]> Git Repo - linux.git/blob - mm/memory.c
mm: return an ERR_PTR from __filemap_get_folio
[linux.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh ([email protected])
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              ([email protected])
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80
81 #include <trace/events/kmem.h>
82
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107
108 /*
109  * A number of key systems in x86 including ioremap() rely on the assumption
110  * that high_memory defines the upper bound on direct map memory, then end
111  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
112  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
113  * and ZONE_HIGHMEM.
114  */
115 void *high_memory;
116 EXPORT_SYMBOL(high_memory);
117
118 /*
119  * Randomize the address space (stacks, mmaps, brk, etc.).
120  *
121  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122  *   as ancient (libc5 based) binaries can segfault. )
123  */
124 int randomize_va_space __read_mostly =
125 #ifdef CONFIG_COMPAT_BRK
126                                         1;
127 #else
128                                         2;
129 #endif
130
131 #ifndef arch_wants_old_prefaulted_pte
132 static inline bool arch_wants_old_prefaulted_pte(void)
133 {
134         /*
135          * Transitioning a PTE from 'old' to 'young' can be expensive on
136          * some architectures, even if it's performed in hardware. By
137          * default, "false" means prefaulted entries will be 'young'.
138          */
139         return false;
140 }
141 #endif
142
143 static int __init disable_randmaps(char *s)
144 {
145         randomize_va_space = 0;
146         return 1;
147 }
148 __setup("norandmaps", disable_randmaps);
149
150 unsigned long zero_pfn __read_mostly;
151 EXPORT_SYMBOL(zero_pfn);
152
153 unsigned long highest_memmap_pfn __read_mostly;
154
155 /*
156  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
157  */
158 static int __init init_zero_pfn(void)
159 {
160         zero_pfn = page_to_pfn(ZERO_PAGE(0));
161         return 0;
162 }
163 early_initcall(init_zero_pfn);
164
165 void mm_trace_rss_stat(struct mm_struct *mm, int member)
166 {
167         trace_rss_stat(mm, member);
168 }
169
170 /*
171  * Note: this doesn't free the actual pages themselves. That
172  * has been handled earlier when unmapping all the memory regions.
173  */
174 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
175                            unsigned long addr)
176 {
177         pgtable_t token = pmd_pgtable(*pmd);
178         pmd_clear(pmd);
179         pte_free_tlb(tlb, token, addr);
180         mm_dec_nr_ptes(tlb->mm);
181 }
182
183 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
184                                 unsigned long addr, unsigned long end,
185                                 unsigned long floor, unsigned long ceiling)
186 {
187         pmd_t *pmd;
188         unsigned long next;
189         unsigned long start;
190
191         start = addr;
192         pmd = pmd_offset(pud, addr);
193         do {
194                 next = pmd_addr_end(addr, end);
195                 if (pmd_none_or_clear_bad(pmd))
196                         continue;
197                 free_pte_range(tlb, pmd, addr);
198         } while (pmd++, addr = next, addr != end);
199
200         start &= PUD_MASK;
201         if (start < floor)
202                 return;
203         if (ceiling) {
204                 ceiling &= PUD_MASK;
205                 if (!ceiling)
206                         return;
207         }
208         if (end - 1 > ceiling - 1)
209                 return;
210
211         pmd = pmd_offset(pud, start);
212         pud_clear(pud);
213         pmd_free_tlb(tlb, pmd, start);
214         mm_dec_nr_pmds(tlb->mm);
215 }
216
217 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
218                                 unsigned long addr, unsigned long end,
219                                 unsigned long floor, unsigned long ceiling)
220 {
221         pud_t *pud;
222         unsigned long next;
223         unsigned long start;
224
225         start = addr;
226         pud = pud_offset(p4d, addr);
227         do {
228                 next = pud_addr_end(addr, end);
229                 if (pud_none_or_clear_bad(pud))
230                         continue;
231                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
232         } while (pud++, addr = next, addr != end);
233
234         start &= P4D_MASK;
235         if (start < floor)
236                 return;
237         if (ceiling) {
238                 ceiling &= P4D_MASK;
239                 if (!ceiling)
240                         return;
241         }
242         if (end - 1 > ceiling - 1)
243                 return;
244
245         pud = pud_offset(p4d, start);
246         p4d_clear(p4d);
247         pud_free_tlb(tlb, pud, start);
248         mm_dec_nr_puds(tlb->mm);
249 }
250
251 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
252                                 unsigned long addr, unsigned long end,
253                                 unsigned long floor, unsigned long ceiling)
254 {
255         p4d_t *p4d;
256         unsigned long next;
257         unsigned long start;
258
259         start = addr;
260         p4d = p4d_offset(pgd, addr);
261         do {
262                 next = p4d_addr_end(addr, end);
263                 if (p4d_none_or_clear_bad(p4d))
264                         continue;
265                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
266         } while (p4d++, addr = next, addr != end);
267
268         start &= PGDIR_MASK;
269         if (start < floor)
270                 return;
271         if (ceiling) {
272                 ceiling &= PGDIR_MASK;
273                 if (!ceiling)
274                         return;
275         }
276         if (end - 1 > ceiling - 1)
277                 return;
278
279         p4d = p4d_offset(pgd, start);
280         pgd_clear(pgd);
281         p4d_free_tlb(tlb, p4d, start);
282 }
283
284 /*
285  * This function frees user-level page tables of a process.
286  */
287 void free_pgd_range(struct mmu_gather *tlb,
288                         unsigned long addr, unsigned long end,
289                         unsigned long floor, unsigned long ceiling)
290 {
291         pgd_t *pgd;
292         unsigned long next;
293
294         /*
295          * The next few lines have given us lots of grief...
296          *
297          * Why are we testing PMD* at this top level?  Because often
298          * there will be no work to do at all, and we'd prefer not to
299          * go all the way down to the bottom just to discover that.
300          *
301          * Why all these "- 1"s?  Because 0 represents both the bottom
302          * of the address space and the top of it (using -1 for the
303          * top wouldn't help much: the masks would do the wrong thing).
304          * The rule is that addr 0 and floor 0 refer to the bottom of
305          * the address space, but end 0 and ceiling 0 refer to the top
306          * Comparisons need to use "end - 1" and "ceiling - 1" (though
307          * that end 0 case should be mythical).
308          *
309          * Wherever addr is brought up or ceiling brought down, we must
310          * be careful to reject "the opposite 0" before it confuses the
311          * subsequent tests.  But what about where end is brought down
312          * by PMD_SIZE below? no, end can't go down to 0 there.
313          *
314          * Whereas we round start (addr) and ceiling down, by different
315          * masks at different levels, in order to test whether a table
316          * now has no other vmas using it, so can be freed, we don't
317          * bother to round floor or end up - the tests don't need that.
318          */
319
320         addr &= PMD_MASK;
321         if (addr < floor) {
322                 addr += PMD_SIZE;
323                 if (!addr)
324                         return;
325         }
326         if (ceiling) {
327                 ceiling &= PMD_MASK;
328                 if (!ceiling)
329                         return;
330         }
331         if (end - 1 > ceiling - 1)
332                 end -= PMD_SIZE;
333         if (addr > end - 1)
334                 return;
335         /*
336          * We add page table cache pages with PAGE_SIZE,
337          * (see pte_free_tlb()), flush the tlb if we need
338          */
339         tlb_change_page_size(tlb, PAGE_SIZE);
340         pgd = pgd_offset(tlb->mm, addr);
341         do {
342                 next = pgd_addr_end(addr, end);
343                 if (pgd_none_or_clear_bad(pgd))
344                         continue;
345                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
346         } while (pgd++, addr = next, addr != end);
347 }
348
349 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
350                    struct vm_area_struct *vma, unsigned long floor,
351                    unsigned long ceiling)
352 {
353         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
354
355         do {
356                 unsigned long addr = vma->vm_start;
357                 struct vm_area_struct *next;
358
359                 /*
360                  * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
361                  * be 0.  This will underflow and is okay.
362                  */
363                 next = mas_find(&mas, ceiling - 1);
364
365                 /*
366                  * Hide vma from rmap and truncate_pagecache before freeing
367                  * pgtables
368                  */
369                 unlink_anon_vmas(vma);
370                 unlink_file_vma(vma);
371
372                 if (is_vm_hugetlb_page(vma)) {
373                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
374                                 floor, next ? next->vm_start : ceiling);
375                 } else {
376                         /*
377                          * Optimization: gather nearby vmas into one call down
378                          */
379                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
380                                && !is_vm_hugetlb_page(next)) {
381                                 vma = next;
382                                 next = mas_find(&mas, ceiling - 1);
383                                 unlink_anon_vmas(vma);
384                                 unlink_file_vma(vma);
385                         }
386                         free_pgd_range(tlb, addr, vma->vm_end,
387                                 floor, next ? next->vm_start : ceiling);
388                 }
389                 vma = next;
390         } while (vma);
391 }
392
393 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
394 {
395         spinlock_t *ptl = pmd_lock(mm, pmd);
396
397         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
398                 mm_inc_nr_ptes(mm);
399                 /*
400                  * Ensure all pte setup (eg. pte page lock and page clearing) are
401                  * visible before the pte is made visible to other CPUs by being
402                  * put into page tables.
403                  *
404                  * The other side of the story is the pointer chasing in the page
405                  * table walking code (when walking the page table without locking;
406                  * ie. most of the time). Fortunately, these data accesses consist
407                  * of a chain of data-dependent loads, meaning most CPUs (alpha
408                  * being the notable exception) will already guarantee loads are
409                  * seen in-order. See the alpha page table accessors for the
410                  * smp_rmb() barriers in page table walking code.
411                  */
412                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
413                 pmd_populate(mm, pmd, *pte);
414                 *pte = NULL;
415         }
416         spin_unlock(ptl);
417 }
418
419 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
420 {
421         pgtable_t new = pte_alloc_one(mm);
422         if (!new)
423                 return -ENOMEM;
424
425         pmd_install(mm, pmd, &new);
426         if (new)
427                 pte_free(mm, new);
428         return 0;
429 }
430
431 int __pte_alloc_kernel(pmd_t *pmd)
432 {
433         pte_t *new = pte_alloc_one_kernel(&init_mm);
434         if (!new)
435                 return -ENOMEM;
436
437         spin_lock(&init_mm.page_table_lock);
438         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
439                 smp_wmb(); /* See comment in pmd_install() */
440                 pmd_populate_kernel(&init_mm, pmd, new);
441                 new = NULL;
442         }
443         spin_unlock(&init_mm.page_table_lock);
444         if (new)
445                 pte_free_kernel(&init_mm, new);
446         return 0;
447 }
448
449 static inline void init_rss_vec(int *rss)
450 {
451         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
452 }
453
454 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
455 {
456         int i;
457
458         if (current->mm == mm)
459                 sync_mm_rss(mm);
460         for (i = 0; i < NR_MM_COUNTERS; i++)
461                 if (rss[i])
462                         add_mm_counter(mm, i, rss[i]);
463 }
464
465 /*
466  * This function is called to print an error when a bad pte
467  * is found. For example, we might have a PFN-mapped pte in
468  * a region that doesn't allow it.
469  *
470  * The calling function must still handle the error.
471  */
472 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
473                           pte_t pte, struct page *page)
474 {
475         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
476         p4d_t *p4d = p4d_offset(pgd, addr);
477         pud_t *pud = pud_offset(p4d, addr);
478         pmd_t *pmd = pmd_offset(pud, addr);
479         struct address_space *mapping;
480         pgoff_t index;
481         static unsigned long resume;
482         static unsigned long nr_shown;
483         static unsigned long nr_unshown;
484
485         /*
486          * Allow a burst of 60 reports, then keep quiet for that minute;
487          * or allow a steady drip of one report per second.
488          */
489         if (nr_shown == 60) {
490                 if (time_before(jiffies, resume)) {
491                         nr_unshown++;
492                         return;
493                 }
494                 if (nr_unshown) {
495                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
496                                  nr_unshown);
497                         nr_unshown = 0;
498                 }
499                 nr_shown = 0;
500         }
501         if (nr_shown++ == 0)
502                 resume = jiffies + 60 * HZ;
503
504         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
505         index = linear_page_index(vma, addr);
506
507         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
508                  current->comm,
509                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
510         if (page)
511                 dump_page(page, "bad pte");
512         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
513                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
514         pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
515                  vma->vm_file,
516                  vma->vm_ops ? vma->vm_ops->fault : NULL,
517                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
518                  mapping ? mapping->a_ops->read_folio : NULL);
519         dump_stack();
520         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
521 }
522
523 /*
524  * vm_normal_page -- This function gets the "struct page" associated with a pte.
525  *
526  * "Special" mappings do not wish to be associated with a "struct page" (either
527  * it doesn't exist, or it exists but they don't want to touch it). In this
528  * case, NULL is returned here. "Normal" mappings do have a struct page.
529  *
530  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
531  * pte bit, in which case this function is trivial. Secondly, an architecture
532  * may not have a spare pte bit, which requires a more complicated scheme,
533  * described below.
534  *
535  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
536  * special mapping (even if there are underlying and valid "struct pages").
537  * COWed pages of a VM_PFNMAP are always normal.
538  *
539  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
540  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
541  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
542  * mapping will always honor the rule
543  *
544  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
545  *
546  * And for normal mappings this is false.
547  *
548  * This restricts such mappings to be a linear translation from virtual address
549  * to pfn. To get around this restriction, we allow arbitrary mappings so long
550  * as the vma is not a COW mapping; in that case, we know that all ptes are
551  * special (because none can have been COWed).
552  *
553  *
554  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
555  *
556  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
557  * page" backing, however the difference is that _all_ pages with a struct
558  * page (that is, those where pfn_valid is true) are refcounted and considered
559  * normal pages by the VM. The disadvantage is that pages are refcounted
560  * (which can be slower and simply not an option for some PFNMAP users). The
561  * advantage is that we don't have to follow the strict linearity rule of
562  * PFNMAP mappings in order to support COWable mappings.
563  *
564  */
565 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
566                             pte_t pte)
567 {
568         unsigned long pfn = pte_pfn(pte);
569
570         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
571                 if (likely(!pte_special(pte)))
572                         goto check_pfn;
573                 if (vma->vm_ops && vma->vm_ops->find_special_page)
574                         return vma->vm_ops->find_special_page(vma, addr);
575                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
576                         return NULL;
577                 if (is_zero_pfn(pfn))
578                         return NULL;
579                 if (pte_devmap(pte))
580                 /*
581                  * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
582                  * and will have refcounts incremented on their struct pages
583                  * when they are inserted into PTEs, thus they are safe to
584                  * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
585                  * do not have refcounts. Example of legacy ZONE_DEVICE is
586                  * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
587                  */
588                         return NULL;
589
590                 print_bad_pte(vma, addr, pte, NULL);
591                 return NULL;
592         }
593
594         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
595
596         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
597                 if (vma->vm_flags & VM_MIXEDMAP) {
598                         if (!pfn_valid(pfn))
599                                 return NULL;
600                         goto out;
601                 } else {
602                         unsigned long off;
603                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
604                         if (pfn == vma->vm_pgoff + off)
605                                 return NULL;
606                         if (!is_cow_mapping(vma->vm_flags))
607                                 return NULL;
608                 }
609         }
610
611         if (is_zero_pfn(pfn))
612                 return NULL;
613
614 check_pfn:
615         if (unlikely(pfn > highest_memmap_pfn)) {
616                 print_bad_pte(vma, addr, pte, NULL);
617                 return NULL;
618         }
619
620         /*
621          * NOTE! We still have PageReserved() pages in the page tables.
622          * eg. VDSO mappings can cause them to exist.
623          */
624 out:
625         return pfn_to_page(pfn);
626 }
627
628 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
629                             pte_t pte)
630 {
631         struct page *page = vm_normal_page(vma, addr, pte);
632
633         if (page)
634                 return page_folio(page);
635         return NULL;
636 }
637
638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
639 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
640                                 pmd_t pmd)
641 {
642         unsigned long pfn = pmd_pfn(pmd);
643
644         /*
645          * There is no pmd_special() but there may be special pmds, e.g.
646          * in a direct-access (dax) mapping, so let's just replicate the
647          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
648          */
649         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
650                 if (vma->vm_flags & VM_MIXEDMAP) {
651                         if (!pfn_valid(pfn))
652                                 return NULL;
653                         goto out;
654                 } else {
655                         unsigned long off;
656                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
657                         if (pfn == vma->vm_pgoff + off)
658                                 return NULL;
659                         if (!is_cow_mapping(vma->vm_flags))
660                                 return NULL;
661                 }
662         }
663
664         if (pmd_devmap(pmd))
665                 return NULL;
666         if (is_huge_zero_pmd(pmd))
667                 return NULL;
668         if (unlikely(pfn > highest_memmap_pfn))
669                 return NULL;
670
671         /*
672          * NOTE! We still have PageReserved() pages in the page tables.
673          * eg. VDSO mappings can cause them to exist.
674          */
675 out:
676         return pfn_to_page(pfn);
677 }
678 #endif
679
680 static void restore_exclusive_pte(struct vm_area_struct *vma,
681                                   struct page *page, unsigned long address,
682                                   pte_t *ptep)
683 {
684         pte_t pte;
685         swp_entry_t entry;
686
687         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
688         if (pte_swp_soft_dirty(*ptep))
689                 pte = pte_mksoft_dirty(pte);
690
691         entry = pte_to_swp_entry(*ptep);
692         if (pte_swp_uffd_wp(*ptep))
693                 pte = pte_mkuffd_wp(pte);
694         else if (is_writable_device_exclusive_entry(entry))
695                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
696
697         VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
698
699         /*
700          * No need to take a page reference as one was already
701          * created when the swap entry was made.
702          */
703         if (PageAnon(page))
704                 page_add_anon_rmap(page, vma, address, RMAP_NONE);
705         else
706                 /*
707                  * Currently device exclusive access only supports anonymous
708                  * memory so the entry shouldn't point to a filebacked page.
709                  */
710                 WARN_ON_ONCE(1);
711
712         set_pte_at(vma->vm_mm, address, ptep, pte);
713
714         /*
715          * No need to invalidate - it was non-present before. However
716          * secondary CPUs may have mappings that need invalidating.
717          */
718         update_mmu_cache(vma, address, ptep);
719 }
720
721 /*
722  * Tries to restore an exclusive pte if the page lock can be acquired without
723  * sleeping.
724  */
725 static int
726 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
727                         unsigned long addr)
728 {
729         swp_entry_t entry = pte_to_swp_entry(*src_pte);
730         struct page *page = pfn_swap_entry_to_page(entry);
731
732         if (trylock_page(page)) {
733                 restore_exclusive_pte(vma, page, addr, src_pte);
734                 unlock_page(page);
735                 return 0;
736         }
737
738         return -EBUSY;
739 }
740
741 /*
742  * copy one vm_area from one task to the other. Assumes the page tables
743  * already present in the new task to be cleared in the whole range
744  * covered by this vma.
745  */
746
747 static unsigned long
748 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
749                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
750                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
751 {
752         unsigned long vm_flags = dst_vma->vm_flags;
753         pte_t pte = *src_pte;
754         struct page *page;
755         swp_entry_t entry = pte_to_swp_entry(pte);
756
757         if (likely(!non_swap_entry(entry))) {
758                 if (swap_duplicate(entry) < 0)
759                         return -EIO;
760
761                 /* make sure dst_mm is on swapoff's mmlist. */
762                 if (unlikely(list_empty(&dst_mm->mmlist))) {
763                         spin_lock(&mmlist_lock);
764                         if (list_empty(&dst_mm->mmlist))
765                                 list_add(&dst_mm->mmlist,
766                                                 &src_mm->mmlist);
767                         spin_unlock(&mmlist_lock);
768                 }
769                 /* Mark the swap entry as shared. */
770                 if (pte_swp_exclusive(*src_pte)) {
771                         pte = pte_swp_clear_exclusive(*src_pte);
772                         set_pte_at(src_mm, addr, src_pte, pte);
773                 }
774                 rss[MM_SWAPENTS]++;
775         } else if (is_migration_entry(entry)) {
776                 page = pfn_swap_entry_to_page(entry);
777
778                 rss[mm_counter(page)]++;
779
780                 if (!is_readable_migration_entry(entry) &&
781                                 is_cow_mapping(vm_flags)) {
782                         /*
783                          * COW mappings require pages in both parent and child
784                          * to be set to read. A previously exclusive entry is
785                          * now shared.
786                          */
787                         entry = make_readable_migration_entry(
788                                                         swp_offset(entry));
789                         pte = swp_entry_to_pte(entry);
790                         if (pte_swp_soft_dirty(*src_pte))
791                                 pte = pte_swp_mksoft_dirty(pte);
792                         if (pte_swp_uffd_wp(*src_pte))
793                                 pte = pte_swp_mkuffd_wp(pte);
794                         set_pte_at(src_mm, addr, src_pte, pte);
795                 }
796         } else if (is_device_private_entry(entry)) {
797                 page = pfn_swap_entry_to_page(entry);
798
799                 /*
800                  * Update rss count even for unaddressable pages, as
801                  * they should treated just like normal pages in this
802                  * respect.
803                  *
804                  * We will likely want to have some new rss counters
805                  * for unaddressable pages, at some point. But for now
806                  * keep things as they are.
807                  */
808                 get_page(page);
809                 rss[mm_counter(page)]++;
810                 /* Cannot fail as these pages cannot get pinned. */
811                 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
812
813                 /*
814                  * We do not preserve soft-dirty information, because so
815                  * far, checkpoint/restore is the only feature that
816                  * requires that. And checkpoint/restore does not work
817                  * when a device driver is involved (you cannot easily
818                  * save and restore device driver state).
819                  */
820                 if (is_writable_device_private_entry(entry) &&
821                     is_cow_mapping(vm_flags)) {
822                         entry = make_readable_device_private_entry(
823                                                         swp_offset(entry));
824                         pte = swp_entry_to_pte(entry);
825                         if (pte_swp_uffd_wp(*src_pte))
826                                 pte = pte_swp_mkuffd_wp(pte);
827                         set_pte_at(src_mm, addr, src_pte, pte);
828                 }
829         } else if (is_device_exclusive_entry(entry)) {
830                 /*
831                  * Make device exclusive entries present by restoring the
832                  * original entry then copying as for a present pte. Device
833                  * exclusive entries currently only support private writable
834                  * (ie. COW) mappings.
835                  */
836                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
837                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
838                         return -EBUSY;
839                 return -ENOENT;
840         } else if (is_pte_marker_entry(entry)) {
841                 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
842                         set_pte_at(dst_mm, addr, dst_pte, pte);
843                 return 0;
844         }
845         if (!userfaultfd_wp(dst_vma))
846                 pte = pte_swp_clear_uffd_wp(pte);
847         set_pte_at(dst_mm, addr, dst_pte, pte);
848         return 0;
849 }
850
851 /*
852  * Copy a present and normal page.
853  *
854  * NOTE! The usual case is that this isn't required;
855  * instead, the caller can just increase the page refcount
856  * and re-use the pte the traditional way.
857  *
858  * And if we need a pre-allocated page but don't yet have
859  * one, return a negative error to let the preallocation
860  * code know so that it can do so outside the page table
861  * lock.
862  */
863 static inline int
864 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
865                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
866                   struct folio **prealloc, struct page *page)
867 {
868         struct folio *new_folio;
869         pte_t pte;
870
871         new_folio = *prealloc;
872         if (!new_folio)
873                 return -EAGAIN;
874
875         /*
876          * We have a prealloc page, all good!  Take it
877          * over and copy the page & arm it.
878          */
879         *prealloc = NULL;
880         copy_user_highpage(&new_folio->page, page, addr, src_vma);
881         __folio_mark_uptodate(new_folio);
882         folio_add_new_anon_rmap(new_folio, dst_vma, addr);
883         folio_add_lru_vma(new_folio, dst_vma);
884         rss[MM_ANONPAGES]++;
885
886         /* All done, just insert the new page copy in the child */
887         pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
888         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
889         if (userfaultfd_pte_wp(dst_vma, *src_pte))
890                 /* Uffd-wp needs to be delivered to dest pte as well */
891                 pte = pte_mkuffd_wp(pte);
892         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
893         return 0;
894 }
895
896 /*
897  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
898  * is required to copy this pte.
899  */
900 static inline int
901 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
902                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
903                  struct folio **prealloc)
904 {
905         struct mm_struct *src_mm = src_vma->vm_mm;
906         unsigned long vm_flags = src_vma->vm_flags;
907         pte_t pte = *src_pte;
908         struct page *page;
909         struct folio *folio;
910
911         page = vm_normal_page(src_vma, addr, pte);
912         if (page)
913                 folio = page_folio(page);
914         if (page && folio_test_anon(folio)) {
915                 /*
916                  * If this page may have been pinned by the parent process,
917                  * copy the page immediately for the child so that we'll always
918                  * guarantee the pinned page won't be randomly replaced in the
919                  * future.
920                  */
921                 folio_get(folio);
922                 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
923                         /* Page may be pinned, we have to copy. */
924                         folio_put(folio);
925                         return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
926                                                  addr, rss, prealloc, page);
927                 }
928                 rss[MM_ANONPAGES]++;
929         } else if (page) {
930                 folio_get(folio);
931                 page_dup_file_rmap(page, false);
932                 rss[mm_counter_file(page)]++;
933         }
934
935         /*
936          * If it's a COW mapping, write protect it both
937          * in the parent and the child
938          */
939         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
940                 ptep_set_wrprotect(src_mm, addr, src_pte);
941                 pte = pte_wrprotect(pte);
942         }
943         VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
944
945         /*
946          * If it's a shared mapping, mark it clean in
947          * the child
948          */
949         if (vm_flags & VM_SHARED)
950                 pte = pte_mkclean(pte);
951         pte = pte_mkold(pte);
952
953         if (!userfaultfd_wp(dst_vma))
954                 pte = pte_clear_uffd_wp(pte);
955
956         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
957         return 0;
958 }
959
960 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
961                 struct vm_area_struct *vma, unsigned long addr)
962 {
963         struct folio *new_folio;
964
965         new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
966         if (!new_folio)
967                 return NULL;
968
969         if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
970                 folio_put(new_folio);
971                 return NULL;
972         }
973         folio_throttle_swaprate(new_folio, GFP_KERNEL);
974
975         return new_folio;
976 }
977
978 static int
979 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
980                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
981                unsigned long end)
982 {
983         struct mm_struct *dst_mm = dst_vma->vm_mm;
984         struct mm_struct *src_mm = src_vma->vm_mm;
985         pte_t *orig_src_pte, *orig_dst_pte;
986         pte_t *src_pte, *dst_pte;
987         spinlock_t *src_ptl, *dst_ptl;
988         int progress, ret = 0;
989         int rss[NR_MM_COUNTERS];
990         swp_entry_t entry = (swp_entry_t){0};
991         struct folio *prealloc = NULL;
992
993 again:
994         progress = 0;
995         init_rss_vec(rss);
996
997         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
998         if (!dst_pte) {
999                 ret = -ENOMEM;
1000                 goto out;
1001         }
1002         src_pte = pte_offset_map(src_pmd, addr);
1003         src_ptl = pte_lockptr(src_mm, src_pmd);
1004         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1005         orig_src_pte = src_pte;
1006         orig_dst_pte = dst_pte;
1007         arch_enter_lazy_mmu_mode();
1008
1009         do {
1010                 /*
1011                  * We are holding two locks at this point - either of them
1012                  * could generate latencies in another task on another CPU.
1013                  */
1014                 if (progress >= 32) {
1015                         progress = 0;
1016                         if (need_resched() ||
1017                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1018                                 break;
1019                 }
1020                 if (pte_none(*src_pte)) {
1021                         progress++;
1022                         continue;
1023                 }
1024                 if (unlikely(!pte_present(*src_pte))) {
1025                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1026                                                   dst_pte, src_pte,
1027                                                   dst_vma, src_vma,
1028                                                   addr, rss);
1029                         if (ret == -EIO) {
1030                                 entry = pte_to_swp_entry(*src_pte);
1031                                 break;
1032                         } else if (ret == -EBUSY) {
1033                                 break;
1034                         } else if (!ret) {
1035                                 progress += 8;
1036                                 continue;
1037                         }
1038
1039                         /*
1040                          * Device exclusive entry restored, continue by copying
1041                          * the now present pte.
1042                          */
1043                         WARN_ON_ONCE(ret != -ENOENT);
1044                 }
1045                 /* copy_present_pte() will clear `*prealloc' if consumed */
1046                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1047                                        addr, rss, &prealloc);
1048                 /*
1049                  * If we need a pre-allocated page for this pte, drop the
1050                  * locks, allocate, and try again.
1051                  */
1052                 if (unlikely(ret == -EAGAIN))
1053                         break;
1054                 if (unlikely(prealloc)) {
1055                         /*
1056                          * pre-alloc page cannot be reused by next time so as
1057                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1058                          * will allocate page according to address).  This
1059                          * could only happen if one pinned pte changed.
1060                          */
1061                         folio_put(prealloc);
1062                         prealloc = NULL;
1063                 }
1064                 progress += 8;
1065         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1066
1067         arch_leave_lazy_mmu_mode();
1068         spin_unlock(src_ptl);
1069         pte_unmap(orig_src_pte);
1070         add_mm_rss_vec(dst_mm, rss);
1071         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1072         cond_resched();
1073
1074         if (ret == -EIO) {
1075                 VM_WARN_ON_ONCE(!entry.val);
1076                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1077                         ret = -ENOMEM;
1078                         goto out;
1079                 }
1080                 entry.val = 0;
1081         } else if (ret == -EBUSY) {
1082                 goto out;
1083         } else if (ret ==  -EAGAIN) {
1084                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1085                 if (!prealloc)
1086                         return -ENOMEM;
1087         } else if (ret) {
1088                 VM_WARN_ON_ONCE(1);
1089         }
1090
1091         /* We've captured and resolved the error. Reset, try again. */
1092         ret = 0;
1093
1094         if (addr != end)
1095                 goto again;
1096 out:
1097         if (unlikely(prealloc))
1098                 folio_put(prealloc);
1099         return ret;
1100 }
1101
1102 static inline int
1103 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1104                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1105                unsigned long end)
1106 {
1107         struct mm_struct *dst_mm = dst_vma->vm_mm;
1108         struct mm_struct *src_mm = src_vma->vm_mm;
1109         pmd_t *src_pmd, *dst_pmd;
1110         unsigned long next;
1111
1112         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1113         if (!dst_pmd)
1114                 return -ENOMEM;
1115         src_pmd = pmd_offset(src_pud, addr);
1116         do {
1117                 next = pmd_addr_end(addr, end);
1118                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1119                         || pmd_devmap(*src_pmd)) {
1120                         int err;
1121                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1122                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1123                                             addr, dst_vma, src_vma);
1124                         if (err == -ENOMEM)
1125                                 return -ENOMEM;
1126                         if (!err)
1127                                 continue;
1128                         /* fall through */
1129                 }
1130                 if (pmd_none_or_clear_bad(src_pmd))
1131                         continue;
1132                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1133                                    addr, next))
1134                         return -ENOMEM;
1135         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1136         return 0;
1137 }
1138
1139 static inline int
1140 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1141                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1142                unsigned long end)
1143 {
1144         struct mm_struct *dst_mm = dst_vma->vm_mm;
1145         struct mm_struct *src_mm = src_vma->vm_mm;
1146         pud_t *src_pud, *dst_pud;
1147         unsigned long next;
1148
1149         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1150         if (!dst_pud)
1151                 return -ENOMEM;
1152         src_pud = pud_offset(src_p4d, addr);
1153         do {
1154                 next = pud_addr_end(addr, end);
1155                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1156                         int err;
1157
1158                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1159                         err = copy_huge_pud(dst_mm, src_mm,
1160                                             dst_pud, src_pud, addr, src_vma);
1161                         if (err == -ENOMEM)
1162                                 return -ENOMEM;
1163                         if (!err)
1164                                 continue;
1165                         /* fall through */
1166                 }
1167                 if (pud_none_or_clear_bad(src_pud))
1168                         continue;
1169                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1170                                    addr, next))
1171                         return -ENOMEM;
1172         } while (dst_pud++, src_pud++, addr = next, addr != end);
1173         return 0;
1174 }
1175
1176 static inline int
1177 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1178                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1179                unsigned long end)
1180 {
1181         struct mm_struct *dst_mm = dst_vma->vm_mm;
1182         p4d_t *src_p4d, *dst_p4d;
1183         unsigned long next;
1184
1185         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1186         if (!dst_p4d)
1187                 return -ENOMEM;
1188         src_p4d = p4d_offset(src_pgd, addr);
1189         do {
1190                 next = p4d_addr_end(addr, end);
1191                 if (p4d_none_or_clear_bad(src_p4d))
1192                         continue;
1193                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1194                                    addr, next))
1195                         return -ENOMEM;
1196         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1197         return 0;
1198 }
1199
1200 /*
1201  * Return true if the vma needs to copy the pgtable during this fork().  Return
1202  * false when we can speed up fork() by allowing lazy page faults later until
1203  * when the child accesses the memory range.
1204  */
1205 static bool
1206 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1207 {
1208         /*
1209          * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1210          * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1211          * contains uffd-wp protection information, that's something we can't
1212          * retrieve from page cache, and skip copying will lose those info.
1213          */
1214         if (userfaultfd_wp(dst_vma))
1215                 return true;
1216
1217         if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1218                 return true;
1219
1220         if (src_vma->anon_vma)
1221                 return true;
1222
1223         /*
1224          * Don't copy ptes where a page fault will fill them correctly.  Fork
1225          * becomes much lighter when there are big shared or private readonly
1226          * mappings. The tradeoff is that copy_page_range is more efficient
1227          * than faulting.
1228          */
1229         return false;
1230 }
1231
1232 int
1233 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1234 {
1235         pgd_t *src_pgd, *dst_pgd;
1236         unsigned long next;
1237         unsigned long addr = src_vma->vm_start;
1238         unsigned long end = src_vma->vm_end;
1239         struct mm_struct *dst_mm = dst_vma->vm_mm;
1240         struct mm_struct *src_mm = src_vma->vm_mm;
1241         struct mmu_notifier_range range;
1242         bool is_cow;
1243         int ret;
1244
1245         if (!vma_needs_copy(dst_vma, src_vma))
1246                 return 0;
1247
1248         if (is_vm_hugetlb_page(src_vma))
1249                 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1250
1251         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1252                 /*
1253                  * We do not free on error cases below as remove_vma
1254                  * gets called on error from higher level routine
1255                  */
1256                 ret = track_pfn_copy(src_vma);
1257                 if (ret)
1258                         return ret;
1259         }
1260
1261         /*
1262          * We need to invalidate the secondary MMU mappings only when
1263          * there could be a permission downgrade on the ptes of the
1264          * parent mm. And a permission downgrade will only happen if
1265          * is_cow_mapping() returns true.
1266          */
1267         is_cow = is_cow_mapping(src_vma->vm_flags);
1268
1269         if (is_cow) {
1270                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1271                                         0, src_mm, addr, end);
1272                 mmu_notifier_invalidate_range_start(&range);
1273                 /*
1274                  * Disabling preemption is not needed for the write side, as
1275                  * the read side doesn't spin, but goes to the mmap_lock.
1276                  *
1277                  * Use the raw variant of the seqcount_t write API to avoid
1278                  * lockdep complaining about preemptibility.
1279                  */
1280                 mmap_assert_write_locked(src_mm);
1281                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1282         }
1283
1284         ret = 0;
1285         dst_pgd = pgd_offset(dst_mm, addr);
1286         src_pgd = pgd_offset(src_mm, addr);
1287         do {
1288                 next = pgd_addr_end(addr, end);
1289                 if (pgd_none_or_clear_bad(src_pgd))
1290                         continue;
1291                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1292                                             addr, next))) {
1293                         untrack_pfn_clear(dst_vma);
1294                         ret = -ENOMEM;
1295                         break;
1296                 }
1297         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1298
1299         if (is_cow) {
1300                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1301                 mmu_notifier_invalidate_range_end(&range);
1302         }
1303         return ret;
1304 }
1305
1306 /* Whether we should zap all COWed (private) pages too */
1307 static inline bool should_zap_cows(struct zap_details *details)
1308 {
1309         /* By default, zap all pages */
1310         if (!details)
1311                 return true;
1312
1313         /* Or, we zap COWed pages only if the caller wants to */
1314         return details->even_cows;
1315 }
1316
1317 /* Decides whether we should zap this page with the page pointer specified */
1318 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1319 {
1320         /* If we can make a decision without *page.. */
1321         if (should_zap_cows(details))
1322                 return true;
1323
1324         /* E.g. the caller passes NULL for the case of a zero page */
1325         if (!page)
1326                 return true;
1327
1328         /* Otherwise we should only zap non-anon pages */
1329         return !PageAnon(page);
1330 }
1331
1332 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1333 {
1334         if (!details)
1335                 return false;
1336
1337         return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1338 }
1339
1340 /*
1341  * This function makes sure that we'll replace the none pte with an uffd-wp
1342  * swap special pte marker when necessary. Must be with the pgtable lock held.
1343  */
1344 static inline void
1345 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1346                               unsigned long addr, pte_t *pte,
1347                               struct zap_details *details, pte_t pteval)
1348 {
1349         if (zap_drop_file_uffd_wp(details))
1350                 return;
1351
1352         pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1353 }
1354
1355 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1356                                 struct vm_area_struct *vma, pmd_t *pmd,
1357                                 unsigned long addr, unsigned long end,
1358                                 struct zap_details *details)
1359 {
1360         struct mm_struct *mm = tlb->mm;
1361         int force_flush = 0;
1362         int rss[NR_MM_COUNTERS];
1363         spinlock_t *ptl;
1364         pte_t *start_pte;
1365         pte_t *pte;
1366         swp_entry_t entry;
1367
1368         tlb_change_page_size(tlb, PAGE_SIZE);
1369 again:
1370         init_rss_vec(rss);
1371         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1372         pte = start_pte;
1373         flush_tlb_batched_pending(mm);
1374         arch_enter_lazy_mmu_mode();
1375         do {
1376                 pte_t ptent = *pte;
1377                 struct page *page;
1378
1379                 if (pte_none(ptent))
1380                         continue;
1381
1382                 if (need_resched())
1383                         break;
1384
1385                 if (pte_present(ptent)) {
1386                         unsigned int delay_rmap;
1387
1388                         page = vm_normal_page(vma, addr, ptent);
1389                         if (unlikely(!should_zap_page(details, page)))
1390                                 continue;
1391                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1392                                                         tlb->fullmm);
1393                         tlb_remove_tlb_entry(tlb, pte, addr);
1394                         zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1395                                                       ptent);
1396                         if (unlikely(!page))
1397                                 continue;
1398
1399                         delay_rmap = 0;
1400                         if (!PageAnon(page)) {
1401                                 if (pte_dirty(ptent)) {
1402                                         set_page_dirty(page);
1403                                         if (tlb_delay_rmap(tlb)) {
1404                                                 delay_rmap = 1;
1405                                                 force_flush = 1;
1406                                         }
1407                                 }
1408                                 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1409                                         mark_page_accessed(page);
1410                         }
1411                         rss[mm_counter(page)]--;
1412                         if (!delay_rmap) {
1413                                 page_remove_rmap(page, vma, false);
1414                                 if (unlikely(page_mapcount(page) < 0))
1415                                         print_bad_pte(vma, addr, ptent, page);
1416                         }
1417                         if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1418                                 force_flush = 1;
1419                                 addr += PAGE_SIZE;
1420                                 break;
1421                         }
1422                         continue;
1423                 }
1424
1425                 entry = pte_to_swp_entry(ptent);
1426                 if (is_device_private_entry(entry) ||
1427                     is_device_exclusive_entry(entry)) {
1428                         page = pfn_swap_entry_to_page(entry);
1429                         if (unlikely(!should_zap_page(details, page)))
1430                                 continue;
1431                         /*
1432                          * Both device private/exclusive mappings should only
1433                          * work with anonymous page so far, so we don't need to
1434                          * consider uffd-wp bit when zap. For more information,
1435                          * see zap_install_uffd_wp_if_needed().
1436                          */
1437                         WARN_ON_ONCE(!vma_is_anonymous(vma));
1438                         rss[mm_counter(page)]--;
1439                         if (is_device_private_entry(entry))
1440                                 page_remove_rmap(page, vma, false);
1441                         put_page(page);
1442                 } else if (!non_swap_entry(entry)) {
1443                         /* Genuine swap entry, hence a private anon page */
1444                         if (!should_zap_cows(details))
1445                                 continue;
1446                         rss[MM_SWAPENTS]--;
1447                         if (unlikely(!free_swap_and_cache(entry)))
1448                                 print_bad_pte(vma, addr, ptent, NULL);
1449                 } else if (is_migration_entry(entry)) {
1450                         page = pfn_swap_entry_to_page(entry);
1451                         if (!should_zap_page(details, page))
1452                                 continue;
1453                         rss[mm_counter(page)]--;
1454                 } else if (pte_marker_entry_uffd_wp(entry)) {
1455                         /* Only drop the uffd-wp marker if explicitly requested */
1456                         if (!zap_drop_file_uffd_wp(details))
1457                                 continue;
1458                 } else if (is_hwpoison_entry(entry) ||
1459                            is_swapin_error_entry(entry)) {
1460                         if (!should_zap_cows(details))
1461                                 continue;
1462                 } else {
1463                         /* We should have covered all the swap entry types */
1464                         WARN_ON_ONCE(1);
1465                 }
1466                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1467                 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1468         } while (pte++, addr += PAGE_SIZE, addr != end);
1469
1470         add_mm_rss_vec(mm, rss);
1471         arch_leave_lazy_mmu_mode();
1472
1473         /* Do the actual TLB flush before dropping ptl */
1474         if (force_flush) {
1475                 tlb_flush_mmu_tlbonly(tlb);
1476                 tlb_flush_rmaps(tlb, vma);
1477         }
1478         pte_unmap_unlock(start_pte, ptl);
1479
1480         /*
1481          * If we forced a TLB flush (either due to running out of
1482          * batch buffers or because we needed to flush dirty TLB
1483          * entries before releasing the ptl), free the batched
1484          * memory too. Restart if we didn't do everything.
1485          */
1486         if (force_flush) {
1487                 force_flush = 0;
1488                 tlb_flush_mmu(tlb);
1489         }
1490
1491         if (addr != end) {
1492                 cond_resched();
1493                 goto again;
1494         }
1495
1496         return addr;
1497 }
1498
1499 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1500                                 struct vm_area_struct *vma, pud_t *pud,
1501                                 unsigned long addr, unsigned long end,
1502                                 struct zap_details *details)
1503 {
1504         pmd_t *pmd;
1505         unsigned long next;
1506
1507         pmd = pmd_offset(pud, addr);
1508         do {
1509                 next = pmd_addr_end(addr, end);
1510                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1511                         if (next - addr != HPAGE_PMD_SIZE)
1512                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1513                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1514                                 goto next;
1515                         /* fall through */
1516                 } else if (details && details->single_folio &&
1517                            folio_test_pmd_mappable(details->single_folio) &&
1518                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1519                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1520                         /*
1521                          * Take and drop THP pmd lock so that we cannot return
1522                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1523                          * but not yet decremented compound_mapcount().
1524                          */
1525                         spin_unlock(ptl);
1526                 }
1527
1528                 /*
1529                  * Here there can be other concurrent MADV_DONTNEED or
1530                  * trans huge page faults running, and if the pmd is
1531                  * none or trans huge it can change under us. This is
1532                  * because MADV_DONTNEED holds the mmap_lock in read
1533                  * mode.
1534                  */
1535                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1536                         goto next;
1537                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1538 next:
1539                 cond_resched();
1540         } while (pmd++, addr = next, addr != end);
1541
1542         return addr;
1543 }
1544
1545 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1546                                 struct vm_area_struct *vma, p4d_t *p4d,
1547                                 unsigned long addr, unsigned long end,
1548                                 struct zap_details *details)
1549 {
1550         pud_t *pud;
1551         unsigned long next;
1552
1553         pud = pud_offset(p4d, addr);
1554         do {
1555                 next = pud_addr_end(addr, end);
1556                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1557                         if (next - addr != HPAGE_PUD_SIZE) {
1558                                 mmap_assert_locked(tlb->mm);
1559                                 split_huge_pud(vma, pud, addr);
1560                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1561                                 goto next;
1562                         /* fall through */
1563                 }
1564                 if (pud_none_or_clear_bad(pud))
1565                         continue;
1566                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1567 next:
1568                 cond_resched();
1569         } while (pud++, addr = next, addr != end);
1570
1571         return addr;
1572 }
1573
1574 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1575                                 struct vm_area_struct *vma, pgd_t *pgd,
1576                                 unsigned long addr, unsigned long end,
1577                                 struct zap_details *details)
1578 {
1579         p4d_t *p4d;
1580         unsigned long next;
1581
1582         p4d = p4d_offset(pgd, addr);
1583         do {
1584                 next = p4d_addr_end(addr, end);
1585                 if (p4d_none_or_clear_bad(p4d))
1586                         continue;
1587                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1588         } while (p4d++, addr = next, addr != end);
1589
1590         return addr;
1591 }
1592
1593 void unmap_page_range(struct mmu_gather *tlb,
1594                              struct vm_area_struct *vma,
1595                              unsigned long addr, unsigned long end,
1596                              struct zap_details *details)
1597 {
1598         pgd_t *pgd;
1599         unsigned long next;
1600
1601         BUG_ON(addr >= end);
1602         tlb_start_vma(tlb, vma);
1603         pgd = pgd_offset(vma->vm_mm, addr);
1604         do {
1605                 next = pgd_addr_end(addr, end);
1606                 if (pgd_none_or_clear_bad(pgd))
1607                         continue;
1608                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1609         } while (pgd++, addr = next, addr != end);
1610         tlb_end_vma(tlb, vma);
1611 }
1612
1613
1614 static void unmap_single_vma(struct mmu_gather *tlb,
1615                 struct vm_area_struct *vma, unsigned long start_addr,
1616                 unsigned long end_addr,
1617                 struct zap_details *details, bool mm_wr_locked)
1618 {
1619         unsigned long start = max(vma->vm_start, start_addr);
1620         unsigned long end;
1621
1622         if (start >= vma->vm_end)
1623                 return;
1624         end = min(vma->vm_end, end_addr);
1625         if (end <= vma->vm_start)
1626                 return;
1627
1628         if (vma->vm_file)
1629                 uprobe_munmap(vma, start, end);
1630
1631         if (unlikely(vma->vm_flags & VM_PFNMAP))
1632                 untrack_pfn(vma, 0, 0, mm_wr_locked);
1633
1634         if (start != end) {
1635                 if (unlikely(is_vm_hugetlb_page(vma))) {
1636                         /*
1637                          * It is undesirable to test vma->vm_file as it
1638                          * should be non-null for valid hugetlb area.
1639                          * However, vm_file will be NULL in the error
1640                          * cleanup path of mmap_region. When
1641                          * hugetlbfs ->mmap method fails,
1642                          * mmap_region() nullifies vma->vm_file
1643                          * before calling this function to clean up.
1644                          * Since no pte has actually been setup, it is
1645                          * safe to do nothing in this case.
1646                          */
1647                         if (vma->vm_file) {
1648                                 zap_flags_t zap_flags = details ?
1649                                     details->zap_flags : 0;
1650                                 __unmap_hugepage_range_final(tlb, vma, start, end,
1651                                                              NULL, zap_flags);
1652                         }
1653                 } else
1654                         unmap_page_range(tlb, vma, start, end, details);
1655         }
1656 }
1657
1658 /**
1659  * unmap_vmas - unmap a range of memory covered by a list of vma's
1660  * @tlb: address of the caller's struct mmu_gather
1661  * @mt: the maple tree
1662  * @vma: the starting vma
1663  * @start_addr: virtual address at which to start unmapping
1664  * @end_addr: virtual address at which to end unmapping
1665  *
1666  * Unmap all pages in the vma list.
1667  *
1668  * Only addresses between `start' and `end' will be unmapped.
1669  *
1670  * The VMA list must be sorted in ascending virtual address order.
1671  *
1672  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1673  * range after unmap_vmas() returns.  So the only responsibility here is to
1674  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1675  * drops the lock and schedules.
1676  */
1677 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1678                 struct vm_area_struct *vma, unsigned long start_addr,
1679                 unsigned long end_addr, bool mm_wr_locked)
1680 {
1681         struct mmu_notifier_range range;
1682         struct zap_details details = {
1683                 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1684                 /* Careful - we need to zap private pages too! */
1685                 .even_cows = true,
1686         };
1687         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1688
1689         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1690                                 start_addr, end_addr);
1691         mmu_notifier_invalidate_range_start(&range);
1692         do {
1693                 unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1694                                  mm_wr_locked);
1695         } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1696         mmu_notifier_invalidate_range_end(&range);
1697 }
1698
1699 /**
1700  * zap_page_range_single - remove user pages in a given range
1701  * @vma: vm_area_struct holding the applicable pages
1702  * @address: starting address of pages to zap
1703  * @size: number of bytes to zap
1704  * @details: details of shared cache invalidation
1705  *
1706  * The range must fit into one VMA.
1707  */
1708 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1709                 unsigned long size, struct zap_details *details)
1710 {
1711         const unsigned long end = address + size;
1712         struct mmu_notifier_range range;
1713         struct mmu_gather tlb;
1714
1715         lru_add_drain();
1716         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1717                                 address, end);
1718         if (is_vm_hugetlb_page(vma))
1719                 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1720                                                      &range.end);
1721         tlb_gather_mmu(&tlb, vma->vm_mm);
1722         update_hiwater_rss(vma->vm_mm);
1723         mmu_notifier_invalidate_range_start(&range);
1724         /*
1725          * unmap 'address-end' not 'range.start-range.end' as range
1726          * could have been expanded for hugetlb pmd sharing.
1727          */
1728         unmap_single_vma(&tlb, vma, address, end, details, false);
1729         mmu_notifier_invalidate_range_end(&range);
1730         tlb_finish_mmu(&tlb);
1731 }
1732
1733 /**
1734  * zap_vma_ptes - remove ptes mapping the vma
1735  * @vma: vm_area_struct holding ptes to be zapped
1736  * @address: starting address of pages to zap
1737  * @size: number of bytes to zap
1738  *
1739  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1740  *
1741  * The entire address range must be fully contained within the vma.
1742  *
1743  */
1744 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1745                 unsigned long size)
1746 {
1747         if (!range_in_vma(vma, address, address + size) ||
1748                         !(vma->vm_flags & VM_PFNMAP))
1749                 return;
1750
1751         zap_page_range_single(vma, address, size, NULL);
1752 }
1753 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1754
1755 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1756 {
1757         pgd_t *pgd;
1758         p4d_t *p4d;
1759         pud_t *pud;
1760         pmd_t *pmd;
1761
1762         pgd = pgd_offset(mm, addr);
1763         p4d = p4d_alloc(mm, pgd, addr);
1764         if (!p4d)
1765                 return NULL;
1766         pud = pud_alloc(mm, p4d, addr);
1767         if (!pud)
1768                 return NULL;
1769         pmd = pmd_alloc(mm, pud, addr);
1770         if (!pmd)
1771                 return NULL;
1772
1773         VM_BUG_ON(pmd_trans_huge(*pmd));
1774         return pmd;
1775 }
1776
1777 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1778                         spinlock_t **ptl)
1779 {
1780         pmd_t *pmd = walk_to_pmd(mm, addr);
1781
1782         if (!pmd)
1783                 return NULL;
1784         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1785 }
1786
1787 static int validate_page_before_insert(struct page *page)
1788 {
1789         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1790                 return -EINVAL;
1791         flush_dcache_page(page);
1792         return 0;
1793 }
1794
1795 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1796                         unsigned long addr, struct page *page, pgprot_t prot)
1797 {
1798         if (!pte_none(*pte))
1799                 return -EBUSY;
1800         /* Ok, finally just insert the thing.. */
1801         get_page(page);
1802         inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1803         page_add_file_rmap(page, vma, false);
1804         set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1805         return 0;
1806 }
1807
1808 /*
1809  * This is the old fallback for page remapping.
1810  *
1811  * For historical reasons, it only allows reserved pages. Only
1812  * old drivers should use this, and they needed to mark their
1813  * pages reserved for the old functions anyway.
1814  */
1815 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1816                         struct page *page, pgprot_t prot)
1817 {
1818         int retval;
1819         pte_t *pte;
1820         spinlock_t *ptl;
1821
1822         retval = validate_page_before_insert(page);
1823         if (retval)
1824                 goto out;
1825         retval = -ENOMEM;
1826         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1827         if (!pte)
1828                 goto out;
1829         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1830         pte_unmap_unlock(pte, ptl);
1831 out:
1832         return retval;
1833 }
1834
1835 #ifdef pte_index
1836 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1837                         unsigned long addr, struct page *page, pgprot_t prot)
1838 {
1839         int err;
1840
1841         if (!page_count(page))
1842                 return -EINVAL;
1843         err = validate_page_before_insert(page);
1844         if (err)
1845                 return err;
1846         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1847 }
1848
1849 /* insert_pages() amortizes the cost of spinlock operations
1850  * when inserting pages in a loop. Arch *must* define pte_index.
1851  */
1852 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1853                         struct page **pages, unsigned long *num, pgprot_t prot)
1854 {
1855         pmd_t *pmd = NULL;
1856         pte_t *start_pte, *pte;
1857         spinlock_t *pte_lock;
1858         struct mm_struct *const mm = vma->vm_mm;
1859         unsigned long curr_page_idx = 0;
1860         unsigned long remaining_pages_total = *num;
1861         unsigned long pages_to_write_in_pmd;
1862         int ret;
1863 more:
1864         ret = -EFAULT;
1865         pmd = walk_to_pmd(mm, addr);
1866         if (!pmd)
1867                 goto out;
1868
1869         pages_to_write_in_pmd = min_t(unsigned long,
1870                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1871
1872         /* Allocate the PTE if necessary; takes PMD lock once only. */
1873         ret = -ENOMEM;
1874         if (pte_alloc(mm, pmd))
1875                 goto out;
1876
1877         while (pages_to_write_in_pmd) {
1878                 int pte_idx = 0;
1879                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1880
1881                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1882                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1883                         int err = insert_page_in_batch_locked(vma, pte,
1884                                 addr, pages[curr_page_idx], prot);
1885                         if (unlikely(err)) {
1886                                 pte_unmap_unlock(start_pte, pte_lock);
1887                                 ret = err;
1888                                 remaining_pages_total -= pte_idx;
1889                                 goto out;
1890                         }
1891                         addr += PAGE_SIZE;
1892                         ++curr_page_idx;
1893                 }
1894                 pte_unmap_unlock(start_pte, pte_lock);
1895                 pages_to_write_in_pmd -= batch_size;
1896                 remaining_pages_total -= batch_size;
1897         }
1898         if (remaining_pages_total)
1899                 goto more;
1900         ret = 0;
1901 out:
1902         *num = remaining_pages_total;
1903         return ret;
1904 }
1905 #endif  /* ifdef pte_index */
1906
1907 /**
1908  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1909  * @vma: user vma to map to
1910  * @addr: target start user address of these pages
1911  * @pages: source kernel pages
1912  * @num: in: number of pages to map. out: number of pages that were *not*
1913  * mapped. (0 means all pages were successfully mapped).
1914  *
1915  * Preferred over vm_insert_page() when inserting multiple pages.
1916  *
1917  * In case of error, we may have mapped a subset of the provided
1918  * pages. It is the caller's responsibility to account for this case.
1919  *
1920  * The same restrictions apply as in vm_insert_page().
1921  */
1922 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1923                         struct page **pages, unsigned long *num)
1924 {
1925 #ifdef pte_index
1926         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1927
1928         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1929                 return -EFAULT;
1930         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1931                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1932                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1933                 vm_flags_set(vma, VM_MIXEDMAP);
1934         }
1935         /* Defer page refcount checking till we're about to map that page. */
1936         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1937 #else
1938         unsigned long idx = 0, pgcount = *num;
1939         int err = -EINVAL;
1940
1941         for (; idx < pgcount; ++idx) {
1942                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1943                 if (err)
1944                         break;
1945         }
1946         *num = pgcount - idx;
1947         return err;
1948 #endif  /* ifdef pte_index */
1949 }
1950 EXPORT_SYMBOL(vm_insert_pages);
1951
1952 /**
1953  * vm_insert_page - insert single page into user vma
1954  * @vma: user vma to map to
1955  * @addr: target user address of this page
1956  * @page: source kernel page
1957  *
1958  * This allows drivers to insert individual pages they've allocated
1959  * into a user vma.
1960  *
1961  * The page has to be a nice clean _individual_ kernel allocation.
1962  * If you allocate a compound page, you need to have marked it as
1963  * such (__GFP_COMP), or manually just split the page up yourself
1964  * (see split_page()).
1965  *
1966  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1967  * took an arbitrary page protection parameter. This doesn't allow
1968  * that. Your vma protection will have to be set up correctly, which
1969  * means that if you want a shared writable mapping, you'd better
1970  * ask for a shared writable mapping!
1971  *
1972  * The page does not need to be reserved.
1973  *
1974  * Usually this function is called from f_op->mmap() handler
1975  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1976  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1977  * function from other places, for example from page-fault handler.
1978  *
1979  * Return: %0 on success, negative error code otherwise.
1980  */
1981 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1982                         struct page *page)
1983 {
1984         if (addr < vma->vm_start || addr >= vma->vm_end)
1985                 return -EFAULT;
1986         if (!page_count(page))
1987                 return -EINVAL;
1988         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1989                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1990                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1991                 vm_flags_set(vma, VM_MIXEDMAP);
1992         }
1993         return insert_page(vma, addr, page, vma->vm_page_prot);
1994 }
1995 EXPORT_SYMBOL(vm_insert_page);
1996
1997 /*
1998  * __vm_map_pages - maps range of kernel pages into user vma
1999  * @vma: user vma to map to
2000  * @pages: pointer to array of source kernel pages
2001  * @num: number of pages in page array
2002  * @offset: user's requested vm_pgoff
2003  *
2004  * This allows drivers to map range of kernel pages into a user vma.
2005  *
2006  * Return: 0 on success and error code otherwise.
2007  */
2008 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2009                                 unsigned long num, unsigned long offset)
2010 {
2011         unsigned long count = vma_pages(vma);
2012         unsigned long uaddr = vma->vm_start;
2013         int ret, i;
2014
2015         /* Fail if the user requested offset is beyond the end of the object */
2016         if (offset >= num)
2017                 return -ENXIO;
2018
2019         /* Fail if the user requested size exceeds available object size */
2020         if (count > num - offset)
2021                 return -ENXIO;
2022
2023         for (i = 0; i < count; i++) {
2024                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2025                 if (ret < 0)
2026                         return ret;
2027                 uaddr += PAGE_SIZE;
2028         }
2029
2030         return 0;
2031 }
2032
2033 /**
2034  * vm_map_pages - maps range of kernel pages starts with non zero offset
2035  * @vma: user vma to map to
2036  * @pages: pointer to array of source kernel pages
2037  * @num: number of pages in page array
2038  *
2039  * Maps an object consisting of @num pages, catering for the user's
2040  * requested vm_pgoff
2041  *
2042  * If we fail to insert any page into the vma, the function will return
2043  * immediately leaving any previously inserted pages present.  Callers
2044  * from the mmap handler may immediately return the error as their caller
2045  * will destroy the vma, removing any successfully inserted pages. Other
2046  * callers should make their own arrangements for calling unmap_region().
2047  *
2048  * Context: Process context. Called by mmap handlers.
2049  * Return: 0 on success and error code otherwise.
2050  */
2051 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2052                                 unsigned long num)
2053 {
2054         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2055 }
2056 EXPORT_SYMBOL(vm_map_pages);
2057
2058 /**
2059  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2060  * @vma: user vma to map to
2061  * @pages: pointer to array of source kernel pages
2062  * @num: number of pages in page array
2063  *
2064  * Similar to vm_map_pages(), except that it explicitly sets the offset
2065  * to 0. This function is intended for the drivers that did not consider
2066  * vm_pgoff.
2067  *
2068  * Context: Process context. Called by mmap handlers.
2069  * Return: 0 on success and error code otherwise.
2070  */
2071 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2072                                 unsigned long num)
2073 {
2074         return __vm_map_pages(vma, pages, num, 0);
2075 }
2076 EXPORT_SYMBOL(vm_map_pages_zero);
2077
2078 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2079                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2080 {
2081         struct mm_struct *mm = vma->vm_mm;
2082         pte_t *pte, entry;
2083         spinlock_t *ptl;
2084
2085         pte = get_locked_pte(mm, addr, &ptl);
2086         if (!pte)
2087                 return VM_FAULT_OOM;
2088         if (!pte_none(*pte)) {
2089                 if (mkwrite) {
2090                         /*
2091                          * For read faults on private mappings the PFN passed
2092                          * in may not match the PFN we have mapped if the
2093                          * mapped PFN is a writeable COW page.  In the mkwrite
2094                          * case we are creating a writable PTE for a shared
2095                          * mapping and we expect the PFNs to match. If they
2096                          * don't match, we are likely racing with block
2097                          * allocation and mapping invalidation so just skip the
2098                          * update.
2099                          */
2100                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2101                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2102                                 goto out_unlock;
2103                         }
2104                         entry = pte_mkyoung(*pte);
2105                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2106                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2107                                 update_mmu_cache(vma, addr, pte);
2108                 }
2109                 goto out_unlock;
2110         }
2111
2112         /* Ok, finally just insert the thing.. */
2113         if (pfn_t_devmap(pfn))
2114                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2115         else
2116                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2117
2118         if (mkwrite) {
2119                 entry = pte_mkyoung(entry);
2120                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2121         }
2122
2123         set_pte_at(mm, addr, pte, entry);
2124         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2125
2126 out_unlock:
2127         pte_unmap_unlock(pte, ptl);
2128         return VM_FAULT_NOPAGE;
2129 }
2130
2131 /**
2132  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2133  * @vma: user vma to map to
2134  * @addr: target user address of this page
2135  * @pfn: source kernel pfn
2136  * @pgprot: pgprot flags for the inserted page
2137  *
2138  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2139  * to override pgprot on a per-page basis.
2140  *
2141  * This only makes sense for IO mappings, and it makes no sense for
2142  * COW mappings.  In general, using multiple vmas is preferable;
2143  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2144  * impractical.
2145  *
2146  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2147  * a value of @pgprot different from that of @vma->vm_page_prot.
2148  *
2149  * Context: Process context.  May allocate using %GFP_KERNEL.
2150  * Return: vm_fault_t value.
2151  */
2152 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2153                         unsigned long pfn, pgprot_t pgprot)
2154 {
2155         /*
2156          * Technically, architectures with pte_special can avoid all these
2157          * restrictions (same for remap_pfn_range).  However we would like
2158          * consistency in testing and feature parity among all, so we should
2159          * try to keep these invariants in place for everybody.
2160          */
2161         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2162         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2163                                                 (VM_PFNMAP|VM_MIXEDMAP));
2164         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2165         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2166
2167         if (addr < vma->vm_start || addr >= vma->vm_end)
2168                 return VM_FAULT_SIGBUS;
2169
2170         if (!pfn_modify_allowed(pfn, pgprot))
2171                 return VM_FAULT_SIGBUS;
2172
2173         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2174
2175         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2176                         false);
2177 }
2178 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2179
2180 /**
2181  * vmf_insert_pfn - insert single pfn into user vma
2182  * @vma: user vma to map to
2183  * @addr: target user address of this page
2184  * @pfn: source kernel pfn
2185  *
2186  * Similar to vm_insert_page, this allows drivers to insert individual pages
2187  * they've allocated into a user vma. Same comments apply.
2188  *
2189  * This function should only be called from a vm_ops->fault handler, and
2190  * in that case the handler should return the result of this function.
2191  *
2192  * vma cannot be a COW mapping.
2193  *
2194  * As this is called only for pages that do not currently exist, we
2195  * do not need to flush old virtual caches or the TLB.
2196  *
2197  * Context: Process context.  May allocate using %GFP_KERNEL.
2198  * Return: vm_fault_t value.
2199  */
2200 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2201                         unsigned long pfn)
2202 {
2203         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2204 }
2205 EXPORT_SYMBOL(vmf_insert_pfn);
2206
2207 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2208 {
2209         /* these checks mirror the abort conditions in vm_normal_page */
2210         if (vma->vm_flags & VM_MIXEDMAP)
2211                 return true;
2212         if (pfn_t_devmap(pfn))
2213                 return true;
2214         if (pfn_t_special(pfn))
2215                 return true;
2216         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2217                 return true;
2218         return false;
2219 }
2220
2221 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2222                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2223                 bool mkwrite)
2224 {
2225         int err;
2226
2227         BUG_ON(!vm_mixed_ok(vma, pfn));
2228
2229         if (addr < vma->vm_start || addr >= vma->vm_end)
2230                 return VM_FAULT_SIGBUS;
2231
2232         track_pfn_insert(vma, &pgprot, pfn);
2233
2234         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2235                 return VM_FAULT_SIGBUS;
2236
2237         /*
2238          * If we don't have pte special, then we have to use the pfn_valid()
2239          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2240          * refcount the page if pfn_valid is true (hence insert_page rather
2241          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2242          * without pte special, it would there be refcounted as a normal page.
2243          */
2244         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2245             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2246                 struct page *page;
2247
2248                 /*
2249                  * At this point we are committed to insert_page()
2250                  * regardless of whether the caller specified flags that
2251                  * result in pfn_t_has_page() == false.
2252                  */
2253                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2254                 err = insert_page(vma, addr, page, pgprot);
2255         } else {
2256                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2257         }
2258
2259         if (err == -ENOMEM)
2260                 return VM_FAULT_OOM;
2261         if (err < 0 && err != -EBUSY)
2262                 return VM_FAULT_SIGBUS;
2263
2264         return VM_FAULT_NOPAGE;
2265 }
2266
2267 /**
2268  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2269  * @vma: user vma to map to
2270  * @addr: target user address of this page
2271  * @pfn: source kernel pfn
2272  * @pgprot: pgprot flags for the inserted page
2273  *
2274  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2275  * to override pgprot on a per-page basis.
2276  *
2277  * Typically this function should be used by drivers to set caching- and
2278  * encryption bits different than those of @vma->vm_page_prot, because
2279  * the caching- or encryption mode may not be known at mmap() time.
2280  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2281  * to set caching and encryption bits for those vmas (except for COW pages).
2282  * This is ensured by core vm only modifying these page table entries using
2283  * functions that don't touch caching- or encryption bits, using pte_modify()
2284  * if needed. (See for example mprotect()).
2285  * Also when new page-table entries are created, this is only done using the
2286  * fault() callback, and never using the value of vma->vm_page_prot,
2287  * except for page-table entries that point to anonymous pages as the result
2288  * of COW.
2289  *
2290  * Context: Process context.  May allocate using %GFP_KERNEL.
2291  * Return: vm_fault_t value.
2292  */
2293 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2294                                  pfn_t pfn, pgprot_t pgprot)
2295 {
2296         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2297 }
2298 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2299
2300 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2301                 pfn_t pfn)
2302 {
2303         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2304 }
2305 EXPORT_SYMBOL(vmf_insert_mixed);
2306
2307 /*
2308  *  If the insertion of PTE failed because someone else already added a
2309  *  different entry in the mean time, we treat that as success as we assume
2310  *  the same entry was actually inserted.
2311  */
2312 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2313                 unsigned long addr, pfn_t pfn)
2314 {
2315         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2316 }
2317 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2318
2319 /*
2320  * maps a range of physical memory into the requested pages. the old
2321  * mappings are removed. any references to nonexistent pages results
2322  * in null mappings (currently treated as "copy-on-access")
2323  */
2324 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2325                         unsigned long addr, unsigned long end,
2326                         unsigned long pfn, pgprot_t prot)
2327 {
2328         pte_t *pte, *mapped_pte;
2329         spinlock_t *ptl;
2330         int err = 0;
2331
2332         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2333         if (!pte)
2334                 return -ENOMEM;
2335         arch_enter_lazy_mmu_mode();
2336         do {
2337                 BUG_ON(!pte_none(*pte));
2338                 if (!pfn_modify_allowed(pfn, prot)) {
2339                         err = -EACCES;
2340                         break;
2341                 }
2342                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2343                 pfn++;
2344         } while (pte++, addr += PAGE_SIZE, addr != end);
2345         arch_leave_lazy_mmu_mode();
2346         pte_unmap_unlock(mapped_pte, ptl);
2347         return err;
2348 }
2349
2350 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2351                         unsigned long addr, unsigned long end,
2352                         unsigned long pfn, pgprot_t prot)
2353 {
2354         pmd_t *pmd;
2355         unsigned long next;
2356         int err;
2357
2358         pfn -= addr >> PAGE_SHIFT;
2359         pmd = pmd_alloc(mm, pud, addr);
2360         if (!pmd)
2361                 return -ENOMEM;
2362         VM_BUG_ON(pmd_trans_huge(*pmd));
2363         do {
2364                 next = pmd_addr_end(addr, end);
2365                 err = remap_pte_range(mm, pmd, addr, next,
2366                                 pfn + (addr >> PAGE_SHIFT), prot);
2367                 if (err)
2368                         return err;
2369         } while (pmd++, addr = next, addr != end);
2370         return 0;
2371 }
2372
2373 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2374                         unsigned long addr, unsigned long end,
2375                         unsigned long pfn, pgprot_t prot)
2376 {
2377         pud_t *pud;
2378         unsigned long next;
2379         int err;
2380
2381         pfn -= addr >> PAGE_SHIFT;
2382         pud = pud_alloc(mm, p4d, addr);
2383         if (!pud)
2384                 return -ENOMEM;
2385         do {
2386                 next = pud_addr_end(addr, end);
2387                 err = remap_pmd_range(mm, pud, addr, next,
2388                                 pfn + (addr >> PAGE_SHIFT), prot);
2389                 if (err)
2390                         return err;
2391         } while (pud++, addr = next, addr != end);
2392         return 0;
2393 }
2394
2395 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2396                         unsigned long addr, unsigned long end,
2397                         unsigned long pfn, pgprot_t prot)
2398 {
2399         p4d_t *p4d;
2400         unsigned long next;
2401         int err;
2402
2403         pfn -= addr >> PAGE_SHIFT;
2404         p4d = p4d_alloc(mm, pgd, addr);
2405         if (!p4d)
2406                 return -ENOMEM;
2407         do {
2408                 next = p4d_addr_end(addr, end);
2409                 err = remap_pud_range(mm, p4d, addr, next,
2410                                 pfn + (addr >> PAGE_SHIFT), prot);
2411                 if (err)
2412                         return err;
2413         } while (p4d++, addr = next, addr != end);
2414         return 0;
2415 }
2416
2417 /*
2418  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2419  * must have pre-validated the caching bits of the pgprot_t.
2420  */
2421 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2422                 unsigned long pfn, unsigned long size, pgprot_t prot)
2423 {
2424         pgd_t *pgd;
2425         unsigned long next;
2426         unsigned long end = addr + PAGE_ALIGN(size);
2427         struct mm_struct *mm = vma->vm_mm;
2428         int err;
2429
2430         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2431                 return -EINVAL;
2432
2433         /*
2434          * Physically remapped pages are special. Tell the
2435          * rest of the world about it:
2436          *   VM_IO tells people not to look at these pages
2437          *      (accesses can have side effects).
2438          *   VM_PFNMAP tells the core MM that the base pages are just
2439          *      raw PFN mappings, and do not have a "struct page" associated
2440          *      with them.
2441          *   VM_DONTEXPAND
2442          *      Disable vma merging and expanding with mremap().
2443          *   VM_DONTDUMP
2444          *      Omit vma from core dump, even when VM_IO turned off.
2445          *
2446          * There's a horrible special case to handle copy-on-write
2447          * behaviour that some programs depend on. We mark the "original"
2448          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2449          * See vm_normal_page() for details.
2450          */
2451         if (is_cow_mapping(vma->vm_flags)) {
2452                 if (addr != vma->vm_start || end != vma->vm_end)
2453                         return -EINVAL;
2454                 vma->vm_pgoff = pfn;
2455         }
2456
2457         vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2458
2459         BUG_ON(addr >= end);
2460         pfn -= addr >> PAGE_SHIFT;
2461         pgd = pgd_offset(mm, addr);
2462         flush_cache_range(vma, addr, end);
2463         do {
2464                 next = pgd_addr_end(addr, end);
2465                 err = remap_p4d_range(mm, pgd, addr, next,
2466                                 pfn + (addr >> PAGE_SHIFT), prot);
2467                 if (err)
2468                         return err;
2469         } while (pgd++, addr = next, addr != end);
2470
2471         return 0;
2472 }
2473
2474 /**
2475  * remap_pfn_range - remap kernel memory to userspace
2476  * @vma: user vma to map to
2477  * @addr: target page aligned user address to start at
2478  * @pfn: page frame number of kernel physical memory address
2479  * @size: size of mapping area
2480  * @prot: page protection flags for this mapping
2481  *
2482  * Note: this is only safe if the mm semaphore is held when called.
2483  *
2484  * Return: %0 on success, negative error code otherwise.
2485  */
2486 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2487                     unsigned long pfn, unsigned long size, pgprot_t prot)
2488 {
2489         int err;
2490
2491         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2492         if (err)
2493                 return -EINVAL;
2494
2495         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2496         if (err)
2497                 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2498         return err;
2499 }
2500 EXPORT_SYMBOL(remap_pfn_range);
2501
2502 /**
2503  * vm_iomap_memory - remap memory to userspace
2504  * @vma: user vma to map to
2505  * @start: start of the physical memory to be mapped
2506  * @len: size of area
2507  *
2508  * This is a simplified io_remap_pfn_range() for common driver use. The
2509  * driver just needs to give us the physical memory range to be mapped,
2510  * we'll figure out the rest from the vma information.
2511  *
2512  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2513  * whatever write-combining details or similar.
2514  *
2515  * Return: %0 on success, negative error code otherwise.
2516  */
2517 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2518 {
2519         unsigned long vm_len, pfn, pages;
2520
2521         /* Check that the physical memory area passed in looks valid */
2522         if (start + len < start)
2523                 return -EINVAL;
2524         /*
2525          * You *really* shouldn't map things that aren't page-aligned,
2526          * but we've historically allowed it because IO memory might
2527          * just have smaller alignment.
2528          */
2529         len += start & ~PAGE_MASK;
2530         pfn = start >> PAGE_SHIFT;
2531         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2532         if (pfn + pages < pfn)
2533                 return -EINVAL;
2534
2535         /* We start the mapping 'vm_pgoff' pages into the area */
2536         if (vma->vm_pgoff > pages)
2537                 return -EINVAL;
2538         pfn += vma->vm_pgoff;
2539         pages -= vma->vm_pgoff;
2540
2541         /* Can we fit all of the mapping? */
2542         vm_len = vma->vm_end - vma->vm_start;
2543         if (vm_len >> PAGE_SHIFT > pages)
2544                 return -EINVAL;
2545
2546         /* Ok, let it rip */
2547         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2548 }
2549 EXPORT_SYMBOL(vm_iomap_memory);
2550
2551 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2552                                      unsigned long addr, unsigned long end,
2553                                      pte_fn_t fn, void *data, bool create,
2554                                      pgtbl_mod_mask *mask)
2555 {
2556         pte_t *pte, *mapped_pte;
2557         int err = 0;
2558         spinlock_t *ptl;
2559
2560         if (create) {
2561                 mapped_pte = pte = (mm == &init_mm) ?
2562                         pte_alloc_kernel_track(pmd, addr, mask) :
2563                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2564                 if (!pte)
2565                         return -ENOMEM;
2566         } else {
2567                 mapped_pte = pte = (mm == &init_mm) ?
2568                         pte_offset_kernel(pmd, addr) :
2569                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2570         }
2571
2572         BUG_ON(pmd_huge(*pmd));
2573
2574         arch_enter_lazy_mmu_mode();
2575
2576         if (fn) {
2577                 do {
2578                         if (create || !pte_none(*pte)) {
2579                                 err = fn(pte++, addr, data);
2580                                 if (err)
2581                                         break;
2582                         }
2583                 } while (addr += PAGE_SIZE, addr != end);
2584         }
2585         *mask |= PGTBL_PTE_MODIFIED;
2586
2587         arch_leave_lazy_mmu_mode();
2588
2589         if (mm != &init_mm)
2590                 pte_unmap_unlock(mapped_pte, ptl);
2591         return err;
2592 }
2593
2594 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2595                                      unsigned long addr, unsigned long end,
2596                                      pte_fn_t fn, void *data, bool create,
2597                                      pgtbl_mod_mask *mask)
2598 {
2599         pmd_t *pmd;
2600         unsigned long next;
2601         int err = 0;
2602
2603         BUG_ON(pud_huge(*pud));
2604
2605         if (create) {
2606                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2607                 if (!pmd)
2608                         return -ENOMEM;
2609         } else {
2610                 pmd = pmd_offset(pud, addr);
2611         }
2612         do {
2613                 next = pmd_addr_end(addr, end);
2614                 if (pmd_none(*pmd) && !create)
2615                         continue;
2616                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2617                         return -EINVAL;
2618                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2619                         if (!create)
2620                                 continue;
2621                         pmd_clear_bad(pmd);
2622                 }
2623                 err = apply_to_pte_range(mm, pmd, addr, next,
2624                                          fn, data, create, mask);
2625                 if (err)
2626                         break;
2627         } while (pmd++, addr = next, addr != end);
2628
2629         return err;
2630 }
2631
2632 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2633                                      unsigned long addr, unsigned long end,
2634                                      pte_fn_t fn, void *data, bool create,
2635                                      pgtbl_mod_mask *mask)
2636 {
2637         pud_t *pud;
2638         unsigned long next;
2639         int err = 0;
2640
2641         if (create) {
2642                 pud = pud_alloc_track(mm, p4d, addr, mask);
2643                 if (!pud)
2644                         return -ENOMEM;
2645         } else {
2646                 pud = pud_offset(p4d, addr);
2647         }
2648         do {
2649                 next = pud_addr_end(addr, end);
2650                 if (pud_none(*pud) && !create)
2651                         continue;
2652                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2653                         return -EINVAL;
2654                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2655                         if (!create)
2656                                 continue;
2657                         pud_clear_bad(pud);
2658                 }
2659                 err = apply_to_pmd_range(mm, pud, addr, next,
2660                                          fn, data, create, mask);
2661                 if (err)
2662                         break;
2663         } while (pud++, addr = next, addr != end);
2664
2665         return err;
2666 }
2667
2668 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2669                                      unsigned long addr, unsigned long end,
2670                                      pte_fn_t fn, void *data, bool create,
2671                                      pgtbl_mod_mask *mask)
2672 {
2673         p4d_t *p4d;
2674         unsigned long next;
2675         int err = 0;
2676
2677         if (create) {
2678                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2679                 if (!p4d)
2680                         return -ENOMEM;
2681         } else {
2682                 p4d = p4d_offset(pgd, addr);
2683         }
2684         do {
2685                 next = p4d_addr_end(addr, end);
2686                 if (p4d_none(*p4d) && !create)
2687                         continue;
2688                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2689                         return -EINVAL;
2690                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2691                         if (!create)
2692                                 continue;
2693                         p4d_clear_bad(p4d);
2694                 }
2695                 err = apply_to_pud_range(mm, p4d, addr, next,
2696                                          fn, data, create, mask);
2697                 if (err)
2698                         break;
2699         } while (p4d++, addr = next, addr != end);
2700
2701         return err;
2702 }
2703
2704 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2705                                  unsigned long size, pte_fn_t fn,
2706                                  void *data, bool create)
2707 {
2708         pgd_t *pgd;
2709         unsigned long start = addr, next;
2710         unsigned long end = addr + size;
2711         pgtbl_mod_mask mask = 0;
2712         int err = 0;
2713
2714         if (WARN_ON(addr >= end))
2715                 return -EINVAL;
2716
2717         pgd = pgd_offset(mm, addr);
2718         do {
2719                 next = pgd_addr_end(addr, end);
2720                 if (pgd_none(*pgd) && !create)
2721                         continue;
2722                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2723                         return -EINVAL;
2724                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2725                         if (!create)
2726                                 continue;
2727                         pgd_clear_bad(pgd);
2728                 }
2729                 err = apply_to_p4d_range(mm, pgd, addr, next,
2730                                          fn, data, create, &mask);
2731                 if (err)
2732                         break;
2733         } while (pgd++, addr = next, addr != end);
2734
2735         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2736                 arch_sync_kernel_mappings(start, start + size);
2737
2738         return err;
2739 }
2740
2741 /*
2742  * Scan a region of virtual memory, filling in page tables as necessary
2743  * and calling a provided function on each leaf page table.
2744  */
2745 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2746                         unsigned long size, pte_fn_t fn, void *data)
2747 {
2748         return __apply_to_page_range(mm, addr, size, fn, data, true);
2749 }
2750 EXPORT_SYMBOL_GPL(apply_to_page_range);
2751
2752 /*
2753  * Scan a region of virtual memory, calling a provided function on
2754  * each leaf page table where it exists.
2755  *
2756  * Unlike apply_to_page_range, this does _not_ fill in page tables
2757  * where they are absent.
2758  */
2759 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2760                                  unsigned long size, pte_fn_t fn, void *data)
2761 {
2762         return __apply_to_page_range(mm, addr, size, fn, data, false);
2763 }
2764 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2765
2766 /*
2767  * handle_pte_fault chooses page fault handler according to an entry which was
2768  * read non-atomically.  Before making any commitment, on those architectures
2769  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2770  * parts, do_swap_page must check under lock before unmapping the pte and
2771  * proceeding (but do_wp_page is only called after already making such a check;
2772  * and do_anonymous_page can safely check later on).
2773  */
2774 static inline int pte_unmap_same(struct vm_fault *vmf)
2775 {
2776         int same = 1;
2777 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2778         if (sizeof(pte_t) > sizeof(unsigned long)) {
2779                 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2780                 spin_lock(ptl);
2781                 same = pte_same(*vmf->pte, vmf->orig_pte);
2782                 spin_unlock(ptl);
2783         }
2784 #endif
2785         pte_unmap(vmf->pte);
2786         vmf->pte = NULL;
2787         return same;
2788 }
2789
2790 /*
2791  * Return:
2792  *      0:              copied succeeded
2793  *      -EHWPOISON:     copy failed due to hwpoison in source page
2794  *      -EAGAIN:        copied failed (some other reason)
2795  */
2796 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2797                                       struct vm_fault *vmf)
2798 {
2799         int ret;
2800         void *kaddr;
2801         void __user *uaddr;
2802         bool locked = false;
2803         struct vm_area_struct *vma = vmf->vma;
2804         struct mm_struct *mm = vma->vm_mm;
2805         unsigned long addr = vmf->address;
2806
2807         if (likely(src)) {
2808                 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2809                         memory_failure_queue(page_to_pfn(src), 0);
2810                         return -EHWPOISON;
2811                 }
2812                 return 0;
2813         }
2814
2815         /*
2816          * If the source page was a PFN mapping, we don't have
2817          * a "struct page" for it. We do a best-effort copy by
2818          * just copying from the original user address. If that
2819          * fails, we just zero-fill it. Live with it.
2820          */
2821         kaddr = kmap_atomic(dst);
2822         uaddr = (void __user *)(addr & PAGE_MASK);
2823
2824         /*
2825          * On architectures with software "accessed" bits, we would
2826          * take a double page fault, so mark it accessed here.
2827          */
2828         if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2829                 pte_t entry;
2830
2831                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2832                 locked = true;
2833                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2834                         /*
2835                          * Other thread has already handled the fault
2836                          * and update local tlb only
2837                          */
2838                         update_mmu_tlb(vma, addr, vmf->pte);
2839                         ret = -EAGAIN;
2840                         goto pte_unlock;
2841                 }
2842
2843                 entry = pte_mkyoung(vmf->orig_pte);
2844                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2845                         update_mmu_cache(vma, addr, vmf->pte);
2846         }
2847
2848         /*
2849          * This really shouldn't fail, because the page is there
2850          * in the page tables. But it might just be unreadable,
2851          * in which case we just give up and fill the result with
2852          * zeroes.
2853          */
2854         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2855                 if (locked)
2856                         goto warn;
2857
2858                 /* Re-validate under PTL if the page is still mapped */
2859                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2860                 locked = true;
2861                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2862                         /* The PTE changed under us, update local tlb */
2863                         update_mmu_tlb(vma, addr, vmf->pte);
2864                         ret = -EAGAIN;
2865                         goto pte_unlock;
2866                 }
2867
2868                 /*
2869                  * The same page can be mapped back since last copy attempt.
2870                  * Try to copy again under PTL.
2871                  */
2872                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2873                         /*
2874                          * Give a warn in case there can be some obscure
2875                          * use-case
2876                          */
2877 warn:
2878                         WARN_ON_ONCE(1);
2879                         clear_page(kaddr);
2880                 }
2881         }
2882
2883         ret = 0;
2884
2885 pte_unlock:
2886         if (locked)
2887                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2888         kunmap_atomic(kaddr);
2889         flush_dcache_page(dst);
2890
2891         return ret;
2892 }
2893
2894 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2895 {
2896         struct file *vm_file = vma->vm_file;
2897
2898         if (vm_file)
2899                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2900
2901         /*
2902          * Special mappings (e.g. VDSO) do not have any file so fake
2903          * a default GFP_KERNEL for them.
2904          */
2905         return GFP_KERNEL;
2906 }
2907
2908 /*
2909  * Notify the address space that the page is about to become writable so that
2910  * it can prohibit this or wait for the page to get into an appropriate state.
2911  *
2912  * We do this without the lock held, so that it can sleep if it needs to.
2913  */
2914 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2915 {
2916         vm_fault_t ret;
2917         struct page *page = vmf->page;
2918         unsigned int old_flags = vmf->flags;
2919
2920         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2921
2922         if (vmf->vma->vm_file &&
2923             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2924                 return VM_FAULT_SIGBUS;
2925
2926         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2927         /* Restore original flags so that caller is not surprised */
2928         vmf->flags = old_flags;
2929         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2930                 return ret;
2931         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2932                 lock_page(page);
2933                 if (!page->mapping) {
2934                         unlock_page(page);
2935                         return 0; /* retry */
2936                 }
2937                 ret |= VM_FAULT_LOCKED;
2938         } else
2939                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2940         return ret;
2941 }
2942
2943 /*
2944  * Handle dirtying of a page in shared file mapping on a write fault.
2945  *
2946  * The function expects the page to be locked and unlocks it.
2947  */
2948 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2949 {
2950         struct vm_area_struct *vma = vmf->vma;
2951         struct address_space *mapping;
2952         struct page *page = vmf->page;
2953         bool dirtied;
2954         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2955
2956         dirtied = set_page_dirty(page);
2957         VM_BUG_ON_PAGE(PageAnon(page), page);
2958         /*
2959          * Take a local copy of the address_space - page.mapping may be zeroed
2960          * by truncate after unlock_page().   The address_space itself remains
2961          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2962          * release semantics to prevent the compiler from undoing this copying.
2963          */
2964         mapping = page_rmapping(page);
2965         unlock_page(page);
2966
2967         if (!page_mkwrite)
2968                 file_update_time(vma->vm_file);
2969
2970         /*
2971          * Throttle page dirtying rate down to writeback speed.
2972          *
2973          * mapping may be NULL here because some device drivers do not
2974          * set page.mapping but still dirty their pages
2975          *
2976          * Drop the mmap_lock before waiting on IO, if we can. The file
2977          * is pinning the mapping, as per above.
2978          */
2979         if ((dirtied || page_mkwrite) && mapping) {
2980                 struct file *fpin;
2981
2982                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2983                 balance_dirty_pages_ratelimited(mapping);
2984                 if (fpin) {
2985                         fput(fpin);
2986                         return VM_FAULT_COMPLETED;
2987                 }
2988         }
2989
2990         return 0;
2991 }
2992
2993 /*
2994  * Handle write page faults for pages that can be reused in the current vma
2995  *
2996  * This can happen either due to the mapping being with the VM_SHARED flag,
2997  * or due to us being the last reference standing to the page. In either
2998  * case, all we need to do here is to mark the page as writable and update
2999  * any related book-keeping.
3000  */
3001 static inline void wp_page_reuse(struct vm_fault *vmf)
3002         __releases(vmf->ptl)
3003 {
3004         struct vm_area_struct *vma = vmf->vma;
3005         struct page *page = vmf->page;
3006         pte_t entry;
3007
3008         VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3009         VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3010
3011         /*
3012          * Clear the pages cpupid information as the existing
3013          * information potentially belongs to a now completely
3014          * unrelated process.
3015          */
3016         if (page)
3017                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3018
3019         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3020         entry = pte_mkyoung(vmf->orig_pte);
3021         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3022         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3023                 update_mmu_cache(vma, vmf->address, vmf->pte);
3024         pte_unmap_unlock(vmf->pte, vmf->ptl);
3025         count_vm_event(PGREUSE);
3026 }
3027
3028 /*
3029  * Handle the case of a page which we actually need to copy to a new page,
3030  * either due to COW or unsharing.
3031  *
3032  * Called with mmap_lock locked and the old page referenced, but
3033  * without the ptl held.
3034  *
3035  * High level logic flow:
3036  *
3037  * - Allocate a page, copy the content of the old page to the new one.
3038  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3039  * - Take the PTL. If the pte changed, bail out and release the allocated page
3040  * - If the pte is still the way we remember it, update the page table and all
3041  *   relevant references. This includes dropping the reference the page-table
3042  *   held to the old page, as well as updating the rmap.
3043  * - In any case, unlock the PTL and drop the reference we took to the old page.
3044  */
3045 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3046 {
3047         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3048         struct vm_area_struct *vma = vmf->vma;
3049         struct mm_struct *mm = vma->vm_mm;
3050         struct folio *old_folio = NULL;
3051         struct folio *new_folio = NULL;
3052         pte_t entry;
3053         int page_copied = 0;
3054         struct mmu_notifier_range range;
3055         int ret;
3056
3057         delayacct_wpcopy_start();
3058
3059         if (vmf->page)
3060                 old_folio = page_folio(vmf->page);
3061         if (unlikely(anon_vma_prepare(vma)))
3062                 goto oom;
3063
3064         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3065                 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3066                 if (!new_folio)
3067                         goto oom;
3068         } else {
3069                 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3070                                 vmf->address, false);
3071                 if (!new_folio)
3072                         goto oom;
3073
3074                 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3075                 if (ret) {
3076                         /*
3077                          * COW failed, if the fault was solved by other,
3078                          * it's fine. If not, userspace would re-fault on
3079                          * the same address and we will handle the fault
3080                          * from the second attempt.
3081                          * The -EHWPOISON case will not be retried.
3082                          */
3083                         folio_put(new_folio);
3084                         if (old_folio)
3085                                 folio_put(old_folio);
3086
3087                         delayacct_wpcopy_end();
3088                         return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3089                 }
3090                 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3091         }
3092
3093         if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3094                 goto oom_free_new;
3095         folio_throttle_swaprate(new_folio, GFP_KERNEL);
3096
3097         __folio_mark_uptodate(new_folio);
3098
3099         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3100                                 vmf->address & PAGE_MASK,
3101                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3102         mmu_notifier_invalidate_range_start(&range);
3103
3104         /*
3105          * Re-check the pte - we dropped the lock
3106          */
3107         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3108         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3109                 if (old_folio) {
3110                         if (!folio_test_anon(old_folio)) {
3111                                 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3112                                 inc_mm_counter(mm, MM_ANONPAGES);
3113                         }
3114                 } else {
3115                         inc_mm_counter(mm, MM_ANONPAGES);
3116                 }
3117                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3118                 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3119                 entry = pte_sw_mkyoung(entry);
3120                 if (unlikely(unshare)) {
3121                         if (pte_soft_dirty(vmf->orig_pte))
3122                                 entry = pte_mksoft_dirty(entry);
3123                         if (pte_uffd_wp(vmf->orig_pte))
3124                                 entry = pte_mkuffd_wp(entry);
3125                 } else {
3126                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3127                 }
3128
3129                 /*
3130                  * Clear the pte entry and flush it first, before updating the
3131                  * pte with the new entry, to keep TLBs on different CPUs in
3132                  * sync. This code used to set the new PTE then flush TLBs, but
3133                  * that left a window where the new PTE could be loaded into
3134                  * some TLBs while the old PTE remains in others.
3135                  */
3136                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3137                 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3138                 folio_add_lru_vma(new_folio, vma);
3139                 /*
3140                  * We call the notify macro here because, when using secondary
3141                  * mmu page tables (such as kvm shadow page tables), we want the
3142                  * new page to be mapped directly into the secondary page table.
3143                  */
3144                 BUG_ON(unshare && pte_write(entry));
3145                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3146                 update_mmu_cache(vma, vmf->address, vmf->pte);
3147                 if (old_folio) {
3148                         /*
3149                          * Only after switching the pte to the new page may
3150                          * we remove the mapcount here. Otherwise another
3151                          * process may come and find the rmap count decremented
3152                          * before the pte is switched to the new page, and
3153                          * "reuse" the old page writing into it while our pte
3154                          * here still points into it and can be read by other
3155                          * threads.
3156                          *
3157                          * The critical issue is to order this
3158                          * page_remove_rmap with the ptp_clear_flush above.
3159                          * Those stores are ordered by (if nothing else,)
3160                          * the barrier present in the atomic_add_negative
3161                          * in page_remove_rmap.
3162                          *
3163                          * Then the TLB flush in ptep_clear_flush ensures that
3164                          * no process can access the old page before the
3165                          * decremented mapcount is visible. And the old page
3166                          * cannot be reused until after the decremented
3167                          * mapcount is visible. So transitively, TLBs to
3168                          * old page will be flushed before it can be reused.
3169                          */
3170                         page_remove_rmap(vmf->page, vma, false);
3171                 }
3172
3173                 /* Free the old page.. */
3174                 new_folio = old_folio;
3175                 page_copied = 1;
3176         } else {
3177                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3178         }
3179
3180         if (new_folio)
3181                 folio_put(new_folio);
3182
3183         pte_unmap_unlock(vmf->pte, vmf->ptl);
3184         /*
3185          * No need to double call mmu_notifier->invalidate_range() callback as
3186          * the above ptep_clear_flush_notify() did already call it.
3187          */
3188         mmu_notifier_invalidate_range_only_end(&range);
3189         if (old_folio) {
3190                 if (page_copied)
3191                         free_swap_cache(&old_folio->page);
3192                 folio_put(old_folio);
3193         }
3194
3195         delayacct_wpcopy_end();
3196         return 0;
3197 oom_free_new:
3198         folio_put(new_folio);
3199 oom:
3200         if (old_folio)
3201                 folio_put(old_folio);
3202
3203         delayacct_wpcopy_end();
3204         return VM_FAULT_OOM;
3205 }
3206
3207 /**
3208  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3209  *                        writeable once the page is prepared
3210  *
3211  * @vmf: structure describing the fault
3212  *
3213  * This function handles all that is needed to finish a write page fault in a
3214  * shared mapping due to PTE being read-only once the mapped page is prepared.
3215  * It handles locking of PTE and modifying it.
3216  *
3217  * The function expects the page to be locked or other protection against
3218  * concurrent faults / writeback (such as DAX radix tree locks).
3219  *
3220  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3221  * we acquired PTE lock.
3222  */
3223 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3224 {
3225         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3226         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3227                                        &vmf->ptl);
3228         /*
3229          * We might have raced with another page fault while we released the
3230          * pte_offset_map_lock.
3231          */
3232         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3233                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3234                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3235                 return VM_FAULT_NOPAGE;
3236         }
3237         wp_page_reuse(vmf);
3238         return 0;
3239 }
3240
3241 /*
3242  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3243  * mapping
3244  */
3245 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3246 {
3247         struct vm_area_struct *vma = vmf->vma;
3248
3249         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3250                 vm_fault_t ret;
3251
3252                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3253                 vmf->flags |= FAULT_FLAG_MKWRITE;
3254                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3255                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3256                         return ret;
3257                 return finish_mkwrite_fault(vmf);
3258         }
3259         wp_page_reuse(vmf);
3260         return 0;
3261 }
3262
3263 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3264         __releases(vmf->ptl)
3265 {
3266         struct vm_area_struct *vma = vmf->vma;
3267         vm_fault_t ret = 0;
3268
3269         get_page(vmf->page);
3270
3271         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3272                 vm_fault_t tmp;
3273
3274                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3275                 tmp = do_page_mkwrite(vmf);
3276                 if (unlikely(!tmp || (tmp &
3277                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3278                         put_page(vmf->page);
3279                         return tmp;
3280                 }
3281                 tmp = finish_mkwrite_fault(vmf);
3282                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3283                         unlock_page(vmf->page);
3284                         put_page(vmf->page);
3285                         return tmp;
3286                 }
3287         } else {
3288                 wp_page_reuse(vmf);
3289                 lock_page(vmf->page);
3290         }
3291         ret |= fault_dirty_shared_page(vmf);
3292         put_page(vmf->page);
3293
3294         return ret;
3295 }
3296
3297 /*
3298  * This routine handles present pages, when
3299  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3300  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3301  *   (FAULT_FLAG_UNSHARE)
3302  *
3303  * It is done by copying the page to a new address and decrementing the
3304  * shared-page counter for the old page.
3305  *
3306  * Note that this routine assumes that the protection checks have been
3307  * done by the caller (the low-level page fault routine in most cases).
3308  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3309  * done any necessary COW.
3310  *
3311  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3312  * though the page will change only once the write actually happens. This
3313  * avoids a few races, and potentially makes it more efficient.
3314  *
3315  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3316  * but allow concurrent faults), with pte both mapped and locked.
3317  * We return with mmap_lock still held, but pte unmapped and unlocked.
3318  */
3319 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3320         __releases(vmf->ptl)
3321 {
3322         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3323         struct vm_area_struct *vma = vmf->vma;
3324         struct folio *folio = NULL;
3325
3326         if (likely(!unshare)) {
3327                 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3328                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3329                         return handle_userfault(vmf, VM_UFFD_WP);
3330                 }
3331
3332                 /*
3333                  * Userfaultfd write-protect can defer flushes. Ensure the TLB
3334                  * is flushed in this case before copying.
3335                  */
3336                 if (unlikely(userfaultfd_wp(vmf->vma) &&
3337                              mm_tlb_flush_pending(vmf->vma->vm_mm)))
3338                         flush_tlb_page(vmf->vma, vmf->address);
3339         }
3340
3341         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3342
3343         /*
3344          * Shared mapping: we are guaranteed to have VM_WRITE and
3345          * FAULT_FLAG_WRITE set at this point.
3346          */
3347         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3348                 /*
3349                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3350                  * VM_PFNMAP VMA.
3351                  *
3352                  * We should not cow pages in a shared writeable mapping.
3353                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3354                  */
3355                 if (!vmf->page)
3356                         return wp_pfn_shared(vmf);
3357                 return wp_page_shared(vmf);
3358         }
3359
3360         if (vmf->page)
3361                 folio = page_folio(vmf->page);
3362
3363         /*
3364          * Private mapping: create an exclusive anonymous page copy if reuse
3365          * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3366          */
3367         if (folio && folio_test_anon(folio)) {
3368                 /*
3369                  * If the page is exclusive to this process we must reuse the
3370                  * page without further checks.
3371                  */
3372                 if (PageAnonExclusive(vmf->page))
3373                         goto reuse;
3374
3375                 /*
3376                  * We have to verify under folio lock: these early checks are
3377                  * just an optimization to avoid locking the folio and freeing
3378                  * the swapcache if there is little hope that we can reuse.
3379                  *
3380                  * KSM doesn't necessarily raise the folio refcount.
3381                  */
3382                 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3383                         goto copy;
3384                 if (!folio_test_lru(folio))
3385                         /*
3386                          * Note: We cannot easily detect+handle references from
3387                          * remote LRU pagevecs or references to LRU folios.
3388                          */
3389                         lru_add_drain();
3390                 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3391                         goto copy;
3392                 if (!folio_trylock(folio))
3393                         goto copy;
3394                 if (folio_test_swapcache(folio))
3395                         folio_free_swap(folio);
3396                 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3397                         folio_unlock(folio);
3398                         goto copy;
3399                 }
3400                 /*
3401                  * Ok, we've got the only folio reference from our mapping
3402                  * and the folio is locked, it's dark out, and we're wearing
3403                  * sunglasses. Hit it.
3404                  */
3405                 page_move_anon_rmap(vmf->page, vma);
3406                 folio_unlock(folio);
3407 reuse:
3408                 if (unlikely(unshare)) {
3409                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3410                         return 0;
3411                 }
3412                 wp_page_reuse(vmf);
3413                 return 0;
3414         }
3415 copy:
3416         /*
3417          * Ok, we need to copy. Oh, well..
3418          */
3419         if (folio)
3420                 folio_get(folio);
3421
3422         pte_unmap_unlock(vmf->pte, vmf->ptl);
3423 #ifdef CONFIG_KSM
3424         if (folio && folio_test_ksm(folio))
3425                 count_vm_event(COW_KSM);
3426 #endif
3427         return wp_page_copy(vmf);
3428 }
3429
3430 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3431                 unsigned long start_addr, unsigned long end_addr,
3432                 struct zap_details *details)
3433 {
3434         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3435 }
3436
3437 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3438                                             pgoff_t first_index,
3439                                             pgoff_t last_index,
3440                                             struct zap_details *details)
3441 {
3442         struct vm_area_struct *vma;
3443         pgoff_t vba, vea, zba, zea;
3444
3445         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3446                 vba = vma->vm_pgoff;
3447                 vea = vba + vma_pages(vma) - 1;
3448                 zba = max(first_index, vba);
3449                 zea = min(last_index, vea);
3450
3451                 unmap_mapping_range_vma(vma,
3452                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3453                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3454                                 details);
3455         }
3456 }
3457
3458 /**
3459  * unmap_mapping_folio() - Unmap single folio from processes.
3460  * @folio: The locked folio to be unmapped.
3461  *
3462  * Unmap this folio from any userspace process which still has it mmaped.
3463  * Typically, for efficiency, the range of nearby pages has already been
3464  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3465  * truncation or invalidation holds the lock on a folio, it may find that
3466  * the page has been remapped again: and then uses unmap_mapping_folio()
3467  * to unmap it finally.
3468  */
3469 void unmap_mapping_folio(struct folio *folio)
3470 {
3471         struct address_space *mapping = folio->mapping;
3472         struct zap_details details = { };
3473         pgoff_t first_index;
3474         pgoff_t last_index;
3475
3476         VM_BUG_ON(!folio_test_locked(folio));
3477
3478         first_index = folio->index;
3479         last_index = folio->index + folio_nr_pages(folio) - 1;
3480
3481         details.even_cows = false;
3482         details.single_folio = folio;
3483         details.zap_flags = ZAP_FLAG_DROP_MARKER;
3484
3485         i_mmap_lock_read(mapping);
3486         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3487                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3488                                          last_index, &details);
3489         i_mmap_unlock_read(mapping);
3490 }
3491
3492 /**
3493  * unmap_mapping_pages() - Unmap pages from processes.
3494  * @mapping: The address space containing pages to be unmapped.
3495  * @start: Index of first page to be unmapped.
3496  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3497  * @even_cows: Whether to unmap even private COWed pages.
3498  *
3499  * Unmap the pages in this address space from any userspace process which
3500  * has them mmaped.  Generally, you want to remove COWed pages as well when
3501  * a file is being truncated, but not when invalidating pages from the page
3502  * cache.
3503  */
3504 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3505                 pgoff_t nr, bool even_cows)
3506 {
3507         struct zap_details details = { };
3508         pgoff_t first_index = start;
3509         pgoff_t last_index = start + nr - 1;
3510
3511         details.even_cows = even_cows;
3512         if (last_index < first_index)
3513                 last_index = ULONG_MAX;
3514
3515         i_mmap_lock_read(mapping);
3516         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3517                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3518                                          last_index, &details);
3519         i_mmap_unlock_read(mapping);
3520 }
3521 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3522
3523 /**
3524  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3525  * address_space corresponding to the specified byte range in the underlying
3526  * file.
3527  *
3528  * @mapping: the address space containing mmaps to be unmapped.
3529  * @holebegin: byte in first page to unmap, relative to the start of
3530  * the underlying file.  This will be rounded down to a PAGE_SIZE
3531  * boundary.  Note that this is different from truncate_pagecache(), which
3532  * must keep the partial page.  In contrast, we must get rid of
3533  * partial pages.
3534  * @holelen: size of prospective hole in bytes.  This will be rounded
3535  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3536  * end of the file.
3537  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3538  * but 0 when invalidating pagecache, don't throw away private data.
3539  */
3540 void unmap_mapping_range(struct address_space *mapping,
3541                 loff_t const holebegin, loff_t const holelen, int even_cows)
3542 {
3543         pgoff_t hba = holebegin >> PAGE_SHIFT;
3544         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3545
3546         /* Check for overflow. */
3547         if (sizeof(holelen) > sizeof(hlen)) {
3548                 long long holeend =
3549                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3550                 if (holeend & ~(long long)ULONG_MAX)
3551                         hlen = ULONG_MAX - hba + 1;
3552         }
3553
3554         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3555 }
3556 EXPORT_SYMBOL(unmap_mapping_range);
3557
3558 /*
3559  * Restore a potential device exclusive pte to a working pte entry
3560  */
3561 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3562 {
3563         struct folio *folio = page_folio(vmf->page);
3564         struct vm_area_struct *vma = vmf->vma;
3565         struct mmu_notifier_range range;
3566
3567         if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags))
3568                 return VM_FAULT_RETRY;
3569         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3570                                 vma->vm_mm, vmf->address & PAGE_MASK,
3571                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3572         mmu_notifier_invalidate_range_start(&range);
3573
3574         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3575                                 &vmf->ptl);
3576         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3577                 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3578
3579         pte_unmap_unlock(vmf->pte, vmf->ptl);
3580         folio_unlock(folio);
3581
3582         mmu_notifier_invalidate_range_end(&range);
3583         return 0;
3584 }
3585
3586 static inline bool should_try_to_free_swap(struct folio *folio,
3587                                            struct vm_area_struct *vma,
3588                                            unsigned int fault_flags)
3589 {
3590         if (!folio_test_swapcache(folio))
3591                 return false;
3592         if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3593             folio_test_mlocked(folio))
3594                 return true;
3595         /*
3596          * If we want to map a page that's in the swapcache writable, we
3597          * have to detect via the refcount if we're really the exclusive
3598          * user. Try freeing the swapcache to get rid of the swapcache
3599          * reference only in case it's likely that we'll be the exlusive user.
3600          */
3601         return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3602                 folio_ref_count(folio) == 2;
3603 }
3604
3605 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3606 {
3607         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3608                                        vmf->address, &vmf->ptl);
3609         /*
3610          * Be careful so that we will only recover a special uffd-wp pte into a
3611          * none pte.  Otherwise it means the pte could have changed, so retry.
3612          *
3613          * This should also cover the case where e.g. the pte changed
3614          * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
3615          * So is_pte_marker() check is not enough to safely drop the pte.
3616          */
3617         if (pte_same(vmf->orig_pte, *vmf->pte))
3618                 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3619         pte_unmap_unlock(vmf->pte, vmf->ptl);
3620         return 0;
3621 }
3622
3623 /*
3624  * This is actually a page-missing access, but with uffd-wp special pte
3625  * installed.  It means this pte was wr-protected before being unmapped.
3626  */
3627 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3628 {
3629         /*
3630          * Just in case there're leftover special ptes even after the region
3631          * got unregistered - we can simply clear them.
3632          */
3633         if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3634                 return pte_marker_clear(vmf);
3635
3636         /* do_fault() can handle pte markers too like none pte */
3637         return do_fault(vmf);
3638 }
3639
3640 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3641 {
3642         swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3643         unsigned long marker = pte_marker_get(entry);
3644
3645         /*
3646          * PTE markers should never be empty.  If anything weird happened,
3647          * the best thing to do is to kill the process along with its mm.
3648          */
3649         if (WARN_ON_ONCE(!marker))
3650                 return VM_FAULT_SIGBUS;
3651
3652         /* Higher priority than uffd-wp when data corrupted */
3653         if (marker & PTE_MARKER_SWAPIN_ERROR)
3654                 return VM_FAULT_SIGBUS;
3655
3656         if (pte_marker_entry_uffd_wp(entry))
3657                 return pte_marker_handle_uffd_wp(vmf);
3658
3659         /* This is an unknown pte marker */
3660         return VM_FAULT_SIGBUS;
3661 }
3662
3663 /*
3664  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3665  * but allow concurrent faults), and pte mapped but not yet locked.
3666  * We return with pte unmapped and unlocked.
3667  *
3668  * We return with the mmap_lock locked or unlocked in the same cases
3669  * as does filemap_fault().
3670  */
3671 vm_fault_t do_swap_page(struct vm_fault *vmf)
3672 {
3673         struct vm_area_struct *vma = vmf->vma;
3674         struct folio *swapcache, *folio = NULL;
3675         struct page *page;
3676         struct swap_info_struct *si = NULL;
3677         rmap_t rmap_flags = RMAP_NONE;
3678         bool exclusive = false;
3679         swp_entry_t entry;
3680         pte_t pte;
3681         int locked;
3682         vm_fault_t ret = 0;
3683         void *shadow = NULL;
3684
3685         if (!pte_unmap_same(vmf))
3686                 goto out;
3687
3688         entry = pte_to_swp_entry(vmf->orig_pte);
3689         if (unlikely(non_swap_entry(entry))) {
3690                 if (is_migration_entry(entry)) {
3691                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3692                                              vmf->address);
3693                 } else if (is_device_exclusive_entry(entry)) {
3694                         vmf->page = pfn_swap_entry_to_page(entry);
3695                         ret = remove_device_exclusive_entry(vmf);
3696                 } else if (is_device_private_entry(entry)) {
3697                         vmf->page = pfn_swap_entry_to_page(entry);
3698                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3699                                         vmf->address, &vmf->ptl);
3700                         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3701                                 spin_unlock(vmf->ptl);
3702                                 goto out;
3703                         }
3704
3705                         /*
3706                          * Get a page reference while we know the page can't be
3707                          * freed.
3708                          */
3709                         get_page(vmf->page);
3710                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3711                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3712                         put_page(vmf->page);
3713                 } else if (is_hwpoison_entry(entry)) {
3714                         ret = VM_FAULT_HWPOISON;
3715                 } else if (is_pte_marker_entry(entry)) {
3716                         ret = handle_pte_marker(vmf);
3717                 } else {
3718                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3719                         ret = VM_FAULT_SIGBUS;
3720                 }
3721                 goto out;
3722         }
3723
3724         /* Prevent swapoff from happening to us. */
3725         si = get_swap_device(entry);
3726         if (unlikely(!si))
3727                 goto out;
3728
3729         folio = swap_cache_get_folio(entry, vma, vmf->address);
3730         if (folio)
3731                 page = folio_file_page(folio, swp_offset(entry));
3732         swapcache = folio;
3733
3734         if (!folio) {
3735                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3736                     __swap_count(entry) == 1) {
3737                         /* skip swapcache */
3738                         folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3739                                                 vma, vmf->address, false);
3740                         page = &folio->page;
3741                         if (folio) {
3742                                 __folio_set_locked(folio);
3743                                 __folio_set_swapbacked(folio);
3744
3745                                 if (mem_cgroup_swapin_charge_folio(folio,
3746                                                         vma->vm_mm, GFP_KERNEL,
3747                                                         entry)) {
3748                                         ret = VM_FAULT_OOM;
3749                                         goto out_page;
3750                                 }
3751                                 mem_cgroup_swapin_uncharge_swap(entry);
3752
3753                                 shadow = get_shadow_from_swap_cache(entry);
3754                                 if (shadow)
3755                                         workingset_refault(folio, shadow);
3756
3757                                 folio_add_lru(folio);
3758
3759                                 /* To provide entry to swap_readpage() */
3760                                 folio_set_swap_entry(folio, entry);
3761                                 swap_readpage(page, true, NULL);
3762                                 folio->private = NULL;
3763                         }
3764                 } else {
3765                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3766                                                 vmf);
3767                         if (page)
3768                                 folio = page_folio(page);
3769                         swapcache = folio;
3770                 }
3771
3772                 if (!folio) {
3773                         /*
3774                          * Back out if somebody else faulted in this pte
3775                          * while we released the pte lock.
3776                          */
3777                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3778                                         vmf->address, &vmf->ptl);
3779                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3780                                 ret = VM_FAULT_OOM;
3781                         goto unlock;
3782                 }
3783
3784                 /* Had to read the page from swap area: Major fault */
3785                 ret = VM_FAULT_MAJOR;
3786                 count_vm_event(PGMAJFAULT);
3787                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3788         } else if (PageHWPoison(page)) {
3789                 /*
3790                  * hwpoisoned dirty swapcache pages are kept for killing
3791                  * owner processes (which may be unknown at hwpoison time)
3792                  */
3793                 ret = VM_FAULT_HWPOISON;
3794                 goto out_release;
3795         }
3796
3797         locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3798
3799         if (!locked) {
3800                 ret |= VM_FAULT_RETRY;
3801                 goto out_release;
3802         }
3803
3804         if (swapcache) {
3805                 /*
3806                  * Make sure folio_free_swap() or swapoff did not release the
3807                  * swapcache from under us.  The page pin, and pte_same test
3808                  * below, are not enough to exclude that.  Even if it is still
3809                  * swapcache, we need to check that the page's swap has not
3810                  * changed.
3811                  */
3812                 if (unlikely(!folio_test_swapcache(folio) ||
3813                              page_private(page) != entry.val))
3814                         goto out_page;
3815
3816                 /*
3817                  * KSM sometimes has to copy on read faults, for example, if
3818                  * page->index of !PageKSM() pages would be nonlinear inside the
3819                  * anon VMA -- PageKSM() is lost on actual swapout.
3820                  */
3821                 page = ksm_might_need_to_copy(page, vma, vmf->address);
3822                 if (unlikely(!page)) {
3823                         ret = VM_FAULT_OOM;
3824                         goto out_page;
3825                 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3826                         ret = VM_FAULT_HWPOISON;
3827                         goto out_page;
3828                 }
3829                 folio = page_folio(page);
3830
3831                 /*
3832                  * If we want to map a page that's in the swapcache writable, we
3833                  * have to detect via the refcount if we're really the exclusive
3834                  * owner. Try removing the extra reference from the local LRU
3835                  * pagevecs if required.
3836                  */
3837                 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3838                     !folio_test_ksm(folio) && !folio_test_lru(folio))
3839                         lru_add_drain();
3840         }
3841
3842         folio_throttle_swaprate(folio, GFP_KERNEL);
3843
3844         /*
3845          * Back out if somebody else already faulted in this pte.
3846          */
3847         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3848                         &vmf->ptl);
3849         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3850                 goto out_nomap;
3851
3852         if (unlikely(!folio_test_uptodate(folio))) {
3853                 ret = VM_FAULT_SIGBUS;
3854                 goto out_nomap;
3855         }
3856
3857         /*
3858          * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3859          * must never point at an anonymous page in the swapcache that is
3860          * PG_anon_exclusive. Sanity check that this holds and especially, that
3861          * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3862          * check after taking the PT lock and making sure that nobody
3863          * concurrently faulted in this page and set PG_anon_exclusive.
3864          */
3865         BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3866         BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3867
3868         /*
3869          * Check under PT lock (to protect against concurrent fork() sharing
3870          * the swap entry concurrently) for certainly exclusive pages.
3871          */
3872         if (!folio_test_ksm(folio)) {
3873                 exclusive = pte_swp_exclusive(vmf->orig_pte);
3874                 if (folio != swapcache) {
3875                         /*
3876                          * We have a fresh page that is not exposed to the
3877                          * swapcache -> certainly exclusive.
3878                          */
3879                         exclusive = true;
3880                 } else if (exclusive && folio_test_writeback(folio) &&
3881                           data_race(si->flags & SWP_STABLE_WRITES)) {
3882                         /*
3883                          * This is tricky: not all swap backends support
3884                          * concurrent page modifications while under writeback.
3885                          *
3886                          * So if we stumble over such a page in the swapcache
3887                          * we must not set the page exclusive, otherwise we can
3888                          * map it writable without further checks and modify it
3889                          * while still under writeback.
3890                          *
3891                          * For these problematic swap backends, simply drop the
3892                          * exclusive marker: this is perfectly fine as we start
3893                          * writeback only if we fully unmapped the page and
3894                          * there are no unexpected references on the page after
3895                          * unmapping succeeded. After fully unmapped, no
3896                          * further GUP references (FOLL_GET and FOLL_PIN) can
3897                          * appear, so dropping the exclusive marker and mapping
3898                          * it only R/O is fine.
3899                          */
3900                         exclusive = false;
3901                 }
3902         }
3903
3904         /*
3905          * Remove the swap entry and conditionally try to free up the swapcache.
3906          * We're already holding a reference on the page but haven't mapped it
3907          * yet.
3908          */
3909         swap_free(entry);
3910         if (should_try_to_free_swap(folio, vma, vmf->flags))
3911                 folio_free_swap(folio);
3912
3913         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3914         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3915         pte = mk_pte(page, vma->vm_page_prot);
3916
3917         /*
3918          * Same logic as in do_wp_page(); however, optimize for pages that are
3919          * certainly not shared either because we just allocated them without
3920          * exposing them to the swapcache or because the swap entry indicates
3921          * exclusivity.
3922          */
3923         if (!folio_test_ksm(folio) &&
3924             (exclusive || folio_ref_count(folio) == 1)) {
3925                 if (vmf->flags & FAULT_FLAG_WRITE) {
3926                         pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3927                         vmf->flags &= ~FAULT_FLAG_WRITE;
3928                 }
3929                 rmap_flags |= RMAP_EXCLUSIVE;
3930         }
3931         flush_icache_page(vma, page);
3932         if (pte_swp_soft_dirty(vmf->orig_pte))
3933                 pte = pte_mksoft_dirty(pte);
3934         if (pte_swp_uffd_wp(vmf->orig_pte))
3935                 pte = pte_mkuffd_wp(pte);
3936         vmf->orig_pte = pte;
3937
3938         /* ksm created a completely new copy */
3939         if (unlikely(folio != swapcache && swapcache)) {
3940                 page_add_new_anon_rmap(page, vma, vmf->address);
3941                 folio_add_lru_vma(folio, vma);
3942         } else {
3943                 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3944         }
3945
3946         VM_BUG_ON(!folio_test_anon(folio) ||
3947                         (pte_write(pte) && !PageAnonExclusive(page)));
3948         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3949         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3950
3951         folio_unlock(folio);
3952         if (folio != swapcache && swapcache) {
3953                 /*
3954                  * Hold the lock to avoid the swap entry to be reused
3955                  * until we take the PT lock for the pte_same() check
3956                  * (to avoid false positives from pte_same). For
3957                  * further safety release the lock after the swap_free
3958                  * so that the swap count won't change under a
3959                  * parallel locked swapcache.
3960                  */
3961                 folio_unlock(swapcache);
3962                 folio_put(swapcache);
3963         }
3964
3965         if (vmf->flags & FAULT_FLAG_WRITE) {
3966                 ret |= do_wp_page(vmf);
3967                 if (ret & VM_FAULT_ERROR)
3968                         ret &= VM_FAULT_ERROR;
3969                 goto out;
3970         }
3971
3972         /* No need to invalidate - it was non-present before */
3973         update_mmu_cache(vma, vmf->address, vmf->pte);
3974 unlock:
3975         pte_unmap_unlock(vmf->pte, vmf->ptl);
3976 out:
3977         if (si)
3978                 put_swap_device(si);
3979         return ret;
3980 out_nomap:
3981         pte_unmap_unlock(vmf->pte, vmf->ptl);
3982 out_page:
3983         folio_unlock(folio);
3984 out_release:
3985         folio_put(folio);
3986         if (folio != swapcache && swapcache) {
3987                 folio_unlock(swapcache);
3988                 folio_put(swapcache);
3989         }
3990         if (si)
3991                 put_swap_device(si);
3992         return ret;
3993 }
3994
3995 /*
3996  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3997  * but allow concurrent faults), and pte mapped but not yet locked.
3998  * We return with mmap_lock still held, but pte unmapped and unlocked.
3999  */
4000 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4001 {
4002         struct vm_area_struct *vma = vmf->vma;
4003         struct folio *folio;
4004         vm_fault_t ret = 0;
4005         pte_t entry;
4006
4007         /* File mapping without ->vm_ops ? */
4008         if (vma->vm_flags & VM_SHARED)
4009                 return VM_FAULT_SIGBUS;
4010
4011         /*
4012          * Use pte_alloc() instead of pte_alloc_map().  We can't run
4013          * pte_offset_map() on pmds where a huge pmd might be created
4014          * from a different thread.
4015          *
4016          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4017          * parallel threads are excluded by other means.
4018          *
4019          * Here we only have mmap_read_lock(mm).
4020          */
4021         if (pte_alloc(vma->vm_mm, vmf->pmd))
4022                 return VM_FAULT_OOM;
4023
4024         /* See comment in handle_pte_fault() */
4025         if (unlikely(pmd_trans_unstable(vmf->pmd)))
4026                 return 0;
4027
4028         /* Use the zero-page for reads */
4029         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4030                         !mm_forbids_zeropage(vma->vm_mm)) {
4031                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4032                                                 vma->vm_page_prot));
4033                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4034                                 vmf->address, &vmf->ptl);
4035                 if (!pte_none(*vmf->pte)) {
4036                         update_mmu_tlb(vma, vmf->address, vmf->pte);
4037                         goto unlock;
4038                 }
4039                 ret = check_stable_address_space(vma->vm_mm);
4040                 if (ret)
4041                         goto unlock;
4042                 /* Deliver the page fault to userland, check inside PT lock */
4043                 if (userfaultfd_missing(vma)) {
4044                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4045                         return handle_userfault(vmf, VM_UFFD_MISSING);
4046                 }
4047                 goto setpte;
4048         }
4049
4050         /* Allocate our own private page. */
4051         if (unlikely(anon_vma_prepare(vma)))
4052                 goto oom;
4053         folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4054         if (!folio)
4055                 goto oom;
4056
4057         if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4058                 goto oom_free_page;
4059         folio_throttle_swaprate(folio, GFP_KERNEL);
4060
4061         /*
4062          * The memory barrier inside __folio_mark_uptodate makes sure that
4063          * preceding stores to the page contents become visible before
4064          * the set_pte_at() write.
4065          */
4066         __folio_mark_uptodate(folio);
4067
4068         entry = mk_pte(&folio->page, vma->vm_page_prot);
4069         entry = pte_sw_mkyoung(entry);
4070         if (vma->vm_flags & VM_WRITE)
4071                 entry = pte_mkwrite(pte_mkdirty(entry));
4072
4073         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4074                         &vmf->ptl);
4075         if (!pte_none(*vmf->pte)) {
4076                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4077                 goto release;
4078         }
4079
4080         ret = check_stable_address_space(vma->vm_mm);
4081         if (ret)
4082                 goto release;
4083
4084         /* Deliver the page fault to userland, check inside PT lock */
4085         if (userfaultfd_missing(vma)) {
4086                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4087                 folio_put(folio);
4088                 return handle_userfault(vmf, VM_UFFD_MISSING);
4089         }
4090
4091         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4092         folio_add_new_anon_rmap(folio, vma, vmf->address);
4093         folio_add_lru_vma(folio, vma);
4094 setpte:
4095         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4096
4097         /* No need to invalidate - it was non-present before */
4098         update_mmu_cache(vma, vmf->address, vmf->pte);
4099 unlock:
4100         pte_unmap_unlock(vmf->pte, vmf->ptl);
4101         return ret;
4102 release:
4103         folio_put(folio);
4104         goto unlock;
4105 oom_free_page:
4106         folio_put(folio);
4107 oom:
4108         return VM_FAULT_OOM;
4109 }
4110
4111 /*
4112  * The mmap_lock must have been held on entry, and may have been
4113  * released depending on flags and vma->vm_ops->fault() return value.
4114  * See filemap_fault() and __lock_page_retry().
4115  */
4116 static vm_fault_t __do_fault(struct vm_fault *vmf)
4117 {
4118         struct vm_area_struct *vma = vmf->vma;
4119         vm_fault_t ret;
4120
4121         /*
4122          * Preallocate pte before we take page_lock because this might lead to
4123          * deadlocks for memcg reclaim which waits for pages under writeback:
4124          *                              lock_page(A)
4125          *                              SetPageWriteback(A)
4126          *                              unlock_page(A)
4127          * lock_page(B)
4128          *                              lock_page(B)
4129          * pte_alloc_one
4130          *   shrink_page_list
4131          *     wait_on_page_writeback(A)
4132          *                              SetPageWriteback(B)
4133          *                              unlock_page(B)
4134          *                              # flush A, B to clear the writeback
4135          */
4136         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4137                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4138                 if (!vmf->prealloc_pte)
4139                         return VM_FAULT_OOM;
4140         }
4141
4142         ret = vma->vm_ops->fault(vmf);
4143         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4144                             VM_FAULT_DONE_COW)))
4145                 return ret;
4146
4147         if (unlikely(PageHWPoison(vmf->page))) {
4148                 struct page *page = vmf->page;
4149                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4150                 if (ret & VM_FAULT_LOCKED) {
4151                         if (page_mapped(page))
4152                                 unmap_mapping_pages(page_mapping(page),
4153                                                     page->index, 1, false);
4154                         /* Retry if a clean page was removed from the cache. */
4155                         if (invalidate_inode_page(page))
4156                                 poisonret = VM_FAULT_NOPAGE;
4157                         unlock_page(page);
4158                 }
4159                 put_page(page);
4160                 vmf->page = NULL;
4161                 return poisonret;
4162         }
4163
4164         if (unlikely(!(ret & VM_FAULT_LOCKED)))
4165                 lock_page(vmf->page);
4166         else
4167                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4168
4169         return ret;
4170 }
4171
4172 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4173 static void deposit_prealloc_pte(struct vm_fault *vmf)
4174 {
4175         struct vm_area_struct *vma = vmf->vma;
4176
4177         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4178         /*
4179          * We are going to consume the prealloc table,
4180          * count that as nr_ptes.
4181          */
4182         mm_inc_nr_ptes(vma->vm_mm);
4183         vmf->prealloc_pte = NULL;
4184 }
4185
4186 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4187 {
4188         struct vm_area_struct *vma = vmf->vma;
4189         bool write = vmf->flags & FAULT_FLAG_WRITE;
4190         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4191         pmd_t entry;
4192         int i;
4193         vm_fault_t ret = VM_FAULT_FALLBACK;
4194
4195         if (!transhuge_vma_suitable(vma, haddr))
4196                 return ret;
4197
4198         page = compound_head(page);
4199         if (compound_order(page) != HPAGE_PMD_ORDER)
4200                 return ret;
4201
4202         /*
4203          * Just backoff if any subpage of a THP is corrupted otherwise
4204          * the corrupted page may mapped by PMD silently to escape the
4205          * check.  This kind of THP just can be PTE mapped.  Access to
4206          * the corrupted subpage should trigger SIGBUS as expected.
4207          */
4208         if (unlikely(PageHasHWPoisoned(page)))
4209                 return ret;
4210
4211         /*
4212          * Archs like ppc64 need additional space to store information
4213          * related to pte entry. Use the preallocated table for that.
4214          */
4215         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4216                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4217                 if (!vmf->prealloc_pte)
4218                         return VM_FAULT_OOM;
4219         }
4220
4221         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4222         if (unlikely(!pmd_none(*vmf->pmd)))
4223                 goto out;
4224
4225         for (i = 0; i < HPAGE_PMD_NR; i++)
4226                 flush_icache_page(vma, page + i);
4227
4228         entry = mk_huge_pmd(page, vma->vm_page_prot);
4229         if (write)
4230                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4231
4232         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4233         page_add_file_rmap(page, vma, true);
4234
4235         /*
4236          * deposit and withdraw with pmd lock held
4237          */
4238         if (arch_needs_pgtable_deposit())
4239                 deposit_prealloc_pte(vmf);
4240
4241         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4242
4243         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4244
4245         /* fault is handled */
4246         ret = 0;
4247         count_vm_event(THP_FILE_MAPPED);
4248 out:
4249         spin_unlock(vmf->ptl);
4250         return ret;
4251 }
4252 #else
4253 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4254 {
4255         return VM_FAULT_FALLBACK;
4256 }
4257 #endif
4258
4259 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4260 {
4261         struct vm_area_struct *vma = vmf->vma;
4262         bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4263         bool write = vmf->flags & FAULT_FLAG_WRITE;
4264         bool prefault = vmf->address != addr;
4265         pte_t entry;
4266
4267         flush_icache_page(vma, page);
4268         entry = mk_pte(page, vma->vm_page_prot);
4269
4270         if (prefault && arch_wants_old_prefaulted_pte())
4271                 entry = pte_mkold(entry);
4272         else
4273                 entry = pte_sw_mkyoung(entry);
4274
4275         if (write)
4276                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4277         if (unlikely(uffd_wp))
4278                 entry = pte_mkuffd_wp(entry);
4279         /* copy-on-write page */
4280         if (write && !(vma->vm_flags & VM_SHARED)) {
4281                 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4282                 page_add_new_anon_rmap(page, vma, addr);
4283                 lru_cache_add_inactive_or_unevictable(page, vma);
4284         } else {
4285                 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4286                 page_add_file_rmap(page, vma, false);
4287         }
4288         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4289 }
4290
4291 static bool vmf_pte_changed(struct vm_fault *vmf)
4292 {
4293         if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4294                 return !pte_same(*vmf->pte, vmf->orig_pte);
4295
4296         return !pte_none(*vmf->pte);
4297 }
4298
4299 /**
4300  * finish_fault - finish page fault once we have prepared the page to fault
4301  *
4302  * @vmf: structure describing the fault
4303  *
4304  * This function handles all that is needed to finish a page fault once the
4305  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4306  * given page, adds reverse page mapping, handles memcg charges and LRU
4307  * addition.
4308  *
4309  * The function expects the page to be locked and on success it consumes a
4310  * reference of a page being mapped (for the PTE which maps it).
4311  *
4312  * Return: %0 on success, %VM_FAULT_ code in case of error.
4313  */
4314 vm_fault_t finish_fault(struct vm_fault *vmf)
4315 {
4316         struct vm_area_struct *vma = vmf->vma;
4317         struct page *page;
4318         vm_fault_t ret;
4319
4320         /* Did we COW the page? */
4321         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4322                 page = vmf->cow_page;
4323         else
4324                 page = vmf->page;
4325
4326         /*
4327          * check even for read faults because we might have lost our CoWed
4328          * page
4329          */
4330         if (!(vma->vm_flags & VM_SHARED)) {
4331                 ret = check_stable_address_space(vma->vm_mm);
4332                 if (ret)
4333                         return ret;
4334         }
4335
4336         if (pmd_none(*vmf->pmd)) {
4337                 if (PageTransCompound(page)) {
4338                         ret = do_set_pmd(vmf, page);
4339                         if (ret != VM_FAULT_FALLBACK)
4340                                 return ret;
4341                 }
4342
4343                 if (vmf->prealloc_pte)
4344                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4345                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4346                         return VM_FAULT_OOM;
4347         }
4348
4349         /*
4350          * See comment in handle_pte_fault() for how this scenario happens, we
4351          * need to return NOPAGE so that we drop this page.
4352          */
4353         if (pmd_devmap_trans_unstable(vmf->pmd))
4354                 return VM_FAULT_NOPAGE;
4355
4356         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4357                                       vmf->address, &vmf->ptl);
4358
4359         /* Re-check under ptl */
4360         if (likely(!vmf_pte_changed(vmf))) {
4361                 do_set_pte(vmf, page, vmf->address);
4362
4363                 /* no need to invalidate: a not-present page won't be cached */
4364                 update_mmu_cache(vma, vmf->address, vmf->pte);
4365
4366                 ret = 0;
4367         } else {
4368                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4369                 ret = VM_FAULT_NOPAGE;
4370         }
4371
4372         pte_unmap_unlock(vmf->pte, vmf->ptl);
4373         return ret;
4374 }
4375
4376 static unsigned long fault_around_bytes __read_mostly =
4377         rounddown_pow_of_two(65536);
4378
4379 #ifdef CONFIG_DEBUG_FS
4380 static int fault_around_bytes_get(void *data, u64 *val)
4381 {
4382         *val = fault_around_bytes;
4383         return 0;
4384 }
4385
4386 /*
4387  * fault_around_bytes must be rounded down to the nearest page order as it's
4388  * what do_fault_around() expects to see.
4389  */
4390 static int fault_around_bytes_set(void *data, u64 val)
4391 {
4392         if (val / PAGE_SIZE > PTRS_PER_PTE)
4393                 return -EINVAL;
4394         if (val > PAGE_SIZE)
4395                 fault_around_bytes = rounddown_pow_of_two(val);
4396         else
4397                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4398         return 0;
4399 }
4400 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4401                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4402
4403 static int __init fault_around_debugfs(void)
4404 {
4405         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4406                                    &fault_around_bytes_fops);
4407         return 0;
4408 }
4409 late_initcall(fault_around_debugfs);
4410 #endif
4411
4412 /*
4413  * do_fault_around() tries to map few pages around the fault address. The hope
4414  * is that the pages will be needed soon and this will lower the number of
4415  * faults to handle.
4416  *
4417  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4418  * not ready to be mapped: not up-to-date, locked, etc.
4419  *
4420  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4421  * only once.
4422  *
4423  * fault_around_bytes defines how many bytes we'll try to map.
4424  * do_fault_around() expects it to be set to a power of two less than or equal
4425  * to PTRS_PER_PTE.
4426  *
4427  * The virtual address of the area that we map is naturally aligned to
4428  * fault_around_bytes rounded down to the machine page size
4429  * (and therefore to page order).  This way it's easier to guarantee
4430  * that we don't cross page table boundaries.
4431  */
4432 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4433 {
4434         unsigned long address = vmf->address, nr_pages, mask;
4435         pgoff_t start_pgoff = vmf->pgoff;
4436         pgoff_t end_pgoff;
4437         int off;
4438
4439         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4440         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4441
4442         address = max(address & mask, vmf->vma->vm_start);
4443         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4444         start_pgoff -= off;
4445
4446         /*
4447          *  end_pgoff is either the end of the page table, the end of
4448          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4449          */
4450         end_pgoff = start_pgoff -
4451                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4452                 PTRS_PER_PTE - 1;
4453         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4454                         start_pgoff + nr_pages - 1);
4455
4456         if (pmd_none(*vmf->pmd)) {
4457                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4458                 if (!vmf->prealloc_pte)
4459                         return VM_FAULT_OOM;
4460         }
4461
4462         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4463 }
4464
4465 /* Return true if we should do read fault-around, false otherwise */
4466 static inline bool should_fault_around(struct vm_fault *vmf)
4467 {
4468         /* No ->map_pages?  No way to fault around... */
4469         if (!vmf->vma->vm_ops->map_pages)
4470                 return false;
4471
4472         if (uffd_disable_fault_around(vmf->vma))
4473                 return false;
4474
4475         return fault_around_bytes >> PAGE_SHIFT > 1;
4476 }
4477
4478 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4479 {
4480         vm_fault_t ret = 0;
4481
4482         /*
4483          * Let's call ->map_pages() first and use ->fault() as fallback
4484          * if page by the offset is not ready to be mapped (cold cache or
4485          * something).
4486          */
4487         if (should_fault_around(vmf)) {
4488                 ret = do_fault_around(vmf);
4489                 if (ret)
4490                         return ret;
4491         }
4492
4493         ret = __do_fault(vmf);
4494         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4495                 return ret;
4496
4497         ret |= finish_fault(vmf);
4498         unlock_page(vmf->page);
4499         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4500                 put_page(vmf->page);
4501         return ret;
4502 }
4503
4504 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4505 {
4506         struct vm_area_struct *vma = vmf->vma;
4507         vm_fault_t ret;
4508
4509         if (unlikely(anon_vma_prepare(vma)))
4510                 return VM_FAULT_OOM;
4511
4512         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4513         if (!vmf->cow_page)
4514                 return VM_FAULT_OOM;
4515
4516         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4517                                 GFP_KERNEL)) {
4518                 put_page(vmf->cow_page);
4519                 return VM_FAULT_OOM;
4520         }
4521         folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4522
4523         ret = __do_fault(vmf);
4524         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4525                 goto uncharge_out;
4526         if (ret & VM_FAULT_DONE_COW)
4527                 return ret;
4528
4529         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4530         __SetPageUptodate(vmf->cow_page);
4531
4532         ret |= finish_fault(vmf);
4533         unlock_page(vmf->page);
4534         put_page(vmf->page);
4535         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4536                 goto uncharge_out;
4537         return ret;
4538 uncharge_out:
4539         put_page(vmf->cow_page);
4540         return ret;
4541 }
4542
4543 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4544 {
4545         struct vm_area_struct *vma = vmf->vma;
4546         vm_fault_t ret, tmp;
4547
4548         ret = __do_fault(vmf);
4549         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4550                 return ret;
4551
4552         /*
4553          * Check if the backing address space wants to know that the page is
4554          * about to become writable
4555          */
4556         if (vma->vm_ops->page_mkwrite) {
4557                 unlock_page(vmf->page);
4558                 tmp = do_page_mkwrite(vmf);
4559                 if (unlikely(!tmp ||
4560                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4561                         put_page(vmf->page);
4562                         return tmp;
4563                 }
4564         }
4565
4566         ret |= finish_fault(vmf);
4567         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4568                                         VM_FAULT_RETRY))) {
4569                 unlock_page(vmf->page);
4570                 put_page(vmf->page);
4571                 return ret;
4572         }
4573
4574         ret |= fault_dirty_shared_page(vmf);
4575         return ret;
4576 }
4577
4578 /*
4579  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4580  * but allow concurrent faults).
4581  * The mmap_lock may have been released depending on flags and our
4582  * return value.  See filemap_fault() and __folio_lock_or_retry().
4583  * If mmap_lock is released, vma may become invalid (for example
4584  * by other thread calling munmap()).
4585  */
4586 static vm_fault_t do_fault(struct vm_fault *vmf)
4587 {
4588         struct vm_area_struct *vma = vmf->vma;
4589         struct mm_struct *vm_mm = vma->vm_mm;
4590         vm_fault_t ret;
4591
4592         /*
4593          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4594          */
4595         if (!vma->vm_ops->fault) {
4596                 /*
4597                  * If we find a migration pmd entry or a none pmd entry, which
4598                  * should never happen, return SIGBUS
4599                  */
4600                 if (unlikely(!pmd_present(*vmf->pmd)))
4601                         ret = VM_FAULT_SIGBUS;
4602                 else {
4603                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4604                                                        vmf->pmd,
4605                                                        vmf->address,
4606                                                        &vmf->ptl);
4607                         /*
4608                          * Make sure this is not a temporary clearing of pte
4609                          * by holding ptl and checking again. A R/M/W update
4610                          * of pte involves: take ptl, clearing the pte so that
4611                          * we don't have concurrent modification by hardware
4612                          * followed by an update.
4613                          */
4614                         if (unlikely(pte_none(*vmf->pte)))
4615                                 ret = VM_FAULT_SIGBUS;
4616                         else
4617                                 ret = VM_FAULT_NOPAGE;
4618
4619                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4620                 }
4621         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4622                 ret = do_read_fault(vmf);
4623         else if (!(vma->vm_flags & VM_SHARED))
4624                 ret = do_cow_fault(vmf);
4625         else
4626                 ret = do_shared_fault(vmf);
4627
4628         /* preallocated pagetable is unused: free it */
4629         if (vmf->prealloc_pte) {
4630                 pte_free(vm_mm, vmf->prealloc_pte);
4631                 vmf->prealloc_pte = NULL;
4632         }
4633         return ret;
4634 }
4635
4636 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4637                       unsigned long addr, int page_nid, int *flags)
4638 {
4639         get_page(page);
4640
4641         count_vm_numa_event(NUMA_HINT_FAULTS);
4642         if (page_nid == numa_node_id()) {
4643                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4644                 *flags |= TNF_FAULT_LOCAL;
4645         }
4646
4647         return mpol_misplaced(page, vma, addr);
4648 }
4649
4650 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4651 {
4652         struct vm_area_struct *vma = vmf->vma;
4653         struct page *page = NULL;
4654         int page_nid = NUMA_NO_NODE;
4655         bool writable = false;
4656         int last_cpupid;
4657         int target_nid;
4658         pte_t pte, old_pte;
4659         int flags = 0;
4660
4661         /*
4662          * The "pte" at this point cannot be used safely without
4663          * validation through pte_unmap_same(). It's of NUMA type but
4664          * the pfn may be screwed if the read is non atomic.
4665          */
4666         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4667         spin_lock(vmf->ptl);
4668         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4669                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4670                 goto out;
4671         }
4672
4673         /* Get the normal PTE  */
4674         old_pte = ptep_get(vmf->pte);
4675         pte = pte_modify(old_pte, vma->vm_page_prot);
4676
4677         /*
4678          * Detect now whether the PTE could be writable; this information
4679          * is only valid while holding the PT lock.
4680          */
4681         writable = pte_write(pte);
4682         if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4683             can_change_pte_writable(vma, vmf->address, pte))
4684                 writable = true;
4685
4686         page = vm_normal_page(vma, vmf->address, pte);
4687         if (!page || is_zone_device_page(page))
4688                 goto out_map;
4689
4690         /* TODO: handle PTE-mapped THP */
4691         if (PageCompound(page))
4692                 goto out_map;
4693
4694         /*
4695          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4696          * much anyway since they can be in shared cache state. This misses
4697          * the case where a mapping is writable but the process never writes
4698          * to it but pte_write gets cleared during protection updates and
4699          * pte_dirty has unpredictable behaviour between PTE scan updates,
4700          * background writeback, dirty balancing and application behaviour.
4701          */
4702         if (!writable)
4703                 flags |= TNF_NO_GROUP;
4704
4705         /*
4706          * Flag if the page is shared between multiple address spaces. This
4707          * is later used when determining whether to group tasks together
4708          */
4709         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4710                 flags |= TNF_SHARED;
4711
4712         page_nid = page_to_nid(page);
4713         /*
4714          * For memory tiering mode, cpupid of slow memory page is used
4715          * to record page access time.  So use default value.
4716          */
4717         if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4718             !node_is_toptier(page_nid))
4719                 last_cpupid = (-1 & LAST_CPUPID_MASK);
4720         else
4721                 last_cpupid = page_cpupid_last(page);
4722         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4723                         &flags);
4724         if (target_nid == NUMA_NO_NODE) {
4725                 put_page(page);
4726                 goto out_map;
4727         }
4728         pte_unmap_unlock(vmf->pte, vmf->ptl);
4729         writable = false;
4730
4731         /* Migrate to the requested node */
4732         if (migrate_misplaced_page(page, vma, target_nid)) {
4733                 page_nid = target_nid;
4734                 flags |= TNF_MIGRATED;
4735         } else {
4736                 flags |= TNF_MIGRATE_FAIL;
4737                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4738                 spin_lock(vmf->ptl);
4739                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4740                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4741                         goto out;
4742                 }
4743                 goto out_map;
4744         }
4745
4746 out:
4747         if (page_nid != NUMA_NO_NODE)
4748                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4749         return 0;
4750 out_map:
4751         /*
4752          * Make it present again, depending on how arch implements
4753          * non-accessible ptes, some can allow access by kernel mode.
4754          */
4755         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4756         pte = pte_modify(old_pte, vma->vm_page_prot);
4757         pte = pte_mkyoung(pte);
4758         if (writable)
4759                 pte = pte_mkwrite(pte);
4760         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4761         update_mmu_cache(vma, vmf->address, vmf->pte);
4762         pte_unmap_unlock(vmf->pte, vmf->ptl);
4763         goto out;
4764 }
4765
4766 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4767 {
4768         if (vma_is_anonymous(vmf->vma))
4769                 return do_huge_pmd_anonymous_page(vmf);
4770         if (vmf->vma->vm_ops->huge_fault)
4771                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4772         return VM_FAULT_FALLBACK;
4773 }
4774
4775 /* `inline' is required to avoid gcc 4.1.2 build error */
4776 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4777 {
4778         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4779         vm_fault_t ret;
4780
4781         if (vma_is_anonymous(vmf->vma)) {
4782                 if (likely(!unshare) &&
4783                     userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4784                         return handle_userfault(vmf, VM_UFFD_WP);
4785                 return do_huge_pmd_wp_page(vmf);
4786         }
4787
4788         if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4789                 if (vmf->vma->vm_ops->huge_fault) {
4790                         ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4791                         if (!(ret & VM_FAULT_FALLBACK))
4792                                 return ret;
4793                 }
4794         }
4795
4796         /* COW or write-notify handled on pte level: split pmd. */
4797         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4798
4799         return VM_FAULT_FALLBACK;
4800 }
4801
4802 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4803 {
4804 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4805         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4806         /* No support for anonymous transparent PUD pages yet */
4807         if (vma_is_anonymous(vmf->vma))
4808                 return VM_FAULT_FALLBACK;
4809         if (vmf->vma->vm_ops->huge_fault)
4810                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4811 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4812         return VM_FAULT_FALLBACK;
4813 }
4814
4815 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4816 {
4817 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4818         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4819         vm_fault_t ret;
4820
4821         /* No support for anonymous transparent PUD pages yet */
4822         if (vma_is_anonymous(vmf->vma))
4823                 goto split;
4824         if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4825                 if (vmf->vma->vm_ops->huge_fault) {
4826                         ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4827                         if (!(ret & VM_FAULT_FALLBACK))
4828                                 return ret;
4829                 }
4830         }
4831 split:
4832         /* COW or write-notify not handled on PUD level: split pud.*/
4833         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4834 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4835         return VM_FAULT_FALLBACK;
4836 }
4837
4838 /*
4839  * These routines also need to handle stuff like marking pages dirty
4840  * and/or accessed for architectures that don't do it in hardware (most
4841  * RISC architectures).  The early dirtying is also good on the i386.
4842  *
4843  * There is also a hook called "update_mmu_cache()" that architectures
4844  * with external mmu caches can use to update those (ie the Sparc or
4845  * PowerPC hashed page tables that act as extended TLBs).
4846  *
4847  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4848  * concurrent faults).
4849  *
4850  * The mmap_lock may have been released depending on flags and our return value.
4851  * See filemap_fault() and __folio_lock_or_retry().
4852  */
4853 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4854 {
4855         pte_t entry;
4856
4857         if (unlikely(pmd_none(*vmf->pmd))) {
4858                 /*
4859                  * Leave __pte_alloc() until later: because vm_ops->fault may
4860                  * want to allocate huge page, and if we expose page table
4861                  * for an instant, it will be difficult to retract from
4862                  * concurrent faults and from rmap lookups.
4863                  */
4864                 vmf->pte = NULL;
4865                 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4866         } else {
4867                 /*
4868                  * If a huge pmd materialized under us just retry later.  Use
4869                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4870                  * of pmd_trans_huge() to ensure the pmd didn't become
4871                  * pmd_trans_huge under us and then back to pmd_none, as a
4872                  * result of MADV_DONTNEED running immediately after a huge pmd
4873                  * fault in a different thread of this mm, in turn leading to a
4874                  * misleading pmd_trans_huge() retval. All we have to ensure is
4875                  * that it is a regular pmd that we can walk with
4876                  * pte_offset_map() and we can do that through an atomic read
4877                  * in C, which is what pmd_trans_unstable() provides.
4878                  */
4879                 if (pmd_devmap_trans_unstable(vmf->pmd))
4880                         return 0;
4881                 /*
4882                  * A regular pmd is established and it can't morph into a huge
4883                  * pmd from under us anymore at this point because we hold the
4884                  * mmap_lock read mode and khugepaged takes it in write mode.
4885                  * So now it's safe to run pte_offset_map().
4886                  */
4887                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4888                 vmf->orig_pte = *vmf->pte;
4889                 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4890
4891                 /*
4892                  * some architectures can have larger ptes than wordsize,
4893                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4894                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4895                  * accesses.  The code below just needs a consistent view
4896                  * for the ifs and we later double check anyway with the
4897                  * ptl lock held. So here a barrier will do.
4898                  */
4899                 barrier();
4900                 if (pte_none(vmf->orig_pte)) {
4901                         pte_unmap(vmf->pte);
4902                         vmf->pte = NULL;
4903                 }
4904         }
4905
4906         if (!vmf->pte) {
4907                 if (vma_is_anonymous(vmf->vma))
4908                         return do_anonymous_page(vmf);
4909                 else
4910                         return do_fault(vmf);
4911         }
4912
4913         if (!pte_present(vmf->orig_pte))
4914                 return do_swap_page(vmf);
4915
4916         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4917                 return do_numa_page(vmf);
4918
4919         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4920         spin_lock(vmf->ptl);
4921         entry = vmf->orig_pte;
4922         if (unlikely(!pte_same(*vmf->pte, entry))) {
4923                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4924                 goto unlock;
4925         }
4926         if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4927                 if (!pte_write(entry))
4928                         return do_wp_page(vmf);
4929                 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4930                         entry = pte_mkdirty(entry);
4931         }
4932         entry = pte_mkyoung(entry);
4933         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4934                                 vmf->flags & FAULT_FLAG_WRITE)) {
4935                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4936         } else {
4937                 /* Skip spurious TLB flush for retried page fault */
4938                 if (vmf->flags & FAULT_FLAG_TRIED)
4939                         goto unlock;
4940                 /*
4941                  * This is needed only for protection faults but the arch code
4942                  * is not yet telling us if this is a protection fault or not.
4943                  * This still avoids useless tlb flushes for .text page faults
4944                  * with threads.
4945                  */
4946                 if (vmf->flags & FAULT_FLAG_WRITE)
4947                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
4948                                                      vmf->pte);
4949         }
4950 unlock:
4951         pte_unmap_unlock(vmf->pte, vmf->ptl);
4952         return 0;
4953 }
4954
4955 /*
4956  * By the time we get here, we already hold the mm semaphore
4957  *
4958  * The mmap_lock may have been released depending on flags and our
4959  * return value.  See filemap_fault() and __folio_lock_or_retry().
4960  */
4961 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4962                 unsigned long address, unsigned int flags)
4963 {
4964         struct vm_fault vmf = {
4965                 .vma = vma,
4966                 .address = address & PAGE_MASK,
4967                 .real_address = address,
4968                 .flags = flags,
4969                 .pgoff = linear_page_index(vma, address),
4970                 .gfp_mask = __get_fault_gfp_mask(vma),
4971         };
4972         struct mm_struct *mm = vma->vm_mm;
4973         unsigned long vm_flags = vma->vm_flags;
4974         pgd_t *pgd;
4975         p4d_t *p4d;
4976         vm_fault_t ret;
4977
4978         pgd = pgd_offset(mm, address);
4979         p4d = p4d_alloc(mm, pgd, address);
4980         if (!p4d)
4981                 return VM_FAULT_OOM;
4982
4983         vmf.pud = pud_alloc(mm, p4d, address);
4984         if (!vmf.pud)
4985                 return VM_FAULT_OOM;
4986 retry_pud:
4987         if (pud_none(*vmf.pud) &&
4988             hugepage_vma_check(vma, vm_flags, false, true, true)) {
4989                 ret = create_huge_pud(&vmf);
4990                 if (!(ret & VM_FAULT_FALLBACK))
4991                         return ret;
4992         } else {
4993                 pud_t orig_pud = *vmf.pud;
4994
4995                 barrier();
4996                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4997
4998                         /*
4999                          * TODO once we support anonymous PUDs: NUMA case and
5000                          * FAULT_FLAG_UNSHARE handling.
5001                          */
5002                         if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5003                                 ret = wp_huge_pud(&vmf, orig_pud);
5004                                 if (!(ret & VM_FAULT_FALLBACK))
5005                                         return ret;
5006                         } else {
5007                                 huge_pud_set_accessed(&vmf, orig_pud);
5008                                 return 0;
5009                         }
5010                 }
5011         }
5012
5013         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5014         if (!vmf.pmd)
5015                 return VM_FAULT_OOM;
5016
5017         /* Huge pud page fault raced with pmd_alloc? */
5018         if (pud_trans_unstable(vmf.pud))
5019                 goto retry_pud;
5020
5021         if (pmd_none(*vmf.pmd) &&
5022             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5023                 ret = create_huge_pmd(&vmf);
5024                 if (!(ret & VM_FAULT_FALLBACK))
5025                         return ret;
5026         } else {
5027                 vmf.orig_pmd = *vmf.pmd;
5028
5029                 barrier();
5030                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5031                         VM_BUG_ON(thp_migration_supported() &&
5032                                           !is_pmd_migration_entry(vmf.orig_pmd));
5033                         if (is_pmd_migration_entry(vmf.orig_pmd))
5034                                 pmd_migration_entry_wait(mm, vmf.pmd);
5035                         return 0;
5036                 }
5037                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5038                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5039                                 return do_huge_pmd_numa_page(&vmf);
5040
5041                         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5042                             !pmd_write(vmf.orig_pmd)) {
5043                                 ret = wp_huge_pmd(&vmf);
5044                                 if (!(ret & VM_FAULT_FALLBACK))
5045                                         return ret;
5046                         } else {
5047                                 huge_pmd_set_accessed(&vmf);
5048                                 return 0;
5049                         }
5050                 }
5051         }
5052
5053         return handle_pte_fault(&vmf);
5054 }
5055
5056 /**
5057  * mm_account_fault - Do page fault accounting
5058  *
5059  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5060  *        of perf event counters, but we'll still do the per-task accounting to
5061  *        the task who triggered this page fault.
5062  * @address: the faulted address.
5063  * @flags: the fault flags.
5064  * @ret: the fault retcode.
5065  *
5066  * This will take care of most of the page fault accounting.  Meanwhile, it
5067  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5068  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5069  * still be in per-arch page fault handlers at the entry of page fault.
5070  */
5071 static inline void mm_account_fault(struct pt_regs *regs,
5072                                     unsigned long address, unsigned int flags,
5073                                     vm_fault_t ret)
5074 {
5075         bool major;
5076
5077         /*
5078          * We don't do accounting for some specific faults:
5079          *
5080          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
5081          *   includes arch_vma_access_permitted() failing before reaching here.
5082          *   So this is not a "this many hardware page faults" counter.  We
5083          *   should use the hw profiling for that.
5084          *
5085          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
5086          *   once they're completed.
5087          */
5088         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5089                 return;
5090
5091         /*
5092          * We define the fault as a major fault when the final successful fault
5093          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5094          * handle it immediately previously).
5095          */
5096         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5097
5098         if (major)
5099                 current->maj_flt++;
5100         else
5101                 current->min_flt++;
5102
5103         /*
5104          * If the fault is done for GUP, regs will be NULL.  We only do the
5105          * accounting for the per thread fault counters who triggered the
5106          * fault, and we skip the perf event updates.
5107          */
5108         if (!regs)
5109                 return;
5110
5111         if (major)
5112                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5113         else
5114                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5115 }
5116
5117 #ifdef CONFIG_LRU_GEN
5118 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5119 {
5120         /* the LRU algorithm only applies to accesses with recency */
5121         current->in_lru_fault = vma_has_recency(vma);
5122 }
5123
5124 static void lru_gen_exit_fault(void)
5125 {
5126         current->in_lru_fault = false;
5127 }
5128 #else
5129 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5130 {
5131 }
5132
5133 static void lru_gen_exit_fault(void)
5134 {
5135 }
5136 #endif /* CONFIG_LRU_GEN */
5137
5138 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5139                                        unsigned int *flags)
5140 {
5141         if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5142                 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5143                         return VM_FAULT_SIGSEGV;
5144                 /*
5145                  * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5146                  * just treat it like an ordinary read-fault otherwise.
5147                  */
5148                 if (!is_cow_mapping(vma->vm_flags))
5149                         *flags &= ~FAULT_FLAG_UNSHARE;
5150         } else if (*flags & FAULT_FLAG_WRITE) {
5151                 /* Write faults on read-only mappings are impossible ... */
5152                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5153                         return VM_FAULT_SIGSEGV;
5154                 /* ... and FOLL_FORCE only applies to COW mappings. */
5155                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5156                                  !is_cow_mapping(vma->vm_flags)))
5157                         return VM_FAULT_SIGSEGV;
5158         }
5159         return 0;
5160 }
5161
5162 /*
5163  * By the time we get here, we already hold the mm semaphore
5164  *
5165  * The mmap_lock may have been released depending on flags and our
5166  * return value.  See filemap_fault() and __folio_lock_or_retry().
5167  */
5168 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5169                            unsigned int flags, struct pt_regs *regs)
5170 {
5171         vm_fault_t ret;
5172
5173         __set_current_state(TASK_RUNNING);
5174
5175         count_vm_event(PGFAULT);
5176         count_memcg_event_mm(vma->vm_mm, PGFAULT);
5177
5178         ret = sanitize_fault_flags(vma, &flags);
5179         if (ret)
5180                 return ret;
5181
5182         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5183                                             flags & FAULT_FLAG_INSTRUCTION,
5184                                             flags & FAULT_FLAG_REMOTE))
5185                 return VM_FAULT_SIGSEGV;
5186
5187         /*
5188          * Enable the memcg OOM handling for faults triggered in user
5189          * space.  Kernel faults are handled more gracefully.
5190          */
5191         if (flags & FAULT_FLAG_USER)
5192                 mem_cgroup_enter_user_fault();
5193
5194         lru_gen_enter_fault(vma);
5195
5196         if (unlikely(is_vm_hugetlb_page(vma)))
5197                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5198         else
5199                 ret = __handle_mm_fault(vma, address, flags);
5200
5201         lru_gen_exit_fault();
5202
5203         if (flags & FAULT_FLAG_USER) {
5204                 mem_cgroup_exit_user_fault();
5205                 /*
5206                  * The task may have entered a memcg OOM situation but
5207                  * if the allocation error was handled gracefully (no
5208                  * VM_FAULT_OOM), there is no need to kill anything.
5209                  * Just clean up the OOM state peacefully.
5210                  */
5211                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5212                         mem_cgroup_oom_synchronize(false);
5213         }
5214
5215         mm_account_fault(regs, address, flags, ret);
5216
5217         return ret;
5218 }
5219 EXPORT_SYMBOL_GPL(handle_mm_fault);
5220
5221 #ifndef __PAGETABLE_P4D_FOLDED
5222 /*
5223  * Allocate p4d page table.
5224  * We've already handled the fast-path in-line.
5225  */
5226 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5227 {
5228         p4d_t *new = p4d_alloc_one(mm, address);
5229         if (!new)
5230                 return -ENOMEM;
5231
5232         spin_lock(&mm->page_table_lock);
5233         if (pgd_present(*pgd)) {        /* Another has populated it */
5234                 p4d_free(mm, new);
5235         } else {
5236                 smp_wmb(); /* See comment in pmd_install() */
5237                 pgd_populate(mm, pgd, new);
5238         }
5239         spin_unlock(&mm->page_table_lock);
5240         return 0;
5241 }
5242 #endif /* __PAGETABLE_P4D_FOLDED */
5243
5244 #ifndef __PAGETABLE_PUD_FOLDED
5245 /*
5246  * Allocate page upper directory.
5247  * We've already handled the fast-path in-line.
5248  */
5249 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5250 {
5251         pud_t *new = pud_alloc_one(mm, address);
5252         if (!new)
5253                 return -ENOMEM;
5254
5255         spin_lock(&mm->page_table_lock);
5256         if (!p4d_present(*p4d)) {
5257                 mm_inc_nr_puds(mm);
5258                 smp_wmb(); /* See comment in pmd_install() */
5259                 p4d_populate(mm, p4d, new);
5260         } else  /* Another has populated it */
5261                 pud_free(mm, new);
5262         spin_unlock(&mm->page_table_lock);
5263         return 0;
5264 }
5265 #endif /* __PAGETABLE_PUD_FOLDED */
5266
5267 #ifndef __PAGETABLE_PMD_FOLDED
5268 /*
5269  * Allocate page middle directory.
5270  * We've already handled the fast-path in-line.
5271  */
5272 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5273 {
5274         spinlock_t *ptl;
5275         pmd_t *new = pmd_alloc_one(mm, address);
5276         if (!new)
5277                 return -ENOMEM;
5278
5279         ptl = pud_lock(mm, pud);
5280         if (!pud_present(*pud)) {
5281                 mm_inc_nr_pmds(mm);
5282                 smp_wmb(); /* See comment in pmd_install() */
5283                 pud_populate(mm, pud, new);
5284         } else {        /* Another has populated it */
5285                 pmd_free(mm, new);
5286         }
5287         spin_unlock(ptl);
5288         return 0;
5289 }
5290 #endif /* __PAGETABLE_PMD_FOLDED */
5291
5292 /**
5293  * follow_pte - look up PTE at a user virtual address
5294  * @mm: the mm_struct of the target address space
5295  * @address: user virtual address
5296  * @ptepp: location to store found PTE
5297  * @ptlp: location to store the lock for the PTE
5298  *
5299  * On a successful return, the pointer to the PTE is stored in @ptepp;
5300  * the corresponding lock is taken and its location is stored in @ptlp.
5301  * The contents of the PTE are only stable until @ptlp is released;
5302  * any further use, if any, must be protected against invalidation
5303  * with MMU notifiers.
5304  *
5305  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5306  * should be taken for read.
5307  *
5308  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5309  * it is not a good general-purpose API.
5310  *
5311  * Return: zero on success, -ve otherwise.
5312  */
5313 int follow_pte(struct mm_struct *mm, unsigned long address,
5314                pte_t **ptepp, spinlock_t **ptlp)
5315 {
5316         pgd_t *pgd;
5317         p4d_t *p4d;
5318         pud_t *pud;
5319         pmd_t *pmd;
5320         pte_t *ptep;
5321
5322         pgd = pgd_offset(mm, address);
5323         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5324                 goto out;
5325
5326         p4d = p4d_offset(pgd, address);
5327         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5328                 goto out;
5329
5330         pud = pud_offset(p4d, address);
5331         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5332                 goto out;
5333
5334         pmd = pmd_offset(pud, address);
5335         VM_BUG_ON(pmd_trans_huge(*pmd));
5336
5337         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5338                 goto out;
5339
5340         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5341         if (!pte_present(*ptep))
5342                 goto unlock;
5343         *ptepp = ptep;
5344         return 0;
5345 unlock:
5346         pte_unmap_unlock(ptep, *ptlp);
5347 out:
5348         return -EINVAL;
5349 }
5350 EXPORT_SYMBOL_GPL(follow_pte);
5351
5352 /**
5353  * follow_pfn - look up PFN at a user virtual address
5354  * @vma: memory mapping
5355  * @address: user virtual address
5356  * @pfn: location to store found PFN
5357  *
5358  * Only IO mappings and raw PFN mappings are allowed.
5359  *
5360  * This function does not allow the caller to read the permissions
5361  * of the PTE.  Do not use it.
5362  *
5363  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5364  */
5365 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5366         unsigned long *pfn)
5367 {
5368         int ret = -EINVAL;
5369         spinlock_t *ptl;
5370         pte_t *ptep;
5371
5372         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5373                 return ret;
5374
5375         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5376         if (ret)
5377                 return ret;
5378         *pfn = pte_pfn(*ptep);
5379         pte_unmap_unlock(ptep, ptl);
5380         return 0;
5381 }
5382 EXPORT_SYMBOL(follow_pfn);
5383
5384 #ifdef CONFIG_HAVE_IOREMAP_PROT
5385 int follow_phys(struct vm_area_struct *vma,
5386                 unsigned long address, unsigned int flags,
5387                 unsigned long *prot, resource_size_t *phys)
5388 {
5389         int ret = -EINVAL;
5390         pte_t *ptep, pte;
5391         spinlock_t *ptl;
5392
5393         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5394                 goto out;
5395
5396         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5397                 goto out;
5398         pte = *ptep;
5399
5400         if ((flags & FOLL_WRITE) && !pte_write(pte))
5401                 goto unlock;
5402
5403         *prot = pgprot_val(pte_pgprot(pte));
5404         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5405
5406         ret = 0;
5407 unlock:
5408         pte_unmap_unlock(ptep, ptl);
5409 out:
5410         return ret;
5411 }
5412
5413 /**
5414  * generic_access_phys - generic implementation for iomem mmap access
5415  * @vma: the vma to access
5416  * @addr: userspace address, not relative offset within @vma
5417  * @buf: buffer to read/write
5418  * @len: length of transfer
5419  * @write: set to FOLL_WRITE when writing, otherwise reading
5420  *
5421  * This is a generic implementation for &vm_operations_struct.access for an
5422  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5423  * not page based.
5424  */
5425 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5426                         void *buf, int len, int write)
5427 {
5428         resource_size_t phys_addr;
5429         unsigned long prot = 0;
5430         void __iomem *maddr;
5431         pte_t *ptep, pte;
5432         spinlock_t *ptl;
5433         int offset = offset_in_page(addr);
5434         int ret = -EINVAL;
5435
5436         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5437                 return -EINVAL;
5438
5439 retry:
5440         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5441                 return -EINVAL;
5442         pte = *ptep;
5443         pte_unmap_unlock(ptep, ptl);
5444
5445         prot = pgprot_val(pte_pgprot(pte));
5446         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5447
5448         if ((write & FOLL_WRITE) && !pte_write(pte))
5449                 return -EINVAL;
5450
5451         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5452         if (!maddr)
5453                 return -ENOMEM;
5454
5455         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5456                 goto out_unmap;
5457
5458         if (!pte_same(pte, *ptep)) {
5459                 pte_unmap_unlock(ptep, ptl);
5460                 iounmap(maddr);
5461
5462                 goto retry;
5463         }
5464
5465         if (write)
5466                 memcpy_toio(maddr + offset, buf, len);
5467         else
5468                 memcpy_fromio(buf, maddr + offset, len);
5469         ret = len;
5470         pte_unmap_unlock(ptep, ptl);
5471 out_unmap:
5472         iounmap(maddr);
5473
5474         return ret;
5475 }
5476 EXPORT_SYMBOL_GPL(generic_access_phys);
5477 #endif
5478
5479 /*
5480  * Access another process' address space as given in mm.
5481  */
5482 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5483                        int len, unsigned int gup_flags)
5484 {
5485         struct vm_area_struct *vma;
5486         void *old_buf = buf;
5487         int write = gup_flags & FOLL_WRITE;
5488
5489         if (mmap_read_lock_killable(mm))
5490                 return 0;
5491
5492         /* ignore errors, just check how much was successfully transferred */
5493         while (len) {
5494                 int bytes, ret, offset;
5495                 void *maddr;
5496                 struct page *page = NULL;
5497
5498                 ret = get_user_pages_remote(mm, addr, 1,
5499                                 gup_flags, &page, &vma, NULL);
5500                 if (ret <= 0) {
5501 #ifndef CONFIG_HAVE_IOREMAP_PROT
5502                         break;
5503 #else
5504                         /*
5505                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5506                          * we can access using slightly different code.
5507                          */
5508                         vma = vma_lookup(mm, addr);
5509                         if (!vma)
5510                                 break;
5511                         if (vma->vm_ops && vma->vm_ops->access)
5512                                 ret = vma->vm_ops->access(vma, addr, buf,
5513                                                           len, write);
5514                         if (ret <= 0)
5515                                 break;
5516                         bytes = ret;
5517 #endif
5518                 } else {
5519                         bytes = len;
5520                         offset = addr & (PAGE_SIZE-1);
5521                         if (bytes > PAGE_SIZE-offset)
5522                                 bytes = PAGE_SIZE-offset;
5523
5524                         maddr = kmap(page);
5525                         if (write) {
5526                                 copy_to_user_page(vma, page, addr,
5527                                                   maddr + offset, buf, bytes);
5528                                 set_page_dirty_lock(page);
5529                         } else {
5530                                 copy_from_user_page(vma, page, addr,
5531                                                     buf, maddr + offset, bytes);
5532                         }
5533                         kunmap(page);
5534                         put_page(page);
5535                 }
5536                 len -= bytes;
5537                 buf += bytes;
5538                 addr += bytes;
5539         }
5540         mmap_read_unlock(mm);
5541
5542         return buf - old_buf;
5543 }
5544
5545 /**
5546  * access_remote_vm - access another process' address space
5547  * @mm:         the mm_struct of the target address space
5548  * @addr:       start address to access
5549  * @buf:        source or destination buffer
5550  * @len:        number of bytes to transfer
5551  * @gup_flags:  flags modifying lookup behaviour
5552  *
5553  * The caller must hold a reference on @mm.
5554  *
5555  * Return: number of bytes copied from source to destination.
5556  */
5557 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5558                 void *buf, int len, unsigned int gup_flags)
5559 {
5560         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5561 }
5562
5563 /*
5564  * Access another process' address space.
5565  * Source/target buffer must be kernel space,
5566  * Do not walk the page table directly, use get_user_pages
5567  */
5568 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5569                 void *buf, int len, unsigned int gup_flags)
5570 {
5571         struct mm_struct *mm;
5572         int ret;
5573
5574         mm = get_task_mm(tsk);
5575         if (!mm)
5576                 return 0;
5577
5578         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5579
5580         mmput(mm);
5581
5582         return ret;
5583 }
5584 EXPORT_SYMBOL_GPL(access_process_vm);
5585
5586 /*
5587  * Print the name of a VMA.
5588  */
5589 void print_vma_addr(char *prefix, unsigned long ip)
5590 {
5591         struct mm_struct *mm = current->mm;
5592         struct vm_area_struct *vma;
5593
5594         /*
5595          * we might be running from an atomic context so we cannot sleep
5596          */
5597         if (!mmap_read_trylock(mm))
5598                 return;
5599
5600         vma = find_vma(mm, ip);
5601         if (vma && vma->vm_file) {
5602                 struct file *f = vma->vm_file;
5603                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5604                 if (buf) {
5605                         char *p;
5606
5607                         p = file_path(f, buf, PAGE_SIZE);
5608                         if (IS_ERR(p))
5609                                 p = "?";
5610                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5611                                         vma->vm_start,
5612                                         vma->vm_end - vma->vm_start);
5613                         free_page((unsigned long)buf);
5614                 }
5615         }
5616         mmap_read_unlock(mm);
5617 }
5618
5619 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5620 void __might_fault(const char *file, int line)
5621 {
5622         if (pagefault_disabled())
5623                 return;
5624         __might_sleep(file, line);
5625 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5626         if (current->mm)
5627                 might_lock_read(&current->mm->mmap_lock);
5628 #endif
5629 }
5630 EXPORT_SYMBOL(__might_fault);
5631 #endif
5632
5633 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5634 /*
5635  * Process all subpages of the specified huge page with the specified
5636  * operation.  The target subpage will be processed last to keep its
5637  * cache lines hot.
5638  */
5639 static inline void process_huge_page(
5640         unsigned long addr_hint, unsigned int pages_per_huge_page,
5641         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5642         void *arg)
5643 {
5644         int i, n, base, l;
5645         unsigned long addr = addr_hint &
5646                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5647
5648         /* Process target subpage last to keep its cache lines hot */
5649         might_sleep();
5650         n = (addr_hint - addr) / PAGE_SIZE;
5651         if (2 * n <= pages_per_huge_page) {
5652                 /* If target subpage in first half of huge page */
5653                 base = 0;
5654                 l = n;
5655                 /* Process subpages at the end of huge page */
5656                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5657                         cond_resched();
5658                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5659                 }
5660         } else {
5661                 /* If target subpage in second half of huge page */
5662                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5663                 l = pages_per_huge_page - n;
5664                 /* Process subpages at the begin of huge page */
5665                 for (i = 0; i < base; i++) {
5666                         cond_resched();
5667                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5668                 }
5669         }
5670         /*
5671          * Process remaining subpages in left-right-left-right pattern
5672          * towards the target subpage
5673          */
5674         for (i = 0; i < l; i++) {
5675                 int left_idx = base + i;
5676                 int right_idx = base + 2 * l - 1 - i;
5677
5678                 cond_resched();
5679                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5680                 cond_resched();
5681                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5682         }
5683 }
5684
5685 static void clear_gigantic_page(struct page *page,
5686                                 unsigned long addr,
5687                                 unsigned int pages_per_huge_page)
5688 {
5689         int i;
5690         struct page *p;
5691
5692         might_sleep();
5693         for (i = 0; i < pages_per_huge_page; i++) {
5694                 p = nth_page(page, i);
5695                 cond_resched();
5696                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5697         }
5698 }
5699
5700 static void clear_subpage(unsigned long addr, int idx, void *arg)
5701 {
5702         struct page *page = arg;
5703
5704         clear_user_highpage(page + idx, addr);
5705 }
5706
5707 void clear_huge_page(struct page *page,
5708                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5709 {
5710         unsigned long addr = addr_hint &
5711                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5712
5713         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5714                 clear_gigantic_page(page, addr, pages_per_huge_page);
5715                 return;
5716         }
5717
5718         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5719 }
5720
5721 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5722                                     unsigned long addr,
5723                                     struct vm_area_struct *vma,
5724                                     unsigned int pages_per_huge_page)
5725 {
5726         int i;
5727         struct page *dst_base = dst;
5728         struct page *src_base = src;
5729
5730         for (i = 0; i < pages_per_huge_page; i++) {
5731                 dst = nth_page(dst_base, i);
5732                 src = nth_page(src_base, i);
5733
5734                 cond_resched();
5735                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5736         }
5737 }
5738
5739 struct copy_subpage_arg {
5740         struct page *dst;
5741         struct page *src;
5742         struct vm_area_struct *vma;
5743 };
5744
5745 static void copy_subpage(unsigned long addr, int idx, void *arg)
5746 {
5747         struct copy_subpage_arg *copy_arg = arg;
5748
5749         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5750                            addr, copy_arg->vma);
5751 }
5752
5753 void copy_user_huge_page(struct page *dst, struct page *src,
5754                          unsigned long addr_hint, struct vm_area_struct *vma,
5755                          unsigned int pages_per_huge_page)
5756 {
5757         unsigned long addr = addr_hint &
5758                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5759         struct copy_subpage_arg arg = {
5760                 .dst = dst,
5761                 .src = src,
5762                 .vma = vma,
5763         };
5764
5765         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5766                 copy_user_gigantic_page(dst, src, addr, vma,
5767                                         pages_per_huge_page);
5768                 return;
5769         }
5770
5771         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5772 }
5773
5774 long copy_huge_page_from_user(struct page *dst_page,
5775                                 const void __user *usr_src,
5776                                 unsigned int pages_per_huge_page,
5777                                 bool allow_pagefault)
5778 {
5779         void *page_kaddr;
5780         unsigned long i, rc = 0;
5781         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5782         struct page *subpage;
5783
5784         for (i = 0; i < pages_per_huge_page; i++) {
5785                 subpage = nth_page(dst_page, i);
5786                 if (allow_pagefault)
5787                         page_kaddr = kmap(subpage);
5788                 else
5789                         page_kaddr = kmap_atomic(subpage);
5790                 rc = copy_from_user(page_kaddr,
5791                                 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5792                 if (allow_pagefault)
5793                         kunmap(subpage);
5794                 else
5795                         kunmap_atomic(page_kaddr);
5796
5797                 ret_val -= (PAGE_SIZE - rc);
5798                 if (rc)
5799                         break;
5800
5801                 flush_dcache_page(subpage);
5802
5803                 cond_resched();
5804         }
5805         return ret_val;
5806 }
5807 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5808
5809 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5810
5811 static struct kmem_cache *page_ptl_cachep;
5812
5813 void __init ptlock_cache_init(void)
5814 {
5815         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5816                         SLAB_PANIC, NULL);
5817 }
5818
5819 bool ptlock_alloc(struct page *page)
5820 {
5821         spinlock_t *ptl;
5822
5823         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5824         if (!ptl)
5825                 return false;
5826         page->ptl = ptl;
5827         return true;
5828 }
5829
5830 void ptlock_free(struct page *page)
5831 {
5832         kmem_cache_free(page_ptl_cachep, page->ptl);
5833 }
5834 #endif
This page took 0.362252 seconds and 4 git commands to generate.