1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
11 #include "dm-uevent.h"
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/signal.h>
19 #include <linux/blkpg.h>
20 #include <linux/bio.h>
21 #include <linux/mempool.h>
22 #include <linux/dax.h>
23 #include <linux/slab.h>
24 #include <linux/idr.h>
25 #include <linux/uio.h>
26 #include <linux/hdreg.h>
27 #include <linux/delay.h>
28 #include <linux/wait.h>
30 #include <linux/refcount.h>
31 #include <linux/part_stat.h>
32 #include <linux/blk-crypto.h>
33 #include <linux/blk-crypto-profile.h>
35 #define DM_MSG_PREFIX "core"
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
45 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
46 * dm_io into one list, and reuse bio->bi_private as the list head. Before
47 * ending this fs bio, we will recover its ->bi_private.
49 #define REQ_DM_POLL_LIST REQ_DRV
51 static const char *_name = DM_NAME;
53 static unsigned int major;
54 static unsigned int _major;
56 static DEFINE_IDR(_minor_idr);
58 static DEFINE_SPINLOCK(_minor_lock);
60 static void do_deferred_remove(struct work_struct *w);
62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
64 static struct workqueue_struct *deferred_remove_workqueue;
66 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
69 void dm_issue_global_event(void)
71 atomic_inc(&dm_global_event_nr);
72 wake_up(&dm_global_eventq);
75 DEFINE_STATIC_KEY_FALSE(stats_enabled);
76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
77 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
80 * One of these is allocated (on-stack) per original bio.
87 unsigned int sector_count;
88 bool is_abnormal_io:1;
89 bool submit_as_polled:1;
92 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
94 return container_of(clone, struct dm_target_io, clone);
97 void *dm_per_bio_data(struct bio *bio, size_t data_size)
99 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
100 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
101 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
103 EXPORT_SYMBOL_GPL(dm_per_bio_data);
105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
107 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
109 if (io->magic == DM_IO_MAGIC)
110 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
111 BUG_ON(io->magic != DM_TIO_MAGIC);
112 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
118 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
122 #define MINOR_ALLOCED ((void *)-1)
124 #define DM_NUMA_NODE NUMA_NO_NODE
125 static int dm_numa_node = DM_NUMA_NODE;
127 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
128 static int swap_bios = DEFAULT_SWAP_BIOS;
129 static int get_swap_bios(void)
131 int latch = READ_ONCE(swap_bios);
133 if (unlikely(latch <= 0))
134 latch = DEFAULT_SWAP_BIOS;
138 struct table_device {
139 struct list_head list;
141 struct dm_dev dm_dev;
145 * Bio-based DM's mempools' reserved IOs set by the user.
147 #define RESERVED_BIO_BASED_IOS 16
148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
150 static int __dm_get_module_param_int(int *module_param, int min, int max)
152 int param = READ_ONCE(*module_param);
153 int modified_param = 0;
154 bool modified = true;
157 modified_param = min;
158 else if (param > max)
159 modified_param = max;
164 (void)cmpxchg(module_param, param, modified_param);
165 param = modified_param;
171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
173 unsigned int param = READ_ONCE(*module_param);
174 unsigned int modified_param = 0;
177 modified_param = def;
178 else if (param > max)
179 modified_param = max;
181 if (modified_param) {
182 (void)cmpxchg(module_param, param, modified_param);
183 param = modified_param;
189 unsigned int dm_get_reserved_bio_based_ios(void)
191 return __dm_get_module_param(&reserved_bio_based_ios,
192 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
196 static unsigned int dm_get_numa_node(void)
198 return __dm_get_module_param_int(&dm_numa_node,
199 DM_NUMA_NODE, num_online_nodes() - 1);
202 static int __init local_init(void)
206 r = dm_uevent_init();
210 deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
211 if (!deferred_remove_workqueue) {
213 goto out_uevent_exit;
217 r = register_blkdev(_major, _name);
219 goto out_free_workqueue;
227 destroy_workqueue(deferred_remove_workqueue);
234 static void local_exit(void)
236 destroy_workqueue(deferred_remove_workqueue);
238 unregister_blkdev(_major, _name);
243 DMINFO("cleaned up");
246 static int (*_inits[])(void) __initdata = {
257 static void (*_exits[])(void) = {
268 static int __init dm_init(void)
270 const int count = ARRAY_SIZE(_inits);
273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
274 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
275 " Duplicate IMA measurements will not be recorded in the IMA log.");
278 for (i = 0; i < count; i++) {
292 static void __exit dm_exit(void)
294 int i = ARRAY_SIZE(_exits);
300 * Should be empty by this point.
302 idr_destroy(&_minor_idr);
306 * Block device functions
308 int dm_deleting_md(struct mapped_device *md)
310 return test_bit(DMF_DELETING, &md->flags);
313 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
315 struct mapped_device *md;
317 spin_lock(&_minor_lock);
319 md = disk->private_data;
323 if (test_bit(DMF_FREEING, &md->flags) ||
324 dm_deleting_md(md)) {
330 atomic_inc(&md->open_count);
332 spin_unlock(&_minor_lock);
334 return md ? 0 : -ENXIO;
337 static void dm_blk_close(struct gendisk *disk)
339 struct mapped_device *md;
341 spin_lock(&_minor_lock);
343 md = disk->private_data;
347 if (atomic_dec_and_test(&md->open_count) &&
348 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
349 queue_work(deferred_remove_workqueue, &deferred_remove_work);
353 spin_unlock(&_minor_lock);
356 int dm_open_count(struct mapped_device *md)
358 return atomic_read(&md->open_count);
362 * Guarantees nothing is using the device before it's deleted.
364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
368 spin_lock(&_minor_lock);
370 if (dm_open_count(md)) {
373 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
374 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
377 set_bit(DMF_DELETING, &md->flags);
379 spin_unlock(&_minor_lock);
384 int dm_cancel_deferred_remove(struct mapped_device *md)
388 spin_lock(&_minor_lock);
390 if (test_bit(DMF_DELETING, &md->flags))
393 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
395 spin_unlock(&_minor_lock);
400 static void do_deferred_remove(struct work_struct *w)
402 dm_deferred_remove();
405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 struct mapped_device *md = bdev->bd_disk->private_data;
409 return dm_get_geometry(md, geo);
412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
413 struct block_device **bdev)
415 struct dm_target *ti;
416 struct dm_table *map;
421 map = dm_get_live_table(md, srcu_idx);
422 if (!map || !dm_table_get_size(map))
425 /* We only support devices that have a single target */
426 if (map->num_targets != 1)
429 ti = dm_table_get_target(map, 0);
430 if (!ti->type->prepare_ioctl)
433 if (dm_suspended_md(md))
436 r = ti->type->prepare_ioctl(ti, bdev);
437 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
438 dm_put_live_table(md, *srcu_idx);
446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
448 dm_put_live_table(md, srcu_idx);
451 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
452 unsigned int cmd, unsigned long arg)
454 struct mapped_device *md = bdev->bd_disk->private_data;
457 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
463 * Target determined this ioctl is being issued against a
464 * subset of the parent bdev; require extra privileges.
466 if (!capable(CAP_SYS_RAWIO)) {
468 "%s: sending ioctl %x to DM device without required privilege.",
475 if (!bdev->bd_disk->fops->ioctl)
478 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
480 dm_unprepare_ioctl(md, srcu_idx);
484 u64 dm_start_time_ns_from_clone(struct bio *bio)
486 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
490 static inline bool bio_is_flush_with_data(struct bio *bio)
492 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
495 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
498 * If REQ_PREFLUSH set, don't account payload, it will be
499 * submitted (and accounted) after this flush completes.
501 if (bio_is_flush_with_data(bio))
503 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
505 return bio_sectors(bio);
508 static void dm_io_acct(struct dm_io *io, bool end)
510 struct bio *bio = io->orig_bio;
512 if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
514 bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
517 bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
518 dm_io_sectors(io, bio),
522 if (static_branch_unlikely(&stats_enabled) &&
523 unlikely(dm_stats_used(&io->md->stats))) {
526 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
527 sector = bio_end_sector(bio) - io->sector_offset;
529 sector = bio->bi_iter.bi_sector;
531 dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
532 sector, dm_io_sectors(io, bio),
533 end, io->start_time, &io->stats_aux);
537 static void __dm_start_io_acct(struct dm_io *io)
539 dm_io_acct(io, false);
542 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
545 * Ensure IO accounting is only ever started once.
547 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
550 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
551 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
552 dm_io_set_flag(io, DM_IO_ACCOUNTED);
555 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
556 spin_lock_irqsave(&io->lock, flags);
557 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
558 spin_unlock_irqrestore(&io->lock, flags);
561 dm_io_set_flag(io, DM_IO_ACCOUNTED);
562 spin_unlock_irqrestore(&io->lock, flags);
565 __dm_start_io_acct(io);
568 static void dm_end_io_acct(struct dm_io *io)
570 dm_io_acct(io, true);
573 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
576 struct dm_target_io *tio;
579 clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
580 if (unlikely(!clone))
582 tio = clone_to_tio(clone);
584 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
587 io = container_of(tio, struct dm_io, tio);
588 io->magic = DM_IO_MAGIC;
589 io->status = BLK_STS_OK;
591 /* one ref is for submission, the other is for completion */
592 atomic_set(&io->io_count, 2);
593 this_cpu_inc(*md->pending_io);
596 spin_lock_init(&io->lock);
597 io->start_time = jiffies;
599 if (blk_queue_io_stat(md->queue))
600 dm_io_set_flag(io, DM_IO_BLK_STAT);
602 if (static_branch_unlikely(&stats_enabled) &&
603 unlikely(dm_stats_used(&md->stats)))
604 dm_stats_record_start(&md->stats, &io->stats_aux);
609 static void free_io(struct dm_io *io)
611 bio_put(&io->tio.clone);
614 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
615 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
617 struct mapped_device *md = ci->io->md;
618 struct dm_target_io *tio;
621 if (!ci->io->tio.io) {
622 /* the dm_target_io embedded in ci->io is available */
624 /* alloc_io() already initialized embedded clone */
627 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
632 /* REQ_DM_POLL_LIST shouldn't be inherited */
633 clone->bi_opf &= ~REQ_DM_POLL_LIST;
635 tio = clone_to_tio(clone);
636 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
639 tio->magic = DM_TIO_MAGIC;
642 tio->target_bio_nr = target_bio_nr;
646 /* Set default bdev, but target must bio_set_dev() before issuing IO */
647 clone->bi_bdev = md->disk->part0;
648 if (unlikely(ti->needs_bio_set_dev))
649 bio_set_dev(clone, md->disk->part0);
652 clone->bi_iter.bi_size = to_bytes(*len);
653 if (bio_integrity(clone))
654 bio_integrity_trim(clone);
660 static void free_tio(struct bio *clone)
662 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
668 * Add the bio to the list of deferred io.
670 static void queue_io(struct mapped_device *md, struct bio *bio)
674 spin_lock_irqsave(&md->deferred_lock, flags);
675 bio_list_add(&md->deferred, bio);
676 spin_unlock_irqrestore(&md->deferred_lock, flags);
677 queue_work(md->wq, &md->work);
681 * Everyone (including functions in this file), should use this
682 * function to access the md->map field, and make sure they call
683 * dm_put_live_table() when finished.
685 struct dm_table *dm_get_live_table(struct mapped_device *md,
686 int *srcu_idx) __acquires(md->io_barrier)
688 *srcu_idx = srcu_read_lock(&md->io_barrier);
690 return srcu_dereference(md->map, &md->io_barrier);
693 void dm_put_live_table(struct mapped_device *md,
694 int srcu_idx) __releases(md->io_barrier)
696 srcu_read_unlock(&md->io_barrier, srcu_idx);
699 void dm_sync_table(struct mapped_device *md)
701 synchronize_srcu(&md->io_barrier);
702 synchronize_rcu_expedited();
706 * A fast alternative to dm_get_live_table/dm_put_live_table.
707 * The caller must not block between these two functions.
709 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
712 return rcu_dereference(md->map);
715 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
720 static char *_dm_claim_ptr = "I belong to device-mapper";
723 * Open a table device so we can use it as a map destination.
725 static struct table_device *open_table_device(struct mapped_device *md,
726 dev_t dev, blk_mode_t mode)
728 struct table_device *td;
729 struct bdev_handle *bdev_handle;
733 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
735 return ERR_PTR(-ENOMEM);
736 refcount_set(&td->count, 1);
738 bdev_handle = bdev_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
739 if (IS_ERR(bdev_handle)) {
740 r = PTR_ERR(bdev_handle);
745 * We can be called before the dm disk is added. In that case we can't
746 * register the holder relation here. It will be done once add_disk was
749 if (md->disk->slave_dir) {
750 r = bd_link_disk_holder(bdev_handle->bdev, md->disk);
755 td->dm_dev.mode = mode;
756 td->dm_dev.bdev = bdev_handle->bdev;
757 td->dm_dev.bdev_handle = bdev_handle;
758 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev_handle->bdev, &part_off,
760 format_dev_t(td->dm_dev.name, dev);
761 list_add(&td->list, &md->table_devices);
765 bdev_release(bdev_handle);
772 * Close a table device that we've been using.
774 static void close_table_device(struct table_device *td, struct mapped_device *md)
776 if (md->disk->slave_dir)
777 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
778 bdev_release(td->dm_dev.bdev_handle);
779 put_dax(td->dm_dev.dax_dev);
784 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
787 struct table_device *td;
789 list_for_each_entry(td, l, list)
790 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
796 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
797 struct dm_dev **result)
799 struct table_device *td;
801 mutex_lock(&md->table_devices_lock);
802 td = find_table_device(&md->table_devices, dev, mode);
804 td = open_table_device(md, dev, mode);
806 mutex_unlock(&md->table_devices_lock);
810 refcount_inc(&td->count);
812 mutex_unlock(&md->table_devices_lock);
814 *result = &td->dm_dev;
818 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
820 struct table_device *td = container_of(d, struct table_device, dm_dev);
822 mutex_lock(&md->table_devices_lock);
823 if (refcount_dec_and_test(&td->count))
824 close_table_device(td, md);
825 mutex_unlock(&md->table_devices_lock);
829 * Get the geometry associated with a dm device
831 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
839 * Set the geometry of a device.
841 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
843 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
845 if (geo->start > sz) {
846 DMERR("Start sector is beyond the geometry limits.");
855 static int __noflush_suspending(struct mapped_device *md)
857 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
860 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
862 struct mapped_device *md = io->md;
865 struct dm_io *next = md->requeue_list;
867 md->requeue_list = io;
870 bio_list_add_head(&md->deferred, io->orig_bio);
874 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
877 queue_work(md->wq, &md->requeue_work);
879 queue_work(md->wq, &md->work);
883 * Return true if the dm_io's original bio is requeued.
884 * io->status is updated with error if requeue disallowed.
886 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
888 struct bio *bio = io->orig_bio;
889 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
890 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
891 (bio->bi_opf & REQ_POLLED));
892 struct mapped_device *md = io->md;
893 bool requeued = false;
895 if (handle_requeue || handle_polled_eagain) {
898 if (bio->bi_opf & REQ_POLLED) {
900 * Upper layer won't help us poll split bio
901 * (io->orig_bio may only reflect a subset of the
902 * pre-split original) so clear REQ_POLLED.
904 bio_clear_polled(bio);
908 * Target requested pushing back the I/O or
909 * polled IO hit BLK_STS_AGAIN.
911 spin_lock_irqsave(&md->deferred_lock, flags);
912 if ((__noflush_suspending(md) &&
913 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
914 handle_polled_eagain || first_stage) {
915 dm_requeue_add_io(io, first_stage);
919 * noflush suspend was interrupted or this is
920 * a write to a zoned target.
922 io->status = BLK_STS_IOERR;
924 spin_unlock_irqrestore(&md->deferred_lock, flags);
928 dm_kick_requeue(md, first_stage);
933 static void __dm_io_complete(struct dm_io *io, bool first_stage)
935 struct bio *bio = io->orig_bio;
936 struct mapped_device *md = io->md;
937 blk_status_t io_error;
940 requeued = dm_handle_requeue(io, first_stage);
941 if (requeued && first_stage)
944 io_error = io->status;
945 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
947 else if (!io_error) {
949 * Must handle target that DM_MAPIO_SUBMITTED only to
950 * then bio_endio() rather than dm_submit_bio_remap()
952 __dm_start_io_acct(io);
957 this_cpu_dec(*md->pending_io);
959 /* nudge anyone waiting on suspend queue */
960 if (unlikely(wq_has_sleeper(&md->wait)))
963 /* Return early if the original bio was requeued */
967 if (bio_is_flush_with_data(bio)) {
969 * Preflush done for flush with data, reissue
970 * without REQ_PREFLUSH.
972 bio->bi_opf &= ~REQ_PREFLUSH;
975 /* done with normal IO or empty flush */
977 bio->bi_status = io_error;
982 static void dm_wq_requeue_work(struct work_struct *work)
984 struct mapped_device *md = container_of(work, struct mapped_device,
989 /* reuse deferred lock to simplify dm_handle_requeue */
990 spin_lock_irqsave(&md->deferred_lock, flags);
991 io = md->requeue_list;
992 md->requeue_list = NULL;
993 spin_unlock_irqrestore(&md->deferred_lock, flags);
996 struct dm_io *next = io->next;
998 dm_io_rewind(io, &md->disk->bio_split);
1001 __dm_io_complete(io, false);
1008 * Two staged requeue:
1010 * 1) io->orig_bio points to the real original bio, and the part mapped to
1011 * this io must be requeued, instead of other parts of the original bio.
1013 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1015 static void dm_io_complete(struct dm_io *io)
1020 * Only dm_io that has been split needs two stage requeue, otherwise
1021 * we may run into long bio clone chain during suspend and OOM could
1024 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1025 * also aren't handled via the first stage requeue.
1027 if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1028 first_requeue = true;
1030 first_requeue = false;
1032 __dm_io_complete(io, first_requeue);
1036 * Decrements the number of outstanding ios that a bio has been
1037 * cloned into, completing the original io if necc.
1039 static inline void __dm_io_dec_pending(struct dm_io *io)
1041 if (atomic_dec_and_test(&io->io_count))
1045 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1047 unsigned long flags;
1049 /* Push-back supersedes any I/O errors */
1050 spin_lock_irqsave(&io->lock, flags);
1051 if (!(io->status == BLK_STS_DM_REQUEUE &&
1052 __noflush_suspending(io->md))) {
1055 spin_unlock_irqrestore(&io->lock, flags);
1058 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1060 if (unlikely(error))
1061 dm_io_set_error(io, error);
1063 __dm_io_dec_pending(io);
1067 * The queue_limits are only valid as long as you have a reference
1068 * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1070 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1072 return &md->queue->limits;
1075 void disable_discard(struct mapped_device *md)
1077 struct queue_limits *limits = dm_get_queue_limits(md);
1079 /* device doesn't really support DISCARD, disable it */
1080 limits->max_discard_sectors = 0;
1083 void disable_write_zeroes(struct mapped_device *md)
1085 struct queue_limits *limits = dm_get_queue_limits(md);
1087 /* device doesn't really support WRITE ZEROES, disable it */
1088 limits->max_write_zeroes_sectors = 0;
1091 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1093 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1096 static void clone_endio(struct bio *bio)
1098 blk_status_t error = bio->bi_status;
1099 struct dm_target_io *tio = clone_to_tio(bio);
1100 struct dm_target *ti = tio->ti;
1101 dm_endio_fn endio = ti->type->end_io;
1102 struct dm_io *io = tio->io;
1103 struct mapped_device *md = io->md;
1105 if (unlikely(error == BLK_STS_TARGET)) {
1106 if (bio_op(bio) == REQ_OP_DISCARD &&
1107 !bdev_max_discard_sectors(bio->bi_bdev))
1108 disable_discard(md);
1109 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1110 !bdev_write_zeroes_sectors(bio->bi_bdev))
1111 disable_write_zeroes(md);
1114 if (static_branch_unlikely(&zoned_enabled) &&
1115 unlikely(bdev_is_zoned(bio->bi_bdev)))
1116 dm_zone_endio(io, bio);
1119 int r = endio(ti, bio, &error);
1122 case DM_ENDIO_REQUEUE:
1123 if (static_branch_unlikely(&zoned_enabled)) {
1125 * Requeuing writes to a sequential zone of a zoned
1126 * target will break the sequential write pattern:
1129 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1130 error = BLK_STS_IOERR;
1132 error = BLK_STS_DM_REQUEUE;
1134 error = BLK_STS_DM_REQUEUE;
1138 case DM_ENDIO_INCOMPLETE:
1139 /* The target will handle the io */
1142 DMCRIT("unimplemented target endio return value: %d", r);
1147 if (static_branch_unlikely(&swap_bios_enabled) &&
1148 unlikely(swap_bios_limit(ti, bio)))
1149 up(&md->swap_bios_semaphore);
1152 dm_io_dec_pending(io, error);
1156 * Return maximum size of I/O possible at the supplied sector up to the current
1159 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1160 sector_t target_offset)
1162 return ti->len - target_offset;
1165 static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1166 unsigned int max_granularity,
1167 unsigned int max_sectors)
1169 sector_t target_offset = dm_target_offset(ti, sector);
1170 sector_t len = max_io_len_target_boundary(ti, target_offset);
1173 * Does the target need to split IO even further?
1174 * - varied (per target) IO splitting is a tenet of DM; this
1175 * explains why stacked chunk_sectors based splitting via
1176 * bio_split_to_limits() isn't possible here.
1178 if (!max_granularity)
1180 return min_t(sector_t, len,
1181 min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1182 blk_chunk_sectors_left(target_offset, max_granularity)));
1185 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1187 return __max_io_len(ti, sector, ti->max_io_len, 0);
1190 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1192 if (len > UINT_MAX) {
1193 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1194 (unsigned long long)len, UINT_MAX);
1195 ti->error = "Maximum size of target IO is too large";
1199 ti->max_io_len = (uint32_t) len;
1203 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1205 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1206 sector_t sector, int *srcu_idx)
1207 __acquires(md->io_barrier)
1209 struct dm_table *map;
1210 struct dm_target *ti;
1212 map = dm_get_live_table(md, srcu_idx);
1216 ti = dm_table_find_target(map, sector);
1223 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1224 long nr_pages, enum dax_access_mode mode, void **kaddr,
1227 struct mapped_device *md = dax_get_private(dax_dev);
1228 sector_t sector = pgoff * PAGE_SECTORS;
1229 struct dm_target *ti;
1230 long len, ret = -EIO;
1233 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1237 if (!ti->type->direct_access)
1239 len = max_io_len(ti, sector) / PAGE_SECTORS;
1242 nr_pages = min(len, nr_pages);
1243 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1246 dm_put_live_table(md, srcu_idx);
1251 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1254 struct mapped_device *md = dax_get_private(dax_dev);
1255 sector_t sector = pgoff * PAGE_SECTORS;
1256 struct dm_target *ti;
1260 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1264 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1266 * ->zero_page_range() is mandatory dax operation. If we are
1267 * here, something is wrong.
1271 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1273 dm_put_live_table(md, srcu_idx);
1278 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1279 void *addr, size_t bytes, struct iov_iter *i)
1281 struct mapped_device *md = dax_get_private(dax_dev);
1282 sector_t sector = pgoff * PAGE_SECTORS;
1283 struct dm_target *ti;
1287 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1288 if (!ti || !ti->type->dax_recovery_write)
1291 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1293 dm_put_live_table(md, srcu_idx);
1298 * A target may call dm_accept_partial_bio only from the map routine. It is
1299 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1300 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1301 * __send_duplicate_bios().
1303 * dm_accept_partial_bio informs the dm that the target only wants to process
1304 * additional n_sectors sectors of the bio and the rest of the data should be
1305 * sent in a next bio.
1307 * A diagram that explains the arithmetics:
1308 * +--------------------+---------------+-------+
1310 * +--------------------+---------------+-------+
1312 * <-------------- *tio->len_ptr --------------->
1313 * <----- bio_sectors ----->
1316 * Region 1 was already iterated over with bio_advance or similar function.
1317 * (it may be empty if the target doesn't use bio_advance)
1318 * Region 2 is the remaining bio size that the target wants to process.
1319 * (it may be empty if region 1 is non-empty, although there is no reason
1321 * The target requires that region 3 is to be sent in the next bio.
1323 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1324 * the partially processed part (the sum of regions 1+2) must be the same for all
1325 * copies of the bio.
1327 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1329 struct dm_target_io *tio = clone_to_tio(bio);
1330 struct dm_io *io = tio->io;
1331 unsigned int bio_sectors = bio_sectors(bio);
1333 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1334 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1335 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1336 BUG_ON(bio_sectors > *tio->len_ptr);
1337 BUG_ON(n_sectors > bio_sectors);
1339 *tio->len_ptr -= bio_sectors - n_sectors;
1340 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1343 * __split_and_process_bio() may have already saved mapped part
1344 * for accounting but it is being reduced so update accordingly.
1346 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1347 io->sectors = n_sectors;
1348 io->sector_offset = bio_sectors(io->orig_bio);
1350 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1353 * @clone: clone bio that DM core passed to target's .map function
1354 * @tgt_clone: clone of @clone bio that target needs submitted
1356 * Targets should use this interface to submit bios they take
1357 * ownership of when returning DM_MAPIO_SUBMITTED.
1359 * Target should also enable ti->accounts_remapped_io
1361 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1363 struct dm_target_io *tio = clone_to_tio(clone);
1364 struct dm_io *io = tio->io;
1366 /* establish bio that will get submitted */
1371 * Account io->origin_bio to DM dev on behalf of target
1372 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1374 dm_start_io_acct(io, clone);
1376 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1378 submit_bio_noacct(tgt_clone);
1380 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1382 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1384 mutex_lock(&md->swap_bios_lock);
1385 while (latch < md->swap_bios) {
1387 down(&md->swap_bios_semaphore);
1390 while (latch > md->swap_bios) {
1392 up(&md->swap_bios_semaphore);
1395 mutex_unlock(&md->swap_bios_lock);
1398 static void __map_bio(struct bio *clone)
1400 struct dm_target_io *tio = clone_to_tio(clone);
1401 struct dm_target *ti = tio->ti;
1402 struct dm_io *io = tio->io;
1403 struct mapped_device *md = io->md;
1406 clone->bi_end_io = clone_endio;
1411 tio->old_sector = clone->bi_iter.bi_sector;
1413 if (static_branch_unlikely(&swap_bios_enabled) &&
1414 unlikely(swap_bios_limit(ti, clone))) {
1415 int latch = get_swap_bios();
1417 if (unlikely(latch != md->swap_bios))
1418 __set_swap_bios_limit(md, latch);
1419 down(&md->swap_bios_semaphore);
1422 if (static_branch_unlikely(&zoned_enabled)) {
1424 * Check if the IO needs a special mapping due to zone append
1425 * emulation on zoned target. In this case, dm_zone_map_bio()
1426 * calls the target map operation.
1428 if (unlikely(dm_emulate_zone_append(md)))
1429 r = dm_zone_map_bio(tio);
1434 if (likely(ti->type->map == linear_map))
1435 r = linear_map(ti, clone);
1436 else if (ti->type->map == stripe_map)
1437 r = stripe_map(ti, clone);
1439 r = ti->type->map(ti, clone);
1443 case DM_MAPIO_SUBMITTED:
1444 /* target has assumed ownership of this io */
1445 if (!ti->accounts_remapped_io)
1446 dm_start_io_acct(io, clone);
1448 case DM_MAPIO_REMAPPED:
1449 dm_submit_bio_remap(clone, NULL);
1452 case DM_MAPIO_REQUEUE:
1453 if (static_branch_unlikely(&swap_bios_enabled) &&
1454 unlikely(swap_bios_limit(ti, clone)))
1455 up(&md->swap_bios_semaphore);
1457 if (r == DM_MAPIO_KILL)
1458 dm_io_dec_pending(io, BLK_STS_IOERR);
1460 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1463 DMCRIT("unimplemented target map return value: %d", r);
1468 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1470 struct dm_io *io = ci->io;
1472 if (ci->sector_count > len) {
1474 * Split needed, save the mapped part for accounting.
1475 * NOTE: dm_accept_partial_bio() will update accordingly.
1477 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1479 io->sector_offset = bio_sectors(ci->bio);
1483 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1484 struct dm_target *ti, unsigned int num_bios,
1485 unsigned *len, gfp_t gfp_flag)
1488 int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1;
1490 for (; try < 2; try++) {
1493 if (try && num_bios > 1)
1494 mutex_lock(&ci->io->md->table_devices_lock);
1495 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1496 bio = alloc_tio(ci, ti, bio_nr, len,
1497 try ? GFP_NOIO : GFP_NOWAIT);
1501 bio_list_add(blist, bio);
1503 if (try && num_bios > 1)
1504 mutex_unlock(&ci->io->md->table_devices_lock);
1505 if (bio_nr == num_bios)
1508 while ((bio = bio_list_pop(blist)))
1513 static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1514 unsigned int num_bios, unsigned int *len,
1517 struct bio_list blist = BIO_EMPTY_LIST;
1519 unsigned int ret = 0;
1521 if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1524 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1526 setup_split_accounting(ci, *len);
1529 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1530 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1532 alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag);
1533 while ((clone = bio_list_pop(&blist))) {
1535 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1543 static void __send_empty_flush(struct clone_info *ci)
1545 struct dm_table *t = ci->map;
1546 struct bio flush_bio;
1549 * Use an on-stack bio for this, it's safe since we don't
1550 * need to reference it after submit. It's just used as
1551 * the basis for the clone(s).
1553 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1554 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1556 ci->bio = &flush_bio;
1557 ci->sector_count = 0;
1558 ci->io->tio.clone.bi_iter.bi_size = 0;
1560 for (unsigned int i = 0; i < t->num_targets; i++) {
1562 struct dm_target *ti = dm_table_get_target(t, i);
1564 if (unlikely(ti->num_flush_bios == 0))
1567 atomic_add(ti->num_flush_bios, &ci->io->io_count);
1568 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1570 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1574 * alloc_io() takes one extra reference for submission, so the
1575 * reference won't reach 0 without the following subtraction
1577 atomic_sub(1, &ci->io->io_count);
1579 bio_uninit(ci->bio);
1582 static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1583 unsigned int num_bios, unsigned int max_granularity,
1584 unsigned int max_sectors)
1586 unsigned int len, bios;
1588 len = min_t(sector_t, ci->sector_count,
1589 __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1591 atomic_add(num_bios, &ci->io->io_count);
1592 bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO);
1594 * alloc_io() takes one extra reference for submission, so the
1595 * reference won't reach 0 without the following (+1) subtraction
1597 atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1600 ci->sector_count -= len;
1603 static bool is_abnormal_io(struct bio *bio)
1605 enum req_op op = bio_op(bio);
1607 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1609 case REQ_OP_DISCARD:
1610 case REQ_OP_SECURE_ERASE:
1611 case REQ_OP_WRITE_ZEROES:
1621 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1622 struct dm_target *ti)
1624 unsigned int num_bios = 0;
1625 unsigned int max_granularity = 0;
1626 unsigned int max_sectors = 0;
1627 struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1629 switch (bio_op(ci->bio)) {
1630 case REQ_OP_DISCARD:
1631 num_bios = ti->num_discard_bios;
1632 max_sectors = limits->max_discard_sectors;
1633 if (ti->max_discard_granularity)
1634 max_granularity = max_sectors;
1636 case REQ_OP_SECURE_ERASE:
1637 num_bios = ti->num_secure_erase_bios;
1638 max_sectors = limits->max_secure_erase_sectors;
1639 if (ti->max_secure_erase_granularity)
1640 max_granularity = max_sectors;
1642 case REQ_OP_WRITE_ZEROES:
1643 num_bios = ti->num_write_zeroes_bios;
1644 max_sectors = limits->max_write_zeroes_sectors;
1645 if (ti->max_write_zeroes_granularity)
1646 max_granularity = max_sectors;
1653 * Even though the device advertised support for this type of
1654 * request, that does not mean every target supports it, and
1655 * reconfiguration might also have changed that since the
1656 * check was performed.
1658 if (unlikely(!num_bios))
1659 return BLK_STS_NOTSUPP;
1661 __send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1667 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1668 * associated with this bio, and this bio's bi_private needs to be
1669 * stored in dm_io->data before the reuse.
1671 * bio->bi_private is owned by fs or upper layer, so block layer won't
1672 * touch it after splitting. Meantime it won't be changed by anyone after
1673 * bio is submitted. So this reuse is safe.
1675 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1677 return (struct dm_io **)&bio->bi_private;
1680 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1682 struct dm_io **head = dm_poll_list_head(bio);
1684 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1685 bio->bi_opf |= REQ_DM_POLL_LIST;
1687 * Save .bi_private into dm_io, so that we can reuse
1688 * .bi_private as dm_io list head for storing dm_io list
1690 io->data = bio->bi_private;
1692 /* tell block layer to poll for completion */
1693 bio->bi_cookie = ~BLK_QC_T_NONE;
1698 * bio recursed due to split, reuse original poll list,
1699 * and save bio->bi_private too.
1701 io->data = (*head)->data;
1709 * Select the correct strategy for processing a non-flush bio.
1711 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1714 struct dm_target *ti;
1717 ti = dm_table_find_target(ci->map, ci->sector);
1719 return BLK_STS_IOERR;
1721 if (unlikely(ci->is_abnormal_io))
1722 return __process_abnormal_io(ci, ti);
1725 * Only support bio polling for normal IO, and the target io is
1726 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1728 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1730 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1731 setup_split_accounting(ci, len);
1733 if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1734 if (unlikely(!dm_target_supports_nowait(ti->type)))
1735 return BLK_STS_NOTSUPP;
1737 clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1738 if (unlikely(!clone))
1739 return BLK_STS_AGAIN;
1741 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1746 ci->sector_count -= len;
1751 static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1752 struct dm_table *map, struct bio *bio, bool is_abnormal)
1757 ci->is_abnormal_io = is_abnormal;
1758 ci->submit_as_polled = false;
1759 ci->sector = bio->bi_iter.bi_sector;
1760 ci->sector_count = bio_sectors(bio);
1762 /* Shouldn't happen but sector_count was being set to 0 so... */
1763 if (static_branch_unlikely(&zoned_enabled) &&
1764 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1765 ci->sector_count = 0;
1769 * Entry point to split a bio into clones and submit them to the targets.
1771 static void dm_split_and_process_bio(struct mapped_device *md,
1772 struct dm_table *map, struct bio *bio)
1774 struct clone_info ci;
1776 blk_status_t error = BLK_STS_OK;
1779 is_abnormal = is_abnormal_io(bio);
1780 if (unlikely(is_abnormal)) {
1782 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1783 * otherwise associated queue_limits won't be imposed.
1785 bio = bio_split_to_limits(bio);
1790 /* Only support nowait for normal IO */
1791 if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1792 io = alloc_io(md, bio, GFP_NOWAIT);
1793 if (unlikely(!io)) {
1794 /* Unable to do anything without dm_io. */
1795 bio_wouldblock_error(bio);
1799 io = alloc_io(md, bio, GFP_NOIO);
1801 init_clone_info(&ci, io, map, bio, is_abnormal);
1803 if (bio->bi_opf & REQ_PREFLUSH) {
1804 __send_empty_flush(&ci);
1805 /* dm_io_complete submits any data associated with flush */
1809 error = __split_and_process_bio(&ci);
1810 if (error || !ci.sector_count)
1813 * Remainder must be passed to submit_bio_noacct() so it gets handled
1814 * *after* bios already submitted have been completely processed.
1816 bio_trim(bio, io->sectors, ci.sector_count);
1817 trace_block_split(bio, bio->bi_iter.bi_sector);
1818 bio_inc_remaining(bio);
1819 submit_bio_noacct(bio);
1822 * Drop the extra reference count for non-POLLED bio, and hold one
1823 * reference for POLLED bio, which will be released in dm_poll_bio
1825 * Add every dm_io instance into the dm_io list head which is stored
1826 * in bio->bi_private, so that dm_poll_bio can poll them all.
1828 if (error || !ci.submit_as_polled) {
1830 * In case of submission failure, the extra reference for
1831 * submitting io isn't consumed yet
1834 atomic_dec(&io->io_count);
1835 dm_io_dec_pending(io, error);
1837 dm_queue_poll_io(bio, io);
1840 static void dm_submit_bio(struct bio *bio)
1842 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1844 struct dm_table *map;
1846 map = dm_get_live_table(md, &srcu_idx);
1848 /* If suspended, or map not yet available, queue this IO for later */
1849 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1851 if (bio->bi_opf & REQ_NOWAIT)
1852 bio_wouldblock_error(bio);
1853 else if (bio->bi_opf & REQ_RAHEAD)
1860 dm_split_and_process_bio(md, map, bio);
1862 dm_put_live_table(md, srcu_idx);
1865 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1868 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1870 /* don't poll if the mapped io is done */
1871 if (atomic_read(&io->io_count) > 1)
1872 bio_poll(&io->tio.clone, iob, flags);
1874 /* bio_poll holds the last reference */
1875 return atomic_read(&io->io_count) == 1;
1878 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1881 struct dm_io **head = dm_poll_list_head(bio);
1882 struct dm_io *list = *head;
1883 struct dm_io *tmp = NULL;
1884 struct dm_io *curr, *next;
1886 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1887 if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1890 WARN_ON_ONCE(!list);
1893 * Restore .bi_private before possibly completing dm_io.
1895 * bio_poll() is only possible once @bio has been completely
1896 * submitted via submit_bio_noacct()'s depth-first submission.
1897 * So there is no dm_queue_poll_io() race associated with
1898 * clearing REQ_DM_POLL_LIST here.
1900 bio->bi_opf &= ~REQ_DM_POLL_LIST;
1901 bio->bi_private = list->data;
1903 for (curr = list, next = curr->next; curr; curr = next, next =
1904 curr ? curr->next : NULL) {
1905 if (dm_poll_dm_io(curr, iob, flags)) {
1907 * clone_endio() has already occurred, so no
1908 * error handling is needed here.
1910 __dm_io_dec_pending(curr);
1919 bio->bi_opf |= REQ_DM_POLL_LIST;
1920 /* Reset bio->bi_private to dm_io list head */
1928 *---------------------------------------------------------------
1929 * An IDR is used to keep track of allocated minor numbers.
1930 *---------------------------------------------------------------
1932 static void free_minor(int minor)
1934 spin_lock(&_minor_lock);
1935 idr_remove(&_minor_idr, minor);
1936 spin_unlock(&_minor_lock);
1940 * See if the device with a specific minor # is free.
1942 static int specific_minor(int minor)
1946 if (minor >= (1 << MINORBITS))
1949 idr_preload(GFP_KERNEL);
1950 spin_lock(&_minor_lock);
1952 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1954 spin_unlock(&_minor_lock);
1957 return r == -ENOSPC ? -EBUSY : r;
1961 static int next_free_minor(int *minor)
1965 idr_preload(GFP_KERNEL);
1966 spin_lock(&_minor_lock);
1968 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1970 spin_unlock(&_minor_lock);
1978 static const struct block_device_operations dm_blk_dops;
1979 static const struct block_device_operations dm_rq_blk_dops;
1980 static const struct dax_operations dm_dax_ops;
1982 static void dm_wq_work(struct work_struct *work);
1984 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1985 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1987 dm_destroy_crypto_profile(q->crypto_profile);
1990 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1992 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1995 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1997 static void cleanup_mapped_device(struct mapped_device *md)
2000 destroy_workqueue(md->wq);
2001 dm_free_md_mempools(md->mempools);
2004 dax_remove_host(md->disk);
2005 kill_dax(md->dax_dev);
2006 put_dax(md->dax_dev);
2010 dm_cleanup_zoned_dev(md);
2012 spin_lock(&_minor_lock);
2013 md->disk->private_data = NULL;
2014 spin_unlock(&_minor_lock);
2015 if (dm_get_md_type(md) != DM_TYPE_NONE) {
2016 struct table_device *td;
2019 list_for_each_entry(td, &md->table_devices, list) {
2020 bd_unlink_disk_holder(td->dm_dev.bdev,
2025 * Hold lock to make sure del_gendisk() won't concurrent
2026 * with open/close_table_device().
2028 mutex_lock(&md->table_devices_lock);
2029 del_gendisk(md->disk);
2030 mutex_unlock(&md->table_devices_lock);
2032 dm_queue_destroy_crypto_profile(md->queue);
2036 if (md->pending_io) {
2037 free_percpu(md->pending_io);
2038 md->pending_io = NULL;
2041 cleanup_srcu_struct(&md->io_barrier);
2043 mutex_destroy(&md->suspend_lock);
2044 mutex_destroy(&md->type_lock);
2045 mutex_destroy(&md->table_devices_lock);
2046 mutex_destroy(&md->swap_bios_lock);
2048 dm_mq_cleanup_mapped_device(md);
2052 * Allocate and initialise a blank device with a given minor.
2054 static struct mapped_device *alloc_dev(int minor)
2056 int r, numa_node_id = dm_get_numa_node();
2057 struct mapped_device *md;
2060 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2062 DMERR("unable to allocate device, out of memory.");
2066 if (!try_module_get(THIS_MODULE))
2067 goto bad_module_get;
2069 /* get a minor number for the dev */
2070 if (minor == DM_ANY_MINOR)
2071 r = next_free_minor(&minor);
2073 r = specific_minor(minor);
2077 r = init_srcu_struct(&md->io_barrier);
2079 goto bad_io_barrier;
2081 md->numa_node_id = numa_node_id;
2082 md->init_tio_pdu = false;
2083 md->type = DM_TYPE_NONE;
2084 mutex_init(&md->suspend_lock);
2085 mutex_init(&md->type_lock);
2086 mutex_init(&md->table_devices_lock);
2087 spin_lock_init(&md->deferred_lock);
2088 atomic_set(&md->holders, 1);
2089 atomic_set(&md->open_count, 0);
2090 atomic_set(&md->event_nr, 0);
2091 atomic_set(&md->uevent_seq, 0);
2092 INIT_LIST_HEAD(&md->uevent_list);
2093 INIT_LIST_HEAD(&md->table_devices);
2094 spin_lock_init(&md->uevent_lock);
2097 * default to bio-based until DM table is loaded and md->type
2098 * established. If request-based table is loaded: blk-mq will
2099 * override accordingly.
2101 md->disk = blk_alloc_disk(md->numa_node_id);
2104 md->queue = md->disk->queue;
2106 init_waitqueue_head(&md->wait);
2107 INIT_WORK(&md->work, dm_wq_work);
2108 INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2109 init_waitqueue_head(&md->eventq);
2110 init_completion(&md->kobj_holder.completion);
2112 md->requeue_list = NULL;
2113 md->swap_bios = get_swap_bios();
2114 sema_init(&md->swap_bios_semaphore, md->swap_bios);
2115 mutex_init(&md->swap_bios_lock);
2117 md->disk->major = _major;
2118 md->disk->first_minor = minor;
2119 md->disk->minors = 1;
2120 md->disk->flags |= GENHD_FL_NO_PART;
2121 md->disk->fops = &dm_blk_dops;
2122 md->disk->private_data = md;
2123 sprintf(md->disk->disk_name, "dm-%d", minor);
2125 if (IS_ENABLED(CONFIG_FS_DAX)) {
2126 md->dax_dev = alloc_dax(md, &dm_dax_ops);
2127 if (IS_ERR(md->dax_dev)) {
2131 set_dax_nocache(md->dax_dev);
2132 set_dax_nomc(md->dax_dev);
2133 if (dax_add_host(md->dax_dev, md->disk))
2137 format_dev_t(md->name, MKDEV(_major, minor));
2139 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2143 md->pending_io = alloc_percpu(unsigned long);
2144 if (!md->pending_io)
2147 r = dm_stats_init(&md->stats);
2151 /* Populate the mapping, nobody knows we exist yet */
2152 spin_lock(&_minor_lock);
2153 old_md = idr_replace(&_minor_idr, md, minor);
2154 spin_unlock(&_minor_lock);
2156 BUG_ON(old_md != MINOR_ALLOCED);
2161 cleanup_mapped_device(md);
2165 module_put(THIS_MODULE);
2171 static void unlock_fs(struct mapped_device *md);
2173 static void free_dev(struct mapped_device *md)
2175 int minor = MINOR(disk_devt(md->disk));
2179 cleanup_mapped_device(md);
2181 WARN_ON_ONCE(!list_empty(&md->table_devices));
2182 dm_stats_cleanup(&md->stats);
2185 module_put(THIS_MODULE);
2190 * Bind a table to the device.
2192 static void event_callback(void *context)
2194 unsigned long flags;
2196 struct mapped_device *md = context;
2198 spin_lock_irqsave(&md->uevent_lock, flags);
2199 list_splice_init(&md->uevent_list, &uevents);
2200 spin_unlock_irqrestore(&md->uevent_lock, flags);
2202 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2204 atomic_inc(&md->event_nr);
2205 wake_up(&md->eventq);
2206 dm_issue_global_event();
2210 * Returns old map, which caller must destroy.
2212 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2213 struct queue_limits *limits)
2215 struct dm_table *old_map;
2219 lockdep_assert_held(&md->suspend_lock);
2221 size = dm_table_get_size(t);
2224 * Wipe any geometry if the size of the table changed.
2226 if (size != dm_get_size(md))
2227 memset(&md->geometry, 0, sizeof(md->geometry));
2229 set_capacity(md->disk, size);
2231 dm_table_event_callback(t, event_callback, md);
2233 if (dm_table_request_based(t)) {
2235 * Leverage the fact that request-based DM targets are
2236 * immutable singletons - used to optimize dm_mq_queue_rq.
2238 md->immutable_target = dm_table_get_immutable_target(t);
2241 * There is no need to reload with request-based dm because the
2242 * size of front_pad doesn't change.
2244 * Note for future: If you are to reload bioset, prep-ed
2245 * requests in the queue may refer to bio from the old bioset,
2246 * so you must walk through the queue to unprep.
2248 if (!md->mempools) {
2249 md->mempools = t->mempools;
2254 * The md may already have mempools that need changing.
2255 * If so, reload bioset because front_pad may have changed
2256 * because a different table was loaded.
2258 dm_free_md_mempools(md->mempools);
2259 md->mempools = t->mempools;
2263 ret = dm_table_set_restrictions(t, md->queue, limits);
2265 old_map = ERR_PTR(ret);
2269 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2270 rcu_assign_pointer(md->map, (void *)t);
2271 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2280 * Returns unbound table for the caller to free.
2282 static struct dm_table *__unbind(struct mapped_device *md)
2284 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2289 dm_table_event_callback(map, NULL, NULL);
2290 RCU_INIT_POINTER(md->map, NULL);
2297 * Constructor for a new device.
2299 int dm_create(int minor, struct mapped_device **result)
2301 struct mapped_device *md;
2303 md = alloc_dev(minor);
2307 dm_ima_reset_data(md);
2314 * Functions to manage md->type.
2315 * All are required to hold md->type_lock.
2317 void dm_lock_md_type(struct mapped_device *md)
2319 mutex_lock(&md->type_lock);
2322 void dm_unlock_md_type(struct mapped_device *md)
2324 mutex_unlock(&md->type_lock);
2327 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2329 BUG_ON(!mutex_is_locked(&md->type_lock));
2333 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2338 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2340 return md->immutable_target_type;
2344 * Setup the DM device's queue based on md's type
2346 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2348 enum dm_queue_mode type = dm_table_get_type(t);
2349 struct queue_limits limits;
2350 struct table_device *td;
2354 case DM_TYPE_REQUEST_BASED:
2355 md->disk->fops = &dm_rq_blk_dops;
2356 r = dm_mq_init_request_queue(md, t);
2358 DMERR("Cannot initialize queue for request-based dm mapped device");
2362 case DM_TYPE_BIO_BASED:
2363 case DM_TYPE_DAX_BIO_BASED:
2364 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, md->queue);
2371 r = dm_calculate_queue_limits(t, &limits);
2373 DMERR("Cannot calculate initial queue limits");
2376 r = dm_table_set_restrictions(t, md->queue, &limits);
2381 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2382 * with open_table_device() and close_table_device().
2384 mutex_lock(&md->table_devices_lock);
2385 r = add_disk(md->disk);
2386 mutex_unlock(&md->table_devices_lock);
2391 * Register the holder relationship for devices added before the disk
2394 list_for_each_entry(td, &md->table_devices, list) {
2395 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2397 goto out_undo_holders;
2400 r = dm_sysfs_init(md);
2402 goto out_undo_holders;
2408 list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2409 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2410 mutex_lock(&md->table_devices_lock);
2411 del_gendisk(md->disk);
2412 mutex_unlock(&md->table_devices_lock);
2416 struct mapped_device *dm_get_md(dev_t dev)
2418 struct mapped_device *md;
2419 unsigned int minor = MINOR(dev);
2421 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2424 spin_lock(&_minor_lock);
2426 md = idr_find(&_minor_idr, minor);
2427 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2428 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2434 spin_unlock(&_minor_lock);
2438 EXPORT_SYMBOL_GPL(dm_get_md);
2440 void *dm_get_mdptr(struct mapped_device *md)
2442 return md->interface_ptr;
2445 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2447 md->interface_ptr = ptr;
2450 void dm_get(struct mapped_device *md)
2452 atomic_inc(&md->holders);
2453 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2456 int dm_hold(struct mapped_device *md)
2458 spin_lock(&_minor_lock);
2459 if (test_bit(DMF_FREEING, &md->flags)) {
2460 spin_unlock(&_minor_lock);
2464 spin_unlock(&_minor_lock);
2467 EXPORT_SYMBOL_GPL(dm_hold);
2469 const char *dm_device_name(struct mapped_device *md)
2473 EXPORT_SYMBOL_GPL(dm_device_name);
2475 static void __dm_destroy(struct mapped_device *md, bool wait)
2477 struct dm_table *map;
2482 spin_lock(&_minor_lock);
2483 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2484 set_bit(DMF_FREEING, &md->flags);
2485 spin_unlock(&_minor_lock);
2487 blk_mark_disk_dead(md->disk);
2490 * Take suspend_lock so that presuspend and postsuspend methods
2491 * do not race with internal suspend.
2493 mutex_lock(&md->suspend_lock);
2494 map = dm_get_live_table(md, &srcu_idx);
2495 if (!dm_suspended_md(md)) {
2496 dm_table_presuspend_targets(map);
2497 set_bit(DMF_SUSPENDED, &md->flags);
2498 set_bit(DMF_POST_SUSPENDING, &md->flags);
2499 dm_table_postsuspend_targets(map);
2501 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2502 dm_put_live_table(md, srcu_idx);
2503 mutex_unlock(&md->suspend_lock);
2506 * Rare, but there may be I/O requests still going to complete,
2507 * for example. Wait for all references to disappear.
2508 * No one should increment the reference count of the mapped_device,
2509 * after the mapped_device state becomes DMF_FREEING.
2512 while (atomic_read(&md->holders))
2514 else if (atomic_read(&md->holders))
2515 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2516 dm_device_name(md), atomic_read(&md->holders));
2518 dm_table_destroy(__unbind(md));
2522 void dm_destroy(struct mapped_device *md)
2524 __dm_destroy(md, true);
2527 void dm_destroy_immediate(struct mapped_device *md)
2529 __dm_destroy(md, false);
2532 void dm_put(struct mapped_device *md)
2534 atomic_dec(&md->holders);
2536 EXPORT_SYMBOL_GPL(dm_put);
2538 static bool dm_in_flight_bios(struct mapped_device *md)
2541 unsigned long sum = 0;
2543 for_each_possible_cpu(cpu)
2544 sum += *per_cpu_ptr(md->pending_io, cpu);
2549 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2555 prepare_to_wait(&md->wait, &wait, task_state);
2557 if (!dm_in_flight_bios(md))
2560 if (signal_pending_state(task_state, current)) {
2567 finish_wait(&md->wait, &wait);
2574 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2578 if (!queue_is_mq(md->queue))
2579 return dm_wait_for_bios_completion(md, task_state);
2582 if (!blk_mq_queue_inflight(md->queue))
2585 if (signal_pending_state(task_state, current)) {
2597 * Process the deferred bios
2599 static void dm_wq_work(struct work_struct *work)
2601 struct mapped_device *md = container_of(work, struct mapped_device, work);
2604 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2605 spin_lock_irq(&md->deferred_lock);
2606 bio = bio_list_pop(&md->deferred);
2607 spin_unlock_irq(&md->deferred_lock);
2612 submit_bio_noacct(bio);
2617 static void dm_queue_flush(struct mapped_device *md)
2619 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2620 smp_mb__after_atomic();
2621 queue_work(md->wq, &md->work);
2625 * Swap in a new table, returning the old one for the caller to destroy.
2627 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2629 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2630 struct queue_limits limits;
2633 mutex_lock(&md->suspend_lock);
2635 /* device must be suspended */
2636 if (!dm_suspended_md(md))
2640 * If the new table has no data devices, retain the existing limits.
2641 * This helps multipath with queue_if_no_path if all paths disappear,
2642 * then new I/O is queued based on these limits, and then some paths
2645 if (dm_table_has_no_data_devices(table)) {
2646 live_map = dm_get_live_table_fast(md);
2648 limits = md->queue->limits;
2649 dm_put_live_table_fast(md);
2653 r = dm_calculate_queue_limits(table, &limits);
2660 map = __bind(md, table, &limits);
2661 dm_issue_global_event();
2664 mutex_unlock(&md->suspend_lock);
2669 * Functions to lock and unlock any filesystem running on the
2672 static int lock_fs(struct mapped_device *md)
2676 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2678 r = freeze_bdev(md->disk->part0);
2680 set_bit(DMF_FROZEN, &md->flags);
2684 static void unlock_fs(struct mapped_device *md)
2686 if (!test_bit(DMF_FROZEN, &md->flags))
2688 thaw_bdev(md->disk->part0);
2689 clear_bit(DMF_FROZEN, &md->flags);
2693 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2694 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2695 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2697 * If __dm_suspend returns 0, the device is completely quiescent
2698 * now. There is no request-processing activity. All new requests
2699 * are being added to md->deferred list.
2701 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2702 unsigned int suspend_flags, unsigned int task_state,
2703 int dmf_suspended_flag)
2705 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2706 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2709 lockdep_assert_held(&md->suspend_lock);
2712 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2713 * This flag is cleared before dm_suspend returns.
2716 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2718 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2721 * This gets reverted if there's an error later and the targets
2722 * provide the .presuspend_undo hook.
2724 dm_table_presuspend_targets(map);
2727 * Flush I/O to the device.
2728 * Any I/O submitted after lock_fs() may not be flushed.
2729 * noflush takes precedence over do_lockfs.
2730 * (lock_fs() flushes I/Os and waits for them to complete.)
2732 if (!noflush && do_lockfs) {
2735 dm_table_presuspend_undo_targets(map);
2741 * Here we must make sure that no processes are submitting requests
2742 * to target drivers i.e. no one may be executing
2743 * dm_split_and_process_bio from dm_submit_bio.
2745 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2746 * we take the write lock. To prevent any process from reentering
2747 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2748 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2749 * flush_workqueue(md->wq).
2751 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2753 synchronize_srcu(&md->io_barrier);
2756 * Stop md->queue before flushing md->wq in case request-based
2757 * dm defers requests to md->wq from md->queue.
2759 if (dm_request_based(md))
2760 dm_stop_queue(md->queue);
2762 flush_workqueue(md->wq);
2765 * At this point no more requests are entering target request routines.
2766 * We call dm_wait_for_completion to wait for all existing requests
2769 r = dm_wait_for_completion(md, task_state);
2771 set_bit(dmf_suspended_flag, &md->flags);
2774 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2776 synchronize_srcu(&md->io_barrier);
2778 /* were we interrupted ? */
2782 if (dm_request_based(md))
2783 dm_start_queue(md->queue);
2786 dm_table_presuspend_undo_targets(map);
2787 /* pushback list is already flushed, so skip flush */
2794 * We need to be able to change a mapping table under a mounted
2795 * filesystem. For example we might want to move some data in
2796 * the background. Before the table can be swapped with
2797 * dm_bind_table, dm_suspend must be called to flush any in
2798 * flight bios and ensure that any further io gets deferred.
2801 * Suspend mechanism in request-based dm.
2803 * 1. Flush all I/Os by lock_fs() if needed.
2804 * 2. Stop dispatching any I/O by stopping the request_queue.
2805 * 3. Wait for all in-flight I/Os to be completed or requeued.
2807 * To abort suspend, start the request_queue.
2809 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2811 struct dm_table *map = NULL;
2815 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2817 if (dm_suspended_md(md)) {
2822 if (dm_suspended_internally_md(md)) {
2823 /* already internally suspended, wait for internal resume */
2824 mutex_unlock(&md->suspend_lock);
2825 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2831 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2833 /* avoid deadlock with fs/namespace.c:do_mount() */
2834 suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
2837 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2841 set_bit(DMF_POST_SUSPENDING, &md->flags);
2842 dm_table_postsuspend_targets(map);
2843 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2846 mutex_unlock(&md->suspend_lock);
2850 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2853 int r = dm_table_resume_targets(map);
2862 * Flushing deferred I/Os must be done after targets are resumed
2863 * so that mapping of targets can work correctly.
2864 * Request-based dm is queueing the deferred I/Os in its request_queue.
2866 if (dm_request_based(md))
2867 dm_start_queue(md->queue);
2874 int dm_resume(struct mapped_device *md)
2877 struct dm_table *map = NULL;
2881 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2883 if (!dm_suspended_md(md))
2886 if (dm_suspended_internally_md(md)) {
2887 /* already internally suspended, wait for internal resume */
2888 mutex_unlock(&md->suspend_lock);
2889 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2895 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2896 if (!map || !dm_table_get_size(map))
2899 r = __dm_resume(md, map);
2903 clear_bit(DMF_SUSPENDED, &md->flags);
2905 mutex_unlock(&md->suspend_lock);
2911 * Internal suspend/resume works like userspace-driven suspend. It waits
2912 * until all bios finish and prevents issuing new bios to the target drivers.
2913 * It may be used only from the kernel.
2916 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2918 struct dm_table *map = NULL;
2920 lockdep_assert_held(&md->suspend_lock);
2922 if (md->internal_suspend_count++)
2923 return; /* nested internal suspend */
2925 if (dm_suspended_md(md)) {
2926 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2927 return; /* nest suspend */
2930 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2933 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2934 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2935 * would require changing .presuspend to return an error -- avoid this
2936 * until there is a need for more elaborate variants of internal suspend.
2938 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2939 DMF_SUSPENDED_INTERNALLY);
2941 set_bit(DMF_POST_SUSPENDING, &md->flags);
2942 dm_table_postsuspend_targets(map);
2943 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2946 static void __dm_internal_resume(struct mapped_device *md)
2948 BUG_ON(!md->internal_suspend_count);
2950 if (--md->internal_suspend_count)
2951 return; /* resume from nested internal suspend */
2953 if (dm_suspended_md(md))
2954 goto done; /* resume from nested suspend */
2957 * NOTE: existing callers don't need to call dm_table_resume_targets
2958 * (which may fail -- so best to avoid it for now by passing NULL map)
2960 (void) __dm_resume(md, NULL);
2963 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2964 smp_mb__after_atomic();
2965 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2968 void dm_internal_suspend_noflush(struct mapped_device *md)
2970 mutex_lock(&md->suspend_lock);
2971 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2972 mutex_unlock(&md->suspend_lock);
2974 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2976 void dm_internal_resume(struct mapped_device *md)
2978 mutex_lock(&md->suspend_lock);
2979 __dm_internal_resume(md);
2980 mutex_unlock(&md->suspend_lock);
2982 EXPORT_SYMBOL_GPL(dm_internal_resume);
2985 * Fast variants of internal suspend/resume hold md->suspend_lock,
2986 * which prevents interaction with userspace-driven suspend.
2989 void dm_internal_suspend_fast(struct mapped_device *md)
2991 mutex_lock(&md->suspend_lock);
2992 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2995 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2996 synchronize_srcu(&md->io_barrier);
2997 flush_workqueue(md->wq);
2998 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3000 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3002 void dm_internal_resume_fast(struct mapped_device *md)
3004 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3010 mutex_unlock(&md->suspend_lock);
3012 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3015 *---------------------------------------------------------------
3016 * Event notification.
3017 *---------------------------------------------------------------
3019 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3020 unsigned int cookie, bool need_resize_uevent)
3023 unsigned int noio_flag;
3024 char udev_cookie[DM_COOKIE_LENGTH];
3025 char *envp[3] = { NULL, NULL, NULL };
3026 char **envpp = envp;
3028 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3029 DM_COOKIE_ENV_VAR_NAME, cookie);
3030 *envpp++ = udev_cookie;
3032 if (need_resize_uevent) {
3033 *envpp++ = "RESIZE=1";
3036 noio_flag = memalloc_noio_save();
3038 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3040 memalloc_noio_restore(noio_flag);
3045 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3047 return atomic_add_return(1, &md->uevent_seq);
3050 uint32_t dm_get_event_nr(struct mapped_device *md)
3052 return atomic_read(&md->event_nr);
3055 int dm_wait_event(struct mapped_device *md, int event_nr)
3057 return wait_event_interruptible(md->eventq,
3058 (event_nr != atomic_read(&md->event_nr)));
3061 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3063 unsigned long flags;
3065 spin_lock_irqsave(&md->uevent_lock, flags);
3066 list_add(elist, &md->uevent_list);
3067 spin_unlock_irqrestore(&md->uevent_lock, flags);
3071 * The gendisk is only valid as long as you have a reference
3074 struct gendisk *dm_disk(struct mapped_device *md)
3078 EXPORT_SYMBOL_GPL(dm_disk);
3080 struct kobject *dm_kobject(struct mapped_device *md)
3082 return &md->kobj_holder.kobj;
3085 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3087 struct mapped_device *md;
3089 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3091 spin_lock(&_minor_lock);
3092 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3098 spin_unlock(&_minor_lock);
3103 int dm_suspended_md(struct mapped_device *md)
3105 return test_bit(DMF_SUSPENDED, &md->flags);
3108 static int dm_post_suspending_md(struct mapped_device *md)
3110 return test_bit(DMF_POST_SUSPENDING, &md->flags);
3113 int dm_suspended_internally_md(struct mapped_device *md)
3115 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3118 int dm_test_deferred_remove_flag(struct mapped_device *md)
3120 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3123 int dm_suspended(struct dm_target *ti)
3125 return dm_suspended_md(ti->table->md);
3127 EXPORT_SYMBOL_GPL(dm_suspended);
3129 int dm_post_suspending(struct dm_target *ti)
3131 return dm_post_suspending_md(ti->table->md);
3133 EXPORT_SYMBOL_GPL(dm_post_suspending);
3135 int dm_noflush_suspending(struct dm_target *ti)
3137 return __noflush_suspending(ti->table->md);
3139 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3141 void dm_free_md_mempools(struct dm_md_mempools *pools)
3146 bioset_exit(&pools->bs);
3147 bioset_exit(&pools->io_bs);
3160 struct pr_keys *read_keys;
3161 struct pr_held_reservation *rsv;
3164 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3167 struct mapped_device *md = bdev->bd_disk->private_data;
3168 struct dm_table *table;
3169 struct dm_target *ti;
3170 int ret = -ENOTTY, srcu_idx;
3172 table = dm_get_live_table(md, &srcu_idx);
3173 if (!table || !dm_table_get_size(table))
3176 /* We only support devices that have a single target */
3177 if (table->num_targets != 1)
3179 ti = dm_table_get_target(table, 0);
3181 if (dm_suspended_md(md)) {
3187 if (!ti->type->iterate_devices)
3190 ti->type->iterate_devices(ti, fn, pr);
3193 dm_put_live_table(md, srcu_idx);
3198 * For register / unregister we need to manually call out to every path.
3200 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3201 sector_t start, sector_t len, void *data)
3203 struct dm_pr *pr = data;
3204 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3207 if (!ops || !ops->pr_register) {
3208 pr->ret = -EOPNOTSUPP;
3212 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3225 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3237 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3239 /* Didn't even get to register a path */
3250 /* unregister all paths if we failed to register any path */
3251 pr.old_key = new_key;
3254 pr.fail_early = false;
3255 (void) dm_call_pr(bdev, __dm_pr_register, &pr);
3260 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3261 sector_t start, sector_t len, void *data)
3263 struct dm_pr *pr = data;
3264 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3266 if (!ops || !ops->pr_reserve) {
3267 pr->ret = -EOPNOTSUPP;
3271 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3278 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3285 .fail_early = false,
3290 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3298 * If there is a non-All Registrants type of reservation, the release must be
3299 * sent down the holding path. For the cases where there is no reservation or
3300 * the path is not the holder the device will also return success, so we must
3301 * try each path to make sure we got the correct path.
3303 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3304 sector_t start, sector_t len, void *data)
3306 struct dm_pr *pr = data;
3307 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3309 if (!ops || !ops->pr_release) {
3310 pr->ret = -EOPNOTSUPP;
3314 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3321 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3326 .fail_early = false,
3330 ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3337 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3338 sector_t start, sector_t len, void *data)
3340 struct dm_pr *pr = data;
3341 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3343 if (!ops || !ops->pr_preempt) {
3344 pr->ret = -EOPNOTSUPP;
3348 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3356 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3357 enum pr_type type, bool abort)
3363 .fail_early = false,
3367 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3374 static int dm_pr_clear(struct block_device *bdev, u64 key)
3376 struct mapped_device *md = bdev->bd_disk->private_data;
3377 const struct pr_ops *ops;
3380 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3384 ops = bdev->bd_disk->fops->pr_ops;
3385 if (ops && ops->pr_clear)
3386 r = ops->pr_clear(bdev, key);
3390 dm_unprepare_ioctl(md, srcu_idx);
3394 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3395 sector_t start, sector_t len, void *data)
3397 struct dm_pr *pr = data;
3398 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3400 if (!ops || !ops->pr_read_keys) {
3401 pr->ret = -EOPNOTSUPP;
3405 pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3412 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3419 ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3426 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3427 sector_t start, sector_t len, void *data)
3429 struct dm_pr *pr = data;
3430 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3432 if (!ops || !ops->pr_read_reservation) {
3433 pr->ret = -EOPNOTSUPP;
3437 pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3444 static int dm_pr_read_reservation(struct block_device *bdev,
3445 struct pr_held_reservation *rsv)
3452 ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3459 static const struct pr_ops dm_pr_ops = {
3460 .pr_register = dm_pr_register,
3461 .pr_reserve = dm_pr_reserve,
3462 .pr_release = dm_pr_release,
3463 .pr_preempt = dm_pr_preempt,
3464 .pr_clear = dm_pr_clear,
3465 .pr_read_keys = dm_pr_read_keys,
3466 .pr_read_reservation = dm_pr_read_reservation,
3469 static const struct block_device_operations dm_blk_dops = {
3470 .submit_bio = dm_submit_bio,
3471 .poll_bio = dm_poll_bio,
3472 .open = dm_blk_open,
3473 .release = dm_blk_close,
3474 .ioctl = dm_blk_ioctl,
3475 .getgeo = dm_blk_getgeo,
3476 .report_zones = dm_blk_report_zones,
3477 .pr_ops = &dm_pr_ops,
3478 .owner = THIS_MODULE
3481 static const struct block_device_operations dm_rq_blk_dops = {
3482 .open = dm_blk_open,
3483 .release = dm_blk_close,
3484 .ioctl = dm_blk_ioctl,
3485 .getgeo = dm_blk_getgeo,
3486 .pr_ops = &dm_pr_ops,
3487 .owner = THIS_MODULE
3490 static const struct dax_operations dm_dax_ops = {
3491 .direct_access = dm_dax_direct_access,
3492 .zero_page_range = dm_dax_zero_page_range,
3493 .recovery_write = dm_dax_recovery_write,
3499 module_init(dm_init);
3500 module_exit(dm_exit);
3502 module_param(major, uint, 0);
3503 MODULE_PARM_DESC(major, "The major number of the device mapper");
3505 module_param(reserved_bio_based_ios, uint, 0644);
3506 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3508 module_param(dm_numa_node, int, 0644);
3509 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3511 module_param(swap_bios, int, 0644);
3512 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3514 MODULE_DESCRIPTION(DM_NAME " driver");
3516 MODULE_LICENSE("GPL");