2 * Copyright (C) 2010 Red Hat, Inc.
3 * Copyright (c) 2016 Christoph Hellwig.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 #include <linux/module.h>
15 #include <linux/compiler.h>
17 #include <linux/iomap.h>
18 #include <linux/uaccess.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/backing-dev.h>
26 #include <linux/buffer_head.h>
27 #include <linux/task_io_accounting_ops.h>
28 #include <linux/dax.h>
29 #include <linux/sched/signal.h>
30 #include <linux/swap.h>
35 * Execute a iomap write on a segment of the mapping that spans a
36 * contiguous range of pages that have identical block mapping state.
38 * This avoids the need to map pages individually, do individual allocations
39 * for each page and most importantly avoid the need for filesystem specific
40 * locking per page. Instead, all the operations are amortised over the entire
41 * range of pages. It is assumed that the filesystems will lock whatever
42 * resources they require in the iomap_begin call, and release them in the
46 iomap_apply(struct inode *inode, loff_t pos, loff_t length, unsigned flags,
47 const struct iomap_ops *ops, void *data, iomap_actor_t actor)
49 struct iomap iomap = { 0 };
50 loff_t written = 0, ret;
53 * Need to map a range from start position for length bytes. This can
54 * span multiple pages - it is only guaranteed to return a range of a
55 * single type of pages (e.g. all into a hole, all mapped or all
56 * unwritten). Failure at this point has nothing to undo.
58 * If allocation is required for this range, reserve the space now so
59 * that the allocation is guaranteed to succeed later on. Once we copy
60 * the data into the page cache pages, then we cannot fail otherwise we
61 * expose transient stale data. If the reserve fails, we can safely
62 * back out at this point as there is nothing to undo.
64 ret = ops->iomap_begin(inode, pos, length, flags, &iomap);
67 if (WARN_ON(iomap.offset > pos))
69 if (WARN_ON(iomap.length == 0))
73 * Cut down the length to the one actually provided by the filesystem,
74 * as it might not be able to give us the whole size that we requested.
76 if (iomap.offset + iomap.length < pos + length)
77 length = iomap.offset + iomap.length - pos;
80 * Now that we have guaranteed that the space allocation will succeed.
81 * we can do the copy-in page by page without having to worry about
82 * failures exposing transient data.
84 written = actor(inode, pos, length, data, &iomap);
87 * Now the data has been copied, commit the range we've copied. This
88 * should not fail unless the filesystem has had a fatal error.
91 ret = ops->iomap_end(inode, pos, length,
92 written > 0 ? written : 0,
96 return written ? written : ret;
100 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
102 loff_t i_size = i_size_read(inode);
105 * Only truncate newly allocated pages beyoned EOF, even if the
106 * write started inside the existing inode size.
108 if (pos + len > i_size)
109 truncate_pagecache_range(inode, max(pos, i_size), pos + len);
113 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
114 struct page **pagep, struct iomap *iomap)
116 pgoff_t index = pos >> PAGE_SHIFT;
120 BUG_ON(pos + len > iomap->offset + iomap->length);
122 if (fatal_signal_pending(current))
125 page = grab_cache_page_write_begin(inode->i_mapping, index, flags);
129 status = __block_write_begin_int(page, pos, len, NULL, iomap);
130 if (unlikely(status)) {
135 iomap_write_failed(inode, pos, len);
143 iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
144 unsigned copied, struct page *page)
148 ret = generic_write_end(NULL, inode->i_mapping, pos, len,
151 iomap_write_failed(inode, pos, len);
156 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
159 struct iov_iter *i = data;
162 unsigned int flags = AOP_FLAG_NOFS;
166 unsigned long offset; /* Offset into pagecache page */
167 unsigned long bytes; /* Bytes to write to page */
168 size_t copied; /* Bytes copied from user */
170 offset = (pos & (PAGE_SIZE - 1));
171 bytes = min_t(unsigned long, PAGE_SIZE - offset,
178 * Bring in the user page that we will copy from _first_.
179 * Otherwise there's a nasty deadlock on copying from the
180 * same page as we're writing to, without it being marked
183 * Not only is this an optimisation, but it is also required
184 * to check that the address is actually valid, when atomic
185 * usercopies are used, below.
187 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
192 status = iomap_write_begin(inode, pos, bytes, flags, &page,
194 if (unlikely(status))
197 if (mapping_writably_mapped(inode->i_mapping))
198 flush_dcache_page(page);
200 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
202 flush_dcache_page(page);
204 status = iomap_write_end(inode, pos, bytes, copied, page);
205 if (unlikely(status < 0))
211 iov_iter_advance(i, copied);
212 if (unlikely(copied == 0)) {
214 * If we were unable to copy any data at all, we must
215 * fall back to a single segment length write.
217 * If we didn't fallback here, we could livelock
218 * because not all segments in the iov can be copied at
219 * once without a pagefault.
221 bytes = min_t(unsigned long, PAGE_SIZE - offset,
222 iov_iter_single_seg_count(i));
229 balance_dirty_pages_ratelimited(inode->i_mapping);
230 } while (iov_iter_count(i) && length);
232 return written ? written : status;
236 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
237 const struct iomap_ops *ops)
239 struct inode *inode = iocb->ki_filp->f_mapping->host;
240 loff_t pos = iocb->ki_pos, ret = 0, written = 0;
242 while (iov_iter_count(iter)) {
243 ret = iomap_apply(inode, pos, iov_iter_count(iter),
244 IOMAP_WRITE, ops, iter, iomap_write_actor);
251 return written ? written : ret;
253 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
256 __iomap_read_page(struct inode *inode, loff_t offset)
258 struct address_space *mapping = inode->i_mapping;
261 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, NULL);
264 if (!PageUptodate(page)) {
266 return ERR_PTR(-EIO);
272 iomap_dirty_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
279 struct page *page, *rpage;
280 unsigned long offset; /* Offset into pagecache page */
281 unsigned long bytes; /* Bytes to write to page */
283 offset = (pos & (PAGE_SIZE - 1));
284 bytes = min_t(loff_t, PAGE_SIZE - offset, length);
286 rpage = __iomap_read_page(inode, pos);
288 return PTR_ERR(rpage);
290 status = iomap_write_begin(inode, pos, bytes,
291 AOP_FLAG_NOFS, &page, iomap);
293 if (unlikely(status))
296 WARN_ON_ONCE(!PageUptodate(page));
298 status = iomap_write_end(inode, pos, bytes, bytes, page);
299 if (unlikely(status <= 0)) {
300 if (WARN_ON_ONCE(status == 0))
311 balance_dirty_pages_ratelimited(inode->i_mapping);
318 iomap_file_dirty(struct inode *inode, loff_t pos, loff_t len,
319 const struct iomap_ops *ops)
324 ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
334 EXPORT_SYMBOL_GPL(iomap_file_dirty);
336 static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
337 unsigned bytes, struct iomap *iomap)
342 status = iomap_write_begin(inode, pos, bytes, AOP_FLAG_NOFS, &page,
347 zero_user(page, offset, bytes);
348 mark_page_accessed(page);
350 return iomap_write_end(inode, pos, bytes, bytes, page);
353 static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes,
356 sector_t sector = (iomap->addr +
357 (pos & PAGE_MASK) - iomap->offset) >> 9;
359 return __dax_zero_page_range(iomap->bdev, iomap->dax_dev, sector,
364 iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
365 void *data, struct iomap *iomap)
367 bool *did_zero = data;
371 /* already zeroed? we're done. */
372 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
376 unsigned offset, bytes;
378 offset = pos & (PAGE_SIZE - 1); /* Within page */
379 bytes = min_t(loff_t, PAGE_SIZE - offset, count);
382 status = iomap_dax_zero(pos, offset, bytes, iomap);
384 status = iomap_zero(inode, pos, offset, bytes, iomap);
399 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
400 const struct iomap_ops *ops)
405 ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
406 ops, did_zero, iomap_zero_range_actor);
416 EXPORT_SYMBOL_GPL(iomap_zero_range);
419 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
420 const struct iomap_ops *ops)
422 unsigned int blocksize = i_blocksize(inode);
423 unsigned int off = pos & (blocksize - 1);
425 /* Block boundary? Nothing to do */
428 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
430 EXPORT_SYMBOL_GPL(iomap_truncate_page);
433 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
434 void *data, struct iomap *iomap)
436 struct page *page = data;
439 ret = __block_write_begin_int(page, pos, length, NULL, iomap);
443 block_commit_write(page, 0, length);
447 int iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
449 struct page *page = vmf->page;
450 struct inode *inode = file_inode(vmf->vma->vm_file);
451 unsigned long length;
456 size = i_size_read(inode);
457 if ((page->mapping != inode->i_mapping) ||
458 (page_offset(page) > size)) {
459 /* We overload EFAULT to mean page got truncated */
464 /* page is wholly or partially inside EOF */
465 if (((page->index + 1) << PAGE_SHIFT) > size)
466 length = size & ~PAGE_MASK;
470 offset = page_offset(page);
472 ret = iomap_apply(inode, offset, length,
473 IOMAP_WRITE | IOMAP_FAULT, ops, page,
474 iomap_page_mkwrite_actor);
475 if (unlikely(ret <= 0))
481 set_page_dirty(page);
482 wait_for_stable_page(page);
483 return VM_FAULT_LOCKED;
486 return block_page_mkwrite_return(ret);
488 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
491 struct fiemap_extent_info *fi;
495 static int iomap_to_fiemap(struct fiemap_extent_info *fi,
496 struct iomap *iomap, u32 flags)
498 switch (iomap->type) {
503 flags |= FIEMAP_EXTENT_DELALLOC | FIEMAP_EXTENT_UNKNOWN;
505 case IOMAP_UNWRITTEN:
506 flags |= FIEMAP_EXTENT_UNWRITTEN;
512 if (iomap->flags & IOMAP_F_MERGED)
513 flags |= FIEMAP_EXTENT_MERGED;
514 if (iomap->flags & IOMAP_F_SHARED)
515 flags |= FIEMAP_EXTENT_SHARED;
516 if (iomap->flags & IOMAP_F_DATA_INLINE)
517 flags |= FIEMAP_EXTENT_DATA_INLINE;
519 return fiemap_fill_next_extent(fi, iomap->offset,
520 iomap->addr != IOMAP_NULL_ADDR ? iomap->addr : 0,
521 iomap->length, flags);
525 iomap_fiemap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
528 struct fiemap_ctx *ctx = data;
531 if (iomap->type == IOMAP_HOLE)
534 ret = iomap_to_fiemap(ctx->fi, &ctx->prev, 0);
537 case 0: /* success */
539 case 1: /* extent array full */
546 int iomap_fiemap(struct inode *inode, struct fiemap_extent_info *fi,
547 loff_t start, loff_t len, const struct iomap_ops *ops)
549 struct fiemap_ctx ctx;
552 memset(&ctx, 0, sizeof(ctx));
554 ctx.prev.type = IOMAP_HOLE;
556 ret = fiemap_check_flags(fi, FIEMAP_FLAG_SYNC);
560 if (fi->fi_flags & FIEMAP_FLAG_SYNC) {
561 ret = filemap_write_and_wait(inode->i_mapping);
567 ret = iomap_apply(inode, start, len, IOMAP_REPORT, ops, &ctx,
569 /* inode with no (attribute) mapping will give ENOENT */
581 if (ctx.prev.type != IOMAP_HOLE) {
582 ret = iomap_to_fiemap(fi, &ctx.prev, FIEMAP_EXTENT_LAST);
589 EXPORT_SYMBOL_GPL(iomap_fiemap);
592 iomap_seek_hole_actor(struct inode *inode, loff_t offset, loff_t length,
593 void *data, struct iomap *iomap)
595 switch (iomap->type) {
596 case IOMAP_UNWRITTEN:
597 offset = page_cache_seek_hole_data(inode, offset, length,
603 *(loff_t *)data = offset;
611 iomap_seek_hole(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
613 loff_t size = i_size_read(inode);
614 loff_t length = size - offset;
617 /* Nothing to be found before or beyond the end of the file. */
618 if (offset < 0 || offset >= size)
622 ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
623 &offset, iomap_seek_hole_actor);
635 EXPORT_SYMBOL_GPL(iomap_seek_hole);
638 iomap_seek_data_actor(struct inode *inode, loff_t offset, loff_t length,
639 void *data, struct iomap *iomap)
641 switch (iomap->type) {
644 case IOMAP_UNWRITTEN:
645 offset = page_cache_seek_hole_data(inode, offset, length,
651 *(loff_t *)data = offset;
657 iomap_seek_data(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
659 loff_t size = i_size_read(inode);
660 loff_t length = size - offset;
663 /* Nothing to be found before or beyond the end of the file. */
664 if (offset < 0 || offset >= size)
668 ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
669 &offset, iomap_seek_data_actor);
683 EXPORT_SYMBOL_GPL(iomap_seek_data);
686 * Private flags for iomap_dio, must not overlap with the public ones in
689 #define IOMAP_DIO_WRITE_FUA (1 << 28)
690 #define IOMAP_DIO_NEED_SYNC (1 << 29)
691 #define IOMAP_DIO_WRITE (1 << 30)
692 #define IOMAP_DIO_DIRTY (1 << 31)
696 iomap_dio_end_io_t *end_io;
704 /* used during submission and for synchronous completion: */
706 struct iov_iter *iter;
707 struct task_struct *waiter;
708 struct request_queue *last_queue;
712 /* used for aio completion: */
714 struct work_struct work;
719 static ssize_t iomap_dio_complete(struct iomap_dio *dio)
721 struct kiocb *iocb = dio->iocb;
722 struct inode *inode = file_inode(iocb->ki_filp);
723 loff_t offset = iocb->ki_pos;
727 ret = dio->end_io(iocb,
728 dio->error ? dio->error : dio->size,
736 /* check for short read */
737 if (offset + ret > dio->i_size &&
738 !(dio->flags & IOMAP_DIO_WRITE))
739 ret = dio->i_size - offset;
744 * Try again to invalidate clean pages which might have been cached by
745 * non-direct readahead, or faulted in by get_user_pages() if the source
746 * of the write was an mmap'ed region of the file we're writing. Either
747 * one is a pretty crazy thing to do, so we don't support it 100%. If
748 * this invalidation fails, tough, the write still worked...
750 * And this page cache invalidation has to be after dio->end_io(), as
751 * some filesystems convert unwritten extents to real allocations in
752 * end_io() when necessary, otherwise a racing buffer read would cache
753 * zeros from unwritten extents.
756 (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
758 err = invalidate_inode_pages2_range(inode->i_mapping,
759 offset >> PAGE_SHIFT,
760 (offset + dio->size - 1) >> PAGE_SHIFT);
762 dio_warn_stale_pagecache(iocb->ki_filp);
766 * If this is a DSYNC write, make sure we push it to stable storage now
767 * that we've written data.
769 if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
770 ret = generic_write_sync(iocb, ret);
772 inode_dio_end(file_inode(iocb->ki_filp));
778 static void iomap_dio_complete_work(struct work_struct *work)
780 struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
781 struct kiocb *iocb = dio->iocb;
783 iocb->ki_complete(iocb, iomap_dio_complete(dio), 0);
787 * Set an error in the dio if none is set yet. We have to use cmpxchg
788 * as the submission context and the completion context(s) can race to
791 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
793 cmpxchg(&dio->error, 0, ret);
796 static void iomap_dio_bio_end_io(struct bio *bio)
798 struct iomap_dio *dio = bio->bi_private;
799 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
802 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
804 if (atomic_dec_and_test(&dio->ref)) {
805 if (is_sync_kiocb(dio->iocb)) {
806 struct task_struct *waiter = dio->submit.waiter;
808 WRITE_ONCE(dio->submit.waiter, NULL);
809 wake_up_process(waiter);
810 } else if (dio->flags & IOMAP_DIO_WRITE) {
811 struct inode *inode = file_inode(dio->iocb->ki_filp);
813 INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
814 queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
816 iomap_dio_complete_work(&dio->aio.work);
821 bio_check_pages_dirty(bio);
823 struct bio_vec *bvec;
826 bio_for_each_segment_all(bvec, bio, i)
827 put_page(bvec->bv_page);
833 iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos,
836 struct page *page = ZERO_PAGE(0);
839 bio = bio_alloc(GFP_KERNEL, 1);
840 bio_set_dev(bio, iomap->bdev);
841 bio->bi_iter.bi_sector =
842 (iomap->addr + pos - iomap->offset) >> 9;
843 bio->bi_private = dio;
844 bio->bi_end_io = iomap_dio_bio_end_io;
847 if (bio_add_page(bio, page, len, 0) != len)
849 bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC | REQ_IDLE);
851 atomic_inc(&dio->ref);
852 return submit_bio(bio);
856 iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
857 void *data, struct iomap *iomap)
859 struct iomap_dio *dio = data;
860 unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
861 unsigned int fs_block_size = i_blocksize(inode), pad;
862 unsigned int align = iov_iter_alignment(dio->submit.iter);
863 struct iov_iter iter;
865 bool need_zeroout = false;
866 bool use_fua = false;
870 if ((pos | length | align) & ((1 << blkbits) - 1))
873 switch (iomap->type) {
875 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
878 case IOMAP_UNWRITTEN:
879 if (!(dio->flags & IOMAP_DIO_WRITE)) {
880 length = iov_iter_zero(length, dio->submit.iter);
884 dio->flags |= IOMAP_DIO_UNWRITTEN;
888 if (iomap->flags & IOMAP_F_SHARED)
889 dio->flags |= IOMAP_DIO_COW;
890 if (iomap->flags & IOMAP_F_NEW) {
894 * Use a FUA write if we need datasync semantics, this
895 * is a pure data IO that doesn't require any metadata
896 * updates and the underlying device supports FUA. This
897 * allows us to avoid cache flushes on IO completion.
899 if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
900 (dio->flags & IOMAP_DIO_WRITE_FUA) &&
901 blk_queue_fua(bdev_get_queue(iomap->bdev)))
911 * Operate on a partial iter trimmed to the extent we were called for.
912 * We'll update the iter in the dio once we're done with this extent.
914 iter = *dio->submit.iter;
915 iov_iter_truncate(&iter, length);
917 nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
922 /* zero out from the start of the block to the write offset */
923 pad = pos & (fs_block_size - 1);
925 iomap_dio_zero(dio, iomap, pos - pad, pad);
931 iov_iter_revert(dio->submit.iter, copied);
935 bio = bio_alloc(GFP_KERNEL, nr_pages);
936 bio_set_dev(bio, iomap->bdev);
937 bio->bi_iter.bi_sector =
938 (iomap->addr + pos - iomap->offset) >> 9;
939 bio->bi_write_hint = dio->iocb->ki_hint;
940 bio->bi_private = dio;
941 bio->bi_end_io = iomap_dio_bio_end_io;
943 ret = bio_iov_iter_get_pages(bio, &iter);
946 return copied ? copied : ret;
949 n = bio->bi_iter.bi_size;
950 if (dio->flags & IOMAP_DIO_WRITE) {
951 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
953 bio->bi_opf |= REQ_FUA;
955 dio->flags &= ~IOMAP_DIO_WRITE_FUA;
956 task_io_account_write(n);
958 bio->bi_opf = REQ_OP_READ;
959 if (dio->flags & IOMAP_DIO_DIRTY)
960 bio_set_pages_dirty(bio);
963 iov_iter_advance(dio->submit.iter, n);
969 nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
971 atomic_inc(&dio->ref);
973 dio->submit.last_queue = bdev_get_queue(iomap->bdev);
974 dio->submit.cookie = submit_bio(bio);
978 /* zero out from the end of the write to the end of the block */
979 pad = pos & (fs_block_size - 1);
981 iomap_dio_zero(dio, iomap, pos, fs_block_size - pad);
987 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
988 * is being issued as AIO or not. This allows us to optimise pure data writes
989 * to use REQ_FUA rather than requiring generic_write_sync() to issue a
990 * REQ_FLUSH post write. This is slightly tricky because a single request here
991 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
992 * may be pure data writes. In that case, we still need to do a full data sync
996 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
997 const struct iomap_ops *ops, iomap_dio_end_io_t end_io)
999 struct address_space *mapping = iocb->ki_filp->f_mapping;
1000 struct inode *inode = file_inode(iocb->ki_filp);
1001 size_t count = iov_iter_count(iter);
1002 loff_t pos = iocb->ki_pos, start = pos;
1003 loff_t end = iocb->ki_pos + count - 1, ret = 0;
1004 unsigned int flags = IOMAP_DIRECT;
1005 struct blk_plug plug;
1006 struct iomap_dio *dio;
1008 lockdep_assert_held(&inode->i_rwsem);
1013 dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1018 atomic_set(&dio->ref, 1);
1020 dio->i_size = i_size_read(inode);
1021 dio->end_io = end_io;
1025 dio->submit.iter = iter;
1026 if (is_sync_kiocb(iocb)) {
1027 dio->submit.waiter = current;
1028 dio->submit.cookie = BLK_QC_T_NONE;
1029 dio->submit.last_queue = NULL;
1032 if (iov_iter_rw(iter) == READ) {
1033 if (pos >= dio->i_size)
1036 if (iter->type == ITER_IOVEC)
1037 dio->flags |= IOMAP_DIO_DIRTY;
1039 flags |= IOMAP_WRITE;
1040 dio->flags |= IOMAP_DIO_WRITE;
1042 /* for data sync or sync, we need sync completion processing */
1043 if (iocb->ki_flags & IOCB_DSYNC)
1044 dio->flags |= IOMAP_DIO_NEED_SYNC;
1047 * For datasync only writes, we optimistically try using FUA for
1048 * this IO. Any non-FUA write that occurs will clear this flag,
1049 * hence we know before completion whether a cache flush is
1052 if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC)
1053 dio->flags |= IOMAP_DIO_WRITE_FUA;
1056 if (iocb->ki_flags & IOCB_NOWAIT) {
1057 if (filemap_range_has_page(mapping, start, end)) {
1061 flags |= IOMAP_NOWAIT;
1064 ret = filemap_write_and_wait_range(mapping, start, end);
1069 * Try to invalidate cache pages for the range we're direct
1070 * writing. If this invalidation fails, tough, the write will
1071 * still work, but racing two incompatible write paths is a
1072 * pretty crazy thing to do, so we don't support it 100%.
1074 ret = invalidate_inode_pages2_range(mapping,
1075 start >> PAGE_SHIFT, end >> PAGE_SHIFT);
1077 dio_warn_stale_pagecache(iocb->ki_filp);
1080 if (iov_iter_rw(iter) == WRITE && !is_sync_kiocb(iocb) &&
1081 !inode->i_sb->s_dio_done_wq) {
1082 ret = sb_init_dio_done_wq(inode->i_sb);
1087 inode_dio_begin(inode);
1089 blk_start_plug(&plug);
1091 ret = iomap_apply(inode, pos, count, flags, ops, dio,
1094 /* magic error code to fall back to buffered I/O */
1095 if (ret == -ENOTBLK)
1101 if (iov_iter_rw(iter) == READ && pos >= dio->i_size)
1103 } while ((count = iov_iter_count(iter)) > 0);
1104 blk_finish_plug(&plug);
1107 iomap_dio_set_error(dio, ret);
1110 * If all the writes we issued were FUA, we don't need to flush the
1111 * cache on IO completion. Clear the sync flag for this case.
1113 if (dio->flags & IOMAP_DIO_WRITE_FUA)
1114 dio->flags &= ~IOMAP_DIO_NEED_SYNC;
1116 if (!atomic_dec_and_test(&dio->ref)) {
1117 if (!is_sync_kiocb(iocb))
1118 return -EIOCBQUEUED;
1121 set_current_state(TASK_UNINTERRUPTIBLE);
1122 if (!READ_ONCE(dio->submit.waiter))
1125 if (!(iocb->ki_flags & IOCB_HIPRI) ||
1126 !dio->submit.last_queue ||
1127 !blk_poll(dio->submit.last_queue,
1128 dio->submit.cookie))
1131 __set_current_state(TASK_RUNNING);
1134 ret = iomap_dio_complete(dio);
1142 EXPORT_SYMBOL_GPL(iomap_dio_rw);
1144 /* Swapfile activation */
1147 struct iomap_swapfile_info {
1148 struct iomap iomap; /* accumulated iomap */
1149 struct swap_info_struct *sis;
1150 uint64_t lowest_ppage; /* lowest physical addr seen (pages) */
1151 uint64_t highest_ppage; /* highest physical addr seen (pages) */
1152 unsigned long nr_pages; /* number of pages collected */
1153 int nr_extents; /* extent count */
1157 * Collect physical extents for this swap file. Physical extents reported to
1158 * the swap code must be trimmed to align to a page boundary. The logical
1159 * offset within the file is irrelevant since the swapfile code maps logical
1160 * page numbers of the swap device to the physical page-aligned extents.
1162 static int iomap_swapfile_add_extent(struct iomap_swapfile_info *isi)
1164 struct iomap *iomap = &isi->iomap;
1165 unsigned long nr_pages;
1166 uint64_t first_ppage;
1167 uint64_t first_ppage_reported;
1168 uint64_t next_ppage;
1172 * Round the start up and the end down so that the physical
1173 * extent aligns to a page boundary.
1175 first_ppage = ALIGN(iomap->addr, PAGE_SIZE) >> PAGE_SHIFT;
1176 next_ppage = ALIGN_DOWN(iomap->addr + iomap->length, PAGE_SIZE) >>
1179 /* Skip too-short physical extents. */
1180 if (first_ppage >= next_ppage)
1182 nr_pages = next_ppage - first_ppage;
1185 * Calculate how much swap space we're adding; the first page contains
1186 * the swap header and doesn't count. The mm still wants that first
1187 * page fed to add_swap_extent, however.
1189 first_ppage_reported = first_ppage;
1190 if (iomap->offset == 0)
1191 first_ppage_reported++;
1192 if (isi->lowest_ppage > first_ppage_reported)
1193 isi->lowest_ppage = first_ppage_reported;
1194 if (isi->highest_ppage < (next_ppage - 1))
1195 isi->highest_ppage = next_ppage - 1;
1197 /* Add extent, set up for the next call. */
1198 error = add_swap_extent(isi->sis, isi->nr_pages, nr_pages, first_ppage);
1201 isi->nr_extents += error;
1202 isi->nr_pages += nr_pages;
1207 * Accumulate iomaps for this swap file. We have to accumulate iomaps because
1208 * swap only cares about contiguous page-aligned physical extents and makes no
1209 * distinction between written and unwritten extents.
1211 static loff_t iomap_swapfile_activate_actor(struct inode *inode, loff_t pos,
1212 loff_t count, void *data, struct iomap *iomap)
1214 struct iomap_swapfile_info *isi = data;
1218 if (iomap->type == IOMAP_HOLE)
1221 /* Only one bdev per swap file. */
1222 if (iomap->bdev != isi->sis->bdev)
1225 /* Only real or unwritten extents. */
1226 if (iomap->type != IOMAP_MAPPED && iomap->type != IOMAP_UNWRITTEN)
1229 /* No uncommitted metadata or shared blocks or inline data. */
1230 if (iomap->flags & (IOMAP_F_DIRTY | IOMAP_F_SHARED |
1231 IOMAP_F_DATA_INLINE))
1234 /* No null physical addresses. */
1235 if (iomap->addr == IOMAP_NULL_ADDR)
1238 if (isi->iomap.length == 0) {
1239 /* No accumulated extent, so just store it. */
1240 memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
1241 } else if (isi->iomap.addr + isi->iomap.length == iomap->addr) {
1242 /* Append this to the accumulated extent. */
1243 isi->iomap.length += iomap->length;
1245 /* Otherwise, add the retained iomap and store this one. */
1246 error = iomap_swapfile_add_extent(isi);
1249 memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
1254 pr_err("swapon: file cannot be used for swap\n");
1259 * Iterate a swap file's iomaps to construct physical extents that can be
1260 * passed to the swapfile subsystem.
1262 int iomap_swapfile_activate(struct swap_info_struct *sis,
1263 struct file *swap_file, sector_t *pagespan,
1264 const struct iomap_ops *ops)
1266 struct iomap_swapfile_info isi = {
1268 .lowest_ppage = (sector_t)-1ULL,
1270 struct address_space *mapping = swap_file->f_mapping;
1271 struct inode *inode = mapping->host;
1273 loff_t len = ALIGN_DOWN(i_size_read(inode), PAGE_SIZE);
1276 ret = filemap_write_and_wait(inode->i_mapping);
1281 ret = iomap_apply(inode, pos, len, IOMAP_REPORT,
1282 ops, &isi, iomap_swapfile_activate_actor);
1290 if (isi.iomap.length) {
1291 ret = iomap_swapfile_add_extent(&isi);
1296 *pagespan = 1 + isi.highest_ppage - isi.lowest_ppage;
1297 sis->max = isi.nr_pages;
1298 sis->pages = isi.nr_pages - 1;
1299 sis->highest_bit = isi.nr_pages - 1;
1300 return isi.nr_extents;
1302 EXPORT_SYMBOL_GPL(iomap_swapfile_activate);
1303 #endif /* CONFIG_SWAP */