1 // SPDX-License-Identifier: GPL-2.0-only
3 /* PIPAPO: PIle PAcket POlicies: set for arbitrary concatenations of ranges
5 * Copyright (c) 2019-2020 Red Hat GmbH
11 * DOC: Theory of Operation
17 * Match packet bytes against entries composed of ranged or non-ranged packet
18 * field specifiers, mapping them to arbitrary references. For example:
23 * | [net],[port],[net]... => [reference]
24 * entries [net],[port],[net]... => [reference]
25 * | [net],[port],[net]... => [reference]
28 * where [net] fields can be IP ranges or netmasks, and [port] fields are port
29 * ranges. Arbitrary packet fields can be matched.
35 * This algorithm is loosely inspired by [Ligatti 2010], and fundamentally
36 * relies on the consideration that every contiguous range in a space of b bits
37 * can be converted into b * 2 netmasks, from Theorem 3 in [Rottenstreich 2010],
38 * as also illustrated in Section 9 of [Kogan 2014].
40 * Classification against a number of entries, that require matching given bits
41 * of a packet field, is performed by grouping those bits in sets of arbitrary
42 * size, and classifying packet bits one group at a time.
45 * to match the source port (16 bits) of a packet, we can divide those 16 bits
46 * in 4 groups of 4 bits each. Given the entry:
48 * and a packet with source port:
50 * first and second groups match, but the third doesn't. We conclude that the
51 * packet doesn't match the given entry.
53 * Translate the set to a sequence of lookup tables, one per field. Each table
54 * has two dimensions: bit groups to be matched for a single packet field, and
55 * all the possible values of said groups (buckets). Input entries are
56 * represented as one or more rules, depending on the number of composing
57 * netmasks for the given field specifier, and a group match is indicated as a
58 * set bit, with number corresponding to the rule index, in all the buckets
59 * whose value matches the entry for a given group.
61 * Rules are mapped between fields through an array of x, n pairs, with each
62 * item mapping a matched rule to one or more rules. The position of the pair in
63 * the array indicates the matched rule to be mapped to the next field, x
64 * indicates the first rule index in the next field, and n the amount of
65 * next-field rules the current rule maps to.
67 * The mapping array for the last field maps to the desired references.
69 * To match, we perform table lookups using the values of grouped packet bits,
70 * and use a sequence of bitwise operations to progressively evaluate rule
73 * A stand-alone, reference implementation, also including notes about possible
74 * future optimisations, is available at:
75 * https://pipapo.lameexcu.se/
80 * - For each packet field:
82 * - divide the b packet bits we want to classify into groups of size t,
83 * obtaining ceil(b / t) groups
85 * Example: match on destination IP address, with t = 4: 32 bits, 8 groups
88 * - allocate a lookup table with one column ("bucket") for each possible
89 * value of a group, and with one row for each group
91 * Example: 8 groups, 2^4 buckets:
96 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
106 * - map the bits we want to classify for the current field, for a given
107 * entry, to a single rule for non-ranged and netmask set items, and to one
108 * or multiple rules for ranges. Ranges are expanded to composing netmasks
109 * by pipapo_expand().
111 * Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048
112 * - rule #0: 10.0.0.5
113 * - rule #1: 192.168.1.0/24
114 * - rule #2: 192.168.2.0/31
116 * - insert references to the rules in the lookup table, selecting buckets
117 * according to bit values of a rule in the given group. This is done by
121 * - rule #0: 10.0.0.5 mapping to buckets
122 * < 0 10 0 0 0 0 0 5 >
123 * - rule #1: 192.168.1.0/24 mapping to buckets
124 * < 12 0 10 8 0 1 < 0..15 > < 0..15 > >
125 * - rule #2: 192.168.2.0/31 mapping to buckets
126 * < 12 0 10 8 0 2 0 < 0..1 > >
128 * these bits are set in the lookup table:
133 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
140 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
141 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
143 * - if this is not the last field in the set, fill a mapping array that maps
144 * rules from the lookup table to rules belonging to the same entry in
145 * the next lookup table, done by pipapo_map().
147 * Note that as rules map to contiguous ranges of rules, given how netmask
148 * expansion and insertion is performed, &union nft_pipapo_map_bucket stores
149 * this information as pairs of first rule index, rule count.
151 * Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048,
152 * given lookup table #0 for field 0 (see example above):
157 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
164 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
165 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
167 * and lookup table #1 for field 1 with:
168 * - rule #0: 1024 mapping to buckets
170 * - rule #1: 2048 mapping to buckets
176 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
182 * we need to map rules for 10.0.0.5 in lookup table #0 (rule #0) to 1024
183 * in lookup table #1 (rule #0) and rules for 192.168.1.0-192.168.2.1
184 * (rules #1, #2) to 2048 in lookup table #2 (rule #1):
188 * rule indices in current field: 0 1 2
189 * map to rules in next field: 0 1 1
191 * - if this is the last field in the set, fill a mapping array that maps
192 * rules from the last lookup table to element pointers, also done by
195 * Note that, in this implementation, we have two elements (start, end) for
196 * each entry. The pointer to the end element is stored in this array, and
197 * the pointer to the start element is linked from it.
199 * Example: entry 10.0.0.5:1024 has a corresponding &struct nft_pipapo_elem
200 * pointer, 0x66, and element for 192.168.1.0-192.168.2.1:2048 is at 0x42.
201 * From the rules of lookup table #1 as mapped above:
205 * rule indices in last field: 0 1
206 * map to elements: 0x66 0x42
212 * We use a result bitmap, with the size of a single lookup table bucket, to
213 * represent the matching state that applies at every algorithm step. This is
214 * done by pipapo_lookup().
216 * - For each packet field:
218 * - start with an all-ones result bitmap (res_map in pipapo_lookup())
220 * - perform a lookup into the table corresponding to the current field,
221 * for each group, and at every group, AND the current result bitmap with
222 * the value from the lookup table bucket
226 * Example: 192.168.1.5 < 12 0 10 8 0 1 0 5 >, with lookup table from
227 * insertion examples.
228 * Lookup table buckets are at least 3 bits wide, we'll assume 8 bits for
229 * convenience in this example. Initial result bitmap is 0xff, the steps
230 * below show the value of the result bitmap after each group is processed:
233 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
235 * result bitmap is now: 0xff & 0x6 [bucket 12] = 0x6
238 * result bitmap is now: 0x6 & 0x6 [bucket 0] = 0x6
241 * result bitmap is now: 0x6 & 0x6 [bucket 10] = 0x6
244 * result bitmap is now: 0x6 & 0x6 [bucket 8] = 0x6
247 * result bitmap is now: 0x6 & 0x7 [bucket 0] = 0x6
250 * result bitmap is now: 0x6 & 0x2 [bucket 1] = 0x2
252 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
253 * result bitmap is now: 0x2 & 0x7 [bucket 0] = 0x2
255 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
256 * final result bitmap for this field is: 0x2 & 0x3 [bucket 5] = 0x2
258 * - at the next field, start with a new, all-zeroes result bitmap. For each
259 * bit set in the previous result bitmap, fill the new result bitmap
260 * (fill_map in pipapo_lookup()) with the rule indices from the
261 * corresponding buckets of the mapping field for this field, done by
264 * Example: with mapping table from insertion examples, with the current
265 * result bitmap from the previous example, 0x02:
269 * rule indices in current field: 0 1 2
270 * map to rules in next field: 0 1 1
272 * the new result bitmap will be 0x02: rule 1 was set, and rule 1 will be
275 * We can now extend this example to cover the second iteration of the step
276 * above (lookup and AND bitmap): assuming the port field is
277 * 2048 < 0 0 5 0 >, with starting result bitmap 0x2, and lookup table
278 * for "port" field from pre-computation example:
283 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
289 * operations are: 0x2 & 0x3 [bucket 0] & 0x3 [bucket 0] & 0x2 [bucket 5]
290 * & 0x3 [bucket 0], resulting bitmap is 0x2.
292 * - if this is the last field in the set, look up the value from the mapping
293 * array corresponding to the final result bitmap
295 * Example: 0x2 resulting bitmap from 192.168.1.5:2048, mapping array for
296 * last field from insertion example:
300 * rule indices in last field: 0 1
301 * map to elements: 0x66 0x42
303 * the matching element is at 0x42.
310 * A Packet-classification Algorithm for Arbitrary Bitmask Rules, with
311 * Automatic Time-space Tradeoffs
312 * Jay Ligatti, Josh Kuhn, and Chris Gage.
313 * Proceedings of the IEEE International Conference on Computer
314 * Communication Networks (ICCCN), August 2010.
315 * https://www.cse.usf.edu/~ligatti/papers/grouper-conf.pdf
317 * [Rottenstreich 2010]
318 * Worst-Case TCAM Rule Expansion
319 * Ori Rottenstreich and Isaac Keslassy.
320 * 2010 Proceedings IEEE INFOCOM, San Diego, CA, 2010.
321 * http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.4592&rep=rep1&type=pdf
324 * SAX-PAC (Scalable And eXpressive PAcket Classification)
325 * Kirill Kogan, Sergey Nikolenko, Ori Rottenstreich, William Culhane,
326 * and Patrick Eugster.
327 * Proceedings of the 2014 ACM conference on SIGCOMM, August 2014.
328 * https://www.sigcomm.org/sites/default/files/ccr/papers/2014/August/2619239-2626294.pdf
331 #include <linux/kernel.h>
332 #include <linux/init.h>
333 #include <linux/module.h>
334 #include <linux/netlink.h>
335 #include <linux/netfilter.h>
336 #include <linux/netfilter/nf_tables.h>
337 #include <net/netfilter/nf_tables_core.h>
338 #include <uapi/linux/netfilter/nf_tables.h>
339 #include <linux/bitmap.h>
340 #include <linux/bitops.h>
342 #include "nft_set_pipapo_avx2.h"
343 #include "nft_set_pipapo.h"
345 /* Current working bitmap index, toggled between field matches */
346 static DEFINE_PER_CPU(bool, nft_pipapo_scratch_index);
349 * pipapo_refill() - For each set bit, set bits from selected mapping table item
350 * @map: Bitmap to be scanned for set bits
351 * @len: Length of bitmap in longs
352 * @rules: Number of rules in field
353 * @dst: Destination bitmap
354 * @mt: Mapping table containing bit set specifiers
355 * @match_only: Find a single bit and return, don't fill
357 * Iteration over set bits with __builtin_ctzl(): Daniel Lemire, public domain.
359 * For each bit set in map, select the bucket from mapping table with index
360 * corresponding to the position of the bit set. Use start bit and amount of
361 * bits specified in bucket to fill region in dst.
363 * Return: -1 on no match, bit position on 'match_only', 0 otherwise.
365 int pipapo_refill(unsigned long *map, int len, int rules, unsigned long *dst,
366 union nft_pipapo_map_bucket *mt, bool match_only)
368 unsigned long bitset;
371 for (k = 0; k < len; k++) {
374 unsigned long t = bitset & -bitset;
375 int r = __builtin_ctzl(bitset);
376 int i = k * BITS_PER_LONG + r;
378 if (unlikely(i >= rules)) {
384 bitmap_clear(map, i, 1);
390 bitmap_set(dst, mt[i].to, mt[i].n);
401 * nft_pipapo_lookup() - Lookup function
402 * @net: Network namespace
403 * @set: nftables API set representation
404 * @key: nftables API element representation containing key data
405 * @ext: nftables API extension pointer, filled with matching reference
407 * For more details, see DOC: Theory of Operation.
409 * Return: true on match, false otherwise.
411 bool nft_pipapo_lookup(const struct net *net, const struct nft_set *set,
412 const u32 *key, const struct nft_set_ext **ext)
414 struct nft_pipapo *priv = nft_set_priv(set);
415 unsigned long *res_map, *fill_map;
416 u8 genmask = nft_genmask_cur(net);
417 const u8 *rp = (const u8 *)key;
418 struct nft_pipapo_match *m;
419 struct nft_pipapo_field *f;
425 map_index = raw_cpu_read(nft_pipapo_scratch_index);
427 m = rcu_dereference(priv->match);
429 if (unlikely(!m || !*raw_cpu_ptr(m->scratch)))
432 res_map = *raw_cpu_ptr(m->scratch) + (map_index ? m->bsize_max : 0);
433 fill_map = *raw_cpu_ptr(m->scratch) + (map_index ? 0 : m->bsize_max);
435 memset(res_map, 0xff, m->bsize_max * sizeof(*res_map));
437 nft_pipapo_for_each_field(f, i, m) {
438 bool last = i == m->field_count - 1;
441 /* For each bit group: select lookup table bucket depending on
442 * packet bytes value, then AND bucket value
444 if (likely(f->bb == 8))
445 pipapo_and_field_buckets_8bit(f, res_map, rp);
447 pipapo_and_field_buckets_4bit(f, res_map, rp);
448 NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
450 rp += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f);
452 /* Now populate the bitmap for the next field, unless this is
453 * the last field, in which case return the matched 'ext'
456 * Now res_map contains the matching bitmap, and fill_map is the
457 * bitmap for the next field.
460 b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt,
463 raw_cpu_write(nft_pipapo_scratch_index, map_index);
470 *ext = &f->mt[b].e->ext;
471 if (unlikely(nft_set_elem_expired(*ext) ||
472 !nft_set_elem_active(*ext, genmask)))
475 /* Last field: we're just returning the key without
476 * filling the initial bitmap for the next field, so the
477 * current inactive bitmap is clean and can be reused as
478 * *next* bitmap (not initial) for the next packet.
480 raw_cpu_write(nft_pipapo_scratch_index, map_index);
486 /* Swap bitmap indices: res_map is the initial bitmap for the
487 * next field, and fill_map is guaranteed to be all-zeroes at
490 map_index = !map_index;
491 swap(res_map, fill_map);
493 rp += NFT_PIPAPO_GROUPS_PADDING(f);
502 * pipapo_get() - Get matching element reference given key data
503 * @net: Network namespace
504 * @set: nftables API set representation
505 * @data: Key data to be matched against existing elements
506 * @genmask: If set, check that element is active in given genmask
508 * This is essentially the same as the lookup function, except that it matches
509 * key data against the uncommitted copy and doesn't use preallocated maps for
512 * Return: pointer to &struct nft_pipapo_elem on match, error pointer otherwise.
514 static struct nft_pipapo_elem *pipapo_get(const struct net *net,
515 const struct nft_set *set,
516 const u8 *data, u8 genmask)
518 struct nft_pipapo_elem *ret = ERR_PTR(-ENOENT);
519 struct nft_pipapo *priv = nft_set_priv(set);
520 struct nft_pipapo_match *m = priv->clone;
521 unsigned long *res_map, *fill_map = NULL;
522 struct nft_pipapo_field *f;
525 res_map = kmalloc_array(m->bsize_max, sizeof(*res_map), GFP_ATOMIC);
527 ret = ERR_PTR(-ENOMEM);
531 fill_map = kcalloc(m->bsize_max, sizeof(*res_map), GFP_ATOMIC);
533 ret = ERR_PTR(-ENOMEM);
537 memset(res_map, 0xff, m->bsize_max * sizeof(*res_map));
539 nft_pipapo_for_each_field(f, i, m) {
540 bool last = i == m->field_count - 1;
543 /* For each bit group: select lookup table bucket depending on
544 * packet bytes value, then AND bucket value
547 pipapo_and_field_buckets_8bit(f, res_map, data);
549 pipapo_and_field_buckets_4bit(f, res_map, data);
553 data += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f);
555 /* Now populate the bitmap for the next field, unless this is
556 * the last field, in which case return the matched 'ext'
559 * Now res_map contains the matching bitmap, and fill_map is the
560 * bitmap for the next field.
563 b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt,
569 if (nft_set_elem_expired(&f->mt[b].e->ext) ||
571 !nft_set_elem_active(&f->mt[b].e->ext, genmask)))
578 data += NFT_PIPAPO_GROUPS_PADDING(f);
580 /* Swap bitmap indices: fill_map will be the initial bitmap for
581 * the next field (i.e. the new res_map), and res_map is
582 * guaranteed to be all-zeroes at this point, ready to be filled
583 * according to the next mapping table.
585 swap(res_map, fill_map);
595 * nft_pipapo_get() - Get matching element reference given key data
596 * @net: Network namespace
597 * @set: nftables API set representation
598 * @elem: nftables API element representation containing key data
601 static void *nft_pipapo_get(const struct net *net, const struct nft_set *set,
602 const struct nft_set_elem *elem, unsigned int flags)
604 return pipapo_get(net, set, (const u8 *)elem->key.val.data,
605 nft_genmask_cur(net));
609 * pipapo_resize() - Resize lookup or mapping table, or both
610 * @f: Field containing lookup and mapping tables
611 * @old_rules: Previous amount of rules in field
612 * @rules: New amount of rules
614 * Increase, decrease or maintain tables size depending on new amount of rules,
615 * and copy data over. In case the new size is smaller, throw away data for
616 * highest-numbered rules.
618 * Return: 0 on success, -ENOMEM on allocation failure.
620 static int pipapo_resize(struct nft_pipapo_field *f, int old_rules, int rules)
622 long *new_lt = NULL, *new_p, *old_lt = f->lt, *old_p;
623 union nft_pipapo_map_bucket *new_mt, *old_mt = f->mt;
624 size_t new_bucket_size, copy;
627 new_bucket_size = DIV_ROUND_UP(rules, BITS_PER_LONG);
628 #ifdef NFT_PIPAPO_ALIGN
629 new_bucket_size = roundup(new_bucket_size,
630 NFT_PIPAPO_ALIGN / sizeof(*new_lt));
633 if (new_bucket_size == f->bsize)
636 if (new_bucket_size > f->bsize)
639 copy = new_bucket_size;
641 new_lt = kvzalloc(f->groups * NFT_PIPAPO_BUCKETS(f->bb) *
642 new_bucket_size * sizeof(*new_lt) +
643 NFT_PIPAPO_ALIGN_HEADROOM,
648 new_p = NFT_PIPAPO_LT_ALIGN(new_lt);
649 old_p = NFT_PIPAPO_LT_ALIGN(old_lt);
651 for (group = 0; group < f->groups; group++) {
652 for (bucket = 0; bucket < NFT_PIPAPO_BUCKETS(f->bb); bucket++) {
653 memcpy(new_p, old_p, copy * sizeof(*new_p));
657 if (new_bucket_size > f->bsize)
658 new_p += new_bucket_size - f->bsize;
660 old_p += f->bsize - new_bucket_size;
665 new_mt = kvmalloc(rules * sizeof(*new_mt), GFP_KERNEL);
671 memcpy(new_mt, f->mt, min(old_rules, rules) * sizeof(*new_mt));
672 if (rules > old_rules) {
673 memset(new_mt + old_rules, 0,
674 (rules - old_rules) * sizeof(*new_mt));
678 f->bsize = new_bucket_size;
679 NFT_PIPAPO_LT_ASSIGN(f, new_lt);
690 * pipapo_bucket_set() - Set rule bit in bucket given group and group value
691 * @f: Field containing lookup table
693 * @group: Group index
694 * @v: Value of bit group
696 static void pipapo_bucket_set(struct nft_pipapo_field *f, int rule, int group,
701 pos = NFT_PIPAPO_LT_ALIGN(f->lt);
702 pos += f->bsize * NFT_PIPAPO_BUCKETS(f->bb) * group;
705 __set_bit(rule, pos);
709 * pipapo_lt_4b_to_8b() - Switch lookup table group width from 4 bits to 8 bits
710 * @old_groups: Number of current groups
711 * @bsize: Size of one bucket, in longs
712 * @old_lt: Pointer to the current lookup table
713 * @new_lt: Pointer to the new, pre-allocated lookup table
715 * Each bucket with index b in the new lookup table, belonging to group g, is
716 * filled with the bit intersection between:
717 * - bucket with index given by the upper 4 bits of b, from group g, and
718 * - bucket with index given by the lower 4 bits of b, from group g + 1
720 * That is, given buckets from the new lookup table N(x, y) and the old lookup
721 * table O(x, y), with x bucket index, and y group index:
723 * N(b, g) := O(b / 16, g) & O(b % 16, g + 1)
725 * This ensures equivalence of the matching results on lookup. Two examples in
729 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ... 254 255
736 * group 0 / 1 2 3 \ 4 5 6 7 8 9 10 11 12 13 |14 15 |
743 static void pipapo_lt_4b_to_8b(int old_groups, int bsize,
744 unsigned long *old_lt, unsigned long *new_lt)
748 for (g = 0; g < old_groups / 2; g++) {
749 int src_g0 = g * 2, src_g1 = g * 2 + 1;
751 for (b = 0; b < NFT_PIPAPO_BUCKETS(8); b++) {
752 int src_b0 = b / NFT_PIPAPO_BUCKETS(4);
753 int src_b1 = b % NFT_PIPAPO_BUCKETS(4);
754 int src_i0 = src_g0 * NFT_PIPAPO_BUCKETS(4) + src_b0;
755 int src_i1 = src_g1 * NFT_PIPAPO_BUCKETS(4) + src_b1;
757 for (i = 0; i < bsize; i++) {
758 *new_lt = old_lt[src_i0 * bsize + i] &
759 old_lt[src_i1 * bsize + i];
767 * pipapo_lt_8b_to_4b() - Switch lookup table group width from 8 bits to 4 bits
768 * @old_groups: Number of current groups
769 * @bsize: Size of one bucket, in longs
770 * @old_lt: Pointer to the current lookup table
771 * @new_lt: Pointer to the new, pre-allocated lookup table
773 * Each bucket with index b in the new lookup table, belonging to group g, is
774 * filled with the bit union of:
775 * - all the buckets with index such that the upper four bits of the lower byte
776 * equal b, from group g, with g odd
777 * - all the buckets with index such that the lower four bits equal b, from
778 * group g, with g even
780 * That is, given buckets from the new lookup table N(x, y) and the old lookup
781 * table O(x, y), with x bucket index, and y group index:
783 * - with g odd: N(b, g) := U(O(x, g) for each x : x = (b & 0xf0) >> 4)
784 * - with g even: N(b, g) := U(O(x, g) for each x : x = b & 0x0f)
786 * where U() denotes the arbitrary union operation (binary OR of n terms). This
787 * ensures equivalence of the matching results on lookup.
789 static void pipapo_lt_8b_to_4b(int old_groups, int bsize,
790 unsigned long *old_lt, unsigned long *new_lt)
794 memset(new_lt, 0, old_groups * 2 * NFT_PIPAPO_BUCKETS(4) * bsize *
795 sizeof(unsigned long));
797 for (g = 0; g < old_groups * 2; g += 2) {
800 for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
801 for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
802 bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
804 if (((bsrc & 0xf0) >> 4) != b)
807 for (i = 0; i < bsize; i++)
808 new_lt[i] |= old_lt[bsrc * bsize + i];
814 for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
815 for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
816 bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
818 if ((bsrc & 0x0f) != b)
821 for (i = 0; i < bsize; i++)
822 new_lt[i] |= old_lt[bsrc * bsize + i];
831 * pipapo_lt_bits_adjust() - Adjust group size for lookup table if needed
832 * @f: Field containing lookup table
834 static void pipapo_lt_bits_adjust(struct nft_pipapo_field *f)
836 unsigned long *new_lt;
840 lt_size = f->groups * NFT_PIPAPO_BUCKETS(f->bb) * f->bsize *
843 if (f->bb == NFT_PIPAPO_GROUP_BITS_SMALL_SET &&
844 lt_size > NFT_PIPAPO_LT_SIZE_HIGH) {
845 groups = f->groups * 2;
846 bb = NFT_PIPAPO_GROUP_BITS_LARGE_SET;
848 lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize *
850 } else if (f->bb == NFT_PIPAPO_GROUP_BITS_LARGE_SET &&
851 lt_size < NFT_PIPAPO_LT_SIZE_LOW) {
852 groups = f->groups / 2;
853 bb = NFT_PIPAPO_GROUP_BITS_SMALL_SET;
855 lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize *
858 /* Don't increase group width if the resulting lookup table size
859 * would exceed the upper size threshold for a "small" set.
861 if (lt_size > NFT_PIPAPO_LT_SIZE_HIGH)
867 new_lt = kvzalloc(lt_size + NFT_PIPAPO_ALIGN_HEADROOM, GFP_KERNEL);
871 NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
872 if (f->bb == 4 && bb == 8) {
873 pipapo_lt_4b_to_8b(f->groups, f->bsize,
874 NFT_PIPAPO_LT_ALIGN(f->lt),
875 NFT_PIPAPO_LT_ALIGN(new_lt));
876 } else if (f->bb == 8 && bb == 4) {
877 pipapo_lt_8b_to_4b(f->groups, f->bsize,
878 NFT_PIPAPO_LT_ALIGN(f->lt),
879 NFT_PIPAPO_LT_ALIGN(new_lt));
887 NFT_PIPAPO_LT_ASSIGN(f, new_lt);
891 * pipapo_insert() - Insert new rule in field given input key and mask length
892 * @f: Field containing lookup table
893 * @k: Input key for classification, without nftables padding
894 * @mask_bits: Length of mask; matches field length for non-ranged entry
896 * Insert a new rule reference in lookup buckets corresponding to k and
899 * Return: 1 on success (one rule inserted), negative error code on failure.
901 static int pipapo_insert(struct nft_pipapo_field *f, const uint8_t *k,
904 int rule = f->rules++, group, ret, bit_offset = 0;
906 ret = pipapo_resize(f, f->rules - 1, f->rules);
910 for (group = 0; group < f->groups; group++) {
914 v = k[group / (BITS_PER_BYTE / f->bb)];
915 v &= GENMASK(BITS_PER_BYTE - bit_offset - 1, 0);
916 v >>= (BITS_PER_BYTE - bit_offset) - f->bb;
919 bit_offset %= BITS_PER_BYTE;
921 if (mask_bits >= (group + 1) * f->bb) {
923 pipapo_bucket_set(f, rule, group, v);
924 } else if (mask_bits <= group * f->bb) {
925 /* Completely masked */
926 for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++)
927 pipapo_bucket_set(f, rule, group, i);
929 /* The mask limit falls on this group */
930 mask = GENMASK(f->bb - 1, 0);
931 mask >>= mask_bits - group * f->bb;
932 for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++) {
933 if ((i & ~mask) == (v & ~mask))
934 pipapo_bucket_set(f, rule, group, i);
939 pipapo_lt_bits_adjust(f);
945 * pipapo_step_diff() - Check if setting @step bit in netmask would change it
946 * @base: Mask we are expanding
947 * @step: Step bit for given expansion step
948 * @len: Total length of mask space (set and unset bits), bytes
950 * Convenience function for mask expansion.
952 * Return: true if step bit changes mask (i.e. isn't set), false otherwise.
954 static bool pipapo_step_diff(u8 *base, int step, int len)
956 /* Network order, byte-addressed */
957 #ifdef __BIG_ENDIAN__
958 return !(BIT(step % BITS_PER_BYTE) & base[step / BITS_PER_BYTE]);
960 return !(BIT(step % BITS_PER_BYTE) &
961 base[len - 1 - step / BITS_PER_BYTE]);
966 * pipapo_step_after_end() - Check if mask exceeds range end with given step
967 * @base: Mask we are expanding
969 * @step: Step bit for given expansion step, highest bit to be set
970 * @len: Total length of mask space (set and unset bits), bytes
972 * Convenience function for mask expansion.
974 * Return: true if mask exceeds range setting step bits, false otherwise.
976 static bool pipapo_step_after_end(const u8 *base, const u8 *end, int step,
979 u8 tmp[NFT_PIPAPO_MAX_BYTES];
982 memcpy(tmp, base, len);
984 /* Network order, byte-addressed */
985 for (i = 0; i <= step; i++)
986 #ifdef __BIG_ENDIAN__
987 tmp[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
989 tmp[len - 1 - i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
992 return memcmp(tmp, end, len) > 0;
996 * pipapo_base_sum() - Sum step bit to given len-sized netmask base with carry
997 * @base: Netmask base
998 * @step: Step bit to sum
999 * @len: Netmask length, bytes
1001 static void pipapo_base_sum(u8 *base, int step, int len)
1006 /* Network order, byte-addressed */
1007 #ifdef __BIG_ENDIAN__
1008 for (i = step / BITS_PER_BYTE; i < len; i++) {
1010 for (i = len - 1 - step / BITS_PER_BYTE; i >= 0; i--) {
1015 base[i] += 1 << (step % BITS_PER_BYTE);
1025 * pipapo_expand() - Expand to composing netmasks, insert into lookup table
1026 * @f: Field containing lookup table
1027 * @start: Start of range
1028 * @end: End of range
1029 * @len: Length of value in bits
1031 * Expand range to composing netmasks and insert corresponding rule references
1032 * in lookup buckets.
1034 * Return: number of inserted rules on success, negative error code on failure.
1036 static int pipapo_expand(struct nft_pipapo_field *f,
1037 const u8 *start, const u8 *end, int len)
1039 int step, masks = 0, bytes = DIV_ROUND_UP(len, BITS_PER_BYTE);
1040 u8 base[NFT_PIPAPO_MAX_BYTES];
1042 memcpy(base, start, bytes);
1043 while (memcmp(base, end, bytes) <= 0) {
1047 while (pipapo_step_diff(base, step, bytes)) {
1048 if (pipapo_step_after_end(base, end, step, bytes))
1054 pipapo_insert(f, base, 0);
1061 err = pipapo_insert(f, base, len - step);
1067 pipapo_base_sum(base, step, bytes);
1074 * pipapo_map() - Insert rules in mapping tables, mapping them between fields
1075 * @m: Matching data, including mapping table
1076 * @map: Table of rule maps: array of first rule and amount of rules
1077 * in next field a given rule maps to, for each field
1078 * @e: For last field, nft_set_ext pointer matching rules map to
1080 static void pipapo_map(struct nft_pipapo_match *m,
1081 union nft_pipapo_map_bucket map[NFT_PIPAPO_MAX_FIELDS],
1082 struct nft_pipapo_elem *e)
1084 struct nft_pipapo_field *f;
1087 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++) {
1088 for (j = 0; j < map[i].n; j++) {
1089 f->mt[map[i].to + j].to = map[i + 1].to;
1090 f->mt[map[i].to + j].n = map[i + 1].n;
1094 /* Last field: map to ext instead of mapping to next field */
1095 for (j = 0; j < map[i].n; j++)
1096 f->mt[map[i].to + j].e = e;
1100 * pipapo_realloc_scratch() - Reallocate scratch maps for partial match results
1101 * @clone: Copy of matching data with pending insertions and deletions
1102 * @bsize_max: Maximum bucket size, scratch maps cover two buckets
1104 * Return: 0 on success, -ENOMEM on failure.
1106 static int pipapo_realloc_scratch(struct nft_pipapo_match *clone,
1107 unsigned long bsize_max)
1111 for_each_possible_cpu(i) {
1112 unsigned long *scratch;
1113 #ifdef NFT_PIPAPO_ALIGN
1114 unsigned long *scratch_aligned;
1117 scratch = kzalloc_node(bsize_max * sizeof(*scratch) * 2 +
1118 NFT_PIPAPO_ALIGN_HEADROOM,
1119 GFP_KERNEL, cpu_to_node(i));
1121 /* On failure, there's no need to undo previous
1122 * allocations: this means that some scratch maps have
1123 * a bigger allocated size now (this is only called on
1124 * insertion), but the extra space won't be used by any
1125 * CPU as new elements are not inserted and m->bsize_max
1131 kfree(*per_cpu_ptr(clone->scratch, i));
1133 *per_cpu_ptr(clone->scratch, i) = scratch;
1135 #ifdef NFT_PIPAPO_ALIGN
1136 scratch_aligned = NFT_PIPAPO_LT_ALIGN(scratch);
1137 *per_cpu_ptr(clone->scratch_aligned, i) = scratch_aligned;
1145 * nft_pipapo_insert() - Validate and insert ranged elements
1146 * @net: Network namespace
1147 * @set: nftables API set representation
1148 * @elem: nftables API element representation containing key data
1149 * @ext2: Filled with pointer to &struct nft_set_ext in inserted element
1151 * Return: 0 on success, error pointer on failure.
1153 static int nft_pipapo_insert(const struct net *net, const struct nft_set *set,
1154 const struct nft_set_elem *elem,
1155 struct nft_set_ext **ext2)
1157 const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv);
1158 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1159 const u8 *start = (const u8 *)elem->key.val.data, *end;
1160 struct nft_pipapo_elem *e = elem->priv, *dup;
1161 struct nft_pipapo *priv = nft_set_priv(set);
1162 struct nft_pipapo_match *m = priv->clone;
1163 u8 genmask = nft_genmask_next(net);
1164 struct nft_pipapo_field *f;
1165 const u8 *start_p, *end_p;
1166 int i, bsize_max, err = 0;
1168 if (nft_set_ext_exists(ext, NFT_SET_EXT_KEY_END))
1169 end = (const u8 *)nft_set_ext_key_end(ext)->data;
1173 dup = pipapo_get(net, set, start, genmask);
1175 /* Check if we already have the same exact entry */
1176 const struct nft_data *dup_key, *dup_end;
1178 dup_key = nft_set_ext_key(&dup->ext);
1179 if (nft_set_ext_exists(&dup->ext, NFT_SET_EXT_KEY_END))
1180 dup_end = nft_set_ext_key_end(&dup->ext);
1184 if (!memcmp(start, dup_key->data, sizeof(*dup_key->data)) &&
1185 !memcmp(end, dup_end->data, sizeof(*dup_end->data))) {
1193 if (PTR_ERR(dup) == -ENOENT) {
1194 /* Look for partially overlapping entries */
1195 dup = pipapo_get(net, set, end, nft_genmask_next(net));
1198 if (PTR_ERR(dup) != -ENOENT) {
1200 return PTR_ERR(dup);
1208 nft_pipapo_for_each_field(f, i, m) {
1209 if (f->rules >= (unsigned long)NFT_PIPAPO_RULE0_MAX)
1212 if (memcmp(start_p, end_p,
1213 f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) > 0)
1216 start_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1217 end_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1223 bsize_max = m->bsize_max;
1225 nft_pipapo_for_each_field(f, i, m) {
1228 rulemap[i].to = f->rules;
1230 ret = memcmp(start, end,
1231 f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1233 ret = pipapo_insert(f, start, f->groups * f->bb);
1235 ret = pipapo_expand(f, start, end, f->groups * f->bb);
1237 if (f->bsize > bsize_max)
1238 bsize_max = f->bsize;
1242 start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1243 end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1246 if (!*get_cpu_ptr(m->scratch) || bsize_max > m->bsize_max) {
1247 put_cpu_ptr(m->scratch);
1249 err = pipapo_realloc_scratch(m, bsize_max);
1253 m->bsize_max = bsize_max;
1255 put_cpu_ptr(m->scratch);
1260 pipapo_map(m, rulemap, e);
1266 * pipapo_clone() - Clone matching data to create new working copy
1267 * @old: Existing matching data
1269 * Return: copy of matching data passed as 'old', error pointer on failure
1271 static struct nft_pipapo_match *pipapo_clone(struct nft_pipapo_match *old)
1273 struct nft_pipapo_field *dst, *src;
1274 struct nft_pipapo_match *new;
1277 new = kmalloc(sizeof(*new) + sizeof(*dst) * old->field_count,
1280 return ERR_PTR(-ENOMEM);
1282 new->field_count = old->field_count;
1283 new->bsize_max = old->bsize_max;
1285 new->scratch = alloc_percpu(*new->scratch);
1289 #ifdef NFT_PIPAPO_ALIGN
1290 new->scratch_aligned = alloc_percpu(*new->scratch_aligned);
1291 if (!new->scratch_aligned)
1294 for_each_possible_cpu(i)
1295 *per_cpu_ptr(new->scratch, i) = NULL;
1297 if (pipapo_realloc_scratch(new, old->bsize_max))
1298 goto out_scratch_realloc;
1300 rcu_head_init(&new->rcu);
1305 for (i = 0; i < old->field_count; i++) {
1306 unsigned long *new_lt;
1308 memcpy(dst, src, offsetof(struct nft_pipapo_field, lt));
1310 new_lt = kvzalloc(src->groups * NFT_PIPAPO_BUCKETS(src->bb) *
1311 src->bsize * sizeof(*dst->lt) +
1312 NFT_PIPAPO_ALIGN_HEADROOM,
1317 NFT_PIPAPO_LT_ASSIGN(dst, new_lt);
1319 memcpy(NFT_PIPAPO_LT_ALIGN(new_lt),
1320 NFT_PIPAPO_LT_ALIGN(src->lt),
1321 src->bsize * sizeof(*dst->lt) *
1322 src->groups * NFT_PIPAPO_BUCKETS(src->bb));
1324 dst->mt = kvmalloc(src->rules * sizeof(*src->mt), GFP_KERNEL);
1328 memcpy(dst->mt, src->mt, src->rules * sizeof(*src->mt));
1338 for (dst--; i > 0; i--) {
1343 out_scratch_realloc:
1344 for_each_possible_cpu(i)
1345 kfree(*per_cpu_ptr(new->scratch, i));
1346 #ifdef NFT_PIPAPO_ALIGN
1347 free_percpu(new->scratch_aligned);
1350 free_percpu(new->scratch);
1353 return ERR_PTR(-ENOMEM);
1357 * pipapo_rules_same_key() - Get number of rules originated from the same entry
1358 * @f: Field containing mapping table
1359 * @first: Index of first rule in set of rules mapping to same entry
1361 * Using the fact that all rules in a field that originated from the same entry
1362 * will map to the same set of rules in the next field, or to the same element
1363 * reference, return the cardinality of the set of rules that originated from
1364 * the same entry as the rule with index @first, @first rule included.
1368 * field #0 0 1 2 3 4
1369 * map to: 0 1 2-4 2-4 5-9
1375 * in field #1 0 1 2 3 4 5 ...
1377 * if this is called for rule 2 on field #0, it will return 3, as also rules 2
1378 * and 3 in field 0 map to the same set of rules (2, 3, 4) in the next field.
1380 * For the last field in a set, we can rely on associated entries to map to the
1381 * same element references.
1383 * Return: Number of rules that originated from the same entry as @first.
1385 static int pipapo_rules_same_key(struct nft_pipapo_field *f, int first)
1387 struct nft_pipapo_elem *e = NULL; /* Keep gcc happy */
1390 for (r = first; r < f->rules; r++) {
1391 if (r != first && e != f->mt[r].e)
1404 * pipapo_unmap() - Remove rules from mapping tables, renumber remaining ones
1405 * @mt: Mapping array
1406 * @rules: Original amount of rules in mapping table
1407 * @start: First rule index to be removed
1408 * @n: Amount of rules to be removed
1409 * @to_offset: First rule index, in next field, this group of rules maps to
1410 * @is_last: If this is the last field, delete reference from mapping array
1412 * This is used to unmap rules from the mapping table for a single field,
1413 * maintaining consistency and compactness for the existing ones.
1415 * In pictures: let's assume that we want to delete rules 2 and 3 from the
1416 * following mapping array:
1420 * map to: 4-10 4-10 11-15 11-15 16-18
1422 * the result will be:
1426 * map to: 4-10 4-10 11-13
1428 * for fields before the last one. In case this is the mapping table for the
1429 * last field in a set, and rules map to pointers to &struct nft_pipapo_elem:
1433 * element pointers: 0x42 0x42 0x33 0x33 0x44
1435 * the result will be:
1439 * element pointers: 0x42 0x42 0x44
1441 static void pipapo_unmap(union nft_pipapo_map_bucket *mt, int rules,
1442 int start, int n, int to_offset, bool is_last)
1446 memmove(mt + start, mt + start + n, (rules - start - n) * sizeof(*mt));
1447 memset(mt + rules - n, 0, n * sizeof(*mt));
1452 for (i = start; i < rules - n; i++)
1453 mt[i].to -= to_offset;
1457 * pipapo_drop() - Delete entry from lookup and mapping tables, given rule map
1459 * @rulemap: Table of rule maps, arrays of first rule and amount of rules
1460 * in next field a given entry maps to, for each field
1462 * For each rule in lookup table buckets mapping to this set of rules, drop
1463 * all bits set in lookup table mapping. In pictures, assuming we want to drop
1464 * rules 0 and 1 from this lookup table:
1467 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1474 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1475 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
1477 * rule 2 becomes rule 0, and the result will be:
1480 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1490 * once this is done, call unmap() to drop all the corresponding rule references
1491 * from mapping tables.
1493 static void pipapo_drop(struct nft_pipapo_match *m,
1494 union nft_pipapo_map_bucket rulemap[])
1496 struct nft_pipapo_field *f;
1499 nft_pipapo_for_each_field(f, i, m) {
1502 for (g = 0; g < f->groups; g++) {
1506 pos = NFT_PIPAPO_LT_ALIGN(f->lt) + g *
1507 NFT_PIPAPO_BUCKETS(f->bb) * f->bsize;
1509 for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1510 bitmap_cut(pos, pos, rulemap[i].to,
1512 f->bsize * BITS_PER_LONG);
1518 pipapo_unmap(f->mt, f->rules, rulemap[i].to, rulemap[i].n,
1519 rulemap[i + 1].n, i == m->field_count - 1);
1520 if (pipapo_resize(f, f->rules, f->rules - rulemap[i].n)) {
1521 /* We can ignore this, a failure to shrink tables down
1522 * doesn't make tables invalid.
1526 f->rules -= rulemap[i].n;
1528 pipapo_lt_bits_adjust(f);
1533 * pipapo_gc() - Drop expired entries from set, destroy start and end elements
1534 * @set: nftables API set representation
1537 static void pipapo_gc(const struct nft_set *set, struct nft_pipapo_match *m)
1539 struct nft_pipapo *priv = nft_set_priv(set);
1540 int rules_f0, first_rule = 0;
1541 struct nft_pipapo_elem *e;
1543 while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
1544 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1545 struct nft_pipapo_field *f;
1546 int i, start, rules_fx;
1549 rules_fx = rules_f0;
1551 nft_pipapo_for_each_field(f, i, m) {
1552 rulemap[i].to = start;
1553 rulemap[i].n = rules_fx;
1555 if (i < m->field_count - 1) {
1556 rules_fx = f->mt[start].n;
1557 start = f->mt[start].to;
1561 /* Pick the last field, and its last index */
1564 e = f->mt[rulemap[i].to].e;
1565 if (nft_set_elem_expired(&e->ext) &&
1566 !nft_set_elem_mark_busy(&e->ext)) {
1568 pipapo_drop(m, rulemap);
1571 nft_set_elem_destroy(set, e, true);
1573 /* And check again current first rule, which is now the
1574 * first we haven't checked.
1577 first_rule += rules_f0;
1581 e = nft_set_catchall_gc(set);
1583 nft_set_elem_destroy(set, e, true);
1585 priv->last_gc = jiffies;
1589 * pipapo_free_fields() - Free per-field tables contained in matching data
1592 static void pipapo_free_fields(struct nft_pipapo_match *m)
1594 struct nft_pipapo_field *f;
1597 nft_pipapo_for_each_field(f, i, m) {
1604 * pipapo_reclaim_match - RCU callback to free fields from old matching data
1607 static void pipapo_reclaim_match(struct rcu_head *rcu)
1609 struct nft_pipapo_match *m;
1612 m = container_of(rcu, struct nft_pipapo_match, rcu);
1614 for_each_possible_cpu(i)
1615 kfree(*per_cpu_ptr(m->scratch, i));
1617 #ifdef NFT_PIPAPO_ALIGN
1618 free_percpu(m->scratch_aligned);
1620 free_percpu(m->scratch);
1622 pipapo_free_fields(m);
1628 * pipapo_commit() - Replace lookup data with current working copy
1629 * @set: nftables API set representation
1631 * While at it, check if we should perform garbage collection on the working
1632 * copy before committing it for lookup, and don't replace the table if the
1633 * working copy doesn't have pending changes.
1635 * We also need to create a new working copy for subsequent insertions and
1638 static void pipapo_commit(const struct nft_set *set)
1640 struct nft_pipapo *priv = nft_set_priv(set);
1641 struct nft_pipapo_match *new_clone, *old;
1643 if (time_after_eq(jiffies, priv->last_gc + nft_set_gc_interval(set)))
1644 pipapo_gc(set, priv->clone);
1649 new_clone = pipapo_clone(priv->clone);
1650 if (IS_ERR(new_clone))
1653 priv->dirty = false;
1655 old = rcu_access_pointer(priv->match);
1656 rcu_assign_pointer(priv->match, priv->clone);
1658 call_rcu(&old->rcu, pipapo_reclaim_match);
1660 priv->clone = new_clone;
1664 * nft_pipapo_activate() - Mark element reference as active given key, commit
1665 * @net: Network namespace
1666 * @set: nftables API set representation
1667 * @elem: nftables API element representation containing key data
1669 * On insertion, elements are added to a copy of the matching data currently
1670 * in use for lookups, and not directly inserted into current lookup data, so
1671 * we'll take care of that by calling pipapo_commit() here. Both
1672 * nft_pipapo_insert() and nft_pipapo_activate() are called once for each
1673 * element, hence we can't purpose either one as a real commit operation.
1675 static void nft_pipapo_activate(const struct net *net,
1676 const struct nft_set *set,
1677 const struct nft_set_elem *elem)
1679 struct nft_pipapo_elem *e;
1681 e = pipapo_get(net, set, (const u8 *)elem->key.val.data, 0);
1685 nft_set_elem_change_active(net, set, &e->ext);
1686 nft_set_elem_clear_busy(&e->ext);
1692 * pipapo_deactivate() - Check that element is in set, mark as inactive
1693 * @net: Network namespace
1694 * @set: nftables API set representation
1695 * @data: Input key data
1696 * @ext: nftables API extension pointer, used to check for end element
1698 * This is a convenience function that can be called from both
1699 * nft_pipapo_deactivate() and nft_pipapo_flush(), as they are in fact the same
1702 * Return: deactivated element if found, NULL otherwise.
1704 static void *pipapo_deactivate(const struct net *net, const struct nft_set *set,
1705 const u8 *data, const struct nft_set_ext *ext)
1707 struct nft_pipapo_elem *e;
1709 e = pipapo_get(net, set, data, nft_genmask_next(net));
1713 nft_set_elem_change_active(net, set, &e->ext);
1719 * nft_pipapo_deactivate() - Call pipapo_deactivate() to make element inactive
1720 * @net: Network namespace
1721 * @set: nftables API set representation
1722 * @elem: nftables API element representation containing key data
1724 * Return: deactivated element if found, NULL otherwise.
1726 static void *nft_pipapo_deactivate(const struct net *net,
1727 const struct nft_set *set,
1728 const struct nft_set_elem *elem)
1730 const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv);
1732 return pipapo_deactivate(net, set, (const u8 *)elem->key.val.data, ext);
1736 * nft_pipapo_flush() - Call pipapo_deactivate() to make element inactive
1737 * @net: Network namespace
1738 * @set: nftables API set representation
1739 * @elem: nftables API element representation containing key data
1741 * This is functionally the same as nft_pipapo_deactivate(), with a slightly
1742 * different interface, and it's also called once for each element in a set
1743 * being flushed, so we can't implement, strictly speaking, a flush operation,
1744 * which would otherwise be as simple as allocating an empty copy of the
1747 * Note that we could in theory do that, mark the set as flushed, and ignore
1748 * subsequent calls, but we would leak all the elements after the first one,
1749 * because they wouldn't then be freed as result of API calls.
1751 * Return: true if element was found and deactivated.
1753 static bool nft_pipapo_flush(const struct net *net, const struct nft_set *set,
1756 struct nft_pipapo_elem *e = elem;
1758 return pipapo_deactivate(net, set, (const u8 *)nft_set_ext_key(&e->ext),
1763 * pipapo_get_boundaries() - Get byte interval for associated rules
1764 * @f: Field including lookup table
1765 * @first_rule: First rule (lowest index)
1766 * @rule_count: Number of associated rules
1767 * @left: Byte expression for left boundary (start of range)
1768 * @right: Byte expression for right boundary (end of range)
1770 * Given the first rule and amount of rules that originated from the same entry,
1771 * build the original range associated with the entry, and calculate the length
1772 * of the originating netmask.
1777 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1784 * 6 1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1785 * 7 1,2 1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1787 * this is the lookup table corresponding to the IPv4 range
1788 * 192.168.1.0-192.168.2.1, which was expanded to the two composing netmasks,
1789 * rule #1: 192.168.1.0/24, and rule #2: 192.168.2.0/31.
1791 * This function fills @left and @right with the byte values of the leftmost
1792 * and rightmost bucket indices for the lowest and highest rule indices,
1793 * respectively. If @first_rule is 1 and @rule_count is 2, we obtain, in
1795 * left: < 12, 0, 10, 8, 0, 1, 0, 0 >
1796 * right: < 12, 0, 10, 8, 0, 2, 2, 1 >
1797 * corresponding to bytes:
1798 * left: < 192, 168, 1, 0 >
1799 * right: < 192, 168, 2, 1 >
1800 * with mask length irrelevant here, unused on return, as the range is already
1801 * defined by its start and end points. The mask length is relevant for a single
1802 * ranged entry instead: if @first_rule is 1 and @rule_count is 1, we ignore
1803 * rule 2 above: @left becomes < 192, 168, 1, 0 >, @right becomes
1804 * < 192, 168, 1, 255 >, and the mask length, calculated from the distances
1805 * between leftmost and rightmost bucket indices for each group, would be 24.
1807 * Return: mask length, in bits.
1809 static int pipapo_get_boundaries(struct nft_pipapo_field *f, int first_rule,
1810 int rule_count, u8 *left, u8 *right)
1812 int g, mask_len = 0, bit_offset = 0;
1813 u8 *l = left, *r = right;
1815 for (g = 0; g < f->groups; g++) {
1820 for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1823 pos = NFT_PIPAPO_LT_ALIGN(f->lt) +
1824 (g * NFT_PIPAPO_BUCKETS(f->bb) + b) * f->bsize;
1825 if (test_bit(first_rule, pos) && x0 == -1)
1827 if (test_bit(first_rule + rule_count - 1, pos))
1831 *l |= x0 << (BITS_PER_BYTE - f->bb - bit_offset);
1832 *r |= x1 << (BITS_PER_BYTE - f->bb - bit_offset);
1834 bit_offset += f->bb;
1835 if (bit_offset >= BITS_PER_BYTE) {
1836 bit_offset %= BITS_PER_BYTE;
1843 else if (x1 - x0 == 1)
1845 else if (x1 - x0 == 3)
1847 else if (x1 - x0 == 7)
1855 * pipapo_match_field() - Match rules against byte ranges
1856 * @f: Field including the lookup table
1857 * @first_rule: First of associated rules originating from same entry
1858 * @rule_count: Amount of associated rules
1859 * @start: Start of range to be matched
1860 * @end: End of range to be matched
1862 * Return: true on match, false otherwise.
1864 static bool pipapo_match_field(struct nft_pipapo_field *f,
1865 int first_rule, int rule_count,
1866 const u8 *start, const u8 *end)
1868 u8 right[NFT_PIPAPO_MAX_BYTES] = { 0 };
1869 u8 left[NFT_PIPAPO_MAX_BYTES] = { 0 };
1871 pipapo_get_boundaries(f, first_rule, rule_count, left, right);
1873 return !memcmp(start, left,
1874 f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) &&
1875 !memcmp(end, right, f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1879 * nft_pipapo_remove() - Remove element given key, commit
1880 * @net: Network namespace
1881 * @set: nftables API set representation
1882 * @elem: nftables API element representation containing key data
1884 * Similarly to nft_pipapo_activate(), this is used as commit operation by the
1885 * API, but it's called once per element in the pending transaction, so we can't
1886 * implement this as a single commit operation. Closest we can get is to remove
1887 * the matched element here, if any, and commit the updated matching data.
1889 static void nft_pipapo_remove(const struct net *net, const struct nft_set *set,
1890 const struct nft_set_elem *elem)
1892 struct nft_pipapo *priv = nft_set_priv(set);
1893 struct nft_pipapo_match *m = priv->clone;
1894 struct nft_pipapo_elem *e = elem->priv;
1895 int rules_f0, first_rule = 0;
1898 data = (const u8 *)nft_set_ext_key(&e->ext);
1900 e = pipapo_get(net, set, data, 0);
1904 while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
1905 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1906 const u8 *match_start, *match_end;
1907 struct nft_pipapo_field *f;
1908 int i, start, rules_fx;
1911 match_end = (const u8 *)nft_set_ext_key_end(&e->ext)->data;
1914 rules_fx = rules_f0;
1916 nft_pipapo_for_each_field(f, i, m) {
1917 if (!pipapo_match_field(f, start, rules_fx,
1918 match_start, match_end))
1921 rulemap[i].to = start;
1922 rulemap[i].n = rules_fx;
1924 rules_fx = f->mt[start].n;
1925 start = f->mt[start].to;
1927 match_start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1928 match_end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1931 if (i == m->field_count) {
1933 pipapo_drop(m, rulemap);
1938 first_rule += rules_f0;
1943 * nft_pipapo_walk() - Walk over elements
1944 * @ctx: nftables API context
1945 * @set: nftables API set representation
1948 * As elements are referenced in the mapping array for the last field, directly
1949 * scan that array: there's no need to follow rule mappings from the first
1952 static void nft_pipapo_walk(const struct nft_ctx *ctx, struct nft_set *set,
1953 struct nft_set_iter *iter)
1955 struct nft_pipapo *priv = nft_set_priv(set);
1956 struct nft_pipapo_match *m;
1957 struct nft_pipapo_field *f;
1961 m = rcu_dereference(priv->match);
1966 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
1969 for (r = 0; r < f->rules; r++) {
1970 struct nft_pipapo_elem *e;
1971 struct nft_set_elem elem;
1973 if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
1976 if (iter->count < iter->skip)
1980 if (nft_set_elem_expired(&e->ext))
1985 iter->err = iter->fn(ctx, set, iter, &elem);
1998 * nft_pipapo_privsize() - Return the size of private data for the set
1999 * @nla: netlink attributes, ignored as size doesn't depend on them
2000 * @desc: Set description, ignored as size doesn't depend on it
2002 * Return: size of private data for this set implementation, in bytes
2004 static u64 nft_pipapo_privsize(const struct nlattr * const nla[],
2005 const struct nft_set_desc *desc)
2007 return sizeof(struct nft_pipapo);
2011 * nft_pipapo_estimate() - Set size, space and lookup complexity
2012 * @desc: Set description, element count and field description used
2013 * @features: Flags: NFT_SET_INTERVAL needs to be there
2014 * @est: Storage for estimation data
2016 * Return: true if set description is compatible, false otherwise
2018 static bool nft_pipapo_estimate(const struct nft_set_desc *desc, u32 features,
2019 struct nft_set_estimate *est)
2021 if (!(features & NFT_SET_INTERVAL) ||
2022 desc->field_count < NFT_PIPAPO_MIN_FIELDS)
2025 est->size = pipapo_estimate_size(desc);
2029 est->lookup = NFT_SET_CLASS_O_LOG_N;
2031 est->space = NFT_SET_CLASS_O_N;
2037 * nft_pipapo_init() - Initialise data for a set instance
2038 * @set: nftables API set representation
2039 * @desc: Set description
2040 * @nla: netlink attributes
2042 * Validate number and size of fields passed as NFTA_SET_DESC_CONCAT netlink
2043 * attributes, initialise internal set parameters, current instance of matching
2044 * data and a copy for subsequent insertions.
2046 * Return: 0 on success, negative error code on failure.
2048 static int nft_pipapo_init(const struct nft_set *set,
2049 const struct nft_set_desc *desc,
2050 const struct nlattr * const nla[])
2052 struct nft_pipapo *priv = nft_set_priv(set);
2053 struct nft_pipapo_match *m;
2054 struct nft_pipapo_field *f;
2055 int err, i, field_count;
2057 field_count = desc->field_count ? : 1;
2059 if (field_count > NFT_PIPAPO_MAX_FIELDS)
2062 m = kmalloc(sizeof(*priv->match) + sizeof(*f) * field_count,
2067 m->field_count = field_count;
2070 m->scratch = alloc_percpu(unsigned long *);
2075 for_each_possible_cpu(i)
2076 *per_cpu_ptr(m->scratch, i) = NULL;
2078 #ifdef NFT_PIPAPO_ALIGN
2079 m->scratch_aligned = alloc_percpu(unsigned long *);
2080 if (!m->scratch_aligned) {
2084 for_each_possible_cpu(i)
2085 *per_cpu_ptr(m->scratch_aligned, i) = NULL;
2088 rcu_head_init(&m->rcu);
2090 nft_pipapo_for_each_field(f, i, m) {
2091 int len = desc->field_len[i] ? : set->klen;
2093 f->bb = NFT_PIPAPO_GROUP_BITS_INIT;
2094 f->groups = len * NFT_PIPAPO_GROUPS_PER_BYTE(f);
2096 priv->width += round_up(len, sizeof(u32));
2100 NFT_PIPAPO_LT_ASSIGN(f, NULL);
2104 /* Create an initial clone of matching data for next insertion */
2105 priv->clone = pipapo_clone(m);
2106 if (IS_ERR(priv->clone)) {
2107 err = PTR_ERR(priv->clone);
2111 priv->dirty = false;
2113 rcu_assign_pointer(priv->match, m);
2118 #ifdef NFT_PIPAPO_ALIGN
2119 free_percpu(m->scratch_aligned);
2121 free_percpu(m->scratch);
2129 * nft_set_pipapo_match_destroy() - Destroy elements from key mapping array
2130 * @set: nftables API set representation
2131 * @m: matching data pointing to key mapping array
2133 static void nft_set_pipapo_match_destroy(const struct nft_set *set,
2134 struct nft_pipapo_match *m)
2136 struct nft_pipapo_field *f;
2139 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
2142 for (r = 0; r < f->rules; r++) {
2143 struct nft_pipapo_elem *e;
2145 if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
2150 nft_set_elem_destroy(set, e, true);
2155 * nft_pipapo_destroy() - Free private data for set and all committed elements
2156 * @set: nftables API set representation
2158 static void nft_pipapo_destroy(const struct nft_set *set)
2160 struct nft_pipapo *priv = nft_set_priv(set);
2161 struct nft_pipapo_match *m;
2164 m = rcu_dereference_protected(priv->match, true);
2168 nft_set_pipapo_match_destroy(set, m);
2170 #ifdef NFT_PIPAPO_ALIGN
2171 free_percpu(m->scratch_aligned);
2173 for_each_possible_cpu(cpu)
2174 kfree(*per_cpu_ptr(m->scratch, cpu));
2175 free_percpu(m->scratch);
2176 pipapo_free_fields(m);
2185 nft_set_pipapo_match_destroy(set, m);
2187 #ifdef NFT_PIPAPO_ALIGN
2188 free_percpu(priv->clone->scratch_aligned);
2190 for_each_possible_cpu(cpu)
2191 kfree(*per_cpu_ptr(priv->clone->scratch, cpu));
2192 free_percpu(priv->clone->scratch);
2194 pipapo_free_fields(priv->clone);
2201 * nft_pipapo_gc_init() - Initialise garbage collection
2202 * @set: nftables API set representation
2204 * Instead of actually setting up a periodic work for garbage collection, as
2205 * this operation requires a swap of matching data with the working copy, we'll
2206 * do that opportunistically with other commit operations if the interval is
2207 * elapsed, so we just need to set the current jiffies timestamp here.
2209 static void nft_pipapo_gc_init(const struct nft_set *set)
2211 struct nft_pipapo *priv = nft_set_priv(set);
2213 priv->last_gc = jiffies;
2216 const struct nft_set_type nft_set_pipapo_type = {
2217 .features = NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2220 .lookup = nft_pipapo_lookup,
2221 .insert = nft_pipapo_insert,
2222 .activate = nft_pipapo_activate,
2223 .deactivate = nft_pipapo_deactivate,
2224 .flush = nft_pipapo_flush,
2225 .remove = nft_pipapo_remove,
2226 .walk = nft_pipapo_walk,
2227 .get = nft_pipapo_get,
2228 .privsize = nft_pipapo_privsize,
2229 .estimate = nft_pipapo_estimate,
2230 .init = nft_pipapo_init,
2231 .destroy = nft_pipapo_destroy,
2232 .gc_init = nft_pipapo_gc_init,
2233 .elemsize = offsetof(struct nft_pipapo_elem, ext),
2237 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
2238 const struct nft_set_type nft_set_pipapo_avx2_type = {
2239 .features = NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2242 .lookup = nft_pipapo_avx2_lookup,
2243 .insert = nft_pipapo_insert,
2244 .activate = nft_pipapo_activate,
2245 .deactivate = nft_pipapo_deactivate,
2246 .flush = nft_pipapo_flush,
2247 .remove = nft_pipapo_remove,
2248 .walk = nft_pipapo_walk,
2249 .get = nft_pipapo_get,
2250 .privsize = nft_pipapo_privsize,
2251 .estimate = nft_pipapo_avx2_estimate,
2252 .init = nft_pipapo_init,
2253 .destroy = nft_pipapo_destroy,
2254 .gc_init = nft_pipapo_gc_init,
2255 .elemsize = offsetof(struct nft_pipapo_elem, ext),