1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/kernel/signal.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/tty.h>
28 #include <linux/binfmts.h>
29 #include <linux/coredump.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/ptrace.h>
33 #include <linux/signal.h>
34 #include <linux/signalfd.h>
35 #include <linux/ratelimit.h>
36 #include <linux/task_work.h>
37 #include <linux/capability.h>
38 #include <linux/freezer.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/nsproxy.h>
41 #include <linux/user_namespace.h>
42 #include <linux/uprobes.h>
43 #include <linux/compat.h>
44 #include <linux/cn_proc.h>
45 #include <linux/compiler.h>
46 #include <linux/posix-timers.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 #include <linux/sysctl.h>
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/signal.h>
54 #include <asm/param.h>
55 #include <linux/uaccess.h>
56 #include <asm/unistd.h>
57 #include <asm/siginfo.h>
58 #include <asm/cacheflush.h>
59 #include <asm/syscall.h> /* for syscall_get_* */
62 * SLAB caches for signal bits.
65 static struct kmem_cache *sigqueue_cachep;
67 int print_fatal_signals __read_mostly;
69 static void __user *sig_handler(struct task_struct *t, int sig)
71 return t->sighand->action[sig - 1].sa.sa_handler;
74 static inline bool sig_handler_ignored(void __user *handler, int sig)
76 /* Is it explicitly or implicitly ignored? */
77 return handler == SIG_IGN ||
78 (handler == SIG_DFL && sig_kernel_ignore(sig));
81 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
85 handler = sig_handler(t, sig);
87 /* SIGKILL and SIGSTOP may not be sent to the global init */
88 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
91 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
92 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
95 /* Only allow kernel generated signals to this kthread */
96 if (unlikely((t->flags & PF_KTHREAD) &&
97 (handler == SIG_KTHREAD_KERNEL) && !force))
100 return sig_handler_ignored(handler, sig);
103 static bool sig_ignored(struct task_struct *t, int sig, bool force)
106 * Blocked signals are never ignored, since the
107 * signal handler may change by the time it is
110 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
114 * Tracers may want to know about even ignored signal unless it
115 * is SIGKILL which can't be reported anyway but can be ignored
116 * by SIGNAL_UNKILLABLE task.
118 if (t->ptrace && sig != SIGKILL)
121 return sig_task_ignored(t, sig, force);
125 * Re-calculate pending state from the set of locally pending
126 * signals, globally pending signals, and blocked signals.
128 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
133 switch (_NSIG_WORDS) {
135 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
136 ready |= signal->sig[i] &~ blocked->sig[i];
139 case 4: ready = signal->sig[3] &~ blocked->sig[3];
140 ready |= signal->sig[2] &~ blocked->sig[2];
141 ready |= signal->sig[1] &~ blocked->sig[1];
142 ready |= signal->sig[0] &~ blocked->sig[0];
145 case 2: ready = signal->sig[1] &~ blocked->sig[1];
146 ready |= signal->sig[0] &~ blocked->sig[0];
149 case 1: ready = signal->sig[0] &~ blocked->sig[0];
154 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
156 static bool recalc_sigpending_tsk(struct task_struct *t)
158 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
159 PENDING(&t->pending, &t->blocked) ||
160 PENDING(&t->signal->shared_pending, &t->blocked) ||
161 cgroup_task_frozen(t)) {
162 set_tsk_thread_flag(t, TIF_SIGPENDING);
167 * We must never clear the flag in another thread, or in current
168 * when it's possible the current syscall is returning -ERESTART*.
169 * So we don't clear it here, and only callers who know they should do.
175 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
176 * This is superfluous when called on current, the wakeup is a harmless no-op.
178 void recalc_sigpending_and_wake(struct task_struct *t)
180 if (recalc_sigpending_tsk(t))
181 signal_wake_up(t, 0);
184 void recalc_sigpending(void)
186 if (!recalc_sigpending_tsk(current) && !freezing(current))
187 clear_thread_flag(TIF_SIGPENDING);
190 EXPORT_SYMBOL(recalc_sigpending);
192 void calculate_sigpending(void)
194 /* Have any signals or users of TIF_SIGPENDING been delayed
197 spin_lock_irq(¤t->sighand->siglock);
198 set_tsk_thread_flag(current, TIF_SIGPENDING);
200 spin_unlock_irq(¤t->sighand->siglock);
203 /* Given the mask, find the first available signal that should be serviced. */
205 #define SYNCHRONOUS_MASK \
206 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
207 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
209 int next_signal(struct sigpending *pending, sigset_t *mask)
211 unsigned long i, *s, *m, x;
214 s = pending->signal.sig;
218 * Handle the first word specially: it contains the
219 * synchronous signals that need to be dequeued first.
223 if (x & SYNCHRONOUS_MASK)
224 x &= SYNCHRONOUS_MASK;
229 switch (_NSIG_WORDS) {
231 for (i = 1; i < _NSIG_WORDS; ++i) {
235 sig = ffz(~x) + i*_NSIG_BPW + 1;
244 sig = ffz(~x) + _NSIG_BPW + 1;
255 static inline void print_dropped_signal(int sig)
257 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
259 if (!print_fatal_signals)
262 if (!__ratelimit(&ratelimit_state))
265 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
266 current->comm, current->pid, sig);
270 * task_set_jobctl_pending - set jobctl pending bits
272 * @mask: pending bits to set
274 * Clear @mask from @task->jobctl. @mask must be subset of
275 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
276 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
277 * cleared. If @task is already being killed or exiting, this function
281 * Must be called with @task->sighand->siglock held.
284 * %true if @mask is set, %false if made noop because @task was dying.
286 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
288 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
289 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
290 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
292 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
295 if (mask & JOBCTL_STOP_SIGMASK)
296 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
298 task->jobctl |= mask;
303 * task_clear_jobctl_trapping - clear jobctl trapping bit
306 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
307 * Clear it and wake up the ptracer. Note that we don't need any further
308 * locking. @task->siglock guarantees that @task->parent points to the
312 * Must be called with @task->sighand->siglock held.
314 void task_clear_jobctl_trapping(struct task_struct *task)
316 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
317 task->jobctl &= ~JOBCTL_TRAPPING;
318 smp_mb(); /* advised by wake_up_bit() */
319 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
324 * task_clear_jobctl_pending - clear jobctl pending bits
326 * @mask: pending bits to clear
328 * Clear @mask from @task->jobctl. @mask must be subset of
329 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
330 * STOP bits are cleared together.
332 * If clearing of @mask leaves no stop or trap pending, this function calls
333 * task_clear_jobctl_trapping().
336 * Must be called with @task->sighand->siglock held.
338 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
340 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
342 if (mask & JOBCTL_STOP_PENDING)
343 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
345 task->jobctl &= ~mask;
347 if (!(task->jobctl & JOBCTL_PENDING_MASK))
348 task_clear_jobctl_trapping(task);
352 * task_participate_group_stop - participate in a group stop
353 * @task: task participating in a group stop
355 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
356 * Group stop states are cleared and the group stop count is consumed if
357 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
358 * stop, the appropriate `SIGNAL_*` flags are set.
361 * Must be called with @task->sighand->siglock held.
364 * %true if group stop completion should be notified to the parent, %false
367 static bool task_participate_group_stop(struct task_struct *task)
369 struct signal_struct *sig = task->signal;
370 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
372 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
374 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
379 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
380 sig->group_stop_count--;
383 * Tell the caller to notify completion iff we are entering into a
384 * fresh group stop. Read comment in do_signal_stop() for details.
386 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
387 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
393 void task_join_group_stop(struct task_struct *task)
395 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
396 struct signal_struct *sig = current->signal;
398 if (sig->group_stop_count) {
399 sig->group_stop_count++;
400 mask |= JOBCTL_STOP_CONSUME;
401 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
404 /* Have the new thread join an on-going signal group stop */
405 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
409 * allocate a new signal queue record
410 * - this may be called without locks if and only if t == current, otherwise an
411 * appropriate lock must be held to stop the target task from exiting
413 static struct sigqueue *
414 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
415 int override_rlimit, const unsigned int sigqueue_flags)
417 struct sigqueue *q = NULL;
418 struct ucounts *ucounts;
422 * Protect access to @t credentials. This can go away when all
423 * callers hold rcu read lock.
425 * NOTE! A pending signal will hold on to the user refcount,
426 * and we get/put the refcount only when the sigpending count
427 * changes from/to zero.
430 ucounts = task_ucounts(t);
431 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
436 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
437 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
439 print_dropped_signal(sig);
442 if (unlikely(q == NULL)) {
443 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
445 INIT_LIST_HEAD(&q->list);
446 q->flags = sigqueue_flags;
447 q->ucounts = ucounts;
452 static void __sigqueue_free(struct sigqueue *q)
454 if (q->flags & SIGQUEUE_PREALLOC)
457 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
460 kmem_cache_free(sigqueue_cachep, q);
463 void flush_sigqueue(struct sigpending *queue)
467 sigemptyset(&queue->signal);
468 while (!list_empty(&queue->list)) {
469 q = list_entry(queue->list.next, struct sigqueue , list);
470 list_del_init(&q->list);
476 * Flush all pending signals for this kthread.
478 void flush_signals(struct task_struct *t)
482 spin_lock_irqsave(&t->sighand->siglock, flags);
483 clear_tsk_thread_flag(t, TIF_SIGPENDING);
484 flush_sigqueue(&t->pending);
485 flush_sigqueue(&t->signal->shared_pending);
486 spin_unlock_irqrestore(&t->sighand->siglock, flags);
488 EXPORT_SYMBOL(flush_signals);
490 #ifdef CONFIG_POSIX_TIMERS
491 static void __flush_itimer_signals(struct sigpending *pending)
493 sigset_t signal, retain;
494 struct sigqueue *q, *n;
496 signal = pending->signal;
497 sigemptyset(&retain);
499 list_for_each_entry_safe(q, n, &pending->list, list) {
500 int sig = q->info.si_signo;
502 if (likely(q->info.si_code != SI_TIMER)) {
503 sigaddset(&retain, sig);
505 sigdelset(&signal, sig);
506 list_del_init(&q->list);
511 sigorsets(&pending->signal, &signal, &retain);
514 void flush_itimer_signals(void)
516 struct task_struct *tsk = current;
519 spin_lock_irqsave(&tsk->sighand->siglock, flags);
520 __flush_itimer_signals(&tsk->pending);
521 __flush_itimer_signals(&tsk->signal->shared_pending);
522 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
526 void ignore_signals(struct task_struct *t)
530 for (i = 0; i < _NSIG; ++i)
531 t->sighand->action[i].sa.sa_handler = SIG_IGN;
537 * Flush all handlers for a task.
541 flush_signal_handlers(struct task_struct *t, int force_default)
544 struct k_sigaction *ka = &t->sighand->action[0];
545 for (i = _NSIG ; i != 0 ; i--) {
546 if (force_default || ka->sa.sa_handler != SIG_IGN)
547 ka->sa.sa_handler = SIG_DFL;
549 #ifdef __ARCH_HAS_SA_RESTORER
550 ka->sa.sa_restorer = NULL;
552 sigemptyset(&ka->sa.sa_mask);
557 bool unhandled_signal(struct task_struct *tsk, int sig)
559 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
560 if (is_global_init(tsk))
563 if (handler != SIG_IGN && handler != SIG_DFL)
566 /* If dying, we handle all new signals by ignoring them */
567 if (fatal_signal_pending(tsk))
570 /* if ptraced, let the tracer determine */
574 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
577 struct sigqueue *q, *first = NULL;
580 * Collect the siginfo appropriate to this signal. Check if
581 * there is another siginfo for the same signal.
583 list_for_each_entry(q, &list->list, list) {
584 if (q->info.si_signo == sig) {
591 sigdelset(&list->signal, sig);
595 list_del_init(&first->list);
596 copy_siginfo(info, &first->info);
599 (first->flags & SIGQUEUE_PREALLOC) &&
600 (info->si_code == SI_TIMER) &&
601 (info->si_sys_private);
603 __sigqueue_free(first);
606 * Ok, it wasn't in the queue. This must be
607 * a fast-pathed signal or we must have been
608 * out of queue space. So zero out the info.
611 info->si_signo = sig;
613 info->si_code = SI_USER;
619 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
620 kernel_siginfo_t *info, bool *resched_timer)
622 int sig = next_signal(pending, mask);
625 collect_signal(sig, pending, info, resched_timer);
630 * Dequeue a signal and return the element to the caller, which is
631 * expected to free it.
633 * All callers have to hold the siglock.
635 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
636 kernel_siginfo_t *info, enum pid_type *type)
638 bool resched_timer = false;
641 /* We only dequeue private signals from ourselves, we don't let
642 * signalfd steal them
645 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
647 *type = PIDTYPE_TGID;
648 signr = __dequeue_signal(&tsk->signal->shared_pending,
649 mask, info, &resched_timer);
650 #ifdef CONFIG_POSIX_TIMERS
654 * itimers are process shared and we restart periodic
655 * itimers in the signal delivery path to prevent DoS
656 * attacks in the high resolution timer case. This is
657 * compliant with the old way of self-restarting
658 * itimers, as the SIGALRM is a legacy signal and only
659 * queued once. Changing the restart behaviour to
660 * restart the timer in the signal dequeue path is
661 * reducing the timer noise on heavy loaded !highres
664 if (unlikely(signr == SIGALRM)) {
665 struct hrtimer *tmr = &tsk->signal->real_timer;
667 if (!hrtimer_is_queued(tmr) &&
668 tsk->signal->it_real_incr != 0) {
669 hrtimer_forward(tmr, tmr->base->get_time(),
670 tsk->signal->it_real_incr);
671 hrtimer_restart(tmr);
681 if (unlikely(sig_kernel_stop(signr))) {
683 * Set a marker that we have dequeued a stop signal. Our
684 * caller might release the siglock and then the pending
685 * stop signal it is about to process is no longer in the
686 * pending bitmasks, but must still be cleared by a SIGCONT
687 * (and overruled by a SIGKILL). So those cases clear this
688 * shared flag after we've set it. Note that this flag may
689 * remain set after the signal we return is ignored or
690 * handled. That doesn't matter because its only purpose
691 * is to alert stop-signal processing code when another
692 * processor has come along and cleared the flag.
694 current->jobctl |= JOBCTL_STOP_DEQUEUED;
696 #ifdef CONFIG_POSIX_TIMERS
699 * Release the siglock to ensure proper locking order
700 * of timer locks outside of siglocks. Note, we leave
701 * irqs disabled here, since the posix-timers code is
702 * about to disable them again anyway.
704 spin_unlock(&tsk->sighand->siglock);
705 posixtimer_rearm(info);
706 spin_lock(&tsk->sighand->siglock);
708 /* Don't expose the si_sys_private value to userspace */
709 info->si_sys_private = 0;
714 EXPORT_SYMBOL_GPL(dequeue_signal);
716 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
718 struct task_struct *tsk = current;
719 struct sigpending *pending = &tsk->pending;
720 struct sigqueue *q, *sync = NULL;
723 * Might a synchronous signal be in the queue?
725 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
729 * Return the first synchronous signal in the queue.
731 list_for_each_entry(q, &pending->list, list) {
732 /* Synchronous signals have a positive si_code */
733 if ((q->info.si_code > SI_USER) &&
734 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
742 * Check if there is another siginfo for the same signal.
744 list_for_each_entry_continue(q, &pending->list, list) {
745 if (q->info.si_signo == sync->info.si_signo)
749 sigdelset(&pending->signal, sync->info.si_signo);
752 list_del_init(&sync->list);
753 copy_siginfo(info, &sync->info);
754 __sigqueue_free(sync);
755 return info->si_signo;
759 * Tell a process that it has a new active signal..
761 * NOTE! we rely on the previous spin_lock to
762 * lock interrupts for us! We can only be called with
763 * "siglock" held, and the local interrupt must
764 * have been disabled when that got acquired!
766 * No need to set need_resched since signal event passing
767 * goes through ->blocked
769 void signal_wake_up_state(struct task_struct *t, unsigned int state)
771 lockdep_assert_held(&t->sighand->siglock);
773 set_tsk_thread_flag(t, TIF_SIGPENDING);
776 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
777 * case. We don't check t->state here because there is a race with it
778 * executing another processor and just now entering stopped state.
779 * By using wake_up_state, we ensure the process will wake up and
780 * handle its death signal.
782 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
787 * Remove signals in mask from the pending set and queue.
788 * Returns 1 if any signals were found.
790 * All callers must be holding the siglock.
792 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
794 struct sigqueue *q, *n;
797 sigandsets(&m, mask, &s->signal);
798 if (sigisemptyset(&m))
801 sigandnsets(&s->signal, &s->signal, mask);
802 list_for_each_entry_safe(q, n, &s->list, list) {
803 if (sigismember(mask, q->info.si_signo)) {
804 list_del_init(&q->list);
810 static inline int is_si_special(const struct kernel_siginfo *info)
812 return info <= SEND_SIG_PRIV;
815 static inline bool si_fromuser(const struct kernel_siginfo *info)
817 return info == SEND_SIG_NOINFO ||
818 (!is_si_special(info) && SI_FROMUSER(info));
822 * called with RCU read lock from check_kill_permission()
824 static bool kill_ok_by_cred(struct task_struct *t)
826 const struct cred *cred = current_cred();
827 const struct cred *tcred = __task_cred(t);
829 return uid_eq(cred->euid, tcred->suid) ||
830 uid_eq(cred->euid, tcred->uid) ||
831 uid_eq(cred->uid, tcred->suid) ||
832 uid_eq(cred->uid, tcred->uid) ||
833 ns_capable(tcred->user_ns, CAP_KILL);
837 * Bad permissions for sending the signal
838 * - the caller must hold the RCU read lock
840 static int check_kill_permission(int sig, struct kernel_siginfo *info,
841 struct task_struct *t)
846 if (!valid_signal(sig))
849 if (!si_fromuser(info))
852 error = audit_signal_info(sig, t); /* Let audit system see the signal */
856 if (!same_thread_group(current, t) &&
857 !kill_ok_by_cred(t)) {
860 sid = task_session(t);
862 * We don't return the error if sid == NULL. The
863 * task was unhashed, the caller must notice this.
865 if (!sid || sid == task_session(current))
873 return security_task_kill(t, info, sig, NULL);
877 * ptrace_trap_notify - schedule trap to notify ptracer
878 * @t: tracee wanting to notify tracer
880 * This function schedules sticky ptrace trap which is cleared on the next
881 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
884 * If @t is running, STOP trap will be taken. If trapped for STOP and
885 * ptracer is listening for events, tracee is woken up so that it can
886 * re-trap for the new event. If trapped otherwise, STOP trap will be
887 * eventually taken without returning to userland after the existing traps
888 * are finished by PTRACE_CONT.
891 * Must be called with @task->sighand->siglock held.
893 static void ptrace_trap_notify(struct task_struct *t)
895 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
896 lockdep_assert_held(&t->sighand->siglock);
898 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
899 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
903 * Handle magic process-wide effects of stop/continue signals. Unlike
904 * the signal actions, these happen immediately at signal-generation
905 * time regardless of blocking, ignoring, or handling. This does the
906 * actual continuing for SIGCONT, but not the actual stopping for stop
907 * signals. The process stop is done as a signal action for SIG_DFL.
909 * Returns true if the signal should be actually delivered, otherwise
910 * it should be dropped.
912 static bool prepare_signal(int sig, struct task_struct *p, bool force)
914 struct signal_struct *signal = p->signal;
915 struct task_struct *t;
918 if (signal->flags & SIGNAL_GROUP_EXIT) {
919 if (signal->core_state)
920 return sig == SIGKILL;
922 * The process is in the middle of dying, drop the signal.
925 } else if (sig_kernel_stop(sig)) {
927 * This is a stop signal. Remove SIGCONT from all queues.
929 siginitset(&flush, sigmask(SIGCONT));
930 flush_sigqueue_mask(&flush, &signal->shared_pending);
931 for_each_thread(p, t)
932 flush_sigqueue_mask(&flush, &t->pending);
933 } else if (sig == SIGCONT) {
936 * Remove all stop signals from all queues, wake all threads.
938 siginitset(&flush, SIG_KERNEL_STOP_MASK);
939 flush_sigqueue_mask(&flush, &signal->shared_pending);
940 for_each_thread(p, t) {
941 flush_sigqueue_mask(&flush, &t->pending);
942 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
943 if (likely(!(t->ptrace & PT_SEIZED))) {
944 t->jobctl &= ~JOBCTL_STOPPED;
945 wake_up_state(t, __TASK_STOPPED);
947 ptrace_trap_notify(t);
951 * Notify the parent with CLD_CONTINUED if we were stopped.
953 * If we were in the middle of a group stop, we pretend it
954 * was already finished, and then continued. Since SIGCHLD
955 * doesn't queue we report only CLD_STOPPED, as if the next
956 * CLD_CONTINUED was dropped.
959 if (signal->flags & SIGNAL_STOP_STOPPED)
960 why |= SIGNAL_CLD_CONTINUED;
961 else if (signal->group_stop_count)
962 why |= SIGNAL_CLD_STOPPED;
966 * The first thread which returns from do_signal_stop()
967 * will take ->siglock, notice SIGNAL_CLD_MASK, and
968 * notify its parent. See get_signal().
970 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
971 signal->group_stop_count = 0;
972 signal->group_exit_code = 0;
976 return !sig_ignored(p, sig, force);
980 * Test if P wants to take SIG. After we've checked all threads with this,
981 * it's equivalent to finding no threads not blocking SIG. Any threads not
982 * blocking SIG were ruled out because they are not running and already
983 * have pending signals. Such threads will dequeue from the shared queue
984 * as soon as they're available, so putting the signal on the shared queue
985 * will be equivalent to sending it to one such thread.
987 static inline bool wants_signal(int sig, struct task_struct *p)
989 if (sigismember(&p->blocked, sig))
992 if (p->flags & PF_EXITING)
998 if (task_is_stopped_or_traced(p))
1001 return task_curr(p) || !task_sigpending(p);
1004 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
1006 struct signal_struct *signal = p->signal;
1007 struct task_struct *t;
1010 * Now find a thread we can wake up to take the signal off the queue.
1012 * Try the suggested task first (may or may not be the main thread).
1014 if (wants_signal(sig, p))
1016 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1018 * There is just one thread and it does not need to be woken.
1019 * It will dequeue unblocked signals before it runs again.
1024 * Otherwise try to find a suitable thread.
1026 t = signal->curr_target;
1027 while (!wants_signal(sig, t)) {
1029 if (t == signal->curr_target)
1031 * No thread needs to be woken.
1032 * Any eligible threads will see
1033 * the signal in the queue soon.
1037 signal->curr_target = t;
1041 * Found a killable thread. If the signal will be fatal,
1042 * then start taking the whole group down immediately.
1044 if (sig_fatal(p, sig) &&
1045 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1046 !sigismember(&t->real_blocked, sig) &&
1047 (sig == SIGKILL || !p->ptrace)) {
1049 * This signal will be fatal to the whole group.
1051 if (!sig_kernel_coredump(sig)) {
1053 * Start a group exit and wake everybody up.
1054 * This way we don't have other threads
1055 * running and doing things after a slower
1056 * thread has the fatal signal pending.
1058 signal->flags = SIGNAL_GROUP_EXIT;
1059 signal->group_exit_code = sig;
1060 signal->group_stop_count = 0;
1061 __for_each_thread(signal, t) {
1062 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1063 sigaddset(&t->pending.signal, SIGKILL);
1064 signal_wake_up(t, 1);
1071 * The signal is already in the shared-pending queue.
1072 * Tell the chosen thread to wake up and dequeue it.
1074 signal_wake_up(t, sig == SIGKILL);
1078 static inline bool legacy_queue(struct sigpending *signals, int sig)
1080 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1083 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1084 struct task_struct *t, enum pid_type type, bool force)
1086 struct sigpending *pending;
1088 int override_rlimit;
1089 int ret = 0, result;
1091 lockdep_assert_held(&t->sighand->siglock);
1093 result = TRACE_SIGNAL_IGNORED;
1094 if (!prepare_signal(sig, t, force))
1097 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1099 * Short-circuit ignored signals and support queuing
1100 * exactly one non-rt signal, so that we can get more
1101 * detailed information about the cause of the signal.
1103 result = TRACE_SIGNAL_ALREADY_PENDING;
1104 if (legacy_queue(pending, sig))
1107 result = TRACE_SIGNAL_DELIVERED;
1109 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1111 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1115 * Real-time signals must be queued if sent by sigqueue, or
1116 * some other real-time mechanism. It is implementation
1117 * defined whether kill() does so. We attempt to do so, on
1118 * the principle of least surprise, but since kill is not
1119 * allowed to fail with EAGAIN when low on memory we just
1120 * make sure at least one signal gets delivered and don't
1121 * pass on the info struct.
1124 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1126 override_rlimit = 0;
1128 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1131 list_add_tail(&q->list, &pending->list);
1132 switch ((unsigned long) info) {
1133 case (unsigned long) SEND_SIG_NOINFO:
1134 clear_siginfo(&q->info);
1135 q->info.si_signo = sig;
1136 q->info.si_errno = 0;
1137 q->info.si_code = SI_USER;
1138 q->info.si_pid = task_tgid_nr_ns(current,
1139 task_active_pid_ns(t));
1142 from_kuid_munged(task_cred_xxx(t, user_ns),
1146 case (unsigned long) SEND_SIG_PRIV:
1147 clear_siginfo(&q->info);
1148 q->info.si_signo = sig;
1149 q->info.si_errno = 0;
1150 q->info.si_code = SI_KERNEL;
1155 copy_siginfo(&q->info, info);
1158 } else if (!is_si_special(info) &&
1159 sig >= SIGRTMIN && info->si_code != SI_USER) {
1161 * Queue overflow, abort. We may abort if the
1162 * signal was rt and sent by user using something
1163 * other than kill().
1165 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1170 * This is a silent loss of information. We still
1171 * send the signal, but the *info bits are lost.
1173 result = TRACE_SIGNAL_LOSE_INFO;
1177 signalfd_notify(t, sig);
1178 sigaddset(&pending->signal, sig);
1180 /* Let multiprocess signals appear after on-going forks */
1181 if (type > PIDTYPE_TGID) {
1182 struct multiprocess_signals *delayed;
1183 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1184 sigset_t *signal = &delayed->signal;
1185 /* Can't queue both a stop and a continue signal */
1187 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1188 else if (sig_kernel_stop(sig))
1189 sigdelset(signal, SIGCONT);
1190 sigaddset(signal, sig);
1194 complete_signal(sig, t, type);
1196 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1200 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1203 switch (siginfo_layout(info->si_signo, info->si_code)) {
1212 case SIL_FAULT_TRAPNO:
1213 case SIL_FAULT_MCEERR:
1214 case SIL_FAULT_BNDERR:
1215 case SIL_FAULT_PKUERR:
1216 case SIL_FAULT_PERF_EVENT:
1224 int send_signal_locked(int sig, struct kernel_siginfo *info,
1225 struct task_struct *t, enum pid_type type)
1227 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1230 if (info == SEND_SIG_NOINFO) {
1231 /* Force if sent from an ancestor pid namespace */
1232 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1233 } else if (info == SEND_SIG_PRIV) {
1234 /* Don't ignore kernel generated signals */
1236 } else if (has_si_pid_and_uid(info)) {
1237 /* SIGKILL and SIGSTOP is special or has ids */
1238 struct user_namespace *t_user_ns;
1241 t_user_ns = task_cred_xxx(t, user_ns);
1242 if (current_user_ns() != t_user_ns) {
1243 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1244 info->si_uid = from_kuid_munged(t_user_ns, uid);
1248 /* A kernel generated signal? */
1249 force = (info->si_code == SI_KERNEL);
1251 /* From an ancestor pid namespace? */
1252 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1257 return __send_signal_locked(sig, info, t, type, force);
1260 static void print_fatal_signal(int signr)
1262 struct pt_regs *regs = task_pt_regs(current);
1263 struct file *exe_file;
1265 exe_file = get_task_exe_file(current);
1267 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1268 exe_file, current->comm, signr);
1271 pr_info("%s: potentially unexpected fatal signal %d.\n",
1272 current->comm, signr);
1275 #if defined(__i386__) && !defined(__arch_um__)
1276 pr_info("code at %08lx: ", regs->ip);
1279 for (i = 0; i < 16; i++) {
1282 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1284 pr_cont("%02x ", insn);
1294 static int __init setup_print_fatal_signals(char *str)
1296 get_option (&str, &print_fatal_signals);
1301 __setup("print-fatal-signals=", setup_print_fatal_signals);
1303 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1306 unsigned long flags;
1309 if (lock_task_sighand(p, &flags)) {
1310 ret = send_signal_locked(sig, info, p, type);
1311 unlock_task_sighand(p, &flags);
1318 HANDLER_CURRENT, /* If reachable use the current handler */
1319 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1320 HANDLER_EXIT, /* Only visible as the process exit code */
1324 * Force a signal that the process can't ignore: if necessary
1325 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1327 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1328 * since we do not want to have a signal handler that was blocked
1329 * be invoked when user space had explicitly blocked it.
1331 * We don't want to have recursive SIGSEGV's etc, for example,
1332 * that is why we also clear SIGNAL_UNKILLABLE.
1335 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1336 enum sig_handler handler)
1338 unsigned long int flags;
1339 int ret, blocked, ignored;
1340 struct k_sigaction *action;
1341 int sig = info->si_signo;
1343 spin_lock_irqsave(&t->sighand->siglock, flags);
1344 action = &t->sighand->action[sig-1];
1345 ignored = action->sa.sa_handler == SIG_IGN;
1346 blocked = sigismember(&t->blocked, sig);
1347 if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1348 action->sa.sa_handler = SIG_DFL;
1349 if (handler == HANDLER_EXIT)
1350 action->sa.sa_flags |= SA_IMMUTABLE;
1352 sigdelset(&t->blocked, sig);
1353 recalc_sigpending_and_wake(t);
1357 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1358 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1360 if (action->sa.sa_handler == SIG_DFL &&
1361 (!t->ptrace || (handler == HANDLER_EXIT)))
1362 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1363 ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1364 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1369 int force_sig_info(struct kernel_siginfo *info)
1371 return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1375 * Nuke all other threads in the group.
1377 int zap_other_threads(struct task_struct *p)
1379 struct task_struct *t = p;
1382 p->signal->group_stop_count = 0;
1384 while_each_thread(p, t) {
1385 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1386 /* Don't require de_thread to wait for the vhost_worker */
1387 if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)
1390 /* Don't bother with already dead threads */
1393 sigaddset(&t->pending.signal, SIGKILL);
1394 signal_wake_up(t, 1);
1400 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1401 unsigned long *flags)
1403 struct sighand_struct *sighand;
1407 sighand = rcu_dereference(tsk->sighand);
1408 if (unlikely(sighand == NULL))
1412 * This sighand can be already freed and even reused, but
1413 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1414 * initializes ->siglock: this slab can't go away, it has
1415 * the same object type, ->siglock can't be reinitialized.
1417 * We need to ensure that tsk->sighand is still the same
1418 * after we take the lock, we can race with de_thread() or
1419 * __exit_signal(). In the latter case the next iteration
1420 * must see ->sighand == NULL.
1422 spin_lock_irqsave(&sighand->siglock, *flags);
1423 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1425 spin_unlock_irqrestore(&sighand->siglock, *flags);
1432 #ifdef CONFIG_LOCKDEP
1433 void lockdep_assert_task_sighand_held(struct task_struct *task)
1435 struct sighand_struct *sighand;
1438 sighand = rcu_dereference(task->sighand);
1440 lockdep_assert_held(&sighand->siglock);
1448 * send signal info to all the members of a group
1450 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1451 struct task_struct *p, enum pid_type type)
1456 ret = check_kill_permission(sig, info, p);
1460 ret = do_send_sig_info(sig, info, p, type);
1466 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1467 * control characters do (^C, ^Z etc)
1468 * - the caller must hold at least a readlock on tasklist_lock
1470 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1472 struct task_struct *p = NULL;
1475 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1476 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1478 * If group_send_sig_info() succeeds at least once ret
1479 * becomes 0 and after that the code below has no effect.
1480 * Otherwise we return the last err or -ESRCH if this
1481 * process group is empty.
1485 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1490 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1493 struct task_struct *p;
1497 p = pid_task(pid, PIDTYPE_PID);
1499 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1501 if (likely(!p || error != -ESRCH))
1505 * The task was unhashed in between, try again. If it
1506 * is dead, pid_task() will return NULL, if we race with
1507 * de_thread() it will find the new leader.
1512 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1516 error = kill_pid_info(sig, info, find_vpid(pid));
1521 static inline bool kill_as_cred_perm(const struct cred *cred,
1522 struct task_struct *target)
1524 const struct cred *pcred = __task_cred(target);
1526 return uid_eq(cred->euid, pcred->suid) ||
1527 uid_eq(cred->euid, pcred->uid) ||
1528 uid_eq(cred->uid, pcred->suid) ||
1529 uid_eq(cred->uid, pcred->uid);
1533 * The usb asyncio usage of siginfo is wrong. The glibc support
1534 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1535 * AKA after the generic fields:
1536 * kernel_pid_t si_pid;
1537 * kernel_uid32_t si_uid;
1538 * sigval_t si_value;
1540 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1541 * after the generic fields is:
1542 * void __user *si_addr;
1544 * This is a practical problem when there is a 64bit big endian kernel
1545 * and a 32bit userspace. As the 32bit address will encoded in the low
1546 * 32bits of the pointer. Those low 32bits will be stored at higher
1547 * address than appear in a 32 bit pointer. So userspace will not
1548 * see the address it was expecting for it's completions.
1550 * There is nothing in the encoding that can allow
1551 * copy_siginfo_to_user32 to detect this confusion of formats, so
1552 * handle this by requiring the caller of kill_pid_usb_asyncio to
1553 * notice when this situration takes place and to store the 32bit
1554 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1557 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1558 struct pid *pid, const struct cred *cred)
1560 struct kernel_siginfo info;
1561 struct task_struct *p;
1562 unsigned long flags;
1565 if (!valid_signal(sig))
1568 clear_siginfo(&info);
1569 info.si_signo = sig;
1570 info.si_errno = errno;
1571 info.si_code = SI_ASYNCIO;
1572 *((sigval_t *)&info.si_pid) = addr;
1575 p = pid_task(pid, PIDTYPE_PID);
1580 if (!kill_as_cred_perm(cred, p)) {
1584 ret = security_task_kill(p, &info, sig, cred);
1589 if (lock_task_sighand(p, &flags)) {
1590 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1591 unlock_task_sighand(p, &flags);
1599 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1602 * kill_something_info() interprets pid in interesting ways just like kill(2).
1604 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1605 * is probably wrong. Should make it like BSD or SYSV.
1608 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1613 return kill_proc_info(sig, info, pid);
1615 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1619 read_lock(&tasklist_lock);
1621 ret = __kill_pgrp_info(sig, info,
1622 pid ? find_vpid(-pid) : task_pgrp(current));
1624 int retval = 0, count = 0;
1625 struct task_struct * p;
1627 for_each_process(p) {
1628 if (task_pid_vnr(p) > 1 &&
1629 !same_thread_group(p, current)) {
1630 int err = group_send_sig_info(sig, info, p,
1637 ret = count ? retval : -ESRCH;
1639 read_unlock(&tasklist_lock);
1645 * These are for backward compatibility with the rest of the kernel source.
1648 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1651 * Make sure legacy kernel users don't send in bad values
1652 * (normal paths check this in check_kill_permission).
1654 if (!valid_signal(sig))
1657 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1659 EXPORT_SYMBOL(send_sig_info);
1661 #define __si_special(priv) \
1662 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1665 send_sig(int sig, struct task_struct *p, int priv)
1667 return send_sig_info(sig, __si_special(priv), p);
1669 EXPORT_SYMBOL(send_sig);
1671 void force_sig(int sig)
1673 struct kernel_siginfo info;
1675 clear_siginfo(&info);
1676 info.si_signo = sig;
1678 info.si_code = SI_KERNEL;
1681 force_sig_info(&info);
1683 EXPORT_SYMBOL(force_sig);
1685 void force_fatal_sig(int sig)
1687 struct kernel_siginfo info;
1689 clear_siginfo(&info);
1690 info.si_signo = sig;
1692 info.si_code = SI_KERNEL;
1695 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1698 void force_exit_sig(int sig)
1700 struct kernel_siginfo info;
1702 clear_siginfo(&info);
1703 info.si_signo = sig;
1705 info.si_code = SI_KERNEL;
1708 force_sig_info_to_task(&info, current, HANDLER_EXIT);
1712 * When things go south during signal handling, we
1713 * will force a SIGSEGV. And if the signal that caused
1714 * the problem was already a SIGSEGV, we'll want to
1715 * make sure we don't even try to deliver the signal..
1717 void force_sigsegv(int sig)
1720 force_fatal_sig(SIGSEGV);
1725 int force_sig_fault_to_task(int sig, int code, void __user *addr
1726 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1727 , struct task_struct *t)
1729 struct kernel_siginfo info;
1731 clear_siginfo(&info);
1732 info.si_signo = sig;
1734 info.si_code = code;
1735 info.si_addr = addr;
1738 info.si_flags = flags;
1741 return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1744 int force_sig_fault(int sig, int code, void __user *addr
1745 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1747 return force_sig_fault_to_task(sig, code, addr
1748 ___ARCH_SI_IA64(imm, flags, isr), current);
1751 int send_sig_fault(int sig, int code, void __user *addr
1752 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1753 , struct task_struct *t)
1755 struct kernel_siginfo info;
1757 clear_siginfo(&info);
1758 info.si_signo = sig;
1760 info.si_code = code;
1761 info.si_addr = addr;
1764 info.si_flags = flags;
1767 return send_sig_info(info.si_signo, &info, t);
1770 int force_sig_mceerr(int code, void __user *addr, short lsb)
1772 struct kernel_siginfo info;
1774 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1775 clear_siginfo(&info);
1776 info.si_signo = SIGBUS;
1778 info.si_code = code;
1779 info.si_addr = addr;
1780 info.si_addr_lsb = lsb;
1781 return force_sig_info(&info);
1784 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1786 struct kernel_siginfo info;
1788 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1789 clear_siginfo(&info);
1790 info.si_signo = SIGBUS;
1792 info.si_code = code;
1793 info.si_addr = addr;
1794 info.si_addr_lsb = lsb;
1795 return send_sig_info(info.si_signo, &info, t);
1797 EXPORT_SYMBOL(send_sig_mceerr);
1799 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1801 struct kernel_siginfo info;
1803 clear_siginfo(&info);
1804 info.si_signo = SIGSEGV;
1806 info.si_code = SEGV_BNDERR;
1807 info.si_addr = addr;
1808 info.si_lower = lower;
1809 info.si_upper = upper;
1810 return force_sig_info(&info);
1814 int force_sig_pkuerr(void __user *addr, u32 pkey)
1816 struct kernel_siginfo info;
1818 clear_siginfo(&info);
1819 info.si_signo = SIGSEGV;
1821 info.si_code = SEGV_PKUERR;
1822 info.si_addr = addr;
1823 info.si_pkey = pkey;
1824 return force_sig_info(&info);
1828 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1830 struct kernel_siginfo info;
1832 clear_siginfo(&info);
1833 info.si_signo = SIGTRAP;
1835 info.si_code = TRAP_PERF;
1836 info.si_addr = addr;
1837 info.si_perf_data = sig_data;
1838 info.si_perf_type = type;
1841 * Signals generated by perf events should not terminate the whole
1842 * process if SIGTRAP is blocked, however, delivering the signal
1843 * asynchronously is better than not delivering at all. But tell user
1844 * space if the signal was asynchronous, so it can clearly be
1845 * distinguished from normal synchronous ones.
1847 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ?
1848 TRAP_PERF_FLAG_ASYNC :
1851 return send_sig_info(info.si_signo, &info, current);
1855 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1856 * @syscall: syscall number to send to userland
1857 * @reason: filter-supplied reason code to send to userland (via si_errno)
1858 * @force_coredump: true to trigger a coredump
1860 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1862 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1864 struct kernel_siginfo info;
1866 clear_siginfo(&info);
1867 info.si_signo = SIGSYS;
1868 info.si_code = SYS_SECCOMP;
1869 info.si_call_addr = (void __user *)KSTK_EIP(current);
1870 info.si_errno = reason;
1871 info.si_arch = syscall_get_arch(current);
1872 info.si_syscall = syscall;
1873 return force_sig_info_to_task(&info, current,
1874 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1877 /* For the crazy architectures that include trap information in
1878 * the errno field, instead of an actual errno value.
1880 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1882 struct kernel_siginfo info;
1884 clear_siginfo(&info);
1885 info.si_signo = SIGTRAP;
1886 info.si_errno = errno;
1887 info.si_code = TRAP_HWBKPT;
1888 info.si_addr = addr;
1889 return force_sig_info(&info);
1892 /* For the rare architectures that include trap information using
1895 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1897 struct kernel_siginfo info;
1899 clear_siginfo(&info);
1900 info.si_signo = sig;
1902 info.si_code = code;
1903 info.si_addr = addr;
1904 info.si_trapno = trapno;
1905 return force_sig_info(&info);
1908 /* For the rare architectures that include trap information using
1911 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1912 struct task_struct *t)
1914 struct kernel_siginfo info;
1916 clear_siginfo(&info);
1917 info.si_signo = sig;
1919 info.si_code = code;
1920 info.si_addr = addr;
1921 info.si_trapno = trapno;
1922 return send_sig_info(info.si_signo, &info, t);
1925 int kill_pgrp(struct pid *pid, int sig, int priv)
1929 read_lock(&tasklist_lock);
1930 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1931 read_unlock(&tasklist_lock);
1935 EXPORT_SYMBOL(kill_pgrp);
1937 int kill_pid(struct pid *pid, int sig, int priv)
1939 return kill_pid_info(sig, __si_special(priv), pid);
1941 EXPORT_SYMBOL(kill_pid);
1944 * These functions support sending signals using preallocated sigqueue
1945 * structures. This is needed "because realtime applications cannot
1946 * afford to lose notifications of asynchronous events, like timer
1947 * expirations or I/O completions". In the case of POSIX Timers
1948 * we allocate the sigqueue structure from the timer_create. If this
1949 * allocation fails we are able to report the failure to the application
1950 * with an EAGAIN error.
1952 struct sigqueue *sigqueue_alloc(void)
1954 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1957 void sigqueue_free(struct sigqueue *q)
1959 unsigned long flags;
1960 spinlock_t *lock = ¤t->sighand->siglock;
1962 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1964 * We must hold ->siglock while testing q->list
1965 * to serialize with collect_signal() or with
1966 * __exit_signal()->flush_sigqueue().
1968 spin_lock_irqsave(lock, flags);
1969 q->flags &= ~SIGQUEUE_PREALLOC;
1971 * If it is queued it will be freed when dequeued,
1972 * like the "regular" sigqueue.
1974 if (!list_empty(&q->list))
1976 spin_unlock_irqrestore(lock, flags);
1982 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1984 int sig = q->info.si_signo;
1985 struct sigpending *pending;
1986 struct task_struct *t;
1987 unsigned long flags;
1990 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1996 * This function is used by POSIX timers to deliver a timer signal.
1997 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1998 * set), the signal must be delivered to the specific thread (queues
2001 * Where type is not PIDTYPE_PID, signals must be delivered to the
2002 * process. In this case, prefer to deliver to current if it is in
2003 * the same thread group as the target process, which avoids
2004 * unnecessarily waking up a potentially idle task.
2006 t = pid_task(pid, type);
2009 if (type != PIDTYPE_PID && same_thread_group(t, current))
2011 if (!likely(lock_task_sighand(t, &flags)))
2014 ret = 1; /* the signal is ignored */
2015 result = TRACE_SIGNAL_IGNORED;
2016 if (!prepare_signal(sig, t, false))
2020 if (unlikely(!list_empty(&q->list))) {
2022 * If an SI_TIMER entry is already queue just increment
2023 * the overrun count.
2025 BUG_ON(q->info.si_code != SI_TIMER);
2026 q->info.si_overrun++;
2027 result = TRACE_SIGNAL_ALREADY_PENDING;
2030 q->info.si_overrun = 0;
2032 signalfd_notify(t, sig);
2033 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2034 list_add_tail(&q->list, &pending->list);
2035 sigaddset(&pending->signal, sig);
2036 complete_signal(sig, t, type);
2037 result = TRACE_SIGNAL_DELIVERED;
2039 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2040 unlock_task_sighand(t, &flags);
2046 static void do_notify_pidfd(struct task_struct *task)
2050 WARN_ON(task->exit_state == 0);
2051 pid = task_pid(task);
2052 wake_up_all(&pid->wait_pidfd);
2056 * Let a parent know about the death of a child.
2057 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2059 * Returns true if our parent ignored us and so we've switched to
2062 bool do_notify_parent(struct task_struct *tsk, int sig)
2064 struct kernel_siginfo info;
2065 unsigned long flags;
2066 struct sighand_struct *psig;
2067 bool autoreap = false;
2070 WARN_ON_ONCE(sig == -1);
2072 /* do_notify_parent_cldstop should have been called instead. */
2073 WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2075 WARN_ON_ONCE(!tsk->ptrace &&
2076 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2078 /* Wake up all pidfd waiters */
2079 do_notify_pidfd(tsk);
2081 if (sig != SIGCHLD) {
2083 * This is only possible if parent == real_parent.
2084 * Check if it has changed security domain.
2086 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2090 clear_siginfo(&info);
2091 info.si_signo = sig;
2094 * We are under tasklist_lock here so our parent is tied to
2095 * us and cannot change.
2097 * task_active_pid_ns will always return the same pid namespace
2098 * until a task passes through release_task.
2100 * write_lock() currently calls preempt_disable() which is the
2101 * same as rcu_read_lock(), but according to Oleg, this is not
2102 * correct to rely on this
2105 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2106 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2110 task_cputime(tsk, &utime, &stime);
2111 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2112 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2114 info.si_status = tsk->exit_code & 0x7f;
2115 if (tsk->exit_code & 0x80)
2116 info.si_code = CLD_DUMPED;
2117 else if (tsk->exit_code & 0x7f)
2118 info.si_code = CLD_KILLED;
2120 info.si_code = CLD_EXITED;
2121 info.si_status = tsk->exit_code >> 8;
2124 psig = tsk->parent->sighand;
2125 spin_lock_irqsave(&psig->siglock, flags);
2126 if (!tsk->ptrace && sig == SIGCHLD &&
2127 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2128 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2130 * We are exiting and our parent doesn't care. POSIX.1
2131 * defines special semantics for setting SIGCHLD to SIG_IGN
2132 * or setting the SA_NOCLDWAIT flag: we should be reaped
2133 * automatically and not left for our parent's wait4 call.
2134 * Rather than having the parent do it as a magic kind of
2135 * signal handler, we just set this to tell do_exit that we
2136 * can be cleaned up without becoming a zombie. Note that
2137 * we still call __wake_up_parent in this case, because a
2138 * blocked sys_wait4 might now return -ECHILD.
2140 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2141 * is implementation-defined: we do (if you don't want
2142 * it, just use SIG_IGN instead).
2145 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2149 * Send with __send_signal as si_pid and si_uid are in the
2150 * parent's namespaces.
2152 if (valid_signal(sig) && sig)
2153 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2154 __wake_up_parent(tsk, tsk->parent);
2155 spin_unlock_irqrestore(&psig->siglock, flags);
2161 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2162 * @tsk: task reporting the state change
2163 * @for_ptracer: the notification is for ptracer
2164 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2166 * Notify @tsk's parent that the stopped/continued state has changed. If
2167 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2168 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2171 * Must be called with tasklist_lock at least read locked.
2173 static void do_notify_parent_cldstop(struct task_struct *tsk,
2174 bool for_ptracer, int why)
2176 struct kernel_siginfo info;
2177 unsigned long flags;
2178 struct task_struct *parent;
2179 struct sighand_struct *sighand;
2183 parent = tsk->parent;
2185 tsk = tsk->group_leader;
2186 parent = tsk->real_parent;
2189 clear_siginfo(&info);
2190 info.si_signo = SIGCHLD;
2193 * see comment in do_notify_parent() about the following 4 lines
2196 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2197 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2200 task_cputime(tsk, &utime, &stime);
2201 info.si_utime = nsec_to_clock_t(utime);
2202 info.si_stime = nsec_to_clock_t(stime);
2207 info.si_status = SIGCONT;
2210 info.si_status = tsk->signal->group_exit_code & 0x7f;
2213 info.si_status = tsk->exit_code & 0x7f;
2219 sighand = parent->sighand;
2220 spin_lock_irqsave(&sighand->siglock, flags);
2221 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2222 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2223 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2225 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2227 __wake_up_parent(tsk, parent);
2228 spin_unlock_irqrestore(&sighand->siglock, flags);
2232 * This must be called with current->sighand->siglock held.
2234 * This should be the path for all ptrace stops.
2235 * We always set current->last_siginfo while stopped here.
2236 * That makes it a way to test a stopped process for
2237 * being ptrace-stopped vs being job-control-stopped.
2239 * Returns the signal the ptracer requested the code resume
2240 * with. If the code did not stop because the tracer is gone,
2241 * the stop signal remains unchanged unless clear_code.
2243 static int ptrace_stop(int exit_code, int why, unsigned long message,
2244 kernel_siginfo_t *info)
2245 __releases(¤t->sighand->siglock)
2246 __acquires(¤t->sighand->siglock)
2248 bool gstop_done = false;
2250 if (arch_ptrace_stop_needed()) {
2252 * The arch code has something special to do before a
2253 * ptrace stop. This is allowed to block, e.g. for faults
2254 * on user stack pages. We can't keep the siglock while
2255 * calling arch_ptrace_stop, so we must release it now.
2256 * To preserve proper semantics, we must do this before
2257 * any signal bookkeeping like checking group_stop_count.
2259 spin_unlock_irq(¤t->sighand->siglock);
2261 spin_lock_irq(¤t->sighand->siglock);
2265 * After this point ptrace_signal_wake_up or signal_wake_up
2266 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2267 * signal comes in. Handle previous ptrace_unlinks and fatal
2268 * signals here to prevent ptrace_stop sleeping in schedule.
2270 if (!current->ptrace || __fatal_signal_pending(current))
2273 set_special_state(TASK_TRACED);
2274 current->jobctl |= JOBCTL_TRACED;
2277 * We're committing to trapping. TRACED should be visible before
2278 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2279 * Also, transition to TRACED and updates to ->jobctl should be
2280 * atomic with respect to siglock and should be done after the arch
2281 * hook as siglock is released and regrabbed across it.
2286 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2288 * set_current_state() smp_wmb();
2290 * wait_task_stopped()
2291 * task_stopped_code()
2292 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2296 current->ptrace_message = message;
2297 current->last_siginfo = info;
2298 current->exit_code = exit_code;
2301 * If @why is CLD_STOPPED, we're trapping to participate in a group
2302 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2303 * across siglock relocks since INTERRUPT was scheduled, PENDING
2304 * could be clear now. We act as if SIGCONT is received after
2305 * TASK_TRACED is entered - ignore it.
2307 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2308 gstop_done = task_participate_group_stop(current);
2310 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2311 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2312 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2313 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2315 /* entering a trap, clear TRAPPING */
2316 task_clear_jobctl_trapping(current);
2318 spin_unlock_irq(¤t->sighand->siglock);
2319 read_lock(&tasklist_lock);
2321 * Notify parents of the stop.
2323 * While ptraced, there are two parents - the ptracer and
2324 * the real_parent of the group_leader. The ptracer should
2325 * know about every stop while the real parent is only
2326 * interested in the completion of group stop. The states
2327 * for the two don't interact with each other. Notify
2328 * separately unless they're gonna be duplicates.
2330 if (current->ptrace)
2331 do_notify_parent_cldstop(current, true, why);
2332 if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2333 do_notify_parent_cldstop(current, false, why);
2336 * Don't want to allow preemption here, because
2337 * sys_ptrace() needs this task to be inactive.
2339 * XXX: implement read_unlock_no_resched().
2342 read_unlock(&tasklist_lock);
2343 cgroup_enter_frozen();
2344 preempt_enable_no_resched();
2346 cgroup_leave_frozen(true);
2349 * We are back. Now reacquire the siglock before touching
2350 * last_siginfo, so that we are sure to have synchronized with
2351 * any signal-sending on another CPU that wants to examine it.
2353 spin_lock_irq(¤t->sighand->siglock);
2354 exit_code = current->exit_code;
2355 current->last_siginfo = NULL;
2356 current->ptrace_message = 0;
2357 current->exit_code = 0;
2359 /* LISTENING can be set only during STOP traps, clear it */
2360 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2363 * Queued signals ignored us while we were stopped for tracing.
2364 * So check for any that we should take before resuming user mode.
2365 * This sets TIF_SIGPENDING, but never clears it.
2367 recalc_sigpending_tsk(current);
2371 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2373 kernel_siginfo_t info;
2375 clear_siginfo(&info);
2376 info.si_signo = signr;
2377 info.si_code = exit_code;
2378 info.si_pid = task_pid_vnr(current);
2379 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2381 /* Let the debugger run. */
2382 return ptrace_stop(exit_code, why, message, &info);
2385 int ptrace_notify(int exit_code, unsigned long message)
2389 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2390 if (unlikely(task_work_pending(current)))
2393 spin_lock_irq(¤t->sighand->siglock);
2394 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2395 spin_unlock_irq(¤t->sighand->siglock);
2400 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2401 * @signr: signr causing group stop if initiating
2403 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2404 * and participate in it. If already set, participate in the existing
2405 * group stop. If participated in a group stop (and thus slept), %true is
2406 * returned with siglock released.
2408 * If ptraced, this function doesn't handle stop itself. Instead,
2409 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2410 * untouched. The caller must ensure that INTERRUPT trap handling takes
2411 * places afterwards.
2414 * Must be called with @current->sighand->siglock held, which is released
2418 * %false if group stop is already cancelled or ptrace trap is scheduled.
2419 * %true if participated in group stop.
2421 static bool do_signal_stop(int signr)
2422 __releases(¤t->sighand->siglock)
2424 struct signal_struct *sig = current->signal;
2426 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2427 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2428 struct task_struct *t;
2430 /* signr will be recorded in task->jobctl for retries */
2431 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2433 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2434 unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2435 unlikely(sig->group_exec_task))
2438 * There is no group stop already in progress. We must
2441 * While ptraced, a task may be resumed while group stop is
2442 * still in effect and then receive a stop signal and
2443 * initiate another group stop. This deviates from the
2444 * usual behavior as two consecutive stop signals can't
2445 * cause two group stops when !ptraced. That is why we
2446 * also check !task_is_stopped(t) below.
2448 * The condition can be distinguished by testing whether
2449 * SIGNAL_STOP_STOPPED is already set. Don't generate
2450 * group_exit_code in such case.
2452 * This is not necessary for SIGNAL_STOP_CONTINUED because
2453 * an intervening stop signal is required to cause two
2454 * continued events regardless of ptrace.
2456 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2457 sig->group_exit_code = signr;
2459 sig->group_stop_count = 0;
2461 if (task_set_jobctl_pending(current, signr | gstop))
2462 sig->group_stop_count++;
2465 while_each_thread(current, t) {
2467 * Setting state to TASK_STOPPED for a group
2468 * stop is always done with the siglock held,
2469 * so this check has no races.
2471 if (!task_is_stopped(t) &&
2472 task_set_jobctl_pending(t, signr | gstop)) {
2473 sig->group_stop_count++;
2474 if (likely(!(t->ptrace & PT_SEIZED)))
2475 signal_wake_up(t, 0);
2477 ptrace_trap_notify(t);
2482 if (likely(!current->ptrace)) {
2486 * If there are no other threads in the group, or if there
2487 * is a group stop in progress and we are the last to stop,
2488 * report to the parent.
2490 if (task_participate_group_stop(current))
2491 notify = CLD_STOPPED;
2493 current->jobctl |= JOBCTL_STOPPED;
2494 set_special_state(TASK_STOPPED);
2495 spin_unlock_irq(¤t->sighand->siglock);
2498 * Notify the parent of the group stop completion. Because
2499 * we're not holding either the siglock or tasklist_lock
2500 * here, ptracer may attach inbetween; however, this is for
2501 * group stop and should always be delivered to the real
2502 * parent of the group leader. The new ptracer will get
2503 * its notification when this task transitions into
2507 read_lock(&tasklist_lock);
2508 do_notify_parent_cldstop(current, false, notify);
2509 read_unlock(&tasklist_lock);
2512 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2513 cgroup_enter_frozen();
2518 * While ptraced, group stop is handled by STOP trap.
2519 * Schedule it and let the caller deal with it.
2521 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2527 * do_jobctl_trap - take care of ptrace jobctl traps
2529 * When PT_SEIZED, it's used for both group stop and explicit
2530 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2531 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2532 * the stop signal; otherwise, %SIGTRAP.
2534 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2535 * number as exit_code and no siginfo.
2538 * Must be called with @current->sighand->siglock held, which may be
2539 * released and re-acquired before returning with intervening sleep.
2541 static void do_jobctl_trap(void)
2543 struct signal_struct *signal = current->signal;
2544 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2546 if (current->ptrace & PT_SEIZED) {
2547 if (!signal->group_stop_count &&
2548 !(signal->flags & SIGNAL_STOP_STOPPED))
2550 WARN_ON_ONCE(!signr);
2551 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2554 WARN_ON_ONCE(!signr);
2555 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2560 * do_freezer_trap - handle the freezer jobctl trap
2562 * Puts the task into frozen state, if only the task is not about to quit.
2563 * In this case it drops JOBCTL_TRAP_FREEZE.
2566 * Must be called with @current->sighand->siglock held,
2567 * which is always released before returning.
2569 static void do_freezer_trap(void)
2570 __releases(¤t->sighand->siglock)
2573 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2574 * let's make another loop to give it a chance to be handled.
2575 * In any case, we'll return back.
2577 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2578 JOBCTL_TRAP_FREEZE) {
2579 spin_unlock_irq(¤t->sighand->siglock);
2584 * Now we're sure that there is no pending fatal signal and no
2585 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2586 * immediately (if there is a non-fatal signal pending), and
2587 * put the task into sleep.
2589 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2590 clear_thread_flag(TIF_SIGPENDING);
2591 spin_unlock_irq(¤t->sighand->siglock);
2592 cgroup_enter_frozen();
2596 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2599 * We do not check sig_kernel_stop(signr) but set this marker
2600 * unconditionally because we do not know whether debugger will
2601 * change signr. This flag has no meaning unless we are going
2602 * to stop after return from ptrace_stop(). In this case it will
2603 * be checked in do_signal_stop(), we should only stop if it was
2604 * not cleared by SIGCONT while we were sleeping. See also the
2605 * comment in dequeue_signal().
2607 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2608 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2610 /* We're back. Did the debugger cancel the sig? */
2615 * Update the siginfo structure if the signal has
2616 * changed. If the debugger wanted something
2617 * specific in the siginfo structure then it should
2618 * have updated *info via PTRACE_SETSIGINFO.
2620 if (signr != info->si_signo) {
2621 clear_siginfo(info);
2622 info->si_signo = signr;
2624 info->si_code = SI_USER;
2626 info->si_pid = task_pid_vnr(current->parent);
2627 info->si_uid = from_kuid_munged(current_user_ns(),
2628 task_uid(current->parent));
2632 /* If the (new) signal is now blocked, requeue it. */
2633 if (sigismember(¤t->blocked, signr) ||
2634 fatal_signal_pending(current)) {
2635 send_signal_locked(signr, info, current, type);
2642 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2644 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2646 case SIL_FAULT_TRAPNO:
2647 case SIL_FAULT_MCEERR:
2648 case SIL_FAULT_BNDERR:
2649 case SIL_FAULT_PKUERR:
2650 case SIL_FAULT_PERF_EVENT:
2651 ksig->info.si_addr = arch_untagged_si_addr(
2652 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2664 bool get_signal(struct ksignal *ksig)
2666 struct sighand_struct *sighand = current->sighand;
2667 struct signal_struct *signal = current->signal;
2670 clear_notify_signal();
2671 if (unlikely(task_work_pending(current)))
2674 if (!task_sigpending(current))
2677 if (unlikely(uprobe_deny_signal()))
2681 * Do this once, we can't return to user-mode if freezing() == T.
2682 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2683 * thus do not need another check after return.
2688 spin_lock_irq(&sighand->siglock);
2691 * Every stopped thread goes here after wakeup. Check to see if
2692 * we should notify the parent, prepare_signal(SIGCONT) encodes
2693 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2695 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2698 if (signal->flags & SIGNAL_CLD_CONTINUED)
2699 why = CLD_CONTINUED;
2703 signal->flags &= ~SIGNAL_CLD_MASK;
2705 spin_unlock_irq(&sighand->siglock);
2708 * Notify the parent that we're continuing. This event is
2709 * always per-process and doesn't make whole lot of sense
2710 * for ptracers, who shouldn't consume the state via
2711 * wait(2) either, but, for backward compatibility, notify
2712 * the ptracer of the group leader too unless it's gonna be
2715 read_lock(&tasklist_lock);
2716 do_notify_parent_cldstop(current, false, why);
2718 if (ptrace_reparented(current->group_leader))
2719 do_notify_parent_cldstop(current->group_leader,
2721 read_unlock(&tasklist_lock);
2727 struct k_sigaction *ka;
2730 /* Has this task already been marked for death? */
2731 if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2732 signal->group_exec_task) {
2733 clear_siginfo(&ksig->info);
2734 ksig->info.si_signo = signr = SIGKILL;
2735 sigdelset(¤t->pending.signal, SIGKILL);
2736 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2737 &sighand->action[SIGKILL - 1]);
2738 recalc_sigpending();
2742 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2746 if (unlikely(current->jobctl &
2747 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2748 if (current->jobctl & JOBCTL_TRAP_MASK) {
2750 spin_unlock_irq(&sighand->siglock);
2751 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2758 * If the task is leaving the frozen state, let's update
2759 * cgroup counters and reset the frozen bit.
2761 if (unlikely(cgroup_task_frozen(current))) {
2762 spin_unlock_irq(&sighand->siglock);
2763 cgroup_leave_frozen(false);
2768 * Signals generated by the execution of an instruction
2769 * need to be delivered before any other pending signals
2770 * so that the instruction pointer in the signal stack
2771 * frame points to the faulting instruction.
2774 signr = dequeue_synchronous_signal(&ksig->info);
2776 signr = dequeue_signal(current, ¤t->blocked,
2777 &ksig->info, &type);
2780 break; /* will return 0 */
2782 if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2783 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2784 signr = ptrace_signal(signr, &ksig->info, type);
2789 ka = &sighand->action[signr-1];
2791 /* Trace actually delivered signals. */
2792 trace_signal_deliver(signr, &ksig->info, ka);
2794 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2796 if (ka->sa.sa_handler != SIG_DFL) {
2797 /* Run the handler. */
2800 if (ka->sa.sa_flags & SA_ONESHOT)
2801 ka->sa.sa_handler = SIG_DFL;
2803 break; /* will return non-zero "signr" value */
2807 * Now we are doing the default action for this signal.
2809 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2813 * Global init gets no signals it doesn't want.
2814 * Container-init gets no signals it doesn't want from same
2817 * Note that if global/container-init sees a sig_kernel_only()
2818 * signal here, the signal must have been generated internally
2819 * or must have come from an ancestor namespace. In either
2820 * case, the signal cannot be dropped.
2822 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2823 !sig_kernel_only(signr))
2826 if (sig_kernel_stop(signr)) {
2828 * The default action is to stop all threads in
2829 * the thread group. The job control signals
2830 * do nothing in an orphaned pgrp, but SIGSTOP
2831 * always works. Note that siglock needs to be
2832 * dropped during the call to is_orphaned_pgrp()
2833 * because of lock ordering with tasklist_lock.
2834 * This allows an intervening SIGCONT to be posted.
2835 * We need to check for that and bail out if necessary.
2837 if (signr != SIGSTOP) {
2838 spin_unlock_irq(&sighand->siglock);
2840 /* signals can be posted during this window */
2842 if (is_current_pgrp_orphaned())
2845 spin_lock_irq(&sighand->siglock);
2848 if (likely(do_signal_stop(ksig->info.si_signo))) {
2849 /* It released the siglock. */
2854 * We didn't actually stop, due to a race
2855 * with SIGCONT or something like that.
2861 spin_unlock_irq(&sighand->siglock);
2862 if (unlikely(cgroup_task_frozen(current)))
2863 cgroup_leave_frozen(true);
2866 * Anything else is fatal, maybe with a core dump.
2868 current->flags |= PF_SIGNALED;
2870 if (sig_kernel_coredump(signr)) {
2871 if (print_fatal_signals)
2872 print_fatal_signal(ksig->info.si_signo);
2873 proc_coredump_connector(current);
2875 * If it was able to dump core, this kills all
2876 * other threads in the group and synchronizes with
2877 * their demise. If we lost the race with another
2878 * thread getting here, it set group_exit_code
2879 * first and our do_group_exit call below will use
2880 * that value and ignore the one we pass it.
2882 do_coredump(&ksig->info);
2886 * PF_USER_WORKER threads will catch and exit on fatal signals
2887 * themselves. They have cleanup that must be performed, so
2888 * we cannot call do_exit() on their behalf.
2890 if (current->flags & PF_USER_WORKER)
2894 * Death signals, no core dump.
2896 do_group_exit(ksig->info.si_signo);
2899 spin_unlock_irq(&sighand->siglock);
2903 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2904 hide_si_addr_tag_bits(ksig);
2906 return ksig->sig > 0;
2910 * signal_delivered - called after signal delivery to update blocked signals
2911 * @ksig: kernel signal struct
2912 * @stepping: nonzero if debugger single-step or block-step in use
2914 * This function should be called when a signal has successfully been
2915 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2916 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2917 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2919 static void signal_delivered(struct ksignal *ksig, int stepping)
2923 /* A signal was successfully delivered, and the
2924 saved sigmask was stored on the signal frame,
2925 and will be restored by sigreturn. So we can
2926 simply clear the restore sigmask flag. */
2927 clear_restore_sigmask();
2929 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2930 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2931 sigaddset(&blocked, ksig->sig);
2932 set_current_blocked(&blocked);
2933 if (current->sas_ss_flags & SS_AUTODISARM)
2934 sas_ss_reset(current);
2936 ptrace_notify(SIGTRAP, 0);
2939 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2942 force_sigsegv(ksig->sig);
2944 signal_delivered(ksig, stepping);
2948 * It could be that complete_signal() picked us to notify about the
2949 * group-wide signal. Other threads should be notified now to take
2950 * the shared signals in @which since we will not.
2952 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2955 struct task_struct *t;
2957 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2958 if (sigisemptyset(&retarget))
2962 while_each_thread(tsk, t) {
2963 if (t->flags & PF_EXITING)
2966 if (!has_pending_signals(&retarget, &t->blocked))
2968 /* Remove the signals this thread can handle. */
2969 sigandsets(&retarget, &retarget, &t->blocked);
2971 if (!task_sigpending(t))
2972 signal_wake_up(t, 0);
2974 if (sigisemptyset(&retarget))
2979 void exit_signals(struct task_struct *tsk)
2985 * @tsk is about to have PF_EXITING set - lock out users which
2986 * expect stable threadgroup.
2988 cgroup_threadgroup_change_begin(tsk);
2990 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2991 sched_mm_cid_exit_signals(tsk);
2992 tsk->flags |= PF_EXITING;
2993 cgroup_threadgroup_change_end(tsk);
2997 spin_lock_irq(&tsk->sighand->siglock);
2999 * From now this task is not visible for group-wide signals,
3000 * see wants_signal(), do_signal_stop().
3002 sched_mm_cid_exit_signals(tsk);
3003 tsk->flags |= PF_EXITING;
3005 cgroup_threadgroup_change_end(tsk);
3007 if (!task_sigpending(tsk))
3010 unblocked = tsk->blocked;
3011 signotset(&unblocked);
3012 retarget_shared_pending(tsk, &unblocked);
3014 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3015 task_participate_group_stop(tsk))
3016 group_stop = CLD_STOPPED;
3018 spin_unlock_irq(&tsk->sighand->siglock);
3021 * If group stop has completed, deliver the notification. This
3022 * should always go to the real parent of the group leader.
3024 if (unlikely(group_stop)) {
3025 read_lock(&tasklist_lock);
3026 do_notify_parent_cldstop(tsk, false, group_stop);
3027 read_unlock(&tasklist_lock);
3032 * System call entry points.
3036 * sys_restart_syscall - restart a system call
3038 SYSCALL_DEFINE0(restart_syscall)
3040 struct restart_block *restart = ¤t->restart_block;
3041 return restart->fn(restart);
3044 long do_no_restart_syscall(struct restart_block *param)
3049 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3051 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3052 sigset_t newblocked;
3053 /* A set of now blocked but previously unblocked signals. */
3054 sigandnsets(&newblocked, newset, ¤t->blocked);
3055 retarget_shared_pending(tsk, &newblocked);
3057 tsk->blocked = *newset;
3058 recalc_sigpending();
3062 * set_current_blocked - change current->blocked mask
3065 * It is wrong to change ->blocked directly, this helper should be used
3066 * to ensure the process can't miss a shared signal we are going to block.
3068 void set_current_blocked(sigset_t *newset)
3070 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3071 __set_current_blocked(newset);
3074 void __set_current_blocked(const sigset_t *newset)
3076 struct task_struct *tsk = current;
3079 * In case the signal mask hasn't changed, there is nothing we need
3080 * to do. The current->blocked shouldn't be modified by other task.
3082 if (sigequalsets(&tsk->blocked, newset))
3085 spin_lock_irq(&tsk->sighand->siglock);
3086 __set_task_blocked(tsk, newset);
3087 spin_unlock_irq(&tsk->sighand->siglock);
3091 * This is also useful for kernel threads that want to temporarily
3092 * (or permanently) block certain signals.
3094 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3095 * interface happily blocks "unblockable" signals like SIGKILL
3098 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3100 struct task_struct *tsk = current;
3103 /* Lockless, only current can change ->blocked, never from irq */
3105 *oldset = tsk->blocked;
3109 sigorsets(&newset, &tsk->blocked, set);
3112 sigandnsets(&newset, &tsk->blocked, set);
3121 __set_current_blocked(&newset);
3124 EXPORT_SYMBOL(sigprocmask);
3127 * The api helps set app-provided sigmasks.
3129 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3130 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3132 * Note that it does set_restore_sigmask() in advance, so it must be always
3133 * paired with restore_saved_sigmask_unless() before return from syscall.
3135 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3141 if (sigsetsize != sizeof(sigset_t))
3143 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3146 set_restore_sigmask();
3147 current->saved_sigmask = current->blocked;
3148 set_current_blocked(&kmask);
3153 #ifdef CONFIG_COMPAT
3154 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3161 if (sigsetsize != sizeof(compat_sigset_t))
3163 if (get_compat_sigset(&kmask, umask))
3166 set_restore_sigmask();
3167 current->saved_sigmask = current->blocked;
3168 set_current_blocked(&kmask);
3175 * sys_rt_sigprocmask - change the list of currently blocked signals
3176 * @how: whether to add, remove, or set signals
3177 * @nset: stores pending signals
3178 * @oset: previous value of signal mask if non-null
3179 * @sigsetsize: size of sigset_t type
3181 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3182 sigset_t __user *, oset, size_t, sigsetsize)
3184 sigset_t old_set, new_set;
3187 /* XXX: Don't preclude handling different sized sigset_t's. */
3188 if (sigsetsize != sizeof(sigset_t))
3191 old_set = current->blocked;
3194 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3196 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3198 error = sigprocmask(how, &new_set, NULL);
3204 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3211 #ifdef CONFIG_COMPAT
3212 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3213 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3215 sigset_t old_set = current->blocked;
3217 /* XXX: Don't preclude handling different sized sigset_t's. */
3218 if (sigsetsize != sizeof(sigset_t))
3224 if (get_compat_sigset(&new_set, nset))
3226 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3228 error = sigprocmask(how, &new_set, NULL);
3232 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3236 static void do_sigpending(sigset_t *set)
3238 spin_lock_irq(¤t->sighand->siglock);
3239 sigorsets(set, ¤t->pending.signal,
3240 ¤t->signal->shared_pending.signal);
3241 spin_unlock_irq(¤t->sighand->siglock);
3243 /* Outside the lock because only this thread touches it. */
3244 sigandsets(set, ¤t->blocked, set);
3248 * sys_rt_sigpending - examine a pending signal that has been raised
3250 * @uset: stores pending signals
3251 * @sigsetsize: size of sigset_t type or larger
3253 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3257 if (sigsetsize > sizeof(*uset))
3260 do_sigpending(&set);
3262 if (copy_to_user(uset, &set, sigsetsize))
3268 #ifdef CONFIG_COMPAT
3269 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3270 compat_size_t, sigsetsize)
3274 if (sigsetsize > sizeof(*uset))
3277 do_sigpending(&set);
3279 return put_compat_sigset(uset, &set, sigsetsize);
3283 static const struct {
3284 unsigned char limit, layout;
3286 [SIGILL] = { NSIGILL, SIL_FAULT },
3287 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3288 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3289 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3290 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3292 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3294 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3295 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3296 [SIGSYS] = { NSIGSYS, SIL_SYS },
3299 static bool known_siginfo_layout(unsigned sig, int si_code)
3301 if (si_code == SI_KERNEL)
3303 else if ((si_code > SI_USER)) {
3304 if (sig_specific_sicodes(sig)) {
3305 if (si_code <= sig_sicodes[sig].limit)
3308 else if (si_code <= NSIGPOLL)
3311 else if (si_code >= SI_DETHREAD)
3313 else if (si_code == SI_ASYNCNL)
3318 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3320 enum siginfo_layout layout = SIL_KILL;
3321 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3322 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3323 (si_code <= sig_sicodes[sig].limit)) {
3324 layout = sig_sicodes[sig].layout;
3325 /* Handle the exceptions */
3326 if ((sig == SIGBUS) &&
3327 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3328 layout = SIL_FAULT_MCEERR;
3329 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3330 layout = SIL_FAULT_BNDERR;
3332 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3333 layout = SIL_FAULT_PKUERR;
3335 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3336 layout = SIL_FAULT_PERF_EVENT;
3337 else if (IS_ENABLED(CONFIG_SPARC) &&
3338 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3339 layout = SIL_FAULT_TRAPNO;
3340 else if (IS_ENABLED(CONFIG_ALPHA) &&
3342 ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3343 layout = SIL_FAULT_TRAPNO;
3345 else if (si_code <= NSIGPOLL)
3348 if (si_code == SI_TIMER)
3350 else if (si_code == SI_SIGIO)
3352 else if (si_code < 0)
3358 static inline char __user *si_expansion(const siginfo_t __user *info)
3360 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3363 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3365 char __user *expansion = si_expansion(to);
3366 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3368 if (clear_user(expansion, SI_EXPANSION_SIZE))
3373 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3374 const siginfo_t __user *from)
3376 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3377 char __user *expansion = si_expansion(from);
3378 char buf[SI_EXPANSION_SIZE];
3381 * An unknown si_code might need more than
3382 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3383 * extra bytes are 0. This guarantees copy_siginfo_to_user
3384 * will return this data to userspace exactly.
3386 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3388 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3396 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3397 const siginfo_t __user *from)
3399 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3401 to->si_signo = signo;
3402 return post_copy_siginfo_from_user(to, from);
3405 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3407 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3409 return post_copy_siginfo_from_user(to, from);
3412 #ifdef CONFIG_COMPAT
3414 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3415 * @to: compat siginfo destination
3416 * @from: kernel siginfo source
3418 * Note: This function does not work properly for the SIGCHLD on x32, but
3419 * fortunately it doesn't have to. The only valid callers for this function are
3420 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3421 * The latter does not care because SIGCHLD will never cause a coredump.
3423 void copy_siginfo_to_external32(struct compat_siginfo *to,
3424 const struct kernel_siginfo *from)
3426 memset(to, 0, sizeof(*to));
3428 to->si_signo = from->si_signo;
3429 to->si_errno = from->si_errno;
3430 to->si_code = from->si_code;
3431 switch(siginfo_layout(from->si_signo, from->si_code)) {
3433 to->si_pid = from->si_pid;
3434 to->si_uid = from->si_uid;
3437 to->si_tid = from->si_tid;
3438 to->si_overrun = from->si_overrun;
3439 to->si_int = from->si_int;
3442 to->si_band = from->si_band;
3443 to->si_fd = from->si_fd;
3446 to->si_addr = ptr_to_compat(from->si_addr);
3448 case SIL_FAULT_TRAPNO:
3449 to->si_addr = ptr_to_compat(from->si_addr);
3450 to->si_trapno = from->si_trapno;
3452 case SIL_FAULT_MCEERR:
3453 to->si_addr = ptr_to_compat(from->si_addr);
3454 to->si_addr_lsb = from->si_addr_lsb;
3456 case SIL_FAULT_BNDERR:
3457 to->si_addr = ptr_to_compat(from->si_addr);
3458 to->si_lower = ptr_to_compat(from->si_lower);
3459 to->si_upper = ptr_to_compat(from->si_upper);
3461 case SIL_FAULT_PKUERR:
3462 to->si_addr = ptr_to_compat(from->si_addr);
3463 to->si_pkey = from->si_pkey;
3465 case SIL_FAULT_PERF_EVENT:
3466 to->si_addr = ptr_to_compat(from->si_addr);
3467 to->si_perf_data = from->si_perf_data;
3468 to->si_perf_type = from->si_perf_type;
3469 to->si_perf_flags = from->si_perf_flags;
3472 to->si_pid = from->si_pid;
3473 to->si_uid = from->si_uid;
3474 to->si_status = from->si_status;
3475 to->si_utime = from->si_utime;
3476 to->si_stime = from->si_stime;
3479 to->si_pid = from->si_pid;
3480 to->si_uid = from->si_uid;
3481 to->si_int = from->si_int;
3484 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3485 to->si_syscall = from->si_syscall;
3486 to->si_arch = from->si_arch;
3491 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3492 const struct kernel_siginfo *from)
3494 struct compat_siginfo new;
3496 copy_siginfo_to_external32(&new, from);
3497 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3502 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3503 const struct compat_siginfo *from)
3506 to->si_signo = from->si_signo;
3507 to->si_errno = from->si_errno;
3508 to->si_code = from->si_code;
3509 switch(siginfo_layout(from->si_signo, from->si_code)) {
3511 to->si_pid = from->si_pid;
3512 to->si_uid = from->si_uid;
3515 to->si_tid = from->si_tid;
3516 to->si_overrun = from->si_overrun;
3517 to->si_int = from->si_int;
3520 to->si_band = from->si_band;
3521 to->si_fd = from->si_fd;
3524 to->si_addr = compat_ptr(from->si_addr);
3526 case SIL_FAULT_TRAPNO:
3527 to->si_addr = compat_ptr(from->si_addr);
3528 to->si_trapno = from->si_trapno;
3530 case SIL_FAULT_MCEERR:
3531 to->si_addr = compat_ptr(from->si_addr);
3532 to->si_addr_lsb = from->si_addr_lsb;
3534 case SIL_FAULT_BNDERR:
3535 to->si_addr = compat_ptr(from->si_addr);
3536 to->si_lower = compat_ptr(from->si_lower);
3537 to->si_upper = compat_ptr(from->si_upper);
3539 case SIL_FAULT_PKUERR:
3540 to->si_addr = compat_ptr(from->si_addr);
3541 to->si_pkey = from->si_pkey;
3543 case SIL_FAULT_PERF_EVENT:
3544 to->si_addr = compat_ptr(from->si_addr);
3545 to->si_perf_data = from->si_perf_data;
3546 to->si_perf_type = from->si_perf_type;
3547 to->si_perf_flags = from->si_perf_flags;
3550 to->si_pid = from->si_pid;
3551 to->si_uid = from->si_uid;
3552 to->si_status = from->si_status;
3553 #ifdef CONFIG_X86_X32_ABI
3554 if (in_x32_syscall()) {
3555 to->si_utime = from->_sifields._sigchld_x32._utime;
3556 to->si_stime = from->_sifields._sigchld_x32._stime;
3560 to->si_utime = from->si_utime;
3561 to->si_stime = from->si_stime;
3565 to->si_pid = from->si_pid;
3566 to->si_uid = from->si_uid;
3567 to->si_int = from->si_int;
3570 to->si_call_addr = compat_ptr(from->si_call_addr);
3571 to->si_syscall = from->si_syscall;
3572 to->si_arch = from->si_arch;
3578 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3579 const struct compat_siginfo __user *ufrom)
3581 struct compat_siginfo from;
3583 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3586 from.si_signo = signo;
3587 return post_copy_siginfo_from_user32(to, &from);
3590 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3591 const struct compat_siginfo __user *ufrom)
3593 struct compat_siginfo from;
3595 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3598 return post_copy_siginfo_from_user32(to, &from);
3600 #endif /* CONFIG_COMPAT */
3603 * do_sigtimedwait - wait for queued signals specified in @which
3604 * @which: queued signals to wait for
3605 * @info: if non-null, the signal's siginfo is returned here
3606 * @ts: upper bound on process time suspension
3608 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3609 const struct timespec64 *ts)
3611 ktime_t *to = NULL, timeout = KTIME_MAX;
3612 struct task_struct *tsk = current;
3613 sigset_t mask = *which;
3618 if (!timespec64_valid(ts))
3620 timeout = timespec64_to_ktime(*ts);
3625 * Invert the set of allowed signals to get those we want to block.
3627 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3630 spin_lock_irq(&tsk->sighand->siglock);
3631 sig = dequeue_signal(tsk, &mask, info, &type);
3632 if (!sig && timeout) {
3634 * None ready, temporarily unblock those we're interested
3635 * while we are sleeping in so that we'll be awakened when
3636 * they arrive. Unblocking is always fine, we can avoid
3637 * set_current_blocked().
3639 tsk->real_blocked = tsk->blocked;
3640 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3641 recalc_sigpending();
3642 spin_unlock_irq(&tsk->sighand->siglock);
3644 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3645 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3647 spin_lock_irq(&tsk->sighand->siglock);
3648 __set_task_blocked(tsk, &tsk->real_blocked);
3649 sigemptyset(&tsk->real_blocked);
3650 sig = dequeue_signal(tsk, &mask, info, &type);
3652 spin_unlock_irq(&tsk->sighand->siglock);
3656 return ret ? -EINTR : -EAGAIN;
3660 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3662 * @uthese: queued signals to wait for
3663 * @uinfo: if non-null, the signal's siginfo is returned here
3664 * @uts: upper bound on process time suspension
3665 * @sigsetsize: size of sigset_t type
3667 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3668 siginfo_t __user *, uinfo,
3669 const struct __kernel_timespec __user *, uts,
3673 struct timespec64 ts;
3674 kernel_siginfo_t info;
3677 /* XXX: Don't preclude handling different sized sigset_t's. */
3678 if (sigsetsize != sizeof(sigset_t))
3681 if (copy_from_user(&these, uthese, sizeof(these)))
3685 if (get_timespec64(&ts, uts))
3689 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3691 if (ret > 0 && uinfo) {
3692 if (copy_siginfo_to_user(uinfo, &info))
3699 #ifdef CONFIG_COMPAT_32BIT_TIME
3700 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3701 siginfo_t __user *, uinfo,
3702 const struct old_timespec32 __user *, uts,
3706 struct timespec64 ts;
3707 kernel_siginfo_t info;
3710 if (sigsetsize != sizeof(sigset_t))
3713 if (copy_from_user(&these, uthese, sizeof(these)))
3717 if (get_old_timespec32(&ts, uts))
3721 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3723 if (ret > 0 && uinfo) {
3724 if (copy_siginfo_to_user(uinfo, &info))
3732 #ifdef CONFIG_COMPAT
3733 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3734 struct compat_siginfo __user *, uinfo,
3735 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3738 struct timespec64 t;
3739 kernel_siginfo_t info;
3742 if (sigsetsize != sizeof(sigset_t))
3745 if (get_compat_sigset(&s, uthese))
3749 if (get_timespec64(&t, uts))
3753 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3755 if (ret > 0 && uinfo) {
3756 if (copy_siginfo_to_user32(uinfo, &info))
3763 #ifdef CONFIG_COMPAT_32BIT_TIME
3764 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3765 struct compat_siginfo __user *, uinfo,
3766 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3769 struct timespec64 t;
3770 kernel_siginfo_t info;
3773 if (sigsetsize != sizeof(sigset_t))
3776 if (get_compat_sigset(&s, uthese))
3780 if (get_old_timespec32(&t, uts))
3784 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3786 if (ret > 0 && uinfo) {
3787 if (copy_siginfo_to_user32(uinfo, &info))
3796 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3798 clear_siginfo(info);
3799 info->si_signo = sig;
3801 info->si_code = SI_USER;
3802 info->si_pid = task_tgid_vnr(current);
3803 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3807 * sys_kill - send a signal to a process
3808 * @pid: the PID of the process
3809 * @sig: signal to be sent
3811 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3813 struct kernel_siginfo info;
3815 prepare_kill_siginfo(sig, &info);
3817 return kill_something_info(sig, &info, pid);
3821 * Verify that the signaler and signalee either are in the same pid namespace
3822 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3825 static bool access_pidfd_pidns(struct pid *pid)
3827 struct pid_namespace *active = task_active_pid_ns(current);
3828 struct pid_namespace *p = ns_of_pid(pid);
3841 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3842 siginfo_t __user *info)
3844 #ifdef CONFIG_COMPAT
3846 * Avoid hooking up compat syscalls and instead handle necessary
3847 * conversions here. Note, this is a stop-gap measure and should not be
3848 * considered a generic solution.
3850 if (in_compat_syscall())
3851 return copy_siginfo_from_user32(
3852 kinfo, (struct compat_siginfo __user *)info);
3854 return copy_siginfo_from_user(kinfo, info);
3857 static struct pid *pidfd_to_pid(const struct file *file)
3861 pid = pidfd_pid(file);
3865 return tgid_pidfd_to_pid(file);
3869 * sys_pidfd_send_signal - Signal a process through a pidfd
3870 * @pidfd: file descriptor of the process
3871 * @sig: signal to send
3872 * @info: signal info
3873 * @flags: future flags
3875 * The syscall currently only signals via PIDTYPE_PID which covers
3876 * kill(<positive-pid>, <signal>. It does not signal threads or process
3878 * In order to extend the syscall to threads and process groups the @flags
3879 * argument should be used. In essence, the @flags argument will determine
3880 * what is signaled and not the file descriptor itself. Put in other words,
3881 * grouping is a property of the flags argument not a property of the file
3884 * Return: 0 on success, negative errno on failure
3886 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3887 siginfo_t __user *, info, unsigned int, flags)
3892 kernel_siginfo_t kinfo;
3894 /* Enforce flags be set to 0 until we add an extension. */
3902 /* Is this a pidfd? */
3903 pid = pidfd_to_pid(f.file);
3910 if (!access_pidfd_pidns(pid))
3914 ret = copy_siginfo_from_user_any(&kinfo, info);
3919 if (unlikely(sig != kinfo.si_signo))
3922 /* Only allow sending arbitrary signals to yourself. */
3924 if ((task_pid(current) != pid) &&
3925 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3928 prepare_kill_siginfo(sig, &kinfo);
3931 ret = kill_pid_info(sig, &kinfo, pid);
3939 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3941 struct task_struct *p;
3945 p = find_task_by_vpid(pid);
3946 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3947 error = check_kill_permission(sig, info, p);
3949 * The null signal is a permissions and process existence
3950 * probe. No signal is actually delivered.
3952 if (!error && sig) {
3953 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3955 * If lock_task_sighand() failed we pretend the task
3956 * dies after receiving the signal. The window is tiny,
3957 * and the signal is private anyway.
3959 if (unlikely(error == -ESRCH))
3968 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3970 struct kernel_siginfo info;
3972 clear_siginfo(&info);
3973 info.si_signo = sig;
3975 info.si_code = SI_TKILL;
3976 info.si_pid = task_tgid_vnr(current);
3977 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3979 return do_send_specific(tgid, pid, sig, &info);
3983 * sys_tgkill - send signal to one specific thread
3984 * @tgid: the thread group ID of the thread
3985 * @pid: the PID of the thread
3986 * @sig: signal to be sent
3988 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3989 * exists but it's not belonging to the target process anymore. This
3990 * method solves the problem of threads exiting and PIDs getting reused.
3992 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3994 /* This is only valid for single tasks */
3995 if (pid <= 0 || tgid <= 0)
3998 return do_tkill(tgid, pid, sig);
4002 * sys_tkill - send signal to one specific task
4003 * @pid: the PID of the task
4004 * @sig: signal to be sent
4006 * Send a signal to only one task, even if it's a CLONE_THREAD task.
4008 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4010 /* This is only valid for single tasks */
4014 return do_tkill(0, pid, sig);
4017 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4019 /* Not even root can pretend to send signals from the kernel.
4020 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4022 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4023 (task_pid_vnr(current) != pid))
4026 /* POSIX.1b doesn't mention process groups. */
4027 return kill_proc_info(sig, info, pid);
4031 * sys_rt_sigqueueinfo - send signal information to a signal
4032 * @pid: the PID of the thread
4033 * @sig: signal to be sent
4034 * @uinfo: signal info to be sent
4036 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4037 siginfo_t __user *, uinfo)
4039 kernel_siginfo_t info;
4040 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4043 return do_rt_sigqueueinfo(pid, sig, &info);
4046 #ifdef CONFIG_COMPAT
4047 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4050 struct compat_siginfo __user *, uinfo)
4052 kernel_siginfo_t info;
4053 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4056 return do_rt_sigqueueinfo(pid, sig, &info);
4060 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4062 /* This is only valid for single tasks */
4063 if (pid <= 0 || tgid <= 0)
4066 /* Not even root can pretend to send signals from the kernel.
4067 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4069 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4070 (task_pid_vnr(current) != pid))
4073 return do_send_specific(tgid, pid, sig, info);
4076 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4077 siginfo_t __user *, uinfo)
4079 kernel_siginfo_t info;
4080 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4083 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4086 #ifdef CONFIG_COMPAT
4087 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4091 struct compat_siginfo __user *, uinfo)
4093 kernel_siginfo_t info;
4094 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4097 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4102 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4104 void kernel_sigaction(int sig, __sighandler_t action)
4106 spin_lock_irq(¤t->sighand->siglock);
4107 current->sighand->action[sig - 1].sa.sa_handler = action;
4108 if (action == SIG_IGN) {
4112 sigaddset(&mask, sig);
4114 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
4115 flush_sigqueue_mask(&mask, ¤t->pending);
4116 recalc_sigpending();
4118 spin_unlock_irq(¤t->sighand->siglock);
4120 EXPORT_SYMBOL(kernel_sigaction);
4122 void __weak sigaction_compat_abi(struct k_sigaction *act,
4123 struct k_sigaction *oact)
4127 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4129 struct task_struct *p = current, *t;
4130 struct k_sigaction *k;
4133 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4136 k = &p->sighand->action[sig-1];
4138 spin_lock_irq(&p->sighand->siglock);
4139 if (k->sa.sa_flags & SA_IMMUTABLE) {
4140 spin_unlock_irq(&p->sighand->siglock);
4147 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4148 * e.g. by having an architecture use the bit in their uapi.
4150 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4153 * Clear unknown flag bits in order to allow userspace to detect missing
4154 * support for flag bits and to allow the kernel to use non-uapi bits
4158 act->sa.sa_flags &= UAPI_SA_FLAGS;
4160 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4162 sigaction_compat_abi(act, oact);
4165 sigdelsetmask(&act->sa.sa_mask,
4166 sigmask(SIGKILL) | sigmask(SIGSTOP));
4170 * "Setting a signal action to SIG_IGN for a signal that is
4171 * pending shall cause the pending signal to be discarded,
4172 * whether or not it is blocked."
4174 * "Setting a signal action to SIG_DFL for a signal that is
4175 * pending and whose default action is to ignore the signal
4176 * (for example, SIGCHLD), shall cause the pending signal to
4177 * be discarded, whether or not it is blocked"
4179 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4181 sigaddset(&mask, sig);
4182 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4183 for_each_thread(p, t)
4184 flush_sigqueue_mask(&mask, &t->pending);
4188 spin_unlock_irq(&p->sighand->siglock);
4192 #ifdef CONFIG_DYNAMIC_SIGFRAME
4193 static inline void sigaltstack_lock(void)
4194 __acquires(¤t->sighand->siglock)
4196 spin_lock_irq(¤t->sighand->siglock);
4199 static inline void sigaltstack_unlock(void)
4200 __releases(¤t->sighand->siglock)
4202 spin_unlock_irq(¤t->sighand->siglock);
4205 static inline void sigaltstack_lock(void) { }
4206 static inline void sigaltstack_unlock(void) { }
4210 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4213 struct task_struct *t = current;
4217 memset(oss, 0, sizeof(stack_t));
4218 oss->ss_sp = (void __user *) t->sas_ss_sp;
4219 oss->ss_size = t->sas_ss_size;
4220 oss->ss_flags = sas_ss_flags(sp) |
4221 (current->sas_ss_flags & SS_FLAG_BITS);
4225 void __user *ss_sp = ss->ss_sp;
4226 size_t ss_size = ss->ss_size;
4227 unsigned ss_flags = ss->ss_flags;
4230 if (unlikely(on_sig_stack(sp)))
4233 ss_mode = ss_flags & ~SS_FLAG_BITS;
4234 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4239 * Return before taking any locks if no actual
4240 * sigaltstack changes were requested.
4242 if (t->sas_ss_sp == (unsigned long)ss_sp &&
4243 t->sas_ss_size == ss_size &&
4244 t->sas_ss_flags == ss_flags)
4248 if (ss_mode == SS_DISABLE) {
4252 if (unlikely(ss_size < min_ss_size))
4254 if (!sigaltstack_size_valid(ss_size))
4258 t->sas_ss_sp = (unsigned long) ss_sp;
4259 t->sas_ss_size = ss_size;
4260 t->sas_ss_flags = ss_flags;
4262 sigaltstack_unlock();
4267 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4271 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4273 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4274 current_user_stack_pointer(),
4276 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4281 int restore_altstack(const stack_t __user *uss)
4284 if (copy_from_user(&new, uss, sizeof(stack_t)))
4286 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4288 /* squash all but EFAULT for now */
4292 int __save_altstack(stack_t __user *uss, unsigned long sp)
4294 struct task_struct *t = current;
4295 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4296 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4297 __put_user(t->sas_ss_size, &uss->ss_size);
4301 #ifdef CONFIG_COMPAT
4302 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4303 compat_stack_t __user *uoss_ptr)
4309 compat_stack_t uss32;
4310 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4312 uss.ss_sp = compat_ptr(uss32.ss_sp);
4313 uss.ss_flags = uss32.ss_flags;
4314 uss.ss_size = uss32.ss_size;
4316 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4317 compat_user_stack_pointer(),
4318 COMPAT_MINSIGSTKSZ);
4319 if (ret >= 0 && uoss_ptr) {
4321 memset(&old, 0, sizeof(old));
4322 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4323 old.ss_flags = uoss.ss_flags;
4324 old.ss_size = uoss.ss_size;
4325 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4331 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4332 const compat_stack_t __user *, uss_ptr,
4333 compat_stack_t __user *, uoss_ptr)
4335 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4338 int compat_restore_altstack(const compat_stack_t __user *uss)
4340 int err = do_compat_sigaltstack(uss, NULL);
4341 /* squash all but -EFAULT for now */
4342 return err == -EFAULT ? err : 0;
4345 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4348 struct task_struct *t = current;
4349 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4351 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4352 __put_user(t->sas_ss_size, &uss->ss_size);
4357 #ifdef __ARCH_WANT_SYS_SIGPENDING
4360 * sys_sigpending - examine pending signals
4361 * @uset: where mask of pending signal is returned
4363 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4367 if (sizeof(old_sigset_t) > sizeof(*uset))
4370 do_sigpending(&set);
4372 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4378 #ifdef CONFIG_COMPAT
4379 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4383 do_sigpending(&set);
4385 return put_user(set.sig[0], set32);
4391 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4393 * sys_sigprocmask - examine and change blocked signals
4394 * @how: whether to add, remove, or set signals
4395 * @nset: signals to add or remove (if non-null)
4396 * @oset: previous value of signal mask if non-null
4398 * Some platforms have their own version with special arguments;
4399 * others support only sys_rt_sigprocmask.
4402 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4403 old_sigset_t __user *, oset)
4405 old_sigset_t old_set, new_set;
4406 sigset_t new_blocked;
4408 old_set = current->blocked.sig[0];
4411 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4414 new_blocked = current->blocked;
4418 sigaddsetmask(&new_blocked, new_set);
4421 sigdelsetmask(&new_blocked, new_set);
4424 new_blocked.sig[0] = new_set;
4430 set_current_blocked(&new_blocked);
4434 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4440 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4442 #ifndef CONFIG_ODD_RT_SIGACTION
4444 * sys_rt_sigaction - alter an action taken by a process
4445 * @sig: signal to be sent
4446 * @act: new sigaction
4447 * @oact: used to save the previous sigaction
4448 * @sigsetsize: size of sigset_t type
4450 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4451 const struct sigaction __user *, act,
4452 struct sigaction __user *, oact,
4455 struct k_sigaction new_sa, old_sa;
4458 /* XXX: Don't preclude handling different sized sigset_t's. */
4459 if (sigsetsize != sizeof(sigset_t))
4462 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4465 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4469 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4474 #ifdef CONFIG_COMPAT
4475 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4476 const struct compat_sigaction __user *, act,
4477 struct compat_sigaction __user *, oact,
4478 compat_size_t, sigsetsize)
4480 struct k_sigaction new_ka, old_ka;
4481 #ifdef __ARCH_HAS_SA_RESTORER
4482 compat_uptr_t restorer;
4486 /* XXX: Don't preclude handling different sized sigset_t's. */
4487 if (sigsetsize != sizeof(compat_sigset_t))
4491 compat_uptr_t handler;
4492 ret = get_user(handler, &act->sa_handler);
4493 new_ka.sa.sa_handler = compat_ptr(handler);
4494 #ifdef __ARCH_HAS_SA_RESTORER
4495 ret |= get_user(restorer, &act->sa_restorer);
4496 new_ka.sa.sa_restorer = compat_ptr(restorer);
4498 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4499 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4504 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4506 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4508 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4509 sizeof(oact->sa_mask));
4510 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4511 #ifdef __ARCH_HAS_SA_RESTORER
4512 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4513 &oact->sa_restorer);
4519 #endif /* !CONFIG_ODD_RT_SIGACTION */
4521 #ifdef CONFIG_OLD_SIGACTION
4522 SYSCALL_DEFINE3(sigaction, int, sig,
4523 const struct old_sigaction __user *, act,
4524 struct old_sigaction __user *, oact)
4526 struct k_sigaction new_ka, old_ka;
4531 if (!access_ok(act, sizeof(*act)) ||
4532 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4533 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4534 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4535 __get_user(mask, &act->sa_mask))
4537 #ifdef __ARCH_HAS_KA_RESTORER
4538 new_ka.ka_restorer = NULL;
4540 siginitset(&new_ka.sa.sa_mask, mask);
4543 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4546 if (!access_ok(oact, sizeof(*oact)) ||
4547 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4548 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4549 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4550 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4557 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4558 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4559 const struct compat_old_sigaction __user *, act,
4560 struct compat_old_sigaction __user *, oact)
4562 struct k_sigaction new_ka, old_ka;
4564 compat_old_sigset_t mask;
4565 compat_uptr_t handler, restorer;
4568 if (!access_ok(act, sizeof(*act)) ||
4569 __get_user(handler, &act->sa_handler) ||
4570 __get_user(restorer, &act->sa_restorer) ||
4571 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4572 __get_user(mask, &act->sa_mask))
4575 #ifdef __ARCH_HAS_KA_RESTORER
4576 new_ka.ka_restorer = NULL;
4578 new_ka.sa.sa_handler = compat_ptr(handler);
4579 new_ka.sa.sa_restorer = compat_ptr(restorer);
4580 siginitset(&new_ka.sa.sa_mask, mask);
4583 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4586 if (!access_ok(oact, sizeof(*oact)) ||
4587 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4588 &oact->sa_handler) ||
4589 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4590 &oact->sa_restorer) ||
4591 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4592 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4599 #ifdef CONFIG_SGETMASK_SYSCALL
4602 * For backwards compatibility. Functionality superseded by sigprocmask.
4604 SYSCALL_DEFINE0(sgetmask)
4607 return current->blocked.sig[0];
4610 SYSCALL_DEFINE1(ssetmask, int, newmask)
4612 int old = current->blocked.sig[0];
4615 siginitset(&newset, newmask);
4616 set_current_blocked(&newset);
4620 #endif /* CONFIG_SGETMASK_SYSCALL */
4622 #ifdef __ARCH_WANT_SYS_SIGNAL
4624 * For backwards compatibility. Functionality superseded by sigaction.
4626 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4628 struct k_sigaction new_sa, old_sa;
4631 new_sa.sa.sa_handler = handler;
4632 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4633 sigemptyset(&new_sa.sa.sa_mask);
4635 ret = do_sigaction(sig, &new_sa, &old_sa);
4637 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4639 #endif /* __ARCH_WANT_SYS_SIGNAL */
4641 #ifdef __ARCH_WANT_SYS_PAUSE
4643 SYSCALL_DEFINE0(pause)
4645 while (!signal_pending(current)) {
4646 __set_current_state(TASK_INTERRUPTIBLE);
4649 return -ERESTARTNOHAND;
4654 static int sigsuspend(sigset_t *set)
4656 current->saved_sigmask = current->blocked;
4657 set_current_blocked(set);
4659 while (!signal_pending(current)) {
4660 __set_current_state(TASK_INTERRUPTIBLE);
4663 set_restore_sigmask();
4664 return -ERESTARTNOHAND;
4668 * sys_rt_sigsuspend - replace the signal mask for a value with the
4669 * @unewset value until a signal is received
4670 * @unewset: new signal mask value
4671 * @sigsetsize: size of sigset_t type
4673 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4677 /* XXX: Don't preclude handling different sized sigset_t's. */
4678 if (sigsetsize != sizeof(sigset_t))
4681 if (copy_from_user(&newset, unewset, sizeof(newset)))
4683 return sigsuspend(&newset);
4686 #ifdef CONFIG_COMPAT
4687 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4691 /* XXX: Don't preclude handling different sized sigset_t's. */
4692 if (sigsetsize != sizeof(sigset_t))
4695 if (get_compat_sigset(&newset, unewset))
4697 return sigsuspend(&newset);
4701 #ifdef CONFIG_OLD_SIGSUSPEND
4702 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4705 siginitset(&blocked, mask);
4706 return sigsuspend(&blocked);
4709 #ifdef CONFIG_OLD_SIGSUSPEND3
4710 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4713 siginitset(&blocked, mask);
4714 return sigsuspend(&blocked);
4718 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4723 static inline void siginfo_buildtime_checks(void)
4725 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4727 /* Verify the offsets in the two siginfos match */
4728 #define CHECK_OFFSET(field) \
4729 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4732 CHECK_OFFSET(si_pid);
4733 CHECK_OFFSET(si_uid);
4736 CHECK_OFFSET(si_tid);
4737 CHECK_OFFSET(si_overrun);
4738 CHECK_OFFSET(si_value);
4741 CHECK_OFFSET(si_pid);
4742 CHECK_OFFSET(si_uid);
4743 CHECK_OFFSET(si_value);
4746 CHECK_OFFSET(si_pid);
4747 CHECK_OFFSET(si_uid);
4748 CHECK_OFFSET(si_status);
4749 CHECK_OFFSET(si_utime);
4750 CHECK_OFFSET(si_stime);
4753 CHECK_OFFSET(si_addr);
4754 CHECK_OFFSET(si_trapno);
4755 CHECK_OFFSET(si_addr_lsb);
4756 CHECK_OFFSET(si_lower);
4757 CHECK_OFFSET(si_upper);
4758 CHECK_OFFSET(si_pkey);
4759 CHECK_OFFSET(si_perf_data);
4760 CHECK_OFFSET(si_perf_type);
4761 CHECK_OFFSET(si_perf_flags);
4764 CHECK_OFFSET(si_band);
4765 CHECK_OFFSET(si_fd);
4768 CHECK_OFFSET(si_call_addr);
4769 CHECK_OFFSET(si_syscall);
4770 CHECK_OFFSET(si_arch);
4774 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4775 offsetof(struct siginfo, si_addr));
4776 if (sizeof(int) == sizeof(void __user *)) {
4777 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4778 sizeof(void __user *));
4780 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4781 sizeof_field(struct siginfo, si_uid)) !=
4782 sizeof(void __user *));
4783 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4784 offsetof(struct siginfo, si_uid));
4786 #ifdef CONFIG_COMPAT
4787 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4788 offsetof(struct compat_siginfo, si_addr));
4789 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4790 sizeof(compat_uptr_t));
4791 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4792 sizeof_field(struct siginfo, si_pid));
4796 #if defined(CONFIG_SYSCTL)
4797 static struct ctl_table signal_debug_table[] = {
4798 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4800 .procname = "exception-trace",
4801 .data = &show_unhandled_signals,
4802 .maxlen = sizeof(int),
4804 .proc_handler = proc_dointvec
4810 static int __init init_signal_sysctls(void)
4812 register_sysctl_init("debug", signal_debug_table);
4815 early_initcall(init_signal_sysctls);
4816 #endif /* CONFIG_SYSCTL */
4818 void __init signals_init(void)
4820 siginfo_buildtime_checks();
4822 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4825 #ifdef CONFIG_KGDB_KDB
4826 #include <linux/kdb.h>
4828 * kdb_send_sig - Allows kdb to send signals without exposing
4829 * signal internals. This function checks if the required locks are
4830 * available before calling the main signal code, to avoid kdb
4833 void kdb_send_sig(struct task_struct *t, int sig)
4835 static struct task_struct *kdb_prev_t;
4837 if (!spin_trylock(&t->sighand->siglock)) {
4838 kdb_printf("Can't do kill command now.\n"
4839 "The sigmask lock is held somewhere else in "
4840 "kernel, try again later\n");
4843 new_t = kdb_prev_t != t;
4845 if (!task_is_running(t) && new_t) {
4846 spin_unlock(&t->sighand->siglock);
4847 kdb_printf("Process is not RUNNING, sending a signal from "
4848 "kdb risks deadlock\n"
4849 "on the run queue locks. "
4850 "The signal has _not_ been sent.\n"
4851 "Reissue the kill command if you want to risk "
4855 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4856 spin_unlock(&t->sighand->siglock);
4858 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4861 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4863 #endif /* CONFIG_KGDB_KDB */