]> Git Repo - linux.git/blob - kernel/exit.c
scripts/gdb/vmalloc: disable on no-MMU
[linux.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 #include <linux/user_events.h>
72
73 #include <linux/uaccess.h>
74 #include <asm/unistd.h>
75 #include <asm/mmu_context.h>
76
77 /*
78  * The default value should be high enough to not crash a system that randomly
79  * crashes its kernel from time to time, but low enough to at least not permit
80  * overflowing 32-bit refcounts or the ldsem writer count.
81  */
82 static unsigned int oops_limit = 10000;
83
84 #ifdef CONFIG_SYSCTL
85 static struct ctl_table kern_exit_table[] = {
86         {
87                 .procname       = "oops_limit",
88                 .data           = &oops_limit,
89                 .maxlen         = sizeof(oops_limit),
90                 .mode           = 0644,
91                 .proc_handler   = proc_douintvec,
92         },
93         { }
94 };
95
96 static __init int kernel_exit_sysctls_init(void)
97 {
98         register_sysctl_init("kernel", kern_exit_table);
99         return 0;
100 }
101 late_initcall(kernel_exit_sysctls_init);
102 #endif
103
104 static atomic_t oops_count = ATOMIC_INIT(0);
105
106 #ifdef CONFIG_SYSFS
107 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
108                                char *page)
109 {
110         return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
111 }
112
113 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
114
115 static __init int kernel_exit_sysfs_init(void)
116 {
117         sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
118         return 0;
119 }
120 late_initcall(kernel_exit_sysfs_init);
121 #endif
122
123 static void __unhash_process(struct task_struct *p, bool group_dead)
124 {
125         nr_threads--;
126         detach_pid(p, PIDTYPE_PID);
127         if (group_dead) {
128                 detach_pid(p, PIDTYPE_TGID);
129                 detach_pid(p, PIDTYPE_PGID);
130                 detach_pid(p, PIDTYPE_SID);
131
132                 list_del_rcu(&p->tasks);
133                 list_del_init(&p->sibling);
134                 __this_cpu_dec(process_counts);
135         }
136         list_del_rcu(&p->thread_node);
137 }
138
139 /*
140  * This function expects the tasklist_lock write-locked.
141  */
142 static void __exit_signal(struct task_struct *tsk)
143 {
144         struct signal_struct *sig = tsk->signal;
145         bool group_dead = thread_group_leader(tsk);
146         struct sighand_struct *sighand;
147         struct tty_struct *tty;
148         u64 utime, stime;
149
150         sighand = rcu_dereference_check(tsk->sighand,
151                                         lockdep_tasklist_lock_is_held());
152         spin_lock(&sighand->siglock);
153
154 #ifdef CONFIG_POSIX_TIMERS
155         posix_cpu_timers_exit(tsk);
156         if (group_dead)
157                 posix_cpu_timers_exit_group(tsk);
158 #endif
159
160         if (group_dead) {
161                 tty = sig->tty;
162                 sig->tty = NULL;
163         } else {
164                 /*
165                  * If there is any task waiting for the group exit
166                  * then notify it:
167                  */
168                 if (sig->notify_count > 0 && !--sig->notify_count)
169                         wake_up_process(sig->group_exec_task);
170
171                 if (tsk == sig->curr_target)
172                         sig->curr_target = next_thread(tsk);
173         }
174
175         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
176                               sizeof(unsigned long long));
177
178         /*
179          * Accumulate here the counters for all threads as they die. We could
180          * skip the group leader because it is the last user of signal_struct,
181          * but we want to avoid the race with thread_group_cputime() which can
182          * see the empty ->thread_head list.
183          */
184         task_cputime(tsk, &utime, &stime);
185         write_seqlock(&sig->stats_lock);
186         sig->utime += utime;
187         sig->stime += stime;
188         sig->gtime += task_gtime(tsk);
189         sig->min_flt += tsk->min_flt;
190         sig->maj_flt += tsk->maj_flt;
191         sig->nvcsw += tsk->nvcsw;
192         sig->nivcsw += tsk->nivcsw;
193         sig->inblock += task_io_get_inblock(tsk);
194         sig->oublock += task_io_get_oublock(tsk);
195         task_io_accounting_add(&sig->ioac, &tsk->ioac);
196         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
197         sig->nr_threads--;
198         __unhash_process(tsk, group_dead);
199         write_sequnlock(&sig->stats_lock);
200
201         /*
202          * Do this under ->siglock, we can race with another thread
203          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
204          */
205         flush_sigqueue(&tsk->pending);
206         tsk->sighand = NULL;
207         spin_unlock(&sighand->siglock);
208
209         __cleanup_sighand(sighand);
210         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
211         if (group_dead) {
212                 flush_sigqueue(&sig->shared_pending);
213                 tty_kref_put(tty);
214         }
215 }
216
217 static void delayed_put_task_struct(struct rcu_head *rhp)
218 {
219         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
220
221         kprobe_flush_task(tsk);
222         rethook_flush_task(tsk);
223         perf_event_delayed_put(tsk);
224         trace_sched_process_free(tsk);
225         put_task_struct(tsk);
226 }
227
228 void put_task_struct_rcu_user(struct task_struct *task)
229 {
230         if (refcount_dec_and_test(&task->rcu_users))
231                 call_rcu(&task->rcu, delayed_put_task_struct);
232 }
233
234 void __weak release_thread(struct task_struct *dead_task)
235 {
236 }
237
238 void release_task(struct task_struct *p)
239 {
240         struct task_struct *leader;
241         struct pid *thread_pid;
242         int zap_leader;
243 repeat:
244         /* don't need to get the RCU readlock here - the process is dead and
245          * can't be modifying its own credentials. But shut RCU-lockdep up */
246         rcu_read_lock();
247         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
248         rcu_read_unlock();
249
250         cgroup_release(p);
251
252         write_lock_irq(&tasklist_lock);
253         ptrace_release_task(p);
254         thread_pid = get_pid(p->thread_pid);
255         __exit_signal(p);
256
257         /*
258          * If we are the last non-leader member of the thread
259          * group, and the leader is zombie, then notify the
260          * group leader's parent process. (if it wants notification.)
261          */
262         zap_leader = 0;
263         leader = p->group_leader;
264         if (leader != p && thread_group_empty(leader)
265                         && leader->exit_state == EXIT_ZOMBIE) {
266                 /*
267                  * If we were the last child thread and the leader has
268                  * exited already, and the leader's parent ignores SIGCHLD,
269                  * then we are the one who should release the leader.
270                  */
271                 zap_leader = do_notify_parent(leader, leader->exit_signal);
272                 if (zap_leader)
273                         leader->exit_state = EXIT_DEAD;
274         }
275
276         write_unlock_irq(&tasklist_lock);
277         seccomp_filter_release(p);
278         proc_flush_pid(thread_pid);
279         put_pid(thread_pid);
280         release_thread(p);
281         put_task_struct_rcu_user(p);
282
283         p = leader;
284         if (unlikely(zap_leader))
285                 goto repeat;
286 }
287
288 int rcuwait_wake_up(struct rcuwait *w)
289 {
290         int ret = 0;
291         struct task_struct *task;
292
293         rcu_read_lock();
294
295         /*
296          * Order condition vs @task, such that everything prior to the load
297          * of @task is visible. This is the condition as to why the user called
298          * rcuwait_wake() in the first place. Pairs with set_current_state()
299          * barrier (A) in rcuwait_wait_event().
300          *
301          *    WAIT                WAKE
302          *    [S] tsk = current   [S] cond = true
303          *        MB (A)              MB (B)
304          *    [L] cond            [L] tsk
305          */
306         smp_mb(); /* (B) */
307
308         task = rcu_dereference(w->task);
309         if (task)
310                 ret = wake_up_process(task);
311         rcu_read_unlock();
312
313         return ret;
314 }
315 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
316
317 /*
318  * Determine if a process group is "orphaned", according to the POSIX
319  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
320  * by terminal-generated stop signals.  Newly orphaned process groups are
321  * to receive a SIGHUP and a SIGCONT.
322  *
323  * "I ask you, have you ever known what it is to be an orphan?"
324  */
325 static int will_become_orphaned_pgrp(struct pid *pgrp,
326                                         struct task_struct *ignored_task)
327 {
328         struct task_struct *p;
329
330         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
331                 if ((p == ignored_task) ||
332                     (p->exit_state && thread_group_empty(p)) ||
333                     is_global_init(p->real_parent))
334                         continue;
335
336                 if (task_pgrp(p->real_parent) != pgrp &&
337                     task_session(p->real_parent) == task_session(p))
338                         return 0;
339         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
340
341         return 1;
342 }
343
344 int is_current_pgrp_orphaned(void)
345 {
346         int retval;
347
348         read_lock(&tasklist_lock);
349         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
350         read_unlock(&tasklist_lock);
351
352         return retval;
353 }
354
355 static bool has_stopped_jobs(struct pid *pgrp)
356 {
357         struct task_struct *p;
358
359         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
360                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
361                         return true;
362         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
363
364         return false;
365 }
366
367 /*
368  * Check to see if any process groups have become orphaned as
369  * a result of our exiting, and if they have any stopped jobs,
370  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
371  */
372 static void
373 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
374 {
375         struct pid *pgrp = task_pgrp(tsk);
376         struct task_struct *ignored_task = tsk;
377
378         if (!parent)
379                 /* exit: our father is in a different pgrp than
380                  * we are and we were the only connection outside.
381                  */
382                 parent = tsk->real_parent;
383         else
384                 /* reparent: our child is in a different pgrp than
385                  * we are, and it was the only connection outside.
386                  */
387                 ignored_task = NULL;
388
389         if (task_pgrp(parent) != pgrp &&
390             task_session(parent) == task_session(tsk) &&
391             will_become_orphaned_pgrp(pgrp, ignored_task) &&
392             has_stopped_jobs(pgrp)) {
393                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
394                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
395         }
396 }
397
398 static void coredump_task_exit(struct task_struct *tsk)
399 {
400         struct core_state *core_state;
401
402         /*
403          * Serialize with any possible pending coredump.
404          * We must hold siglock around checking core_state
405          * and setting PF_POSTCOREDUMP.  The core-inducing thread
406          * will increment ->nr_threads for each thread in the
407          * group without PF_POSTCOREDUMP set.
408          */
409         spin_lock_irq(&tsk->sighand->siglock);
410         tsk->flags |= PF_POSTCOREDUMP;
411         core_state = tsk->signal->core_state;
412         spin_unlock_irq(&tsk->sighand->siglock);
413
414         /* The vhost_worker does not particpate in coredumps */
415         if (core_state &&
416             ((tsk->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)) {
417                 struct core_thread self;
418
419                 self.task = current;
420                 if (self.task->flags & PF_SIGNALED)
421                         self.next = xchg(&core_state->dumper.next, &self);
422                 else
423                         self.task = NULL;
424                 /*
425                  * Implies mb(), the result of xchg() must be visible
426                  * to core_state->dumper.
427                  */
428                 if (atomic_dec_and_test(&core_state->nr_threads))
429                         complete(&core_state->startup);
430
431                 for (;;) {
432                         set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
433                         if (!self.task) /* see coredump_finish() */
434                                 break;
435                         schedule();
436                 }
437                 __set_current_state(TASK_RUNNING);
438         }
439 }
440
441 #ifdef CONFIG_MEMCG
442 /*
443  * A task is exiting.   If it owned this mm, find a new owner for the mm.
444  */
445 void mm_update_next_owner(struct mm_struct *mm)
446 {
447         struct task_struct *c, *g, *p = current;
448
449 retry:
450         /*
451          * If the exiting or execing task is not the owner, it's
452          * someone else's problem.
453          */
454         if (mm->owner != p)
455                 return;
456         /*
457          * The current owner is exiting/execing and there are no other
458          * candidates.  Do not leave the mm pointing to a possibly
459          * freed task structure.
460          */
461         if (atomic_read(&mm->mm_users) <= 1) {
462                 WRITE_ONCE(mm->owner, NULL);
463                 return;
464         }
465
466         read_lock(&tasklist_lock);
467         /*
468          * Search in the children
469          */
470         list_for_each_entry(c, &p->children, sibling) {
471                 if (c->mm == mm)
472                         goto assign_new_owner;
473         }
474
475         /*
476          * Search in the siblings
477          */
478         list_for_each_entry(c, &p->real_parent->children, sibling) {
479                 if (c->mm == mm)
480                         goto assign_new_owner;
481         }
482
483         /*
484          * Search through everything else, we should not get here often.
485          */
486         for_each_process(g) {
487                 if (g->flags & PF_KTHREAD)
488                         continue;
489                 for_each_thread(g, c) {
490                         if (c->mm == mm)
491                                 goto assign_new_owner;
492                         if (c->mm)
493                                 break;
494                 }
495         }
496         read_unlock(&tasklist_lock);
497         /*
498          * We found no owner yet mm_users > 1: this implies that we are
499          * most likely racing with swapoff (try_to_unuse()) or /proc or
500          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
501          */
502         WRITE_ONCE(mm->owner, NULL);
503         return;
504
505 assign_new_owner:
506         BUG_ON(c == p);
507         get_task_struct(c);
508         /*
509          * The task_lock protects c->mm from changing.
510          * We always want mm->owner->mm == mm
511          */
512         task_lock(c);
513         /*
514          * Delay read_unlock() till we have the task_lock()
515          * to ensure that c does not slip away underneath us
516          */
517         read_unlock(&tasklist_lock);
518         if (c->mm != mm) {
519                 task_unlock(c);
520                 put_task_struct(c);
521                 goto retry;
522         }
523         WRITE_ONCE(mm->owner, c);
524         lru_gen_migrate_mm(mm);
525         task_unlock(c);
526         put_task_struct(c);
527 }
528 #endif /* CONFIG_MEMCG */
529
530 /*
531  * Turn us into a lazy TLB process if we
532  * aren't already..
533  */
534 static void exit_mm(void)
535 {
536         struct mm_struct *mm = current->mm;
537
538         exit_mm_release(current, mm);
539         if (!mm)
540                 return;
541         sync_mm_rss(mm);
542         mmap_read_lock(mm);
543         mmgrab_lazy_tlb(mm);
544         BUG_ON(mm != current->active_mm);
545         /* more a memory barrier than a real lock */
546         task_lock(current);
547         /*
548          * When a thread stops operating on an address space, the loop
549          * in membarrier_private_expedited() may not observe that
550          * tsk->mm, and the loop in membarrier_global_expedited() may
551          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
552          * rq->membarrier_state, so those would not issue an IPI.
553          * Membarrier requires a memory barrier after accessing
554          * user-space memory, before clearing tsk->mm or the
555          * rq->membarrier_state.
556          */
557         smp_mb__after_spinlock();
558         local_irq_disable();
559         current->mm = NULL;
560         membarrier_update_current_mm(NULL);
561         enter_lazy_tlb(mm, current);
562         local_irq_enable();
563         task_unlock(current);
564         mmap_read_unlock(mm);
565         mm_update_next_owner(mm);
566         mmput(mm);
567         if (test_thread_flag(TIF_MEMDIE))
568                 exit_oom_victim();
569 }
570
571 static struct task_struct *find_alive_thread(struct task_struct *p)
572 {
573         struct task_struct *t;
574
575         for_each_thread(p, t) {
576                 if (!(t->flags & PF_EXITING))
577                         return t;
578         }
579         return NULL;
580 }
581
582 static struct task_struct *find_child_reaper(struct task_struct *father,
583                                                 struct list_head *dead)
584         __releases(&tasklist_lock)
585         __acquires(&tasklist_lock)
586 {
587         struct pid_namespace *pid_ns = task_active_pid_ns(father);
588         struct task_struct *reaper = pid_ns->child_reaper;
589         struct task_struct *p, *n;
590
591         if (likely(reaper != father))
592                 return reaper;
593
594         reaper = find_alive_thread(father);
595         if (reaper) {
596                 pid_ns->child_reaper = reaper;
597                 return reaper;
598         }
599
600         write_unlock_irq(&tasklist_lock);
601
602         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
603                 list_del_init(&p->ptrace_entry);
604                 release_task(p);
605         }
606
607         zap_pid_ns_processes(pid_ns);
608         write_lock_irq(&tasklist_lock);
609
610         return father;
611 }
612
613 /*
614  * When we die, we re-parent all our children, and try to:
615  * 1. give them to another thread in our thread group, if such a member exists
616  * 2. give it to the first ancestor process which prctl'd itself as a
617  *    child_subreaper for its children (like a service manager)
618  * 3. give it to the init process (PID 1) in our pid namespace
619  */
620 static struct task_struct *find_new_reaper(struct task_struct *father,
621                                            struct task_struct *child_reaper)
622 {
623         struct task_struct *thread, *reaper;
624
625         thread = find_alive_thread(father);
626         if (thread)
627                 return thread;
628
629         if (father->signal->has_child_subreaper) {
630                 unsigned int ns_level = task_pid(father)->level;
631                 /*
632                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
633                  * We can't check reaper != child_reaper to ensure we do not
634                  * cross the namespaces, the exiting parent could be injected
635                  * by setns() + fork().
636                  * We check pid->level, this is slightly more efficient than
637                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
638                  */
639                 for (reaper = father->real_parent;
640                      task_pid(reaper)->level == ns_level;
641                      reaper = reaper->real_parent) {
642                         if (reaper == &init_task)
643                                 break;
644                         if (!reaper->signal->is_child_subreaper)
645                                 continue;
646                         thread = find_alive_thread(reaper);
647                         if (thread)
648                                 return thread;
649                 }
650         }
651
652         return child_reaper;
653 }
654
655 /*
656 * Any that need to be release_task'd are put on the @dead list.
657  */
658 static void reparent_leader(struct task_struct *father, struct task_struct *p,
659                                 struct list_head *dead)
660 {
661         if (unlikely(p->exit_state == EXIT_DEAD))
662                 return;
663
664         /* We don't want people slaying init. */
665         p->exit_signal = SIGCHLD;
666
667         /* If it has exited notify the new parent about this child's death. */
668         if (!p->ptrace &&
669             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
670                 if (do_notify_parent(p, p->exit_signal)) {
671                         p->exit_state = EXIT_DEAD;
672                         list_add(&p->ptrace_entry, dead);
673                 }
674         }
675
676         kill_orphaned_pgrp(p, father);
677 }
678
679 /*
680  * This does two things:
681  *
682  * A.  Make init inherit all the child processes
683  * B.  Check to see if any process groups have become orphaned
684  *      as a result of our exiting, and if they have any stopped
685  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
686  */
687 static void forget_original_parent(struct task_struct *father,
688                                         struct list_head *dead)
689 {
690         struct task_struct *p, *t, *reaper;
691
692         if (unlikely(!list_empty(&father->ptraced)))
693                 exit_ptrace(father, dead);
694
695         /* Can drop and reacquire tasklist_lock */
696         reaper = find_child_reaper(father, dead);
697         if (list_empty(&father->children))
698                 return;
699
700         reaper = find_new_reaper(father, reaper);
701         list_for_each_entry(p, &father->children, sibling) {
702                 for_each_thread(p, t) {
703                         RCU_INIT_POINTER(t->real_parent, reaper);
704                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
705                         if (likely(!t->ptrace))
706                                 t->parent = t->real_parent;
707                         if (t->pdeath_signal)
708                                 group_send_sig_info(t->pdeath_signal,
709                                                     SEND_SIG_NOINFO, t,
710                                                     PIDTYPE_TGID);
711                 }
712                 /*
713                  * If this is a threaded reparent there is no need to
714                  * notify anyone anything has happened.
715                  */
716                 if (!same_thread_group(reaper, father))
717                         reparent_leader(father, p, dead);
718         }
719         list_splice_tail_init(&father->children, &reaper->children);
720 }
721
722 /*
723  * Send signals to all our closest relatives so that they know
724  * to properly mourn us..
725  */
726 static void exit_notify(struct task_struct *tsk, int group_dead)
727 {
728         bool autoreap;
729         struct task_struct *p, *n;
730         LIST_HEAD(dead);
731
732         write_lock_irq(&tasklist_lock);
733         forget_original_parent(tsk, &dead);
734
735         if (group_dead)
736                 kill_orphaned_pgrp(tsk->group_leader, NULL);
737
738         tsk->exit_state = EXIT_ZOMBIE;
739         if (unlikely(tsk->ptrace)) {
740                 int sig = thread_group_leader(tsk) &&
741                                 thread_group_empty(tsk) &&
742                                 !ptrace_reparented(tsk) ?
743                         tsk->exit_signal : SIGCHLD;
744                 autoreap = do_notify_parent(tsk, sig);
745         } else if (thread_group_leader(tsk)) {
746                 autoreap = thread_group_empty(tsk) &&
747                         do_notify_parent(tsk, tsk->exit_signal);
748         } else {
749                 autoreap = true;
750         }
751
752         if (autoreap) {
753                 tsk->exit_state = EXIT_DEAD;
754                 list_add(&tsk->ptrace_entry, &dead);
755         }
756
757         /* mt-exec, de_thread() is waiting for group leader */
758         if (unlikely(tsk->signal->notify_count < 0))
759                 wake_up_process(tsk->signal->group_exec_task);
760         write_unlock_irq(&tasklist_lock);
761
762         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
763                 list_del_init(&p->ptrace_entry);
764                 release_task(p);
765         }
766 }
767
768 #ifdef CONFIG_DEBUG_STACK_USAGE
769 static void check_stack_usage(void)
770 {
771         static DEFINE_SPINLOCK(low_water_lock);
772         static int lowest_to_date = THREAD_SIZE;
773         unsigned long free;
774
775         free = stack_not_used(current);
776
777         if (free >= lowest_to_date)
778                 return;
779
780         spin_lock(&low_water_lock);
781         if (free < lowest_to_date) {
782                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
783                         current->comm, task_pid_nr(current), free);
784                 lowest_to_date = free;
785         }
786         spin_unlock(&low_water_lock);
787 }
788 #else
789 static inline void check_stack_usage(void) {}
790 #endif
791
792 static void synchronize_group_exit(struct task_struct *tsk, long code)
793 {
794         struct sighand_struct *sighand = tsk->sighand;
795         struct signal_struct *signal = tsk->signal;
796
797         spin_lock_irq(&sighand->siglock);
798         signal->quick_threads--;
799         if ((signal->quick_threads == 0) &&
800             !(signal->flags & SIGNAL_GROUP_EXIT)) {
801                 signal->flags = SIGNAL_GROUP_EXIT;
802                 signal->group_exit_code = code;
803                 signal->group_stop_count = 0;
804         }
805         spin_unlock_irq(&sighand->siglock);
806 }
807
808 void __noreturn do_exit(long code)
809 {
810         struct task_struct *tsk = current;
811         int group_dead;
812
813         WARN_ON(irqs_disabled());
814
815         synchronize_group_exit(tsk, code);
816
817         WARN_ON(tsk->plug);
818
819         kcov_task_exit(tsk);
820         kmsan_task_exit(tsk);
821
822         coredump_task_exit(tsk);
823         ptrace_event(PTRACE_EVENT_EXIT, code);
824         user_events_exit(tsk);
825
826         validate_creds_for_do_exit(tsk);
827
828         io_uring_files_cancel();
829         exit_signals(tsk);  /* sets PF_EXITING */
830
831         /* sync mm's RSS info before statistics gathering */
832         if (tsk->mm)
833                 sync_mm_rss(tsk->mm);
834         acct_update_integrals(tsk);
835         group_dead = atomic_dec_and_test(&tsk->signal->live);
836         if (group_dead) {
837                 /*
838                  * If the last thread of global init has exited, panic
839                  * immediately to get a useable coredump.
840                  */
841                 if (unlikely(is_global_init(tsk)))
842                         panic("Attempted to kill init! exitcode=0x%08x\n",
843                                 tsk->signal->group_exit_code ?: (int)code);
844
845 #ifdef CONFIG_POSIX_TIMERS
846                 hrtimer_cancel(&tsk->signal->real_timer);
847                 exit_itimers(tsk);
848 #endif
849                 if (tsk->mm)
850                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
851         }
852         acct_collect(code, group_dead);
853         if (group_dead)
854                 tty_audit_exit();
855         audit_free(tsk);
856
857         tsk->exit_code = code;
858         taskstats_exit(tsk, group_dead);
859
860         exit_mm();
861
862         if (group_dead)
863                 acct_process();
864         trace_sched_process_exit(tsk);
865
866         exit_sem(tsk);
867         exit_shm(tsk);
868         exit_files(tsk);
869         exit_fs(tsk);
870         if (group_dead)
871                 disassociate_ctty(1);
872         exit_task_namespaces(tsk);
873         exit_task_work(tsk);
874         exit_thread(tsk);
875
876         /*
877          * Flush inherited counters to the parent - before the parent
878          * gets woken up by child-exit notifications.
879          *
880          * because of cgroup mode, must be called before cgroup_exit()
881          */
882         perf_event_exit_task(tsk);
883
884         sched_autogroup_exit_task(tsk);
885         cgroup_exit(tsk);
886
887         /*
888          * FIXME: do that only when needed, using sched_exit tracepoint
889          */
890         flush_ptrace_hw_breakpoint(tsk);
891
892         exit_tasks_rcu_start();
893         exit_notify(tsk, group_dead);
894         proc_exit_connector(tsk);
895         mpol_put_task_policy(tsk);
896 #ifdef CONFIG_FUTEX
897         if (unlikely(current->pi_state_cache))
898                 kfree(current->pi_state_cache);
899 #endif
900         /*
901          * Make sure we are holding no locks:
902          */
903         debug_check_no_locks_held();
904
905         if (tsk->io_context)
906                 exit_io_context(tsk);
907
908         if (tsk->splice_pipe)
909                 free_pipe_info(tsk->splice_pipe);
910
911         if (tsk->task_frag.page)
912                 put_page(tsk->task_frag.page);
913
914         validate_creds_for_do_exit(tsk);
915         exit_task_stack_account(tsk);
916
917         check_stack_usage();
918         preempt_disable();
919         if (tsk->nr_dirtied)
920                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
921         exit_rcu();
922         exit_tasks_rcu_finish();
923
924         lockdep_free_task(tsk);
925         do_task_dead();
926 }
927
928 void __noreturn make_task_dead(int signr)
929 {
930         /*
931          * Take the task off the cpu after something catastrophic has
932          * happened.
933          *
934          * We can get here from a kernel oops, sometimes with preemption off.
935          * Start by checking for critical errors.
936          * Then fix up important state like USER_DS and preemption.
937          * Then do everything else.
938          */
939         struct task_struct *tsk = current;
940         unsigned int limit;
941
942         if (unlikely(in_interrupt()))
943                 panic("Aiee, killing interrupt handler!");
944         if (unlikely(!tsk->pid))
945                 panic("Attempted to kill the idle task!");
946
947         if (unlikely(irqs_disabled())) {
948                 pr_info("note: %s[%d] exited with irqs disabled\n",
949                         current->comm, task_pid_nr(current));
950                 local_irq_enable();
951         }
952         if (unlikely(in_atomic())) {
953                 pr_info("note: %s[%d] exited with preempt_count %d\n",
954                         current->comm, task_pid_nr(current),
955                         preempt_count());
956                 preempt_count_set(PREEMPT_ENABLED);
957         }
958
959         /*
960          * Every time the system oopses, if the oops happens while a reference
961          * to an object was held, the reference leaks.
962          * If the oops doesn't also leak memory, repeated oopsing can cause
963          * reference counters to wrap around (if they're not using refcount_t).
964          * This means that repeated oopsing can make unexploitable-looking bugs
965          * exploitable through repeated oopsing.
966          * To make sure this can't happen, place an upper bound on how often the
967          * kernel may oops without panic().
968          */
969         limit = READ_ONCE(oops_limit);
970         if (atomic_inc_return(&oops_count) >= limit && limit)
971                 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
972
973         /*
974          * We're taking recursive faults here in make_task_dead. Safest is to just
975          * leave this task alone and wait for reboot.
976          */
977         if (unlikely(tsk->flags & PF_EXITING)) {
978                 pr_alert("Fixing recursive fault but reboot is needed!\n");
979                 futex_exit_recursive(tsk);
980                 tsk->exit_state = EXIT_DEAD;
981                 refcount_inc(&tsk->rcu_users);
982                 do_task_dead();
983         }
984
985         do_exit(signr);
986 }
987
988 SYSCALL_DEFINE1(exit, int, error_code)
989 {
990         do_exit((error_code&0xff)<<8);
991 }
992
993 /*
994  * Take down every thread in the group.  This is called by fatal signals
995  * as well as by sys_exit_group (below).
996  */
997 void __noreturn
998 do_group_exit(int exit_code)
999 {
1000         struct signal_struct *sig = current->signal;
1001
1002         if (sig->flags & SIGNAL_GROUP_EXIT)
1003                 exit_code = sig->group_exit_code;
1004         else if (sig->group_exec_task)
1005                 exit_code = 0;
1006         else {
1007                 struct sighand_struct *const sighand = current->sighand;
1008
1009                 spin_lock_irq(&sighand->siglock);
1010                 if (sig->flags & SIGNAL_GROUP_EXIT)
1011                         /* Another thread got here before we took the lock.  */
1012                         exit_code = sig->group_exit_code;
1013                 else if (sig->group_exec_task)
1014                         exit_code = 0;
1015                 else {
1016                         sig->group_exit_code = exit_code;
1017                         sig->flags = SIGNAL_GROUP_EXIT;
1018                         zap_other_threads(current);
1019                 }
1020                 spin_unlock_irq(&sighand->siglock);
1021         }
1022
1023         do_exit(exit_code);
1024         /* NOTREACHED */
1025 }
1026
1027 /*
1028  * this kills every thread in the thread group. Note that any externally
1029  * wait4()-ing process will get the correct exit code - even if this
1030  * thread is not the thread group leader.
1031  */
1032 SYSCALL_DEFINE1(exit_group, int, error_code)
1033 {
1034         do_group_exit((error_code & 0xff) << 8);
1035         /* NOTREACHED */
1036         return 0;
1037 }
1038
1039 struct waitid_info {
1040         pid_t pid;
1041         uid_t uid;
1042         int status;
1043         int cause;
1044 };
1045
1046 struct wait_opts {
1047         enum pid_type           wo_type;
1048         int                     wo_flags;
1049         struct pid              *wo_pid;
1050
1051         struct waitid_info      *wo_info;
1052         int                     wo_stat;
1053         struct rusage           *wo_rusage;
1054
1055         wait_queue_entry_t              child_wait;
1056         int                     notask_error;
1057 };
1058
1059 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1060 {
1061         return  wo->wo_type == PIDTYPE_MAX ||
1062                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1063 }
1064
1065 static int
1066 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1067 {
1068         if (!eligible_pid(wo, p))
1069                 return 0;
1070
1071         /*
1072          * Wait for all children (clone and not) if __WALL is set or
1073          * if it is traced by us.
1074          */
1075         if (ptrace || (wo->wo_flags & __WALL))
1076                 return 1;
1077
1078         /*
1079          * Otherwise, wait for clone children *only* if __WCLONE is set;
1080          * otherwise, wait for non-clone children *only*.
1081          *
1082          * Note: a "clone" child here is one that reports to its parent
1083          * using a signal other than SIGCHLD, or a non-leader thread which
1084          * we can only see if it is traced by us.
1085          */
1086         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1087                 return 0;
1088
1089         return 1;
1090 }
1091
1092 /*
1093  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1094  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1095  * the lock and this task is uninteresting.  If we return nonzero, we have
1096  * released the lock and the system call should return.
1097  */
1098 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1099 {
1100         int state, status;
1101         pid_t pid = task_pid_vnr(p);
1102         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1103         struct waitid_info *infop;
1104
1105         if (!likely(wo->wo_flags & WEXITED))
1106                 return 0;
1107
1108         if (unlikely(wo->wo_flags & WNOWAIT)) {
1109                 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1110                         ? p->signal->group_exit_code : p->exit_code;
1111                 get_task_struct(p);
1112                 read_unlock(&tasklist_lock);
1113                 sched_annotate_sleep();
1114                 if (wo->wo_rusage)
1115                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1116                 put_task_struct(p);
1117                 goto out_info;
1118         }
1119         /*
1120          * Move the task's state to DEAD/TRACE, only one thread can do this.
1121          */
1122         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1123                 EXIT_TRACE : EXIT_DEAD;
1124         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1125                 return 0;
1126         /*
1127          * We own this thread, nobody else can reap it.
1128          */
1129         read_unlock(&tasklist_lock);
1130         sched_annotate_sleep();
1131
1132         /*
1133          * Check thread_group_leader() to exclude the traced sub-threads.
1134          */
1135         if (state == EXIT_DEAD && thread_group_leader(p)) {
1136                 struct signal_struct *sig = p->signal;
1137                 struct signal_struct *psig = current->signal;
1138                 unsigned long maxrss;
1139                 u64 tgutime, tgstime;
1140
1141                 /*
1142                  * The resource counters for the group leader are in its
1143                  * own task_struct.  Those for dead threads in the group
1144                  * are in its signal_struct, as are those for the child
1145                  * processes it has previously reaped.  All these
1146                  * accumulate in the parent's signal_struct c* fields.
1147                  *
1148                  * We don't bother to take a lock here to protect these
1149                  * p->signal fields because the whole thread group is dead
1150                  * and nobody can change them.
1151                  *
1152                  * psig->stats_lock also protects us from our sub-threads
1153                  * which can reap other children at the same time. Until
1154                  * we change k_getrusage()-like users to rely on this lock
1155                  * we have to take ->siglock as well.
1156                  *
1157                  * We use thread_group_cputime_adjusted() to get times for
1158                  * the thread group, which consolidates times for all threads
1159                  * in the group including the group leader.
1160                  */
1161                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1162                 spin_lock_irq(&current->sighand->siglock);
1163                 write_seqlock(&psig->stats_lock);
1164                 psig->cutime += tgutime + sig->cutime;
1165                 psig->cstime += tgstime + sig->cstime;
1166                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1167                 psig->cmin_flt +=
1168                         p->min_flt + sig->min_flt + sig->cmin_flt;
1169                 psig->cmaj_flt +=
1170                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1171                 psig->cnvcsw +=
1172                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1173                 psig->cnivcsw +=
1174                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1175                 psig->cinblock +=
1176                         task_io_get_inblock(p) +
1177                         sig->inblock + sig->cinblock;
1178                 psig->coublock +=
1179                         task_io_get_oublock(p) +
1180                         sig->oublock + sig->coublock;
1181                 maxrss = max(sig->maxrss, sig->cmaxrss);
1182                 if (psig->cmaxrss < maxrss)
1183                         psig->cmaxrss = maxrss;
1184                 task_io_accounting_add(&psig->ioac, &p->ioac);
1185                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1186                 write_sequnlock(&psig->stats_lock);
1187                 spin_unlock_irq(&current->sighand->siglock);
1188         }
1189
1190         if (wo->wo_rusage)
1191                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1192         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1193                 ? p->signal->group_exit_code : p->exit_code;
1194         wo->wo_stat = status;
1195
1196         if (state == EXIT_TRACE) {
1197                 write_lock_irq(&tasklist_lock);
1198                 /* We dropped tasklist, ptracer could die and untrace */
1199                 ptrace_unlink(p);
1200
1201                 /* If parent wants a zombie, don't release it now */
1202                 state = EXIT_ZOMBIE;
1203                 if (do_notify_parent(p, p->exit_signal))
1204                         state = EXIT_DEAD;
1205                 p->exit_state = state;
1206                 write_unlock_irq(&tasklist_lock);
1207         }
1208         if (state == EXIT_DEAD)
1209                 release_task(p);
1210
1211 out_info:
1212         infop = wo->wo_info;
1213         if (infop) {
1214                 if ((status & 0x7f) == 0) {
1215                         infop->cause = CLD_EXITED;
1216                         infop->status = status >> 8;
1217                 } else {
1218                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1219                         infop->status = status & 0x7f;
1220                 }
1221                 infop->pid = pid;
1222                 infop->uid = uid;
1223         }
1224
1225         return pid;
1226 }
1227
1228 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1229 {
1230         if (ptrace) {
1231                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1232                         return &p->exit_code;
1233         } else {
1234                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1235                         return &p->signal->group_exit_code;
1236         }
1237         return NULL;
1238 }
1239
1240 /**
1241  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1242  * @wo: wait options
1243  * @ptrace: is the wait for ptrace
1244  * @p: task to wait for
1245  *
1246  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1247  *
1248  * CONTEXT:
1249  * read_lock(&tasklist_lock), which is released if return value is
1250  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1251  *
1252  * RETURNS:
1253  * 0 if wait condition didn't exist and search for other wait conditions
1254  * should continue.  Non-zero return, -errno on failure and @p's pid on
1255  * success, implies that tasklist_lock is released and wait condition
1256  * search should terminate.
1257  */
1258 static int wait_task_stopped(struct wait_opts *wo,
1259                                 int ptrace, struct task_struct *p)
1260 {
1261         struct waitid_info *infop;
1262         int exit_code, *p_code, why;
1263         uid_t uid = 0; /* unneeded, required by compiler */
1264         pid_t pid;
1265
1266         /*
1267          * Traditionally we see ptrace'd stopped tasks regardless of options.
1268          */
1269         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1270                 return 0;
1271
1272         if (!task_stopped_code(p, ptrace))
1273                 return 0;
1274
1275         exit_code = 0;
1276         spin_lock_irq(&p->sighand->siglock);
1277
1278         p_code = task_stopped_code(p, ptrace);
1279         if (unlikely(!p_code))
1280                 goto unlock_sig;
1281
1282         exit_code = *p_code;
1283         if (!exit_code)
1284                 goto unlock_sig;
1285
1286         if (!unlikely(wo->wo_flags & WNOWAIT))
1287                 *p_code = 0;
1288
1289         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1290 unlock_sig:
1291         spin_unlock_irq(&p->sighand->siglock);
1292         if (!exit_code)
1293                 return 0;
1294
1295         /*
1296          * Now we are pretty sure this task is interesting.
1297          * Make sure it doesn't get reaped out from under us while we
1298          * give up the lock and then examine it below.  We don't want to
1299          * keep holding onto the tasklist_lock while we call getrusage and
1300          * possibly take page faults for user memory.
1301          */
1302         get_task_struct(p);
1303         pid = task_pid_vnr(p);
1304         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1305         read_unlock(&tasklist_lock);
1306         sched_annotate_sleep();
1307         if (wo->wo_rusage)
1308                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1309         put_task_struct(p);
1310
1311         if (likely(!(wo->wo_flags & WNOWAIT)))
1312                 wo->wo_stat = (exit_code << 8) | 0x7f;
1313
1314         infop = wo->wo_info;
1315         if (infop) {
1316                 infop->cause = why;
1317                 infop->status = exit_code;
1318                 infop->pid = pid;
1319                 infop->uid = uid;
1320         }
1321         return pid;
1322 }
1323
1324 /*
1325  * Handle do_wait work for one task in a live, non-stopped state.
1326  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1327  * the lock and this task is uninteresting.  If we return nonzero, we have
1328  * released the lock and the system call should return.
1329  */
1330 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1331 {
1332         struct waitid_info *infop;
1333         pid_t pid;
1334         uid_t uid;
1335
1336         if (!unlikely(wo->wo_flags & WCONTINUED))
1337                 return 0;
1338
1339         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1340                 return 0;
1341
1342         spin_lock_irq(&p->sighand->siglock);
1343         /* Re-check with the lock held.  */
1344         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1345                 spin_unlock_irq(&p->sighand->siglock);
1346                 return 0;
1347         }
1348         if (!unlikely(wo->wo_flags & WNOWAIT))
1349                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1350         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1351         spin_unlock_irq(&p->sighand->siglock);
1352
1353         pid = task_pid_vnr(p);
1354         get_task_struct(p);
1355         read_unlock(&tasklist_lock);
1356         sched_annotate_sleep();
1357         if (wo->wo_rusage)
1358                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1359         put_task_struct(p);
1360
1361         infop = wo->wo_info;
1362         if (!infop) {
1363                 wo->wo_stat = 0xffff;
1364         } else {
1365                 infop->cause = CLD_CONTINUED;
1366                 infop->pid = pid;
1367                 infop->uid = uid;
1368                 infop->status = SIGCONT;
1369         }
1370         return pid;
1371 }
1372
1373 /*
1374  * Consider @p for a wait by @parent.
1375  *
1376  * -ECHILD should be in ->notask_error before the first call.
1377  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1378  * Returns zero if the search for a child should continue;
1379  * then ->notask_error is 0 if @p is an eligible child,
1380  * or still -ECHILD.
1381  */
1382 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1383                                 struct task_struct *p)
1384 {
1385         /*
1386          * We can race with wait_task_zombie() from another thread.
1387          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1388          * can't confuse the checks below.
1389          */
1390         int exit_state = READ_ONCE(p->exit_state);
1391         int ret;
1392
1393         if (unlikely(exit_state == EXIT_DEAD))
1394                 return 0;
1395
1396         ret = eligible_child(wo, ptrace, p);
1397         if (!ret)
1398                 return ret;
1399
1400         if (unlikely(exit_state == EXIT_TRACE)) {
1401                 /*
1402                  * ptrace == 0 means we are the natural parent. In this case
1403                  * we should clear notask_error, debugger will notify us.
1404                  */
1405                 if (likely(!ptrace))
1406                         wo->notask_error = 0;
1407                 return 0;
1408         }
1409
1410         if (likely(!ptrace) && unlikely(p->ptrace)) {
1411                 /*
1412                  * If it is traced by its real parent's group, just pretend
1413                  * the caller is ptrace_do_wait() and reap this child if it
1414                  * is zombie.
1415                  *
1416                  * This also hides group stop state from real parent; otherwise
1417                  * a single stop can be reported twice as group and ptrace stop.
1418                  * If a ptracer wants to distinguish these two events for its
1419                  * own children it should create a separate process which takes
1420                  * the role of real parent.
1421                  */
1422                 if (!ptrace_reparented(p))
1423                         ptrace = 1;
1424         }
1425
1426         /* slay zombie? */
1427         if (exit_state == EXIT_ZOMBIE) {
1428                 /* we don't reap group leaders with subthreads */
1429                 if (!delay_group_leader(p)) {
1430                         /*
1431                          * A zombie ptracee is only visible to its ptracer.
1432                          * Notification and reaping will be cascaded to the
1433                          * real parent when the ptracer detaches.
1434                          */
1435                         if (unlikely(ptrace) || likely(!p->ptrace))
1436                                 return wait_task_zombie(wo, p);
1437                 }
1438
1439                 /*
1440                  * Allow access to stopped/continued state via zombie by
1441                  * falling through.  Clearing of notask_error is complex.
1442                  *
1443                  * When !@ptrace:
1444                  *
1445                  * If WEXITED is set, notask_error should naturally be
1446                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1447                  * so, if there are live subthreads, there are events to
1448                  * wait for.  If all subthreads are dead, it's still safe
1449                  * to clear - this function will be called again in finite
1450                  * amount time once all the subthreads are released and
1451                  * will then return without clearing.
1452                  *
1453                  * When @ptrace:
1454                  *
1455                  * Stopped state is per-task and thus can't change once the
1456                  * target task dies.  Only continued and exited can happen.
1457                  * Clear notask_error if WCONTINUED | WEXITED.
1458                  */
1459                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1460                         wo->notask_error = 0;
1461         } else {
1462                 /*
1463                  * @p is alive and it's gonna stop, continue or exit, so
1464                  * there always is something to wait for.
1465                  */
1466                 wo->notask_error = 0;
1467         }
1468
1469         /*
1470          * Wait for stopped.  Depending on @ptrace, different stopped state
1471          * is used and the two don't interact with each other.
1472          */
1473         ret = wait_task_stopped(wo, ptrace, p);
1474         if (ret)
1475                 return ret;
1476
1477         /*
1478          * Wait for continued.  There's only one continued state and the
1479          * ptracer can consume it which can confuse the real parent.  Don't
1480          * use WCONTINUED from ptracer.  You don't need or want it.
1481          */
1482         return wait_task_continued(wo, p);
1483 }
1484
1485 /*
1486  * Do the work of do_wait() for one thread in the group, @tsk.
1487  *
1488  * -ECHILD should be in ->notask_error before the first call.
1489  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1490  * Returns zero if the search for a child should continue; then
1491  * ->notask_error is 0 if there were any eligible children,
1492  * or still -ECHILD.
1493  */
1494 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1495 {
1496         struct task_struct *p;
1497
1498         list_for_each_entry(p, &tsk->children, sibling) {
1499                 int ret = wait_consider_task(wo, 0, p);
1500
1501                 if (ret)
1502                         return ret;
1503         }
1504
1505         return 0;
1506 }
1507
1508 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1509 {
1510         struct task_struct *p;
1511
1512         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1513                 int ret = wait_consider_task(wo, 1, p);
1514
1515                 if (ret)
1516                         return ret;
1517         }
1518
1519         return 0;
1520 }
1521
1522 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1523                                 int sync, void *key)
1524 {
1525         struct wait_opts *wo = container_of(wait, struct wait_opts,
1526                                                 child_wait);
1527         struct task_struct *p = key;
1528
1529         if (!eligible_pid(wo, p))
1530                 return 0;
1531
1532         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1533                 return 0;
1534
1535         return default_wake_function(wait, mode, sync, key);
1536 }
1537
1538 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1539 {
1540         __wake_up_sync_key(&parent->signal->wait_chldexit,
1541                            TASK_INTERRUPTIBLE, p);
1542 }
1543
1544 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1545                                  struct task_struct *target)
1546 {
1547         struct task_struct *parent =
1548                 !ptrace ? target->real_parent : target->parent;
1549
1550         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1551                                      same_thread_group(current, parent));
1552 }
1553
1554 /*
1555  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1556  * and tracee lists to find the target task.
1557  */
1558 static int do_wait_pid(struct wait_opts *wo)
1559 {
1560         bool ptrace;
1561         struct task_struct *target;
1562         int retval;
1563
1564         ptrace = false;
1565         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1566         if (target && is_effectively_child(wo, ptrace, target)) {
1567                 retval = wait_consider_task(wo, ptrace, target);
1568                 if (retval)
1569                         return retval;
1570         }
1571
1572         ptrace = true;
1573         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1574         if (target && target->ptrace &&
1575             is_effectively_child(wo, ptrace, target)) {
1576                 retval = wait_consider_task(wo, ptrace, target);
1577                 if (retval)
1578                         return retval;
1579         }
1580
1581         return 0;
1582 }
1583
1584 static long do_wait(struct wait_opts *wo)
1585 {
1586         int retval;
1587
1588         trace_sched_process_wait(wo->wo_pid);
1589
1590         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1591         wo->child_wait.private = current;
1592         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1593 repeat:
1594         /*
1595          * If there is nothing that can match our criteria, just get out.
1596          * We will clear ->notask_error to zero if we see any child that
1597          * might later match our criteria, even if we are not able to reap
1598          * it yet.
1599          */
1600         wo->notask_error = -ECHILD;
1601         if ((wo->wo_type < PIDTYPE_MAX) &&
1602            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1603                 goto notask;
1604
1605         set_current_state(TASK_INTERRUPTIBLE);
1606         read_lock(&tasklist_lock);
1607
1608         if (wo->wo_type == PIDTYPE_PID) {
1609                 retval = do_wait_pid(wo);
1610                 if (retval)
1611                         goto end;
1612         } else {
1613                 struct task_struct *tsk = current;
1614
1615                 do {
1616                         retval = do_wait_thread(wo, tsk);
1617                         if (retval)
1618                                 goto end;
1619
1620                         retval = ptrace_do_wait(wo, tsk);
1621                         if (retval)
1622                                 goto end;
1623
1624                         if (wo->wo_flags & __WNOTHREAD)
1625                                 break;
1626                 } while_each_thread(current, tsk);
1627         }
1628         read_unlock(&tasklist_lock);
1629
1630 notask:
1631         retval = wo->notask_error;
1632         if (!retval && !(wo->wo_flags & WNOHANG)) {
1633                 retval = -ERESTARTSYS;
1634                 if (!signal_pending(current)) {
1635                         schedule();
1636                         goto repeat;
1637                 }
1638         }
1639 end:
1640         __set_current_state(TASK_RUNNING);
1641         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1642         return retval;
1643 }
1644
1645 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1646                           int options, struct rusage *ru)
1647 {
1648         struct wait_opts wo;
1649         struct pid *pid = NULL;
1650         enum pid_type type;
1651         long ret;
1652         unsigned int f_flags = 0;
1653
1654         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1655                         __WNOTHREAD|__WCLONE|__WALL))
1656                 return -EINVAL;
1657         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1658                 return -EINVAL;
1659
1660         switch (which) {
1661         case P_ALL:
1662                 type = PIDTYPE_MAX;
1663                 break;
1664         case P_PID:
1665                 type = PIDTYPE_PID;
1666                 if (upid <= 0)
1667                         return -EINVAL;
1668
1669                 pid = find_get_pid(upid);
1670                 break;
1671         case P_PGID:
1672                 type = PIDTYPE_PGID;
1673                 if (upid < 0)
1674                         return -EINVAL;
1675
1676                 if (upid)
1677                         pid = find_get_pid(upid);
1678                 else
1679                         pid = get_task_pid(current, PIDTYPE_PGID);
1680                 break;
1681         case P_PIDFD:
1682                 type = PIDTYPE_PID;
1683                 if (upid < 0)
1684                         return -EINVAL;
1685
1686                 pid = pidfd_get_pid(upid, &f_flags);
1687                 if (IS_ERR(pid))
1688                         return PTR_ERR(pid);
1689
1690                 break;
1691         default:
1692                 return -EINVAL;
1693         }
1694
1695         wo.wo_type      = type;
1696         wo.wo_pid       = pid;
1697         wo.wo_flags     = options;
1698         wo.wo_info      = infop;
1699         wo.wo_rusage    = ru;
1700         if (f_flags & O_NONBLOCK)
1701                 wo.wo_flags |= WNOHANG;
1702
1703         ret = do_wait(&wo);
1704         if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1705                 ret = -EAGAIN;
1706
1707         put_pid(pid);
1708         return ret;
1709 }
1710
1711 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1712                 infop, int, options, struct rusage __user *, ru)
1713 {
1714         struct rusage r;
1715         struct waitid_info info = {.status = 0};
1716         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1717         int signo = 0;
1718
1719         if (err > 0) {
1720                 signo = SIGCHLD;
1721                 err = 0;
1722                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1723                         return -EFAULT;
1724         }
1725         if (!infop)
1726                 return err;
1727
1728         if (!user_write_access_begin(infop, sizeof(*infop)))
1729                 return -EFAULT;
1730
1731         unsafe_put_user(signo, &infop->si_signo, Efault);
1732         unsafe_put_user(0, &infop->si_errno, Efault);
1733         unsafe_put_user(info.cause, &infop->si_code, Efault);
1734         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1735         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1736         unsafe_put_user(info.status, &infop->si_status, Efault);
1737         user_write_access_end();
1738         return err;
1739 Efault:
1740         user_write_access_end();
1741         return -EFAULT;
1742 }
1743
1744 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1745                   struct rusage *ru)
1746 {
1747         struct wait_opts wo;
1748         struct pid *pid = NULL;
1749         enum pid_type type;
1750         long ret;
1751
1752         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1753                         __WNOTHREAD|__WCLONE|__WALL))
1754                 return -EINVAL;
1755
1756         /* -INT_MIN is not defined */
1757         if (upid == INT_MIN)
1758                 return -ESRCH;
1759
1760         if (upid == -1)
1761                 type = PIDTYPE_MAX;
1762         else if (upid < 0) {
1763                 type = PIDTYPE_PGID;
1764                 pid = find_get_pid(-upid);
1765         } else if (upid == 0) {
1766                 type = PIDTYPE_PGID;
1767                 pid = get_task_pid(current, PIDTYPE_PGID);
1768         } else /* upid > 0 */ {
1769                 type = PIDTYPE_PID;
1770                 pid = find_get_pid(upid);
1771         }
1772
1773         wo.wo_type      = type;
1774         wo.wo_pid       = pid;
1775         wo.wo_flags     = options | WEXITED;
1776         wo.wo_info      = NULL;
1777         wo.wo_stat      = 0;
1778         wo.wo_rusage    = ru;
1779         ret = do_wait(&wo);
1780         put_pid(pid);
1781         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1782                 ret = -EFAULT;
1783
1784         return ret;
1785 }
1786
1787 int kernel_wait(pid_t pid, int *stat)
1788 {
1789         struct wait_opts wo = {
1790                 .wo_type        = PIDTYPE_PID,
1791                 .wo_pid         = find_get_pid(pid),
1792                 .wo_flags       = WEXITED,
1793         };
1794         int ret;
1795
1796         ret = do_wait(&wo);
1797         if (ret > 0 && wo.wo_stat)
1798                 *stat = wo.wo_stat;
1799         put_pid(wo.wo_pid);
1800         return ret;
1801 }
1802
1803 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1804                 int, options, struct rusage __user *, ru)
1805 {
1806         struct rusage r;
1807         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1808
1809         if (err > 0) {
1810                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1811                         return -EFAULT;
1812         }
1813         return err;
1814 }
1815
1816 #ifdef __ARCH_WANT_SYS_WAITPID
1817
1818 /*
1819  * sys_waitpid() remains for compatibility. waitpid() should be
1820  * implemented by calling sys_wait4() from libc.a.
1821  */
1822 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1823 {
1824         return kernel_wait4(pid, stat_addr, options, NULL);
1825 }
1826
1827 #endif
1828
1829 #ifdef CONFIG_COMPAT
1830 COMPAT_SYSCALL_DEFINE4(wait4,
1831         compat_pid_t, pid,
1832         compat_uint_t __user *, stat_addr,
1833         int, options,
1834         struct compat_rusage __user *, ru)
1835 {
1836         struct rusage r;
1837         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1838         if (err > 0) {
1839                 if (ru && put_compat_rusage(&r, ru))
1840                         return -EFAULT;
1841         }
1842         return err;
1843 }
1844
1845 COMPAT_SYSCALL_DEFINE5(waitid,
1846                 int, which, compat_pid_t, pid,
1847                 struct compat_siginfo __user *, infop, int, options,
1848                 struct compat_rusage __user *, uru)
1849 {
1850         struct rusage ru;
1851         struct waitid_info info = {.status = 0};
1852         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1853         int signo = 0;
1854         if (err > 0) {
1855                 signo = SIGCHLD;
1856                 err = 0;
1857                 if (uru) {
1858                         /* kernel_waitid() overwrites everything in ru */
1859                         if (COMPAT_USE_64BIT_TIME)
1860                                 err = copy_to_user(uru, &ru, sizeof(ru));
1861                         else
1862                                 err = put_compat_rusage(&ru, uru);
1863                         if (err)
1864                                 return -EFAULT;
1865                 }
1866         }
1867
1868         if (!infop)
1869                 return err;
1870
1871         if (!user_write_access_begin(infop, sizeof(*infop)))
1872                 return -EFAULT;
1873
1874         unsafe_put_user(signo, &infop->si_signo, Efault);
1875         unsafe_put_user(0, &infop->si_errno, Efault);
1876         unsafe_put_user(info.cause, &infop->si_code, Efault);
1877         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1878         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1879         unsafe_put_user(info.status, &infop->si_status, Efault);
1880         user_write_access_end();
1881         return err;
1882 Efault:
1883         user_write_access_end();
1884         return -EFAULT;
1885 }
1886 #endif
1887
1888 /**
1889  * thread_group_exited - check that a thread group has exited
1890  * @pid: tgid of thread group to be checked.
1891  *
1892  * Test if the thread group represented by tgid has exited (all
1893  * threads are zombies, dead or completely gone).
1894  *
1895  * Return: true if the thread group has exited. false otherwise.
1896  */
1897 bool thread_group_exited(struct pid *pid)
1898 {
1899         struct task_struct *task;
1900         bool exited;
1901
1902         rcu_read_lock();
1903         task = pid_task(pid, PIDTYPE_PID);
1904         exited = !task ||
1905                 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1906         rcu_read_unlock();
1907
1908         return exited;
1909 }
1910 EXPORT_SYMBOL(thread_group_exited);
1911
1912 /*
1913  * This needs to be __function_aligned as GCC implicitly makes any
1914  * implementation of abort() cold and drops alignment specified by
1915  * -falign-functions=N.
1916  *
1917  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1918  */
1919 __weak __function_aligned void abort(void)
1920 {
1921         BUG();
1922
1923         /* if that doesn't kill us, halt */
1924         panic("Oops failed to kill thread");
1925 }
1926 EXPORT_SYMBOL(abort);
This page took 0.149911 seconds and 4 git commands to generate.