1 /* arch/sparc64/mm/tsb.c
6 #include <linux/kernel.h>
7 #include <linux/preempt.h>
8 #include <linux/slab.h>
9 #include <asm/system.h>
11 #include <asm/tlbflush.h>
13 #include <asm/mmu_context.h>
14 #include <asm/pgtable.h>
16 #include <asm/oplib.h>
18 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
20 static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
23 return vaddr & (nentries - 1);
26 static inline int tag_compare(unsigned long tag, unsigned long vaddr)
28 return (tag == (vaddr >> 22));
31 /* TSB flushes need only occur on the processor initiating the address
32 * space modification, not on each cpu the address space has run on.
33 * Only the TLB flush needs that treatment.
36 void flush_tsb_kernel_range(unsigned long start, unsigned long end)
40 for (v = start; v < end; v += PAGE_SIZE) {
41 unsigned long hash = tsb_hash(v, PAGE_SHIFT,
43 struct tsb *ent = &swapper_tsb[hash];
45 if (tag_compare(ent->tag, v))
46 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
50 static void __flush_tsb_one(struct mmu_gather *mp, unsigned long hash_shift, unsigned long tsb, unsigned long nentries)
54 for (i = 0; i < mp->tlb_nr; i++) {
55 unsigned long v = mp->vaddrs[i];
56 unsigned long tag, ent, hash;
60 hash = tsb_hash(v, hash_shift, nentries);
61 ent = tsb + (hash * sizeof(struct tsb));
68 void flush_tsb_user(struct mmu_gather *mp)
70 struct mm_struct *mm = mp->mm;
71 unsigned long nentries, base, flags;
73 spin_lock_irqsave(&mm->context.lock, flags);
75 base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
76 nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
77 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
79 __flush_tsb_one(mp, PAGE_SHIFT, base, nentries);
81 #ifdef CONFIG_HUGETLB_PAGE
82 if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
83 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
84 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
85 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
87 __flush_tsb_one(mp, HPAGE_SHIFT, base, nentries);
90 spin_unlock_irqrestore(&mm->context.lock, flags);
93 #if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
94 #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K
95 #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K
96 #elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
97 #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_64K
98 #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_64K
100 #error Broken base page size setting...
103 #ifdef CONFIG_HUGETLB_PAGE
104 #if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
105 #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_64K
106 #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_64K
107 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
108 #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_512K
109 #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_512K
110 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
111 #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB
112 #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB
114 #error Broken huge page size setting...
118 static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
120 unsigned long tsb_reg, base, tsb_paddr;
121 unsigned long page_sz, tte;
123 mm->context.tsb_block[tsb_idx].tsb_nentries =
124 tsb_bytes / sizeof(struct tsb);
127 tte = pgprot_val(PAGE_KERNEL_LOCKED);
128 tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
129 BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
131 /* Use the smallest page size that can map the whole TSB
137 #ifdef DCACHE_ALIASING_POSSIBLE
138 base += (tsb_paddr & 8192);
160 page_sz = 512 * 1024;
165 page_sz = 512 * 1024;
170 page_sz = 512 * 1024;
175 page_sz = 4 * 1024 * 1024;
179 printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
180 current->comm, current->pid, tsb_bytes);
183 tte |= pte_sz_bits(page_sz);
185 if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
186 /* Physical mapping, no locked TLB entry for TSB. */
187 tsb_reg |= tsb_paddr;
189 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
190 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
191 mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
194 tsb_reg |= (tsb_paddr & (page_sz - 1UL));
195 tte |= (tsb_paddr & ~(page_sz - 1UL));
197 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
198 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
199 mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
202 /* Setup the Hypervisor TSB descriptor. */
203 if (tlb_type == hypervisor) {
204 struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
208 hp->pgsz_idx = HV_PGSZ_IDX_BASE;
210 #ifdef CONFIG_HUGETLB_PAGE
212 hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
219 hp->num_ttes = tsb_bytes / 16;
223 hp->pgsz_mask = HV_PGSZ_MASK_BASE;
225 #ifdef CONFIG_HUGETLB_PAGE
227 hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
233 hp->tsb_base = tsb_paddr;
238 static struct kmem_cache *tsb_caches[8] __read_mostly;
240 static const char *tsb_cache_names[8] = {
251 void __init pgtable_cache_init(void)
255 for (i = 0; i < 8; i++) {
256 unsigned long size = 8192 << i;
257 const char *name = tsb_cache_names[i];
259 tsb_caches[i] = kmem_cache_create(name,
262 if (!tsb_caches[i]) {
263 prom_printf("Could not create %s cache\n", name);
269 int sysctl_tsb_ratio = -2;
271 static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
273 unsigned long num_ents = (new_size / sizeof(struct tsb));
275 if (sysctl_tsb_ratio < 0)
276 return num_ents - (num_ents >> -sysctl_tsb_ratio);
278 return num_ents + (num_ents >> sysctl_tsb_ratio);
281 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
282 * do_sparc64_fault() invokes this routine to try and grow it.
284 * When we reach the maximum TSB size supported, we stick ~0UL into
285 * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
286 * will not trigger any longer.
288 * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
289 * of two. The TSB must be aligned to it's size, so f.e. a 512K TSB
290 * must be 512K aligned. It also must be physically contiguous, so we
291 * cannot use vmalloc().
293 * The idea here is to grow the TSB when the RSS of the process approaches
294 * the number of entries that the current TSB can hold at once. Currently,
295 * we trigger when the RSS hits 3/4 of the TSB capacity.
297 void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
299 unsigned long max_tsb_size = 1 * 1024 * 1024;
300 unsigned long new_size, old_size, flags;
301 struct tsb *old_tsb, *new_tsb;
302 unsigned long new_cache_index, old_cache_index;
303 unsigned long new_rss_limit;
306 if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
307 max_tsb_size = (PAGE_SIZE << MAX_ORDER);
310 for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
311 new_rss_limit = tsb_size_to_rss_limit(new_size);
312 if (new_rss_limit > rss)
317 if (new_size == max_tsb_size)
318 new_rss_limit = ~0UL;
321 gfp_flags = GFP_KERNEL;
322 if (new_size > (PAGE_SIZE * 2))
323 gfp_flags = __GFP_NOWARN | __GFP_NORETRY;
325 new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
326 gfp_flags, numa_node_id());
327 if (unlikely(!new_tsb)) {
328 /* Not being able to fork due to a high-order TSB
329 * allocation failure is very bad behavior. Just back
330 * down to a 0-order allocation and force no TSB
331 * growing for this address space.
333 if (mm->context.tsb_block[tsb_index].tsb == NULL &&
334 new_cache_index > 0) {
337 new_rss_limit = ~0UL;
338 goto retry_tsb_alloc;
341 /* If we failed on a TSB grow, we are under serious
342 * memory pressure so don't try to grow any more.
344 if (mm->context.tsb_block[tsb_index].tsb != NULL)
345 mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
349 /* Mark all tags as invalid. */
350 tsb_init(new_tsb, new_size);
352 /* Ok, we are about to commit the changes. If we are
353 * growing an existing TSB the locking is very tricky,
356 * We have to hold mm->context.lock while committing to the
357 * new TSB, this synchronizes us with processors in
358 * flush_tsb_user() and switch_mm() for this address space.
360 * But even with that lock held, processors run asynchronously
361 * accessing the old TSB via TLB miss handling. This is OK
362 * because those actions are just propagating state from the
363 * Linux page tables into the TSB, page table mappings are not
364 * being changed. If a real fault occurs, the processor will
365 * synchronize with us when it hits flush_tsb_user(), this is
366 * also true for the case where vmscan is modifying the page
367 * tables. The only thing we need to be careful with is to
368 * skip any locked TSB entries during copy_tsb().
370 * When we finish committing to the new TSB, we have to drop
371 * the lock and ask all other cpus running this address space
372 * to run tsb_context_switch() to see the new TSB table.
374 spin_lock_irqsave(&mm->context.lock, flags);
376 old_tsb = mm->context.tsb_block[tsb_index].tsb;
378 (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
379 old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
383 /* Handle multiple threads trying to grow the TSB at the same time.
384 * One will get in here first, and bump the size and the RSS limit.
385 * The others will get in here next and hit this check.
387 if (unlikely(old_tsb &&
388 (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
389 spin_unlock_irqrestore(&mm->context.lock, flags);
391 kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
395 mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
398 extern void copy_tsb(unsigned long old_tsb_base,
399 unsigned long old_tsb_size,
400 unsigned long new_tsb_base,
401 unsigned long new_tsb_size);
402 unsigned long old_tsb_base = (unsigned long) old_tsb;
403 unsigned long new_tsb_base = (unsigned long) new_tsb;
405 if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
406 old_tsb_base = __pa(old_tsb_base);
407 new_tsb_base = __pa(new_tsb_base);
409 copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
412 mm->context.tsb_block[tsb_index].tsb = new_tsb;
413 setup_tsb_params(mm, tsb_index, new_size);
415 spin_unlock_irqrestore(&mm->context.lock, flags);
417 /* If old_tsb is NULL, we're being invoked for the first time
418 * from init_new_context().
421 /* Reload it on the local cpu. */
422 tsb_context_switch(mm);
424 /* Now force other processors to do the same. */
429 /* Now it is safe to free the old tsb. */
430 kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
434 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
436 #ifdef CONFIG_HUGETLB_PAGE
437 unsigned long huge_pte_count;
441 spin_lock_init(&mm->context.lock);
443 mm->context.sparc64_ctx_val = 0UL;
445 #ifdef CONFIG_HUGETLB_PAGE
446 /* We reset it to zero because the fork() page copying
447 * will re-increment the counters as the parent PTEs are
448 * copied into the child address space.
450 huge_pte_count = mm->context.huge_pte_count;
451 mm->context.huge_pte_count = 0;
454 /* copy_mm() copies over the parent's mm_struct before calling
455 * us, so we need to zero out the TSB pointer or else tsb_grow()
456 * will be confused and think there is an older TSB to free up.
458 for (i = 0; i < MM_NUM_TSBS; i++)
459 mm->context.tsb_block[i].tsb = NULL;
461 /* If this is fork, inherit the parent's TSB size. We would
462 * grow it to that size on the first page fault anyways.
464 tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
466 #ifdef CONFIG_HUGETLB_PAGE
467 if (unlikely(huge_pte_count))
468 tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
471 if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
477 static void tsb_destroy_one(struct tsb_config *tp)
479 unsigned long cache_index;
483 cache_index = tp->tsb_reg_val & 0x7UL;
484 kmem_cache_free(tsb_caches[cache_index], tp->tsb);
486 tp->tsb_reg_val = 0UL;
489 void destroy_context(struct mm_struct *mm)
491 unsigned long flags, i;
493 for (i = 0; i < MM_NUM_TSBS; i++)
494 tsb_destroy_one(&mm->context.tsb_block[i]);
496 spin_lock_irqsave(&ctx_alloc_lock, flags);
498 if (CTX_VALID(mm->context)) {
499 unsigned long nr = CTX_NRBITS(mm->context);
500 mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
503 spin_unlock_irqrestore(&ctx_alloc_lock, flags);