_free_security = selinux_sk_free_security,
5902 .sk_clone_security = selinux_sk_clone_security,
5903 .sk_getsecid = selinux_sk_getsecid,
5904 .sock_graft = selinux_sock_graft,
5905 .inet_conn_request = selinux_inet_conn_request,
5906 .inet_csk_clone = selinux_inet_csk_clone,
5907 .inet_conn_established = selinux_inet_conn_established,
5908 .secmark_relabel_packet = selinux_secmark_relabel_packet,
5909 .secmark_refcount_inc = selinux_secmark_refcount_inc,
5910 .secmark_refcount_dec = selinux_secmark_refcount_dec,
5911 .req_classify_flow = selinux_req_classify_flow,
5912 .tun_dev_alloc_security = selinux_tun_dev_alloc_security,
5913 .tun_dev_free_security = selinux_tun_dev_free_security,
5914 .tun_dev_create = selinux_tun_dev_create,
5915 .tun_dev_attach_queue = selinux_tun_dev_attach_queue,
5916 .tun_dev_attach = selinux_tun_dev_attach,
5917 .tun_dev_open = selinux_tun_dev_open,
5918 .skb_owned_by = selinux_skb_owned_by,
5920 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5921 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5922 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5923 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5924 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5925 .xfrm_state_alloc = selinux_xfrm_state_alloc,
5926 .xfrm_state_alloc_acquire = selinux_xfrm_state_alloc_acquire,
5927 .xfrm_state_free_security = selinux_xfrm_state_free,
5928 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5929 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5930 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5931 .xfrm_decode_session = selinux_xfrm_decode_session,
5935 .key_alloc = selinux_key_alloc,
5936 .key_free = selinux_key_free,
5937 .key_permission = selinux_key_permission,
5938 .key_getsecurity = selinux_key_getsecurity,
5942 .audit_rule_init = selinux_audit_rule_init,
5943 .audit_rule_known = selinux_audit_rule_known,
5944 .audit_rule_match = selinux_audit_rule_match,
5945 .audit_rule_free = selinux_audit_rule_free,
5949 static __init int selinux_init(void)
5951 if (!security_module_enable(&selinux_ops)) {
5952 selinux_enabled = 0;
5956 if (!selinux_enabled) {
5957 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5961 printk(KERN_INFO "SELinux: Initializing.\n");
5963 /* Set the security state for the initial task. */
5964 cred_init_security();
5966 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5968 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5969 sizeof(struct inode_security_struct),
5970 0, SLAB_PANIC, NULL);
5973 if (register_security(&selinux_ops))
5974 panic("SELinux: Unable to register with kernel.\n");
5976 if (selinux_enforcing)
5977 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5979 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5984 static void delayed_superblock_init(struct super_block *sb, void *unused)
5986 superblock_doinit(sb, NULL);
5989 void selinux_complete_init(void)
5991 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
5993 /* Set up any superblocks initialized prior to the policy load. */
5994 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
5995 iterate_supers(delayed_superblock_init, NULL);
5998 /* SELinux requires early initialization in order to label
5999 all processes and objects when they are created. */
6000 security_initcall(selinux_init);
6002 #if defined(CONFIG_NETFILTER)
6004 static struct nf_hook_ops selinux_ipv4_ops[] = {
6006 .hook = selinux_ipv4_postroute,
6007 .owner = THIS_MODULE,
6009 .hooknum = NF_INET_POST_ROUTING,
6010 .priority = NF_IP_PRI_SELINUX_LAST,
6013 .hook = selinux_ipv4_forward,
6014 .owner = THIS_MODULE,
6016 .hooknum = NF_INET_FORWARD,
6017 .priority = NF_IP_PRI_SELINUX_FIRST,
6020 .hook = selinux_ipv4_output,
6021 .owner = THIS_MODULE,
6023 .hooknum = NF_INET_LOCAL_OUT,
6024 .priority = NF_IP_PRI_SELINUX_FIRST,
6028 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6030 static struct nf_hook_ops selinux_ipv6_ops[] = {
6032 .hook = selinux_ipv6_postroute,
6033 .owner = THIS_MODULE,
6035 .hooknum = NF_INET_POST_ROUTING,
6036 .priority = NF_IP6_PRI_SELINUX_LAST,
6039 .hook = selinux_ipv6_forward,
6040 .owner = THIS_MODULE,
6042 .hooknum = NF_INET_FORWARD,
6043 .priority = NF_IP6_PRI_SELINUX_FIRST,
6049 static int __init selinux_nf_ip_init(void)
6053 if (!selinux_enabled)
6056 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
6058 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6060 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
6062 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6063 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6065 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
6072 __initcall(selinux_nf_ip_init);
6074 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6075 static void selinux_nf_ip_exit(void)
6077 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
6079 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6080 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6081 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6086 #else /* CONFIG_NETFILTER */
6088 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6089 #define selinux_nf_ip_exit()
6092 #endif /* CONFIG_NETFILTER */
6094 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6095 static int selinux_disabled;
6097 int selinux_disable(void)
6099 if (ss_initialized) {
6100 /* Not permitted after initial policy load. */
6104 if (selinux_disabled) {
6105 /* Only do this once. */
6109 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
6111 selinux_disabled = 1;
6112 selinux_enabled = 0;
6114 reset_security_ops();
6116 /* Try to destroy the avc node cache */
6119 /* Unregister netfilter hooks. */
6120 selinux_nf_ip_exit();
6122 /* Unregister selinuxfs. */