2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/ethtool.h>
35 #include <linux/pci.h>
36 #include <linux/if_vlan.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/debugfs.h>
42 #include <linux/sched.h>
43 #include <linux/seq_file.h>
44 #include <linux/mii.h>
45 #include <linux/slab.h>
46 #include <linux/dmi.h>
51 #define DRV_NAME "skge"
52 #define DRV_VERSION "1.13"
54 #define DEFAULT_TX_RING_SIZE 128
55 #define DEFAULT_RX_RING_SIZE 512
56 #define MAX_TX_RING_SIZE 1024
57 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
58 #define MAX_RX_RING_SIZE 4096
59 #define RX_COPY_THRESHOLD 128
60 #define RX_BUF_SIZE 1536
61 #define PHY_RETRIES 1000
62 #define ETH_JUMBO_MTU 9000
63 #define TX_WATCHDOG (5 * HZ)
64 #define NAPI_WEIGHT 64
68 #define SKGE_EEPROM_MAGIC 0x9933aabb
71 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
73 MODULE_LICENSE("GPL");
74 MODULE_VERSION(DRV_VERSION);
76 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
77 NETIF_MSG_LINK | NETIF_MSG_IFUP |
80 static int debug = -1; /* defaults above */
81 module_param(debug, int, 0);
82 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
84 static DEFINE_PCI_DEVICE_TABLE(skge_id_table) = {
85 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
86 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
87 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
88 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
89 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
90 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
91 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
92 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
93 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
94 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
95 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
98 MODULE_DEVICE_TABLE(pci, skge_id_table);
100 static int skge_up(struct net_device *dev);
101 static int skge_down(struct net_device *dev);
102 static void skge_phy_reset(struct skge_port *skge);
103 static void skge_tx_clean(struct net_device *dev);
104 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
105 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
106 static void genesis_get_stats(struct skge_port *skge, u64 *data);
107 static void yukon_get_stats(struct skge_port *skge, u64 *data);
108 static void yukon_init(struct skge_hw *hw, int port);
109 static void genesis_mac_init(struct skge_hw *hw, int port);
110 static void genesis_link_up(struct skge_port *skge);
111 static void skge_set_multicast(struct net_device *dev);
113 /* Avoid conditionals by using array */
114 static const int txqaddr[] = { Q_XA1, Q_XA2 };
115 static const int rxqaddr[] = { Q_R1, Q_R2 };
116 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
117 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
118 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
119 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
121 static int skge_get_regs_len(struct net_device *dev)
127 * Returns copy of whole control register region
128 * Note: skip RAM address register because accessing it will
131 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
134 const struct skge_port *skge = netdev_priv(dev);
135 const void __iomem *io = skge->hw->regs;
138 memset(p, 0, regs->len);
139 memcpy_fromio(p, io, B3_RAM_ADDR);
141 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
142 regs->len - B3_RI_WTO_R1);
145 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
146 static u32 wol_supported(const struct skge_hw *hw)
148 if (hw->chip_id == CHIP_ID_GENESIS)
151 if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
154 return WAKE_MAGIC | WAKE_PHY;
157 static void skge_wol_init(struct skge_port *skge)
159 struct skge_hw *hw = skge->hw;
160 int port = skge->port;
163 skge_write16(hw, B0_CTST, CS_RST_CLR);
164 skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
167 skge_write8(hw, B0_POWER_CTRL,
168 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
170 /* WA code for COMA mode -- clear PHY reset */
171 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
172 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
173 u32 reg = skge_read32(hw, B2_GP_IO);
176 skge_write32(hw, B2_GP_IO, reg);
179 skge_write32(hw, SK_REG(port, GPHY_CTRL),
181 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
182 GPC_ANEG_1 | GPC_RST_SET);
184 skge_write32(hw, SK_REG(port, GPHY_CTRL),
186 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
187 GPC_ANEG_1 | GPC_RST_CLR);
189 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
191 /* Force to 10/100 skge_reset will re-enable on resume */
192 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
193 (PHY_AN_100FULL | PHY_AN_100HALF |
194 PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
196 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
197 gm_phy_write(hw, port, PHY_MARV_CTRL,
198 PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
199 PHY_CT_RE_CFG | PHY_CT_DUP_MD);
202 /* Set GMAC to no flow control and auto update for speed/duplex */
203 gma_write16(hw, port, GM_GP_CTRL,
204 GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
205 GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
207 /* Set WOL address */
208 memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
209 skge->netdev->dev_addr, ETH_ALEN);
211 /* Turn on appropriate WOL control bits */
212 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
214 if (skge->wol & WAKE_PHY)
215 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
217 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
219 if (skge->wol & WAKE_MAGIC)
220 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
222 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
224 ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
225 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
228 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
231 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
233 struct skge_port *skge = netdev_priv(dev);
235 wol->supported = wol_supported(skge->hw);
236 wol->wolopts = skge->wol;
239 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
241 struct skge_port *skge = netdev_priv(dev);
242 struct skge_hw *hw = skge->hw;
244 if ((wol->wolopts & ~wol_supported(hw)) ||
245 !device_can_wakeup(&hw->pdev->dev))
248 skge->wol = wol->wolopts;
250 device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
255 /* Determine supported/advertised modes based on hardware.
256 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
258 static u32 skge_supported_modes(const struct skge_hw *hw)
263 supported = (SUPPORTED_10baseT_Half |
264 SUPPORTED_10baseT_Full |
265 SUPPORTED_100baseT_Half |
266 SUPPORTED_100baseT_Full |
267 SUPPORTED_1000baseT_Half |
268 SUPPORTED_1000baseT_Full |
272 if (hw->chip_id == CHIP_ID_GENESIS)
273 supported &= ~(SUPPORTED_10baseT_Half |
274 SUPPORTED_10baseT_Full |
275 SUPPORTED_100baseT_Half |
276 SUPPORTED_100baseT_Full);
278 else if (hw->chip_id == CHIP_ID_YUKON)
279 supported &= ~SUPPORTED_1000baseT_Half;
281 supported = (SUPPORTED_1000baseT_Full |
282 SUPPORTED_1000baseT_Half |
289 static int skge_get_settings(struct net_device *dev,
290 struct ethtool_cmd *ecmd)
292 struct skge_port *skge = netdev_priv(dev);
293 struct skge_hw *hw = skge->hw;
295 ecmd->transceiver = XCVR_INTERNAL;
296 ecmd->supported = skge_supported_modes(hw);
299 ecmd->port = PORT_TP;
300 ecmd->phy_address = hw->phy_addr;
302 ecmd->port = PORT_FIBRE;
304 ecmd->advertising = skge->advertising;
305 ecmd->autoneg = skge->autoneg;
306 ecmd->speed = skge->speed;
307 ecmd->duplex = skge->duplex;
311 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
313 struct skge_port *skge = netdev_priv(dev);
314 const struct skge_hw *hw = skge->hw;
315 u32 supported = skge_supported_modes(hw);
318 if (ecmd->autoneg == AUTONEG_ENABLE) {
319 ecmd->advertising = supported;
325 switch (ecmd->speed) {
327 if (ecmd->duplex == DUPLEX_FULL)
328 setting = SUPPORTED_1000baseT_Full;
329 else if (ecmd->duplex == DUPLEX_HALF)
330 setting = SUPPORTED_1000baseT_Half;
335 if (ecmd->duplex == DUPLEX_FULL)
336 setting = SUPPORTED_100baseT_Full;
337 else if (ecmd->duplex == DUPLEX_HALF)
338 setting = SUPPORTED_100baseT_Half;
344 if (ecmd->duplex == DUPLEX_FULL)
345 setting = SUPPORTED_10baseT_Full;
346 else if (ecmd->duplex == DUPLEX_HALF)
347 setting = SUPPORTED_10baseT_Half;
355 if ((setting & supported) == 0)
358 skge->speed = ecmd->speed;
359 skge->duplex = ecmd->duplex;
362 skge->autoneg = ecmd->autoneg;
363 skge->advertising = ecmd->advertising;
365 if (netif_running(dev)) {
377 static void skge_get_drvinfo(struct net_device *dev,
378 struct ethtool_drvinfo *info)
380 struct skge_port *skge = netdev_priv(dev);
382 strcpy(info->driver, DRV_NAME);
383 strcpy(info->version, DRV_VERSION);
384 strcpy(info->fw_version, "N/A");
385 strcpy(info->bus_info, pci_name(skge->hw->pdev));
388 static const struct skge_stat {
389 char name[ETH_GSTRING_LEN];
393 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
394 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
396 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
397 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
398 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
399 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
400 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
401 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
402 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
403 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
405 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
406 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
407 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
408 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
409 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
410 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
412 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
413 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
414 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
415 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
416 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
419 static int skge_get_sset_count(struct net_device *dev, int sset)
423 return ARRAY_SIZE(skge_stats);
429 static void skge_get_ethtool_stats(struct net_device *dev,
430 struct ethtool_stats *stats, u64 *data)
432 struct skge_port *skge = netdev_priv(dev);
434 if (skge->hw->chip_id == CHIP_ID_GENESIS)
435 genesis_get_stats(skge, data);
437 yukon_get_stats(skge, data);
440 /* Use hardware MIB variables for critical path statistics and
441 * transmit feedback not reported at interrupt.
442 * Other errors are accounted for in interrupt handler.
444 static struct net_device_stats *skge_get_stats(struct net_device *dev)
446 struct skge_port *skge = netdev_priv(dev);
447 u64 data[ARRAY_SIZE(skge_stats)];
449 if (skge->hw->chip_id == CHIP_ID_GENESIS)
450 genesis_get_stats(skge, data);
452 yukon_get_stats(skge, data);
454 dev->stats.tx_bytes = data[0];
455 dev->stats.rx_bytes = data[1];
456 dev->stats.tx_packets = data[2] + data[4] + data[6];
457 dev->stats.rx_packets = data[3] + data[5] + data[7];
458 dev->stats.multicast = data[3] + data[5];
459 dev->stats.collisions = data[10];
460 dev->stats.tx_aborted_errors = data[12];
465 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
471 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
472 memcpy(data + i * ETH_GSTRING_LEN,
473 skge_stats[i].name, ETH_GSTRING_LEN);
478 static void skge_get_ring_param(struct net_device *dev,
479 struct ethtool_ringparam *p)
481 struct skge_port *skge = netdev_priv(dev);
483 p->rx_max_pending = MAX_RX_RING_SIZE;
484 p->tx_max_pending = MAX_TX_RING_SIZE;
485 p->rx_mini_max_pending = 0;
486 p->rx_jumbo_max_pending = 0;
488 p->rx_pending = skge->rx_ring.count;
489 p->tx_pending = skge->tx_ring.count;
490 p->rx_mini_pending = 0;
491 p->rx_jumbo_pending = 0;
494 static int skge_set_ring_param(struct net_device *dev,
495 struct ethtool_ringparam *p)
497 struct skge_port *skge = netdev_priv(dev);
500 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
501 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
504 skge->rx_ring.count = p->rx_pending;
505 skge->tx_ring.count = p->tx_pending;
507 if (netif_running(dev)) {
517 static u32 skge_get_msglevel(struct net_device *netdev)
519 struct skge_port *skge = netdev_priv(netdev);
520 return skge->msg_enable;
523 static void skge_set_msglevel(struct net_device *netdev, u32 value)
525 struct skge_port *skge = netdev_priv(netdev);
526 skge->msg_enable = value;
529 static int skge_nway_reset(struct net_device *dev)
531 struct skge_port *skge = netdev_priv(dev);
533 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
536 skge_phy_reset(skge);
540 static void skge_get_pauseparam(struct net_device *dev,
541 struct ethtool_pauseparam *ecmd)
543 struct skge_port *skge = netdev_priv(dev);
545 ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
546 (skge->flow_control == FLOW_MODE_SYM_OR_REM));
547 ecmd->tx_pause = (ecmd->rx_pause ||
548 (skge->flow_control == FLOW_MODE_LOC_SEND));
550 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
553 static int skge_set_pauseparam(struct net_device *dev,
554 struct ethtool_pauseparam *ecmd)
556 struct skge_port *skge = netdev_priv(dev);
557 struct ethtool_pauseparam old;
560 skge_get_pauseparam(dev, &old);
562 if (ecmd->autoneg != old.autoneg)
563 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
565 if (ecmd->rx_pause && ecmd->tx_pause)
566 skge->flow_control = FLOW_MODE_SYMMETRIC;
567 else if (ecmd->rx_pause && !ecmd->tx_pause)
568 skge->flow_control = FLOW_MODE_SYM_OR_REM;
569 else if (!ecmd->rx_pause && ecmd->tx_pause)
570 skge->flow_control = FLOW_MODE_LOC_SEND;
572 skge->flow_control = FLOW_MODE_NONE;
575 if (netif_running(dev)) {
587 /* Chip internal frequency for clock calculations */
588 static inline u32 hwkhz(const struct skge_hw *hw)
590 return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
593 /* Chip HZ to microseconds */
594 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
596 return (ticks * 1000) / hwkhz(hw);
599 /* Microseconds to chip HZ */
600 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
602 return hwkhz(hw) * usec / 1000;
605 static int skge_get_coalesce(struct net_device *dev,
606 struct ethtool_coalesce *ecmd)
608 struct skge_port *skge = netdev_priv(dev);
609 struct skge_hw *hw = skge->hw;
610 int port = skge->port;
612 ecmd->rx_coalesce_usecs = 0;
613 ecmd->tx_coalesce_usecs = 0;
615 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
616 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
617 u32 msk = skge_read32(hw, B2_IRQM_MSK);
619 if (msk & rxirqmask[port])
620 ecmd->rx_coalesce_usecs = delay;
621 if (msk & txirqmask[port])
622 ecmd->tx_coalesce_usecs = delay;
628 /* Note: interrupt timer is per board, but can turn on/off per port */
629 static int skge_set_coalesce(struct net_device *dev,
630 struct ethtool_coalesce *ecmd)
632 struct skge_port *skge = netdev_priv(dev);
633 struct skge_hw *hw = skge->hw;
634 int port = skge->port;
635 u32 msk = skge_read32(hw, B2_IRQM_MSK);
638 if (ecmd->rx_coalesce_usecs == 0)
639 msk &= ~rxirqmask[port];
640 else if (ecmd->rx_coalesce_usecs < 25 ||
641 ecmd->rx_coalesce_usecs > 33333)
644 msk |= rxirqmask[port];
645 delay = ecmd->rx_coalesce_usecs;
648 if (ecmd->tx_coalesce_usecs == 0)
649 msk &= ~txirqmask[port];
650 else if (ecmd->tx_coalesce_usecs < 25 ||
651 ecmd->tx_coalesce_usecs > 33333)
654 msk |= txirqmask[port];
655 delay = min(delay, ecmd->rx_coalesce_usecs);
658 skge_write32(hw, B2_IRQM_MSK, msk);
660 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
662 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
663 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
668 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
669 static void skge_led(struct skge_port *skge, enum led_mode mode)
671 struct skge_hw *hw = skge->hw;
672 int port = skge->port;
674 spin_lock_bh(&hw->phy_lock);
675 if (hw->chip_id == CHIP_ID_GENESIS) {
678 if (hw->phy_type == SK_PHY_BCOM)
679 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
681 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
682 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
684 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
685 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
686 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
690 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
691 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
693 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
694 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
699 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
700 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
701 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
703 if (hw->phy_type == SK_PHY_BCOM)
704 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
706 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
707 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
708 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
715 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
716 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
717 PHY_M_LED_MO_DUP(MO_LED_OFF) |
718 PHY_M_LED_MO_10(MO_LED_OFF) |
719 PHY_M_LED_MO_100(MO_LED_OFF) |
720 PHY_M_LED_MO_1000(MO_LED_OFF) |
721 PHY_M_LED_MO_RX(MO_LED_OFF));
724 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
725 PHY_M_LED_PULS_DUR(PULS_170MS) |
726 PHY_M_LED_BLINK_RT(BLINK_84MS) |
730 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
731 PHY_M_LED_MO_RX(MO_LED_OFF) |
732 (skge->speed == SPEED_100 ?
733 PHY_M_LED_MO_100(MO_LED_ON) : 0));
736 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
737 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
738 PHY_M_LED_MO_DUP(MO_LED_ON) |
739 PHY_M_LED_MO_10(MO_LED_ON) |
740 PHY_M_LED_MO_100(MO_LED_ON) |
741 PHY_M_LED_MO_1000(MO_LED_ON) |
742 PHY_M_LED_MO_RX(MO_LED_ON));
745 spin_unlock_bh(&hw->phy_lock);
748 /* blink LED's for finding board */
749 static int skge_set_phys_id(struct net_device *dev,
750 enum ethtool_phys_id_state state)
752 struct skge_port *skge = netdev_priv(dev);
755 case ETHTOOL_ID_ACTIVE:
759 skge_led(skge, LED_MODE_TST);
763 skge_led(skge, LED_MODE_OFF);
766 case ETHTOOL_ID_INACTIVE:
767 /* back to regular LED state */
768 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
774 static int skge_get_eeprom_len(struct net_device *dev)
776 struct skge_port *skge = netdev_priv(dev);
779 pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, ®2);
780 return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
783 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
787 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
790 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
791 } while (!(offset & PCI_VPD_ADDR_F));
793 pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
797 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
799 pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
800 pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
801 offset | PCI_VPD_ADDR_F);
804 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
805 } while (offset & PCI_VPD_ADDR_F);
808 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
811 struct skge_port *skge = netdev_priv(dev);
812 struct pci_dev *pdev = skge->hw->pdev;
813 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
814 int length = eeprom->len;
815 u16 offset = eeprom->offset;
820 eeprom->magic = SKGE_EEPROM_MAGIC;
823 u32 val = skge_vpd_read(pdev, cap, offset);
824 int n = min_t(int, length, sizeof(val));
826 memcpy(data, &val, n);
834 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
837 struct skge_port *skge = netdev_priv(dev);
838 struct pci_dev *pdev = skge->hw->pdev;
839 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
840 int length = eeprom->len;
841 u16 offset = eeprom->offset;
846 if (eeprom->magic != SKGE_EEPROM_MAGIC)
851 int n = min_t(int, length, sizeof(val));
854 val = skge_vpd_read(pdev, cap, offset);
855 memcpy(&val, data, n);
857 skge_vpd_write(pdev, cap, offset, val);
866 static const struct ethtool_ops skge_ethtool_ops = {
867 .get_settings = skge_get_settings,
868 .set_settings = skge_set_settings,
869 .get_drvinfo = skge_get_drvinfo,
870 .get_regs_len = skge_get_regs_len,
871 .get_regs = skge_get_regs,
872 .get_wol = skge_get_wol,
873 .set_wol = skge_set_wol,
874 .get_msglevel = skge_get_msglevel,
875 .set_msglevel = skge_set_msglevel,
876 .nway_reset = skge_nway_reset,
877 .get_link = ethtool_op_get_link,
878 .get_eeprom_len = skge_get_eeprom_len,
879 .get_eeprom = skge_get_eeprom,
880 .set_eeprom = skge_set_eeprom,
881 .get_ringparam = skge_get_ring_param,
882 .set_ringparam = skge_set_ring_param,
883 .get_pauseparam = skge_get_pauseparam,
884 .set_pauseparam = skge_set_pauseparam,
885 .get_coalesce = skge_get_coalesce,
886 .set_coalesce = skge_set_coalesce,
887 .get_strings = skge_get_strings,
888 .set_phys_id = skge_set_phys_id,
889 .get_sset_count = skge_get_sset_count,
890 .get_ethtool_stats = skge_get_ethtool_stats,
894 * Allocate ring elements and chain them together
895 * One-to-one association of board descriptors with ring elements
897 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
899 struct skge_tx_desc *d;
900 struct skge_element *e;
903 ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
907 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
909 if (i == ring->count - 1) {
910 e->next = ring->start;
911 d->next_offset = base;
914 d->next_offset = base + (i+1) * sizeof(*d);
917 ring->to_use = ring->to_clean = ring->start;
922 /* Allocate and setup a new buffer for receiving */
923 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
924 struct sk_buff *skb, unsigned int bufsize)
926 struct skge_rx_desc *rd = e->desc;
929 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
933 rd->dma_hi = map >> 32;
935 rd->csum1_start = ETH_HLEN;
936 rd->csum2_start = ETH_HLEN;
942 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
943 dma_unmap_addr_set(e, mapaddr, map);
944 dma_unmap_len_set(e, maplen, bufsize);
947 /* Resume receiving using existing skb,
948 * Note: DMA address is not changed by chip.
949 * MTU not changed while receiver active.
951 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
953 struct skge_rx_desc *rd = e->desc;
956 rd->csum2_start = ETH_HLEN;
960 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
964 /* Free all buffers in receive ring, assumes receiver stopped */
965 static void skge_rx_clean(struct skge_port *skge)
967 struct skge_hw *hw = skge->hw;
968 struct skge_ring *ring = &skge->rx_ring;
969 struct skge_element *e;
973 struct skge_rx_desc *rd = e->desc;
976 pci_unmap_single(hw->pdev,
977 dma_unmap_addr(e, mapaddr),
978 dma_unmap_len(e, maplen),
980 dev_kfree_skb(e->skb);
983 } while ((e = e->next) != ring->start);
987 /* Allocate buffers for receive ring
988 * For receive: to_clean is next received frame.
990 static int skge_rx_fill(struct net_device *dev)
992 struct skge_port *skge = netdev_priv(dev);
993 struct skge_ring *ring = &skge->rx_ring;
994 struct skge_element *e;
1000 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1005 skb_reserve(skb, NET_IP_ALIGN);
1006 skge_rx_setup(skge, e, skb, skge->rx_buf_size);
1007 } while ((e = e->next) != ring->start);
1009 ring->to_clean = ring->start;
1013 static const char *skge_pause(enum pause_status status)
1016 case FLOW_STAT_NONE:
1018 case FLOW_STAT_REM_SEND:
1020 case FLOW_STAT_LOC_SEND:
1022 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
1025 return "indeterminated";
1030 static void skge_link_up(struct skge_port *skge)
1032 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1033 LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
1035 netif_carrier_on(skge->netdev);
1036 netif_wake_queue(skge->netdev);
1038 netif_info(skge, link, skge->netdev,
1039 "Link is up at %d Mbps, %s duplex, flow control %s\n",
1041 skge->duplex == DUPLEX_FULL ? "full" : "half",
1042 skge_pause(skge->flow_status));
1045 static void skge_link_down(struct skge_port *skge)
1047 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
1048 netif_carrier_off(skge->netdev);
1049 netif_stop_queue(skge->netdev);
1051 netif_info(skge, link, skge->netdev, "Link is down\n");
1055 static void xm_link_down(struct skge_hw *hw, int port)
1057 struct net_device *dev = hw->dev[port];
1058 struct skge_port *skge = netdev_priv(dev);
1060 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1062 if (netif_carrier_ok(dev))
1063 skge_link_down(skge);
1066 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1070 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1071 *val = xm_read16(hw, port, XM_PHY_DATA);
1073 if (hw->phy_type == SK_PHY_XMAC)
1076 for (i = 0; i < PHY_RETRIES; i++) {
1077 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1084 *val = xm_read16(hw, port, XM_PHY_DATA);
1089 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1092 if (__xm_phy_read(hw, port, reg, &v))
1093 pr_warning("%s: phy read timed out\n", hw->dev[port]->name);
1097 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1101 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1102 for (i = 0; i < PHY_RETRIES; i++) {
1103 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1110 xm_write16(hw, port, XM_PHY_DATA, val);
1111 for (i = 0; i < PHY_RETRIES; i++) {
1112 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1119 static void genesis_init(struct skge_hw *hw)
1121 /* set blink source counter */
1122 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1123 skge_write8(hw, B2_BSC_CTRL, BSC_START);
1125 /* configure mac arbiter */
1126 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1128 /* configure mac arbiter timeout values */
1129 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1130 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1131 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1132 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1134 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1135 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1136 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1137 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1139 /* configure packet arbiter timeout */
1140 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1141 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1142 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1143 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1144 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1147 static void genesis_reset(struct skge_hw *hw, int port)
1149 static const u8 zero[8] = { 0 };
1152 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1154 /* reset the statistics module */
1155 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1156 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1157 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
1158 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
1159 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
1161 /* disable Broadcom PHY IRQ */
1162 if (hw->phy_type == SK_PHY_BCOM)
1163 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1165 xm_outhash(hw, port, XM_HSM, zero);
1167 /* Flush TX and RX fifo */
1168 reg = xm_read32(hw, port, XM_MODE);
1169 xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1170 xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1174 /* Convert mode to MII values */
1175 static const u16 phy_pause_map[] = {
1176 [FLOW_MODE_NONE] = 0,
1177 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
1178 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1179 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1182 /* special defines for FIBER (88E1011S only) */
1183 static const u16 fiber_pause_map[] = {
1184 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
1185 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
1186 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
1187 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
1191 /* Check status of Broadcom phy link */
1192 static void bcom_check_link(struct skge_hw *hw, int port)
1194 struct net_device *dev = hw->dev[port];
1195 struct skge_port *skge = netdev_priv(dev);
1198 /* read twice because of latch */
1199 xm_phy_read(hw, port, PHY_BCOM_STAT);
1200 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1202 if ((status & PHY_ST_LSYNC) == 0) {
1203 xm_link_down(hw, port);
1207 if (skge->autoneg == AUTONEG_ENABLE) {
1210 if (!(status & PHY_ST_AN_OVER))
1213 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1214 if (lpa & PHY_B_AN_RF) {
1215 netdev_notice(dev, "remote fault\n");
1219 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1221 /* Check Duplex mismatch */
1222 switch (aux & PHY_B_AS_AN_RES_MSK) {
1223 case PHY_B_RES_1000FD:
1224 skge->duplex = DUPLEX_FULL;
1226 case PHY_B_RES_1000HD:
1227 skge->duplex = DUPLEX_HALF;
1230 netdev_notice(dev, "duplex mismatch\n");
1234 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1235 switch (aux & PHY_B_AS_PAUSE_MSK) {
1236 case PHY_B_AS_PAUSE_MSK:
1237 skge->flow_status = FLOW_STAT_SYMMETRIC;
1240 skge->flow_status = FLOW_STAT_REM_SEND;
1243 skge->flow_status = FLOW_STAT_LOC_SEND;
1246 skge->flow_status = FLOW_STAT_NONE;
1248 skge->speed = SPEED_1000;
1251 if (!netif_carrier_ok(dev))
1252 genesis_link_up(skge);
1255 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1256 * Phy on for 100 or 10Mbit operation
1258 static void bcom_phy_init(struct skge_port *skge)
1260 struct skge_hw *hw = skge->hw;
1261 int port = skge->port;
1263 u16 id1, r, ext, ctl;
1265 /* magic workaround patterns for Broadcom */
1266 static const struct {
1270 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1271 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1272 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1273 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1275 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1276 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1279 /* read Id from external PHY (all have the same address) */
1280 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1282 /* Optimize MDIO transfer by suppressing preamble. */
1283 r = xm_read16(hw, port, XM_MMU_CMD);
1285 xm_write16(hw, port, XM_MMU_CMD, r);
1288 case PHY_BCOM_ID1_C0:
1290 * Workaround BCOM Errata for the C0 type.
1291 * Write magic patterns to reserved registers.
1293 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1294 xm_phy_write(hw, port,
1295 C0hack[i].reg, C0hack[i].val);
1298 case PHY_BCOM_ID1_A1:
1300 * Workaround BCOM Errata for the A1 type.
1301 * Write magic patterns to reserved registers.
1303 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1304 xm_phy_write(hw, port,
1305 A1hack[i].reg, A1hack[i].val);
1310 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1311 * Disable Power Management after reset.
1313 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1314 r |= PHY_B_AC_DIS_PM;
1315 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1318 xm_read16(hw, port, XM_ISRC);
1320 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1321 ctl = PHY_CT_SP1000; /* always 1000mbit */
1323 if (skge->autoneg == AUTONEG_ENABLE) {
1325 * Workaround BCOM Errata #1 for the C5 type.
1326 * 1000Base-T Link Acquisition Failure in Slave Mode
1327 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1329 u16 adv = PHY_B_1000C_RD;
1330 if (skge->advertising & ADVERTISED_1000baseT_Half)
1331 adv |= PHY_B_1000C_AHD;
1332 if (skge->advertising & ADVERTISED_1000baseT_Full)
1333 adv |= PHY_B_1000C_AFD;
1334 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1336 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1338 if (skge->duplex == DUPLEX_FULL)
1339 ctl |= PHY_CT_DUP_MD;
1340 /* Force to slave */
1341 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1344 /* Set autonegotiation pause parameters */
1345 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1346 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1348 /* Handle Jumbo frames */
1349 if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1350 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1351 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1353 ext |= PHY_B_PEC_HIGH_LA;
1357 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1358 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1360 /* Use link status change interrupt */
1361 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1364 static void xm_phy_init(struct skge_port *skge)
1366 struct skge_hw *hw = skge->hw;
1367 int port = skge->port;
1370 if (skge->autoneg == AUTONEG_ENABLE) {
1371 if (skge->advertising & ADVERTISED_1000baseT_Half)
1372 ctrl |= PHY_X_AN_HD;
1373 if (skge->advertising & ADVERTISED_1000baseT_Full)
1374 ctrl |= PHY_X_AN_FD;
1376 ctrl |= fiber_pause_map[skge->flow_control];
1378 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1380 /* Restart Auto-negotiation */
1381 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1383 /* Set DuplexMode in Config register */
1384 if (skge->duplex == DUPLEX_FULL)
1385 ctrl |= PHY_CT_DUP_MD;
1387 * Do NOT enable Auto-negotiation here. This would hold
1388 * the link down because no IDLEs are transmitted
1392 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1394 /* Poll PHY for status changes */
1395 mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1398 static int xm_check_link(struct net_device *dev)
1400 struct skge_port *skge = netdev_priv(dev);
1401 struct skge_hw *hw = skge->hw;
1402 int port = skge->port;
1405 /* read twice because of latch */
1406 xm_phy_read(hw, port, PHY_XMAC_STAT);
1407 status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1409 if ((status & PHY_ST_LSYNC) == 0) {
1410 xm_link_down(hw, port);
1414 if (skge->autoneg == AUTONEG_ENABLE) {
1417 if (!(status & PHY_ST_AN_OVER))
1420 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1421 if (lpa & PHY_B_AN_RF) {
1422 netdev_notice(dev, "remote fault\n");
1426 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1428 /* Check Duplex mismatch */
1429 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1431 skge->duplex = DUPLEX_FULL;
1434 skge->duplex = DUPLEX_HALF;
1437 netdev_notice(dev, "duplex mismatch\n");
1441 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1442 if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1443 skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1444 (lpa & PHY_X_P_SYM_MD))
1445 skge->flow_status = FLOW_STAT_SYMMETRIC;
1446 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1447 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1448 /* Enable PAUSE receive, disable PAUSE transmit */
1449 skge->flow_status = FLOW_STAT_REM_SEND;
1450 else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1451 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1452 /* Disable PAUSE receive, enable PAUSE transmit */
1453 skge->flow_status = FLOW_STAT_LOC_SEND;
1455 skge->flow_status = FLOW_STAT_NONE;
1457 skge->speed = SPEED_1000;
1460 if (!netif_carrier_ok(dev))
1461 genesis_link_up(skge);
1465 /* Poll to check for link coming up.
1467 * Since internal PHY is wired to a level triggered pin, can't
1468 * get an interrupt when carrier is detected, need to poll for
1471 static void xm_link_timer(unsigned long arg)
1473 struct skge_port *skge = (struct skge_port *) arg;
1474 struct net_device *dev = skge->netdev;
1475 struct skge_hw *hw = skge->hw;
1476 int port = skge->port;
1478 unsigned long flags;
1480 if (!netif_running(dev))
1483 spin_lock_irqsave(&hw->phy_lock, flags);
1486 * Verify that the link by checking GPIO register three times.
1487 * This pin has the signal from the link_sync pin connected to it.
1489 for (i = 0; i < 3; i++) {
1490 if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1494 /* Re-enable interrupt to detect link down */
1495 if (xm_check_link(dev)) {
1496 u16 msk = xm_read16(hw, port, XM_IMSK);
1497 msk &= ~XM_IS_INP_ASS;
1498 xm_write16(hw, port, XM_IMSK, msk);
1499 xm_read16(hw, port, XM_ISRC);
1502 mod_timer(&skge->link_timer,
1503 round_jiffies(jiffies + LINK_HZ));
1505 spin_unlock_irqrestore(&hw->phy_lock, flags);
1508 static void genesis_mac_init(struct skge_hw *hw, int port)
1510 struct net_device *dev = hw->dev[port];
1511 struct skge_port *skge = netdev_priv(dev);
1512 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1515 static const u8 zero[6] = { 0 };
1517 for (i = 0; i < 10; i++) {
1518 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1520 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1525 netdev_warn(dev, "genesis reset failed\n");
1528 /* Unreset the XMAC. */
1529 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1532 * Perform additional initialization for external PHYs,
1533 * namely for the 1000baseTX cards that use the XMAC's
1536 if (hw->phy_type != SK_PHY_XMAC) {
1537 /* Take external Phy out of reset */
1538 r = skge_read32(hw, B2_GP_IO);
1540 r |= GP_DIR_0|GP_IO_0;
1542 r |= GP_DIR_2|GP_IO_2;
1544 skge_write32(hw, B2_GP_IO, r);
1546 /* Enable GMII interface */
1547 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1551 switch (hw->phy_type) {
1556 bcom_phy_init(skge);
1557 bcom_check_link(hw, port);
1560 /* Set Station Address */
1561 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1563 /* We don't use match addresses so clear */
1564 for (i = 1; i < 16; i++)
1565 xm_outaddr(hw, port, XM_EXM(i), zero);
1567 /* Clear MIB counters */
1568 xm_write16(hw, port, XM_STAT_CMD,
1569 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1570 /* Clear two times according to Errata #3 */
1571 xm_write16(hw, port, XM_STAT_CMD,
1572 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1574 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1575 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1577 /* We don't need the FCS appended to the packet. */
1578 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1580 r |= XM_RX_BIG_PK_OK;
1582 if (skge->duplex == DUPLEX_HALF) {
1584 * If in manual half duplex mode the other side might be in
1585 * full duplex mode, so ignore if a carrier extension is not seen
1586 * on frames received
1588 r |= XM_RX_DIS_CEXT;
1590 xm_write16(hw, port, XM_RX_CMD, r);
1592 /* We want short frames padded to 60 bytes. */
1593 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1595 /* Increase threshold for jumbo frames on dual port */
1596 if (hw->ports > 1 && jumbo)
1597 xm_write16(hw, port, XM_TX_THR, 1020);
1599 xm_write16(hw, port, XM_TX_THR, 512);
1602 * Enable the reception of all error frames. This is is
1603 * a necessary evil due to the design of the XMAC. The
1604 * XMAC's receive FIFO is only 8K in size, however jumbo
1605 * frames can be up to 9000 bytes in length. When bad
1606 * frame filtering is enabled, the XMAC's RX FIFO operates
1607 * in 'store and forward' mode. For this to work, the
1608 * entire frame has to fit into the FIFO, but that means
1609 * that jumbo frames larger than 8192 bytes will be
1610 * truncated. Disabling all bad frame filtering causes
1611 * the RX FIFO to operate in streaming mode, in which
1612 * case the XMAC will start transferring frames out of the
1613 * RX FIFO as soon as the FIFO threshold is reached.
1615 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1619 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1620 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1621 * and 'Octets Rx OK Hi Cnt Ov'.
1623 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1626 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1627 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1628 * and 'Octets Tx OK Hi Cnt Ov'.
1630 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1632 /* Configure MAC arbiter */
1633 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1635 /* configure timeout values */
1636 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1637 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1638 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1639 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1641 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1642 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1643 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1644 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1646 /* Configure Rx MAC FIFO */
1647 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1648 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1649 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1651 /* Configure Tx MAC FIFO */
1652 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1653 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1654 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1657 /* Enable frame flushing if jumbo frames used */
1658 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1660 /* enable timeout timers if normal frames */
1661 skge_write16(hw, B3_PA_CTRL,
1662 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1666 static void genesis_stop(struct skge_port *skge)
1668 struct skge_hw *hw = skge->hw;
1669 int port = skge->port;
1670 unsigned retries = 1000;
1673 /* Disable Tx and Rx */
1674 cmd = xm_read16(hw, port, XM_MMU_CMD);
1675 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1676 xm_write16(hw, port, XM_MMU_CMD, cmd);
1678 genesis_reset(hw, port);
1680 /* Clear Tx packet arbiter timeout IRQ */
1681 skge_write16(hw, B3_PA_CTRL,
1682 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1685 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1687 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1688 if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1690 } while (--retries > 0);
1692 /* For external PHYs there must be special handling */
1693 if (hw->phy_type != SK_PHY_XMAC) {
1694 u32 reg = skge_read32(hw, B2_GP_IO);
1702 skge_write32(hw, B2_GP_IO, reg);
1703 skge_read32(hw, B2_GP_IO);
1706 xm_write16(hw, port, XM_MMU_CMD,
1707 xm_read16(hw, port, XM_MMU_CMD)
1708 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1710 xm_read16(hw, port, XM_MMU_CMD);
1714 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1716 struct skge_hw *hw = skge->hw;
1717 int port = skge->port;
1719 unsigned long timeout = jiffies + HZ;
1721 xm_write16(hw, port,
1722 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1724 /* wait for update to complete */
1725 while (xm_read16(hw, port, XM_STAT_CMD)
1726 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1727 if (time_after(jiffies, timeout))
1732 /* special case for 64 bit octet counter */
1733 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1734 | xm_read32(hw, port, XM_TXO_OK_LO);
1735 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1736 | xm_read32(hw, port, XM_RXO_OK_LO);
1738 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1739 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1742 static void genesis_mac_intr(struct skge_hw *hw, int port)
1744 struct net_device *dev = hw->dev[port];
1745 struct skge_port *skge = netdev_priv(dev);
1746 u16 status = xm_read16(hw, port, XM_ISRC);
1748 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1749 "mac interrupt status 0x%x\n", status);
1751 if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1752 xm_link_down(hw, port);
1753 mod_timer(&skge->link_timer, jiffies + 1);
1756 if (status & XM_IS_TXF_UR) {
1757 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1758 ++dev->stats.tx_fifo_errors;
1762 static void genesis_link_up(struct skge_port *skge)
1764 struct skge_hw *hw = skge->hw;
1765 int port = skge->port;
1769 cmd = xm_read16(hw, port, XM_MMU_CMD);
1772 * enabling pause frame reception is required for 1000BT
1773 * because the XMAC is not reset if the link is going down
1775 if (skge->flow_status == FLOW_STAT_NONE ||
1776 skge->flow_status == FLOW_STAT_LOC_SEND)
1777 /* Disable Pause Frame Reception */
1778 cmd |= XM_MMU_IGN_PF;
1780 /* Enable Pause Frame Reception */
1781 cmd &= ~XM_MMU_IGN_PF;
1783 xm_write16(hw, port, XM_MMU_CMD, cmd);
1785 mode = xm_read32(hw, port, XM_MODE);
1786 if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1787 skge->flow_status == FLOW_STAT_LOC_SEND) {
1789 * Configure Pause Frame Generation
1790 * Use internal and external Pause Frame Generation.
1791 * Sending pause frames is edge triggered.
1792 * Send a Pause frame with the maximum pause time if
1793 * internal oder external FIFO full condition occurs.
1794 * Send a zero pause time frame to re-start transmission.
1796 /* XM_PAUSE_DA = '010000C28001' (default) */
1797 /* XM_MAC_PTIME = 0xffff (maximum) */
1798 /* remember this value is defined in big endian (!) */
1799 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1801 mode |= XM_PAUSE_MODE;
1802 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1805 * disable pause frame generation is required for 1000BT
1806 * because the XMAC is not reset if the link is going down
1808 /* Disable Pause Mode in Mode Register */
1809 mode &= ~XM_PAUSE_MODE;
1811 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1814 xm_write32(hw, port, XM_MODE, mode);
1816 /* Turn on detection of Tx underrun */
1817 msk = xm_read16(hw, port, XM_IMSK);
1818 msk &= ~XM_IS_TXF_UR;
1819 xm_write16(hw, port, XM_IMSK, msk);
1821 xm_read16(hw, port, XM_ISRC);
1823 /* get MMU Command Reg. */
1824 cmd = xm_read16(hw, port, XM_MMU_CMD);
1825 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1826 cmd |= XM_MMU_GMII_FD;
1829 * Workaround BCOM Errata (#10523) for all BCom Phys
1830 * Enable Power Management after link up
1832 if (hw->phy_type == SK_PHY_BCOM) {
1833 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1834 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1835 & ~PHY_B_AC_DIS_PM);
1836 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1840 xm_write16(hw, port, XM_MMU_CMD,
1841 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1846 static inline void bcom_phy_intr(struct skge_port *skge)
1848 struct skge_hw *hw = skge->hw;
1849 int port = skge->port;
1852 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1853 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1854 "phy interrupt status 0x%x\n", isrc);
1856 if (isrc & PHY_B_IS_PSE)
1857 pr_err("%s: uncorrectable pair swap error\n",
1858 hw->dev[port]->name);
1860 /* Workaround BCom Errata:
1861 * enable and disable loopback mode if "NO HCD" occurs.
1863 if (isrc & PHY_B_IS_NO_HDCL) {
1864 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1865 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1866 ctrl | PHY_CT_LOOP);
1867 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1868 ctrl & ~PHY_CT_LOOP);
1871 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1872 bcom_check_link(hw, port);
1876 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1880 gma_write16(hw, port, GM_SMI_DATA, val);
1881 gma_write16(hw, port, GM_SMI_CTRL,
1882 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1883 for (i = 0; i < PHY_RETRIES; i++) {
1886 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1890 pr_warning("%s: phy write timeout\n", hw->dev[port]->name);
1894 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1898 gma_write16(hw, port, GM_SMI_CTRL,
1899 GM_SMI_CT_PHY_AD(hw->phy_addr)
1900 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1902 for (i = 0; i < PHY_RETRIES; i++) {
1904 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1910 *val = gma_read16(hw, port, GM_SMI_DATA);
1914 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1917 if (__gm_phy_read(hw, port, reg, &v))
1918 pr_warning("%s: phy read timeout\n", hw->dev[port]->name);
1922 /* Marvell Phy Initialization */
1923 static void yukon_init(struct skge_hw *hw, int port)
1925 struct skge_port *skge = netdev_priv(hw->dev[port]);
1926 u16 ctrl, ct1000, adv;
1928 if (skge->autoneg == AUTONEG_ENABLE) {
1929 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1931 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1932 PHY_M_EC_MAC_S_MSK);
1933 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1935 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1937 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1940 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1941 if (skge->autoneg == AUTONEG_DISABLE)
1942 ctrl &= ~PHY_CT_ANE;
1944 ctrl |= PHY_CT_RESET;
1945 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1951 if (skge->autoneg == AUTONEG_ENABLE) {
1953 if (skge->advertising & ADVERTISED_1000baseT_Full)
1954 ct1000 |= PHY_M_1000C_AFD;
1955 if (skge->advertising & ADVERTISED_1000baseT_Half)
1956 ct1000 |= PHY_M_1000C_AHD;
1957 if (skge->advertising & ADVERTISED_100baseT_Full)
1958 adv |= PHY_M_AN_100_FD;
1959 if (skge->advertising & ADVERTISED_100baseT_Half)
1960 adv |= PHY_M_AN_100_HD;
1961 if (skge->advertising & ADVERTISED_10baseT_Full)
1962 adv |= PHY_M_AN_10_FD;
1963 if (skge->advertising & ADVERTISED_10baseT_Half)
1964 adv |= PHY_M_AN_10_HD;
1966 /* Set Flow-control capabilities */
1967 adv |= phy_pause_map[skge->flow_control];
1969 if (skge->advertising & ADVERTISED_1000baseT_Full)
1970 adv |= PHY_M_AN_1000X_AFD;
1971 if (skge->advertising & ADVERTISED_1000baseT_Half)
1972 adv |= PHY_M_AN_1000X_AHD;
1974 adv |= fiber_pause_map[skge->flow_control];
1977 /* Restart Auto-negotiation */
1978 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1980 /* forced speed/duplex settings */
1981 ct1000 = PHY_M_1000C_MSE;
1983 if (skge->duplex == DUPLEX_FULL)
1984 ctrl |= PHY_CT_DUP_MD;
1986 switch (skge->speed) {
1988 ctrl |= PHY_CT_SP1000;
1991 ctrl |= PHY_CT_SP100;
1995 ctrl |= PHY_CT_RESET;
1998 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2000 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2001 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2003 /* Enable phy interrupt on autonegotiation complete (or link up) */
2004 if (skge->autoneg == AUTONEG_ENABLE)
2005 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2007 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2010 static void yukon_reset(struct skge_hw *hw, int port)
2012 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2013 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
2014 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2015 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2016 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2018 gma_write16(hw, port, GM_RX_CTRL,
2019 gma_read16(hw, port, GM_RX_CTRL)
2020 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2023 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2024 static int is_yukon_lite_a0(struct skge_hw *hw)
2029 if (hw->chip_id != CHIP_ID_YUKON)
2032 reg = skge_read32(hw, B2_FAR);
2033 skge_write8(hw, B2_FAR + 3, 0xff);
2034 ret = (skge_read8(hw, B2_FAR + 3) != 0);
2035 skge_write32(hw, B2_FAR, reg);
2039 static void yukon_mac_init(struct skge_hw *hw, int port)
2041 struct skge_port *skge = netdev_priv(hw->dev[port]);
2044 const u8 *addr = hw->dev[port]->dev_addr;
2046 /* WA code for COMA mode -- set PHY reset */
2047 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2048 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2049 reg = skge_read32(hw, B2_GP_IO);
2050 reg |= GP_DIR_9 | GP_IO_9;
2051 skge_write32(hw, B2_GP_IO, reg);
2055 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2056 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2058 /* WA code for COMA mode -- clear PHY reset */
2059 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2060 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2061 reg = skge_read32(hw, B2_GP_IO);
2064 skge_write32(hw, B2_GP_IO, reg);
2067 /* Set hardware config mode */
2068 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2069 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2070 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2072 /* Clear GMC reset */
2073 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2074 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2075 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2077 if (skge->autoneg == AUTONEG_DISABLE) {
2078 reg = GM_GPCR_AU_ALL_DIS;
2079 gma_write16(hw, port, GM_GP_CTRL,
2080 gma_read16(hw, port, GM_GP_CTRL) | reg);
2082 switch (skge->speed) {
2084 reg &= ~GM_GPCR_SPEED_100;
2085 reg |= GM_GPCR_SPEED_1000;
2088 reg &= ~GM_GPCR_SPEED_1000;
2089 reg |= GM_GPCR_SPEED_100;
2092 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2096 if (skge->duplex == DUPLEX_FULL)
2097 reg |= GM_GPCR_DUP_FULL;
2099 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2101 switch (skge->flow_control) {
2102 case FLOW_MODE_NONE:
2103 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2104 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2106 case FLOW_MODE_LOC_SEND:
2107 /* disable Rx flow-control */
2108 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2110 case FLOW_MODE_SYMMETRIC:
2111 case FLOW_MODE_SYM_OR_REM:
2112 /* enable Tx & Rx flow-control */
2116 gma_write16(hw, port, GM_GP_CTRL, reg);
2117 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2119 yukon_init(hw, port);
2122 reg = gma_read16(hw, port, GM_PHY_ADDR);
2123 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2125 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2126 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2127 gma_write16(hw, port, GM_PHY_ADDR, reg);
2129 /* transmit control */
2130 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2132 /* receive control reg: unicast + multicast + no FCS */
2133 gma_write16(hw, port, GM_RX_CTRL,
2134 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2136 /* transmit flow control */
2137 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2139 /* transmit parameter */
2140 gma_write16(hw, port, GM_TX_PARAM,
2141 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2142 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2143 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2145 /* configure the Serial Mode Register */
2146 reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2148 | IPG_DATA_VAL(IPG_DATA_DEF);
2150 if (hw->dev[port]->mtu > ETH_DATA_LEN)
2151 reg |= GM_SMOD_JUMBO_ENA;
2153 gma_write16(hw, port, GM_SERIAL_MODE, reg);
2155 /* physical address: used for pause frames */
2156 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2157 /* virtual address for data */
2158 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2160 /* enable interrupt mask for counter overflows */
2161 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2162 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2163 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2165 /* Initialize Mac Fifo */
2167 /* Configure Rx MAC FIFO */
2168 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2169 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2171 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2172 if (is_yukon_lite_a0(hw))
2173 reg &= ~GMF_RX_F_FL_ON;
2175 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2176 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2178 * because Pause Packet Truncation in GMAC is not working
2179 * we have to increase the Flush Threshold to 64 bytes
2180 * in order to flush pause packets in Rx FIFO on Yukon-1
2182 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2184 /* Configure Tx MAC FIFO */
2185 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2186 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2189 /* Go into power down mode */
2190 static void yukon_suspend(struct skge_hw *hw, int port)
2194 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2195 ctrl |= PHY_M_PC_POL_R_DIS;
2196 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2198 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2199 ctrl |= PHY_CT_RESET;
2200 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2202 /* switch IEEE compatible power down mode on */
2203 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2204 ctrl |= PHY_CT_PDOWN;
2205 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2208 static void yukon_stop(struct skge_port *skge)
2210 struct skge_hw *hw = skge->hw;
2211 int port = skge->port;
2213 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2214 yukon_reset(hw, port);
2216 gma_write16(hw, port, GM_GP_CTRL,
2217 gma_read16(hw, port, GM_GP_CTRL)
2218 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2219 gma_read16(hw, port, GM_GP_CTRL);
2221 yukon_suspend(hw, port);
2223 /* set GPHY Control reset */
2224 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2225 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2228 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2230 struct skge_hw *hw = skge->hw;
2231 int port = skge->port;
2234 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2235 | gma_read32(hw, port, GM_TXO_OK_LO);
2236 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2237 | gma_read32(hw, port, GM_RXO_OK_LO);
2239 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2240 data[i] = gma_read32(hw, port,
2241 skge_stats[i].gma_offset);
2244 static void yukon_mac_intr(struct skge_hw *hw, int port)
2246 struct net_device *dev = hw->dev[port];
2247 struct skge_port *skge = netdev_priv(dev);
2248 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2250 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2251 "mac interrupt status 0x%x\n", status);
2253 if (status & GM_IS_RX_FF_OR) {
2254 ++dev->stats.rx_fifo_errors;
2255 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2258 if (status & GM_IS_TX_FF_UR) {
2259 ++dev->stats.tx_fifo_errors;
2260 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2265 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2267 switch (aux & PHY_M_PS_SPEED_MSK) {
2268 case PHY_M_PS_SPEED_1000:
2270 case PHY_M_PS_SPEED_100:
2277 static void yukon_link_up(struct skge_port *skge)
2279 struct skge_hw *hw = skge->hw;
2280 int port = skge->port;
2283 /* Enable Transmit FIFO Underrun */
2284 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2286 reg = gma_read16(hw, port, GM_GP_CTRL);
2287 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2288 reg |= GM_GPCR_DUP_FULL;
2291 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2292 gma_write16(hw, port, GM_GP_CTRL, reg);
2294 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2298 static void yukon_link_down(struct skge_port *skge)
2300 struct skge_hw *hw = skge->hw;
2301 int port = skge->port;
2304 ctrl = gma_read16(hw, port, GM_GP_CTRL);
2305 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2306 gma_write16(hw, port, GM_GP_CTRL, ctrl);
2308 if (skge->flow_status == FLOW_STAT_REM_SEND) {
2309 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2310 ctrl |= PHY_M_AN_ASP;
2311 /* restore Asymmetric Pause bit */
2312 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2315 skge_link_down(skge);
2317 yukon_init(hw, port);
2320 static void yukon_phy_intr(struct skge_port *skge)
2322 struct skge_hw *hw = skge->hw;
2323 int port = skge->port;
2324 const char *reason = NULL;
2325 u16 istatus, phystat;
2327 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2328 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2330 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2331 "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2333 if (istatus & PHY_M_IS_AN_COMPL) {
2334 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2336 reason = "remote fault";
2340 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2341 reason = "master/slave fault";
2345 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2346 reason = "speed/duplex";
2350 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2351 ? DUPLEX_FULL : DUPLEX_HALF;
2352 skge->speed = yukon_speed(hw, phystat);
2354 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2355 switch (phystat & PHY_M_PS_PAUSE_MSK) {
2356 case PHY_M_PS_PAUSE_MSK:
2357 skge->flow_status = FLOW_STAT_SYMMETRIC;
2359 case PHY_M_PS_RX_P_EN:
2360 skge->flow_status = FLOW_STAT_REM_SEND;
2362 case PHY_M_PS_TX_P_EN:
2363 skge->flow_status = FLOW_STAT_LOC_SEND;
2366 skge->flow_status = FLOW_STAT_NONE;
2369 if (skge->flow_status == FLOW_STAT_NONE ||
2370 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2371 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2373 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2374 yukon_link_up(skge);
2378 if (istatus & PHY_M_IS_LSP_CHANGE)
2379 skge->speed = yukon_speed(hw, phystat);
2381 if (istatus & PHY_M_IS_DUP_CHANGE)
2382 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2383 if (istatus & PHY_M_IS_LST_CHANGE) {
2384 if (phystat & PHY_M_PS_LINK_UP)
2385 yukon_link_up(skge);
2387 yukon_link_down(skge);
2391 pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2393 /* XXX restart autonegotiation? */
2396 static void skge_phy_reset(struct skge_port *skge)
2398 struct skge_hw *hw = skge->hw;
2399 int port = skge->port;
2400 struct net_device *dev = hw->dev[port];
2402 netif_stop_queue(skge->netdev);
2403 netif_carrier_off(skge->netdev);
2405 spin_lock_bh(&hw->phy_lock);
2406 if (hw->chip_id == CHIP_ID_GENESIS) {
2407 genesis_reset(hw, port);
2408 genesis_mac_init(hw, port);
2410 yukon_reset(hw, port);
2411 yukon_init(hw, port);
2413 spin_unlock_bh(&hw->phy_lock);
2415 skge_set_multicast(dev);
2418 /* Basic MII support */
2419 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2421 struct mii_ioctl_data *data = if_mii(ifr);
2422 struct skge_port *skge = netdev_priv(dev);
2423 struct skge_hw *hw = skge->hw;
2424 int err = -EOPNOTSUPP;
2426 if (!netif_running(dev))
2427 return -ENODEV; /* Phy still in reset */
2431 data->phy_id = hw->phy_addr;
2436 spin_lock_bh(&hw->phy_lock);
2437 if (hw->chip_id == CHIP_ID_GENESIS)
2438 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2440 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2441 spin_unlock_bh(&hw->phy_lock);
2442 data->val_out = val;
2447 spin_lock_bh(&hw->phy_lock);
2448 if (hw->chip_id == CHIP_ID_GENESIS)
2449 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2452 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2454 spin_unlock_bh(&hw->phy_lock);
2460 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2466 end = start + len - 1;
2468 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2469 skge_write32(hw, RB_ADDR(q, RB_START), start);
2470 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2471 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2472 skge_write32(hw, RB_ADDR(q, RB_END), end);
2474 if (q == Q_R1 || q == Q_R2) {
2475 /* Set thresholds on receive queue's */
2476 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2478 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2481 /* Enable store & forward on Tx queue's because
2482 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2484 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2487 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2490 /* Setup Bus Memory Interface */
2491 static void skge_qset(struct skge_port *skge, u16 q,
2492 const struct skge_element *e)
2494 struct skge_hw *hw = skge->hw;
2495 u32 watermark = 0x600;
2496 u64 base = skge->dma + (e->desc - skge->mem);
2498 /* optimization to reduce window on 32bit/33mhz */
2499 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2502 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2503 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2504 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2505 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2508 static int skge_up(struct net_device *dev)
2510 struct skge_port *skge = netdev_priv(dev);
2511 struct skge_hw *hw = skge->hw;
2512 int port = skge->port;
2513 u32 chunk, ram_addr;
2514 size_t rx_size, tx_size;
2517 if (!is_valid_ether_addr(dev->dev_addr))
2520 netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2522 if (dev->mtu > RX_BUF_SIZE)
2523 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2525 skge->rx_buf_size = RX_BUF_SIZE;
2528 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2529 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2530 skge->mem_size = tx_size + rx_size;
2531 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2535 BUG_ON(skge->dma & 7);
2537 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2538 dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2543 memset(skge->mem, 0, skge->mem_size);
2545 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2549 err = skge_rx_fill(dev);
2553 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2554 skge->dma + rx_size);
2558 /* Initialize MAC */
2559 spin_lock_bh(&hw->phy_lock);
2560 if (hw->chip_id == CHIP_ID_GENESIS)
2561 genesis_mac_init(hw, port);
2563 yukon_mac_init(hw, port);
2564 spin_unlock_bh(&hw->phy_lock);
2566 /* Configure RAMbuffers - equally between ports and tx/rx */
2567 chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
2568 ram_addr = hw->ram_offset + 2 * chunk * port;
2570 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2571 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2573 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2574 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2575 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2577 /* Start receiver BMU */
2579 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2580 skge_led(skge, LED_MODE_ON);
2582 spin_lock_irq(&hw->hw_lock);
2583 hw->intr_mask |= portmask[port];
2584 skge_write32(hw, B0_IMSK, hw->intr_mask);
2585 spin_unlock_irq(&hw->hw_lock);
2587 napi_enable(&skge->napi);
2591 skge_rx_clean(skge);
2592 kfree(skge->rx_ring.start);
2594 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2601 static void skge_rx_stop(struct skge_hw *hw, int port)
2603 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2604 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2605 RB_RST_SET|RB_DIS_OP_MD);
2606 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2609 static int skge_down(struct net_device *dev)
2611 struct skge_port *skge = netdev_priv(dev);
2612 struct skge_hw *hw = skge->hw;
2613 int port = skge->port;
2615 if (skge->mem == NULL)
2618 netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2620 netif_tx_disable(dev);
2622 if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
2623 del_timer_sync(&skge->link_timer);
2625 napi_disable(&skge->napi);
2626 netif_carrier_off(dev);
2628 spin_lock_irq(&hw->hw_lock);
2629 hw->intr_mask &= ~portmask[port];
2630 skge_write32(hw, B0_IMSK, hw->intr_mask);
2631 spin_unlock_irq(&hw->hw_lock);
2633 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2634 if (hw->chip_id == CHIP_ID_GENESIS)
2639 /* Stop transmitter */
2640 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2641 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2642 RB_RST_SET|RB_DIS_OP_MD);
2645 /* Disable Force Sync bit and Enable Alloc bit */
2646 skge_write8(hw, SK_REG(port, TXA_CTRL),
2647 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2649 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2650 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2651 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2653 /* Reset PCI FIFO */
2654 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2655 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2657 /* Reset the RAM Buffer async Tx queue */
2658 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2660 skge_rx_stop(hw, port);
2662 if (hw->chip_id == CHIP_ID_GENESIS) {
2663 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2664 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2666 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2667 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2670 skge_led(skge, LED_MODE_OFF);
2672 netif_tx_lock_bh(dev);
2674 netif_tx_unlock_bh(dev);
2676 skge_rx_clean(skge);
2678 kfree(skge->rx_ring.start);
2679 kfree(skge->tx_ring.start);
2680 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2685 static inline int skge_avail(const struct skge_ring *ring)
2688 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2689 + (ring->to_clean - ring->to_use) - 1;
2692 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2693 struct net_device *dev)
2695 struct skge_port *skge = netdev_priv(dev);
2696 struct skge_hw *hw = skge->hw;
2697 struct skge_element *e;
2698 struct skge_tx_desc *td;
2703 if (skb_padto(skb, ETH_ZLEN))
2704 return NETDEV_TX_OK;
2706 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2707 return NETDEV_TX_BUSY;
2709 e = skge->tx_ring.to_use;
2711 BUG_ON(td->control & BMU_OWN);
2713 len = skb_headlen(skb);
2714 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2715 dma_unmap_addr_set(e, mapaddr, map);
2716 dma_unmap_len_set(e, maplen, len);
2719 td->dma_hi = map >> 32;
2721 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2722 const int offset = skb_checksum_start_offset(skb);
2724 /* This seems backwards, but it is what the sk98lin
2725 * does. Looks like hardware is wrong?
2727 if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2728 hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2729 control = BMU_TCP_CHECK;
2731 control = BMU_UDP_CHECK;
2734 td->csum_start = offset;
2735 td->csum_write = offset + skb->csum_offset;
2737 control = BMU_CHECK;
2739 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2740 control |= BMU_EOF | BMU_IRQ_EOF;
2742 struct skge_tx_desc *tf = td;
2744 control |= BMU_STFWD;
2745 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2746 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2748 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2749 frag->size, PCI_DMA_TODEVICE);
2754 BUG_ON(tf->control & BMU_OWN);
2757 tf->dma_hi = (u64) map >> 32;
2758 dma_unmap_addr_set(e, mapaddr, map);
2759 dma_unmap_len_set(e, maplen, frag->size);
2761 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2763 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2765 /* Make sure all the descriptors written */
2767 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2770 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2772 netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2773 "tx queued, slot %td, len %d\n",
2774 e - skge->tx_ring.start, skb->len);
2776 skge->tx_ring.to_use = e->next;
2779 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2780 netdev_dbg(dev, "transmit queue full\n");
2781 netif_stop_queue(dev);
2784 return NETDEV_TX_OK;
2788 /* Free resources associated with this reing element */
2789 static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
2792 struct pci_dev *pdev = skge->hw->pdev;
2794 /* skb header vs. fragment */
2795 if (control & BMU_STF)
2796 pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
2797 dma_unmap_len(e, maplen),
2800 pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
2801 dma_unmap_len(e, maplen),
2804 if (control & BMU_EOF) {
2805 netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
2806 "tx done slot %td\n", e - skge->tx_ring.start);
2808 dev_kfree_skb(e->skb);
2812 /* Free all buffers in transmit ring */
2813 static void skge_tx_clean(struct net_device *dev)
2815 struct skge_port *skge = netdev_priv(dev);
2816 struct skge_element *e;
2818 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2819 struct skge_tx_desc *td = e->desc;
2820 skge_tx_free(skge, e, td->control);
2824 skge->tx_ring.to_clean = e;
2827 static void skge_tx_timeout(struct net_device *dev)
2829 struct skge_port *skge = netdev_priv(dev);
2831 netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2833 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2835 netif_wake_queue(dev);
2838 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2842 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2845 if (!netif_running(dev)) {
2861 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2863 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2867 crc = ether_crc_le(ETH_ALEN, addr);
2869 filter[bit/8] |= 1 << (bit%8);
2872 static void genesis_set_multicast(struct net_device *dev)
2874 struct skge_port *skge = netdev_priv(dev);
2875 struct skge_hw *hw = skge->hw;
2876 int port = skge->port;
2877 struct netdev_hw_addr *ha;
2881 mode = xm_read32(hw, port, XM_MODE);
2882 mode |= XM_MD_ENA_HASH;
2883 if (dev->flags & IFF_PROMISC)
2884 mode |= XM_MD_ENA_PROM;
2886 mode &= ~XM_MD_ENA_PROM;
2888 if (dev->flags & IFF_ALLMULTI)
2889 memset(filter, 0xff, sizeof(filter));
2891 memset(filter, 0, sizeof(filter));
2893 if (skge->flow_status == FLOW_STAT_REM_SEND ||
2894 skge->flow_status == FLOW_STAT_SYMMETRIC)
2895 genesis_add_filter(filter, pause_mc_addr);
2897 netdev_for_each_mc_addr(ha, dev)
2898 genesis_add_filter(filter, ha->addr);
2901 xm_write32(hw, port, XM_MODE, mode);
2902 xm_outhash(hw, port, XM_HSM, filter);
2905 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2907 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2908 filter[bit/8] |= 1 << (bit%8);
2911 static void yukon_set_multicast(struct net_device *dev)
2913 struct skge_port *skge = netdev_priv(dev);
2914 struct skge_hw *hw = skge->hw;
2915 int port = skge->port;
2916 struct netdev_hw_addr *ha;
2917 int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2918 skge->flow_status == FLOW_STAT_SYMMETRIC);
2922 memset(filter, 0, sizeof(filter));
2924 reg = gma_read16(hw, port, GM_RX_CTRL);
2925 reg |= GM_RXCR_UCF_ENA;
2927 if (dev->flags & IFF_PROMISC) /* promiscuous */
2928 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2929 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2930 memset(filter, 0xff, sizeof(filter));
2931 else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2932 reg &= ~GM_RXCR_MCF_ENA;
2934 reg |= GM_RXCR_MCF_ENA;
2937 yukon_add_filter(filter, pause_mc_addr);
2939 netdev_for_each_mc_addr(ha, dev)
2940 yukon_add_filter(filter, ha->addr);
2944 gma_write16(hw, port, GM_MC_ADDR_H1,
2945 (u16)filter[0] | ((u16)filter[1] << 8));
2946 gma_write16(hw, port, GM_MC_ADDR_H2,
2947 (u16)filter[2] | ((u16)filter[3] << 8));
2948 gma_write16(hw, port, GM_MC_ADDR_H3,
2949 (u16)filter[4] | ((u16)filter[5] << 8));
2950 gma_write16(hw, port, GM_MC_ADDR_H4,
2951 (u16)filter[6] | ((u16)filter[7] << 8));
2953 gma_write16(hw, port, GM_RX_CTRL, reg);
2956 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
2958 if (hw->chip_id == CHIP_ID_GENESIS)
2959 return status >> XMR_FS_LEN_SHIFT;
2961 return status >> GMR_FS_LEN_SHIFT;
2964 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
2966 if (hw->chip_id == CHIP_ID_GENESIS)
2967 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
2969 return (status & GMR_FS_ANY_ERR) ||
2970 (status & GMR_FS_RX_OK) == 0;
2973 static void skge_set_multicast(struct net_device *dev)
2975 struct skge_port *skge = netdev_priv(dev);
2976 struct skge_hw *hw = skge->hw;
2978 if (hw->chip_id == CHIP_ID_GENESIS)
2979 genesis_set_multicast(dev);
2981 yukon_set_multicast(dev);
2986 /* Get receive buffer from descriptor.
2987 * Handles copy of small buffers and reallocation failures
2989 static struct sk_buff *skge_rx_get(struct net_device *dev,
2990 struct skge_element *e,
2991 u32 control, u32 status, u16 csum)
2993 struct skge_port *skge = netdev_priv(dev);
2994 struct sk_buff *skb;
2995 u16 len = control & BMU_BBC;
2997 netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
2998 "rx slot %td status 0x%x len %d\n",
2999 e - skge->rx_ring.start, status, len);
3001 if (len > skge->rx_buf_size)
3004 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3007 if (bad_phy_status(skge->hw, status))
3010 if (phy_length(skge->hw, status) != len)
3013 if (len < RX_COPY_THRESHOLD) {
3014 skb = netdev_alloc_skb_ip_align(dev, len);
3018 pci_dma_sync_single_for_cpu(skge->hw->pdev,
3019 dma_unmap_addr(e, mapaddr),
3020 len, PCI_DMA_FROMDEVICE);
3021 skb_copy_from_linear_data(e->skb, skb->data, len);
3022 pci_dma_sync_single_for_device(skge->hw->pdev,
3023 dma_unmap_addr(e, mapaddr),
3024 len, PCI_DMA_FROMDEVICE);
3025 skge_rx_reuse(e, skge->rx_buf_size);
3027 struct sk_buff *nskb;
3029 nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3033 pci_unmap_single(skge->hw->pdev,
3034 dma_unmap_addr(e, mapaddr),
3035 dma_unmap_len(e, maplen),
3036 PCI_DMA_FROMDEVICE);
3038 prefetch(skb->data);
3039 skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
3044 if (dev->features & NETIF_F_RXCSUM) {
3046 skb->ip_summed = CHECKSUM_COMPLETE;
3049 skb->protocol = eth_type_trans(skb, dev);
3054 netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3055 "rx err, slot %td control 0x%x status 0x%x\n",
3056 e - skge->rx_ring.start, control, status);
3058 if (skge->hw->chip_id == CHIP_ID_GENESIS) {
3059 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3060 dev->stats.rx_length_errors++;
3061 if (status & XMR_FS_FRA_ERR)
3062 dev->stats.rx_frame_errors++;
3063 if (status & XMR_FS_FCS_ERR)
3064 dev->stats.rx_crc_errors++;
3066 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3067 dev->stats.rx_length_errors++;
3068 if (status & GMR_FS_FRAGMENT)
3069 dev->stats.rx_frame_errors++;
3070 if (status & GMR_FS_CRC_ERR)
3071 dev->stats.rx_crc_errors++;
3075 skge_rx_reuse(e, skge->rx_buf_size);
3079 /* Free all buffers in Tx ring which are no longer owned by device */
3080 static void skge_tx_done(struct net_device *dev)
3082 struct skge_port *skge = netdev_priv(dev);
3083 struct skge_ring *ring = &skge->tx_ring;
3084 struct skge_element *e;
3086 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3088 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3089 u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3091 if (control & BMU_OWN)
3094 skge_tx_free(skge, e, control);
3096 skge->tx_ring.to_clean = e;
3098 /* Can run lockless until we need to synchronize to restart queue. */
3101 if (unlikely(netif_queue_stopped(dev) &&
3102 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3104 if (unlikely(netif_queue_stopped(dev) &&
3105 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3106 netif_wake_queue(dev);
3109 netif_tx_unlock(dev);
3113 static int skge_poll(struct napi_struct *napi, int to_do)
3115 struct skge_port *skge = container_of(napi, struct skge_port, napi);
3116 struct net_device *dev = skge->netdev;
3117 struct skge_hw *hw = skge->hw;
3118 struct skge_ring *ring = &skge->rx_ring;
3119 struct skge_element *e;
3124 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3126 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
3127 struct skge_rx_desc *rd = e->desc;
3128 struct sk_buff *skb;
3132 control = rd->control;
3133 if (control & BMU_OWN)
3136 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3138 napi_gro_receive(napi, skb);
3144 /* restart receiver */
3146 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3148 if (work_done < to_do) {
3149 unsigned long flags;
3151 napi_gro_flush(napi);
3152 spin_lock_irqsave(&hw->hw_lock, flags);
3153 __napi_complete(napi);
3154 hw->intr_mask |= napimask[skge->port];
3155 skge_write32(hw, B0_IMSK, hw->intr_mask);
3156 skge_read32(hw, B0_IMSK);
3157 spin_unlock_irqrestore(&hw->hw_lock, flags);
3163 /* Parity errors seem to happen when Genesis is connected to a switch
3164 * with no other ports present. Heartbeat error??
3166 static void skge_mac_parity(struct skge_hw *hw, int port)
3168 struct net_device *dev = hw->dev[port];
3170 ++dev->stats.tx_heartbeat_errors;
3172 if (hw->chip_id == CHIP_ID_GENESIS)
3173 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3176 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3177 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3178 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3179 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3182 static void skge_mac_intr(struct skge_hw *hw, int port)
3184 if (hw->chip_id == CHIP_ID_GENESIS)
3185 genesis_mac_intr(hw, port);
3187 yukon_mac_intr(hw, port);
3190 /* Handle device specific framing and timeout interrupts */
3191 static void skge_error_irq(struct skge_hw *hw)
3193 struct pci_dev *pdev = hw->pdev;
3194 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3196 if (hw->chip_id == CHIP_ID_GENESIS) {
3197 /* clear xmac errors */
3198 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3199 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3200 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3201 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3203 /* Timestamp (unused) overflow */
3204 if (hwstatus & IS_IRQ_TIST_OV)
3205 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3208 if (hwstatus & IS_RAM_RD_PAR) {
3209 dev_err(&pdev->dev, "Ram read data parity error\n");
3210 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3213 if (hwstatus & IS_RAM_WR_PAR) {
3214 dev_err(&pdev->dev, "Ram write data parity error\n");
3215 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3218 if (hwstatus & IS_M1_PAR_ERR)
3219 skge_mac_parity(hw, 0);
3221 if (hwstatus & IS_M2_PAR_ERR)
3222 skge_mac_parity(hw, 1);
3224 if (hwstatus & IS_R1_PAR_ERR) {
3225 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3227 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3230 if (hwstatus & IS_R2_PAR_ERR) {
3231 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3233 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3236 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3237 u16 pci_status, pci_cmd;
3239 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3240 pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3242 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3243 pci_cmd, pci_status);
3245 /* Write the error bits back to clear them. */
3246 pci_status &= PCI_STATUS_ERROR_BITS;
3247 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3248 pci_write_config_word(pdev, PCI_COMMAND,
3249 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3250 pci_write_config_word(pdev, PCI_STATUS, pci_status);
3251 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3253 /* if error still set then just ignore it */
3254 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3255 if (hwstatus & IS_IRQ_STAT) {
3256 dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3257 hw->intr_mask &= ~IS_HW_ERR;
3263 * Interrupt from PHY are handled in tasklet (softirq)
3264 * because accessing phy registers requires spin wait which might
3265 * cause excess interrupt latency.
3267 static void skge_extirq(unsigned long arg)
3269 struct skge_hw *hw = (struct skge_hw *) arg;
3272 for (port = 0; port < hw->ports; port++) {
3273 struct net_device *dev = hw->dev[port];
3275 if (netif_running(dev)) {
3276 struct skge_port *skge = netdev_priv(dev);
3278 spin_lock(&hw->phy_lock);
3279 if (hw->chip_id != CHIP_ID_GENESIS)
3280 yukon_phy_intr(skge);
3281 else if (hw->phy_type == SK_PHY_BCOM)
3282 bcom_phy_intr(skge);
3283 spin_unlock(&hw->phy_lock);
3287 spin_lock_irq(&hw->hw_lock);
3288 hw->intr_mask |= IS_EXT_REG;
3289 skge_write32(hw, B0_IMSK, hw->intr_mask);
3290 skge_read32(hw, B0_IMSK);
3291 spin_unlock_irq(&hw->hw_lock);
3294 static irqreturn_t skge_intr(int irq, void *dev_id)
3296 struct skge_hw *hw = dev_id;
3300 spin_lock(&hw->hw_lock);
3301 /* Reading this register masks IRQ */
3302 status = skge_read32(hw, B0_SP_ISRC);
3303 if (status == 0 || status == ~0)
3307 status &= hw->intr_mask;
3308 if (status & IS_EXT_REG) {
3309 hw->intr_mask &= ~IS_EXT_REG;
3310 tasklet_schedule(&hw->phy_task);
3313 if (status & (IS_XA1_F|IS_R1_F)) {
3314 struct skge_port *skge = netdev_priv(hw->dev[0]);
3315 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3316 napi_schedule(&skge->napi);
3319 if (status & IS_PA_TO_TX1)
3320 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3322 if (status & IS_PA_TO_RX1) {
3323 ++hw->dev[0]->stats.rx_over_errors;
3324 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3328 if (status & IS_MAC1)
3329 skge_mac_intr(hw, 0);
3332 struct skge_port *skge = netdev_priv(hw->dev[1]);
3334 if (status & (IS_XA2_F|IS_R2_F)) {
3335 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3336 napi_schedule(&skge->napi);
3339 if (status & IS_PA_TO_RX2) {
3340 ++hw->dev[1]->stats.rx_over_errors;
3341 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3344 if (status & IS_PA_TO_TX2)
3345 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3347 if (status & IS_MAC2)
3348 skge_mac_intr(hw, 1);
3351 if (status & IS_HW_ERR)
3354 skge_write32(hw, B0_IMSK, hw->intr_mask);
3355 skge_read32(hw, B0_IMSK);
3357 spin_unlock(&hw->hw_lock);
3359 return IRQ_RETVAL(handled);
3362 #ifdef CONFIG_NET_POLL_CONTROLLER
3363 static void skge_netpoll(struct net_device *dev)
3365 struct skge_port *skge = netdev_priv(dev);
3367 disable_irq(dev->irq);
3368 skge_intr(dev->irq, skge->hw);
3369 enable_irq(dev->irq);
3373 static int skge_set_mac_address(struct net_device *dev, void *p)
3375 struct skge_port *skge = netdev_priv(dev);
3376 struct skge_hw *hw = skge->hw;
3377 unsigned port = skge->port;
3378 const struct sockaddr *addr = p;
3381 if (!is_valid_ether_addr(addr->sa_data))
3382 return -EADDRNOTAVAIL;
3384 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3386 if (!netif_running(dev)) {
3387 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3388 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3391 spin_lock_bh(&hw->phy_lock);
3392 ctrl = gma_read16(hw, port, GM_GP_CTRL);
3393 gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3395 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3396 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3398 if (hw->chip_id == CHIP_ID_GENESIS)
3399 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3401 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3402 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3405 gma_write16(hw, port, GM_GP_CTRL, ctrl);
3406 spin_unlock_bh(&hw->phy_lock);
3412 static const struct {
3416 { CHIP_ID_GENESIS, "Genesis" },
3417 { CHIP_ID_YUKON, "Yukon" },
3418 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3419 { CHIP_ID_YUKON_LP, "Yukon-LP"},
3422 static const char *skge_board_name(const struct skge_hw *hw)
3425 static char buf[16];
3427 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3428 if (skge_chips[i].id == hw->chip_id)
3429 return skge_chips[i].name;
3431 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3437 * Setup the board data structure, but don't bring up
3440 static int skge_reset(struct skge_hw *hw)
3443 u16 ctst, pci_status;
3444 u8 t8, mac_cfg, pmd_type;
3447 ctst = skge_read16(hw, B0_CTST);
3450 skge_write8(hw, B0_CTST, CS_RST_SET);
3451 skge_write8(hw, B0_CTST, CS_RST_CLR);
3453 /* clear PCI errors, if any */
3454 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3455 skge_write8(hw, B2_TST_CTRL2, 0);
3457 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3458 pci_write_config_word(hw->pdev, PCI_STATUS,
3459 pci_status | PCI_STATUS_ERROR_BITS);
3460 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3461 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3463 /* restore CLK_RUN bits (for Yukon-Lite) */
3464 skge_write16(hw, B0_CTST,
3465 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3467 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3468 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3469 pmd_type = skge_read8(hw, B2_PMD_TYP);
3470 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3472 switch (hw->chip_id) {
3473 case CHIP_ID_GENESIS:
3474 switch (hw->phy_type) {
3476 hw->phy_addr = PHY_ADDR_XMAC;
3479 hw->phy_addr = PHY_ADDR_BCOM;
3482 dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3489 case CHIP_ID_YUKON_LITE:
3490 case CHIP_ID_YUKON_LP:
3491 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3494 hw->phy_addr = PHY_ADDR_MARV;
3498 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3503 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3504 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3505 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3507 /* read the adapters RAM size */
3508 t8 = skge_read8(hw, B2_E_0);
3509 if (hw->chip_id == CHIP_ID_GENESIS) {
3511 /* special case: 4 x 64k x 36, offset = 0x80000 */
3512 hw->ram_size = 0x100000;
3513 hw->ram_offset = 0x80000;
3515 hw->ram_size = t8 * 512;
3517 hw->ram_size = 0x20000;
3519 hw->ram_size = t8 * 4096;
3521 hw->intr_mask = IS_HW_ERR;
3523 /* Use PHY IRQ for all but fiber based Genesis board */
3524 if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
3525 hw->intr_mask |= IS_EXT_REG;
3527 if (hw->chip_id == CHIP_ID_GENESIS)
3530 /* switch power to VCC (WA for VAUX problem) */
3531 skge_write8(hw, B0_POWER_CTRL,
3532 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3534 /* avoid boards with stuck Hardware error bits */
3535 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3536 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3537 dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3538 hw->intr_mask &= ~IS_HW_ERR;
3541 /* Clear PHY COMA */
3542 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3543 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, ®);
3544 reg &= ~PCI_PHY_COMA;
3545 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3546 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3549 for (i = 0; i < hw->ports; i++) {
3550 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3551 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3555 /* turn off hardware timer (unused) */
3556 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3557 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3558 skge_write8(hw, B0_LED, LED_STAT_ON);
3560 /* enable the Tx Arbiters */
3561 for (i = 0; i < hw->ports; i++)
3562 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3564 /* Initialize ram interface */
3565 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3567 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3568 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3569 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3570 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3571 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3572 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3573 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3574 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3575 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3576 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3577 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3578 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3580 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3582 /* Set interrupt moderation for Transmit only
3583 * Receive interrupts avoided by NAPI
3585 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3586 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3587 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3589 skge_write32(hw, B0_IMSK, hw->intr_mask);
3591 for (i = 0; i < hw->ports; i++) {
3592 if (hw->chip_id == CHIP_ID_GENESIS)
3593 genesis_reset(hw, i);
3602 #ifdef CONFIG_SKGE_DEBUG
3604 static struct dentry *skge_debug;
3606 static int skge_debug_show(struct seq_file *seq, void *v)
3608 struct net_device *dev = seq->private;
3609 const struct skge_port *skge = netdev_priv(dev);
3610 const struct skge_hw *hw = skge->hw;
3611 const struct skge_element *e;
3613 if (!netif_running(dev))
3616 seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3617 skge_read32(hw, B0_IMSK));
3619 seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3620 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3621 const struct skge_tx_desc *t = e->desc;
3622 seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3623 t->control, t->dma_hi, t->dma_lo, t->status,
3624 t->csum_offs, t->csum_write, t->csum_start);
3627 seq_printf(seq, "\nRx Ring:\n");
3628 for (e = skge->rx_ring.to_clean; ; e = e->next) {
3629 const struct skge_rx_desc *r = e->desc;
3631 if (r->control & BMU_OWN)
3634 seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3635 r->control, r->dma_hi, r->dma_lo, r->status,
3636 r->timestamp, r->csum1, r->csum1_start);
3642 static int skge_debug_open(struct inode *inode, struct file *file)
3644 return single_open(file, skge_debug_show, inode->i_private);
3647 static const struct file_operations skge_debug_fops = {
3648 .owner = THIS_MODULE,
3649 .open = skge_debug_open,
3651 .llseek = seq_lseek,
3652 .release = single_release,
3656 * Use network device events to create/remove/rename
3657 * debugfs file entries
3659 static int skge_device_event(struct notifier_block *unused,
3660 unsigned long event, void *ptr)
3662 struct net_device *dev = ptr;
3663 struct skge_port *skge;
3666 if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3669 skge = netdev_priv(dev);
3671 case NETDEV_CHANGENAME:
3672 if (skge->debugfs) {
3673 d = debugfs_rename(skge_debug, skge->debugfs,
3674 skge_debug, dev->name);
3678 netdev_info(dev, "rename failed\n");
3679 debugfs_remove(skge->debugfs);
3684 case NETDEV_GOING_DOWN:
3685 if (skge->debugfs) {
3686 debugfs_remove(skge->debugfs);
3687 skge->debugfs = NULL;
3692 d = debugfs_create_file(dev->name, S_IRUGO,
3695 if (!d || IS_ERR(d))
3696 netdev_info(dev, "debugfs create failed\n");
3706 static struct notifier_block skge_notifier = {
3707 .notifier_call = skge_device_event,
3711 static __init void skge_debug_init(void)
3715 ent = debugfs_create_dir("skge", NULL);
3716 if (!ent || IS_ERR(ent)) {
3717 pr_info("debugfs create directory failed\n");
3722 register_netdevice_notifier(&skge_notifier);
3725 static __exit void skge_debug_cleanup(void)
3728 unregister_netdevice_notifier(&skge_notifier);
3729 debugfs_remove(skge_debug);
3735 #define skge_debug_init()
3736 #define skge_debug_cleanup()
3739 static const struct net_device_ops skge_netdev_ops = {
3740 .ndo_open = skge_up,
3741 .ndo_stop = skge_down,
3742 .ndo_start_xmit = skge_xmit_frame,
3743 .ndo_do_ioctl = skge_ioctl,
3744 .ndo_get_stats = skge_get_stats,
3745 .ndo_tx_timeout = skge_tx_timeout,
3746 .ndo_change_mtu = skge_change_mtu,
3747 .ndo_validate_addr = eth_validate_addr,
3748 .ndo_set_multicast_list = skge_set_multicast,
3749 .ndo_set_mac_address = skge_set_mac_address,
3750 #ifdef CONFIG_NET_POLL_CONTROLLER
3751 .ndo_poll_controller = skge_netpoll,
3756 /* Initialize network device */
3757 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3760 struct skge_port *skge;
3761 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3764 dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
3768 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3769 dev->netdev_ops = &skge_netdev_ops;
3770 dev->ethtool_ops = &skge_ethtool_ops;
3771 dev->watchdog_timeo = TX_WATCHDOG;
3772 dev->irq = hw->pdev->irq;
3775 dev->features |= NETIF_F_HIGHDMA;
3777 skge = netdev_priv(dev);
3778 netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3781 skge->msg_enable = netif_msg_init(debug, default_msg);
3783 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3784 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3786 /* Auto speed and flow control */
3787 skge->autoneg = AUTONEG_ENABLE;
3788 skge->flow_control = FLOW_MODE_SYM_OR_REM;
3791 skge->advertising = skge_supported_modes(hw);
3793 if (device_can_wakeup(&hw->pdev->dev)) {
3794 skge->wol = wol_supported(hw) & WAKE_MAGIC;
3795 device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3798 hw->dev[port] = dev;
3802 /* Only used for Genesis XMAC */
3803 setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
3805 if (hw->chip_id != CHIP_ID_GENESIS) {
3806 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3808 dev->features |= dev->hw_features;
3811 /* read the mac address */
3812 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3813 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3818 static void __devinit skge_show_addr(struct net_device *dev)
3820 const struct skge_port *skge = netdev_priv(dev);
3822 netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3825 static int only_32bit_dma;
3827 static int __devinit skge_probe(struct pci_dev *pdev,
3828 const struct pci_device_id *ent)
3830 struct net_device *dev, *dev1;
3832 int err, using_dac = 0;
3834 err = pci_enable_device(pdev);
3836 dev_err(&pdev->dev, "cannot enable PCI device\n");
3840 err = pci_request_regions(pdev, DRV_NAME);
3842 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3843 goto err_out_disable_pdev;
3846 pci_set_master(pdev);
3848 if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3850 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3851 } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3853 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3857 dev_err(&pdev->dev, "no usable DMA configuration\n");
3858 goto err_out_free_regions;
3862 /* byte swap descriptors in hardware */
3866 pci_read_config_dword(pdev, PCI_DEV_REG2, ®);
3867 reg |= PCI_REV_DESC;
3868 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3873 /* space for skge@pci:0000:04:00.0 */
3874 hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3875 + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3877 dev_err(&pdev->dev, "cannot allocate hardware struct\n");
3878 goto err_out_free_regions;
3880 sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3883 spin_lock_init(&hw->hw_lock);
3884 spin_lock_init(&hw->phy_lock);
3885 tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
3887 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3889 dev_err(&pdev->dev, "cannot map device registers\n");
3890 goto err_out_free_hw;
3893 err = skge_reset(hw);
3895 goto err_out_iounmap;
3897 pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3899 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3900 skge_board_name(hw), hw->chip_rev);
3902 dev = skge_devinit(hw, 0, using_dac);
3904 goto err_out_led_off;
3906 /* Some motherboards are broken and has zero in ROM. */
3907 if (!is_valid_ether_addr(dev->dev_addr))
3908 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3910 err = register_netdev(dev);
3912 dev_err(&pdev->dev, "cannot register net device\n");
3913 goto err_out_free_netdev;
3916 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, hw->irq_name, hw);
3918 dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
3919 dev->name, pdev->irq);
3920 goto err_out_unregister;
3922 skge_show_addr(dev);
3924 if (hw->ports > 1) {
3925 dev1 = skge_devinit(hw, 1, using_dac);
3926 if (dev1 && register_netdev(dev1) == 0)
3927 skge_show_addr(dev1);
3929 /* Failure to register second port need not be fatal */
3930 dev_warn(&pdev->dev, "register of second port failed\n");
3937 pci_set_drvdata(pdev, hw);
3942 unregister_netdev(dev);
3943 err_out_free_netdev:
3946 skge_write16(hw, B0_LED, LED_STAT_OFF);
3951 err_out_free_regions:
3952 pci_release_regions(pdev);
3953 err_out_disable_pdev:
3954 pci_disable_device(pdev);
3955 pci_set_drvdata(pdev, NULL);
3960 static void __devexit skge_remove(struct pci_dev *pdev)
3962 struct skge_hw *hw = pci_get_drvdata(pdev);
3963 struct net_device *dev0, *dev1;
3970 unregister_netdev(dev1);
3972 unregister_netdev(dev0);
3974 tasklet_disable(&hw->phy_task);
3976 spin_lock_irq(&hw->hw_lock);
3978 skge_write32(hw, B0_IMSK, 0);
3979 skge_read32(hw, B0_IMSK);
3980 spin_unlock_irq(&hw->hw_lock);
3982 skge_write16(hw, B0_LED, LED_STAT_OFF);
3983 skge_write8(hw, B0_CTST, CS_RST_SET);
3985 free_irq(pdev->irq, hw);
3986 pci_release_regions(pdev);
3987 pci_disable_device(pdev);
3994 pci_set_drvdata(pdev, NULL);
3998 static int skge_suspend(struct device *dev)
4000 struct pci_dev *pdev = to_pci_dev(dev);
4001 struct skge_hw *hw = pci_get_drvdata(pdev);
4007 for (i = 0; i < hw->ports; i++) {
4008 struct net_device *dev = hw->dev[i];
4009 struct skge_port *skge = netdev_priv(dev);
4011 if (netif_running(dev))
4015 skge_wol_init(skge);
4018 skge_write32(hw, B0_IMSK, 0);
4023 static int skge_resume(struct device *dev)
4025 struct pci_dev *pdev = to_pci_dev(dev);
4026 struct skge_hw *hw = pci_get_drvdata(pdev);
4032 err = skge_reset(hw);
4036 for (i = 0; i < hw->ports; i++) {
4037 struct net_device *dev = hw->dev[i];
4039 if (netif_running(dev)) {
4043 netdev_err(dev, "could not up: %d\n", err);
4053 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4054 #define SKGE_PM_OPS (&skge_pm_ops)
4058 #define SKGE_PM_OPS NULL
4061 static void skge_shutdown(struct pci_dev *pdev)
4063 struct skge_hw *hw = pci_get_drvdata(pdev);
4069 for (i = 0; i < hw->ports; i++) {
4070 struct net_device *dev = hw->dev[i];
4071 struct skge_port *skge = netdev_priv(dev);
4074 skge_wol_init(skge);
4077 pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4078 pci_set_power_state(pdev, PCI_D3hot);
4081 static struct pci_driver skge_driver = {
4083 .id_table = skge_id_table,
4084 .probe = skge_probe,
4085 .remove = __devexit_p(skge_remove),
4086 .shutdown = skge_shutdown,
4087 .driver.pm = SKGE_PM_OPS,
4090 static struct dmi_system_id skge_32bit_dma_boards[] = {
4092 .ident = "Gigabyte nForce boards",
4094 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4095 DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4101 static int __init skge_init_module(void)
4103 if (dmi_check_system(skge_32bit_dma_boards))
4106 return pci_register_driver(&skge_driver);
4109 static void __exit skge_cleanup_module(void)
4111 pci_unregister_driver(&skge_driver);
4112 skge_debug_cleanup();
4115 module_init(skge_init_module);
4116 module_exit(skge_cleanup_module);