2 * PowerPC64 SLB support.
5 * Based on earlier code written by:
6 * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
7 * Copyright (c) 2001 Dave Engebretsen
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <asm/pgtable.h>
19 #include <asm/mmu_context.h>
21 #include <asm/cputable.h>
22 #include <asm/cacheflush.h>
24 #include <linux/compiler.h>
25 #include <linux/context_tracking.h>
26 #include <linux/mm_types.h>
29 #include <asm/code-patching.h>
32 LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */
33 VMALLOC_INDEX = 1, /* Kernel virtual map (0xd000000000000000) */
34 KSTACK_INDEX = 2, /* Kernel stack map */
37 extern void slb_allocate(unsigned long ea);
39 #define slb_esid_mask(ssize) \
40 (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
42 static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
45 return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
48 static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
51 return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
52 ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
55 static inline void slb_shadow_update(unsigned long ea, int ssize,
59 struct slb_shadow *p = get_slb_shadow();
62 * Clear the ESID first so the entry is not valid while we are
63 * updating it. No write barriers are needed here, provided
64 * we only update the current CPU's SLB shadow buffer.
66 WRITE_ONCE(p->save_area[index].esid, 0);
67 WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags)));
68 WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index)));
71 static inline void slb_shadow_clear(enum slb_index index)
73 WRITE_ONCE(get_slb_shadow()->save_area[index].esid, 0);
76 static inline void create_shadowed_slbe(unsigned long ea, int ssize,
81 * Updating the shadow buffer before writing the SLB ensures
82 * we don't get a stale entry here if we get preempted by PHYP
83 * between these two statements.
85 slb_shadow_update(ea, ssize, flags, index);
87 asm volatile("slbmte %0,%1" :
88 : "r" (mk_vsid_data(ea, ssize, flags)),
89 "r" (mk_esid_data(ea, ssize, index))
93 static void __slb_flush_and_rebolt(void)
95 /* If you change this make sure you change SLB_NUM_BOLTED
96 * and PR KVM appropriately too. */
97 unsigned long linear_llp, vmalloc_llp, lflags, vflags;
98 unsigned long ksp_esid_data, ksp_vsid_data;
100 linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
101 vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
102 lflags = SLB_VSID_KERNEL | linear_llp;
103 vflags = SLB_VSID_KERNEL | vmalloc_llp;
105 ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, KSTACK_INDEX);
106 if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) {
107 ksp_esid_data &= ~SLB_ESID_V;
109 slb_shadow_clear(KSTACK_INDEX);
111 /* Update stack entry; others don't change */
112 slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, KSTACK_INDEX);
114 be64_to_cpu(get_slb_shadow()->save_area[KSTACK_INDEX].vsid);
117 /* We need to do this all in asm, so we're sure we don't touch
118 * the stack between the slbia and rebolting it. */
119 asm volatile("isync\n"
121 /* Slot 1 - first VMALLOC segment */
123 /* Slot 2 - kernel stack */
126 :: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)),
127 "r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, VMALLOC_INDEX)),
133 void slb_flush_and_rebolt(void)
136 WARN_ON(!irqs_disabled());
139 * We can't take a PMU exception in the following code, so hard
140 * disable interrupts.
144 __slb_flush_and_rebolt();
145 get_paca()->slb_cache_ptr = 0;
148 void slb_vmalloc_update(void)
150 unsigned long vflags;
152 vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp;
153 slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
154 slb_flush_and_rebolt();
157 /* Helper function to compare esids. There are four cases to handle.
158 * 1. The system is not 1T segment size capable. Use the GET_ESID compare.
159 * 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
160 * 3. The system is 1T capable, only one of the two addresses is > 1T. This is not a match.
161 * 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
163 static inline int esids_match(unsigned long addr1, unsigned long addr2)
167 /* System is not 1T segment size capable. */
168 if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
169 return (GET_ESID(addr1) == GET_ESID(addr2));
171 esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
172 ((addr2 >> SID_SHIFT_1T) != 0));
174 /* both addresses are < 1T */
175 if (esid_1t_count == 0)
176 return (GET_ESID(addr1) == GET_ESID(addr2));
178 /* One address < 1T, the other > 1T. Not a match */
179 if (esid_1t_count == 1)
182 /* Both addresses are > 1T. */
183 return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
186 /* Flush all user entries from the segment table of the current processor. */
187 void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
189 unsigned long offset;
190 unsigned long slbie_data = 0;
191 unsigned long pc = KSTK_EIP(tsk);
192 unsigned long stack = KSTK_ESP(tsk);
193 unsigned long exec_base;
196 * We need interrupts hard-disabled here, not just soft-disabled,
197 * so that a PMU interrupt can't occur, which might try to access
198 * user memory (to get a stack trace) and possible cause an SLB miss
199 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
202 offset = get_paca()->slb_cache_ptr;
203 if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
204 offset <= SLB_CACHE_ENTRIES) {
206 asm volatile("isync" : : : "memory");
207 for (i = 0; i < offset; i++) {
208 slbie_data = (unsigned long)get_paca()->slb_cache[i]
209 << SID_SHIFT; /* EA */
210 slbie_data |= user_segment_size(slbie_data)
211 << SLBIE_SSIZE_SHIFT;
212 slbie_data |= SLBIE_C; /* C set for user addresses */
213 asm volatile("slbie %0" : : "r" (slbie_data));
215 asm volatile("isync" : : : "memory");
217 __slb_flush_and_rebolt();
220 /* Workaround POWER5 < DD2.1 issue */
221 if (offset == 1 || offset > SLB_CACHE_ENTRIES)
222 asm volatile("slbie %0" : : "r" (slbie_data));
224 get_paca()->slb_cache_ptr = 0;
228 * preload some userspace segments into the SLB.
229 * Almost all 32 and 64bit PowerPC executables are linked at
230 * 0x10000000 so it makes sense to preload this segment.
232 exec_base = 0x10000000;
234 if (is_kernel_addr(pc) || is_kernel_addr(stack) ||
235 is_kernel_addr(exec_base))
240 if (!esids_match(pc, stack))
243 if (!esids_match(pc, exec_base) &&
244 !esids_match(stack, exec_base))
245 slb_allocate(exec_base);
248 static inline void patch_slb_encoding(unsigned int *insn_addr,
253 * This function patches either an li or a cmpldi instruction with
254 * a new immediate value. This relies on the fact that both li
255 * (which is actually addi) and cmpldi both take a 16-bit immediate
256 * value, and it is situated in the same location in the instruction,
257 * ie. bits 16-31 (Big endian bit order) or the lower 16 bits.
258 * The signedness of the immediate operand differs between the two
259 * instructions however this code is only ever patching a small value,
260 * much less than 1 << 15, so we can get away with it.
261 * To patch the value we read the existing instruction, clear the
262 * immediate value, and or in our new value, then write the instruction
265 unsigned int insn = (*insn_addr & 0xffff0000) | immed;
266 patch_instruction(insn_addr, insn);
269 extern u32 slb_miss_kernel_load_linear[];
270 extern u32 slb_miss_kernel_load_io[];
271 extern u32 slb_compare_rr_to_size[];
272 extern u32 slb_miss_kernel_load_vmemmap[];
274 void slb_set_size(u16 size)
276 if (mmu_slb_size == size)
280 patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size);
283 void slb_initialize(void)
285 unsigned long linear_llp, vmalloc_llp, io_llp;
286 unsigned long lflags, vflags;
287 static int slb_encoding_inited;
288 #ifdef CONFIG_SPARSEMEM_VMEMMAP
289 unsigned long vmemmap_llp;
292 /* Prepare our SLB miss handler based on our page size */
293 linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
294 io_llp = mmu_psize_defs[mmu_io_psize].sllp;
295 vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
296 get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
297 #ifdef CONFIG_SPARSEMEM_VMEMMAP
298 vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
300 if (!slb_encoding_inited) {
301 slb_encoding_inited = 1;
302 patch_slb_encoding(slb_miss_kernel_load_linear,
303 SLB_VSID_KERNEL | linear_llp);
304 patch_slb_encoding(slb_miss_kernel_load_io,
305 SLB_VSID_KERNEL | io_llp);
306 patch_slb_encoding(slb_compare_rr_to_size,
309 pr_devel("SLB: linear LLP = %04lx\n", linear_llp);
310 pr_devel("SLB: io LLP = %04lx\n", io_llp);
312 #ifdef CONFIG_SPARSEMEM_VMEMMAP
313 patch_slb_encoding(slb_miss_kernel_load_vmemmap,
314 SLB_VSID_KERNEL | vmemmap_llp);
315 pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
319 get_paca()->stab_rr = SLB_NUM_BOLTED;
321 lflags = SLB_VSID_KERNEL | linear_llp;
322 vflags = SLB_VSID_KERNEL | vmalloc_llp;
324 /* Invalidate the entire SLB (even entry 0) & all the ERATS */
325 asm volatile("isync":::"memory");
326 asm volatile("slbmte %0,%0"::"r" (0) : "memory");
327 asm volatile("isync; slbia; isync":::"memory");
328 create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
329 create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
331 /* For the boot cpu, we're running on the stack in init_thread_union,
332 * which is in the first segment of the linear mapping, and also
333 * get_paca()->kstack hasn't been initialized yet.
334 * For secondary cpus, we need to bolt the kernel stack entry now.
336 slb_shadow_clear(KSTACK_INDEX);
337 if (raw_smp_processor_id() != boot_cpuid &&
338 (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
339 create_shadowed_slbe(get_paca()->kstack,
340 mmu_kernel_ssize, lflags, KSTACK_INDEX);
342 asm volatile("isync":::"memory");
345 static void insert_slb_entry(unsigned long vsid, unsigned long ea,
346 int bpsize, int ssize)
348 unsigned long flags, vsid_data, esid_data;
349 enum slb_index index;
353 * We are irq disabled, hence should be safe to access PACA.
355 VM_WARN_ON(!irqs_disabled());
358 * We can't take a PMU exception in the following code, so hard
359 * disable interrupts.
363 index = get_paca()->stab_rr;
366 * simple round-robin replacement of slb starting at SLB_NUM_BOLTED.
368 if (index < (mmu_slb_size - 1))
371 index = SLB_NUM_BOLTED;
373 get_paca()->stab_rr = index;
375 flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
376 vsid_data = (vsid << slb_vsid_shift(ssize)) | flags |
377 ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
378 esid_data = mk_esid_data(ea, ssize, index);
381 * No need for an isync before or after this slbmte. The exception
382 * we enter with and the rfid we exit with are context synchronizing.
383 * Also we only handle user segments here.
385 asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data)
389 * Now update slb cache entries
391 slb_cache_index = get_paca()->slb_cache_ptr;
392 if (slb_cache_index < SLB_CACHE_ENTRIES) {
394 * We have space in slb cache for optimized switch_slb().
395 * Top 36 bits from esid_data as per ISA
397 get_paca()->slb_cache[slb_cache_index++] = esid_data >> 28;
398 get_paca()->slb_cache_ptr++;
401 * Our cache is full and the current cache content strictly
402 * doesn't indicate the active SLB conents. Bump the ptr
403 * so that switch_slb() will ignore the cache.
405 get_paca()->slb_cache_ptr = SLB_CACHE_ENTRIES + 1;
409 static void handle_multi_context_slb_miss(int context_id, unsigned long ea)
411 struct mm_struct *mm = current->mm;
416 * We are always above 1TB, hence use high user segment size.
418 vsid = get_vsid(context_id, ea, mmu_highuser_ssize);
419 bpsize = get_slice_psize(mm, ea);
420 insert_slb_entry(vsid, ea, bpsize, mmu_highuser_ssize);
423 void slb_miss_large_addr(struct pt_regs *regs)
425 enum ctx_state prev_state = exception_enter();
426 unsigned long ea = regs->dar;
429 if (REGION_ID(ea) != USER_REGION_ID)
433 * Are we beyound what the page table layout supports ?
435 if ((ea & ~REGION_MASK) >= H_PGTABLE_RANGE)
438 /* Lower address should have been handled by asm code */
439 if (ea < (1UL << MAX_EA_BITS_PER_CONTEXT))
443 * consider this as bad access if we take a SLB miss
444 * on an address above addr limit.
446 if (ea >= current->mm->context.slb_addr_limit)
449 context = get_ea_context(¤t->mm->context, ea);
453 handle_multi_context_slb_miss(context, ea);
454 exception_exit(prev_state);
459 _exception(SIGSEGV, regs, SEGV_BNDERR, ea);
461 bad_page_fault(regs, ea, SIGSEGV);
462 exception_exit(prev_state);