2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3 * Copyright (c) 2007-2008 Intel Corporation
5 * Copyright 2010 Red Hat, Inc.
7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 * DEALINGS IN THE SOFTWARE.
31 #include <linux/bitfield.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/slab.h>
38 #include <linux/vga_switcheroo.h>
40 #include <drm/drm_displayid.h>
41 #include <drm/drm_drv.h>
42 #include <drm/drm_edid.h>
43 #include <drm/drm_encoder.h>
44 #include <drm/drm_print.h>
46 #include "drm_crtc_internal.h"
48 static int oui(u8 first, u8 second, u8 third)
50 return (first << 16) | (second << 8) | third;
53 #define EDID_EST_TIMINGS 16
54 #define EDID_STD_TIMINGS 8
55 #define EDID_DETAILED_TIMINGS 4
58 * EDID blocks out in the wild have a variety of bugs, try to collect
59 * them here (note that userspace may work around broken monitors first,
60 * but fixes should make their way here so that the kernel "just works"
61 * on as many displays as possible).
64 /* First detailed mode wrong, use largest 60Hz mode */
65 #define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
66 /* Reported 135MHz pixel clock is too high, needs adjustment */
67 #define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
68 /* Prefer the largest mode at 75 Hz */
69 #define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
70 /* Detail timing is in cm not mm */
71 #define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
72 /* Detailed timing descriptors have bogus size values, so just take the
73 * maximum size and use that.
75 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
76 /* use +hsync +vsync for detailed mode */
77 #define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
78 /* Force reduced-blanking timings for detailed modes */
79 #define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7)
81 #define EDID_QUIRK_FORCE_8BPC (1 << 8)
83 #define EDID_QUIRK_FORCE_12BPC (1 << 9)
85 #define EDID_QUIRK_FORCE_6BPC (1 << 10)
87 #define EDID_QUIRK_FORCE_10BPC (1 << 11)
88 /* Non desktop display (i.e. HMD) */
89 #define EDID_QUIRK_NON_DESKTOP (1 << 12)
90 /* Cap the DSC target bitrate to 15bpp */
91 #define EDID_QUIRK_CAP_DSC_15BPP (1 << 13)
93 #define MICROSOFT_IEEE_OUI 0xca125c
95 struct detailed_mode_closure {
96 struct drm_connector *connector;
97 const struct drm_edid *drm_edid;
108 #define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
110 .panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \
115 static const struct edid_quirk {
118 } edid_quirk_list[] = {
120 EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
122 EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
124 /* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
125 EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
127 /* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
128 EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
130 /* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
131 EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
133 /* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
134 EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
136 /* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
137 EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
139 /* Belinea 10 15 55 */
140 EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
141 EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
143 /* Envision Peripherals, Inc. EN-7100e */
144 EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
145 /* Envision EN2028 */
146 EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
148 /* Funai Electronics PM36B */
149 EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
150 EDID_QUIRK_DETAILED_IN_CM),
153 EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
156 EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
158 /* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
159 EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
161 /* LG Philips LCD LP154W01-A5 */
162 EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
163 EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
165 /* Samsung SyncMaster 205BW. Note: irony */
166 EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
167 /* Samsung SyncMaster 22[5-6]BW */
168 EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
169 EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
171 /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
172 EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
174 /* ViewSonic VA2026w */
175 EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
177 /* Medion MD 30217 PG */
178 EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
181 EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
183 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
184 EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
186 /* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
187 EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
189 /* Valve Index Headset */
190 EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
191 EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
192 EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
193 EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
194 EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
195 EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
196 EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
197 EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
198 EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
199 EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
200 EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
201 EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
202 EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
203 EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
204 EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
205 EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
206 EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
208 /* HTC Vive and Vive Pro VR Headsets */
209 EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
210 EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
212 /* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
213 EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
214 EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
215 EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
216 EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
218 /* Windows Mixed Reality Headsets */
219 EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
220 EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
221 EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
222 EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
223 EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
224 EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
226 /* Sony PlayStation VR Headset */
227 EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
229 /* Sensics VR Headsets */
230 EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
232 /* OSVR HDK and HDK2 VR Headsets */
233 EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
237 * Autogenerated from the DMT spec.
238 * This table is copied from xfree86/modes/xf86EdidModes.c.
240 static const struct drm_display_mode drm_dmt_modes[] = {
241 /* 0x01 - 640x350@85Hz */
242 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
243 736, 832, 0, 350, 382, 385, 445, 0,
244 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
245 /* 0x02 - 640x400@85Hz */
246 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
247 736, 832, 0, 400, 401, 404, 445, 0,
248 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
249 /* 0x03 - 720x400@85Hz */
250 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
251 828, 936, 0, 400, 401, 404, 446, 0,
252 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
253 /* 0x04 - 640x480@60Hz */
254 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
255 752, 800, 0, 480, 490, 492, 525, 0,
256 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
257 /* 0x05 - 640x480@72Hz */
258 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
259 704, 832, 0, 480, 489, 492, 520, 0,
260 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
261 /* 0x06 - 640x480@75Hz */
262 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
263 720, 840, 0, 480, 481, 484, 500, 0,
264 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
265 /* 0x07 - 640x480@85Hz */
266 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
267 752, 832, 0, 480, 481, 484, 509, 0,
268 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
269 /* 0x08 - 800x600@56Hz */
270 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
271 896, 1024, 0, 600, 601, 603, 625, 0,
272 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
273 /* 0x09 - 800x600@60Hz */
274 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
275 968, 1056, 0, 600, 601, 605, 628, 0,
276 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
277 /* 0x0a - 800x600@72Hz */
278 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
279 976, 1040, 0, 600, 637, 643, 666, 0,
280 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
281 /* 0x0b - 800x600@75Hz */
282 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
283 896, 1056, 0, 600, 601, 604, 625, 0,
284 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
285 /* 0x0c - 800x600@85Hz */
286 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
287 896, 1048, 0, 600, 601, 604, 631, 0,
288 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
289 /* 0x0d - 800x600@120Hz RB */
290 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
291 880, 960, 0, 600, 603, 607, 636, 0,
292 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
293 /* 0x0e - 848x480@60Hz */
294 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
295 976, 1088, 0, 480, 486, 494, 517, 0,
296 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
297 /* 0x0f - 1024x768@43Hz, interlace */
298 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
299 1208, 1264, 0, 768, 768, 776, 817, 0,
300 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
301 DRM_MODE_FLAG_INTERLACE) },
302 /* 0x10 - 1024x768@60Hz */
303 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
304 1184, 1344, 0, 768, 771, 777, 806, 0,
305 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
306 /* 0x11 - 1024x768@70Hz */
307 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
308 1184, 1328, 0, 768, 771, 777, 806, 0,
309 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
310 /* 0x12 - 1024x768@75Hz */
311 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
312 1136, 1312, 0, 768, 769, 772, 800, 0,
313 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
314 /* 0x13 - 1024x768@85Hz */
315 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
316 1168, 1376, 0, 768, 769, 772, 808, 0,
317 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
318 /* 0x14 - 1024x768@120Hz RB */
319 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
320 1104, 1184, 0, 768, 771, 775, 813, 0,
321 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
322 /* 0x15 - 1152x864@75Hz */
323 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
324 1344, 1600, 0, 864, 865, 868, 900, 0,
325 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
326 /* 0x55 - 1280x720@60Hz */
327 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
328 1430, 1650, 0, 720, 725, 730, 750, 0,
329 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
330 /* 0x16 - 1280x768@60Hz RB */
331 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
332 1360, 1440, 0, 768, 771, 778, 790, 0,
333 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
334 /* 0x17 - 1280x768@60Hz */
335 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
336 1472, 1664, 0, 768, 771, 778, 798, 0,
337 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
338 /* 0x18 - 1280x768@75Hz */
339 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
340 1488, 1696, 0, 768, 771, 778, 805, 0,
341 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
342 /* 0x19 - 1280x768@85Hz */
343 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
344 1496, 1712, 0, 768, 771, 778, 809, 0,
345 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
346 /* 0x1a - 1280x768@120Hz RB */
347 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
348 1360, 1440, 0, 768, 771, 778, 813, 0,
349 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
350 /* 0x1b - 1280x800@60Hz RB */
351 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
352 1360, 1440, 0, 800, 803, 809, 823, 0,
353 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
354 /* 0x1c - 1280x800@60Hz */
355 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
356 1480, 1680, 0, 800, 803, 809, 831, 0,
357 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
358 /* 0x1d - 1280x800@75Hz */
359 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
360 1488, 1696, 0, 800, 803, 809, 838, 0,
361 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
362 /* 0x1e - 1280x800@85Hz */
363 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
364 1496, 1712, 0, 800, 803, 809, 843, 0,
365 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
366 /* 0x1f - 1280x800@120Hz RB */
367 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
368 1360, 1440, 0, 800, 803, 809, 847, 0,
369 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
370 /* 0x20 - 1280x960@60Hz */
371 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
372 1488, 1800, 0, 960, 961, 964, 1000, 0,
373 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
374 /* 0x21 - 1280x960@85Hz */
375 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
376 1504, 1728, 0, 960, 961, 964, 1011, 0,
377 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
378 /* 0x22 - 1280x960@120Hz RB */
379 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
380 1360, 1440, 0, 960, 963, 967, 1017, 0,
381 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
382 /* 0x23 - 1280x1024@60Hz */
383 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
384 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
385 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
386 /* 0x24 - 1280x1024@75Hz */
387 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
388 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
389 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
390 /* 0x25 - 1280x1024@85Hz */
391 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
392 1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
393 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
394 /* 0x26 - 1280x1024@120Hz RB */
395 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
396 1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
397 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
398 /* 0x27 - 1360x768@60Hz */
399 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
400 1536, 1792, 0, 768, 771, 777, 795, 0,
401 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
402 /* 0x28 - 1360x768@120Hz RB */
403 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
404 1440, 1520, 0, 768, 771, 776, 813, 0,
405 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
406 /* 0x51 - 1366x768@60Hz */
407 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
408 1579, 1792, 0, 768, 771, 774, 798, 0,
409 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
410 /* 0x56 - 1366x768@60Hz */
411 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
412 1436, 1500, 0, 768, 769, 772, 800, 0,
413 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
414 /* 0x29 - 1400x1050@60Hz RB */
415 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
416 1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
417 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
418 /* 0x2a - 1400x1050@60Hz */
419 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
420 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
421 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
422 /* 0x2b - 1400x1050@75Hz */
423 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
424 1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
425 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
426 /* 0x2c - 1400x1050@85Hz */
427 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
428 1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
429 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
430 /* 0x2d - 1400x1050@120Hz RB */
431 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
432 1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
433 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
434 /* 0x2e - 1440x900@60Hz RB */
435 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
436 1520, 1600, 0, 900, 903, 909, 926, 0,
437 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
438 /* 0x2f - 1440x900@60Hz */
439 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
440 1672, 1904, 0, 900, 903, 909, 934, 0,
441 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
442 /* 0x30 - 1440x900@75Hz */
443 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
444 1688, 1936, 0, 900, 903, 909, 942, 0,
445 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
446 /* 0x31 - 1440x900@85Hz */
447 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
448 1696, 1952, 0, 900, 903, 909, 948, 0,
449 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
450 /* 0x32 - 1440x900@120Hz RB */
451 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
452 1520, 1600, 0, 900, 903, 909, 953, 0,
453 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
454 /* 0x53 - 1600x900@60Hz */
455 { DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
456 1704, 1800, 0, 900, 901, 904, 1000, 0,
457 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
458 /* 0x33 - 1600x1200@60Hz */
459 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
460 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
461 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
462 /* 0x34 - 1600x1200@65Hz */
463 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
464 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
465 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
466 /* 0x35 - 1600x1200@70Hz */
467 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
468 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
469 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
470 /* 0x36 - 1600x1200@75Hz */
471 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
472 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
473 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
474 /* 0x37 - 1600x1200@85Hz */
475 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
476 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
477 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
478 /* 0x38 - 1600x1200@120Hz RB */
479 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
480 1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
481 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
482 /* 0x39 - 1680x1050@60Hz RB */
483 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
484 1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
485 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
486 /* 0x3a - 1680x1050@60Hz */
487 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
488 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
489 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
490 /* 0x3b - 1680x1050@75Hz */
491 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
492 1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
493 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
494 /* 0x3c - 1680x1050@85Hz */
495 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
496 1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
497 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
498 /* 0x3d - 1680x1050@120Hz RB */
499 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
500 1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
501 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
502 /* 0x3e - 1792x1344@60Hz */
503 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
504 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
505 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
506 /* 0x3f - 1792x1344@75Hz */
507 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
508 2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
509 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
510 /* 0x40 - 1792x1344@120Hz RB */
511 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
512 1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
513 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
514 /* 0x41 - 1856x1392@60Hz */
515 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
516 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
517 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
518 /* 0x42 - 1856x1392@75Hz */
519 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
520 2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
521 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
522 /* 0x43 - 1856x1392@120Hz RB */
523 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
524 1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
525 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
526 /* 0x52 - 1920x1080@60Hz */
527 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
528 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
529 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
530 /* 0x44 - 1920x1200@60Hz RB */
531 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
532 2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
533 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
534 /* 0x45 - 1920x1200@60Hz */
535 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
536 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
537 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
538 /* 0x46 - 1920x1200@75Hz */
539 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
540 2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
541 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
542 /* 0x47 - 1920x1200@85Hz */
543 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
544 2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
545 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
546 /* 0x48 - 1920x1200@120Hz RB */
547 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
548 2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
549 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
550 /* 0x49 - 1920x1440@60Hz */
551 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
552 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
553 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
554 /* 0x4a - 1920x1440@75Hz */
555 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
556 2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
557 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
558 /* 0x4b - 1920x1440@120Hz RB */
559 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
560 2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
561 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
562 /* 0x54 - 2048x1152@60Hz */
563 { DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
564 2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
565 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
566 /* 0x4c - 2560x1600@60Hz RB */
567 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
568 2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
569 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
570 /* 0x4d - 2560x1600@60Hz */
571 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
572 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
573 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
574 /* 0x4e - 2560x1600@75Hz */
575 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
576 3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
577 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
578 /* 0x4f - 2560x1600@85Hz */
579 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
580 3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
581 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
582 /* 0x50 - 2560x1600@120Hz RB */
583 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
584 2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
585 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
586 /* 0x57 - 4096x2160@60Hz RB */
587 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
588 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
589 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
591 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
592 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
593 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
597 * These more or less come from the DMT spec. The 720x400 modes are
598 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75
599 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode
600 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
603 * The DMT modes have been fact-checked; the rest are mild guesses.
605 static const struct drm_display_mode edid_est_modes[] = {
606 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
607 968, 1056, 0, 600, 601, 605, 628, 0,
608 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
609 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
610 896, 1024, 0, 600, 601, 603, 625, 0,
611 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
612 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
613 720, 840, 0, 480, 481, 484, 500, 0,
614 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
615 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
616 704, 832, 0, 480, 489, 492, 520, 0,
617 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
618 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
619 768, 864, 0, 480, 483, 486, 525, 0,
620 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
621 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
622 752, 800, 0, 480, 490, 492, 525, 0,
623 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
624 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
625 846, 900, 0, 400, 421, 423, 449, 0,
626 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
627 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
628 846, 900, 0, 400, 412, 414, 449, 0,
629 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
630 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
631 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
632 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
633 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
634 1136, 1312, 0, 768, 769, 772, 800, 0,
635 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
636 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
637 1184, 1328, 0, 768, 771, 777, 806, 0,
638 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
639 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
640 1184, 1344, 0, 768, 771, 777, 806, 0,
641 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
642 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
643 1208, 1264, 0, 768, 768, 776, 817, 0,
644 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
645 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
646 928, 1152, 0, 624, 625, 628, 667, 0,
647 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
648 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
649 896, 1056, 0, 600, 601, 604, 625, 0,
650 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
651 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
652 976, 1040, 0, 600, 637, 643, 666, 0,
653 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
654 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
655 1344, 1600, 0, 864, 865, 868, 900, 0,
656 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
666 static const struct minimode est3_modes[] = {
674 { 1024, 768, 85, 0 },
675 { 1152, 864, 75, 0 },
677 { 1280, 768, 60, 1 },
678 { 1280, 768, 60, 0 },
679 { 1280, 768, 75, 0 },
680 { 1280, 768, 85, 0 },
681 { 1280, 960, 60, 0 },
682 { 1280, 960, 85, 0 },
683 { 1280, 1024, 60, 0 },
684 { 1280, 1024, 85, 0 },
686 { 1360, 768, 60, 0 },
687 { 1440, 900, 60, 1 },
688 { 1440, 900, 60, 0 },
689 { 1440, 900, 75, 0 },
690 { 1440, 900, 85, 0 },
691 { 1400, 1050, 60, 1 },
692 { 1400, 1050, 60, 0 },
693 { 1400, 1050, 75, 0 },
695 { 1400, 1050, 85, 0 },
696 { 1680, 1050, 60, 1 },
697 { 1680, 1050, 60, 0 },
698 { 1680, 1050, 75, 0 },
699 { 1680, 1050, 85, 0 },
700 { 1600, 1200, 60, 0 },
701 { 1600, 1200, 65, 0 },
702 { 1600, 1200, 70, 0 },
704 { 1600, 1200, 75, 0 },
705 { 1600, 1200, 85, 0 },
706 { 1792, 1344, 60, 0 },
707 { 1792, 1344, 75, 0 },
708 { 1856, 1392, 60, 0 },
709 { 1856, 1392, 75, 0 },
710 { 1920, 1200, 60, 1 },
711 { 1920, 1200, 60, 0 },
713 { 1920, 1200, 75, 0 },
714 { 1920, 1200, 85, 0 },
715 { 1920, 1440, 60, 0 },
716 { 1920, 1440, 75, 0 },
719 static const struct minimode extra_modes[] = {
720 { 1024, 576, 60, 0 },
721 { 1366, 768, 60, 0 },
722 { 1600, 900, 60, 0 },
723 { 1680, 945, 60, 0 },
724 { 1920, 1080, 60, 0 },
725 { 2048, 1152, 60, 0 },
726 { 2048, 1536, 60, 0 },
730 * From CEA/CTA-861 spec.
732 * Do not access directly, instead always use cea_mode_for_vic().
734 static const struct drm_display_mode edid_cea_modes_1[] = {
735 /* 1 - 640x480@60Hz 4:3 */
736 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
737 752, 800, 0, 480, 490, 492, 525, 0,
738 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
739 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
740 /* 2 - 720x480@60Hz 4:3 */
741 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
742 798, 858, 0, 480, 489, 495, 525, 0,
743 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
744 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
745 /* 3 - 720x480@60Hz 16:9 */
746 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
747 798, 858, 0, 480, 489, 495, 525, 0,
748 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
749 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
750 /* 4 - 1280x720@60Hz 16:9 */
751 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
752 1430, 1650, 0, 720, 725, 730, 750, 0,
753 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
754 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
755 /* 5 - 1920x1080i@60Hz 16:9 */
756 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
757 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
758 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
759 DRM_MODE_FLAG_INTERLACE),
760 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
761 /* 6 - 720(1440)x480i@60Hz 4:3 */
762 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
763 801, 858, 0, 480, 488, 494, 525, 0,
764 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
765 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
766 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
767 /* 7 - 720(1440)x480i@60Hz 16:9 */
768 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
769 801, 858, 0, 480, 488, 494, 525, 0,
770 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
771 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
772 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
773 /* 8 - 720(1440)x240@60Hz 4:3 */
774 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
775 801, 858, 0, 240, 244, 247, 262, 0,
776 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
777 DRM_MODE_FLAG_DBLCLK),
778 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
779 /* 9 - 720(1440)x240@60Hz 16:9 */
780 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
781 801, 858, 0, 240, 244, 247, 262, 0,
782 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
783 DRM_MODE_FLAG_DBLCLK),
784 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
785 /* 10 - 2880x480i@60Hz 4:3 */
786 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
787 3204, 3432, 0, 480, 488, 494, 525, 0,
788 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
789 DRM_MODE_FLAG_INTERLACE),
790 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
791 /* 11 - 2880x480i@60Hz 16:9 */
792 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
793 3204, 3432, 0, 480, 488, 494, 525, 0,
794 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
795 DRM_MODE_FLAG_INTERLACE),
796 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
797 /* 12 - 2880x240@60Hz 4:3 */
798 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
799 3204, 3432, 0, 240, 244, 247, 262, 0,
800 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
801 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
802 /* 13 - 2880x240@60Hz 16:9 */
803 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
804 3204, 3432, 0, 240, 244, 247, 262, 0,
805 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
806 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
807 /* 14 - 1440x480@60Hz 4:3 */
808 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
809 1596, 1716, 0, 480, 489, 495, 525, 0,
810 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
811 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
812 /* 15 - 1440x480@60Hz 16:9 */
813 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
814 1596, 1716, 0, 480, 489, 495, 525, 0,
815 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
816 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
817 /* 16 - 1920x1080@60Hz 16:9 */
818 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
819 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
820 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
821 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
822 /* 17 - 720x576@50Hz 4:3 */
823 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
824 796, 864, 0, 576, 581, 586, 625, 0,
825 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
826 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
827 /* 18 - 720x576@50Hz 16:9 */
828 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
829 796, 864, 0, 576, 581, 586, 625, 0,
830 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
831 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
832 /* 19 - 1280x720@50Hz 16:9 */
833 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
834 1760, 1980, 0, 720, 725, 730, 750, 0,
835 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
836 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
837 /* 20 - 1920x1080i@50Hz 16:9 */
838 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
839 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
840 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
841 DRM_MODE_FLAG_INTERLACE),
842 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
843 /* 21 - 720(1440)x576i@50Hz 4:3 */
844 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
845 795, 864, 0, 576, 580, 586, 625, 0,
846 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
847 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
848 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
849 /* 22 - 720(1440)x576i@50Hz 16:9 */
850 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
851 795, 864, 0, 576, 580, 586, 625, 0,
852 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
853 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
854 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
855 /* 23 - 720(1440)x288@50Hz 4:3 */
856 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
857 795, 864, 0, 288, 290, 293, 312, 0,
858 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
859 DRM_MODE_FLAG_DBLCLK),
860 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
861 /* 24 - 720(1440)x288@50Hz 16:9 */
862 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
863 795, 864, 0, 288, 290, 293, 312, 0,
864 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
865 DRM_MODE_FLAG_DBLCLK),
866 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
867 /* 25 - 2880x576i@50Hz 4:3 */
868 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
869 3180, 3456, 0, 576, 580, 586, 625, 0,
870 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
871 DRM_MODE_FLAG_INTERLACE),
872 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
873 /* 26 - 2880x576i@50Hz 16:9 */
874 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
875 3180, 3456, 0, 576, 580, 586, 625, 0,
876 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
877 DRM_MODE_FLAG_INTERLACE),
878 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
879 /* 27 - 2880x288@50Hz 4:3 */
880 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
881 3180, 3456, 0, 288, 290, 293, 312, 0,
882 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
883 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
884 /* 28 - 2880x288@50Hz 16:9 */
885 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
886 3180, 3456, 0, 288, 290, 293, 312, 0,
887 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
888 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
889 /* 29 - 1440x576@50Hz 4:3 */
890 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
891 1592, 1728, 0, 576, 581, 586, 625, 0,
892 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
893 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
894 /* 30 - 1440x576@50Hz 16:9 */
895 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
896 1592, 1728, 0, 576, 581, 586, 625, 0,
897 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
898 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
899 /* 31 - 1920x1080@50Hz 16:9 */
900 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
901 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
902 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
903 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
904 /* 32 - 1920x1080@24Hz 16:9 */
905 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
906 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
907 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
908 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
909 /* 33 - 1920x1080@25Hz 16:9 */
910 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
911 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
912 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
913 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
914 /* 34 - 1920x1080@30Hz 16:9 */
915 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
916 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
917 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
918 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
919 /* 35 - 2880x480@60Hz 4:3 */
920 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
921 3192, 3432, 0, 480, 489, 495, 525, 0,
922 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
923 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
924 /* 36 - 2880x480@60Hz 16:9 */
925 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
926 3192, 3432, 0, 480, 489, 495, 525, 0,
927 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
928 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
929 /* 37 - 2880x576@50Hz 4:3 */
930 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
931 3184, 3456, 0, 576, 581, 586, 625, 0,
932 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
933 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
934 /* 38 - 2880x576@50Hz 16:9 */
935 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
936 3184, 3456, 0, 576, 581, 586, 625, 0,
937 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
938 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
939 /* 39 - 1920x1080i@50Hz 16:9 */
940 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
941 2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
942 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
943 DRM_MODE_FLAG_INTERLACE),
944 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
945 /* 40 - 1920x1080i@100Hz 16:9 */
946 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
947 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
948 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
949 DRM_MODE_FLAG_INTERLACE),
950 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
951 /* 41 - 1280x720@100Hz 16:9 */
952 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
953 1760, 1980, 0, 720, 725, 730, 750, 0,
954 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
955 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
956 /* 42 - 720x576@100Hz 4:3 */
957 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
958 796, 864, 0, 576, 581, 586, 625, 0,
959 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
960 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
961 /* 43 - 720x576@100Hz 16:9 */
962 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
963 796, 864, 0, 576, 581, 586, 625, 0,
964 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
965 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
966 /* 44 - 720(1440)x576i@100Hz 4:3 */
967 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
968 795, 864, 0, 576, 580, 586, 625, 0,
969 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
970 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
971 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
972 /* 45 - 720(1440)x576i@100Hz 16:9 */
973 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
974 795, 864, 0, 576, 580, 586, 625, 0,
975 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
976 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
977 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
978 /* 46 - 1920x1080i@120Hz 16:9 */
979 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
980 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
981 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
982 DRM_MODE_FLAG_INTERLACE),
983 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
984 /* 47 - 1280x720@120Hz 16:9 */
985 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
986 1430, 1650, 0, 720, 725, 730, 750, 0,
987 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
988 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
989 /* 48 - 720x480@120Hz 4:3 */
990 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
991 798, 858, 0, 480, 489, 495, 525, 0,
992 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
993 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
994 /* 49 - 720x480@120Hz 16:9 */
995 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
996 798, 858, 0, 480, 489, 495, 525, 0,
997 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
998 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
999 /* 50 - 720(1440)x480i@120Hz 4:3 */
1000 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1001 801, 858, 0, 480, 488, 494, 525, 0,
1002 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1003 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1004 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1005 /* 51 - 720(1440)x480i@120Hz 16:9 */
1006 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1007 801, 858, 0, 480, 488, 494, 525, 0,
1008 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1009 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1010 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1011 /* 52 - 720x576@200Hz 4:3 */
1012 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1013 796, 864, 0, 576, 581, 586, 625, 0,
1014 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1015 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1016 /* 53 - 720x576@200Hz 16:9 */
1017 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1018 796, 864, 0, 576, 581, 586, 625, 0,
1019 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1020 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1021 /* 54 - 720(1440)x576i@200Hz 4:3 */
1022 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1023 795, 864, 0, 576, 580, 586, 625, 0,
1024 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1025 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1026 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1027 /* 55 - 720(1440)x576i@200Hz 16:9 */
1028 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1029 795, 864, 0, 576, 580, 586, 625, 0,
1030 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1031 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1032 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1033 /* 56 - 720x480@240Hz 4:3 */
1034 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1035 798, 858, 0, 480, 489, 495, 525, 0,
1036 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1037 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1038 /* 57 - 720x480@240Hz 16:9 */
1039 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1040 798, 858, 0, 480, 489, 495, 525, 0,
1041 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1042 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1043 /* 58 - 720(1440)x480i@240Hz 4:3 */
1044 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1045 801, 858, 0, 480, 488, 494, 525, 0,
1046 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1047 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1048 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1049 /* 59 - 720(1440)x480i@240Hz 16:9 */
1050 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1051 801, 858, 0, 480, 488, 494, 525, 0,
1052 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1053 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1054 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1055 /* 60 - 1280x720@24Hz 16:9 */
1056 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1057 3080, 3300, 0, 720, 725, 730, 750, 0,
1058 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1059 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1060 /* 61 - 1280x720@25Hz 16:9 */
1061 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1062 3740, 3960, 0, 720, 725, 730, 750, 0,
1063 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1064 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1065 /* 62 - 1280x720@30Hz 16:9 */
1066 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1067 3080, 3300, 0, 720, 725, 730, 750, 0,
1068 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1069 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1070 /* 63 - 1920x1080@120Hz 16:9 */
1071 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1072 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1073 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1074 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1075 /* 64 - 1920x1080@100Hz 16:9 */
1076 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1077 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1078 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1079 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1080 /* 65 - 1280x720@24Hz 64:27 */
1081 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1082 3080, 3300, 0, 720, 725, 730, 750, 0,
1083 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1084 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1085 /* 66 - 1280x720@25Hz 64:27 */
1086 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1087 3740, 3960, 0, 720, 725, 730, 750, 0,
1088 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1089 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1090 /* 67 - 1280x720@30Hz 64:27 */
1091 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1092 3080, 3300, 0, 720, 725, 730, 750, 0,
1093 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1094 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1095 /* 68 - 1280x720@50Hz 64:27 */
1096 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1097 1760, 1980, 0, 720, 725, 730, 750, 0,
1098 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1099 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1100 /* 69 - 1280x720@60Hz 64:27 */
1101 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1102 1430, 1650, 0, 720, 725, 730, 750, 0,
1103 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1104 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1105 /* 70 - 1280x720@100Hz 64:27 */
1106 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1107 1760, 1980, 0, 720, 725, 730, 750, 0,
1108 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1109 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1110 /* 71 - 1280x720@120Hz 64:27 */
1111 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1112 1430, 1650, 0, 720, 725, 730, 750, 0,
1113 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1114 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1115 /* 72 - 1920x1080@24Hz 64:27 */
1116 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1117 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1118 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1119 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1120 /* 73 - 1920x1080@25Hz 64:27 */
1121 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1122 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1123 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1124 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1125 /* 74 - 1920x1080@30Hz 64:27 */
1126 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1127 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1128 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1129 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1130 /* 75 - 1920x1080@50Hz 64:27 */
1131 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1132 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1133 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1134 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1135 /* 76 - 1920x1080@60Hz 64:27 */
1136 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1137 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1138 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1139 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1140 /* 77 - 1920x1080@100Hz 64:27 */
1141 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1142 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1143 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1144 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1145 /* 78 - 1920x1080@120Hz 64:27 */
1146 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1147 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1148 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1149 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1150 /* 79 - 1680x720@24Hz 64:27 */
1151 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1152 3080, 3300, 0, 720, 725, 730, 750, 0,
1153 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1154 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1155 /* 80 - 1680x720@25Hz 64:27 */
1156 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1157 2948, 3168, 0, 720, 725, 730, 750, 0,
1158 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1159 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1160 /* 81 - 1680x720@30Hz 64:27 */
1161 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1162 2420, 2640, 0, 720, 725, 730, 750, 0,
1163 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1164 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1165 /* 82 - 1680x720@50Hz 64:27 */
1166 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1167 1980, 2200, 0, 720, 725, 730, 750, 0,
1168 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1169 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1170 /* 83 - 1680x720@60Hz 64:27 */
1171 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1172 1980, 2200, 0, 720, 725, 730, 750, 0,
1173 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1174 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1175 /* 84 - 1680x720@100Hz 64:27 */
1176 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1177 1780, 2000, 0, 720, 725, 730, 825, 0,
1178 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1179 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1180 /* 85 - 1680x720@120Hz 64:27 */
1181 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1182 1780, 2000, 0, 720, 725, 730, 825, 0,
1183 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1184 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1185 /* 86 - 2560x1080@24Hz 64:27 */
1186 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1187 3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1188 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1189 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1190 /* 87 - 2560x1080@25Hz 64:27 */
1191 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1192 3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1193 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1194 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1195 /* 88 - 2560x1080@30Hz 64:27 */
1196 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1197 3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1198 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1199 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1200 /* 89 - 2560x1080@50Hz 64:27 */
1201 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1202 3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1203 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1204 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1205 /* 90 - 2560x1080@60Hz 64:27 */
1206 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1207 2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1208 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1209 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1210 /* 91 - 2560x1080@100Hz 64:27 */
1211 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1212 2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1213 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1214 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1215 /* 92 - 2560x1080@120Hz 64:27 */
1216 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1217 3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1218 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1219 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1220 /* 93 - 3840x2160@24Hz 16:9 */
1221 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1222 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1223 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1224 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1225 /* 94 - 3840x2160@25Hz 16:9 */
1226 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1227 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1228 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1229 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1230 /* 95 - 3840x2160@30Hz 16:9 */
1231 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1232 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1233 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1234 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1235 /* 96 - 3840x2160@50Hz 16:9 */
1236 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1237 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1238 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1239 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1240 /* 97 - 3840x2160@60Hz 16:9 */
1241 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1242 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1243 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1244 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1245 /* 98 - 4096x2160@24Hz 256:135 */
1246 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1247 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1248 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1249 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1250 /* 99 - 4096x2160@25Hz 256:135 */
1251 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1252 5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1253 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1254 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1255 /* 100 - 4096x2160@30Hz 256:135 */
1256 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1257 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1258 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1259 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1260 /* 101 - 4096x2160@50Hz 256:135 */
1261 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1262 5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1263 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1264 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1265 /* 102 - 4096x2160@60Hz 256:135 */
1266 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1267 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1268 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1269 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1270 /* 103 - 3840x2160@24Hz 64:27 */
1271 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1272 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1273 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1274 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1275 /* 104 - 3840x2160@25Hz 64:27 */
1276 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1277 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1278 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1279 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1280 /* 105 - 3840x2160@30Hz 64:27 */
1281 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1282 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1283 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1284 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1285 /* 106 - 3840x2160@50Hz 64:27 */
1286 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1287 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1288 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1289 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1290 /* 107 - 3840x2160@60Hz 64:27 */
1291 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1292 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1293 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1294 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1295 /* 108 - 1280x720@48Hz 16:9 */
1296 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1297 2280, 2500, 0, 720, 725, 730, 750, 0,
1298 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1299 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1300 /* 109 - 1280x720@48Hz 64:27 */
1301 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1302 2280, 2500, 0, 720, 725, 730, 750, 0,
1303 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1304 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1305 /* 110 - 1680x720@48Hz 64:27 */
1306 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1307 2530, 2750, 0, 720, 725, 730, 750, 0,
1308 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1309 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1310 /* 111 - 1920x1080@48Hz 16:9 */
1311 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1312 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1313 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1314 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1315 /* 112 - 1920x1080@48Hz 64:27 */
1316 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1317 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1318 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1319 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1320 /* 113 - 2560x1080@48Hz 64:27 */
1321 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1322 3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1323 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1324 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1325 /* 114 - 3840x2160@48Hz 16:9 */
1326 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1327 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1328 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1329 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1330 /* 115 - 4096x2160@48Hz 256:135 */
1331 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1332 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1333 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1334 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1335 /* 116 - 3840x2160@48Hz 64:27 */
1336 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1337 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1338 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1339 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1340 /* 117 - 3840x2160@100Hz 16:9 */
1341 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1342 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1343 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1344 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1345 /* 118 - 3840x2160@120Hz 16:9 */
1346 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1347 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1348 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1349 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1350 /* 119 - 3840x2160@100Hz 64:27 */
1351 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1352 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1353 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1354 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1355 /* 120 - 3840x2160@120Hz 64:27 */
1356 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1357 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1358 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1359 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1360 /* 121 - 5120x2160@24Hz 64:27 */
1361 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1362 7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1363 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1364 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1365 /* 122 - 5120x2160@25Hz 64:27 */
1366 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1367 6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1368 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1369 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1370 /* 123 - 5120x2160@30Hz 64:27 */
1371 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1372 5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1373 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1374 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1375 /* 124 - 5120x2160@48Hz 64:27 */
1376 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1377 5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1378 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1379 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1380 /* 125 - 5120x2160@50Hz 64:27 */
1381 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1382 6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1383 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1384 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1385 /* 126 - 5120x2160@60Hz 64:27 */
1386 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1387 5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1388 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1389 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1390 /* 127 - 5120x2160@100Hz 64:27 */
1391 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1392 6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1393 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1394 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1398 * From CEA/CTA-861 spec.
1400 * Do not access directly, instead always use cea_mode_for_vic().
1402 static const struct drm_display_mode edid_cea_modes_193[] = {
1403 /* 193 - 5120x2160@120Hz 64:27 */
1404 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1405 5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1406 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1407 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1408 /* 194 - 7680x4320@24Hz 16:9 */
1409 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1410 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1411 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1412 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1413 /* 195 - 7680x4320@25Hz 16:9 */
1414 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1415 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1416 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1417 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1418 /* 196 - 7680x4320@30Hz 16:9 */
1419 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1420 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1421 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1422 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1423 /* 197 - 7680x4320@48Hz 16:9 */
1424 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1425 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1426 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1427 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1428 /* 198 - 7680x4320@50Hz 16:9 */
1429 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1430 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1431 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1432 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1433 /* 199 - 7680x4320@60Hz 16:9 */
1434 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1435 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1436 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1437 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1438 /* 200 - 7680x4320@100Hz 16:9 */
1439 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1440 9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1441 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1442 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1443 /* 201 - 7680x4320@120Hz 16:9 */
1444 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1445 8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1446 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1447 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1448 /* 202 - 7680x4320@24Hz 64:27 */
1449 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1450 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1451 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1452 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1453 /* 203 - 7680x4320@25Hz 64:27 */
1454 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1455 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1456 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1457 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1458 /* 204 - 7680x4320@30Hz 64:27 */
1459 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1460 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1461 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1462 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1463 /* 205 - 7680x4320@48Hz 64:27 */
1464 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1465 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1466 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1467 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1468 /* 206 - 7680x4320@50Hz 64:27 */
1469 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1470 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1471 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1472 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1473 /* 207 - 7680x4320@60Hz 64:27 */
1474 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1475 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1476 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1477 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1478 /* 208 - 7680x4320@100Hz 64:27 */
1479 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1480 9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1481 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1482 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1483 /* 209 - 7680x4320@120Hz 64:27 */
1484 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1485 8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1486 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1487 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1488 /* 210 - 10240x4320@24Hz 64:27 */
1489 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1490 11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1491 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1492 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1493 /* 211 - 10240x4320@25Hz 64:27 */
1494 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1495 12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1496 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1497 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1498 /* 212 - 10240x4320@30Hz 64:27 */
1499 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1500 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1501 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1502 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1503 /* 213 - 10240x4320@48Hz 64:27 */
1504 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1505 11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1506 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1507 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1508 /* 214 - 10240x4320@50Hz 64:27 */
1509 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1510 12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1511 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1512 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1513 /* 215 - 10240x4320@60Hz 64:27 */
1514 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1515 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1516 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1517 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1518 /* 216 - 10240x4320@100Hz 64:27 */
1519 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1520 12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1521 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1522 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1523 /* 217 - 10240x4320@120Hz 64:27 */
1524 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1525 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1526 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1527 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1528 /* 218 - 4096x2160@100Hz 256:135 */
1529 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1530 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1531 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1532 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1533 /* 219 - 4096x2160@120Hz 256:135 */
1534 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1535 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1536 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1537 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1541 * HDMI 1.4 4k modes. Index using the VIC.
1543 static const struct drm_display_mode edid_4k_modes[] = {
1544 /* 0 - dummy, VICs start at 1 */
1546 /* 1 - 3840x2160@30Hz */
1547 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1548 3840, 4016, 4104, 4400, 0,
1549 2160, 2168, 2178, 2250, 0,
1550 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1551 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1552 /* 2 - 3840x2160@25Hz */
1553 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1554 3840, 4896, 4984, 5280, 0,
1555 2160, 2168, 2178, 2250, 0,
1556 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1557 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1558 /* 3 - 3840x2160@24Hz */
1559 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1560 3840, 5116, 5204, 5500, 0,
1561 2160, 2168, 2178, 2250, 0,
1562 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1563 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1564 /* 4 - 4096x2160@24Hz (SMPTE) */
1565 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1566 4096, 5116, 5204, 5500, 0,
1567 2160, 2168, 2178, 2250, 0,
1568 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1569 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1572 /*** DDC fetch and block validation ***/
1575 * The opaque EDID type, internal to drm_edid.c.
1578 /* Size allocated for edid */
1580 const struct edid *edid;
1583 static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1585 static int edid_hfeeodb_block_count(const struct edid *edid)
1587 int eeodb = edid_hfeeodb_extension_block_count(edid);
1589 return eeodb ? eeodb + 1 : 0;
1592 static int edid_extension_block_count(const struct edid *edid)
1594 return edid->extensions;
1597 static int edid_block_count(const struct edid *edid)
1599 return edid_extension_block_count(edid) + 1;
1602 static int edid_size_by_blocks(int num_blocks)
1604 return num_blocks * EDID_LENGTH;
1607 static int edid_size(const struct edid *edid)
1609 return edid_size_by_blocks(edid_block_count(edid));
1612 static const void *edid_block_data(const struct edid *edid, int index)
1614 BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1616 return edid + index;
1619 static const void *edid_extension_block_data(const struct edid *edid, int index)
1621 return edid_block_data(edid, index + 1);
1624 /* EDID block count indicated in EDID, may exceed allocated size */
1625 static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1629 /* Starting point */
1630 num_blocks = edid_block_count(drm_edid->edid);
1632 /* HF-EEODB override */
1633 if (drm_edid->size >= edid_size_by_blocks(2)) {
1637 * Note: HF-EEODB may specify a smaller extension count than the
1638 * regular one. Unlike in buffer allocation, here we can use it.
1640 eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1648 /* EDID block count, limited by allocated size */
1649 static int drm_edid_block_count(const struct drm_edid *drm_edid)
1651 /* Limit by allocated size */
1652 return min(__drm_edid_block_count(drm_edid),
1653 (int)drm_edid->size / EDID_LENGTH);
1656 /* EDID extension block count, limited by allocated size */
1657 static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1659 return drm_edid_block_count(drm_edid) - 1;
1662 static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1664 return edid_block_data(drm_edid->edid, index);
1667 static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1670 return edid_extension_block_data(drm_edid->edid, index);
1674 * Initializer helper for legacy interfaces, where we have no choice but to
1675 * trust edid size. Not for general purpose use.
1677 static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1678 const struct edid *edid)
1683 memset(drm_edid, 0, sizeof(*drm_edid));
1685 drm_edid->edid = edid;
1686 drm_edid->size = edid_size(edid);
1692 * EDID base and extension block iterator.
1694 * struct drm_edid_iter iter;
1697 * drm_edid_iter_begin(drm_edid, &iter);
1698 * drm_edid_iter_for_each(block, &iter) {
1699 * // do stuff with block
1701 * drm_edid_iter_end(&iter);
1703 struct drm_edid_iter {
1704 const struct drm_edid *drm_edid;
1706 /* Current block index. */
1710 static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1711 struct drm_edid_iter *iter)
1713 memset(iter, 0, sizeof(*iter));
1715 iter->drm_edid = drm_edid;
1718 static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1720 const void *block = NULL;
1722 if (!iter->drm_edid)
1725 if (iter->index < drm_edid_block_count(iter->drm_edid))
1726 block = drm_edid_block_data(iter->drm_edid, iter->index++);
1731 #define drm_edid_iter_for_each(__block, __iter) \
1732 while (((__block) = __drm_edid_iter_next(__iter)))
1734 static void drm_edid_iter_end(struct drm_edid_iter *iter)
1736 memset(iter, 0, sizeof(*iter));
1739 static const u8 edid_header[] = {
1740 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1743 static void edid_header_fix(void *edid)
1745 memcpy(edid, edid_header, sizeof(edid_header));
1749 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1750 * @_edid: pointer to raw base EDID block
1752 * Sanity check the header of the base EDID block.
1754 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1756 int drm_edid_header_is_valid(const void *_edid)
1758 const struct edid *edid = _edid;
1761 for (i = 0; i < sizeof(edid_header); i++) {
1762 if (edid->header[i] == edid_header[i])
1768 EXPORT_SYMBOL(drm_edid_header_is_valid);
1770 static int edid_fixup __read_mostly = 6;
1771 module_param_named(edid_fixup, edid_fixup, int, 0400);
1772 MODULE_PARM_DESC(edid_fixup,
1773 "Minimum number of valid EDID header bytes (0-8, default 6)");
1775 static int edid_block_compute_checksum(const void *_block)
1777 const u8 *block = _block;
1779 u8 csum = 0, crc = 0;
1781 for (i = 0; i < EDID_LENGTH - 1; i++)
1789 static int edid_block_get_checksum(const void *_block)
1791 const struct edid *block = _block;
1793 return block->checksum;
1796 static int edid_block_tag(const void *_block)
1798 const u8 *block = _block;
1803 static bool edid_block_is_zero(const void *edid)
1805 return !memchr_inv(edid, 0, EDID_LENGTH);
1809 * drm_edid_are_equal - compare two edid blobs.
1810 * @edid1: pointer to first blob
1811 * @edid2: pointer to second blob
1812 * This helper can be used during probing to determine if
1815 bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1817 int edid1_len, edid2_len;
1818 bool edid1_present = edid1 != NULL;
1819 bool edid2_present = edid2 != NULL;
1821 if (edid1_present != edid2_present)
1825 edid1_len = edid_size(edid1);
1826 edid2_len = edid_size(edid2);
1828 if (edid1_len != edid2_len)
1831 if (memcmp(edid1, edid2, edid1_len))
1837 EXPORT_SYMBOL(drm_edid_are_equal);
1839 enum edid_block_status {
1841 EDID_BLOCK_READ_FAIL,
1844 EDID_BLOCK_HEADER_CORRUPT,
1845 EDID_BLOCK_HEADER_REPAIR,
1846 EDID_BLOCK_HEADER_FIXED,
1847 EDID_BLOCK_CHECKSUM,
1851 static enum edid_block_status edid_block_check(const void *_block,
1854 const struct edid *block = _block;
1857 return EDID_BLOCK_NULL;
1859 if (is_base_block) {
1860 int score = drm_edid_header_is_valid(block);
1862 if (score < clamp(edid_fixup, 0, 8)) {
1863 if (edid_block_is_zero(block))
1864 return EDID_BLOCK_ZERO;
1866 return EDID_BLOCK_HEADER_CORRUPT;
1870 return EDID_BLOCK_HEADER_REPAIR;
1873 if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1874 if (edid_block_is_zero(block))
1875 return EDID_BLOCK_ZERO;
1877 return EDID_BLOCK_CHECKSUM;
1880 if (is_base_block) {
1881 if (block->version != 1)
1882 return EDID_BLOCK_VERSION;
1885 return EDID_BLOCK_OK;
1888 static bool edid_block_status_valid(enum edid_block_status status, int tag)
1890 return status == EDID_BLOCK_OK ||
1891 status == EDID_BLOCK_HEADER_FIXED ||
1892 (status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1895 static bool edid_block_valid(const void *block, bool base)
1897 return edid_block_status_valid(edid_block_check(block, base),
1898 edid_block_tag(block));
1901 static void edid_block_status_print(enum edid_block_status status,
1902 const struct edid *block,
1908 case EDID_BLOCK_READ_FAIL:
1909 pr_debug("EDID block %d read failed\n", block_num);
1911 case EDID_BLOCK_NULL:
1912 pr_debug("EDID block %d pointer is NULL\n", block_num);
1914 case EDID_BLOCK_ZERO:
1915 pr_notice("EDID block %d is all zeroes\n", block_num);
1917 case EDID_BLOCK_HEADER_CORRUPT:
1918 pr_notice("EDID has corrupt header\n");
1920 case EDID_BLOCK_HEADER_REPAIR:
1921 pr_debug("EDID corrupt header needs repair\n");
1923 case EDID_BLOCK_HEADER_FIXED:
1924 pr_debug("EDID corrupt header fixed\n");
1926 case EDID_BLOCK_CHECKSUM:
1927 if (edid_block_status_valid(status, edid_block_tag(block))) {
1928 pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1929 block_num, edid_block_tag(block),
1930 edid_block_compute_checksum(block));
1932 pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1933 block_num, edid_block_tag(block),
1934 edid_block_compute_checksum(block));
1937 case EDID_BLOCK_VERSION:
1938 pr_notice("EDID has major version %d, instead of 1\n",
1942 WARN(1, "EDID block %d unknown edid block status code %d\n",
1948 static void edid_block_dump(const char *level, const void *block, int block_num)
1950 enum edid_block_status status;
1953 status = edid_block_check(block, block_num == 0);
1954 if (status == EDID_BLOCK_ZERO)
1955 sprintf(prefix, "\t[%02x] ZERO ", block_num);
1956 else if (!edid_block_status_valid(status, edid_block_tag(block)))
1957 sprintf(prefix, "\t[%02x] BAD ", block_num);
1959 sprintf(prefix, "\t[%02x] GOOD ", block_num);
1961 print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1962 block, EDID_LENGTH, false);
1966 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1967 * @_block: pointer to raw EDID block
1968 * @block_num: type of block to validate (0 for base, extension otherwise)
1969 * @print_bad_edid: if true, dump bad EDID blocks to the console
1970 * @edid_corrupt: if true, the header or checksum is invalid
1972 * Validate a base or extension EDID block and optionally dump bad blocks to
1975 * Return: True if the block is valid, false otherwise.
1977 bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
1980 struct edid *block = (struct edid *)_block;
1981 enum edid_block_status status;
1982 bool is_base_block = block_num == 0;
1985 if (WARN_ON(!block))
1988 status = edid_block_check(block, is_base_block);
1989 if (status == EDID_BLOCK_HEADER_REPAIR) {
1990 DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1991 edid_header_fix(block);
1993 /* Retry with fixed header, update status if that worked. */
1994 status = edid_block_check(block, is_base_block);
1995 if (status == EDID_BLOCK_OK)
1996 status = EDID_BLOCK_HEADER_FIXED;
2001 * Unknown major version isn't corrupt but we can't use it. Only
2002 * the base block can reset edid_corrupt to false.
2004 if (is_base_block &&
2005 (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2006 *edid_corrupt = false;
2007 else if (status != EDID_BLOCK_OK)
2008 *edid_corrupt = true;
2011 edid_block_status_print(status, block, block_num);
2013 /* Determine whether we can use this block with this status. */
2014 valid = edid_block_status_valid(status, edid_block_tag(block));
2016 if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2017 pr_notice("Raw EDID:\n");
2018 edid_block_dump(KERN_NOTICE, block, block_num);
2023 EXPORT_SYMBOL(drm_edid_block_valid);
2026 * drm_edid_is_valid - sanity check EDID data
2029 * Sanity-check an entire EDID record (including extensions)
2031 * Return: True if the EDID data is valid, false otherwise.
2033 bool drm_edid_is_valid(struct edid *edid)
2040 for (i = 0; i < edid_block_count(edid); i++) {
2041 void *block = (void *)edid_block_data(edid, i);
2043 if (!drm_edid_block_valid(block, i, true, NULL))
2049 EXPORT_SYMBOL(drm_edid_is_valid);
2052 * drm_edid_valid - sanity check EDID data
2053 * @drm_edid: EDID data
2055 * Sanity check an EDID. Cross check block count against allocated size and
2056 * checksum the blocks.
2058 * Return: True if the EDID data is valid, false otherwise.
2060 bool drm_edid_valid(const struct drm_edid *drm_edid)
2067 if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2070 for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2071 const void *block = drm_edid_block_data(drm_edid, i);
2073 if (!edid_block_valid(block, i == 0))
2079 EXPORT_SYMBOL(drm_edid_valid);
2081 static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2085 int i, valid_blocks = 0;
2088 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2089 * back to regular extension count here. We don't want to start
2090 * modifying the HF-EEODB extension too.
2092 for (i = 0; i < edid_block_count(edid); i++) {
2093 const void *src_block = edid_block_data(edid, i);
2095 if (edid_block_valid(src_block, i == 0)) {
2096 void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2098 memmove(dst_block, src_block, EDID_LENGTH);
2103 /* We already trusted the base block to be valid here... */
2104 if (WARN_ON(!valid_blocks)) {
2109 edid->extensions = valid_blocks - 1;
2110 edid->checksum = edid_block_compute_checksum(edid);
2112 *alloc_size = edid_size_by_blocks(valid_blocks);
2114 new = krealloc(edid, *alloc_size, GFP_KERNEL);
2121 #define DDC_SEGMENT_ADDR 0x30
2123 * drm_do_probe_ddc_edid() - get EDID information via I2C
2124 * @data: I2C device adapter
2125 * @buf: EDID data buffer to be filled
2126 * @block: 128 byte EDID block to start fetching from
2127 * @len: EDID data buffer length to fetch
2129 * Try to fetch EDID information by calling I2C driver functions.
2131 * Return: 0 on success or -1 on failure.
2134 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2136 struct i2c_adapter *adapter = data;
2137 unsigned char start = block * EDID_LENGTH;
2138 unsigned char segment = block >> 1;
2139 unsigned char xfers = segment ? 3 : 2;
2140 int ret, retries = 5;
2143 * The core I2C driver will automatically retry the transfer if the
2144 * adapter reports EAGAIN. However, we find that bit-banging transfers
2145 * are susceptible to errors under a heavily loaded machine and
2146 * generate spurious NAKs and timeouts. Retrying the transfer
2147 * of the individual block a few times seems to overcome this.
2150 struct i2c_msg msgs[] = {
2152 .addr = DDC_SEGMENT_ADDR,
2170 * Avoid sending the segment addr to not upset non-compliant
2173 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2175 if (ret == -ENXIO) {
2176 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2180 } while (ret != xfers && --retries);
2182 return ret == xfers ? 0 : -1;
2185 static void connector_bad_edid(struct drm_connector *connector,
2186 const struct edid *edid, int num_blocks)
2192 * 0x7e in the EDID is the number of extension blocks. The EDID
2193 * is 1 (base block) + num_ext_blocks big. That means we can think
2194 * of 0x7e in the EDID of the _index_ of the last block in the
2195 * combined chunk of memory.
2197 last_block = edid->extensions;
2199 /* Calculate real checksum for the last edid extension block data */
2200 if (last_block < num_blocks)
2201 connector->real_edid_checksum =
2202 edid_block_compute_checksum(edid + last_block);
2204 if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2207 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2208 connector->base.id, connector->name);
2209 for (i = 0; i < num_blocks; i++)
2210 edid_block_dump(KERN_DEBUG, edid + i, i);
2213 /* Get override or firmware EDID */
2214 static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2216 const struct drm_edid *override = NULL;
2218 mutex_lock(&connector->edid_override_mutex);
2220 if (connector->edid_override)
2221 override = drm_edid_dup(connector->edid_override);
2223 mutex_unlock(&connector->edid_override_mutex);
2226 override = drm_edid_load_firmware(connector);
2228 return IS_ERR(override) ? NULL : override;
2231 /* For debugfs edid_override implementation */
2232 int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2234 const struct drm_edid *drm_edid;
2236 mutex_lock(&connector->edid_override_mutex);
2238 drm_edid = connector->edid_override;
2240 seq_write(m, drm_edid->edid, drm_edid->size);
2242 mutex_unlock(&connector->edid_override_mutex);
2247 /* For debugfs edid_override implementation */
2248 int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2251 const struct drm_edid *drm_edid;
2253 drm_edid = drm_edid_alloc(edid, size);
2254 if (!drm_edid_valid(drm_edid)) {
2255 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2256 connector->base.id, connector->name);
2257 drm_edid_free(drm_edid);
2261 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2262 connector->base.id, connector->name);
2264 mutex_lock(&connector->edid_override_mutex);
2266 drm_edid_free(connector->edid_override);
2267 connector->edid_override = drm_edid;
2269 mutex_unlock(&connector->edid_override_mutex);
2274 /* For debugfs edid_override implementation */
2275 int drm_edid_override_reset(struct drm_connector *connector)
2277 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2278 connector->base.id, connector->name);
2280 mutex_lock(&connector->edid_override_mutex);
2282 drm_edid_free(connector->edid_override);
2283 connector->edid_override = NULL;
2285 mutex_unlock(&connector->edid_override_mutex);
2291 * drm_edid_override_connector_update - add modes from override/firmware EDID
2292 * @connector: connector we're probing
2294 * Add modes from the override/firmware EDID, if available. Only to be used from
2295 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2296 * failed during drm_get_edid() and caused the override/firmware EDID to be
2299 * Return: The number of modes added or 0 if we couldn't find any.
2301 int drm_edid_override_connector_update(struct drm_connector *connector)
2303 const struct drm_edid *override;
2306 override = drm_edid_override_get(connector);
2308 num_modes = drm_edid_connector_update(connector, override);
2310 drm_edid_free(override);
2312 drm_dbg_kms(connector->dev,
2313 "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2314 connector->base.id, connector->name, num_modes);
2319 EXPORT_SYMBOL(drm_edid_override_connector_update);
2321 typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2323 static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2324 read_block_fn read_block,
2327 enum edid_block_status status;
2328 bool is_base_block = block_num == 0;
2331 for (try = 0; try < 4; try++) {
2332 if (read_block(context, block, block_num, EDID_LENGTH))
2333 return EDID_BLOCK_READ_FAIL;
2335 status = edid_block_check(block, is_base_block);
2336 if (status == EDID_BLOCK_HEADER_REPAIR) {
2337 edid_header_fix(block);
2339 /* Retry with fixed header, update status if that worked. */
2340 status = edid_block_check(block, is_base_block);
2341 if (status == EDID_BLOCK_OK)
2342 status = EDID_BLOCK_HEADER_FIXED;
2345 if (edid_block_status_valid(status, edid_block_tag(block)))
2348 /* Fail early for unrepairable base block all zeros. */
2349 if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2356 static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2357 read_block_fn read_block, void *context,
2360 enum edid_block_status status;
2361 int i, num_blocks, invalid_blocks = 0;
2362 const struct drm_edid *override;
2363 struct edid *edid, *new;
2364 size_t alloc_size = EDID_LENGTH;
2366 override = drm_edid_override_get(connector);
2368 alloc_size = override->size;
2369 edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2370 drm_edid_free(override);
2376 edid = kmalloc(alloc_size, GFP_KERNEL);
2380 status = edid_block_read(edid, 0, read_block, context);
2382 edid_block_status_print(status, edid, 0);
2384 if (status == EDID_BLOCK_READ_FAIL)
2387 /* FIXME: Clarify what a corrupt EDID actually means. */
2388 if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2389 connector->edid_corrupt = false;
2391 connector->edid_corrupt = true;
2393 if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2394 if (status == EDID_BLOCK_ZERO)
2395 connector->null_edid_counter++;
2397 connector_bad_edid(connector, edid, 1);
2401 if (!edid_extension_block_count(edid))
2404 alloc_size = edid_size(edid);
2405 new = krealloc(edid, alloc_size, GFP_KERNEL);
2410 num_blocks = edid_block_count(edid);
2411 for (i = 1; i < num_blocks; i++) {
2412 void *block = (void *)edid_block_data(edid, i);
2414 status = edid_block_read(block, i, read_block, context);
2416 edid_block_status_print(status, block, i);
2418 if (!edid_block_status_valid(status, edid_block_tag(block))) {
2419 if (status == EDID_BLOCK_READ_FAIL)
2422 } else if (i == 1) {
2424 * If the first EDID extension is a CTA extension, and
2425 * the first Data Block is HF-EEODB, override the
2426 * extension block count.
2428 * Note: HF-EEODB could specify a smaller extension
2429 * count too, but we can't risk allocating a smaller
2432 int eeodb = edid_hfeeodb_block_count(edid);
2434 if (eeodb > num_blocks) {
2436 alloc_size = edid_size_by_blocks(num_blocks);
2437 new = krealloc(edid, alloc_size, GFP_KERNEL);
2445 if (invalid_blocks) {
2446 connector_bad_edid(connector, edid, num_blocks);
2448 edid = edid_filter_invalid_blocks(edid, &alloc_size);
2463 * drm_do_get_edid - get EDID data using a custom EDID block read function
2464 * @connector: connector we're probing
2465 * @read_block: EDID block read function
2466 * @context: private data passed to the block read function
2468 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2469 * exposes a different interface to read EDID blocks this function can be used
2470 * to get EDID data using a custom block read function.
2472 * As in the general case the DDC bus is accessible by the kernel at the I2C
2473 * level, drivers must make all reasonable efforts to expose it as an I2C
2474 * adapter and use drm_get_edid() instead of abusing this function.
2476 * The EDID may be overridden using debugfs override_edid or firmware EDID
2477 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2478 * order. Having either of them bypasses actual EDID reads.
2480 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2482 struct edid *drm_do_get_edid(struct drm_connector *connector,
2483 read_block_fn read_block,
2486 return _drm_do_get_edid(connector, read_block, context, NULL);
2488 EXPORT_SYMBOL_GPL(drm_do_get_edid);
2491 * drm_edid_raw - Get a pointer to the raw EDID data.
2492 * @drm_edid: drm_edid container
2494 * Get a pointer to the raw EDID data.
2496 * This is for transition only. Avoid using this like the plague.
2498 * Return: Pointer to raw EDID data.
2500 const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2502 if (!drm_edid || !drm_edid->size)
2506 * Do not return pointers where relying on EDID extension count would
2507 * lead to buffer overflow.
2509 if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2512 return drm_edid->edid;
2514 EXPORT_SYMBOL(drm_edid_raw);
2516 /* Allocate struct drm_edid container *without* duplicating the edid data */
2517 static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2519 struct drm_edid *drm_edid;
2521 if (!edid || !size || size < EDID_LENGTH)
2524 drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2526 drm_edid->edid = edid;
2527 drm_edid->size = size;
2534 * drm_edid_alloc - Allocate a new drm_edid container
2535 * @edid: Pointer to raw EDID data
2536 * @size: Size of memory allocated for EDID
2538 * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2539 * the actual size that has been allocated for the data. There is no validation
2540 * of the raw EDID data against the size, but at least the EDID base block must
2541 * fit in the buffer.
2543 * The returned pointer must be freed using drm_edid_free().
2545 * Return: drm_edid container, or NULL on errors
2547 const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2549 const struct drm_edid *drm_edid;
2551 if (!edid || !size || size < EDID_LENGTH)
2554 edid = kmemdup(edid, size, GFP_KERNEL);
2558 drm_edid = _drm_edid_alloc(edid, size);
2564 EXPORT_SYMBOL(drm_edid_alloc);
2567 * drm_edid_dup - Duplicate a drm_edid container
2568 * @drm_edid: EDID to duplicate
2570 * The returned pointer must be freed using drm_edid_free().
2572 * Returns: drm_edid container copy, or NULL on errors
2574 const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2579 return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2581 EXPORT_SYMBOL(drm_edid_dup);
2584 * drm_edid_free - Free the drm_edid container
2585 * @drm_edid: EDID to free
2587 void drm_edid_free(const struct drm_edid *drm_edid)
2592 kfree(drm_edid->edid);
2595 EXPORT_SYMBOL(drm_edid_free);
2598 * drm_probe_ddc() - probe DDC presence
2599 * @adapter: I2C adapter to probe
2601 * Return: True on success, false on failure.
2604 drm_probe_ddc(struct i2c_adapter *adapter)
2608 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2610 EXPORT_SYMBOL(drm_probe_ddc);
2613 * drm_get_edid - get EDID data, if available
2614 * @connector: connector we're probing
2615 * @adapter: I2C adapter to use for DDC
2617 * Poke the given I2C channel to grab EDID data if possible. If found,
2618 * attach it to the connector.
2620 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2622 struct edid *drm_get_edid(struct drm_connector *connector,
2623 struct i2c_adapter *adapter)
2627 if (connector->force == DRM_FORCE_OFF)
2630 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2633 edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2634 drm_connector_update_edid_property(connector, edid);
2637 EXPORT_SYMBOL(drm_get_edid);
2640 * drm_edid_read_custom - Read EDID data using given EDID block read function
2641 * @connector: Connector to use
2642 * @read_block: EDID block read function
2643 * @context: Private data passed to the block read function
2645 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2646 * exposes a different interface to read EDID blocks this function can be used
2647 * to get EDID data using a custom block read function.
2649 * As in the general case the DDC bus is accessible by the kernel at the I2C
2650 * level, drivers must make all reasonable efforts to expose it as an I2C
2651 * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2654 * The EDID may be overridden using debugfs override_edid or firmware EDID
2655 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2656 * order. Having either of them bypasses actual EDID reads.
2658 * The returned pointer must be freed using drm_edid_free().
2660 * Return: Pointer to EDID, or NULL if probe/read failed.
2662 const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2663 read_block_fn read_block,
2666 const struct drm_edid *drm_edid;
2670 edid = _drm_do_get_edid(connector, read_block, context, &size);
2674 /* Sanity check for now */
2675 drm_WARN_ON(connector->dev, !size);
2677 drm_edid = _drm_edid_alloc(edid, size);
2683 EXPORT_SYMBOL(drm_edid_read_custom);
2686 * drm_edid_read_ddc - Read EDID data using given I2C adapter
2687 * @connector: Connector to use
2688 * @adapter: I2C adapter to use for DDC
2690 * Read EDID using the given I2C adapter.
2692 * The EDID may be overridden using debugfs override_edid or firmware EDID
2693 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2694 * order. Having either of them bypasses actual EDID reads.
2696 * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2697 * using drm_edid_read() instead of this function.
2699 * The returned pointer must be freed using drm_edid_free().
2701 * Return: Pointer to EDID, or NULL if probe/read failed.
2703 const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2704 struct i2c_adapter *adapter)
2706 const struct drm_edid *drm_edid;
2708 if (connector->force == DRM_FORCE_OFF)
2711 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2714 drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2716 /* Note: Do *not* call connector updates here. */
2720 EXPORT_SYMBOL(drm_edid_read_ddc);
2723 * drm_edid_read - Read EDID data using connector's I2C adapter
2724 * @connector: Connector to use
2726 * Read EDID using the connector's I2C adapter.
2728 * The EDID may be overridden using debugfs override_edid or firmware EDID
2729 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2730 * order. Having either of them bypasses actual EDID reads.
2732 * The returned pointer must be freed using drm_edid_free().
2734 * Return: Pointer to EDID, or NULL if probe/read failed.
2736 const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2738 if (drm_WARN_ON(connector->dev, !connector->ddc))
2741 return drm_edid_read_ddc(connector, connector->ddc);
2743 EXPORT_SYMBOL(drm_edid_read);
2745 static u32 edid_extract_panel_id(const struct edid *edid)
2748 * We represent the ID as a 32-bit number so it can easily be compared
2751 * NOTE that we deal with endianness differently for the top half
2752 * of this ID than for the bottom half. The bottom half (the product
2753 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2754 * that's how everyone seems to interpret it. The top half (the mfg_id)
2755 * gets stored as big endian because that makes
2756 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2757 * to write (it's easier to extract the ASCII). It doesn't really
2758 * matter, though, as long as the number here is unique.
2760 return (u32)edid->mfg_id[0] << 24 |
2761 (u32)edid->mfg_id[1] << 16 |
2762 (u32)EDID_PRODUCT_ID(edid);
2766 * drm_edid_get_panel_id - Get a panel's ID through DDC
2767 * @adapter: I2C adapter to use for DDC
2769 * This function reads the first block of the EDID of a panel and (assuming
2770 * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2771 * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2772 * supposed to be different for each different modem of panel.
2774 * This function is intended to be used during early probing on devices where
2775 * more than one panel might be present. Because of its intended use it must
2776 * assume that the EDID of the panel is correct, at least as far as the ID
2777 * is concerned (in other words, we don't process any overrides here).
2779 * NOTE: it's expected that this function and drm_do_get_edid() will both
2780 * be read the EDID, but there is no caching between them. Since we're only
2781 * reading the first block, hopefully this extra overhead won't be too big.
2783 * Return: A 32-bit ID that should be different for each make/model of panel.
2784 * See the functions drm_edid_encode_panel_id() and
2785 * drm_edid_decode_panel_id() for some details on the structure of this
2789 u32 drm_edid_get_panel_id(struct i2c_adapter *adapter)
2791 enum edid_block_status status;
2796 * There are no manufacturer IDs of 0, so if there is a problem reading
2797 * the EDID then we'll just return 0.
2800 base_block = kmalloc(EDID_LENGTH, GFP_KERNEL);
2804 status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2806 edid_block_status_print(status, base_block, 0);
2808 if (edid_block_status_valid(status, edid_block_tag(base_block)))
2809 panel_id = edid_extract_panel_id(base_block);
2811 edid_block_dump(KERN_NOTICE, base_block, 0);
2817 EXPORT_SYMBOL(drm_edid_get_panel_id);
2820 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2821 * @connector: connector we're probing
2822 * @adapter: I2C adapter to use for DDC
2824 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2825 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2826 * switch DDC to the GPU which is retrieving EDID.
2828 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2830 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2831 struct i2c_adapter *adapter)
2833 struct drm_device *dev = connector->dev;
2834 struct pci_dev *pdev = to_pci_dev(dev->dev);
2837 if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2840 vga_switcheroo_lock_ddc(pdev);
2841 edid = drm_get_edid(connector, adapter);
2842 vga_switcheroo_unlock_ddc(pdev);
2846 EXPORT_SYMBOL(drm_get_edid_switcheroo);
2849 * drm_edid_duplicate - duplicate an EDID and the extensions
2850 * @edid: EDID to duplicate
2852 * Return: Pointer to duplicated EDID or NULL on allocation failure.
2854 struct edid *drm_edid_duplicate(const struct edid *edid)
2856 return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2858 EXPORT_SYMBOL(drm_edid_duplicate);
2860 /*** EDID parsing ***/
2863 * edid_get_quirks - return quirk flags for a given EDID
2864 * @drm_edid: EDID to process
2866 * This tells subsequent routines what fixes they need to apply.
2868 static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2870 u32 panel_id = edid_extract_panel_id(drm_edid->edid);
2871 const struct edid_quirk *quirk;
2874 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2875 quirk = &edid_quirk_list[i];
2876 if (quirk->panel_id == panel_id)
2877 return quirk->quirks;
2883 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2884 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2887 * Walk the mode list for connector, clearing the preferred status on existing
2888 * modes and setting it anew for the right mode ala quirks.
2890 static void edid_fixup_preferred(struct drm_connector *connector,
2893 struct drm_display_mode *t, *cur_mode, *preferred_mode;
2894 int target_refresh = 0;
2895 int cur_vrefresh, preferred_vrefresh;
2897 if (list_empty(&connector->probed_modes))
2900 if (quirks & EDID_QUIRK_PREFER_LARGE_60)
2901 target_refresh = 60;
2902 if (quirks & EDID_QUIRK_PREFER_LARGE_75)
2903 target_refresh = 75;
2905 preferred_mode = list_first_entry(&connector->probed_modes,
2906 struct drm_display_mode, head);
2908 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2909 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2911 if (cur_mode == preferred_mode)
2914 /* Largest mode is preferred */
2915 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2916 preferred_mode = cur_mode;
2918 cur_vrefresh = drm_mode_vrefresh(cur_mode);
2919 preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
2920 /* At a given size, try to get closest to target refresh */
2921 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2922 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2923 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2924 preferred_mode = cur_mode;
2928 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2932 mode_is_rb(const struct drm_display_mode *mode)
2934 return (mode->htotal - mode->hdisplay == 160) &&
2935 (mode->hsync_end - mode->hdisplay == 80) &&
2936 (mode->hsync_end - mode->hsync_start == 32) &&
2937 (mode->vsync_start - mode->vdisplay == 3);
2941 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2942 * @dev: Device to duplicate against
2943 * @hsize: Mode width
2944 * @vsize: Mode height
2945 * @fresh: Mode refresh rate
2946 * @rb: Mode reduced-blanking-ness
2948 * Walk the DMT mode list looking for a match for the given parameters.
2950 * Return: A newly allocated copy of the mode, or NULL if not found.
2952 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2953 int hsize, int vsize, int fresh,
2958 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2959 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2961 if (hsize != ptr->hdisplay)
2963 if (vsize != ptr->vdisplay)
2965 if (fresh != drm_mode_vrefresh(ptr))
2967 if (rb != mode_is_rb(ptr))
2970 return drm_mode_duplicate(dev, ptr);
2975 EXPORT_SYMBOL(drm_mode_find_dmt);
2977 static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
2979 BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
2980 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
2981 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
2983 return descriptor->pixel_clock == 0 &&
2984 descriptor->data.other_data.pad1 == 0 &&
2985 descriptor->data.other_data.type == type;
2988 static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
2990 BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
2992 return descriptor->pixel_clock != 0;
2995 typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
2998 cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3002 const u8 *det_base = ext + d;
3004 if (d < 4 || d > 127)
3008 for (i = 0; i < n; i++)
3009 cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3013 vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3015 unsigned int i, n = min((int)ext[0x02], 6);
3016 const u8 *det_base = ext + 5;
3019 return; /* unknown version */
3021 for (i = 0; i < n; i++)
3022 cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3025 static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3026 detailed_cb *cb, void *closure)
3028 struct drm_edid_iter edid_iter;
3035 for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3036 cb(&drm_edid->edid->detailed_timings[i], closure);
3038 drm_edid_iter_begin(drm_edid, &edid_iter);
3039 drm_edid_iter_for_each(ext, &edid_iter) {
3042 cea_for_each_detailed_block(ext, cb, closure);
3045 vtb_for_each_detailed_block(ext, cb, closure);
3051 drm_edid_iter_end(&edid_iter);
3055 is_rb(const struct detailed_timing *descriptor, void *data)
3059 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3062 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3063 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3065 if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3066 descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3070 /* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
3072 drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3074 if (drm_edid->edid->revision >= 4) {
3077 drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3081 return ((drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
3085 find_gtf2(const struct detailed_timing *descriptor, void *data)
3087 const struct detailed_timing **res = data;
3089 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3092 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3094 if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3098 /* Secondary GTF curve kicks in above some break frequency */
3100 drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3102 const struct detailed_timing *descriptor = NULL;
3104 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3106 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3108 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3112 drm_gtf2_2c(const struct drm_edid *drm_edid)
3114 const struct detailed_timing *descriptor = NULL;
3116 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3118 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3120 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3124 drm_gtf2_m(const struct drm_edid *drm_edid)
3126 const struct detailed_timing *descriptor = NULL;
3128 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3130 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3132 return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3136 drm_gtf2_k(const struct drm_edid *drm_edid)
3138 const struct detailed_timing *descriptor = NULL;
3140 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3142 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3144 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3148 drm_gtf2_2j(const struct drm_edid *drm_edid)
3150 const struct detailed_timing *descriptor = NULL;
3152 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3154 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3156 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3160 get_timing_level(const struct detailed_timing *descriptor, void *data)
3164 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3167 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3169 switch (descriptor->data.other_data.data.range.flags) {
3170 case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3173 case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3176 case DRM_EDID_CVT_SUPPORT_FLAG:
3184 /* Get standard timing level (CVT/GTF/DMT). */
3185 static int standard_timing_level(const struct drm_edid *drm_edid)
3187 const struct edid *edid = drm_edid->edid;
3189 if (edid->revision >= 4) {
3191 * If the range descriptor doesn't
3192 * indicate otherwise default to CVT
3194 int ret = LEVEL_CVT;
3196 drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3199 } else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3201 } else if (edid->revision >= 2) {
3209 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old
3210 * monitors fill with ascii space (0x20) instead.
3213 bad_std_timing(u8 a, u8 b)
3215 return (a == 0x00 && b == 0x00) ||
3216 (a == 0x01 && b == 0x01) ||
3217 (a == 0x20 && b == 0x20);
3220 static int drm_mode_hsync(const struct drm_display_mode *mode)
3222 if (mode->htotal <= 0)
3225 return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3228 static struct drm_display_mode *
3229 drm_gtf2_mode(struct drm_device *dev,
3230 const struct drm_edid *drm_edid,
3231 int hsize, int vsize, int vrefresh_rate)
3233 struct drm_display_mode *mode;
3236 * This is potentially wrong if there's ever a monitor with
3237 * more than one ranges section, each claiming a different
3238 * secondary GTF curve. Please don't do that.
3240 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3244 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3245 drm_mode_destroy(dev, mode);
3246 mode = drm_gtf_mode_complex(dev, hsize, vsize,
3247 vrefresh_rate, 0, 0,
3248 drm_gtf2_m(drm_edid),
3249 drm_gtf2_2c(drm_edid),
3250 drm_gtf2_k(drm_edid),
3251 drm_gtf2_2j(drm_edid));
3258 * Take the standard timing params (in this case width, aspect, and refresh)
3259 * and convert them into a real mode using CVT/GTF/DMT.
3261 static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3262 const struct drm_edid *drm_edid,
3263 const struct std_timing *t)
3265 struct drm_device *dev = connector->dev;
3266 struct drm_display_mode *m, *mode = NULL;
3269 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3270 >> EDID_TIMING_ASPECT_SHIFT;
3271 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3272 >> EDID_TIMING_VFREQ_SHIFT;
3273 int timing_level = standard_timing_level(drm_edid);
3275 if (bad_std_timing(t->hsize, t->vfreq_aspect))
3278 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3279 hsize = t->hsize * 8 + 248;
3280 /* vrefresh_rate = vfreq + 60 */
3281 vrefresh_rate = vfreq + 60;
3282 /* the vdisplay is calculated based on the aspect ratio */
3283 if (aspect_ratio == 0) {
3284 if (drm_edid->edid->revision < 3)
3287 vsize = (hsize * 10) / 16;
3288 } else if (aspect_ratio == 1)
3289 vsize = (hsize * 3) / 4;
3290 else if (aspect_ratio == 2)
3291 vsize = (hsize * 4) / 5;
3293 vsize = (hsize * 9) / 16;
3295 /* HDTV hack, part 1 */
3296 if (vrefresh_rate == 60 &&
3297 ((hsize == 1360 && vsize == 765) ||
3298 (hsize == 1368 && vsize == 769))) {
3304 * If this connector already has a mode for this size and refresh
3305 * rate (because it came from detailed or CVT info), use that
3306 * instead. This way we don't have to guess at interlace or
3309 list_for_each_entry(m, &connector->probed_modes, head)
3310 if (m->hdisplay == hsize && m->vdisplay == vsize &&
3311 drm_mode_vrefresh(m) == vrefresh_rate)
3314 /* HDTV hack, part 2 */
3315 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3316 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3320 mode->hdisplay = 1366;
3321 mode->hsync_start = mode->hsync_start - 1;
3322 mode->hsync_end = mode->hsync_end - 1;
3326 /* check whether it can be found in default mode table */
3327 if (drm_monitor_supports_rb(drm_edid)) {
3328 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3333 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3337 /* okay, generate it */
3338 switch (timing_level) {
3342 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3345 mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
3348 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3356 * EDID is delightfully ambiguous about how interlaced modes are to be
3357 * encoded. Our internal representation is of frame height, but some
3358 * HDTV detailed timings are encoded as field height.
3360 * The format list here is from CEA, in frame size. Technically we
3361 * should be checking refresh rate too. Whatever.
3364 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3365 const struct detailed_pixel_timing *pt)
3368 static const struct {
3370 } cea_interlaced[] = {
3380 if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3383 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3384 if ((mode->hdisplay == cea_interlaced[i].w) &&
3385 (mode->vdisplay == cea_interlaced[i].h / 2)) {
3386 mode->vdisplay *= 2;
3387 mode->vsync_start *= 2;
3388 mode->vsync_end *= 2;
3394 mode->flags |= DRM_MODE_FLAG_INTERLACE;
3398 * Create a new mode from an EDID detailed timing section. An EDID detailed
3399 * timing block contains enough info for us to create and return a new struct
3402 static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3403 const struct drm_edid *drm_edid,
3404 const struct detailed_timing *timing,
3407 struct drm_device *dev = connector->dev;
3408 struct drm_display_mode *mode;
3409 const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3410 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3411 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3412 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3413 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3414 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3415 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3416 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3417 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3419 /* ignore tiny modes */
3420 if (hactive < 64 || vactive < 64)
3423 if (pt->misc & DRM_EDID_PT_STEREO) {
3424 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3425 connector->base.id, connector->name);
3428 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3429 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3430 connector->base.id, connector->name);
3433 /* it is incorrect if hsync/vsync width is zero */
3434 if (!hsync_pulse_width || !vsync_pulse_width) {
3435 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3436 connector->base.id, connector->name);
3440 if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3441 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3448 mode = drm_mode_create(dev);
3452 if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3453 mode->clock = 1088 * 10;
3455 mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3457 mode->hdisplay = hactive;
3458 mode->hsync_start = mode->hdisplay + hsync_offset;
3459 mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3460 mode->htotal = mode->hdisplay + hblank;
3462 mode->vdisplay = vactive;
3463 mode->vsync_start = mode->vdisplay + vsync_offset;
3464 mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3465 mode->vtotal = mode->vdisplay + vblank;
3467 /* Some EDIDs have bogus h/vtotal values */
3468 if (mode->hsync_end > mode->htotal)
3469 mode->htotal = mode->hsync_end + 1;
3470 if (mode->vsync_end > mode->vtotal)
3471 mode->vtotal = mode->vsync_end + 1;
3473 drm_mode_do_interlace_quirk(mode, pt);
3475 if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3476 mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3478 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3479 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3480 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3481 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3485 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3486 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3488 if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
3489 mode->width_mm *= 10;
3490 mode->height_mm *= 10;
3493 if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3494 mode->width_mm = drm_edid->edid->width_cm * 10;
3495 mode->height_mm = drm_edid->edid->height_cm * 10;
3498 mode->type = DRM_MODE_TYPE_DRIVER;
3499 drm_mode_set_name(mode);
3505 mode_in_hsync_range(const struct drm_display_mode *mode,
3506 const struct edid *edid, const u8 *t)
3508 int hsync, hmin, hmax;
3511 if (edid->revision >= 4)
3512 hmin += ((t[4] & 0x04) ? 255 : 0);
3514 if (edid->revision >= 4)
3515 hmax += ((t[4] & 0x08) ? 255 : 0);
3516 hsync = drm_mode_hsync(mode);
3518 return (hsync <= hmax && hsync >= hmin);
3522 mode_in_vsync_range(const struct drm_display_mode *mode,
3523 const struct edid *edid, const u8 *t)
3525 int vsync, vmin, vmax;
3528 if (edid->revision >= 4)
3529 vmin += ((t[4] & 0x01) ? 255 : 0);
3531 if (edid->revision >= 4)
3532 vmax += ((t[4] & 0x02) ? 255 : 0);
3533 vsync = drm_mode_vrefresh(mode);
3535 return (vsync <= vmax && vsync >= vmin);
3539 range_pixel_clock(const struct edid *edid, const u8 *t)
3542 if (t[9] == 0 || t[9] == 255)
3545 /* 1.4 with CVT support gives us real precision, yay */
3546 if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3547 return (t[9] * 10000) - ((t[12] >> 2) * 250);
3549 /* 1.3 is pathetic, so fuzz up a bit */
3550 return t[9] * 10000 + 5001;
3553 static bool mode_in_range(const struct drm_display_mode *mode,
3554 const struct drm_edid *drm_edid,
3555 const struct detailed_timing *timing)
3557 const struct edid *edid = drm_edid->edid;
3559 const u8 *t = (const u8 *)timing;
3561 if (!mode_in_hsync_range(mode, edid, t))
3564 if (!mode_in_vsync_range(mode, edid, t))
3567 if ((max_clock = range_pixel_clock(edid, t)))
3568 if (mode->clock > max_clock)
3571 /* 1.4 max horizontal check */
3572 if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3573 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3576 if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3582 static bool valid_inferred_mode(const struct drm_connector *connector,
3583 const struct drm_display_mode *mode)
3585 const struct drm_display_mode *m;
3588 list_for_each_entry(m, &connector->probed_modes, head) {
3589 if (mode->hdisplay == m->hdisplay &&
3590 mode->vdisplay == m->vdisplay &&
3591 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3592 return false; /* duplicated */
3593 if (mode->hdisplay <= m->hdisplay &&
3594 mode->vdisplay <= m->vdisplay)
3600 static int drm_dmt_modes_for_range(struct drm_connector *connector,
3601 const struct drm_edid *drm_edid,
3602 const struct detailed_timing *timing)
3605 struct drm_display_mode *newmode;
3606 struct drm_device *dev = connector->dev;
3608 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3609 if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3610 valid_inferred_mode(connector, drm_dmt_modes + i)) {
3611 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3613 drm_mode_probed_add(connector, newmode);
3622 /* fix up 1366x768 mode from 1368x768;
3623 * GFT/CVT can't express 1366 width which isn't dividable by 8
3625 void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3627 if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3628 mode->hdisplay = 1366;
3629 mode->hsync_start--;
3631 drm_mode_set_name(mode);
3635 static int drm_gtf_modes_for_range(struct drm_connector *connector,
3636 const struct drm_edid *drm_edid,
3637 const struct detailed_timing *timing)
3640 struct drm_display_mode *newmode;
3641 struct drm_device *dev = connector->dev;
3643 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3644 const struct minimode *m = &extra_modes[i];
3646 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3650 drm_mode_fixup_1366x768(newmode);
3651 if (!mode_in_range(newmode, drm_edid, timing) ||
3652 !valid_inferred_mode(connector, newmode)) {
3653 drm_mode_destroy(dev, newmode);
3657 drm_mode_probed_add(connector, newmode);
3664 static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3665 const struct drm_edid *drm_edid,
3666 const struct detailed_timing *timing)
3669 struct drm_display_mode *newmode;
3670 struct drm_device *dev = connector->dev;
3672 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3673 const struct minimode *m = &extra_modes[i];
3675 newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3679 drm_mode_fixup_1366x768(newmode);
3680 if (!mode_in_range(newmode, drm_edid, timing) ||
3681 !valid_inferred_mode(connector, newmode)) {
3682 drm_mode_destroy(dev, newmode);
3686 drm_mode_probed_add(connector, newmode);
3693 static int drm_cvt_modes_for_range(struct drm_connector *connector,
3694 const struct drm_edid *drm_edid,
3695 const struct detailed_timing *timing)
3698 struct drm_display_mode *newmode;
3699 struct drm_device *dev = connector->dev;
3700 bool rb = drm_monitor_supports_rb(drm_edid);
3702 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3703 const struct minimode *m = &extra_modes[i];
3705 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3709 drm_mode_fixup_1366x768(newmode);
3710 if (!mode_in_range(newmode, drm_edid, timing) ||
3711 !valid_inferred_mode(connector, newmode)) {
3712 drm_mode_destroy(dev, newmode);
3716 drm_mode_probed_add(connector, newmode);
3724 do_inferred_modes(const struct detailed_timing *timing, void *c)
3726 struct detailed_mode_closure *closure = c;
3727 const struct detailed_non_pixel *data = &timing->data.other_data;
3728 const struct detailed_data_monitor_range *range = &data->data.range;
3730 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3733 closure->modes += drm_dmt_modes_for_range(closure->connector,
3737 if (closure->drm_edid->edid->revision < 2)
3738 return; /* GTF not defined yet */
3740 switch (range->flags) {
3741 case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3742 closure->modes += drm_gtf2_modes_for_range(closure->connector,
3746 case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3747 closure->modes += drm_gtf_modes_for_range(closure->connector,
3751 case DRM_EDID_CVT_SUPPORT_FLAG:
3752 if (closure->drm_edid->edid->revision < 4)
3755 closure->modes += drm_cvt_modes_for_range(closure->connector,
3759 case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3765 static int add_inferred_modes(struct drm_connector *connector,
3766 const struct drm_edid *drm_edid)
3768 struct detailed_mode_closure closure = {
3769 .connector = connector,
3770 .drm_edid = drm_edid,
3773 if (drm_edid->edid->revision >= 1)
3774 drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
3776 return closure.modes;
3780 drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3782 int i, j, m, modes = 0;
3783 struct drm_display_mode *mode;
3784 const u8 *est = ((const u8 *)timing) + 6;
3786 for (i = 0; i < 6; i++) {
3787 for (j = 7; j >= 0; j--) {
3788 m = (i * 8) + (7 - j);
3789 if (m >= ARRAY_SIZE(est3_modes))
3791 if (est[i] & (1 << j)) {
3792 mode = drm_mode_find_dmt(connector->dev,
3798 drm_mode_probed_add(connector, mode);
3809 do_established_modes(const struct detailed_timing *timing, void *c)
3811 struct detailed_mode_closure *closure = c;
3813 if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3816 closure->modes += drm_est3_modes(closure->connector, timing);
3820 * Get established modes from EDID and add them. Each EDID block contains a
3821 * bitmap of the supported "established modes" list (defined above). Tease them
3822 * out and add them to the global modes list.
3824 static int add_established_modes(struct drm_connector *connector,
3825 const struct drm_edid *drm_edid)
3827 struct drm_device *dev = connector->dev;
3828 const struct edid *edid = drm_edid->edid;
3829 unsigned long est_bits = edid->established_timings.t1 |
3830 (edid->established_timings.t2 << 8) |
3831 ((edid->established_timings.mfg_rsvd & 0x80) << 9);
3833 struct detailed_mode_closure closure = {
3834 .connector = connector,
3835 .drm_edid = drm_edid,
3838 for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3839 if (est_bits & (1<<i)) {
3840 struct drm_display_mode *newmode;
3842 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3844 drm_mode_probed_add(connector, newmode);
3850 if (edid->revision >= 1)
3851 drm_for_each_detailed_block(drm_edid, do_established_modes,
3854 return modes + closure.modes;
3858 do_standard_modes(const struct detailed_timing *timing, void *c)
3860 struct detailed_mode_closure *closure = c;
3861 const struct detailed_non_pixel *data = &timing->data.other_data;
3862 struct drm_connector *connector = closure->connector;
3865 if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3868 for (i = 0; i < 6; i++) {
3869 const struct std_timing *std = &data->data.timings[i];
3870 struct drm_display_mode *newmode;
3872 newmode = drm_mode_std(connector, closure->drm_edid, std);
3874 drm_mode_probed_add(connector, newmode);
3881 * Get standard modes from EDID and add them. Standard modes can be calculated
3882 * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3883 * add them to the list.
3885 static int add_standard_modes(struct drm_connector *connector,
3886 const struct drm_edid *drm_edid)
3889 struct detailed_mode_closure closure = {
3890 .connector = connector,
3891 .drm_edid = drm_edid,
3894 for (i = 0; i < EDID_STD_TIMINGS; i++) {
3895 struct drm_display_mode *newmode;
3897 newmode = drm_mode_std(connector, drm_edid,
3898 &drm_edid->edid->standard_timings[i]);
3900 drm_mode_probed_add(connector, newmode);
3905 if (drm_edid->edid->revision >= 1)
3906 drm_for_each_detailed_block(drm_edid, do_standard_modes,
3909 /* XXX should also look for standard codes in VTB blocks */
3911 return modes + closure.modes;
3914 static int drm_cvt_modes(struct drm_connector *connector,
3915 const struct detailed_timing *timing)
3917 int i, j, modes = 0;
3918 struct drm_display_mode *newmode;
3919 struct drm_device *dev = connector->dev;
3920 const struct cvt_timing *cvt;
3921 const int rates[] = { 60, 85, 75, 60, 50 };
3922 const u8 empty[3] = { 0, 0, 0 };
3924 for (i = 0; i < 4; i++) {
3927 cvt = &(timing->data.other_data.data.cvt[i]);
3929 if (!memcmp(cvt->code, empty, 3))
3932 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3933 switch (cvt->code[1] & 0x0c) {
3934 /* default - because compiler doesn't see that we've enumerated all cases */
3937 width = height * 4 / 3;
3940 width = height * 16 / 9;
3943 width = height * 16 / 10;
3946 width = height * 15 / 9;
3950 for (j = 1; j < 5; j++) {
3951 if (cvt->code[2] & (1 << j)) {
3952 newmode = drm_cvt_mode(dev, width, height,
3956 drm_mode_probed_add(connector, newmode);
3967 do_cvt_mode(const struct detailed_timing *timing, void *c)
3969 struct detailed_mode_closure *closure = c;
3971 if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
3974 closure->modes += drm_cvt_modes(closure->connector, timing);
3978 add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
3980 struct detailed_mode_closure closure = {
3981 .connector = connector,
3982 .drm_edid = drm_edid,
3985 if (drm_edid->edid->revision >= 3)
3986 drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
3988 /* XXX should also look for CVT codes in VTB blocks */
3990 return closure.modes;
3993 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
3994 struct drm_display_mode *mode);
3997 do_detailed_mode(const struct detailed_timing *timing, void *c)
3999 struct detailed_mode_closure *closure = c;
4000 struct drm_display_mode *newmode;
4002 if (!is_detailed_timing_descriptor(timing))
4005 newmode = drm_mode_detailed(closure->connector,
4006 closure->drm_edid, timing,
4011 if (closure->preferred)
4012 newmode->type |= DRM_MODE_TYPE_PREFERRED;
4015 * Detailed modes are limited to 10kHz pixel clock resolution,
4016 * so fix up anything that looks like CEA/HDMI mode, but the clock
4017 * is just slightly off.
4019 fixup_detailed_cea_mode_clock(closure->connector, newmode);
4021 drm_mode_probed_add(closure->connector, newmode);
4023 closure->preferred = false;
4027 * add_detailed_modes - Add modes from detailed timings
4028 * @connector: attached connector
4029 * @drm_edid: EDID block to scan
4030 * @quirks: quirks to apply
4032 static int add_detailed_modes(struct drm_connector *connector,
4033 const struct drm_edid *drm_edid, u32 quirks)
4035 struct detailed_mode_closure closure = {
4036 .connector = connector,
4037 .drm_edid = drm_edid,
4041 if (drm_edid->edid->revision >= 4)
4042 closure.preferred = true; /* first detailed timing is always preferred */
4045 drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4047 drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4049 return closure.modes;
4052 /* CTA-861-H Table 60 - CTA Tag Codes */
4053 #define CTA_DB_AUDIO 1
4054 #define CTA_DB_VIDEO 2
4055 #define CTA_DB_VENDOR 3
4056 #define CTA_DB_SPEAKER 4
4057 #define CTA_DB_EXTENDED_TAG 7
4059 /* CTA-861-H Table 62 - CTA Extended Tag Codes */
4060 #define CTA_EXT_DB_VIDEO_CAP 0
4061 #define CTA_EXT_DB_VENDOR 1
4062 #define CTA_EXT_DB_HDR_STATIC_METADATA 6
4063 #define CTA_EXT_DB_420_VIDEO_DATA 14
4064 #define CTA_EXT_DB_420_VIDEO_CAP_MAP 15
4065 #define CTA_EXT_DB_HF_EEODB 0x78
4066 #define CTA_EXT_DB_HF_SCDB 0x79
4068 #define EDID_BASIC_AUDIO (1 << 6)
4069 #define EDID_CEA_YCRCB444 (1 << 5)
4070 #define EDID_CEA_YCRCB422 (1 << 4)
4071 #define EDID_CEA_VCDB_QS (1 << 6)
4074 * Search EDID for CEA extension block.
4076 * FIXME: Prefer not returning pointers to raw EDID data.
4078 const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid,
4079 int ext_id, int *ext_index)
4081 const u8 *edid_ext = NULL;
4084 /* No EDID or EDID extensions */
4085 if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4088 /* Find CEA extension */
4089 for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4090 edid_ext = drm_edid_extension_block_data(drm_edid, i);
4091 if (edid_block_tag(edid_ext) == ext_id)
4095 if (i >= drm_edid_extension_block_count(drm_edid))
4103 /* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4104 static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4106 const struct displayid_block *block;
4107 struct displayid_iter iter;
4111 /* Look for a top level CEA extension block */
4112 if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index))
4115 /* CEA blocks can also be found embedded in a DisplayID block */
4116 displayid_iter_edid_begin(drm_edid, &iter);
4117 displayid_iter_for_each(block, &iter) {
4118 if (block->tag == DATA_BLOCK_CTA) {
4123 displayid_iter_end(&iter);
4128 static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4130 BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4131 BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4133 if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4134 return &edid_cea_modes_1[vic - 1];
4135 if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4136 return &edid_cea_modes_193[vic - 193];
4140 static u8 cea_num_vics(void)
4142 return 193 + ARRAY_SIZE(edid_cea_modes_193);
4145 static u8 cea_next_vic(u8 vic)
4147 if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4153 * Calculate the alternate clock for the CEA mode
4154 * (60Hz vs. 59.94Hz etc.)
4157 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4159 unsigned int clock = cea_mode->clock;
4161 if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4165 * edid_cea_modes contains the 59.94Hz
4166 * variant for 240 and 480 line modes,
4167 * and the 60Hz variant otherwise.
4169 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4170 clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4172 clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4178 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4181 * For certain VICs the spec allows the vertical
4182 * front porch to vary by one or two lines.
4184 * cea_modes[] stores the variant with the shortest
4185 * vertical front porch. We can adjust the mode to
4186 * get the other variants by simply increasing the
4187 * vertical front porch length.
4189 BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4190 cea_mode_for_vic(9)->vtotal != 262 ||
4191 cea_mode_for_vic(12)->vtotal != 262 ||
4192 cea_mode_for_vic(13)->vtotal != 262 ||
4193 cea_mode_for_vic(23)->vtotal != 312 ||
4194 cea_mode_for_vic(24)->vtotal != 312 ||
4195 cea_mode_for_vic(27)->vtotal != 312 ||
4196 cea_mode_for_vic(28)->vtotal != 312);
4198 if (((vic == 8 || vic == 9 ||
4199 vic == 12 || vic == 13) && mode->vtotal < 263) ||
4200 ((vic == 23 || vic == 24 ||
4201 vic == 27 || vic == 28) && mode->vtotal < 314)) {
4202 mode->vsync_start++;
4212 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4213 unsigned int clock_tolerance)
4215 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4218 if (!to_match->clock)
4221 if (to_match->picture_aspect_ratio)
4222 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4224 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4225 struct drm_display_mode cea_mode;
4226 unsigned int clock1, clock2;
4228 drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4230 /* Check both 60Hz and 59.94Hz */
4231 clock1 = cea_mode.clock;
4232 clock2 = cea_mode_alternate_clock(&cea_mode);
4234 if (abs(to_match->clock - clock1) > clock_tolerance &&
4235 abs(to_match->clock - clock2) > clock_tolerance)
4239 if (drm_mode_match(to_match, &cea_mode, match_flags))
4241 } while (cea_mode_alternate_timings(vic, &cea_mode));
4248 * drm_match_cea_mode - look for a CEA mode matching given mode
4249 * @to_match: display mode
4251 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4254 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4256 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4259 if (!to_match->clock)
4262 if (to_match->picture_aspect_ratio)
4263 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4265 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4266 struct drm_display_mode cea_mode;
4267 unsigned int clock1, clock2;
4269 drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4271 /* Check both 60Hz and 59.94Hz */
4272 clock1 = cea_mode.clock;
4273 clock2 = cea_mode_alternate_clock(&cea_mode);
4275 if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4276 KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4280 if (drm_mode_match(to_match, &cea_mode, match_flags))
4282 } while (cea_mode_alternate_timings(vic, &cea_mode));
4287 EXPORT_SYMBOL(drm_match_cea_mode);
4289 static bool drm_valid_cea_vic(u8 vic)
4291 return cea_mode_for_vic(vic) != NULL;
4294 static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4296 const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4299 return mode->picture_aspect_ratio;
4301 return HDMI_PICTURE_ASPECT_NONE;
4304 static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4306 return edid_4k_modes[video_code].picture_aspect_ratio;
4310 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4314 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4316 return cea_mode_alternate_clock(hdmi_mode);
4319 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4320 unsigned int clock_tolerance)
4322 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4325 if (!to_match->clock)
4328 if (to_match->picture_aspect_ratio)
4329 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4331 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4332 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4333 unsigned int clock1, clock2;
4335 /* Make sure to also match alternate clocks */
4336 clock1 = hdmi_mode->clock;
4337 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4339 if (abs(to_match->clock - clock1) > clock_tolerance &&
4340 abs(to_match->clock - clock2) > clock_tolerance)
4343 if (drm_mode_match(to_match, hdmi_mode, match_flags))
4351 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4352 * @to_match: display mode
4354 * An HDMI mode is one defined in the HDMI vendor specific block.
4356 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4358 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4360 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4363 if (!to_match->clock)
4366 if (to_match->picture_aspect_ratio)
4367 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4369 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4370 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4371 unsigned int clock1, clock2;
4373 /* Make sure to also match alternate clocks */
4374 clock1 = hdmi_mode->clock;
4375 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4377 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4378 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4379 drm_mode_match(to_match, hdmi_mode, match_flags))
4385 static bool drm_valid_hdmi_vic(u8 vic)
4387 return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4390 static int add_alternate_cea_modes(struct drm_connector *connector,
4391 const struct drm_edid *drm_edid)
4393 struct drm_device *dev = connector->dev;
4394 struct drm_display_mode *mode, *tmp;
4398 /* Don't add CTA modes if the CTA extension block is missing */
4399 if (!drm_edid_has_cta_extension(drm_edid))
4403 * Go through all probed modes and create a new mode
4404 * with the alternate clock for certain CEA modes.
4406 list_for_each_entry(mode, &connector->probed_modes, head) {
4407 const struct drm_display_mode *cea_mode = NULL;
4408 struct drm_display_mode *newmode;
4409 u8 vic = drm_match_cea_mode(mode);
4410 unsigned int clock1, clock2;
4412 if (drm_valid_cea_vic(vic)) {
4413 cea_mode = cea_mode_for_vic(vic);
4414 clock2 = cea_mode_alternate_clock(cea_mode);
4416 vic = drm_match_hdmi_mode(mode);
4417 if (drm_valid_hdmi_vic(vic)) {
4418 cea_mode = &edid_4k_modes[vic];
4419 clock2 = hdmi_mode_alternate_clock(cea_mode);
4426 clock1 = cea_mode->clock;
4428 if (clock1 == clock2)
4431 if (mode->clock != clock1 && mode->clock != clock2)
4434 newmode = drm_mode_duplicate(dev, cea_mode);
4438 /* Carry over the stereo flags */
4439 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4442 * The current mode could be either variant. Make
4443 * sure to pick the "other" clock for the new mode.
4445 if (mode->clock != clock1)
4446 newmode->clock = clock1;
4448 newmode->clock = clock2;
4450 list_add_tail(&newmode->head, &list);
4453 list_for_each_entry_safe(mode, tmp, &list, head) {
4454 list_del(&mode->head);
4455 drm_mode_probed_add(connector, mode);
4462 static u8 svd_to_vic(u8 svd)
4464 /* 0-6 bit vic, 7th bit native mode indicator */
4465 if ((svd >= 1 && svd <= 64) || (svd >= 129 && svd <= 192))
4471 static struct drm_display_mode *
4472 drm_display_mode_from_vic_index(struct drm_connector *connector,
4473 const u8 *video_db, u8 video_len,
4476 struct drm_device *dev = connector->dev;
4477 struct drm_display_mode *newmode;
4480 if (video_db == NULL || video_index >= video_len)
4483 /* CEA modes are numbered 1..127 */
4484 vic = svd_to_vic(video_db[video_index]);
4485 if (!drm_valid_cea_vic(vic))
4488 newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4496 * do_y420vdb_modes - Parse YCBCR 420 only modes
4497 * @connector: connector corresponding to the HDMI sink
4498 * @svds: start of the data block of CEA YCBCR 420 VDB
4499 * @len: length of the CEA YCBCR 420 VDB
4501 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4502 * which contains modes which can be supported in YCBCR 420
4503 * output format only.
4505 static int do_y420vdb_modes(struct drm_connector *connector,
4506 const u8 *svds, u8 svds_len)
4509 struct drm_device *dev = connector->dev;
4510 struct drm_display_info *info = &connector->display_info;
4511 struct drm_hdmi_info *hdmi = &info->hdmi;
4513 for (i = 0; i < svds_len; i++) {
4514 u8 vic = svd_to_vic(svds[i]);
4515 struct drm_display_mode *newmode;
4517 if (!drm_valid_cea_vic(vic))
4520 newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4523 bitmap_set(hdmi->y420_vdb_modes, vic, 1);
4524 drm_mode_probed_add(connector, newmode);
4529 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
4534 * drm_add_cmdb_modes - Add a YCBCR 420 mode into bitmap
4535 * @connector: connector corresponding to the HDMI sink
4536 * @vic: CEA vic for the video mode to be added in the map
4538 * Makes an entry for a videomode in the YCBCR 420 bitmap
4541 drm_add_cmdb_modes(struct drm_connector *connector, u8 svd)
4543 u8 vic = svd_to_vic(svd);
4544 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
4546 if (!drm_valid_cea_vic(vic))
4549 bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
4553 * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4555 * @video_code: CEA VIC of the mode
4557 * Creates a new mode matching the specified CEA VIC.
4559 * Returns: A new drm_display_mode on success or NULL on failure
4561 struct drm_display_mode *
4562 drm_display_mode_from_cea_vic(struct drm_device *dev,
4565 const struct drm_display_mode *cea_mode;
4566 struct drm_display_mode *newmode;
4568 cea_mode = cea_mode_for_vic(video_code);
4572 newmode = drm_mode_duplicate(dev, cea_mode);
4578 EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4581 do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
4584 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
4586 for (i = 0; i < len; i++) {
4587 struct drm_display_mode *mode;
4589 mode = drm_display_mode_from_vic_index(connector, db, len, i);
4592 * YCBCR420 capability block contains a bitmap which
4593 * gives the index of CEA modes from CEA VDB, which
4594 * can support YCBCR 420 sampling output also (apart
4595 * from RGB/YCBCR444 etc).
4596 * For example, if the bit 0 in bitmap is set,
4597 * first mode in VDB can support YCBCR420 output too.
4598 * Add YCBCR420 modes only if sink is HDMI 2.0 capable.
4600 if (i < 64 && hdmi->y420_cmdb_map & (1ULL << i))
4601 drm_add_cmdb_modes(connector, db[i]);
4603 drm_mode_probed_add(connector, mode);
4611 struct stereo_mandatory_mode {
4612 int width, height, vrefresh;
4616 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4617 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4618 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4620 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4622 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4623 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4624 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4625 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4626 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4630 stereo_match_mandatory(const struct drm_display_mode *mode,
4631 const struct stereo_mandatory_mode *stereo_mode)
4633 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4635 return mode->hdisplay == stereo_mode->width &&
4636 mode->vdisplay == stereo_mode->height &&
4637 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4638 drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4641 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4643 struct drm_device *dev = connector->dev;
4644 const struct drm_display_mode *mode;
4645 struct list_head stereo_modes;
4648 INIT_LIST_HEAD(&stereo_modes);
4650 list_for_each_entry(mode, &connector->probed_modes, head) {
4651 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4652 const struct stereo_mandatory_mode *mandatory;
4653 struct drm_display_mode *new_mode;
4655 if (!stereo_match_mandatory(mode,
4656 &stereo_mandatory_modes[i]))
4659 mandatory = &stereo_mandatory_modes[i];
4660 new_mode = drm_mode_duplicate(dev, mode);
4664 new_mode->flags |= mandatory->flags;
4665 list_add_tail(&new_mode->head, &stereo_modes);
4670 list_splice_tail(&stereo_modes, &connector->probed_modes);
4675 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4677 struct drm_device *dev = connector->dev;
4678 struct drm_display_mode *newmode;
4680 if (!drm_valid_hdmi_vic(vic)) {
4681 drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4682 connector->base.id, connector->name, vic);
4686 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4690 drm_mode_probed_add(connector, newmode);
4695 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4696 const u8 *video_db, u8 video_len, u8 video_index)
4698 struct drm_display_mode *newmode;
4701 if (structure & (1 << 0)) {
4702 newmode = drm_display_mode_from_vic_index(connector, video_db,
4706 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4707 drm_mode_probed_add(connector, newmode);
4711 if (structure & (1 << 6)) {
4712 newmode = drm_display_mode_from_vic_index(connector, video_db,
4716 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4717 drm_mode_probed_add(connector, newmode);
4721 if (structure & (1 << 8)) {
4722 newmode = drm_display_mode_from_vic_index(connector, video_db,
4726 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4727 drm_mode_probed_add(connector, newmode);
4736 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4737 * @connector: connector corresponding to the HDMI sink
4738 * @db: start of the CEA vendor specific block
4739 * @len: length of the CEA block payload, ie. one can access up to db[len]
4741 * Parses the HDMI VSDB looking for modes to add to @connector. This function
4742 * also adds the stereo 3d modes when applicable.
4745 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
4746 const u8 *video_db, u8 video_len)
4748 struct drm_display_info *info = &connector->display_info;
4749 int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4750 u8 vic_len, hdmi_3d_len = 0;
4757 /* no HDMI_Video_Present */
4758 if (!(db[8] & (1 << 5)))
4761 /* Latency_Fields_Present */
4762 if (db[8] & (1 << 7))
4765 /* I_Latency_Fields_Present */
4766 if (db[8] & (1 << 6))
4769 /* the declared length is not long enough for the 2 first bytes
4770 * of additional video format capabilities */
4771 if (len < (8 + offset + 2))
4776 if (db[8 + offset] & (1 << 7)) {
4777 modes += add_hdmi_mandatory_stereo_modes(connector);
4779 /* 3D_Multi_present */
4780 multi_present = (db[8 + offset] & 0x60) >> 5;
4784 vic_len = db[8 + offset] >> 5;
4785 hdmi_3d_len = db[8 + offset] & 0x1f;
4787 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4790 vic = db[9 + offset + i];
4791 modes += add_hdmi_mode(connector, vic);
4793 offset += 1 + vic_len;
4795 if (multi_present == 1)
4797 else if (multi_present == 2)
4802 if (len < (8 + offset + hdmi_3d_len - 1))
4805 if (hdmi_3d_len < multi_len)
4808 if (multi_present == 1 || multi_present == 2) {
4809 /* 3D_Structure_ALL */
4810 structure_all = (db[8 + offset] << 8) | db[9 + offset];
4812 /* check if 3D_MASK is present */
4813 if (multi_present == 2)
4814 mask = (db[10 + offset] << 8) | db[11 + offset];
4818 for (i = 0; i < 16; i++) {
4819 if (mask & (1 << i))
4820 modes += add_3d_struct_modes(connector,
4827 offset += multi_len;
4829 for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4831 struct drm_display_mode *newmode = NULL;
4832 unsigned int newflag = 0;
4833 bool detail_present;
4835 detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4837 if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4840 /* 2D_VIC_order_X */
4841 vic_index = db[8 + offset + i] >> 4;
4843 /* 3D_Structure_X */
4844 switch (db[8 + offset + i] & 0x0f) {
4846 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4849 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4853 if ((db[9 + offset + i] >> 4) == 1)
4854 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4859 newmode = drm_display_mode_from_vic_index(connector,
4865 newmode->flags |= newflag;
4866 drm_mode_probed_add(connector, newmode);
4877 info->has_hdmi_infoframe = true;
4882 cea_revision(const u8 *cea)
4885 * FIXME is this correct for the DispID variant?
4886 * The DispID spec doesn't really specify whether
4887 * this is the revision of the CEA extension or
4888 * the DispID CEA data block. And the only value
4889 * given as an example is 0.
4895 * CTA Data Block iterator.
4897 * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4900 * struct cea_db *db:
4901 * struct cea_db_iter iter;
4903 * cea_db_iter_edid_begin(edid, &iter);
4904 * cea_db_iter_for_each(db, &iter) {
4905 * // do stuff with db
4907 * cea_db_iter_end(&iter);
4909 struct cea_db_iter {
4910 struct drm_edid_iter edid_iter;
4911 struct displayid_iter displayid_iter;
4913 /* Current Data Block Collection. */
4914 const u8 *collection;
4916 /* Current Data Block index in current collection. */
4919 /* End index in current collection. */
4923 /* CTA-861-H section 7.4 CTA Data BLock Collection */
4929 static int cea_db_tag(const struct cea_db *db)
4931 return db->tag_length >> 5;
4934 static int cea_db_payload_len(const void *_db)
4936 /* FIXME: Transition to passing struct cea_db * everywhere. */
4937 const struct cea_db *db = _db;
4939 return db->tag_length & 0x1f;
4942 static const void *cea_db_data(const struct cea_db *db)
4947 static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
4949 return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4950 cea_db_payload_len(db) >= 1 &&
4954 static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
4956 const u8 *data = cea_db_data(db);
4958 return cea_db_tag(db) == CTA_DB_VENDOR &&
4959 cea_db_payload_len(db) >= 3 &&
4960 oui(data[2], data[1], data[0]) == vendor_oui;
4963 static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
4964 struct cea_db_iter *iter)
4966 memset(iter, 0, sizeof(*iter));
4968 drm_edid_iter_begin(drm_edid, &iter->edid_iter);
4969 displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
4972 static const struct cea_db *
4973 __cea_db_iter_current_block(const struct cea_db_iter *iter)
4975 const struct cea_db *db;
4977 if (!iter->collection)
4980 db = (const struct cea_db *)&iter->collection[iter->index];
4982 if (iter->index + sizeof(*db) <= iter->end &&
4983 iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
4991 * - CTA-861-H section 7.3.3 CTA Extension Version 3
4993 static int cea_db_collection_size(const u8 *cta)
4997 if (d < 4 || d > 127)
5005 * - VESA E-EDID v1.4
5006 * - CTA-861-H section 7.3.3 CTA Extension Version 3
5008 static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5012 drm_edid_iter_for_each(ext, &iter->edid_iter) {
5015 /* Only support CTA Extension revision 3+ */
5016 if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5019 size = cea_db_collection_size(ext);
5024 iter->end = iter->index + size;
5034 * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5035 * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5037 * Note that the above do not specify any connection between DisplayID Data
5038 * Block revision and CTA Extension versions.
5040 static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5042 const struct displayid_block *block;
5044 displayid_iter_for_each(block, &iter->displayid_iter) {
5045 if (block->tag != DATA_BLOCK_CTA)
5049 * The displayid iterator has already verified the block bounds
5050 * in displayid_iter_block().
5052 iter->index = sizeof(*block);
5053 iter->end = iter->index + block->num_bytes;
5061 static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5063 const struct cea_db *db;
5065 if (iter->collection) {
5066 /* Current collection should always be valid. */
5067 db = __cea_db_iter_current_block(iter);
5069 iter->collection = NULL;
5073 /* Next block in CTA Data Block Collection */
5074 iter->index += sizeof(*db) + cea_db_payload_len(db);
5076 db = __cea_db_iter_current_block(iter);
5083 * Find the next CTA Data Block Collection. First iterate all
5084 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5086 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5087 * Extension, it's recommended that DisplayID extensions are
5088 * exposed after all of the CTA Extensions.
5090 iter->collection = __cea_db_iter_edid_next(iter);
5091 if (!iter->collection)
5092 iter->collection = __cea_db_iter_displayid_next(iter);
5094 if (!iter->collection)
5097 db = __cea_db_iter_current_block(iter);
5103 #define cea_db_iter_for_each(__db, __iter) \
5104 while (((__db) = __cea_db_iter_next(__iter)))
5106 static void cea_db_iter_end(struct cea_db_iter *iter)
5108 displayid_iter_end(&iter->displayid_iter);
5109 drm_edid_iter_end(&iter->edid_iter);
5111 memset(iter, 0, sizeof(*iter));
5114 static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5116 return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5117 cea_db_payload_len(db) >= 5;
5120 static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5122 return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5123 cea_db_payload_len(db) >= 7;
5126 static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5128 return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5129 cea_db_payload_len(db) >= 2;
5132 static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5134 return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5135 cea_db_payload_len(db) == 21;
5138 static bool cea_db_is_vcdb(const struct cea_db *db)
5140 return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5141 cea_db_payload_len(db) == 2;
5144 static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5146 return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5147 cea_db_payload_len(db) >= 7;
5150 static bool cea_db_is_y420cmdb(const struct cea_db *db)
5152 return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5155 static bool cea_db_is_y420vdb(const struct cea_db *db)
5157 return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5160 static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5162 return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5163 cea_db_payload_len(db) >= 3;
5167 * Get the HF-EEODB override extension block count from EDID.
5169 * The passed in EDID may be partially read, as long as it has at least two
5170 * blocks (base block and one extension block) if EDID extension count is > 0.
5172 * Note that this is *not* how you should parse CTA Data Blocks in general; this
5173 * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5174 * iterators instead.
5177 * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5179 static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5183 /* No extensions according to base block, no HF-EEODB. */
5184 if (!edid_extension_block_count(edid))
5187 /* HF-EEODB is always in the first EDID extension block only */
5188 cta = edid_extension_block_data(edid, 0);
5189 if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5192 /* Need to have the data block collection, and at least 3 bytes. */
5193 if (cea_db_collection_size(cta) < 3)
5197 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5198 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5199 * through 6 of Block 1 of the E-EDID.
5201 if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5207 static void drm_parse_y420cmdb_bitmap(struct drm_connector *connector,
5210 struct drm_display_info *info = &connector->display_info;
5211 struct drm_hdmi_info *hdmi = &info->hdmi;
5212 u8 map_len = cea_db_payload_len(db) - 1;
5217 /* All CEA modes support ycbcr420 sampling also.*/
5218 hdmi->y420_cmdb_map = U64_MAX;
5219 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5224 * This map indicates which of the existing CEA block modes
5225 * from VDB can support YCBCR420 output too. So if bit=0 is
5226 * set, first mode from VDB can support YCBCR420 output too.
5227 * We will parse and keep this map, before parsing VDB itself
5228 * to avoid going through the same block again and again.
5230 * Spec is not clear about max possible size of this block.
5231 * Clamping max bitmap block size at 8 bytes. Every byte can
5232 * address 8 CEA modes, in this way this map can address
5233 * 8*8 = first 64 SVDs.
5235 if (WARN_ON_ONCE(map_len > 8))
5238 for (count = 0; count < map_len; count++)
5239 map |= (u64)db[2 + count] << (8 * count);
5242 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5244 hdmi->y420_cmdb_map = map;
5247 static int add_cea_modes(struct drm_connector *connector,
5248 const struct drm_edid *drm_edid)
5250 const struct cea_db *db;
5251 struct cea_db_iter iter;
5254 cea_db_iter_edid_begin(drm_edid, &iter);
5255 cea_db_iter_for_each(db, &iter) {
5256 const u8 *hdmi = NULL, *video = NULL;
5257 u8 hdmi_len = 0, video_len = 0;
5259 if (cea_db_tag(db) == CTA_DB_VIDEO) {
5260 video = cea_db_data(db);
5261 video_len = cea_db_payload_len(db);
5262 modes += do_cea_modes(connector, video, video_len);
5263 } else if (cea_db_is_hdmi_vsdb(db)) {
5264 /* FIXME: Switch to use cea_db_data() */
5265 hdmi = (const u8 *)db;
5266 hdmi_len = cea_db_payload_len(db);
5267 } else if (cea_db_is_y420vdb(db)) {
5268 const u8 *vdb420 = cea_db_data(db) + 1;
5270 /* Add 4:2:0(only) modes present in EDID */
5271 modes += do_y420vdb_modes(connector, vdb420,
5272 cea_db_payload_len(db) - 1);
5276 * We parse the HDMI VSDB after having added the cea modes as we
5277 * will be patching their flags when the sink supports stereo
5281 modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len,
5284 cea_db_iter_end(&iter);
5289 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5290 struct drm_display_mode *mode)
5292 const struct drm_display_mode *cea_mode;
5293 int clock1, clock2, clock;
5298 * allow 5kHz clock difference either way to account for
5299 * the 10kHz clock resolution limit of detailed timings.
5301 vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5302 if (drm_valid_cea_vic(vic)) {
5304 cea_mode = cea_mode_for_vic(vic);
5305 clock1 = cea_mode->clock;
5306 clock2 = cea_mode_alternate_clock(cea_mode);
5308 vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5309 if (drm_valid_hdmi_vic(vic)) {
5311 cea_mode = &edid_4k_modes[vic];
5312 clock1 = cea_mode->clock;
5313 clock2 = hdmi_mode_alternate_clock(cea_mode);
5319 /* pick whichever is closest */
5320 if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5325 if (mode->clock == clock)
5328 drm_dbg_kms(connector->dev,
5329 "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5330 connector->base.id, connector->name,
5331 type, vic, mode->clock, clock);
5332 mode->clock = clock;
5335 static void drm_calculate_luminance_range(struct drm_connector *connector)
5337 struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5338 struct drm_luminance_range_info *luminance_range =
5339 &connector->display_info.luminance_range;
5340 static const u8 pre_computed_values[] = {
5341 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5342 71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5344 u32 max_avg, min_cll, max, min, q, r;
5346 if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5349 max_avg = hdr_metadata->max_fall;
5350 min_cll = hdr_metadata->min_cll;
5353 * From the specification (CTA-861-G), for calculating the maximum
5354 * luminance we need to use:
5355 * Luminance = 50*2**(CV/32)
5356 * Where CV is a one-byte value.
5357 * For calculating this expression we may need float point precision;
5358 * to avoid this complexity level, we take advantage that CV is divided
5359 * by a constant. From the Euclids division algorithm, we know that CV
5360 * can be written as: CV = 32*q + r. Next, we replace CV in the
5361 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5362 * need to pre-compute the value of r/32. For pre-computing the values
5363 * We just used the following Ruby line:
5364 * (0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5365 * The results of the above expressions can be verified at
5366 * pre_computed_values.
5370 max = (1 << q) * pre_computed_values[r];
5372 /* min luminance: maxLum * (CV/255)^2 / 100 */
5373 q = DIV_ROUND_CLOSEST(min_cll, 255);
5374 min = max * DIV_ROUND_CLOSEST((q * q), 100);
5376 luminance_range->min_luminance = min;
5377 luminance_range->max_luminance = max;
5380 static uint8_t eotf_supported(const u8 *edid_ext)
5382 return edid_ext[2] &
5383 (BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5384 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5385 BIT(HDMI_EOTF_SMPTE_ST2084) |
5386 BIT(HDMI_EOTF_BT_2100_HLG));
5389 static uint8_t hdr_metadata_type(const u8 *edid_ext)
5391 return edid_ext[3] &
5392 BIT(HDMI_STATIC_METADATA_TYPE1);
5396 drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5400 len = cea_db_payload_len(db);
5402 connector->hdr_sink_metadata.hdmi_type1.eotf =
5404 connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5405 hdr_metadata_type(db);
5408 connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5410 connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5412 connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5414 /* Calculate only when all values are available */
5415 drm_calculate_luminance_range(connector);
5420 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5422 u8 len = cea_db_payload_len(db);
5424 if (len >= 6 && (db[6] & (1 << 7)))
5425 connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5427 connector->latency_present[0] = db[8] >> 7;
5428 connector->latency_present[1] = (db[8] >> 6) & 1;
5431 connector->video_latency[0] = db[9];
5433 connector->audio_latency[0] = db[10];
5435 connector->video_latency[1] = db[11];
5437 connector->audio_latency[1] = db[12];
5439 drm_dbg_kms(connector->dev,
5440 "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5441 connector->base.id, connector->name,
5442 connector->latency_present[0], connector->latency_present[1],
5443 connector->video_latency[0], connector->video_latency[1],
5444 connector->audio_latency[0], connector->audio_latency[1]);
5448 monitor_name(const struct detailed_timing *timing, void *data)
5450 const char **res = data;
5452 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5455 *res = timing->data.other_data.data.str.str;
5458 static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5460 const char *edid_name = NULL;
5463 if (!drm_edid || !name)
5466 drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5467 for (mnl = 0; edid_name && mnl < 13; mnl++) {
5468 if (edid_name[mnl] == 0x0a)
5471 name[mnl] = edid_name[mnl];
5478 * drm_edid_get_monitor_name - fetch the monitor name from the edid
5479 * @edid: monitor EDID information
5480 * @name: pointer to a character array to hold the name of the monitor
5481 * @bufsize: The size of the name buffer (should be at least 14 chars.)
5484 void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5486 int name_length = 0;
5493 struct drm_edid drm_edid = {
5495 .size = edid_size(edid),
5498 name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5499 memcpy(name, buf, name_length);
5502 name[name_length] = '\0';
5504 EXPORT_SYMBOL(drm_edid_get_monitor_name);
5506 static void clear_eld(struct drm_connector *connector)
5508 memset(connector->eld, 0, sizeof(connector->eld));
5510 connector->latency_present[0] = false;
5511 connector->latency_present[1] = false;
5512 connector->video_latency[0] = 0;
5513 connector->audio_latency[0] = 0;
5514 connector->video_latency[1] = 0;
5515 connector->audio_latency[1] = 0;
5519 * drm_edid_to_eld - build ELD from EDID
5520 * @connector: connector corresponding to the HDMI/DP sink
5521 * @drm_edid: EDID to parse
5523 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5524 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5526 static void drm_edid_to_eld(struct drm_connector *connector,
5527 const struct drm_edid *drm_edid)
5529 const struct drm_display_info *info = &connector->display_info;
5530 const struct cea_db *db;
5531 struct cea_db_iter iter;
5532 uint8_t *eld = connector->eld;
5533 int total_sad_count = 0;
5536 clear_eld(connector);
5541 mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5542 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5543 connector->base.id, connector->name,
5544 &eld[DRM_ELD_MONITOR_NAME_STRING]);
5546 eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5547 eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5549 eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5551 eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5552 eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5553 eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5554 eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5556 cea_db_iter_edid_begin(drm_edid, &iter);
5557 cea_db_iter_for_each(db, &iter) {
5558 const u8 *data = cea_db_data(db);
5559 int len = cea_db_payload_len(db);
5562 switch (cea_db_tag(db)) {
5564 /* Audio Data Block, contains SADs */
5565 sad_count = min(len / 3, 15 - total_sad_count);
5567 memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5568 data, sad_count * 3);
5569 total_sad_count += sad_count;
5571 case CTA_DB_SPEAKER:
5572 /* Speaker Allocation Data Block */
5574 eld[DRM_ELD_SPEAKER] = data[0];
5577 /* HDMI Vendor-Specific Data Block */
5578 if (cea_db_is_hdmi_vsdb(db))
5579 drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5585 cea_db_iter_end(&iter);
5587 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5589 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5590 connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5591 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5593 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5595 eld[DRM_ELD_BASELINE_ELD_LEN] =
5596 DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5598 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5599 connector->base.id, connector->name,
5600 drm_eld_size(eld), total_sad_count);
5603 static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5604 struct cea_sad **sads)
5606 const struct cea_db *db;
5607 struct cea_db_iter iter;
5610 cea_db_iter_edid_begin(drm_edid, &iter);
5611 cea_db_iter_for_each(db, &iter) {
5612 if (cea_db_tag(db) == CTA_DB_AUDIO) {
5615 count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5616 *sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
5619 for (j = 0; j < count; j++) {
5620 const u8 *sad = &db->data[j * 3];
5622 (*sads)[j].format = (sad[0] & 0x78) >> 3;
5623 (*sads)[j].channels = sad[0] & 0x7;
5624 (*sads)[j].freq = sad[1] & 0x7F;
5625 (*sads)[j].byte2 = sad[2];
5630 cea_db_iter_end(&iter);
5632 DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5638 * drm_edid_to_sad - extracts SADs from EDID
5639 * @edid: EDID to parse
5640 * @sads: pointer that will be set to the extracted SADs
5642 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5644 * Note: The returned pointer needs to be freed using kfree().
5646 * Return: The number of found SADs or negative number on error.
5648 int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5650 struct drm_edid drm_edid;
5652 return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5654 EXPORT_SYMBOL(drm_edid_to_sad);
5656 static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5659 const struct cea_db *db;
5660 struct cea_db_iter iter;
5663 cea_db_iter_edid_begin(drm_edid, &iter);
5664 cea_db_iter_for_each(db, &iter) {
5665 if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5666 cea_db_payload_len(db) == 3) {
5667 *sadb = kmemdup(db->data, cea_db_payload_len(db),
5671 count = cea_db_payload_len(db);
5675 cea_db_iter_end(&iter);
5677 DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5683 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5684 * @edid: EDID to parse
5685 * @sadb: pointer to the speaker block
5687 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5689 * Note: The returned pointer needs to be freed using kfree().
5691 * Return: The number of found Speaker Allocation Blocks or negative number on
5694 int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5696 struct drm_edid drm_edid;
5698 return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5701 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5704 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5705 * @connector: connector associated with the HDMI/DP sink
5706 * @mode: the display mode
5708 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5709 * the sink doesn't support audio or video.
5711 int drm_av_sync_delay(struct drm_connector *connector,
5712 const struct drm_display_mode *mode)
5714 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5717 if (!connector->latency_present[0])
5719 if (!connector->latency_present[1])
5722 a = connector->audio_latency[i];
5723 v = connector->video_latency[i];
5726 * HDMI/DP sink doesn't support audio or video?
5728 if (a == 255 || v == 255)
5732 * Convert raw EDID values to millisecond.
5733 * Treat unknown latency as 0ms.
5736 a = min(2 * (a - 1), 500);
5738 v = min(2 * (v - 1), 500);
5740 return max(v - a, 0);
5742 EXPORT_SYMBOL(drm_av_sync_delay);
5744 static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5746 const struct cea_db *db;
5747 struct cea_db_iter iter;
5751 * Because HDMI identifier is in Vendor Specific Block,
5752 * search it from all data blocks of CEA extension.
5754 cea_db_iter_edid_begin(drm_edid, &iter);
5755 cea_db_iter_for_each(db, &iter) {
5756 if (cea_db_is_hdmi_vsdb(db)) {
5761 cea_db_iter_end(&iter);
5767 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5768 * @edid: monitor EDID information
5770 * Parse the CEA extension according to CEA-861-B.
5772 * Drivers that have added the modes parsed from EDID to drm_display_info
5773 * should use &drm_display_info.is_hdmi instead of calling this function.
5775 * Return: True if the monitor is HDMI, false if not or unknown.
5777 bool drm_detect_hdmi_monitor(const struct edid *edid)
5779 struct drm_edid drm_edid;
5781 return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5783 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5785 static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5787 struct drm_edid_iter edid_iter;
5788 const struct cea_db *db;
5789 struct cea_db_iter iter;
5791 bool has_audio = false;
5793 drm_edid_iter_begin(drm_edid, &edid_iter);
5794 drm_edid_iter_for_each(edid_ext, &edid_iter) {
5795 if (edid_ext[0] == CEA_EXT) {
5796 has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5801 drm_edid_iter_end(&edid_iter);
5804 DRM_DEBUG_KMS("Monitor has basic audio support\n");
5808 cea_db_iter_edid_begin(drm_edid, &iter);
5809 cea_db_iter_for_each(db, &iter) {
5810 if (cea_db_tag(db) == CTA_DB_AUDIO) {
5811 const u8 *data = cea_db_data(db);
5814 for (i = 0; i < cea_db_payload_len(db); i += 3)
5815 DRM_DEBUG_KMS("CEA audio format %d\n",
5816 (data[i] >> 3) & 0xf);
5821 cea_db_iter_end(&iter);
5828 * drm_detect_monitor_audio - check monitor audio capability
5829 * @edid: EDID block to scan
5831 * Monitor should have CEA extension block.
5832 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5833 * audio' only. If there is any audio extension block and supported
5834 * audio format, assume at least 'basic audio' support, even if 'basic
5835 * audio' is not defined in EDID.
5837 * Return: True if the monitor supports audio, false otherwise.
5839 bool drm_detect_monitor_audio(const struct edid *edid)
5841 struct drm_edid drm_edid;
5843 return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5845 EXPORT_SYMBOL(drm_detect_monitor_audio);
5849 * drm_default_rgb_quant_range - default RGB quantization range
5850 * @mode: display mode
5852 * Determine the default RGB quantization range for the mode,
5853 * as specified in CEA-861.
5855 * Return: The default RGB quantization range for the mode
5857 enum hdmi_quantization_range
5858 drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5860 /* All CEA modes other than VIC 1 use limited quantization range. */
5861 return drm_match_cea_mode(mode) > 1 ?
5862 HDMI_QUANTIZATION_RANGE_LIMITED :
5863 HDMI_QUANTIZATION_RANGE_FULL;
5865 EXPORT_SYMBOL(drm_default_rgb_quant_range);
5867 static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
5869 struct drm_display_info *info = &connector->display_info;
5871 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
5872 connector->base.id, connector->name, db[2]);
5874 if (db[2] & EDID_CEA_VCDB_QS)
5875 info->rgb_quant_range_selectable = true;
5879 void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
5881 switch (max_frl_rate) {
5884 *max_rate_per_lane = 3;
5888 *max_rate_per_lane = 6;
5892 *max_rate_per_lane = 6;
5896 *max_rate_per_lane = 8;
5900 *max_rate_per_lane = 10;
5904 *max_rate_per_lane = 12;
5909 *max_rate_per_lane = 0;
5913 static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
5917 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
5919 dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
5920 hdmi->y420_dc_modes = dc_mask;
5923 static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
5926 hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
5928 if (!hdmi_dsc->v_1p2)
5931 hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
5932 hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
5934 if (hf_scds[11] & DRM_EDID_DSC_16BPC)
5935 hdmi_dsc->bpc_supported = 16;
5936 else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
5937 hdmi_dsc->bpc_supported = 12;
5938 else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
5939 hdmi_dsc->bpc_supported = 10;
5941 /* Supports min 8 BPC if DSC 1.2 is supported*/
5942 hdmi_dsc->bpc_supported = 8;
5944 if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
5946 u8 dsc_max_frl_rate;
5948 dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
5949 drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
5950 &hdmi_dsc->max_frl_rate_per_lane);
5952 dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
5954 switch (dsc_max_slices) {
5956 hdmi_dsc->max_slices = 1;
5957 hdmi_dsc->clk_per_slice = 340;
5960 hdmi_dsc->max_slices = 2;
5961 hdmi_dsc->clk_per_slice = 340;
5964 hdmi_dsc->max_slices = 4;
5965 hdmi_dsc->clk_per_slice = 340;
5968 hdmi_dsc->max_slices = 8;
5969 hdmi_dsc->clk_per_slice = 340;
5972 hdmi_dsc->max_slices = 8;
5973 hdmi_dsc->clk_per_slice = 400;
5976 hdmi_dsc->max_slices = 12;
5977 hdmi_dsc->clk_per_slice = 400;
5980 hdmi_dsc->max_slices = 16;
5981 hdmi_dsc->clk_per_slice = 400;
5985 hdmi_dsc->max_slices = 0;
5986 hdmi_dsc->clk_per_slice = 0;
5990 if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
5991 hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
5994 /* Sink Capability Data Structure */
5995 static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
5998 struct drm_display_info *display = &connector->display_info;
5999 struct drm_hdmi_info *hdmi = &display->hdmi;
6000 struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6001 int max_tmds_clock = 0;
6002 u8 max_frl_rate = 0;
6003 bool dsc_support = false;
6005 display->has_hdmi_infoframe = true;
6007 if (hf_scds[6] & 0x80) {
6008 hdmi->scdc.supported = true;
6009 if (hf_scds[6] & 0x40)
6010 hdmi->scdc.read_request = true;
6014 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6015 * And as per the spec, three factors confirm this:
6016 * * Availability of a HF-VSDB block in EDID (check)
6017 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6018 * * SCDC support available (let's check)
6019 * Lets check it out.
6023 struct drm_scdc *scdc = &hdmi->scdc;
6025 /* max clock is 5000 KHz times block value */
6026 max_tmds_clock = hf_scds[5] * 5000;
6028 if (max_tmds_clock > 340000) {
6029 display->max_tmds_clock = max_tmds_clock;
6032 if (scdc->supported) {
6033 scdc->scrambling.supported = true;
6035 /* Few sinks support scrambling for clocks < 340M */
6036 if ((hf_scds[6] & 0x8))
6037 scdc->scrambling.low_rates = true;
6042 max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6043 drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6044 &hdmi->max_frl_rate_per_lane);
6047 drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6049 if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6050 drm_parse_dsc_info(hdmi_dsc, hf_scds);
6054 drm_dbg_kms(connector->dev,
6055 "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6056 connector->base.id, connector->name,
6057 max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6060 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6063 struct drm_display_info *info = &connector->display_info;
6064 unsigned int dc_bpc = 0;
6066 /* HDMI supports at least 8 bpc */
6069 if (cea_db_payload_len(hdmi) < 6)
6072 if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6074 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6075 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6076 connector->base.id, connector->name);
6079 if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6081 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6082 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6083 connector->base.id, connector->name);
6086 if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6088 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6089 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6090 connector->base.id, connector->name);
6094 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6095 connector->base.id, connector->name);
6099 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6100 connector->base.id, connector->name, dc_bpc);
6103 /* YCRCB444 is optional according to spec. */
6104 if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6105 info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6106 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6107 connector->base.id, connector->name);
6111 * Spec says that if any deep color mode is supported at all,
6112 * then deep color 36 bit must be supported.
6114 if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6115 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6116 connector->base.id, connector->name);
6121 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6123 struct drm_display_info *info = &connector->display_info;
6124 u8 len = cea_db_payload_len(db);
6126 info->is_hdmi = true;
6129 info->dvi_dual = db[6] & 1;
6131 info->max_tmds_clock = db[7] * 5000;
6133 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6134 connector->base.id, connector->name,
6135 info->dvi_dual, info->max_tmds_clock);
6137 drm_parse_hdmi_deep_color_info(connector, db);
6141 * See EDID extension for head-mounted and specialized monitors, specified at:
6142 * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6144 static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6147 struct drm_display_info *info = &connector->display_info;
6149 bool desktop_usage = db[5] & BIT(6);
6151 /* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6152 if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6153 info->non_desktop = true;
6155 drm_dbg_kms(connector->dev,
6156 "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6157 connector->base.id, connector->name, version, db[5]);
6160 static void drm_parse_cea_ext(struct drm_connector *connector,
6161 const struct drm_edid *drm_edid)
6163 struct drm_display_info *info = &connector->display_info;
6164 struct drm_edid_iter edid_iter;
6165 const struct cea_db *db;
6166 struct cea_db_iter iter;
6169 drm_edid_iter_begin(drm_edid, &edid_iter);
6170 drm_edid_iter_for_each(edid_ext, &edid_iter) {
6171 if (edid_ext[0] != CEA_EXT)
6175 info->cea_rev = edid_ext[1];
6177 if (info->cea_rev != edid_ext[1])
6178 drm_dbg_kms(connector->dev,
6179 "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6180 connector->base.id, connector->name,
6181 info->cea_rev, edid_ext[1]);
6183 /* The existence of a CTA extension should imply RGB support */
6184 info->color_formats = DRM_COLOR_FORMAT_RGB444;
6185 if (edid_ext[3] & EDID_CEA_YCRCB444)
6186 info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6187 if (edid_ext[3] & EDID_CEA_YCRCB422)
6188 info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6190 drm_edid_iter_end(&edid_iter);
6192 cea_db_iter_edid_begin(drm_edid, &iter);
6193 cea_db_iter_for_each(db, &iter) {
6194 /* FIXME: convert parsers to use struct cea_db */
6195 const u8 *data = (const u8 *)db;
6197 if (cea_db_is_hdmi_vsdb(db))
6198 drm_parse_hdmi_vsdb_video(connector, data);
6199 else if (cea_db_is_hdmi_forum_vsdb(db) ||
6200 cea_db_is_hdmi_forum_scdb(db))
6201 drm_parse_hdmi_forum_scds(connector, data);
6202 else if (cea_db_is_microsoft_vsdb(db))
6203 drm_parse_microsoft_vsdb(connector, data);
6204 else if (cea_db_is_y420cmdb(db))
6205 drm_parse_y420cmdb_bitmap(connector, data);
6206 else if (cea_db_is_vcdb(db))
6207 drm_parse_vcdb(connector, data);
6208 else if (cea_db_is_hdmi_hdr_metadata_block(db))
6209 drm_parse_hdr_metadata_block(connector, data);
6211 cea_db_iter_end(&iter);
6215 void get_monitor_range(const struct detailed_timing *timing, void *c)
6217 struct detailed_mode_closure *closure = c;
6218 struct drm_display_info *info = &closure->connector->display_info;
6219 struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6220 const struct detailed_non_pixel *data = &timing->data.other_data;
6221 const struct detailed_data_monitor_range *range = &data->data.range;
6222 const struct edid *edid = closure->drm_edid->edid;
6224 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6228 * These limits are used to determine the VRR refresh
6229 * rate range. Only the "range limits only" variant
6230 * of the range descriptor seems to guarantee that
6231 * any and all timings are accepted by the sink, as
6232 * opposed to just timings conforming to the indicated
6233 * formula (GTF/GTF2/CVT). Thus other variants of the
6234 * range descriptor are not accepted here.
6236 if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6239 monitor_range->min_vfreq = range->min_vfreq;
6240 monitor_range->max_vfreq = range->max_vfreq;
6242 if (edid->revision >= 4) {
6243 if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6244 monitor_range->min_vfreq += 255;
6245 if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6246 monitor_range->max_vfreq += 255;
6250 static void drm_get_monitor_range(struct drm_connector *connector,
6251 const struct drm_edid *drm_edid)
6253 const struct drm_display_info *info = &connector->display_info;
6254 struct detailed_mode_closure closure = {
6255 .connector = connector,
6256 .drm_edid = drm_edid,
6259 if (drm_edid->edid->revision < 4)
6262 if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6265 drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6267 drm_dbg_kms(connector->dev,
6268 "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6269 connector->base.id, connector->name,
6270 info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6273 static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6274 const struct displayid_block *block)
6276 struct displayid_vesa_vendor_specific_block *vesa =
6277 (struct displayid_vesa_vendor_specific_block *)block;
6278 struct drm_display_info *info = &connector->display_info;
6280 if (block->num_bytes < 3) {
6281 drm_dbg_kms(connector->dev,
6282 "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6283 connector->base.id, connector->name, block->num_bytes);
6287 if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6290 if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6291 drm_dbg_kms(connector->dev,
6292 "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6293 connector->base.id, connector->name);
6297 switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6299 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6300 connector->base.id, connector->name);
6303 info->mso_stream_count = 0;
6306 info->mso_stream_count = 2; /* 2 or 4 links */
6309 info->mso_stream_count = 4; /* 4 links */
6313 if (!info->mso_stream_count) {
6314 info->mso_pixel_overlap = 0;
6318 info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6319 if (info->mso_pixel_overlap > 8) {
6320 drm_dbg_kms(connector->dev,
6321 "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6322 connector->base.id, connector->name,
6323 info->mso_pixel_overlap);
6324 info->mso_pixel_overlap = 8;
6327 drm_dbg_kms(connector->dev,
6328 "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6329 connector->base.id, connector->name,
6330 info->mso_stream_count, info->mso_pixel_overlap);
6333 static void drm_update_mso(struct drm_connector *connector,
6334 const struct drm_edid *drm_edid)
6336 const struct displayid_block *block;
6337 struct displayid_iter iter;
6339 displayid_iter_edid_begin(drm_edid, &iter);
6340 displayid_iter_for_each(block, &iter) {
6341 if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6342 drm_parse_vesa_mso_data(connector, block);
6344 displayid_iter_end(&iter);
6347 /* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6348 * all of the values which would have been set from EDID
6350 static void drm_reset_display_info(struct drm_connector *connector)
6352 struct drm_display_info *info = &connector->display_info;
6355 info->height_mm = 0;
6358 info->color_formats = 0;
6360 info->max_tmds_clock = 0;
6361 info->dvi_dual = false;
6362 info->is_hdmi = false;
6363 info->has_hdmi_infoframe = false;
6364 info->rgb_quant_range_selectable = false;
6365 memset(&info->hdmi, 0, sizeof(info->hdmi));
6367 info->edid_hdmi_rgb444_dc_modes = 0;
6368 info->edid_hdmi_ycbcr444_dc_modes = 0;
6370 info->non_desktop = 0;
6371 memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6372 memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6374 info->mso_stream_count = 0;
6375 info->mso_pixel_overlap = 0;
6376 info->max_dsc_bpp = 0;
6379 static u32 update_display_info(struct drm_connector *connector,
6380 const struct drm_edid *drm_edid)
6382 struct drm_display_info *info = &connector->display_info;
6383 const struct edid *edid = drm_edid->edid;
6385 u32 quirks = edid_get_quirks(drm_edid);
6387 drm_reset_display_info(connector);
6389 info->width_mm = edid->width_cm * 10;
6390 info->height_mm = edid->height_cm * 10;
6392 drm_get_monitor_range(connector, drm_edid);
6394 if (edid->revision < 3)
6397 if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
6400 info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6401 drm_parse_cea_ext(connector, drm_edid);
6404 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6406 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6407 * tells us to assume 8 bpc color depth if the EDID doesn't have
6408 * extensions which tell otherwise.
6410 if (info->bpc == 0 && edid->revision == 3 &&
6411 edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6413 drm_dbg_kms(connector->dev,
6414 "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6415 connector->base.id, connector->name, info->bpc);
6418 /* Only defined for 1.4 with digital displays */
6419 if (edid->revision < 4)
6422 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6423 case DRM_EDID_DIGITAL_DEPTH_6:
6426 case DRM_EDID_DIGITAL_DEPTH_8:
6429 case DRM_EDID_DIGITAL_DEPTH_10:
6432 case DRM_EDID_DIGITAL_DEPTH_12:
6435 case DRM_EDID_DIGITAL_DEPTH_14:
6438 case DRM_EDID_DIGITAL_DEPTH_16:
6441 case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6447 drm_dbg_kms(connector->dev,
6448 "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6449 connector->base.id, connector->name, info->bpc);
6451 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6452 info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6453 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6454 info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6456 drm_update_mso(connector, drm_edid);
6459 if (quirks & EDID_QUIRK_NON_DESKTOP) {
6460 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6461 connector->base.id, connector->name,
6462 info->non_desktop ? " (redundant quirk)" : "");
6463 info->non_desktop = true;
6466 if (quirks & EDID_QUIRK_CAP_DSC_15BPP)
6467 info->max_dsc_bpp = 15;
6472 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6473 struct displayid_detailed_timings_1 *timings,
6476 struct drm_display_mode *mode;
6477 unsigned pixel_clock = (timings->pixel_clock[0] |
6478 (timings->pixel_clock[1] << 8) |
6479 (timings->pixel_clock[2] << 16)) + 1;
6480 unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6481 unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6482 unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6483 unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6484 unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6485 unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6486 unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6487 unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6488 bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6489 bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6491 mode = drm_mode_create(dev);
6495 /* resolution is kHz for type VII, and 10 kHz for type I */
6496 mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6497 mode->hdisplay = hactive;
6498 mode->hsync_start = mode->hdisplay + hsync;
6499 mode->hsync_end = mode->hsync_start + hsync_width;
6500 mode->htotal = mode->hdisplay + hblank;
6502 mode->vdisplay = vactive;
6503 mode->vsync_start = mode->vdisplay + vsync;
6504 mode->vsync_end = mode->vsync_start + vsync_width;
6505 mode->vtotal = mode->vdisplay + vblank;
6508 mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6509 mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6510 mode->type = DRM_MODE_TYPE_DRIVER;
6512 if (timings->flags & 0x80)
6513 mode->type |= DRM_MODE_TYPE_PREFERRED;
6514 drm_mode_set_name(mode);
6519 static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6520 const struct displayid_block *block)
6522 struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6525 struct drm_display_mode *newmode;
6527 bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6528 /* blocks must be multiple of 20 bytes length */
6529 if (block->num_bytes % 20)
6532 num_timings = block->num_bytes / 20;
6533 for (i = 0; i < num_timings; i++) {
6534 struct displayid_detailed_timings_1 *timings = &det->timings[i];
6536 newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6540 drm_mode_probed_add(connector, newmode);
6546 static int add_displayid_detailed_modes(struct drm_connector *connector,
6547 const struct drm_edid *drm_edid)
6549 const struct displayid_block *block;
6550 struct displayid_iter iter;
6553 displayid_iter_edid_begin(drm_edid, &iter);
6554 displayid_iter_for_each(block, &iter) {
6555 if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6556 block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6557 num_modes += add_displayid_detailed_1_modes(connector, block);
6559 displayid_iter_end(&iter);
6564 static int _drm_edid_connector_update(struct drm_connector *connector,
6565 const struct drm_edid *drm_edid)
6571 drm_reset_display_info(connector);
6572 clear_eld(connector);
6577 * CEA-861-F adds ycbcr capability map block, for HDMI 2.0 sinks.
6578 * To avoid multiple parsing of same block, lets parse that map
6579 * from sink info, before parsing CEA modes.
6581 quirks = update_display_info(connector, drm_edid);
6583 /* Depends on info->cea_rev set by update_display_info() above */
6584 drm_edid_to_eld(connector, drm_edid);
6587 * EDID spec says modes should be preferred in this order:
6588 * - preferred detailed mode
6589 * - other detailed modes from base block
6590 * - detailed modes from extension blocks
6591 * - CVT 3-byte code modes
6592 * - standard timing codes
6593 * - established timing codes
6594 * - modes inferred from GTF or CVT range information
6596 * We get this pretty much right.
6598 * XXX order for additional mode types in extension blocks?
6600 num_modes += add_detailed_modes(connector, drm_edid, quirks);
6601 num_modes += add_cvt_modes(connector, drm_edid);
6602 num_modes += add_standard_modes(connector, drm_edid);
6603 num_modes += add_established_modes(connector, drm_edid);
6604 num_modes += add_cea_modes(connector, drm_edid);
6605 num_modes += add_alternate_cea_modes(connector, drm_edid);
6606 num_modes += add_displayid_detailed_modes(connector, drm_edid);
6607 if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6608 num_modes += add_inferred_modes(connector, drm_edid);
6610 if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6611 edid_fixup_preferred(connector, quirks);
6613 if (quirks & EDID_QUIRK_FORCE_6BPC)
6614 connector->display_info.bpc = 6;
6616 if (quirks & EDID_QUIRK_FORCE_8BPC)
6617 connector->display_info.bpc = 8;
6619 if (quirks & EDID_QUIRK_FORCE_10BPC)
6620 connector->display_info.bpc = 10;
6622 if (quirks & EDID_QUIRK_FORCE_12BPC)
6623 connector->display_info.bpc = 12;
6628 static void _drm_update_tile_info(struct drm_connector *connector,
6629 const struct drm_edid *drm_edid);
6631 static int _drm_edid_connector_property_update(struct drm_connector *connector,
6632 const struct drm_edid *drm_edid)
6634 struct drm_device *dev = connector->dev;
6637 if (connector->edid_blob_ptr) {
6638 const struct edid *old_edid = connector->edid_blob_ptr->data;
6641 if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) {
6642 connector->epoch_counter++;
6643 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6644 connector->base.id, connector->name,
6645 connector->epoch_counter);
6650 ret = drm_property_replace_global_blob(dev,
6651 &connector->edid_blob_ptr,
6652 drm_edid ? drm_edid->size : 0,
6653 drm_edid ? drm_edid->edid : NULL,
6655 dev->mode_config.edid_property);
6657 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6658 connector->base.id, connector->name, ret);
6662 ret = drm_object_property_set_value(&connector->base,
6663 dev->mode_config.non_desktop_property,
6664 connector->display_info.non_desktop);
6666 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6667 connector->base.id, connector->name, ret);
6671 ret = drm_connector_set_tile_property(connector);
6673 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6674 connector->base.id, connector->name, ret);
6683 * drm_edid_connector_update - Update connector information from EDID
6684 * @connector: Connector
6687 * Update the connector mode list, display info, ELD, HDR metadata, relevant
6688 * properties, etc. from the passed in EDID.
6690 * If EDID is NULL, reset the information.
6692 * Return: The number of modes added or 0 if we couldn't find any.
6694 int drm_edid_connector_update(struct drm_connector *connector,
6695 const struct drm_edid *drm_edid)
6699 count = _drm_edid_connector_update(connector, drm_edid);
6701 _drm_update_tile_info(connector, drm_edid);
6703 /* Note: Ignore errors for now. */
6704 _drm_edid_connector_property_update(connector, drm_edid);
6708 EXPORT_SYMBOL(drm_edid_connector_update);
6710 static int _drm_connector_update_edid_property(struct drm_connector *connector,
6711 const struct drm_edid *drm_edid)
6714 * Set the display info, using edid if available, otherwise resetting
6715 * the values to defaults. This duplicates the work done in
6716 * drm_add_edid_modes, but that function is not consistently called
6717 * before this one in all drivers and the computation is cheap enough
6718 * that it seems better to duplicate it rather than attempt to ensure
6719 * some arbitrary ordering of calls.
6722 update_display_info(connector, drm_edid);
6724 drm_reset_display_info(connector);
6726 _drm_update_tile_info(connector, drm_edid);
6728 return _drm_edid_connector_property_update(connector, drm_edid);
6732 * drm_connector_update_edid_property - update the edid property of a connector
6733 * @connector: drm connector
6734 * @edid: new value of the edid property
6736 * This function creates a new blob modeset object and assigns its id to the
6737 * connector's edid property.
6738 * Since we also parse tile information from EDID's displayID block, we also
6739 * set the connector's tile property here. See drm_connector_set_tile_property()
6742 * This function is deprecated. Use drm_edid_connector_update() instead.
6745 * Zero on success, negative errno on failure.
6747 int drm_connector_update_edid_property(struct drm_connector *connector,
6748 const struct edid *edid)
6750 struct drm_edid drm_edid;
6752 return _drm_connector_update_edid_property(connector,
6753 drm_edid_legacy_init(&drm_edid, edid));
6755 EXPORT_SYMBOL(drm_connector_update_edid_property);
6758 * drm_add_edid_modes - add modes from EDID data, if available
6759 * @connector: connector we're probing
6762 * Add the specified modes to the connector's mode list. Also fills out the
6763 * &drm_display_info structure and ELD in @connector with any information which
6764 * can be derived from the edid.
6766 * This function is deprecated. Use drm_edid_connector_update() instead.
6768 * Return: The number of modes added or 0 if we couldn't find any.
6770 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
6772 struct drm_edid drm_edid;
6774 if (edid && !drm_edid_is_valid(edid)) {
6775 drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
6776 connector->base.id, connector->name);
6780 return _drm_edid_connector_update(connector,
6781 drm_edid_legacy_init(&drm_edid, edid));
6783 EXPORT_SYMBOL(drm_add_edid_modes);
6786 * drm_add_modes_noedid - add modes for the connectors without EDID
6787 * @connector: connector we're probing
6788 * @hdisplay: the horizontal display limit
6789 * @vdisplay: the vertical display limit
6791 * Add the specified modes to the connector's mode list. Only when the
6792 * hdisplay/vdisplay is not beyond the given limit, it will be added.
6794 * Return: The number of modes added or 0 if we couldn't find any.
6796 int drm_add_modes_noedid(struct drm_connector *connector,
6797 int hdisplay, int vdisplay)
6799 int i, count, num_modes = 0;
6800 struct drm_display_mode *mode;
6801 struct drm_device *dev = connector->dev;
6803 count = ARRAY_SIZE(drm_dmt_modes);
6809 for (i = 0; i < count; i++) {
6810 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
6812 if (hdisplay && vdisplay) {
6814 * Only when two are valid, they will be used to check
6815 * whether the mode should be added to the mode list of
6818 if (ptr->hdisplay > hdisplay ||
6819 ptr->vdisplay > vdisplay)
6822 if (drm_mode_vrefresh(ptr) > 61)
6824 mode = drm_mode_duplicate(dev, ptr);
6826 drm_mode_probed_add(connector, mode);
6832 EXPORT_SYMBOL(drm_add_modes_noedid);
6835 * drm_set_preferred_mode - Sets the preferred mode of a connector
6836 * @connector: connector whose mode list should be processed
6837 * @hpref: horizontal resolution of preferred mode
6838 * @vpref: vertical resolution of preferred mode
6840 * Marks a mode as preferred if it matches the resolution specified by @hpref
6843 void drm_set_preferred_mode(struct drm_connector *connector,
6844 int hpref, int vpref)
6846 struct drm_display_mode *mode;
6848 list_for_each_entry(mode, &connector->probed_modes, head) {
6849 if (mode->hdisplay == hpref &&
6850 mode->vdisplay == vpref)
6851 mode->type |= DRM_MODE_TYPE_PREFERRED;
6854 EXPORT_SYMBOL(drm_set_preferred_mode);
6856 static bool is_hdmi2_sink(const struct drm_connector *connector)
6859 * FIXME: sil-sii8620 doesn't have a connector around when
6860 * we need one, so we have to be prepared for a NULL connector.
6865 return connector->display_info.hdmi.scdc.supported ||
6866 connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
6869 static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
6870 const struct drm_display_mode *mode)
6872 bool has_hdmi_infoframe = connector ?
6873 connector->display_info.has_hdmi_infoframe : false;
6875 if (!has_hdmi_infoframe)
6878 /* No HDMI VIC when signalling 3D video format */
6879 if (mode->flags & DRM_MODE_FLAG_3D_MASK)
6882 return drm_match_hdmi_mode(mode);
6885 static u8 drm_mode_cea_vic(const struct drm_connector *connector,
6886 const struct drm_display_mode *mode)
6891 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
6892 * we should send its VIC in vendor infoframes, else send the
6893 * VIC in AVI infoframes. Lets check if this mode is present in
6894 * HDMI 1.4b 4K modes
6896 if (drm_mode_hdmi_vic(connector, mode))
6899 vic = drm_match_cea_mode(mode);
6902 * HDMI 1.4 VIC range: 1 <= VIC <= 64 (CEA-861-D) but
6903 * HDMI 2.0 VIC range: 1 <= VIC <= 107 (CEA-861-F). So we
6904 * have to make sure we dont break HDMI 1.4 sinks.
6906 if (!is_hdmi2_sink(connector) && vic > 64)
6913 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
6914 * data from a DRM display mode
6915 * @frame: HDMI AVI infoframe
6916 * @connector: the connector
6917 * @mode: DRM display mode
6919 * Return: 0 on success or a negative error code on failure.
6922 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
6923 const struct drm_connector *connector,
6924 const struct drm_display_mode *mode)
6926 enum hdmi_picture_aspect picture_aspect;
6929 if (!frame || !mode)
6932 hdmi_avi_infoframe_init(frame);
6934 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
6935 frame->pixel_repeat = 1;
6937 vic = drm_mode_cea_vic(connector, mode);
6938 hdmi_vic = drm_mode_hdmi_vic(connector, mode);
6940 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
6943 * As some drivers don't support atomic, we can't use connector state.
6944 * So just initialize the frame with default values, just the same way
6945 * as it's done with other properties here.
6947 frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
6951 * Populate picture aspect ratio from either
6952 * user input (if specified) or from the CEA/HDMI mode lists.
6954 picture_aspect = mode->picture_aspect_ratio;
6955 if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
6957 picture_aspect = drm_get_cea_aspect_ratio(vic);
6959 picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
6963 * The infoframe can't convey anything but none, 4:3
6964 * and 16:9, so if the user has asked for anything else
6965 * we can only satisfy it by specifying the right VIC.
6967 if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
6969 if (picture_aspect != drm_get_cea_aspect_ratio(vic))
6971 } else if (hdmi_vic) {
6972 if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
6978 picture_aspect = HDMI_PICTURE_ASPECT_NONE;
6981 frame->video_code = vic;
6982 frame->picture_aspect = picture_aspect;
6983 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
6984 frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
6988 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
6991 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
6992 * quantization range information
6993 * @frame: HDMI AVI infoframe
6994 * @connector: the connector
6995 * @mode: DRM display mode
6996 * @rgb_quant_range: RGB quantization range (Q)
6999 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7000 const struct drm_connector *connector,
7001 const struct drm_display_mode *mode,
7002 enum hdmi_quantization_range rgb_quant_range)
7004 const struct drm_display_info *info = &connector->display_info;
7008 * "A Source shall not send a non-zero Q value that does not correspond
7009 * to the default RGB Quantization Range for the transmitted Picture
7010 * unless the Sink indicates support for the Q bit in a Video
7011 * Capabilities Data Block."
7013 * HDMI 2.0 recommends sending non-zero Q when it does match the
7014 * default RGB quantization range for the mode, even when QS=0.
7016 if (info->rgb_quant_range_selectable ||
7017 rgb_quant_range == drm_default_rgb_quant_range(mode))
7018 frame->quantization_range = rgb_quant_range;
7020 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7024 * "When transmitting any RGB colorimetry, the Source should set the
7025 * YQ-field to match the RGB Quantization Range being transmitted
7026 * (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7027 * set YQ=1) and the Sink shall ignore the YQ-field."
7029 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7030 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7031 * good way to tell which version of CEA-861 the sink supports, so
7032 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7035 if (!is_hdmi2_sink(connector) ||
7036 rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7037 frame->ycc_quantization_range =
7038 HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7040 frame->ycc_quantization_range =
7041 HDMI_YCC_QUANTIZATION_RANGE_FULL;
7043 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7045 static enum hdmi_3d_structure
7046 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7048 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7051 case DRM_MODE_FLAG_3D_FRAME_PACKING:
7052 return HDMI_3D_STRUCTURE_FRAME_PACKING;
7053 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7054 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7055 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7056 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7057 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7058 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7059 case DRM_MODE_FLAG_3D_L_DEPTH:
7060 return HDMI_3D_STRUCTURE_L_DEPTH;
7061 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7062 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7063 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7064 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7065 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7066 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7068 return HDMI_3D_STRUCTURE_INVALID;
7073 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7074 * data from a DRM display mode
7075 * @frame: HDMI vendor infoframe
7076 * @connector: the connector
7077 * @mode: DRM display mode
7079 * Note that there's is a need to send HDMI vendor infoframes only when using a
7080 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7081 * function will return -EINVAL, error that can be safely ignored.
7083 * Return: 0 on success or a negative error code on failure.
7086 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7087 const struct drm_connector *connector,
7088 const struct drm_display_mode *mode)
7091 * FIXME: sil-sii8620 doesn't have a connector around when
7092 * we need one, so we have to be prepared for a NULL connector.
7094 bool has_hdmi_infoframe = connector ?
7095 connector->display_info.has_hdmi_infoframe : false;
7098 if (!frame || !mode)
7101 if (!has_hdmi_infoframe)
7104 err = hdmi_vendor_infoframe_init(frame);
7109 * Even if it's not absolutely necessary to send the infoframe
7110 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7111 * know that the sink can handle it. This is based on a
7112 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7113 * have trouble realizing that they should switch from 3D to 2D
7114 * mode if the source simply stops sending the infoframe when
7115 * it wants to switch from 3D to 2D.
7117 frame->vic = drm_mode_hdmi_vic(connector, mode);
7118 frame->s3d_struct = s3d_structure_from_display_mode(mode);
7122 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7124 static void drm_parse_tiled_block(struct drm_connector *connector,
7125 const struct displayid_block *block)
7127 const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7129 u8 tile_v_loc, tile_h_loc;
7130 u8 num_v_tile, num_h_tile;
7131 struct drm_tile_group *tg;
7133 w = tile->tile_size[0] | tile->tile_size[1] << 8;
7134 h = tile->tile_size[2] | tile->tile_size[3] << 8;
7136 num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7137 num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7138 tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7139 tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7141 connector->has_tile = true;
7142 if (tile->tile_cap & 0x80)
7143 connector->tile_is_single_monitor = true;
7145 connector->num_h_tile = num_h_tile + 1;
7146 connector->num_v_tile = num_v_tile + 1;
7147 connector->tile_h_loc = tile_h_loc;
7148 connector->tile_v_loc = tile_v_loc;
7149 connector->tile_h_size = w + 1;
7150 connector->tile_v_size = h + 1;
7152 drm_dbg_kms(connector->dev,
7153 "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7154 connector->base.id, connector->name,
7156 connector->tile_h_size, connector->tile_v_size,
7157 connector->num_h_tile, connector->num_v_tile,
7158 connector->tile_h_loc, connector->tile_v_loc,
7159 tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7161 tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7163 tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7167 if (connector->tile_group != tg) {
7168 /* if we haven't got a pointer,
7169 take the reference, drop ref to old tile group */
7170 if (connector->tile_group)
7171 drm_mode_put_tile_group(connector->dev, connector->tile_group);
7172 connector->tile_group = tg;
7174 /* if same tile group, then release the ref we just took. */
7175 drm_mode_put_tile_group(connector->dev, tg);
7179 static void _drm_update_tile_info(struct drm_connector *connector,
7180 const struct drm_edid *drm_edid)
7182 const struct displayid_block *block;
7183 struct displayid_iter iter;
7185 connector->has_tile = false;
7187 displayid_iter_edid_begin(drm_edid, &iter);
7188 displayid_iter_for_each(block, &iter) {
7189 if (block->tag == DATA_BLOCK_TILED_DISPLAY)
7190 drm_parse_tiled_block(connector, block);
7192 displayid_iter_end(&iter);
7194 if (!connector->has_tile && connector->tile_group) {
7195 drm_mode_put_tile_group(connector->dev, connector->tile_group);
7196 connector->tile_group = NULL;