]> Git Repo - linux.git/blob - mm/ksm.c
mm: return an ERR_PTR from __filemap_get_folio
[linux.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *      Izik Eidus
11  *      Andrea Arcangeli
12  *      Chris Wright
13  *      Hugh Dickins
14  */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
43
44 #include <asm/tlbflush.h>
45 #include "internal.h"
46 #include "mm_slot.h"
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/ksm.h>
50
51 #ifdef CONFIG_NUMA
52 #define NUMA(x)         (x)
53 #define DO_NUMA(x)      do { (x); } while (0)
54 #else
55 #define NUMA(x)         (0)
56 #define DO_NUMA(x)      do { } while (0)
57 #endif
58
59 /**
60  * DOC: Overview
61  *
62  * A few notes about the KSM scanning process,
63  * to make it easier to understand the data structures below:
64  *
65  * In order to reduce excessive scanning, KSM sorts the memory pages by their
66  * contents into a data structure that holds pointers to the pages' locations.
67  *
68  * Since the contents of the pages may change at any moment, KSM cannot just
69  * insert the pages into a normal sorted tree and expect it to find anything.
70  * Therefore KSM uses two data structures - the stable and the unstable tree.
71  *
72  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
73  * by their contents.  Because each such page is write-protected, searching on
74  * this tree is fully assured to be working (except when pages are unmapped),
75  * and therefore this tree is called the stable tree.
76  *
77  * The stable tree node includes information required for reverse
78  * mapping from a KSM page to virtual addresses that map this page.
79  *
80  * In order to avoid large latencies of the rmap walks on KSM pages,
81  * KSM maintains two types of nodes in the stable tree:
82  *
83  * * the regular nodes that keep the reverse mapping structures in a
84  *   linked list
85  * * the "chains" that link nodes ("dups") that represent the same
86  *   write protected memory content, but each "dup" corresponds to a
87  *   different KSM page copy of that content
88  *
89  * Internally, the regular nodes, "dups" and "chains" are represented
90  * using the same struct ksm_stable_node structure.
91  *
92  * In addition to the stable tree, KSM uses a second data structure called the
93  * unstable tree: this tree holds pointers to pages which have been found to
94  * be "unchanged for a period of time".  The unstable tree sorts these pages
95  * by their contents, but since they are not write-protected, KSM cannot rely
96  * upon the unstable tree to work correctly - the unstable tree is liable to
97  * be corrupted as its contents are modified, and so it is called unstable.
98  *
99  * KSM solves this problem by several techniques:
100  *
101  * 1) The unstable tree is flushed every time KSM completes scanning all
102  *    memory areas, and then the tree is rebuilt again from the beginning.
103  * 2) KSM will only insert into the unstable tree, pages whose hash value
104  *    has not changed since the previous scan of all memory areas.
105  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
106  *    colors of the nodes and not on their contents, assuring that even when
107  *    the tree gets "corrupted" it won't get out of balance, so scanning time
108  *    remains the same (also, searching and inserting nodes in an rbtree uses
109  *    the same algorithm, so we have no overhead when we flush and rebuild).
110  * 4) KSM never flushes the stable tree, which means that even if it were to
111  *    take 10 attempts to find a page in the unstable tree, once it is found,
112  *    it is secured in the stable tree.  (When we scan a new page, we first
113  *    compare it against the stable tree, and then against the unstable tree.)
114  *
115  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
116  * stable trees and multiple unstable trees: one of each for each NUMA node.
117  */
118
119 /**
120  * struct ksm_mm_slot - ksm information per mm that is being scanned
121  * @slot: hash lookup from mm to mm_slot
122  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
123  */
124 struct ksm_mm_slot {
125         struct mm_slot slot;
126         struct ksm_rmap_item *rmap_list;
127 };
128
129 /**
130  * struct ksm_scan - cursor for scanning
131  * @mm_slot: the current mm_slot we are scanning
132  * @address: the next address inside that to be scanned
133  * @rmap_list: link to the next rmap to be scanned in the rmap_list
134  * @seqnr: count of completed full scans (needed when removing unstable node)
135  *
136  * There is only the one ksm_scan instance of this cursor structure.
137  */
138 struct ksm_scan {
139         struct ksm_mm_slot *mm_slot;
140         unsigned long address;
141         struct ksm_rmap_item **rmap_list;
142         unsigned long seqnr;
143 };
144
145 /**
146  * struct ksm_stable_node - node of the stable rbtree
147  * @node: rb node of this ksm page in the stable tree
148  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
149  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
150  * @list: linked into migrate_nodes, pending placement in the proper node tree
151  * @hlist: hlist head of rmap_items using this ksm page
152  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
153  * @chain_prune_time: time of the last full garbage collection
154  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
155  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
156  */
157 struct ksm_stable_node {
158         union {
159                 struct rb_node node;    /* when node of stable tree */
160                 struct {                /* when listed for migration */
161                         struct list_head *head;
162                         struct {
163                                 struct hlist_node hlist_dup;
164                                 struct list_head list;
165                         };
166                 };
167         };
168         struct hlist_head hlist;
169         union {
170                 unsigned long kpfn;
171                 unsigned long chain_prune_time;
172         };
173         /*
174          * STABLE_NODE_CHAIN can be any negative number in
175          * rmap_hlist_len negative range, but better not -1 to be able
176          * to reliably detect underflows.
177          */
178 #define STABLE_NODE_CHAIN -1024
179         int rmap_hlist_len;
180 #ifdef CONFIG_NUMA
181         int nid;
182 #endif
183 };
184
185 /**
186  * struct ksm_rmap_item - reverse mapping item for virtual addresses
187  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
188  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
189  * @nid: NUMA node id of unstable tree in which linked (may not match page)
190  * @mm: the memory structure this rmap_item is pointing into
191  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
192  * @oldchecksum: previous checksum of the page at that virtual address
193  * @node: rb node of this rmap_item in the unstable tree
194  * @head: pointer to stable_node heading this list in the stable tree
195  * @hlist: link into hlist of rmap_items hanging off that stable_node
196  */
197 struct ksm_rmap_item {
198         struct ksm_rmap_item *rmap_list;
199         union {
200                 struct anon_vma *anon_vma;      /* when stable */
201 #ifdef CONFIG_NUMA
202                 int nid;                /* when node of unstable tree */
203 #endif
204         };
205         struct mm_struct *mm;
206         unsigned long address;          /* + low bits used for flags below */
207         unsigned int oldchecksum;       /* when unstable */
208         union {
209                 struct rb_node node;    /* when node of unstable tree */
210                 struct {                /* when listed from stable tree */
211                         struct ksm_stable_node *head;
212                         struct hlist_node hlist;
213                 };
214         };
215 };
216
217 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
218 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
219 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
220
221 /* The stable and unstable tree heads */
222 static struct rb_root one_stable_tree[1] = { RB_ROOT };
223 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224 static struct rb_root *root_stable_tree = one_stable_tree;
225 static struct rb_root *root_unstable_tree = one_unstable_tree;
226
227 /* Recently migrated nodes of stable tree, pending proper placement */
228 static LIST_HEAD(migrate_nodes);
229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
230
231 #define MM_SLOTS_HASH_BITS 10
232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
233
234 static struct ksm_mm_slot ksm_mm_head = {
235         .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
236 };
237 static struct ksm_scan ksm_scan = {
238         .mm_slot = &ksm_mm_head,
239 };
240
241 static struct kmem_cache *rmap_item_cache;
242 static struct kmem_cache *stable_node_cache;
243 static struct kmem_cache *mm_slot_cache;
244
245 /* The number of nodes in the stable tree */
246 static unsigned long ksm_pages_shared;
247
248 /* The number of page slots additionally sharing those nodes */
249 static unsigned long ksm_pages_sharing;
250
251 /* The number of nodes in the unstable tree */
252 static unsigned long ksm_pages_unshared;
253
254 /* The number of rmap_items in use: to calculate pages_volatile */
255 static unsigned long ksm_rmap_items;
256
257 /* The number of stable_node chains */
258 static unsigned long ksm_stable_node_chains;
259
260 /* The number of stable_node dups linked to the stable_node chains */
261 static unsigned long ksm_stable_node_dups;
262
263 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
264 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
265
266 /* Maximum number of page slots sharing a stable node */
267 static int ksm_max_page_sharing = 256;
268
269 /* Number of pages ksmd should scan in one batch */
270 static unsigned int ksm_thread_pages_to_scan = 100;
271
272 /* Milliseconds ksmd should sleep between batches */
273 static unsigned int ksm_thread_sleep_millisecs = 20;
274
275 /* Checksum of an empty (zeroed) page */
276 static unsigned int zero_checksum __read_mostly;
277
278 /* Whether to merge empty (zeroed) pages with actual zero pages */
279 static bool ksm_use_zero_pages __read_mostly;
280
281 #ifdef CONFIG_NUMA
282 /* Zeroed when merging across nodes is not allowed */
283 static unsigned int ksm_merge_across_nodes = 1;
284 static int ksm_nr_node_ids = 1;
285 #else
286 #define ksm_merge_across_nodes  1U
287 #define ksm_nr_node_ids         1
288 #endif
289
290 #define KSM_RUN_STOP    0
291 #define KSM_RUN_MERGE   1
292 #define KSM_RUN_UNMERGE 2
293 #define KSM_RUN_OFFLINE 4
294 static unsigned long ksm_run = KSM_RUN_STOP;
295 static void wait_while_offlining(void);
296
297 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
299 static DEFINE_MUTEX(ksm_thread_mutex);
300 static DEFINE_SPINLOCK(ksm_mmlist_lock);
301
302 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
303                 sizeof(struct __struct), __alignof__(struct __struct),\
304                 (__flags), NULL)
305
306 static int __init ksm_slab_init(void)
307 {
308         rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
309         if (!rmap_item_cache)
310                 goto out;
311
312         stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
313         if (!stable_node_cache)
314                 goto out_free1;
315
316         mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
317         if (!mm_slot_cache)
318                 goto out_free2;
319
320         return 0;
321
322 out_free2:
323         kmem_cache_destroy(stable_node_cache);
324 out_free1:
325         kmem_cache_destroy(rmap_item_cache);
326 out:
327         return -ENOMEM;
328 }
329
330 static void __init ksm_slab_free(void)
331 {
332         kmem_cache_destroy(mm_slot_cache);
333         kmem_cache_destroy(stable_node_cache);
334         kmem_cache_destroy(rmap_item_cache);
335         mm_slot_cache = NULL;
336 }
337
338 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
339 {
340         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
341 }
342
343 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
344 {
345         return dup->head == STABLE_NODE_DUP_HEAD;
346 }
347
348 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
349                                              struct ksm_stable_node *chain)
350 {
351         VM_BUG_ON(is_stable_node_dup(dup));
352         dup->head = STABLE_NODE_DUP_HEAD;
353         VM_BUG_ON(!is_stable_node_chain(chain));
354         hlist_add_head(&dup->hlist_dup, &chain->hlist);
355         ksm_stable_node_dups++;
356 }
357
358 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
359 {
360         VM_BUG_ON(!is_stable_node_dup(dup));
361         hlist_del(&dup->hlist_dup);
362         ksm_stable_node_dups--;
363 }
364
365 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
366 {
367         VM_BUG_ON(is_stable_node_chain(dup));
368         if (is_stable_node_dup(dup))
369                 __stable_node_dup_del(dup);
370         else
371                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
372 #ifdef CONFIG_DEBUG_VM
373         dup->head = NULL;
374 #endif
375 }
376
377 static inline struct ksm_rmap_item *alloc_rmap_item(void)
378 {
379         struct ksm_rmap_item *rmap_item;
380
381         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
382                                                 __GFP_NORETRY | __GFP_NOWARN);
383         if (rmap_item)
384                 ksm_rmap_items++;
385         return rmap_item;
386 }
387
388 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
389 {
390         ksm_rmap_items--;
391         rmap_item->mm->ksm_rmap_items--;
392         rmap_item->mm = NULL;   /* debug safety */
393         kmem_cache_free(rmap_item_cache, rmap_item);
394 }
395
396 static inline struct ksm_stable_node *alloc_stable_node(void)
397 {
398         /*
399          * The allocation can take too long with GFP_KERNEL when memory is under
400          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
401          * grants access to memory reserves, helping to avoid this problem.
402          */
403         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
404 }
405
406 static inline void free_stable_node(struct ksm_stable_node *stable_node)
407 {
408         VM_BUG_ON(stable_node->rmap_hlist_len &&
409                   !is_stable_node_chain(stable_node));
410         kmem_cache_free(stable_node_cache, stable_node);
411 }
412
413 /*
414  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
415  * page tables after it has passed through ksm_exit() - which, if necessary,
416  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
417  * a special flag: they can just back out as soon as mm_users goes to zero.
418  * ksm_test_exit() is used throughout to make this test for exit: in some
419  * places for correctness, in some places just to avoid unnecessary work.
420  */
421 static inline bool ksm_test_exit(struct mm_struct *mm)
422 {
423         return atomic_read(&mm->mm_users) == 0;
424 }
425
426 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
427                         struct mm_walk *walk)
428 {
429         struct page *page = NULL;
430         spinlock_t *ptl;
431         pte_t *pte;
432         int ret;
433
434         if (pmd_leaf(*pmd) || !pmd_present(*pmd))
435                 return 0;
436
437         pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
438         if (pte_present(*pte)) {
439                 page = vm_normal_page(walk->vma, addr, *pte);
440         } else if (!pte_none(*pte)) {
441                 swp_entry_t entry = pte_to_swp_entry(*pte);
442
443                 /*
444                  * As KSM pages remain KSM pages until freed, no need to wait
445                  * here for migration to end.
446                  */
447                 if (is_migration_entry(entry))
448                         page = pfn_swap_entry_to_page(entry);
449         }
450         ret = page && PageKsm(page);
451         pte_unmap_unlock(pte, ptl);
452         return ret;
453 }
454
455 static const struct mm_walk_ops break_ksm_ops = {
456         .pmd_entry = break_ksm_pmd_entry,
457 };
458
459 /*
460  * We use break_ksm to break COW on a ksm page by triggering unsharing,
461  * such that the ksm page will get replaced by an exclusive anonymous page.
462  *
463  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
464  * in case the application has unmapped and remapped mm,addr meanwhile.
465  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
466  * mmap of /dev/mem, where we would not want to touch it.
467  *
468  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
469  * of the process that owns 'vma'.  We also do not want to enforce
470  * protection keys here anyway.
471  */
472 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
473 {
474         vm_fault_t ret = 0;
475
476         do {
477                 int ksm_page;
478
479                 cond_resched();
480                 ksm_page = walk_page_range_vma(vma, addr, addr + 1,
481                                                &break_ksm_ops, NULL);
482                 if (WARN_ON_ONCE(ksm_page < 0))
483                         return ksm_page;
484                 if (!ksm_page)
485                         return 0;
486                 ret = handle_mm_fault(vma, addr,
487                                       FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
488                                       NULL);
489         } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
490         /*
491          * We must loop until we no longer find a KSM page because
492          * handle_mm_fault() may back out if there's any difficulty e.g. if
493          * pte accessed bit gets updated concurrently.
494          *
495          * VM_FAULT_SIGBUS could occur if we race with truncation of the
496          * backing file, which also invalidates anonymous pages: that's
497          * okay, that truncation will have unmapped the PageKsm for us.
498          *
499          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
500          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
501          * current task has TIF_MEMDIE set, and will be OOM killed on return
502          * to user; and ksmd, having no mm, would never be chosen for that.
503          *
504          * But if the mm is in a limited mem_cgroup, then the fault may fail
505          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
506          * even ksmd can fail in this way - though it's usually breaking ksm
507          * just to undo a merge it made a moment before, so unlikely to oom.
508          *
509          * That's a pity: we might therefore have more kernel pages allocated
510          * than we're counting as nodes in the stable tree; but ksm_do_scan
511          * will retry to break_cow on each pass, so should recover the page
512          * in due course.  The important thing is to not let VM_MERGEABLE
513          * be cleared while any such pages might remain in the area.
514          */
515         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
516 }
517
518 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
519                 unsigned long addr)
520 {
521         struct vm_area_struct *vma;
522         if (ksm_test_exit(mm))
523                 return NULL;
524         vma = vma_lookup(mm, addr);
525         if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
526                 return NULL;
527         return vma;
528 }
529
530 static void break_cow(struct ksm_rmap_item *rmap_item)
531 {
532         struct mm_struct *mm = rmap_item->mm;
533         unsigned long addr = rmap_item->address;
534         struct vm_area_struct *vma;
535
536         /*
537          * It is not an accident that whenever we want to break COW
538          * to undo, we also need to drop a reference to the anon_vma.
539          */
540         put_anon_vma(rmap_item->anon_vma);
541
542         mmap_read_lock(mm);
543         vma = find_mergeable_vma(mm, addr);
544         if (vma)
545                 break_ksm(vma, addr);
546         mmap_read_unlock(mm);
547 }
548
549 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
550 {
551         struct mm_struct *mm = rmap_item->mm;
552         unsigned long addr = rmap_item->address;
553         struct vm_area_struct *vma;
554         struct page *page;
555
556         mmap_read_lock(mm);
557         vma = find_mergeable_vma(mm, addr);
558         if (!vma)
559                 goto out;
560
561         page = follow_page(vma, addr, FOLL_GET);
562         if (IS_ERR_OR_NULL(page))
563                 goto out;
564         if (is_zone_device_page(page))
565                 goto out_putpage;
566         if (PageAnon(page)) {
567                 flush_anon_page(vma, page, addr);
568                 flush_dcache_page(page);
569         } else {
570 out_putpage:
571                 put_page(page);
572 out:
573                 page = NULL;
574         }
575         mmap_read_unlock(mm);
576         return page;
577 }
578
579 /*
580  * This helper is used for getting right index into array of tree roots.
581  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
582  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
583  * every node has its own stable and unstable tree.
584  */
585 static inline int get_kpfn_nid(unsigned long kpfn)
586 {
587         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
588 }
589
590 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
591                                                    struct rb_root *root)
592 {
593         struct ksm_stable_node *chain = alloc_stable_node();
594         VM_BUG_ON(is_stable_node_chain(dup));
595         if (likely(chain)) {
596                 INIT_HLIST_HEAD(&chain->hlist);
597                 chain->chain_prune_time = jiffies;
598                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
599 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
600                 chain->nid = NUMA_NO_NODE; /* debug */
601 #endif
602                 ksm_stable_node_chains++;
603
604                 /*
605                  * Put the stable node chain in the first dimension of
606                  * the stable tree and at the same time remove the old
607                  * stable node.
608                  */
609                 rb_replace_node(&dup->node, &chain->node, root);
610
611                 /*
612                  * Move the old stable node to the second dimension
613                  * queued in the hlist_dup. The invariant is that all
614                  * dup stable_nodes in the chain->hlist point to pages
615                  * that are write protected and have the exact same
616                  * content.
617                  */
618                 stable_node_chain_add_dup(dup, chain);
619         }
620         return chain;
621 }
622
623 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
624                                           struct rb_root *root)
625 {
626         rb_erase(&chain->node, root);
627         free_stable_node(chain);
628         ksm_stable_node_chains--;
629 }
630
631 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
632 {
633         struct ksm_rmap_item *rmap_item;
634
635         /* check it's not STABLE_NODE_CHAIN or negative */
636         BUG_ON(stable_node->rmap_hlist_len < 0);
637
638         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
639                 if (rmap_item->hlist.next) {
640                         ksm_pages_sharing--;
641                         trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
642                 } else {
643                         ksm_pages_shared--;
644                 }
645
646                 rmap_item->mm->ksm_merging_pages--;
647
648                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
649                 stable_node->rmap_hlist_len--;
650                 put_anon_vma(rmap_item->anon_vma);
651                 rmap_item->address &= PAGE_MASK;
652                 cond_resched();
653         }
654
655         /*
656          * We need the second aligned pointer of the migrate_nodes
657          * list_head to stay clear from the rb_parent_color union
658          * (aligned and different than any node) and also different
659          * from &migrate_nodes. This will verify that future list.h changes
660          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
661          */
662         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
663         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
664
665         trace_ksm_remove_ksm_page(stable_node->kpfn);
666         if (stable_node->head == &migrate_nodes)
667                 list_del(&stable_node->list);
668         else
669                 stable_node_dup_del(stable_node);
670         free_stable_node(stable_node);
671 }
672
673 enum get_ksm_page_flags {
674         GET_KSM_PAGE_NOLOCK,
675         GET_KSM_PAGE_LOCK,
676         GET_KSM_PAGE_TRYLOCK
677 };
678
679 /*
680  * get_ksm_page: checks if the page indicated by the stable node
681  * is still its ksm page, despite having held no reference to it.
682  * In which case we can trust the content of the page, and it
683  * returns the gotten page; but if the page has now been zapped,
684  * remove the stale node from the stable tree and return NULL.
685  * But beware, the stable node's page might be being migrated.
686  *
687  * You would expect the stable_node to hold a reference to the ksm page.
688  * But if it increments the page's count, swapping out has to wait for
689  * ksmd to come around again before it can free the page, which may take
690  * seconds or even minutes: much too unresponsive.  So instead we use a
691  * "keyhole reference": access to the ksm page from the stable node peeps
692  * out through its keyhole to see if that page still holds the right key,
693  * pointing back to this stable node.  This relies on freeing a PageAnon
694  * page to reset its page->mapping to NULL, and relies on no other use of
695  * a page to put something that might look like our key in page->mapping.
696  * is on its way to being freed; but it is an anomaly to bear in mind.
697  */
698 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
699                                  enum get_ksm_page_flags flags)
700 {
701         struct page *page;
702         void *expected_mapping;
703         unsigned long kpfn;
704
705         expected_mapping = (void *)((unsigned long)stable_node |
706                                         PAGE_MAPPING_KSM);
707 again:
708         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
709         page = pfn_to_page(kpfn);
710         if (READ_ONCE(page->mapping) != expected_mapping)
711                 goto stale;
712
713         /*
714          * We cannot do anything with the page while its refcount is 0.
715          * Usually 0 means free, or tail of a higher-order page: in which
716          * case this node is no longer referenced, and should be freed;
717          * however, it might mean that the page is under page_ref_freeze().
718          * The __remove_mapping() case is easy, again the node is now stale;
719          * the same is in reuse_ksm_page() case; but if page is swapcache
720          * in folio_migrate_mapping(), it might still be our page,
721          * in which case it's essential to keep the node.
722          */
723         while (!get_page_unless_zero(page)) {
724                 /*
725                  * Another check for page->mapping != expected_mapping would
726                  * work here too.  We have chosen the !PageSwapCache test to
727                  * optimize the common case, when the page is or is about to
728                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
729                  * in the ref_freeze section of __remove_mapping(); but Anon
730                  * page->mapping reset to NULL later, in free_pages_prepare().
731                  */
732                 if (!PageSwapCache(page))
733                         goto stale;
734                 cpu_relax();
735         }
736
737         if (READ_ONCE(page->mapping) != expected_mapping) {
738                 put_page(page);
739                 goto stale;
740         }
741
742         if (flags == GET_KSM_PAGE_TRYLOCK) {
743                 if (!trylock_page(page)) {
744                         put_page(page);
745                         return ERR_PTR(-EBUSY);
746                 }
747         } else if (flags == GET_KSM_PAGE_LOCK)
748                 lock_page(page);
749
750         if (flags != GET_KSM_PAGE_NOLOCK) {
751                 if (READ_ONCE(page->mapping) != expected_mapping) {
752                         unlock_page(page);
753                         put_page(page);
754                         goto stale;
755                 }
756         }
757         return page;
758
759 stale:
760         /*
761          * We come here from above when page->mapping or !PageSwapCache
762          * suggests that the node is stale; but it might be under migration.
763          * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
764          * before checking whether node->kpfn has been changed.
765          */
766         smp_rmb();
767         if (READ_ONCE(stable_node->kpfn) != kpfn)
768                 goto again;
769         remove_node_from_stable_tree(stable_node);
770         return NULL;
771 }
772
773 /*
774  * Removing rmap_item from stable or unstable tree.
775  * This function will clean the information from the stable/unstable tree.
776  */
777 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
778 {
779         if (rmap_item->address & STABLE_FLAG) {
780                 struct ksm_stable_node *stable_node;
781                 struct page *page;
782
783                 stable_node = rmap_item->head;
784                 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
785                 if (!page)
786                         goto out;
787
788                 hlist_del(&rmap_item->hlist);
789                 unlock_page(page);
790                 put_page(page);
791
792                 if (!hlist_empty(&stable_node->hlist))
793                         ksm_pages_sharing--;
794                 else
795                         ksm_pages_shared--;
796
797                 rmap_item->mm->ksm_merging_pages--;
798
799                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
800                 stable_node->rmap_hlist_len--;
801
802                 put_anon_vma(rmap_item->anon_vma);
803                 rmap_item->head = NULL;
804                 rmap_item->address &= PAGE_MASK;
805
806         } else if (rmap_item->address & UNSTABLE_FLAG) {
807                 unsigned char age;
808                 /*
809                  * Usually ksmd can and must skip the rb_erase, because
810                  * root_unstable_tree was already reset to RB_ROOT.
811                  * But be careful when an mm is exiting: do the rb_erase
812                  * if this rmap_item was inserted by this scan, rather
813                  * than left over from before.
814                  */
815                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
816                 BUG_ON(age > 1);
817                 if (!age)
818                         rb_erase(&rmap_item->node,
819                                  root_unstable_tree + NUMA(rmap_item->nid));
820                 ksm_pages_unshared--;
821                 rmap_item->address &= PAGE_MASK;
822         }
823 out:
824         cond_resched();         /* we're called from many long loops */
825 }
826
827 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
828 {
829         while (*rmap_list) {
830                 struct ksm_rmap_item *rmap_item = *rmap_list;
831                 *rmap_list = rmap_item->rmap_list;
832                 remove_rmap_item_from_tree(rmap_item);
833                 free_rmap_item(rmap_item);
834         }
835 }
836
837 /*
838  * Though it's very tempting to unmerge rmap_items from stable tree rather
839  * than check every pte of a given vma, the locking doesn't quite work for
840  * that - an rmap_item is assigned to the stable tree after inserting ksm
841  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
842  * rmap_items from parent to child at fork time (so as not to waste time
843  * if exit comes before the next scan reaches it).
844  *
845  * Similarly, although we'd like to remove rmap_items (so updating counts
846  * and freeing memory) when unmerging an area, it's easier to leave that
847  * to the next pass of ksmd - consider, for example, how ksmd might be
848  * in cmp_and_merge_page on one of the rmap_items we would be removing.
849  */
850 static int unmerge_ksm_pages(struct vm_area_struct *vma,
851                              unsigned long start, unsigned long end)
852 {
853         unsigned long addr;
854         int err = 0;
855
856         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
857                 if (ksm_test_exit(vma->vm_mm))
858                         break;
859                 if (signal_pending(current))
860                         err = -ERESTARTSYS;
861                 else
862                         err = break_ksm(vma, addr);
863         }
864         return err;
865 }
866
867 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
868 {
869         return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
870 }
871
872 static inline struct ksm_stable_node *page_stable_node(struct page *page)
873 {
874         return folio_stable_node(page_folio(page));
875 }
876
877 static inline void set_page_stable_node(struct page *page,
878                                         struct ksm_stable_node *stable_node)
879 {
880         VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
881         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
882 }
883
884 #ifdef CONFIG_SYSFS
885 /*
886  * Only called through the sysfs control interface:
887  */
888 static int remove_stable_node(struct ksm_stable_node *stable_node)
889 {
890         struct page *page;
891         int err;
892
893         page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
894         if (!page) {
895                 /*
896                  * get_ksm_page did remove_node_from_stable_tree itself.
897                  */
898                 return 0;
899         }
900
901         /*
902          * Page could be still mapped if this races with __mmput() running in
903          * between ksm_exit() and exit_mmap(). Just refuse to let
904          * merge_across_nodes/max_page_sharing be switched.
905          */
906         err = -EBUSY;
907         if (!page_mapped(page)) {
908                 /*
909                  * The stable node did not yet appear stale to get_ksm_page(),
910                  * since that allows for an unmapped ksm page to be recognized
911                  * right up until it is freed; but the node is safe to remove.
912                  * This page might be in a pagevec waiting to be freed,
913                  * or it might be PageSwapCache (perhaps under writeback),
914                  * or it might have been removed from swapcache a moment ago.
915                  */
916                 set_page_stable_node(page, NULL);
917                 remove_node_from_stable_tree(stable_node);
918                 err = 0;
919         }
920
921         unlock_page(page);
922         put_page(page);
923         return err;
924 }
925
926 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
927                                     struct rb_root *root)
928 {
929         struct ksm_stable_node *dup;
930         struct hlist_node *hlist_safe;
931
932         if (!is_stable_node_chain(stable_node)) {
933                 VM_BUG_ON(is_stable_node_dup(stable_node));
934                 if (remove_stable_node(stable_node))
935                         return true;
936                 else
937                         return false;
938         }
939
940         hlist_for_each_entry_safe(dup, hlist_safe,
941                                   &stable_node->hlist, hlist_dup) {
942                 VM_BUG_ON(!is_stable_node_dup(dup));
943                 if (remove_stable_node(dup))
944                         return true;
945         }
946         BUG_ON(!hlist_empty(&stable_node->hlist));
947         free_stable_node_chain(stable_node, root);
948         return false;
949 }
950
951 static int remove_all_stable_nodes(void)
952 {
953         struct ksm_stable_node *stable_node, *next;
954         int nid;
955         int err = 0;
956
957         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
958                 while (root_stable_tree[nid].rb_node) {
959                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
960                                                 struct ksm_stable_node, node);
961                         if (remove_stable_node_chain(stable_node,
962                                                      root_stable_tree + nid)) {
963                                 err = -EBUSY;
964                                 break;  /* proceed to next nid */
965                         }
966                         cond_resched();
967                 }
968         }
969         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
970                 if (remove_stable_node(stable_node))
971                         err = -EBUSY;
972                 cond_resched();
973         }
974         return err;
975 }
976
977 static int unmerge_and_remove_all_rmap_items(void)
978 {
979         struct ksm_mm_slot *mm_slot;
980         struct mm_slot *slot;
981         struct mm_struct *mm;
982         struct vm_area_struct *vma;
983         int err = 0;
984
985         spin_lock(&ksm_mmlist_lock);
986         slot = list_entry(ksm_mm_head.slot.mm_node.next,
987                           struct mm_slot, mm_node);
988         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
989         spin_unlock(&ksm_mmlist_lock);
990
991         for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
992              mm_slot = ksm_scan.mm_slot) {
993                 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
994
995                 mm = mm_slot->slot.mm;
996                 mmap_read_lock(mm);
997
998                 /*
999                  * Exit right away if mm is exiting to avoid lockdep issue in
1000                  * the maple tree
1001                  */
1002                 if (ksm_test_exit(mm))
1003                         goto mm_exiting;
1004
1005                 for_each_vma(vmi, vma) {
1006                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1007                                 continue;
1008                         err = unmerge_ksm_pages(vma,
1009                                                 vma->vm_start, vma->vm_end);
1010                         if (err)
1011                                 goto error;
1012                 }
1013
1014 mm_exiting:
1015                 remove_trailing_rmap_items(&mm_slot->rmap_list);
1016                 mmap_read_unlock(mm);
1017
1018                 spin_lock(&ksm_mmlist_lock);
1019                 slot = list_entry(mm_slot->slot.mm_node.next,
1020                                   struct mm_slot, mm_node);
1021                 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1022                 if (ksm_test_exit(mm)) {
1023                         hash_del(&mm_slot->slot.hash);
1024                         list_del(&mm_slot->slot.mm_node);
1025                         spin_unlock(&ksm_mmlist_lock);
1026
1027                         mm_slot_free(mm_slot_cache, mm_slot);
1028                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1029                         mmdrop(mm);
1030                 } else
1031                         spin_unlock(&ksm_mmlist_lock);
1032         }
1033
1034         /* Clean up stable nodes, but don't worry if some are still busy */
1035         remove_all_stable_nodes();
1036         ksm_scan.seqnr = 0;
1037         return 0;
1038
1039 error:
1040         mmap_read_unlock(mm);
1041         spin_lock(&ksm_mmlist_lock);
1042         ksm_scan.mm_slot = &ksm_mm_head;
1043         spin_unlock(&ksm_mmlist_lock);
1044         return err;
1045 }
1046 #endif /* CONFIG_SYSFS */
1047
1048 static u32 calc_checksum(struct page *page)
1049 {
1050         u32 checksum;
1051         void *addr = kmap_atomic(page);
1052         checksum = xxhash(addr, PAGE_SIZE, 0);
1053         kunmap_atomic(addr);
1054         return checksum;
1055 }
1056
1057 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1058                               pte_t *orig_pte)
1059 {
1060         struct mm_struct *mm = vma->vm_mm;
1061         DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1062         int swapped;
1063         int err = -EFAULT;
1064         struct mmu_notifier_range range;
1065         bool anon_exclusive;
1066
1067         pvmw.address = page_address_in_vma(page, vma);
1068         if (pvmw.address == -EFAULT)
1069                 goto out;
1070
1071         BUG_ON(PageTransCompound(page));
1072
1073         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1074                                 pvmw.address + PAGE_SIZE);
1075         mmu_notifier_invalidate_range_start(&range);
1076
1077         if (!page_vma_mapped_walk(&pvmw))
1078                 goto out_mn;
1079         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1080                 goto out_unlock;
1081
1082         anon_exclusive = PageAnonExclusive(page);
1083         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1084             anon_exclusive || mm_tlb_flush_pending(mm)) {
1085                 pte_t entry;
1086
1087                 swapped = PageSwapCache(page);
1088                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1089                 /*
1090                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1091                  * take any lock, therefore the check that we are going to make
1092                  * with the pagecount against the mapcount is racy and
1093                  * O_DIRECT can happen right after the check.
1094                  * So we clear the pte and flush the tlb before the check
1095                  * this assure us that no O_DIRECT can happen after the check
1096                  * or in the middle of the check.
1097                  *
1098                  * No need to notify as we are downgrading page table to read
1099                  * only not changing it to point to a new page.
1100                  *
1101                  * See Documentation/mm/mmu_notifier.rst
1102                  */
1103                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1104                 /*
1105                  * Check that no O_DIRECT or similar I/O is in progress on the
1106                  * page
1107                  */
1108                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1109                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1110                         goto out_unlock;
1111                 }
1112
1113                 /* See page_try_share_anon_rmap(): clear PTE first. */
1114                 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1115                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1116                         goto out_unlock;
1117                 }
1118
1119                 if (pte_dirty(entry))
1120                         set_page_dirty(page);
1121                 entry = pte_mkclean(entry);
1122
1123                 if (pte_write(entry))
1124                         entry = pte_wrprotect(entry);
1125
1126                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1127         }
1128         *orig_pte = *pvmw.pte;
1129         err = 0;
1130
1131 out_unlock:
1132         page_vma_mapped_walk_done(&pvmw);
1133 out_mn:
1134         mmu_notifier_invalidate_range_end(&range);
1135 out:
1136         return err;
1137 }
1138
1139 /**
1140  * replace_page - replace page in vma by new ksm page
1141  * @vma:      vma that holds the pte pointing to page
1142  * @page:     the page we are replacing by kpage
1143  * @kpage:    the ksm page we replace page by
1144  * @orig_pte: the original value of the pte
1145  *
1146  * Returns 0 on success, -EFAULT on failure.
1147  */
1148 static int replace_page(struct vm_area_struct *vma, struct page *page,
1149                         struct page *kpage, pte_t orig_pte)
1150 {
1151         struct mm_struct *mm = vma->vm_mm;
1152         struct folio *folio;
1153         pmd_t *pmd;
1154         pmd_t pmde;
1155         pte_t *ptep;
1156         pte_t newpte;
1157         spinlock_t *ptl;
1158         unsigned long addr;
1159         int err = -EFAULT;
1160         struct mmu_notifier_range range;
1161
1162         addr = page_address_in_vma(page, vma);
1163         if (addr == -EFAULT)
1164                 goto out;
1165
1166         pmd = mm_find_pmd(mm, addr);
1167         if (!pmd)
1168                 goto out;
1169         /*
1170          * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1171          * without holding anon_vma lock for write.  So when looking for a
1172          * genuine pmde (in which to find pte), test present and !THP together.
1173          */
1174         pmde = *pmd;
1175         barrier();
1176         if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1177                 goto out;
1178
1179         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1180                                 addr + PAGE_SIZE);
1181         mmu_notifier_invalidate_range_start(&range);
1182
1183         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1184         if (!pte_same(*ptep, orig_pte)) {
1185                 pte_unmap_unlock(ptep, ptl);
1186                 goto out_mn;
1187         }
1188         VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1189         VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1190
1191         /*
1192          * No need to check ksm_use_zero_pages here: we can only have a
1193          * zero_page here if ksm_use_zero_pages was enabled already.
1194          */
1195         if (!is_zero_pfn(page_to_pfn(kpage))) {
1196                 get_page(kpage);
1197                 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1198                 newpte = mk_pte(kpage, vma->vm_page_prot);
1199         } else {
1200                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1201                                                vma->vm_page_prot));
1202                 /*
1203                  * We're replacing an anonymous page with a zero page, which is
1204                  * not anonymous. We need to do proper accounting otherwise we
1205                  * will get wrong values in /proc, and a BUG message in dmesg
1206                  * when tearing down the mm.
1207                  */
1208                 dec_mm_counter(mm, MM_ANONPAGES);
1209         }
1210
1211         flush_cache_page(vma, addr, pte_pfn(*ptep));
1212         /*
1213          * No need to notify as we are replacing a read only page with another
1214          * read only page with the same content.
1215          *
1216          * See Documentation/mm/mmu_notifier.rst
1217          */
1218         ptep_clear_flush(vma, addr, ptep);
1219         set_pte_at_notify(mm, addr, ptep, newpte);
1220
1221         folio = page_folio(page);
1222         page_remove_rmap(page, vma, false);
1223         if (!folio_mapped(folio))
1224                 folio_free_swap(folio);
1225         folio_put(folio);
1226
1227         pte_unmap_unlock(ptep, ptl);
1228         err = 0;
1229 out_mn:
1230         mmu_notifier_invalidate_range_end(&range);
1231 out:
1232         return err;
1233 }
1234
1235 /*
1236  * try_to_merge_one_page - take two pages and merge them into one
1237  * @vma: the vma that holds the pte pointing to page
1238  * @page: the PageAnon page that we want to replace with kpage
1239  * @kpage: the PageKsm page that we want to map instead of page,
1240  *         or NULL the first time when we want to use page as kpage.
1241  *
1242  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1243  */
1244 static int try_to_merge_one_page(struct vm_area_struct *vma,
1245                                  struct page *page, struct page *kpage)
1246 {
1247         pte_t orig_pte = __pte(0);
1248         int err = -EFAULT;
1249
1250         if (page == kpage)                      /* ksm page forked */
1251                 return 0;
1252
1253         if (!PageAnon(page))
1254                 goto out;
1255
1256         /*
1257          * We need the page lock to read a stable PageSwapCache in
1258          * write_protect_page().  We use trylock_page() instead of
1259          * lock_page() because we don't want to wait here - we
1260          * prefer to continue scanning and merging different pages,
1261          * then come back to this page when it is unlocked.
1262          */
1263         if (!trylock_page(page))
1264                 goto out;
1265
1266         if (PageTransCompound(page)) {
1267                 if (split_huge_page(page))
1268                         goto out_unlock;
1269         }
1270
1271         /*
1272          * If this anonymous page is mapped only here, its pte may need
1273          * to be write-protected.  If it's mapped elsewhere, all of its
1274          * ptes are necessarily already write-protected.  But in either
1275          * case, we need to lock and check page_count is not raised.
1276          */
1277         if (write_protect_page(vma, page, &orig_pte) == 0) {
1278                 if (!kpage) {
1279                         /*
1280                          * While we hold page lock, upgrade page from
1281                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1282                          * stable_tree_insert() will update stable_node.
1283                          */
1284                         set_page_stable_node(page, NULL);
1285                         mark_page_accessed(page);
1286                         /*
1287                          * Page reclaim just frees a clean page with no dirty
1288                          * ptes: make sure that the ksm page would be swapped.
1289                          */
1290                         if (!PageDirty(page))
1291                                 SetPageDirty(page);
1292                         err = 0;
1293                 } else if (pages_identical(page, kpage))
1294                         err = replace_page(vma, page, kpage, orig_pte);
1295         }
1296
1297 out_unlock:
1298         unlock_page(page);
1299 out:
1300         return err;
1301 }
1302
1303 /*
1304  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1305  * but no new kernel page is allocated: kpage must already be a ksm page.
1306  *
1307  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1308  */
1309 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1310                                       struct page *page, struct page *kpage)
1311 {
1312         struct mm_struct *mm = rmap_item->mm;
1313         struct vm_area_struct *vma;
1314         int err = -EFAULT;
1315
1316         mmap_read_lock(mm);
1317         vma = find_mergeable_vma(mm, rmap_item->address);
1318         if (!vma)
1319                 goto out;
1320
1321         err = try_to_merge_one_page(vma, page, kpage);
1322         if (err)
1323                 goto out;
1324
1325         /* Unstable nid is in union with stable anon_vma: remove first */
1326         remove_rmap_item_from_tree(rmap_item);
1327
1328         /* Must get reference to anon_vma while still holding mmap_lock */
1329         rmap_item->anon_vma = vma->anon_vma;
1330         get_anon_vma(vma->anon_vma);
1331 out:
1332         mmap_read_unlock(mm);
1333         trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1334                                 rmap_item, mm, err);
1335         return err;
1336 }
1337
1338 /*
1339  * try_to_merge_two_pages - take two identical pages and prepare them
1340  * to be merged into one page.
1341  *
1342  * This function returns the kpage if we successfully merged two identical
1343  * pages into one ksm page, NULL otherwise.
1344  *
1345  * Note that this function upgrades page to ksm page: if one of the pages
1346  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1347  */
1348 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1349                                            struct page *page,
1350                                            struct ksm_rmap_item *tree_rmap_item,
1351                                            struct page *tree_page)
1352 {
1353         int err;
1354
1355         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1356         if (!err) {
1357                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1358                                                         tree_page, page);
1359                 /*
1360                  * If that fails, we have a ksm page with only one pte
1361                  * pointing to it: so break it.
1362                  */
1363                 if (err)
1364                         break_cow(rmap_item);
1365         }
1366         return err ? NULL : page;
1367 }
1368
1369 static __always_inline
1370 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1371 {
1372         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1373         /*
1374          * Check that at least one mapping still exists, otherwise
1375          * there's no much point to merge and share with this
1376          * stable_node, as the underlying tree_page of the other
1377          * sharer is going to be freed soon.
1378          */
1379         return stable_node->rmap_hlist_len &&
1380                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1381 }
1382
1383 static __always_inline
1384 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1385 {
1386         return __is_page_sharing_candidate(stable_node, 0);
1387 }
1388
1389 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1390                                     struct ksm_stable_node **_stable_node,
1391                                     struct rb_root *root,
1392                                     bool prune_stale_stable_nodes)
1393 {
1394         struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1395         struct hlist_node *hlist_safe;
1396         struct page *_tree_page, *tree_page = NULL;
1397         int nr = 0;
1398         int found_rmap_hlist_len;
1399
1400         if (!prune_stale_stable_nodes ||
1401             time_before(jiffies, stable_node->chain_prune_time +
1402                         msecs_to_jiffies(
1403                                 ksm_stable_node_chains_prune_millisecs)))
1404                 prune_stale_stable_nodes = false;
1405         else
1406                 stable_node->chain_prune_time = jiffies;
1407
1408         hlist_for_each_entry_safe(dup, hlist_safe,
1409                                   &stable_node->hlist, hlist_dup) {
1410                 cond_resched();
1411                 /*
1412                  * We must walk all stable_node_dup to prune the stale
1413                  * stable nodes during lookup.
1414                  *
1415                  * get_ksm_page can drop the nodes from the
1416                  * stable_node->hlist if they point to freed pages
1417                  * (that's why we do a _safe walk). The "dup"
1418                  * stable_node parameter itself will be freed from
1419                  * under us if it returns NULL.
1420                  */
1421                 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1422                 if (!_tree_page)
1423                         continue;
1424                 nr += 1;
1425                 if (is_page_sharing_candidate(dup)) {
1426                         if (!found ||
1427                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1428                                 if (found)
1429                                         put_page(tree_page);
1430                                 found = dup;
1431                                 found_rmap_hlist_len = found->rmap_hlist_len;
1432                                 tree_page = _tree_page;
1433
1434                                 /* skip put_page for found dup */
1435                                 if (!prune_stale_stable_nodes)
1436                                         break;
1437                                 continue;
1438                         }
1439                 }
1440                 put_page(_tree_page);
1441         }
1442
1443         if (found) {
1444                 /*
1445                  * nr is counting all dups in the chain only if
1446                  * prune_stale_stable_nodes is true, otherwise we may
1447                  * break the loop at nr == 1 even if there are
1448                  * multiple entries.
1449                  */
1450                 if (prune_stale_stable_nodes && nr == 1) {
1451                         /*
1452                          * If there's not just one entry it would
1453                          * corrupt memory, better BUG_ON. In KSM
1454                          * context with no lock held it's not even
1455                          * fatal.
1456                          */
1457                         BUG_ON(stable_node->hlist.first->next);
1458
1459                         /*
1460                          * There's just one entry and it is below the
1461                          * deduplication limit so drop the chain.
1462                          */
1463                         rb_replace_node(&stable_node->node, &found->node,
1464                                         root);
1465                         free_stable_node(stable_node);
1466                         ksm_stable_node_chains--;
1467                         ksm_stable_node_dups--;
1468                         /*
1469                          * NOTE: the caller depends on the stable_node
1470                          * to be equal to stable_node_dup if the chain
1471                          * was collapsed.
1472                          */
1473                         *_stable_node = found;
1474                         /*
1475                          * Just for robustness, as stable_node is
1476                          * otherwise left as a stable pointer, the
1477                          * compiler shall optimize it away at build
1478                          * time.
1479                          */
1480                         stable_node = NULL;
1481                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1482                            __is_page_sharing_candidate(found, 1)) {
1483                         /*
1484                          * If the found stable_node dup can accept one
1485                          * more future merge (in addition to the one
1486                          * that is underway) and is not at the head of
1487                          * the chain, put it there so next search will
1488                          * be quicker in the !prune_stale_stable_nodes
1489                          * case.
1490                          *
1491                          * NOTE: it would be inaccurate to use nr > 1
1492                          * instead of checking the hlist.first pointer
1493                          * directly, because in the
1494                          * prune_stale_stable_nodes case "nr" isn't
1495                          * the position of the found dup in the chain,
1496                          * but the total number of dups in the chain.
1497                          */
1498                         hlist_del(&found->hlist_dup);
1499                         hlist_add_head(&found->hlist_dup,
1500                                        &stable_node->hlist);
1501                 }
1502         }
1503
1504         *_stable_node_dup = found;
1505         return tree_page;
1506 }
1507
1508 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1509                                                struct rb_root *root)
1510 {
1511         if (!is_stable_node_chain(stable_node))
1512                 return stable_node;
1513         if (hlist_empty(&stable_node->hlist)) {
1514                 free_stable_node_chain(stable_node, root);
1515                 return NULL;
1516         }
1517         return hlist_entry(stable_node->hlist.first,
1518                            typeof(*stable_node), hlist_dup);
1519 }
1520
1521 /*
1522  * Like for get_ksm_page, this function can free the *_stable_node and
1523  * *_stable_node_dup if the returned tree_page is NULL.
1524  *
1525  * It can also free and overwrite *_stable_node with the found
1526  * stable_node_dup if the chain is collapsed (in which case
1527  * *_stable_node will be equal to *_stable_node_dup like if the chain
1528  * never existed). It's up to the caller to verify tree_page is not
1529  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1530  *
1531  * *_stable_node_dup is really a second output parameter of this
1532  * function and will be overwritten in all cases, the caller doesn't
1533  * need to initialize it.
1534  */
1535 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1536                                         struct ksm_stable_node **_stable_node,
1537                                         struct rb_root *root,
1538                                         bool prune_stale_stable_nodes)
1539 {
1540         struct ksm_stable_node *stable_node = *_stable_node;
1541         if (!is_stable_node_chain(stable_node)) {
1542                 if (is_page_sharing_candidate(stable_node)) {
1543                         *_stable_node_dup = stable_node;
1544                         return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1545                 }
1546                 /*
1547                  * _stable_node_dup set to NULL means the stable_node
1548                  * reached the ksm_max_page_sharing limit.
1549                  */
1550                 *_stable_node_dup = NULL;
1551                 return NULL;
1552         }
1553         return stable_node_dup(_stable_node_dup, _stable_node, root,
1554                                prune_stale_stable_nodes);
1555 }
1556
1557 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1558                                                 struct ksm_stable_node **s_n,
1559                                                 struct rb_root *root)
1560 {
1561         return __stable_node_chain(s_n_d, s_n, root, true);
1562 }
1563
1564 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1565                                           struct ksm_stable_node *s_n,
1566                                           struct rb_root *root)
1567 {
1568         struct ksm_stable_node *old_stable_node = s_n;
1569         struct page *tree_page;
1570
1571         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1572         /* not pruning dups so s_n cannot have changed */
1573         VM_BUG_ON(s_n != old_stable_node);
1574         return tree_page;
1575 }
1576
1577 /*
1578  * stable_tree_search - search for page inside the stable tree
1579  *
1580  * This function checks if there is a page inside the stable tree
1581  * with identical content to the page that we are scanning right now.
1582  *
1583  * This function returns the stable tree node of identical content if found,
1584  * NULL otherwise.
1585  */
1586 static struct page *stable_tree_search(struct page *page)
1587 {
1588         int nid;
1589         struct rb_root *root;
1590         struct rb_node **new;
1591         struct rb_node *parent;
1592         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1593         struct ksm_stable_node *page_node;
1594
1595         page_node = page_stable_node(page);
1596         if (page_node && page_node->head != &migrate_nodes) {
1597                 /* ksm page forked */
1598                 get_page(page);
1599                 return page;
1600         }
1601
1602         nid = get_kpfn_nid(page_to_pfn(page));
1603         root = root_stable_tree + nid;
1604 again:
1605         new = &root->rb_node;
1606         parent = NULL;
1607
1608         while (*new) {
1609                 struct page *tree_page;
1610                 int ret;
1611
1612                 cond_resched();
1613                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1614                 stable_node_any = NULL;
1615                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1616                 /*
1617                  * NOTE: stable_node may have been freed by
1618                  * chain_prune() if the returned stable_node_dup is
1619                  * not NULL. stable_node_dup may have been inserted in
1620                  * the rbtree instead as a regular stable_node (in
1621                  * order to collapse the stable_node chain if a single
1622                  * stable_node dup was found in it). In such case the
1623                  * stable_node is overwritten by the callee to point
1624                  * to the stable_node_dup that was collapsed in the
1625                  * stable rbtree and stable_node will be equal to
1626                  * stable_node_dup like if the chain never existed.
1627                  */
1628                 if (!stable_node_dup) {
1629                         /*
1630                          * Either all stable_node dups were full in
1631                          * this stable_node chain, or this chain was
1632                          * empty and should be rb_erased.
1633                          */
1634                         stable_node_any = stable_node_dup_any(stable_node,
1635                                                               root);
1636                         if (!stable_node_any) {
1637                                 /* rb_erase just run */
1638                                 goto again;
1639                         }
1640                         /*
1641                          * Take any of the stable_node dups page of
1642                          * this stable_node chain to let the tree walk
1643                          * continue. All KSM pages belonging to the
1644                          * stable_node dups in a stable_node chain
1645                          * have the same content and they're
1646                          * write protected at all times. Any will work
1647                          * fine to continue the walk.
1648                          */
1649                         tree_page = get_ksm_page(stable_node_any,
1650                                                  GET_KSM_PAGE_NOLOCK);
1651                 }
1652                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1653                 if (!tree_page) {
1654                         /*
1655                          * If we walked over a stale stable_node,
1656                          * get_ksm_page() will call rb_erase() and it
1657                          * may rebalance the tree from under us. So
1658                          * restart the search from scratch. Returning
1659                          * NULL would be safe too, but we'd generate
1660                          * false negative insertions just because some
1661                          * stable_node was stale.
1662                          */
1663                         goto again;
1664                 }
1665
1666                 ret = memcmp_pages(page, tree_page);
1667                 put_page(tree_page);
1668
1669                 parent = *new;
1670                 if (ret < 0)
1671                         new = &parent->rb_left;
1672                 else if (ret > 0)
1673                         new = &parent->rb_right;
1674                 else {
1675                         if (page_node) {
1676                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1677                                 /*
1678                                  * Test if the migrated page should be merged
1679                                  * into a stable node dup. If the mapcount is
1680                                  * 1 we can migrate it with another KSM page
1681                                  * without adding it to the chain.
1682                                  */
1683                                 if (page_mapcount(page) > 1)
1684                                         goto chain_append;
1685                         }
1686
1687                         if (!stable_node_dup) {
1688                                 /*
1689                                  * If the stable_node is a chain and
1690                                  * we got a payload match in memcmp
1691                                  * but we cannot merge the scanned
1692                                  * page in any of the existing
1693                                  * stable_node dups because they're
1694                                  * all full, we need to wait the
1695                                  * scanned page to find itself a match
1696                                  * in the unstable tree to create a
1697                                  * brand new KSM page to add later to
1698                                  * the dups of this stable_node.
1699                                  */
1700                                 return NULL;
1701                         }
1702
1703                         /*
1704                          * Lock and unlock the stable_node's page (which
1705                          * might already have been migrated) so that page
1706                          * migration is sure to notice its raised count.
1707                          * It would be more elegant to return stable_node
1708                          * than kpage, but that involves more changes.
1709                          */
1710                         tree_page = get_ksm_page(stable_node_dup,
1711                                                  GET_KSM_PAGE_TRYLOCK);
1712
1713                         if (PTR_ERR(tree_page) == -EBUSY)
1714                                 return ERR_PTR(-EBUSY);
1715
1716                         if (unlikely(!tree_page))
1717                                 /*
1718                                  * The tree may have been rebalanced,
1719                                  * so re-evaluate parent and new.
1720                                  */
1721                                 goto again;
1722                         unlock_page(tree_page);
1723
1724                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1725                             NUMA(stable_node_dup->nid)) {
1726                                 put_page(tree_page);
1727                                 goto replace;
1728                         }
1729                         return tree_page;
1730                 }
1731         }
1732
1733         if (!page_node)
1734                 return NULL;
1735
1736         list_del(&page_node->list);
1737         DO_NUMA(page_node->nid = nid);
1738         rb_link_node(&page_node->node, parent, new);
1739         rb_insert_color(&page_node->node, root);
1740 out:
1741         if (is_page_sharing_candidate(page_node)) {
1742                 get_page(page);
1743                 return page;
1744         } else
1745                 return NULL;
1746
1747 replace:
1748         /*
1749          * If stable_node was a chain and chain_prune collapsed it,
1750          * stable_node has been updated to be the new regular
1751          * stable_node. A collapse of the chain is indistinguishable
1752          * from the case there was no chain in the stable
1753          * rbtree. Otherwise stable_node is the chain and
1754          * stable_node_dup is the dup to replace.
1755          */
1756         if (stable_node_dup == stable_node) {
1757                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1758                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1759                 /* there is no chain */
1760                 if (page_node) {
1761                         VM_BUG_ON(page_node->head != &migrate_nodes);
1762                         list_del(&page_node->list);
1763                         DO_NUMA(page_node->nid = nid);
1764                         rb_replace_node(&stable_node_dup->node,
1765                                         &page_node->node,
1766                                         root);
1767                         if (is_page_sharing_candidate(page_node))
1768                                 get_page(page);
1769                         else
1770                                 page = NULL;
1771                 } else {
1772                         rb_erase(&stable_node_dup->node, root);
1773                         page = NULL;
1774                 }
1775         } else {
1776                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1777                 __stable_node_dup_del(stable_node_dup);
1778                 if (page_node) {
1779                         VM_BUG_ON(page_node->head != &migrate_nodes);
1780                         list_del(&page_node->list);
1781                         DO_NUMA(page_node->nid = nid);
1782                         stable_node_chain_add_dup(page_node, stable_node);
1783                         if (is_page_sharing_candidate(page_node))
1784                                 get_page(page);
1785                         else
1786                                 page = NULL;
1787                 } else {
1788                         page = NULL;
1789                 }
1790         }
1791         stable_node_dup->head = &migrate_nodes;
1792         list_add(&stable_node_dup->list, stable_node_dup->head);
1793         return page;
1794
1795 chain_append:
1796         /* stable_node_dup could be null if it reached the limit */
1797         if (!stable_node_dup)
1798                 stable_node_dup = stable_node_any;
1799         /*
1800          * If stable_node was a chain and chain_prune collapsed it,
1801          * stable_node has been updated to be the new regular
1802          * stable_node. A collapse of the chain is indistinguishable
1803          * from the case there was no chain in the stable
1804          * rbtree. Otherwise stable_node is the chain and
1805          * stable_node_dup is the dup to replace.
1806          */
1807         if (stable_node_dup == stable_node) {
1808                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1809                 /* chain is missing so create it */
1810                 stable_node = alloc_stable_node_chain(stable_node_dup,
1811                                                       root);
1812                 if (!stable_node)
1813                         return NULL;
1814         }
1815         /*
1816          * Add this stable_node dup that was
1817          * migrated to the stable_node chain
1818          * of the current nid for this page
1819          * content.
1820          */
1821         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1822         VM_BUG_ON(page_node->head != &migrate_nodes);
1823         list_del(&page_node->list);
1824         DO_NUMA(page_node->nid = nid);
1825         stable_node_chain_add_dup(page_node, stable_node);
1826         goto out;
1827 }
1828
1829 /*
1830  * stable_tree_insert - insert stable tree node pointing to new ksm page
1831  * into the stable tree.
1832  *
1833  * This function returns the stable tree node just allocated on success,
1834  * NULL otherwise.
1835  */
1836 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1837 {
1838         int nid;
1839         unsigned long kpfn;
1840         struct rb_root *root;
1841         struct rb_node **new;
1842         struct rb_node *parent;
1843         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1844         bool need_chain = false;
1845
1846         kpfn = page_to_pfn(kpage);
1847         nid = get_kpfn_nid(kpfn);
1848         root = root_stable_tree + nid;
1849 again:
1850         parent = NULL;
1851         new = &root->rb_node;
1852
1853         while (*new) {
1854                 struct page *tree_page;
1855                 int ret;
1856
1857                 cond_resched();
1858                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1859                 stable_node_any = NULL;
1860                 tree_page = chain(&stable_node_dup, stable_node, root);
1861                 if (!stable_node_dup) {
1862                         /*
1863                          * Either all stable_node dups were full in
1864                          * this stable_node chain, or this chain was
1865                          * empty and should be rb_erased.
1866                          */
1867                         stable_node_any = stable_node_dup_any(stable_node,
1868                                                               root);
1869                         if (!stable_node_any) {
1870                                 /* rb_erase just run */
1871                                 goto again;
1872                         }
1873                         /*
1874                          * Take any of the stable_node dups page of
1875                          * this stable_node chain to let the tree walk
1876                          * continue. All KSM pages belonging to the
1877                          * stable_node dups in a stable_node chain
1878                          * have the same content and they're
1879                          * write protected at all times. Any will work
1880                          * fine to continue the walk.
1881                          */
1882                         tree_page = get_ksm_page(stable_node_any,
1883                                                  GET_KSM_PAGE_NOLOCK);
1884                 }
1885                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1886                 if (!tree_page) {
1887                         /*
1888                          * If we walked over a stale stable_node,
1889                          * get_ksm_page() will call rb_erase() and it
1890                          * may rebalance the tree from under us. So
1891                          * restart the search from scratch. Returning
1892                          * NULL would be safe too, but we'd generate
1893                          * false negative insertions just because some
1894                          * stable_node was stale.
1895                          */
1896                         goto again;
1897                 }
1898
1899                 ret = memcmp_pages(kpage, tree_page);
1900                 put_page(tree_page);
1901
1902                 parent = *new;
1903                 if (ret < 0)
1904                         new = &parent->rb_left;
1905                 else if (ret > 0)
1906                         new = &parent->rb_right;
1907                 else {
1908                         need_chain = true;
1909                         break;
1910                 }
1911         }
1912
1913         stable_node_dup = alloc_stable_node();
1914         if (!stable_node_dup)
1915                 return NULL;
1916
1917         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1918         stable_node_dup->kpfn = kpfn;
1919         set_page_stable_node(kpage, stable_node_dup);
1920         stable_node_dup->rmap_hlist_len = 0;
1921         DO_NUMA(stable_node_dup->nid = nid);
1922         if (!need_chain) {
1923                 rb_link_node(&stable_node_dup->node, parent, new);
1924                 rb_insert_color(&stable_node_dup->node, root);
1925         } else {
1926                 if (!is_stable_node_chain(stable_node)) {
1927                         struct ksm_stable_node *orig = stable_node;
1928                         /* chain is missing so create it */
1929                         stable_node = alloc_stable_node_chain(orig, root);
1930                         if (!stable_node) {
1931                                 free_stable_node(stable_node_dup);
1932                                 return NULL;
1933                         }
1934                 }
1935                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1936         }
1937
1938         return stable_node_dup;
1939 }
1940
1941 /*
1942  * unstable_tree_search_insert - search for identical page,
1943  * else insert rmap_item into the unstable tree.
1944  *
1945  * This function searches for a page in the unstable tree identical to the
1946  * page currently being scanned; and if no identical page is found in the
1947  * tree, we insert rmap_item as a new object into the unstable tree.
1948  *
1949  * This function returns pointer to rmap_item found to be identical
1950  * to the currently scanned page, NULL otherwise.
1951  *
1952  * This function does both searching and inserting, because they share
1953  * the same walking algorithm in an rbtree.
1954  */
1955 static
1956 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
1957                                               struct page *page,
1958                                               struct page **tree_pagep)
1959 {
1960         struct rb_node **new;
1961         struct rb_root *root;
1962         struct rb_node *parent = NULL;
1963         int nid;
1964
1965         nid = get_kpfn_nid(page_to_pfn(page));
1966         root = root_unstable_tree + nid;
1967         new = &root->rb_node;
1968
1969         while (*new) {
1970                 struct ksm_rmap_item *tree_rmap_item;
1971                 struct page *tree_page;
1972                 int ret;
1973
1974                 cond_resched();
1975                 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
1976                 tree_page = get_mergeable_page(tree_rmap_item);
1977                 if (!tree_page)
1978                         return NULL;
1979
1980                 /*
1981                  * Don't substitute a ksm page for a forked page.
1982                  */
1983                 if (page == tree_page) {
1984                         put_page(tree_page);
1985                         return NULL;
1986                 }
1987
1988                 ret = memcmp_pages(page, tree_page);
1989
1990                 parent = *new;
1991                 if (ret < 0) {
1992                         put_page(tree_page);
1993                         new = &parent->rb_left;
1994                 } else if (ret > 0) {
1995                         put_page(tree_page);
1996                         new = &parent->rb_right;
1997                 } else if (!ksm_merge_across_nodes &&
1998                            page_to_nid(tree_page) != nid) {
1999                         /*
2000                          * If tree_page has been migrated to another NUMA node,
2001                          * it will be flushed out and put in the right unstable
2002                          * tree next time: only merge with it when across_nodes.
2003                          */
2004                         put_page(tree_page);
2005                         return NULL;
2006                 } else {
2007                         *tree_pagep = tree_page;
2008                         return tree_rmap_item;
2009                 }
2010         }
2011
2012         rmap_item->address |= UNSTABLE_FLAG;
2013         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2014         DO_NUMA(rmap_item->nid = nid);
2015         rb_link_node(&rmap_item->node, parent, new);
2016         rb_insert_color(&rmap_item->node, root);
2017
2018         ksm_pages_unshared++;
2019         return NULL;
2020 }
2021
2022 /*
2023  * stable_tree_append - add another rmap_item to the linked list of
2024  * rmap_items hanging off a given node of the stable tree, all sharing
2025  * the same ksm page.
2026  */
2027 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2028                                struct ksm_stable_node *stable_node,
2029                                bool max_page_sharing_bypass)
2030 {
2031         /*
2032          * rmap won't find this mapping if we don't insert the
2033          * rmap_item in the right stable_node
2034          * duplicate. page_migration could break later if rmap breaks,
2035          * so we can as well crash here. We really need to check for
2036          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2037          * for other negative values as an underflow if detected here
2038          * for the first time (and not when decreasing rmap_hlist_len)
2039          * would be sign of memory corruption in the stable_node.
2040          */
2041         BUG_ON(stable_node->rmap_hlist_len < 0);
2042
2043         stable_node->rmap_hlist_len++;
2044         if (!max_page_sharing_bypass)
2045                 /* possibly non fatal but unexpected overflow, only warn */
2046                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2047                              ksm_max_page_sharing);
2048
2049         rmap_item->head = stable_node;
2050         rmap_item->address |= STABLE_FLAG;
2051         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2052
2053         if (rmap_item->hlist.next)
2054                 ksm_pages_sharing++;
2055         else
2056                 ksm_pages_shared++;
2057
2058         rmap_item->mm->ksm_merging_pages++;
2059 }
2060
2061 /*
2062  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2063  * if not, compare checksum to previous and if it's the same, see if page can
2064  * be inserted into the unstable tree, or merged with a page already there and
2065  * both transferred to the stable tree.
2066  *
2067  * @page: the page that we are searching identical page to.
2068  * @rmap_item: the reverse mapping into the virtual address of this page
2069  */
2070 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2071 {
2072         struct mm_struct *mm = rmap_item->mm;
2073         struct ksm_rmap_item *tree_rmap_item;
2074         struct page *tree_page = NULL;
2075         struct ksm_stable_node *stable_node;
2076         struct page *kpage;
2077         unsigned int checksum;
2078         int err;
2079         bool max_page_sharing_bypass = false;
2080
2081         stable_node = page_stable_node(page);
2082         if (stable_node) {
2083                 if (stable_node->head != &migrate_nodes &&
2084                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2085                     NUMA(stable_node->nid)) {
2086                         stable_node_dup_del(stable_node);
2087                         stable_node->head = &migrate_nodes;
2088                         list_add(&stable_node->list, stable_node->head);
2089                 }
2090                 if (stable_node->head != &migrate_nodes &&
2091                     rmap_item->head == stable_node)
2092                         return;
2093                 /*
2094                  * If it's a KSM fork, allow it to go over the sharing limit
2095                  * without warnings.
2096                  */
2097                 if (!is_page_sharing_candidate(stable_node))
2098                         max_page_sharing_bypass = true;
2099         }
2100
2101         /* We first start with searching the page inside the stable tree */
2102         kpage = stable_tree_search(page);
2103         if (kpage == page && rmap_item->head == stable_node) {
2104                 put_page(kpage);
2105                 return;
2106         }
2107
2108         remove_rmap_item_from_tree(rmap_item);
2109
2110         if (kpage) {
2111                 if (PTR_ERR(kpage) == -EBUSY)
2112                         return;
2113
2114                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2115                 if (!err) {
2116                         /*
2117                          * The page was successfully merged:
2118                          * add its rmap_item to the stable tree.
2119                          */
2120                         lock_page(kpage);
2121                         stable_tree_append(rmap_item, page_stable_node(kpage),
2122                                            max_page_sharing_bypass);
2123                         unlock_page(kpage);
2124                 }
2125                 put_page(kpage);
2126                 return;
2127         }
2128
2129         /*
2130          * If the hash value of the page has changed from the last time
2131          * we calculated it, this page is changing frequently: therefore we
2132          * don't want to insert it in the unstable tree, and we don't want
2133          * to waste our time searching for something identical to it there.
2134          */
2135         checksum = calc_checksum(page);
2136         if (rmap_item->oldchecksum != checksum) {
2137                 rmap_item->oldchecksum = checksum;
2138                 return;
2139         }
2140
2141         /*
2142          * Same checksum as an empty page. We attempt to merge it with the
2143          * appropriate zero page if the user enabled this via sysfs.
2144          */
2145         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2146                 struct vm_area_struct *vma;
2147
2148                 mmap_read_lock(mm);
2149                 vma = find_mergeable_vma(mm, rmap_item->address);
2150                 if (vma) {
2151                         err = try_to_merge_one_page(vma, page,
2152                                         ZERO_PAGE(rmap_item->address));
2153                         trace_ksm_merge_one_page(
2154                                 page_to_pfn(ZERO_PAGE(rmap_item->address)),
2155                                 rmap_item, mm, err);
2156                 } else {
2157                         /*
2158                          * If the vma is out of date, we do not need to
2159                          * continue.
2160                          */
2161                         err = 0;
2162                 }
2163                 mmap_read_unlock(mm);
2164                 /*
2165                  * In case of failure, the page was not really empty, so we
2166                  * need to continue. Otherwise we're done.
2167                  */
2168                 if (!err)
2169                         return;
2170         }
2171         tree_rmap_item =
2172                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2173         if (tree_rmap_item) {
2174                 bool split;
2175
2176                 kpage = try_to_merge_two_pages(rmap_item, page,
2177                                                 tree_rmap_item, tree_page);
2178                 /*
2179                  * If both pages we tried to merge belong to the same compound
2180                  * page, then we actually ended up increasing the reference
2181                  * count of the same compound page twice, and split_huge_page
2182                  * failed.
2183                  * Here we set a flag if that happened, and we use it later to
2184                  * try split_huge_page again. Since we call put_page right
2185                  * afterwards, the reference count will be correct and
2186                  * split_huge_page should succeed.
2187                  */
2188                 split = PageTransCompound(page)
2189                         && compound_head(page) == compound_head(tree_page);
2190                 put_page(tree_page);
2191                 if (kpage) {
2192                         /*
2193                          * The pages were successfully merged: insert new
2194                          * node in the stable tree and add both rmap_items.
2195                          */
2196                         lock_page(kpage);
2197                         stable_node = stable_tree_insert(kpage);
2198                         if (stable_node) {
2199                                 stable_tree_append(tree_rmap_item, stable_node,
2200                                                    false);
2201                                 stable_tree_append(rmap_item, stable_node,
2202                                                    false);
2203                         }
2204                         unlock_page(kpage);
2205
2206                         /*
2207                          * If we fail to insert the page into the stable tree,
2208                          * we will have 2 virtual addresses that are pointing
2209                          * to a ksm page left outside the stable tree,
2210                          * in which case we need to break_cow on both.
2211                          */
2212                         if (!stable_node) {
2213                                 break_cow(tree_rmap_item);
2214                                 break_cow(rmap_item);
2215                         }
2216                 } else if (split) {
2217                         /*
2218                          * We are here if we tried to merge two pages and
2219                          * failed because they both belonged to the same
2220                          * compound page. We will split the page now, but no
2221                          * merging will take place.
2222                          * We do not want to add the cost of a full lock; if
2223                          * the page is locked, it is better to skip it and
2224                          * perhaps try again later.
2225                          */
2226                         if (!trylock_page(page))
2227                                 return;
2228                         split_huge_page(page);
2229                         unlock_page(page);
2230                 }
2231         }
2232 }
2233
2234 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2235                                             struct ksm_rmap_item **rmap_list,
2236                                             unsigned long addr)
2237 {
2238         struct ksm_rmap_item *rmap_item;
2239
2240         while (*rmap_list) {
2241                 rmap_item = *rmap_list;
2242                 if ((rmap_item->address & PAGE_MASK) == addr)
2243                         return rmap_item;
2244                 if (rmap_item->address > addr)
2245                         break;
2246                 *rmap_list = rmap_item->rmap_list;
2247                 remove_rmap_item_from_tree(rmap_item);
2248                 free_rmap_item(rmap_item);
2249         }
2250
2251         rmap_item = alloc_rmap_item();
2252         if (rmap_item) {
2253                 /* It has already been zeroed */
2254                 rmap_item->mm = mm_slot->slot.mm;
2255                 rmap_item->mm->ksm_rmap_items++;
2256                 rmap_item->address = addr;
2257                 rmap_item->rmap_list = *rmap_list;
2258                 *rmap_list = rmap_item;
2259         }
2260         return rmap_item;
2261 }
2262
2263 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2264 {
2265         struct mm_struct *mm;
2266         struct ksm_mm_slot *mm_slot;
2267         struct mm_slot *slot;
2268         struct vm_area_struct *vma;
2269         struct ksm_rmap_item *rmap_item;
2270         struct vma_iterator vmi;
2271         int nid;
2272
2273         if (list_empty(&ksm_mm_head.slot.mm_node))
2274                 return NULL;
2275
2276         mm_slot = ksm_scan.mm_slot;
2277         if (mm_slot == &ksm_mm_head) {
2278                 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2279
2280                 /*
2281                  * A number of pages can hang around indefinitely on per-cpu
2282                  * pagevecs, raised page count preventing write_protect_page
2283                  * from merging them.  Though it doesn't really matter much,
2284                  * it is puzzling to see some stuck in pages_volatile until
2285                  * other activity jostles them out, and they also prevented
2286                  * LTP's KSM test from succeeding deterministically; so drain
2287                  * them here (here rather than on entry to ksm_do_scan(),
2288                  * so we don't IPI too often when pages_to_scan is set low).
2289                  */
2290                 lru_add_drain_all();
2291
2292                 /*
2293                  * Whereas stale stable_nodes on the stable_tree itself
2294                  * get pruned in the regular course of stable_tree_search(),
2295                  * those moved out to the migrate_nodes list can accumulate:
2296                  * so prune them once before each full scan.
2297                  */
2298                 if (!ksm_merge_across_nodes) {
2299                         struct ksm_stable_node *stable_node, *next;
2300                         struct page *page;
2301
2302                         list_for_each_entry_safe(stable_node, next,
2303                                                  &migrate_nodes, list) {
2304                                 page = get_ksm_page(stable_node,
2305                                                     GET_KSM_PAGE_NOLOCK);
2306                                 if (page)
2307                                         put_page(page);
2308                                 cond_resched();
2309                         }
2310                 }
2311
2312                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2313                         root_unstable_tree[nid] = RB_ROOT;
2314
2315                 spin_lock(&ksm_mmlist_lock);
2316                 slot = list_entry(mm_slot->slot.mm_node.next,
2317                                   struct mm_slot, mm_node);
2318                 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2319                 ksm_scan.mm_slot = mm_slot;
2320                 spin_unlock(&ksm_mmlist_lock);
2321                 /*
2322                  * Although we tested list_empty() above, a racing __ksm_exit
2323                  * of the last mm on the list may have removed it since then.
2324                  */
2325                 if (mm_slot == &ksm_mm_head)
2326                         return NULL;
2327 next_mm:
2328                 ksm_scan.address = 0;
2329                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2330         }
2331
2332         slot = &mm_slot->slot;
2333         mm = slot->mm;
2334         vma_iter_init(&vmi, mm, ksm_scan.address);
2335
2336         mmap_read_lock(mm);
2337         if (ksm_test_exit(mm))
2338                 goto no_vmas;
2339
2340         for_each_vma(vmi, vma) {
2341                 if (!(vma->vm_flags & VM_MERGEABLE))
2342                         continue;
2343                 if (ksm_scan.address < vma->vm_start)
2344                         ksm_scan.address = vma->vm_start;
2345                 if (!vma->anon_vma)
2346                         ksm_scan.address = vma->vm_end;
2347
2348                 while (ksm_scan.address < vma->vm_end) {
2349                         if (ksm_test_exit(mm))
2350                                 break;
2351                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2352                         if (IS_ERR_OR_NULL(*page)) {
2353                                 ksm_scan.address += PAGE_SIZE;
2354                                 cond_resched();
2355                                 continue;
2356                         }
2357                         if (is_zone_device_page(*page))
2358                                 goto next_page;
2359                         if (PageAnon(*page)) {
2360                                 flush_anon_page(vma, *page, ksm_scan.address);
2361                                 flush_dcache_page(*page);
2362                                 rmap_item = get_next_rmap_item(mm_slot,
2363                                         ksm_scan.rmap_list, ksm_scan.address);
2364                                 if (rmap_item) {
2365                                         ksm_scan.rmap_list =
2366                                                         &rmap_item->rmap_list;
2367                                         ksm_scan.address += PAGE_SIZE;
2368                                 } else
2369                                         put_page(*page);
2370                                 mmap_read_unlock(mm);
2371                                 return rmap_item;
2372                         }
2373 next_page:
2374                         put_page(*page);
2375                         ksm_scan.address += PAGE_SIZE;
2376                         cond_resched();
2377                 }
2378         }
2379
2380         if (ksm_test_exit(mm)) {
2381 no_vmas:
2382                 ksm_scan.address = 0;
2383                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2384         }
2385         /*
2386          * Nuke all the rmap_items that are above this current rmap:
2387          * because there were no VM_MERGEABLE vmas with such addresses.
2388          */
2389         remove_trailing_rmap_items(ksm_scan.rmap_list);
2390
2391         spin_lock(&ksm_mmlist_lock);
2392         slot = list_entry(mm_slot->slot.mm_node.next,
2393                           struct mm_slot, mm_node);
2394         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2395         if (ksm_scan.address == 0) {
2396                 /*
2397                  * We've completed a full scan of all vmas, holding mmap_lock
2398                  * throughout, and found no VM_MERGEABLE: so do the same as
2399                  * __ksm_exit does to remove this mm from all our lists now.
2400                  * This applies either when cleaning up after __ksm_exit
2401                  * (but beware: we can reach here even before __ksm_exit),
2402                  * or when all VM_MERGEABLE areas have been unmapped (and
2403                  * mmap_lock then protects against race with MADV_MERGEABLE).
2404                  */
2405                 hash_del(&mm_slot->slot.hash);
2406                 list_del(&mm_slot->slot.mm_node);
2407                 spin_unlock(&ksm_mmlist_lock);
2408
2409                 mm_slot_free(mm_slot_cache, mm_slot);
2410                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2411                 mmap_read_unlock(mm);
2412                 mmdrop(mm);
2413         } else {
2414                 mmap_read_unlock(mm);
2415                 /*
2416                  * mmap_read_unlock(mm) first because after
2417                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2418                  * already have been freed under us by __ksm_exit()
2419                  * because the "mm_slot" is still hashed and
2420                  * ksm_scan.mm_slot doesn't point to it anymore.
2421                  */
2422                 spin_unlock(&ksm_mmlist_lock);
2423         }
2424
2425         /* Repeat until we've completed scanning the whole list */
2426         mm_slot = ksm_scan.mm_slot;
2427         if (mm_slot != &ksm_mm_head)
2428                 goto next_mm;
2429
2430         trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2431         ksm_scan.seqnr++;
2432         return NULL;
2433 }
2434
2435 /**
2436  * ksm_do_scan  - the ksm scanner main worker function.
2437  * @scan_npages:  number of pages we want to scan before we return.
2438  */
2439 static void ksm_do_scan(unsigned int scan_npages)
2440 {
2441         struct ksm_rmap_item *rmap_item;
2442         struct page *page;
2443
2444         while (scan_npages-- && likely(!freezing(current))) {
2445                 cond_resched();
2446                 rmap_item = scan_get_next_rmap_item(&page);
2447                 if (!rmap_item)
2448                         return;
2449                 cmp_and_merge_page(page, rmap_item);
2450                 put_page(page);
2451         }
2452 }
2453
2454 static int ksmd_should_run(void)
2455 {
2456         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2457 }
2458
2459 static int ksm_scan_thread(void *nothing)
2460 {
2461         unsigned int sleep_ms;
2462
2463         set_freezable();
2464         set_user_nice(current, 5);
2465
2466         while (!kthread_should_stop()) {
2467                 mutex_lock(&ksm_thread_mutex);
2468                 wait_while_offlining();
2469                 if (ksmd_should_run())
2470                         ksm_do_scan(ksm_thread_pages_to_scan);
2471                 mutex_unlock(&ksm_thread_mutex);
2472
2473                 try_to_freeze();
2474
2475                 if (ksmd_should_run()) {
2476                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2477                         wait_event_interruptible_timeout(ksm_iter_wait,
2478                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2479                                 msecs_to_jiffies(sleep_ms));
2480                 } else {
2481                         wait_event_freezable(ksm_thread_wait,
2482                                 ksmd_should_run() || kthread_should_stop());
2483                 }
2484         }
2485         return 0;
2486 }
2487
2488 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2489                 unsigned long end, int advice, unsigned long *vm_flags)
2490 {
2491         struct mm_struct *mm = vma->vm_mm;
2492         int err;
2493
2494         switch (advice) {
2495         case MADV_MERGEABLE:
2496                 /*
2497                  * Be somewhat over-protective for now!
2498                  */
2499                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2500                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2501                                  VM_HUGETLB | VM_MIXEDMAP))
2502                         return 0;               /* just ignore the advice */
2503
2504                 if (vma_is_dax(vma))
2505                         return 0;
2506
2507 #ifdef VM_SAO
2508                 if (*vm_flags & VM_SAO)
2509                         return 0;
2510 #endif
2511 #ifdef VM_SPARC_ADI
2512                 if (*vm_flags & VM_SPARC_ADI)
2513                         return 0;
2514 #endif
2515
2516                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2517                         err = __ksm_enter(mm);
2518                         if (err)
2519                                 return err;
2520                 }
2521
2522                 *vm_flags |= VM_MERGEABLE;
2523                 break;
2524
2525         case MADV_UNMERGEABLE:
2526                 if (!(*vm_flags & VM_MERGEABLE))
2527                         return 0;               /* just ignore the advice */
2528
2529                 if (vma->anon_vma) {
2530                         err = unmerge_ksm_pages(vma, start, end);
2531                         if (err)
2532                                 return err;
2533                 }
2534
2535                 *vm_flags &= ~VM_MERGEABLE;
2536                 break;
2537         }
2538
2539         return 0;
2540 }
2541 EXPORT_SYMBOL_GPL(ksm_madvise);
2542
2543 int __ksm_enter(struct mm_struct *mm)
2544 {
2545         struct ksm_mm_slot *mm_slot;
2546         struct mm_slot *slot;
2547         int needs_wakeup;
2548
2549         mm_slot = mm_slot_alloc(mm_slot_cache);
2550         if (!mm_slot)
2551                 return -ENOMEM;
2552
2553         slot = &mm_slot->slot;
2554
2555         /* Check ksm_run too?  Would need tighter locking */
2556         needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2557
2558         spin_lock(&ksm_mmlist_lock);
2559         mm_slot_insert(mm_slots_hash, mm, slot);
2560         /*
2561          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2562          * insert just behind the scanning cursor, to let the area settle
2563          * down a little; when fork is followed by immediate exec, we don't
2564          * want ksmd to waste time setting up and tearing down an rmap_list.
2565          *
2566          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2567          * scanning cursor, otherwise KSM pages in newly forked mms will be
2568          * missed: then we might as well insert at the end of the list.
2569          */
2570         if (ksm_run & KSM_RUN_UNMERGE)
2571                 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2572         else
2573                 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2574         spin_unlock(&ksm_mmlist_lock);
2575
2576         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2577         mmgrab(mm);
2578
2579         if (needs_wakeup)
2580                 wake_up_interruptible(&ksm_thread_wait);
2581
2582         trace_ksm_enter(mm);
2583         return 0;
2584 }
2585
2586 void __ksm_exit(struct mm_struct *mm)
2587 {
2588         struct ksm_mm_slot *mm_slot;
2589         struct mm_slot *slot;
2590         int easy_to_free = 0;
2591
2592         /*
2593          * This process is exiting: if it's straightforward (as is the
2594          * case when ksmd was never running), free mm_slot immediately.
2595          * But if it's at the cursor or has rmap_items linked to it, use
2596          * mmap_lock to synchronize with any break_cows before pagetables
2597          * are freed, and leave the mm_slot on the list for ksmd to free.
2598          * Beware: ksm may already have noticed it exiting and freed the slot.
2599          */
2600
2601         spin_lock(&ksm_mmlist_lock);
2602         slot = mm_slot_lookup(mm_slots_hash, mm);
2603         mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2604         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2605                 if (!mm_slot->rmap_list) {
2606                         hash_del(&slot->hash);
2607                         list_del(&slot->mm_node);
2608                         easy_to_free = 1;
2609                 } else {
2610                         list_move(&slot->mm_node,
2611                                   &ksm_scan.mm_slot->slot.mm_node);
2612                 }
2613         }
2614         spin_unlock(&ksm_mmlist_lock);
2615
2616         if (easy_to_free) {
2617                 mm_slot_free(mm_slot_cache, mm_slot);
2618                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2619                 mmdrop(mm);
2620         } else if (mm_slot) {
2621                 mmap_write_lock(mm);
2622                 mmap_write_unlock(mm);
2623         }
2624
2625         trace_ksm_exit(mm);
2626 }
2627
2628 struct page *ksm_might_need_to_copy(struct page *page,
2629                         struct vm_area_struct *vma, unsigned long address)
2630 {
2631         struct folio *folio = page_folio(page);
2632         struct anon_vma *anon_vma = folio_anon_vma(folio);
2633         struct page *new_page;
2634
2635         if (PageKsm(page)) {
2636                 if (page_stable_node(page) &&
2637                     !(ksm_run & KSM_RUN_UNMERGE))
2638                         return page;    /* no need to copy it */
2639         } else if (!anon_vma) {
2640                 return page;            /* no need to copy it */
2641         } else if (page->index == linear_page_index(vma, address) &&
2642                         anon_vma->root == vma->anon_vma->root) {
2643                 return page;            /* still no need to copy it */
2644         }
2645         if (!PageUptodate(page))
2646                 return page;            /* let do_swap_page report the error */
2647
2648         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2649         if (new_page &&
2650             mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2651                 put_page(new_page);
2652                 new_page = NULL;
2653         }
2654         if (new_page) {
2655                 if (copy_mc_user_highpage(new_page, page, address, vma)) {
2656                         put_page(new_page);
2657                         memory_failure_queue(page_to_pfn(page), 0);
2658                         return ERR_PTR(-EHWPOISON);
2659                 }
2660                 SetPageDirty(new_page);
2661                 __SetPageUptodate(new_page);
2662                 __SetPageLocked(new_page);
2663 #ifdef CONFIG_SWAP
2664                 count_vm_event(KSM_SWPIN_COPY);
2665 #endif
2666         }
2667
2668         return new_page;
2669 }
2670
2671 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2672 {
2673         struct ksm_stable_node *stable_node;
2674         struct ksm_rmap_item *rmap_item;
2675         int search_new_forks = 0;
2676
2677         VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2678
2679         /*
2680          * Rely on the page lock to protect against concurrent modifications
2681          * to that page's node of the stable tree.
2682          */
2683         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2684
2685         stable_node = folio_stable_node(folio);
2686         if (!stable_node)
2687                 return;
2688 again:
2689         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2690                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2691                 struct anon_vma_chain *vmac;
2692                 struct vm_area_struct *vma;
2693
2694                 cond_resched();
2695                 if (!anon_vma_trylock_read(anon_vma)) {
2696                         if (rwc->try_lock) {
2697                                 rwc->contended = true;
2698                                 return;
2699                         }
2700                         anon_vma_lock_read(anon_vma);
2701                 }
2702                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2703                                                0, ULONG_MAX) {
2704                         unsigned long addr;
2705
2706                         cond_resched();
2707                         vma = vmac->vma;
2708
2709                         /* Ignore the stable/unstable/sqnr flags */
2710                         addr = rmap_item->address & PAGE_MASK;
2711
2712                         if (addr < vma->vm_start || addr >= vma->vm_end)
2713                                 continue;
2714                         /*
2715                          * Initially we examine only the vma which covers this
2716                          * rmap_item; but later, if there is still work to do,
2717                          * we examine covering vmas in other mms: in case they
2718                          * were forked from the original since ksmd passed.
2719                          */
2720                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2721                                 continue;
2722
2723                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2724                                 continue;
2725
2726                         if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2727                                 anon_vma_unlock_read(anon_vma);
2728                                 return;
2729                         }
2730                         if (rwc->done && rwc->done(folio)) {
2731                                 anon_vma_unlock_read(anon_vma);
2732                                 return;
2733                         }
2734                 }
2735                 anon_vma_unlock_read(anon_vma);
2736         }
2737         if (!search_new_forks++)
2738                 goto again;
2739 }
2740
2741 #ifdef CONFIG_MIGRATION
2742 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2743 {
2744         struct ksm_stable_node *stable_node;
2745
2746         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2747         VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2748         VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2749
2750         stable_node = folio_stable_node(folio);
2751         if (stable_node) {
2752                 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2753                 stable_node->kpfn = folio_pfn(newfolio);
2754                 /*
2755                  * newfolio->mapping was set in advance; now we need smp_wmb()
2756                  * to make sure that the new stable_node->kpfn is visible
2757                  * to get_ksm_page() before it can see that folio->mapping
2758                  * has gone stale (or that folio_test_swapcache has been cleared).
2759                  */
2760                 smp_wmb();
2761                 set_page_stable_node(&folio->page, NULL);
2762         }
2763 }
2764 #endif /* CONFIG_MIGRATION */
2765
2766 #ifdef CONFIG_MEMORY_HOTREMOVE
2767 static void wait_while_offlining(void)
2768 {
2769         while (ksm_run & KSM_RUN_OFFLINE) {
2770                 mutex_unlock(&ksm_thread_mutex);
2771                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2772                             TASK_UNINTERRUPTIBLE);
2773                 mutex_lock(&ksm_thread_mutex);
2774         }
2775 }
2776
2777 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2778                                          unsigned long start_pfn,
2779                                          unsigned long end_pfn)
2780 {
2781         if (stable_node->kpfn >= start_pfn &&
2782             stable_node->kpfn < end_pfn) {
2783                 /*
2784                  * Don't get_ksm_page, page has already gone:
2785                  * which is why we keep kpfn instead of page*
2786                  */
2787                 remove_node_from_stable_tree(stable_node);
2788                 return true;
2789         }
2790         return false;
2791 }
2792
2793 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2794                                            unsigned long start_pfn,
2795                                            unsigned long end_pfn,
2796                                            struct rb_root *root)
2797 {
2798         struct ksm_stable_node *dup;
2799         struct hlist_node *hlist_safe;
2800
2801         if (!is_stable_node_chain(stable_node)) {
2802                 VM_BUG_ON(is_stable_node_dup(stable_node));
2803                 return stable_node_dup_remove_range(stable_node, start_pfn,
2804                                                     end_pfn);
2805         }
2806
2807         hlist_for_each_entry_safe(dup, hlist_safe,
2808                                   &stable_node->hlist, hlist_dup) {
2809                 VM_BUG_ON(!is_stable_node_dup(dup));
2810                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2811         }
2812         if (hlist_empty(&stable_node->hlist)) {
2813                 free_stable_node_chain(stable_node, root);
2814                 return true; /* notify caller that tree was rebalanced */
2815         } else
2816                 return false;
2817 }
2818
2819 static void ksm_check_stable_tree(unsigned long start_pfn,
2820                                   unsigned long end_pfn)
2821 {
2822         struct ksm_stable_node *stable_node, *next;
2823         struct rb_node *node;
2824         int nid;
2825
2826         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2827                 node = rb_first(root_stable_tree + nid);
2828                 while (node) {
2829                         stable_node = rb_entry(node, struct ksm_stable_node, node);
2830                         if (stable_node_chain_remove_range(stable_node,
2831                                                            start_pfn, end_pfn,
2832                                                            root_stable_tree +
2833                                                            nid))
2834                                 node = rb_first(root_stable_tree + nid);
2835                         else
2836                                 node = rb_next(node);
2837                         cond_resched();
2838                 }
2839         }
2840         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2841                 if (stable_node->kpfn >= start_pfn &&
2842                     stable_node->kpfn < end_pfn)
2843                         remove_node_from_stable_tree(stable_node);
2844                 cond_resched();
2845         }
2846 }
2847
2848 static int ksm_memory_callback(struct notifier_block *self,
2849                                unsigned long action, void *arg)
2850 {
2851         struct memory_notify *mn = arg;
2852
2853         switch (action) {
2854         case MEM_GOING_OFFLINE:
2855                 /*
2856                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2857                  * and remove_all_stable_nodes() while memory is going offline:
2858                  * it is unsafe for them to touch the stable tree at this time.
2859                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2860                  * which do not need the ksm_thread_mutex are all safe.
2861                  */
2862                 mutex_lock(&ksm_thread_mutex);
2863                 ksm_run |= KSM_RUN_OFFLINE;
2864                 mutex_unlock(&ksm_thread_mutex);
2865                 break;
2866
2867         case MEM_OFFLINE:
2868                 /*
2869                  * Most of the work is done by page migration; but there might
2870                  * be a few stable_nodes left over, still pointing to struct
2871                  * pages which have been offlined: prune those from the tree,
2872                  * otherwise get_ksm_page() might later try to access a
2873                  * non-existent struct page.
2874                  */
2875                 ksm_check_stable_tree(mn->start_pfn,
2876                                       mn->start_pfn + mn->nr_pages);
2877                 fallthrough;
2878         case MEM_CANCEL_OFFLINE:
2879                 mutex_lock(&ksm_thread_mutex);
2880                 ksm_run &= ~KSM_RUN_OFFLINE;
2881                 mutex_unlock(&ksm_thread_mutex);
2882
2883                 smp_mb();       /* wake_up_bit advises this */
2884                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2885                 break;
2886         }
2887         return NOTIFY_OK;
2888 }
2889 #else
2890 static void wait_while_offlining(void)
2891 {
2892 }
2893 #endif /* CONFIG_MEMORY_HOTREMOVE */
2894
2895 #ifdef CONFIG_SYSFS
2896 /*
2897  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2898  */
2899
2900 #define KSM_ATTR_RO(_name) \
2901         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2902 #define KSM_ATTR(_name) \
2903         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
2904
2905 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2906                                     struct kobj_attribute *attr, char *buf)
2907 {
2908         return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2909 }
2910
2911 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2912                                      struct kobj_attribute *attr,
2913                                      const char *buf, size_t count)
2914 {
2915         unsigned int msecs;
2916         int err;
2917
2918         err = kstrtouint(buf, 10, &msecs);
2919         if (err)
2920                 return -EINVAL;
2921
2922         ksm_thread_sleep_millisecs = msecs;
2923         wake_up_interruptible(&ksm_iter_wait);
2924
2925         return count;
2926 }
2927 KSM_ATTR(sleep_millisecs);
2928
2929 static ssize_t pages_to_scan_show(struct kobject *kobj,
2930                                   struct kobj_attribute *attr, char *buf)
2931 {
2932         return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2933 }
2934
2935 static ssize_t pages_to_scan_store(struct kobject *kobj,
2936                                    struct kobj_attribute *attr,
2937                                    const char *buf, size_t count)
2938 {
2939         unsigned int nr_pages;
2940         int err;
2941
2942         err = kstrtouint(buf, 10, &nr_pages);
2943         if (err)
2944                 return -EINVAL;
2945
2946         ksm_thread_pages_to_scan = nr_pages;
2947
2948         return count;
2949 }
2950 KSM_ATTR(pages_to_scan);
2951
2952 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2953                         char *buf)
2954 {
2955         return sysfs_emit(buf, "%lu\n", ksm_run);
2956 }
2957
2958 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2959                          const char *buf, size_t count)
2960 {
2961         unsigned int flags;
2962         int err;
2963
2964         err = kstrtouint(buf, 10, &flags);
2965         if (err)
2966                 return -EINVAL;
2967         if (flags > KSM_RUN_UNMERGE)
2968                 return -EINVAL;
2969
2970         /*
2971          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2972          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2973          * breaking COW to free the pages_shared (but leaves mm_slots
2974          * on the list for when ksmd may be set running again).
2975          */
2976
2977         mutex_lock(&ksm_thread_mutex);
2978         wait_while_offlining();
2979         if (ksm_run != flags) {
2980                 ksm_run = flags;
2981                 if (flags & KSM_RUN_UNMERGE) {
2982                         set_current_oom_origin();
2983                         err = unmerge_and_remove_all_rmap_items();
2984                         clear_current_oom_origin();
2985                         if (err) {
2986                                 ksm_run = KSM_RUN_STOP;
2987                                 count = err;
2988                         }
2989                 }
2990         }
2991         mutex_unlock(&ksm_thread_mutex);
2992
2993         if (flags & KSM_RUN_MERGE)
2994                 wake_up_interruptible(&ksm_thread_wait);
2995
2996         return count;
2997 }
2998 KSM_ATTR(run);
2999
3000 #ifdef CONFIG_NUMA
3001 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3002                                        struct kobj_attribute *attr, char *buf)
3003 {
3004         return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3005 }
3006
3007 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3008                                    struct kobj_attribute *attr,
3009                                    const char *buf, size_t count)
3010 {
3011         int err;
3012         unsigned long knob;
3013
3014         err = kstrtoul(buf, 10, &knob);
3015         if (err)
3016                 return err;
3017         if (knob > 1)
3018                 return -EINVAL;
3019
3020         mutex_lock(&ksm_thread_mutex);
3021         wait_while_offlining();
3022         if (ksm_merge_across_nodes != knob) {
3023                 if (ksm_pages_shared || remove_all_stable_nodes())
3024                         err = -EBUSY;
3025                 else if (root_stable_tree == one_stable_tree) {
3026                         struct rb_root *buf;
3027                         /*
3028                          * This is the first time that we switch away from the
3029                          * default of merging across nodes: must now allocate
3030                          * a buffer to hold as many roots as may be needed.
3031                          * Allocate stable and unstable together:
3032                          * MAXSMP NODES_SHIFT 10 will use 16kB.
3033                          */
3034                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3035                                       GFP_KERNEL);
3036                         /* Let us assume that RB_ROOT is NULL is zero */
3037                         if (!buf)
3038                                 err = -ENOMEM;
3039                         else {
3040                                 root_stable_tree = buf;
3041                                 root_unstable_tree = buf + nr_node_ids;
3042                                 /* Stable tree is empty but not the unstable */
3043                                 root_unstable_tree[0] = one_unstable_tree[0];
3044                         }
3045                 }
3046                 if (!err) {
3047                         ksm_merge_across_nodes = knob;
3048                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3049                 }
3050         }
3051         mutex_unlock(&ksm_thread_mutex);
3052
3053         return err ? err : count;
3054 }
3055 KSM_ATTR(merge_across_nodes);
3056 #endif
3057
3058 static ssize_t use_zero_pages_show(struct kobject *kobj,
3059                                    struct kobj_attribute *attr, char *buf)
3060 {
3061         return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3062 }
3063 static ssize_t use_zero_pages_store(struct kobject *kobj,
3064                                    struct kobj_attribute *attr,
3065                                    const char *buf, size_t count)
3066 {
3067         int err;
3068         bool value;
3069
3070         err = kstrtobool(buf, &value);
3071         if (err)
3072                 return -EINVAL;
3073
3074         ksm_use_zero_pages = value;
3075
3076         return count;
3077 }
3078 KSM_ATTR(use_zero_pages);
3079
3080 static ssize_t max_page_sharing_show(struct kobject *kobj,
3081                                      struct kobj_attribute *attr, char *buf)
3082 {
3083         return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3084 }
3085
3086 static ssize_t max_page_sharing_store(struct kobject *kobj,
3087                                       struct kobj_attribute *attr,
3088                                       const char *buf, size_t count)
3089 {
3090         int err;
3091         int knob;
3092
3093         err = kstrtoint(buf, 10, &knob);
3094         if (err)
3095                 return err;
3096         /*
3097          * When a KSM page is created it is shared by 2 mappings. This
3098          * being a signed comparison, it implicitly verifies it's not
3099          * negative.
3100          */
3101         if (knob < 2)
3102                 return -EINVAL;
3103
3104         if (READ_ONCE(ksm_max_page_sharing) == knob)
3105                 return count;
3106
3107         mutex_lock(&ksm_thread_mutex);
3108         wait_while_offlining();
3109         if (ksm_max_page_sharing != knob) {
3110                 if (ksm_pages_shared || remove_all_stable_nodes())
3111                         err = -EBUSY;
3112                 else
3113                         ksm_max_page_sharing = knob;
3114         }
3115         mutex_unlock(&ksm_thread_mutex);
3116
3117         return err ? err : count;
3118 }
3119 KSM_ATTR(max_page_sharing);
3120
3121 static ssize_t pages_shared_show(struct kobject *kobj,
3122                                  struct kobj_attribute *attr, char *buf)
3123 {
3124         return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3125 }
3126 KSM_ATTR_RO(pages_shared);
3127
3128 static ssize_t pages_sharing_show(struct kobject *kobj,
3129                                   struct kobj_attribute *attr, char *buf)
3130 {
3131         return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3132 }
3133 KSM_ATTR_RO(pages_sharing);
3134
3135 static ssize_t pages_unshared_show(struct kobject *kobj,
3136                                    struct kobj_attribute *attr, char *buf)
3137 {
3138         return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3139 }
3140 KSM_ATTR_RO(pages_unshared);
3141
3142 static ssize_t pages_volatile_show(struct kobject *kobj,
3143                                    struct kobj_attribute *attr, char *buf)
3144 {
3145         long ksm_pages_volatile;
3146
3147         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3148                                 - ksm_pages_sharing - ksm_pages_unshared;
3149         /*
3150          * It was not worth any locking to calculate that statistic,
3151          * but it might therefore sometimes be negative: conceal that.
3152          */
3153         if (ksm_pages_volatile < 0)
3154                 ksm_pages_volatile = 0;
3155         return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3156 }
3157 KSM_ATTR_RO(pages_volatile);
3158
3159 static ssize_t stable_node_dups_show(struct kobject *kobj,
3160                                      struct kobj_attribute *attr, char *buf)
3161 {
3162         return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3163 }
3164 KSM_ATTR_RO(stable_node_dups);
3165
3166 static ssize_t stable_node_chains_show(struct kobject *kobj,
3167                                        struct kobj_attribute *attr, char *buf)
3168 {
3169         return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3170 }
3171 KSM_ATTR_RO(stable_node_chains);
3172
3173 static ssize_t
3174 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3175                                         struct kobj_attribute *attr,
3176                                         char *buf)
3177 {
3178         return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3179 }
3180
3181 static ssize_t
3182 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3183                                          struct kobj_attribute *attr,
3184                                          const char *buf, size_t count)
3185 {
3186         unsigned int msecs;
3187         int err;
3188
3189         err = kstrtouint(buf, 10, &msecs);
3190         if (err)
3191                 return -EINVAL;
3192
3193         ksm_stable_node_chains_prune_millisecs = msecs;
3194
3195         return count;
3196 }
3197 KSM_ATTR(stable_node_chains_prune_millisecs);
3198
3199 static ssize_t full_scans_show(struct kobject *kobj,
3200                                struct kobj_attribute *attr, char *buf)
3201 {
3202         return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3203 }
3204 KSM_ATTR_RO(full_scans);
3205
3206 static struct attribute *ksm_attrs[] = {
3207         &sleep_millisecs_attr.attr,
3208         &pages_to_scan_attr.attr,
3209         &run_attr.attr,
3210         &pages_shared_attr.attr,
3211         &pages_sharing_attr.attr,
3212         &pages_unshared_attr.attr,
3213         &pages_volatile_attr.attr,
3214         &full_scans_attr.attr,
3215 #ifdef CONFIG_NUMA
3216         &merge_across_nodes_attr.attr,
3217 #endif
3218         &max_page_sharing_attr.attr,
3219         &stable_node_chains_attr.attr,
3220         &stable_node_dups_attr.attr,
3221         &stable_node_chains_prune_millisecs_attr.attr,
3222         &use_zero_pages_attr.attr,
3223         NULL,
3224 };
3225
3226 static const struct attribute_group ksm_attr_group = {
3227         .attrs = ksm_attrs,
3228         .name = "ksm",
3229 };
3230 #endif /* CONFIG_SYSFS */
3231
3232 static int __init ksm_init(void)
3233 {
3234         struct task_struct *ksm_thread;
3235         int err;
3236
3237         /* The correct value depends on page size and endianness */
3238         zero_checksum = calc_checksum(ZERO_PAGE(0));
3239         /* Default to false for backwards compatibility */
3240         ksm_use_zero_pages = false;
3241
3242         err = ksm_slab_init();
3243         if (err)
3244                 goto out;
3245
3246         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3247         if (IS_ERR(ksm_thread)) {
3248                 pr_err("ksm: creating kthread failed\n");
3249                 err = PTR_ERR(ksm_thread);
3250                 goto out_free;
3251         }
3252
3253 #ifdef CONFIG_SYSFS
3254         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3255         if (err) {
3256                 pr_err("ksm: register sysfs failed\n");
3257                 kthread_stop(ksm_thread);
3258                 goto out_free;
3259         }
3260 #else
3261         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3262
3263 #endif /* CONFIG_SYSFS */
3264
3265 #ifdef CONFIG_MEMORY_HOTREMOVE
3266         /* There is no significance to this priority 100 */
3267         hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3268 #endif
3269         return 0;
3270
3271 out_free:
3272         ksm_slab_free();
3273 out:
3274         return err;
3275 }
3276 subsys_initcall(ksm_init);
This page took 0.215257 seconds and 4 git commands to generate.