1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/super.c
5 * Copyright (C) 1992, 1993, 1994, 1995
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * Big-endian to little-endian byte-swapping/bitmaps by
20 #include <linux/module.h>
21 #include <linux/string.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
51 #include "ext4_extents.h" /* Needed for trace points definition */
52 #include "ext4_jbd2.h"
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
61 static struct ext4_lazy_init *ext4_li_info;
62 static struct mutex ext4_li_mtx;
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static int ext4_commit_super(struct super_block *sb, int sync);
69 static void ext4_mark_recovery_complete(struct super_block *sb,
70 struct ext4_super_block *es);
71 static void ext4_clear_journal_err(struct super_block *sb,
72 struct ext4_super_block *es);
73 static int ext4_sync_fs(struct super_block *sb, int wait);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87 unsigned int journal_inum);
92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
93 * i_mmap_rwsem (inode->i_mmap_rwsem)!
96 * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
97 * page lock -> i_data_sem (rw)
99 * buffered write path:
100 * sb_start_write -> i_mutex -> mmap_lock
101 * sb_start_write -> i_mutex -> transaction start -> page lock ->
105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
110 * sb_start_write -> i_mutex -> mmap_lock
111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
114 * transaction start -> page lock(s) -> i_data_sem (rw)
117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
118 static struct file_system_type ext2_fs_type = {
119 .owner = THIS_MODULE,
122 .kill_sb = kill_block_super,
123 .fs_flags = FS_REQUIRES_DEV,
125 MODULE_ALIAS_FS("ext2");
126 MODULE_ALIAS("ext2");
127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
129 #define IS_EXT2_SB(sb) (0)
133 static struct file_system_type ext3_fs_type = {
134 .owner = THIS_MODULE,
137 .kill_sb = kill_block_super,
138 .fs_flags = FS_REQUIRES_DEV,
140 MODULE_ALIAS_FS("ext3");
141 MODULE_ALIAS("ext3");
142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
145 * This works like sb_bread() except it uses ERR_PTR for error
146 * returns. Currently with sb_bread it's impossible to distinguish
147 * between ENOMEM and EIO situations (since both result in a NULL
151 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags)
153 struct buffer_head *bh = sb_getblk(sb, block);
156 return ERR_PTR(-ENOMEM);
157 if (ext4_buffer_uptodate(bh))
159 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh);
161 if (buffer_uptodate(bh))
164 return ERR_PTR(-EIO);
167 static int ext4_verify_csum_type(struct super_block *sb,
168 struct ext4_super_block *es)
170 if (!ext4_has_feature_metadata_csum(sb))
173 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
176 static __le32 ext4_superblock_csum(struct super_block *sb,
177 struct ext4_super_block *es)
179 struct ext4_sb_info *sbi = EXT4_SB(sb);
180 int offset = offsetof(struct ext4_super_block, s_checksum);
183 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
185 return cpu_to_le32(csum);
188 static int ext4_superblock_csum_verify(struct super_block *sb,
189 struct ext4_super_block *es)
191 if (!ext4_has_metadata_csum(sb))
194 return es->s_checksum == ext4_superblock_csum(sb, es);
197 void ext4_superblock_csum_set(struct super_block *sb)
199 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
201 if (!ext4_has_metadata_csum(sb))
204 es->s_checksum = ext4_superblock_csum(sb, es);
207 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
208 struct ext4_group_desc *bg)
210 return le32_to_cpu(bg->bg_block_bitmap_lo) |
211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
212 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
215 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
216 struct ext4_group_desc *bg)
218 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
223 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
224 struct ext4_group_desc *bg)
226 return le32_to_cpu(bg->bg_inode_table_lo) |
227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
228 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
231 __u32 ext4_free_group_clusters(struct super_block *sb,
232 struct ext4_group_desc *bg)
234 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
236 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
239 __u32 ext4_free_inodes_count(struct super_block *sb,
240 struct ext4_group_desc *bg)
242 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
244 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
247 __u32 ext4_used_dirs_count(struct super_block *sb,
248 struct ext4_group_desc *bg)
250 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
252 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
255 __u32 ext4_itable_unused_count(struct super_block *sb,
256 struct ext4_group_desc *bg)
258 return le16_to_cpu(bg->bg_itable_unused_lo) |
259 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
260 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
263 void ext4_block_bitmap_set(struct super_block *sb,
264 struct ext4_group_desc *bg, ext4_fsblk_t blk)
266 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
268 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
271 void ext4_inode_bitmap_set(struct super_block *sb,
272 struct ext4_group_desc *bg, ext4_fsblk_t blk)
274 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
276 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
279 void ext4_inode_table_set(struct super_block *sb,
280 struct ext4_group_desc *bg, ext4_fsblk_t blk)
282 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
284 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
287 void ext4_free_group_clusters_set(struct super_block *sb,
288 struct ext4_group_desc *bg, __u32 count)
290 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
292 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
295 void ext4_free_inodes_set(struct super_block *sb,
296 struct ext4_group_desc *bg, __u32 count)
298 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
300 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
303 void ext4_used_dirs_set(struct super_block *sb,
304 struct ext4_group_desc *bg, __u32 count)
306 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
308 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
311 void ext4_itable_unused_set(struct super_block *sb,
312 struct ext4_group_desc *bg, __u32 count)
314 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
315 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
316 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
319 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
321 time64_t now = ktime_get_real_seconds();
323 now = clamp_val(now, 0, (1ull << 40) - 1);
325 *lo = cpu_to_le32(lower_32_bits(now));
326 *hi = upper_32_bits(now);
329 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
331 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
333 #define ext4_update_tstamp(es, tstamp) \
334 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
335 #define ext4_get_tstamp(es, tstamp) \
336 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
338 static void __save_error_info(struct super_block *sb, int error,
339 __u32 ino, __u64 block,
340 const char *func, unsigned int line)
342 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
345 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
346 if (bdev_read_only(sb->s_bdev))
348 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
349 ext4_update_tstamp(es, s_last_error_time);
350 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
351 es->s_last_error_line = cpu_to_le32(line);
352 es->s_last_error_ino = cpu_to_le32(ino);
353 es->s_last_error_block = cpu_to_le64(block);
359 err = EXT4_ERR_ENOMEM;
362 err = EXT4_ERR_EFSBADCRC;
366 err = EXT4_ERR_EFSCORRUPTED;
369 err = EXT4_ERR_ENOSPC;
372 err = EXT4_ERR_ENOKEY;
375 err = EXT4_ERR_EROFS;
378 err = EXT4_ERR_EFBIG;
381 err = EXT4_ERR_EEXIST;
384 err = EXT4_ERR_ERANGE;
387 err = EXT4_ERR_EOVERFLOW;
390 err = EXT4_ERR_EBUSY;
393 err = EXT4_ERR_ENOTDIR;
396 err = EXT4_ERR_ENOTEMPTY;
399 err = EXT4_ERR_ESHUTDOWN;
402 err = EXT4_ERR_EFAULT;
405 err = EXT4_ERR_UNKNOWN;
407 es->s_last_error_errcode = err;
408 if (!es->s_first_error_time) {
409 es->s_first_error_time = es->s_last_error_time;
410 es->s_first_error_time_hi = es->s_last_error_time_hi;
411 strncpy(es->s_first_error_func, func,
412 sizeof(es->s_first_error_func));
413 es->s_first_error_line = cpu_to_le32(line);
414 es->s_first_error_ino = es->s_last_error_ino;
415 es->s_first_error_block = es->s_last_error_block;
416 es->s_first_error_errcode = es->s_last_error_errcode;
419 * Start the daily error reporting function if it hasn't been
422 if (!es->s_error_count)
423 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
424 le32_add_cpu(&es->s_error_count, 1);
427 static void save_error_info(struct super_block *sb, int error,
428 __u32 ino, __u64 block,
429 const char *func, unsigned int line)
431 __save_error_info(sb, error, ino, block, func, line);
432 if (!bdev_read_only(sb->s_bdev))
433 ext4_commit_super(sb, 1);
437 * The del_gendisk() function uninitializes the disk-specific data
438 * structures, including the bdi structure, without telling anyone
439 * else. Once this happens, any attempt to call mark_buffer_dirty()
440 * (for example, by ext4_commit_super), will cause a kernel OOPS.
441 * This is a kludge to prevent these oops until we can put in a proper
442 * hook in del_gendisk() to inform the VFS and file system layers.
444 static int block_device_ejected(struct super_block *sb)
446 struct inode *bd_inode = sb->s_bdev->bd_inode;
447 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
449 return bdi->dev == NULL;
452 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
454 struct super_block *sb = journal->j_private;
455 struct ext4_sb_info *sbi = EXT4_SB(sb);
456 int error = is_journal_aborted(journal);
457 struct ext4_journal_cb_entry *jce;
459 BUG_ON(txn->t_state == T_FINISHED);
461 ext4_process_freed_data(sb, txn->t_tid);
463 spin_lock(&sbi->s_md_lock);
464 while (!list_empty(&txn->t_private_list)) {
465 jce = list_entry(txn->t_private_list.next,
466 struct ext4_journal_cb_entry, jce_list);
467 list_del_init(&jce->jce_list);
468 spin_unlock(&sbi->s_md_lock);
469 jce->jce_func(sb, jce, error);
470 spin_lock(&sbi->s_md_lock);
472 spin_unlock(&sbi->s_md_lock);
475 static bool system_going_down(void)
477 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
478 || system_state == SYSTEM_RESTART;
481 /* Deal with the reporting of failure conditions on a filesystem such as
482 * inconsistencies detected or read IO failures.
484 * On ext2, we can store the error state of the filesystem in the
485 * superblock. That is not possible on ext4, because we may have other
486 * write ordering constraints on the superblock which prevent us from
487 * writing it out straight away; and given that the journal is about to
488 * be aborted, we can't rely on the current, or future, transactions to
489 * write out the superblock safely.
491 * We'll just use the jbd2_journal_abort() error code to record an error in
492 * the journal instead. On recovery, the journal will complain about
493 * that error until we've noted it down and cleared it.
496 static void ext4_handle_error(struct super_block *sb)
498 if (test_opt(sb, WARN_ON_ERROR))
504 if (!test_opt(sb, ERRORS_CONT)) {
505 journal_t *journal = EXT4_SB(sb)->s_journal;
507 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
509 jbd2_journal_abort(journal, -EIO);
512 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
513 * could panic during 'reboot -f' as the underlying device got already
516 if (test_opt(sb, ERRORS_RO) || system_going_down()) {
517 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
519 * Make sure updated value of ->s_mount_flags will be visible
520 * before ->s_flags update
523 sb->s_flags |= SB_RDONLY;
524 } else if (test_opt(sb, ERRORS_PANIC)) {
525 panic("EXT4-fs (device %s): panic forced after error\n",
530 #define ext4_error_ratelimit(sb) \
531 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
534 void __ext4_error(struct super_block *sb, const char *function,
535 unsigned int line, int error, __u64 block,
536 const char *fmt, ...)
538 struct va_format vaf;
541 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
544 trace_ext4_error(sb, function, line);
545 if (ext4_error_ratelimit(sb)) {
550 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
551 sb->s_id, function, line, current->comm, &vaf);
554 save_error_info(sb, error, 0, block, function, line);
555 ext4_handle_error(sb);
558 void __ext4_error_inode(struct inode *inode, const char *function,
559 unsigned int line, ext4_fsblk_t block, int error,
560 const char *fmt, ...)
563 struct va_format vaf;
565 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
568 trace_ext4_error(inode->i_sb, function, line);
569 if (ext4_error_ratelimit(inode->i_sb)) {
574 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
575 "inode #%lu: block %llu: comm %s: %pV\n",
576 inode->i_sb->s_id, function, line, inode->i_ino,
577 block, current->comm, &vaf);
579 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
580 "inode #%lu: comm %s: %pV\n",
581 inode->i_sb->s_id, function, line, inode->i_ino,
582 current->comm, &vaf);
585 save_error_info(inode->i_sb, error, inode->i_ino, block,
587 ext4_handle_error(inode->i_sb);
590 void __ext4_error_file(struct file *file, const char *function,
591 unsigned int line, ext4_fsblk_t block,
592 const char *fmt, ...)
595 struct va_format vaf;
596 struct inode *inode = file_inode(file);
597 char pathname[80], *path;
599 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
602 trace_ext4_error(inode->i_sb, function, line);
603 if (ext4_error_ratelimit(inode->i_sb)) {
604 path = file_path(file, pathname, sizeof(pathname));
612 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
613 "block %llu: comm %s: path %s: %pV\n",
614 inode->i_sb->s_id, function, line, inode->i_ino,
615 block, current->comm, path, &vaf);
618 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
619 "comm %s: path %s: %pV\n",
620 inode->i_sb->s_id, function, line, inode->i_ino,
621 current->comm, path, &vaf);
624 save_error_info(inode->i_sb, EFSCORRUPTED, inode->i_ino, block,
626 ext4_handle_error(inode->i_sb);
629 const char *ext4_decode_error(struct super_block *sb, int errno,
636 errstr = "Corrupt filesystem";
639 errstr = "Filesystem failed CRC";
642 errstr = "IO failure";
645 errstr = "Out of memory";
648 if (!sb || (EXT4_SB(sb)->s_journal &&
649 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
650 errstr = "Journal has aborted";
652 errstr = "Readonly filesystem";
655 /* If the caller passed in an extra buffer for unknown
656 * errors, textualise them now. Else we just return
659 /* Check for truncated error codes... */
660 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
669 /* __ext4_std_error decodes expected errors from journaling functions
670 * automatically and invokes the appropriate error response. */
672 void __ext4_std_error(struct super_block *sb, const char *function,
673 unsigned int line, int errno)
678 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
681 /* Special case: if the error is EROFS, and we're not already
682 * inside a transaction, then there's really no point in logging
684 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
687 if (ext4_error_ratelimit(sb)) {
688 errstr = ext4_decode_error(sb, errno, nbuf);
689 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
690 sb->s_id, function, line, errstr);
693 save_error_info(sb, -errno, 0, 0, function, line);
694 ext4_handle_error(sb);
698 * ext4_abort is a much stronger failure handler than ext4_error. The
699 * abort function may be used to deal with unrecoverable failures such
700 * as journal IO errors or ENOMEM at a critical moment in log management.
702 * We unconditionally force the filesystem into an ABORT|READONLY state,
703 * unless the error response on the fs has been set to panic in which
704 * case we take the easy way out and panic immediately.
707 void __ext4_abort(struct super_block *sb, const char *function,
708 unsigned int line, int error, const char *fmt, ...)
710 struct va_format vaf;
713 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
716 save_error_info(sb, error, 0, 0, function, line);
720 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
721 sb->s_id, function, line, &vaf);
724 if (sb_rdonly(sb) == 0) {
725 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
726 if (EXT4_SB(sb)->s_journal)
727 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
729 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
731 * Make sure updated value of ->s_mount_flags will be visible
732 * before ->s_flags update
735 sb->s_flags |= SB_RDONLY;
737 if (test_opt(sb, ERRORS_PANIC) && !system_going_down())
738 panic("EXT4-fs panic from previous error\n");
741 void __ext4_msg(struct super_block *sb,
742 const char *prefix, const char *fmt, ...)
744 struct va_format vaf;
747 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
753 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
757 #define ext4_warning_ratelimit(sb) \
758 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
761 void __ext4_warning(struct super_block *sb, const char *function,
762 unsigned int line, const char *fmt, ...)
764 struct va_format vaf;
767 if (!ext4_warning_ratelimit(sb))
773 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
774 sb->s_id, function, line, &vaf);
778 void __ext4_warning_inode(const struct inode *inode, const char *function,
779 unsigned int line, const char *fmt, ...)
781 struct va_format vaf;
784 if (!ext4_warning_ratelimit(inode->i_sb))
790 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
791 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
792 function, line, inode->i_ino, current->comm, &vaf);
796 void __ext4_grp_locked_error(const char *function, unsigned int line,
797 struct super_block *sb, ext4_group_t grp,
798 unsigned long ino, ext4_fsblk_t block,
799 const char *fmt, ...)
803 struct va_format vaf;
806 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
809 trace_ext4_error(sb, function, line);
810 __save_error_info(sb, EFSCORRUPTED, ino, block, function, line);
812 if (ext4_error_ratelimit(sb)) {
816 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
817 sb->s_id, function, line, grp);
819 printk(KERN_CONT "inode %lu: ", ino);
821 printk(KERN_CONT "block %llu:",
822 (unsigned long long) block);
823 printk(KERN_CONT "%pV\n", &vaf);
827 if (test_opt(sb, WARN_ON_ERROR))
830 if (test_opt(sb, ERRORS_CONT)) {
831 ext4_commit_super(sb, 0);
835 ext4_unlock_group(sb, grp);
836 ext4_commit_super(sb, 1);
837 ext4_handle_error(sb);
839 * We only get here in the ERRORS_RO case; relocking the group
840 * may be dangerous, but nothing bad will happen since the
841 * filesystem will have already been marked read/only and the
842 * journal has been aborted. We return 1 as a hint to callers
843 * who might what to use the return value from
844 * ext4_grp_locked_error() to distinguish between the
845 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
846 * aggressively from the ext4 function in question, with a
847 * more appropriate error code.
849 ext4_lock_group(sb, grp);
853 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
857 struct ext4_sb_info *sbi = EXT4_SB(sb);
858 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
859 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
862 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
863 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
866 percpu_counter_sub(&sbi->s_freeclusters_counter,
870 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
871 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
876 count = ext4_free_inodes_count(sb, gdp);
877 percpu_counter_sub(&sbi->s_freeinodes_counter,
883 void ext4_update_dynamic_rev(struct super_block *sb)
885 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
887 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
891 "updating to rev %d because of new feature flag, "
892 "running e2fsck is recommended",
895 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
896 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
897 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
898 /* leave es->s_feature_*compat flags alone */
899 /* es->s_uuid will be set by e2fsck if empty */
902 * The rest of the superblock fields should be zero, and if not it
903 * means they are likely already in use, so leave them alone. We
904 * can leave it up to e2fsck to clean up any inconsistencies there.
909 * Open the external journal device
911 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
913 struct block_device *bdev;
915 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
921 ext4_msg(sb, KERN_ERR,
922 "failed to open journal device unknown-block(%u,%u) %ld",
923 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
928 * Release the journal device
930 static void ext4_blkdev_put(struct block_device *bdev)
932 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
935 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
937 struct block_device *bdev;
938 bdev = sbi->journal_bdev;
940 ext4_blkdev_put(bdev);
941 sbi->journal_bdev = NULL;
945 static inline struct inode *orphan_list_entry(struct list_head *l)
947 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
950 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
954 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
955 le32_to_cpu(sbi->s_es->s_last_orphan));
957 printk(KERN_ERR "sb_info orphan list:\n");
958 list_for_each(l, &sbi->s_orphan) {
959 struct inode *inode = orphan_list_entry(l);
961 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
962 inode->i_sb->s_id, inode->i_ino, inode,
963 inode->i_mode, inode->i_nlink,
969 static int ext4_quota_off(struct super_block *sb, int type);
971 static inline void ext4_quota_off_umount(struct super_block *sb)
975 /* Use our quota_off function to clear inode flags etc. */
976 for (type = 0; type < EXT4_MAXQUOTAS; type++)
977 ext4_quota_off(sb, type);
981 * This is a helper function which is used in the mount/remount
982 * codepaths (which holds s_umount) to fetch the quota file name.
984 static inline char *get_qf_name(struct super_block *sb,
985 struct ext4_sb_info *sbi,
988 return rcu_dereference_protected(sbi->s_qf_names[type],
989 lockdep_is_held(&sb->s_umount));
992 static inline void ext4_quota_off_umount(struct super_block *sb)
997 static void ext4_put_super(struct super_block *sb)
999 struct ext4_sb_info *sbi = EXT4_SB(sb);
1000 struct ext4_super_block *es = sbi->s_es;
1001 struct buffer_head **group_desc;
1002 struct flex_groups **flex_groups;
1006 ext4_unregister_li_request(sb);
1007 ext4_quota_off_umount(sb);
1009 destroy_workqueue(sbi->rsv_conversion_wq);
1012 * Unregister sysfs before destroying jbd2 journal.
1013 * Since we could still access attr_journal_task attribute via sysfs
1014 * path which could have sbi->s_journal->j_task as NULL
1016 ext4_unregister_sysfs(sb);
1018 if (sbi->s_journal) {
1019 aborted = is_journal_aborted(sbi->s_journal);
1020 err = jbd2_journal_destroy(sbi->s_journal);
1021 sbi->s_journal = NULL;
1022 if ((err < 0) && !aborted) {
1023 ext4_abort(sb, -err, "Couldn't clean up the journal");
1027 ext4_es_unregister_shrinker(sbi);
1028 del_timer_sync(&sbi->s_err_report);
1029 ext4_release_system_zone(sb);
1030 ext4_mb_release(sb);
1031 ext4_ext_release(sb);
1033 if (!sb_rdonly(sb) && !aborted) {
1034 ext4_clear_feature_journal_needs_recovery(sb);
1035 es->s_state = cpu_to_le16(sbi->s_mount_state);
1038 ext4_commit_super(sb, 1);
1041 group_desc = rcu_dereference(sbi->s_group_desc);
1042 for (i = 0; i < sbi->s_gdb_count; i++)
1043 brelse(group_desc[i]);
1045 flex_groups = rcu_dereference(sbi->s_flex_groups);
1047 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1048 kvfree(flex_groups[i]);
1049 kvfree(flex_groups);
1052 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1053 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1054 percpu_counter_destroy(&sbi->s_dirs_counter);
1055 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1056 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1058 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1059 kfree(get_qf_name(sb, sbi, i));
1062 /* Debugging code just in case the in-memory inode orphan list
1063 * isn't empty. The on-disk one can be non-empty if we've
1064 * detected an error and taken the fs readonly, but the
1065 * in-memory list had better be clean by this point. */
1066 if (!list_empty(&sbi->s_orphan))
1067 dump_orphan_list(sb, sbi);
1068 J_ASSERT(list_empty(&sbi->s_orphan));
1070 sync_blockdev(sb->s_bdev);
1071 invalidate_bdev(sb->s_bdev);
1072 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
1074 * Invalidate the journal device's buffers. We don't want them
1075 * floating about in memory - the physical journal device may
1076 * hotswapped, and it breaks the `ro-after' testing code.
1078 sync_blockdev(sbi->journal_bdev);
1079 invalidate_bdev(sbi->journal_bdev);
1080 ext4_blkdev_remove(sbi);
1083 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1084 sbi->s_ea_inode_cache = NULL;
1086 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1087 sbi->s_ea_block_cache = NULL;
1090 kthread_stop(sbi->s_mmp_tsk);
1092 sb->s_fs_info = NULL;
1094 * Now that we are completely done shutting down the
1095 * superblock, we need to actually destroy the kobject.
1097 kobject_put(&sbi->s_kobj);
1098 wait_for_completion(&sbi->s_kobj_unregister);
1099 if (sbi->s_chksum_driver)
1100 crypto_free_shash(sbi->s_chksum_driver);
1101 kfree(sbi->s_blockgroup_lock);
1102 fs_put_dax(sbi->s_daxdev);
1103 fscrypt_free_dummy_context(&sbi->s_dummy_enc_ctx);
1104 #ifdef CONFIG_UNICODE
1105 utf8_unload(sbi->s_encoding);
1110 static struct kmem_cache *ext4_inode_cachep;
1113 * Called inside transaction, so use GFP_NOFS
1115 static struct inode *ext4_alloc_inode(struct super_block *sb)
1117 struct ext4_inode_info *ei;
1119 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1123 inode_set_iversion(&ei->vfs_inode, 1);
1124 spin_lock_init(&ei->i_raw_lock);
1125 INIT_LIST_HEAD(&ei->i_prealloc_list);
1126 spin_lock_init(&ei->i_prealloc_lock);
1127 ext4_es_init_tree(&ei->i_es_tree);
1128 rwlock_init(&ei->i_es_lock);
1129 INIT_LIST_HEAD(&ei->i_es_list);
1130 ei->i_es_all_nr = 0;
1131 ei->i_es_shk_nr = 0;
1132 ei->i_es_shrink_lblk = 0;
1133 ei->i_reserved_data_blocks = 0;
1134 spin_lock_init(&(ei->i_block_reservation_lock));
1135 ext4_init_pending_tree(&ei->i_pending_tree);
1137 ei->i_reserved_quota = 0;
1138 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1141 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1142 spin_lock_init(&ei->i_completed_io_lock);
1144 ei->i_datasync_tid = 0;
1145 atomic_set(&ei->i_unwritten, 0);
1146 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1147 return &ei->vfs_inode;
1150 static int ext4_drop_inode(struct inode *inode)
1152 int drop = generic_drop_inode(inode);
1155 drop = fscrypt_drop_inode(inode);
1157 trace_ext4_drop_inode(inode, drop);
1161 static void ext4_free_in_core_inode(struct inode *inode)
1163 fscrypt_free_inode(inode);
1164 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1167 static void ext4_destroy_inode(struct inode *inode)
1169 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1170 ext4_msg(inode->i_sb, KERN_ERR,
1171 "Inode %lu (%p): orphan list check failed!",
1172 inode->i_ino, EXT4_I(inode));
1173 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1174 EXT4_I(inode), sizeof(struct ext4_inode_info),
1180 static void init_once(void *foo)
1182 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1184 INIT_LIST_HEAD(&ei->i_orphan);
1185 init_rwsem(&ei->xattr_sem);
1186 init_rwsem(&ei->i_data_sem);
1187 init_rwsem(&ei->i_mmap_sem);
1188 inode_init_once(&ei->vfs_inode);
1191 static int __init init_inodecache(void)
1193 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1194 sizeof(struct ext4_inode_info), 0,
1195 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1197 offsetof(struct ext4_inode_info, i_data),
1198 sizeof_field(struct ext4_inode_info, i_data),
1200 if (ext4_inode_cachep == NULL)
1205 static void destroy_inodecache(void)
1208 * Make sure all delayed rcu free inodes are flushed before we
1212 kmem_cache_destroy(ext4_inode_cachep);
1215 void ext4_clear_inode(struct inode *inode)
1217 invalidate_inode_buffers(inode);
1219 ext4_discard_preallocations(inode);
1220 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1222 if (EXT4_I(inode)->jinode) {
1223 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1224 EXT4_I(inode)->jinode);
1225 jbd2_free_inode(EXT4_I(inode)->jinode);
1226 EXT4_I(inode)->jinode = NULL;
1228 fscrypt_put_encryption_info(inode);
1229 fsverity_cleanup_inode(inode);
1232 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1233 u64 ino, u32 generation)
1235 struct inode *inode;
1238 * Currently we don't know the generation for parent directory, so
1239 * a generation of 0 means "accept any"
1241 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1243 return ERR_CAST(inode);
1244 if (generation && inode->i_generation != generation) {
1246 return ERR_PTR(-ESTALE);
1252 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1253 int fh_len, int fh_type)
1255 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1256 ext4_nfs_get_inode);
1259 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1260 int fh_len, int fh_type)
1262 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1263 ext4_nfs_get_inode);
1266 static int ext4_nfs_commit_metadata(struct inode *inode)
1268 struct writeback_control wbc = {
1269 .sync_mode = WB_SYNC_ALL
1272 trace_ext4_nfs_commit_metadata(inode);
1273 return ext4_write_inode(inode, &wbc);
1277 * Try to release metadata pages (indirect blocks, directories) which are
1278 * mapped via the block device. Since these pages could have journal heads
1279 * which would prevent try_to_free_buffers() from freeing them, we must use
1280 * jbd2 layer's try_to_free_buffers() function to release them.
1282 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1285 journal_t *journal = EXT4_SB(sb)->s_journal;
1287 WARN_ON(PageChecked(page));
1288 if (!page_has_buffers(page))
1291 return jbd2_journal_try_to_free_buffers(journal, page,
1292 wait & ~__GFP_DIRECT_RECLAIM);
1293 return try_to_free_buffers(page);
1296 #ifdef CONFIG_FS_ENCRYPTION
1297 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1299 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1300 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1303 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1306 handle_t *handle = fs_data;
1307 int res, res2, credits, retries = 0;
1310 * Encrypting the root directory is not allowed because e2fsck expects
1311 * lost+found to exist and be unencrypted, and encrypting the root
1312 * directory would imply encrypting the lost+found directory as well as
1313 * the filename "lost+found" itself.
1315 if (inode->i_ino == EXT4_ROOT_INO)
1318 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1321 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1324 res = ext4_convert_inline_data(inode);
1329 * If a journal handle was specified, then the encryption context is
1330 * being set on a new inode via inheritance and is part of a larger
1331 * transaction to create the inode. Otherwise the encryption context is
1332 * being set on an existing inode in its own transaction. Only in the
1333 * latter case should the "retry on ENOSPC" logic be used.
1337 res = ext4_xattr_set_handle(handle, inode,
1338 EXT4_XATTR_INDEX_ENCRYPTION,
1339 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1342 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1343 ext4_clear_inode_state(inode,
1344 EXT4_STATE_MAY_INLINE_DATA);
1346 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1347 * S_DAX may be disabled
1349 ext4_set_inode_flags(inode, false);
1354 res = dquot_initialize(inode);
1358 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1363 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1365 return PTR_ERR(handle);
1367 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1368 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1371 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1373 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1374 * S_DAX may be disabled
1376 ext4_set_inode_flags(inode, false);
1377 res = ext4_mark_inode_dirty(handle, inode);
1379 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1381 res2 = ext4_journal_stop(handle);
1383 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1390 static const union fscrypt_context *
1391 ext4_get_dummy_context(struct super_block *sb)
1393 return EXT4_SB(sb)->s_dummy_enc_ctx.ctx;
1396 static bool ext4_has_stable_inodes(struct super_block *sb)
1398 return ext4_has_feature_stable_inodes(sb);
1401 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1402 int *ino_bits_ret, int *lblk_bits_ret)
1404 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1405 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1408 static const struct fscrypt_operations ext4_cryptops = {
1409 .key_prefix = "ext4:",
1410 .get_context = ext4_get_context,
1411 .set_context = ext4_set_context,
1412 .get_dummy_context = ext4_get_dummy_context,
1413 .empty_dir = ext4_empty_dir,
1414 .max_namelen = EXT4_NAME_LEN,
1415 .has_stable_inodes = ext4_has_stable_inodes,
1416 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits,
1421 static const char * const quotatypes[] = INITQFNAMES;
1422 #define QTYPE2NAME(t) (quotatypes[t])
1424 static int ext4_write_dquot(struct dquot *dquot);
1425 static int ext4_acquire_dquot(struct dquot *dquot);
1426 static int ext4_release_dquot(struct dquot *dquot);
1427 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1428 static int ext4_write_info(struct super_block *sb, int type);
1429 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1430 const struct path *path);
1431 static int ext4_quota_on_mount(struct super_block *sb, int type);
1432 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1433 size_t len, loff_t off);
1434 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1435 const char *data, size_t len, loff_t off);
1436 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1437 unsigned int flags);
1438 static int ext4_enable_quotas(struct super_block *sb);
1440 static struct dquot **ext4_get_dquots(struct inode *inode)
1442 return EXT4_I(inode)->i_dquot;
1445 static const struct dquot_operations ext4_quota_operations = {
1446 .get_reserved_space = ext4_get_reserved_space,
1447 .write_dquot = ext4_write_dquot,
1448 .acquire_dquot = ext4_acquire_dquot,
1449 .release_dquot = ext4_release_dquot,
1450 .mark_dirty = ext4_mark_dquot_dirty,
1451 .write_info = ext4_write_info,
1452 .alloc_dquot = dquot_alloc,
1453 .destroy_dquot = dquot_destroy,
1454 .get_projid = ext4_get_projid,
1455 .get_inode_usage = ext4_get_inode_usage,
1456 .get_next_id = dquot_get_next_id,
1459 static const struct quotactl_ops ext4_qctl_operations = {
1460 .quota_on = ext4_quota_on,
1461 .quota_off = ext4_quota_off,
1462 .quota_sync = dquot_quota_sync,
1463 .get_state = dquot_get_state,
1464 .set_info = dquot_set_dqinfo,
1465 .get_dqblk = dquot_get_dqblk,
1466 .set_dqblk = dquot_set_dqblk,
1467 .get_nextdqblk = dquot_get_next_dqblk,
1471 static const struct super_operations ext4_sops = {
1472 .alloc_inode = ext4_alloc_inode,
1473 .free_inode = ext4_free_in_core_inode,
1474 .destroy_inode = ext4_destroy_inode,
1475 .write_inode = ext4_write_inode,
1476 .dirty_inode = ext4_dirty_inode,
1477 .drop_inode = ext4_drop_inode,
1478 .evict_inode = ext4_evict_inode,
1479 .put_super = ext4_put_super,
1480 .sync_fs = ext4_sync_fs,
1481 .freeze_fs = ext4_freeze,
1482 .unfreeze_fs = ext4_unfreeze,
1483 .statfs = ext4_statfs,
1484 .remount_fs = ext4_remount,
1485 .show_options = ext4_show_options,
1487 .quota_read = ext4_quota_read,
1488 .quota_write = ext4_quota_write,
1489 .get_dquots = ext4_get_dquots,
1491 .bdev_try_to_free_page = bdev_try_to_free_page,
1494 static const struct export_operations ext4_export_ops = {
1495 .fh_to_dentry = ext4_fh_to_dentry,
1496 .fh_to_parent = ext4_fh_to_parent,
1497 .get_parent = ext4_get_parent,
1498 .commit_metadata = ext4_nfs_commit_metadata,
1502 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1503 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1504 Opt_nouid32, Opt_debug, Opt_removed,
1505 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1506 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1507 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1508 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1509 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1510 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1511 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1512 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1513 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1514 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1515 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1516 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1517 Opt_nowarn_on_error, Opt_mblk_io_submit,
1518 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1519 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1520 Opt_inode_readahead_blks, Opt_journal_ioprio,
1521 Opt_dioread_nolock, Opt_dioread_lock,
1522 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1523 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1526 static const match_table_t tokens = {
1527 {Opt_bsd_df, "bsddf"},
1528 {Opt_minix_df, "minixdf"},
1529 {Opt_grpid, "grpid"},
1530 {Opt_grpid, "bsdgroups"},
1531 {Opt_nogrpid, "nogrpid"},
1532 {Opt_nogrpid, "sysvgroups"},
1533 {Opt_resgid, "resgid=%u"},
1534 {Opt_resuid, "resuid=%u"},
1536 {Opt_err_cont, "errors=continue"},
1537 {Opt_err_panic, "errors=panic"},
1538 {Opt_err_ro, "errors=remount-ro"},
1539 {Opt_nouid32, "nouid32"},
1540 {Opt_debug, "debug"},
1541 {Opt_removed, "oldalloc"},
1542 {Opt_removed, "orlov"},
1543 {Opt_user_xattr, "user_xattr"},
1544 {Opt_nouser_xattr, "nouser_xattr"},
1546 {Opt_noacl, "noacl"},
1547 {Opt_noload, "norecovery"},
1548 {Opt_noload, "noload"},
1549 {Opt_removed, "nobh"},
1550 {Opt_removed, "bh"},
1551 {Opt_commit, "commit=%u"},
1552 {Opt_min_batch_time, "min_batch_time=%u"},
1553 {Opt_max_batch_time, "max_batch_time=%u"},
1554 {Opt_journal_dev, "journal_dev=%u"},
1555 {Opt_journal_path, "journal_path=%s"},
1556 {Opt_journal_checksum, "journal_checksum"},
1557 {Opt_nojournal_checksum, "nojournal_checksum"},
1558 {Opt_journal_async_commit, "journal_async_commit"},
1559 {Opt_abort, "abort"},
1560 {Opt_data_journal, "data=journal"},
1561 {Opt_data_ordered, "data=ordered"},
1562 {Opt_data_writeback, "data=writeback"},
1563 {Opt_data_err_abort, "data_err=abort"},
1564 {Opt_data_err_ignore, "data_err=ignore"},
1565 {Opt_offusrjquota, "usrjquota="},
1566 {Opt_usrjquota, "usrjquota=%s"},
1567 {Opt_offgrpjquota, "grpjquota="},
1568 {Opt_grpjquota, "grpjquota=%s"},
1569 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1570 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1571 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1572 {Opt_grpquota, "grpquota"},
1573 {Opt_noquota, "noquota"},
1574 {Opt_quota, "quota"},
1575 {Opt_usrquota, "usrquota"},
1576 {Opt_prjquota, "prjquota"},
1577 {Opt_barrier, "barrier=%u"},
1578 {Opt_barrier, "barrier"},
1579 {Opt_nobarrier, "nobarrier"},
1580 {Opt_i_version, "i_version"},
1582 {Opt_dax_always, "dax=always"},
1583 {Opt_dax_inode, "dax=inode"},
1584 {Opt_dax_never, "dax=never"},
1585 {Opt_stripe, "stripe=%u"},
1586 {Opt_delalloc, "delalloc"},
1587 {Opt_warn_on_error, "warn_on_error"},
1588 {Opt_nowarn_on_error, "nowarn_on_error"},
1589 {Opt_lazytime, "lazytime"},
1590 {Opt_nolazytime, "nolazytime"},
1591 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1592 {Opt_nodelalloc, "nodelalloc"},
1593 {Opt_removed, "mblk_io_submit"},
1594 {Opt_removed, "nomblk_io_submit"},
1595 {Opt_block_validity, "block_validity"},
1596 {Opt_noblock_validity, "noblock_validity"},
1597 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1598 {Opt_journal_ioprio, "journal_ioprio=%u"},
1599 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1600 {Opt_auto_da_alloc, "auto_da_alloc"},
1601 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1602 {Opt_dioread_nolock, "dioread_nolock"},
1603 {Opt_dioread_lock, "nodioread_nolock"},
1604 {Opt_dioread_lock, "dioread_lock"},
1605 {Opt_discard, "discard"},
1606 {Opt_nodiscard, "nodiscard"},
1607 {Opt_init_itable, "init_itable=%u"},
1608 {Opt_init_itable, "init_itable"},
1609 {Opt_noinit_itable, "noinit_itable"},
1610 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1611 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1612 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1613 {Opt_nombcache, "nombcache"},
1614 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1615 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1616 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1617 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1618 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1619 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1623 static ext4_fsblk_t get_sb_block(void **data)
1625 ext4_fsblk_t sb_block;
1626 char *options = (char *) *data;
1628 if (!options || strncmp(options, "sb=", 3) != 0)
1629 return 1; /* Default location */
1632 /* TODO: use simple_strtoll with >32bit ext4 */
1633 sb_block = simple_strtoul(options, &options, 0);
1634 if (*options && *options != ',') {
1635 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1639 if (*options == ',')
1641 *data = (void *) options;
1646 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1647 static const char deprecated_msg[] =
1648 "Mount option \"%s\" will be removed by %s\n"
1652 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1654 struct ext4_sb_info *sbi = EXT4_SB(sb);
1655 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1658 if (sb_any_quota_loaded(sb) && !old_qname) {
1659 ext4_msg(sb, KERN_ERR,
1660 "Cannot change journaled "
1661 "quota options when quota turned on");
1664 if (ext4_has_feature_quota(sb)) {
1665 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1666 "ignored when QUOTA feature is enabled");
1669 qname = match_strdup(args);
1671 ext4_msg(sb, KERN_ERR,
1672 "Not enough memory for storing quotafile name");
1676 if (strcmp(old_qname, qname) == 0)
1679 ext4_msg(sb, KERN_ERR,
1680 "%s quota file already specified",
1684 if (strchr(qname, '/')) {
1685 ext4_msg(sb, KERN_ERR,
1686 "quotafile must be on filesystem root");
1689 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1697 static int clear_qf_name(struct super_block *sb, int qtype)
1700 struct ext4_sb_info *sbi = EXT4_SB(sb);
1701 char *old_qname = get_qf_name(sb, sbi, qtype);
1703 if (sb_any_quota_loaded(sb) && old_qname) {
1704 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1705 " when quota turned on");
1708 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1715 #define MOPT_SET 0x0001
1716 #define MOPT_CLEAR 0x0002
1717 #define MOPT_NOSUPPORT 0x0004
1718 #define MOPT_EXPLICIT 0x0008
1719 #define MOPT_CLEAR_ERR 0x0010
1720 #define MOPT_GTE0 0x0020
1723 #define MOPT_QFMT 0x0040
1725 #define MOPT_Q MOPT_NOSUPPORT
1726 #define MOPT_QFMT MOPT_NOSUPPORT
1728 #define MOPT_DATAJ 0x0080
1729 #define MOPT_NO_EXT2 0x0100
1730 #define MOPT_NO_EXT3 0x0200
1731 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1732 #define MOPT_STRING 0x0400
1733 #define MOPT_SKIP 0x0800
1735 static const struct mount_opts {
1739 } ext4_mount_opts[] = {
1740 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1741 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1742 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1743 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1744 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1745 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1746 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1747 MOPT_EXT4_ONLY | MOPT_SET},
1748 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1749 MOPT_EXT4_ONLY | MOPT_CLEAR},
1750 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1751 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1752 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1753 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1754 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1755 MOPT_EXT4_ONLY | MOPT_CLEAR},
1756 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1757 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1758 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1759 MOPT_EXT4_ONLY | MOPT_CLEAR},
1760 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1761 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1762 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1763 EXT4_MOUNT_JOURNAL_CHECKSUM),
1764 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1765 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1766 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1767 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1768 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1769 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1771 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1773 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1774 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1775 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1776 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1777 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1778 {Opt_commit, 0, MOPT_GTE0},
1779 {Opt_max_batch_time, 0, MOPT_GTE0},
1780 {Opt_min_batch_time, 0, MOPT_GTE0},
1781 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1782 {Opt_init_itable, 0, MOPT_GTE0},
1783 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1784 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1785 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1786 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1787 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1788 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1789 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1790 {Opt_stripe, 0, MOPT_GTE0},
1791 {Opt_resuid, 0, MOPT_GTE0},
1792 {Opt_resgid, 0, MOPT_GTE0},
1793 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1794 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1795 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1796 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1797 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1798 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1799 MOPT_NO_EXT2 | MOPT_DATAJ},
1800 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1801 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1802 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1803 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1804 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1806 {Opt_acl, 0, MOPT_NOSUPPORT},
1807 {Opt_noacl, 0, MOPT_NOSUPPORT},
1809 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1810 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1811 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1812 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1813 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1815 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1817 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1819 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1820 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1821 MOPT_CLEAR | MOPT_Q},
1822 {Opt_usrjquota, 0, MOPT_Q},
1823 {Opt_grpjquota, 0, MOPT_Q},
1824 {Opt_offusrjquota, 0, MOPT_Q},
1825 {Opt_offgrpjquota, 0, MOPT_Q},
1826 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1827 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1828 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1829 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1830 {Opt_test_dummy_encryption, 0, MOPT_STRING},
1831 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1835 #ifdef CONFIG_UNICODE
1836 static const struct ext4_sb_encodings {
1840 } ext4_sb_encoding_map[] = {
1841 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
1844 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
1845 const struct ext4_sb_encodings **encoding,
1848 __u16 magic = le16_to_cpu(es->s_encoding);
1851 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1852 if (magic == ext4_sb_encoding_map[i].magic)
1855 if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
1858 *encoding = &ext4_sb_encoding_map[i];
1859 *flags = le16_to_cpu(es->s_encoding_flags);
1865 static int ext4_set_test_dummy_encryption(struct super_block *sb,
1867 const substring_t *arg,
1870 #ifdef CONFIG_FS_ENCRYPTION
1871 struct ext4_sb_info *sbi = EXT4_SB(sb);
1875 * This mount option is just for testing, and it's not worthwhile to
1876 * implement the extra complexity (e.g. RCU protection) that would be
1877 * needed to allow it to be set or changed during remount. We do allow
1878 * it to be specified during remount, but only if there is no change.
1880 if (is_remount && !sbi->s_dummy_enc_ctx.ctx) {
1881 ext4_msg(sb, KERN_WARNING,
1882 "Can't set test_dummy_encryption on remount");
1885 err = fscrypt_set_test_dummy_encryption(sb, arg, &sbi->s_dummy_enc_ctx);
1888 ext4_msg(sb, KERN_WARNING,
1889 "Can't change test_dummy_encryption on remount");
1890 else if (err == -EINVAL)
1891 ext4_msg(sb, KERN_WARNING,
1892 "Value of option \"%s\" is unrecognized", opt);
1894 ext4_msg(sb, KERN_WARNING,
1895 "Error processing option \"%s\" [%d]",
1899 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
1901 ext4_msg(sb, KERN_WARNING,
1902 "Test dummy encryption mount option ignored");
1907 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1908 substring_t *args, unsigned long *journal_devnum,
1909 unsigned int *journal_ioprio, int is_remount)
1911 struct ext4_sb_info *sbi = EXT4_SB(sb);
1912 const struct mount_opts *m;
1918 if (token == Opt_usrjquota)
1919 return set_qf_name(sb, USRQUOTA, &args[0]);
1920 else if (token == Opt_grpjquota)
1921 return set_qf_name(sb, GRPQUOTA, &args[0]);
1922 else if (token == Opt_offusrjquota)
1923 return clear_qf_name(sb, USRQUOTA);
1924 else if (token == Opt_offgrpjquota)
1925 return clear_qf_name(sb, GRPQUOTA);
1929 case Opt_nouser_xattr:
1930 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1933 return 1; /* handled by get_sb_block() */
1935 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1938 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1941 sb->s_flags |= SB_I_VERSION;
1944 sb->s_flags |= SB_LAZYTIME;
1946 case Opt_nolazytime:
1947 sb->s_flags &= ~SB_LAZYTIME;
1951 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1952 if (token == m->token)
1955 if (m->token == Opt_err) {
1956 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1957 "or missing value", opt);
1961 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1962 ext4_msg(sb, KERN_ERR,
1963 "Mount option \"%s\" incompatible with ext2", opt);
1966 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1967 ext4_msg(sb, KERN_ERR,
1968 "Mount option \"%s\" incompatible with ext3", opt);
1972 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1974 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1976 if (m->flags & MOPT_EXPLICIT) {
1977 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1978 set_opt2(sb, EXPLICIT_DELALLOC);
1979 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1980 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1984 if (m->flags & MOPT_CLEAR_ERR)
1985 clear_opt(sb, ERRORS_MASK);
1986 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1987 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1988 "options when quota turned on");
1992 if (m->flags & MOPT_NOSUPPORT) {
1993 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1994 } else if (token == Opt_commit) {
1996 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1997 else if (arg > INT_MAX / HZ) {
1998 ext4_msg(sb, KERN_ERR,
1999 "Invalid commit interval %d, "
2000 "must be smaller than %d",
2004 sbi->s_commit_interval = HZ * arg;
2005 } else if (token == Opt_debug_want_extra_isize) {
2008 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2009 ext4_msg(sb, KERN_ERR,
2010 "Invalid want_extra_isize %d", arg);
2013 sbi->s_want_extra_isize = arg;
2014 } else if (token == Opt_max_batch_time) {
2015 sbi->s_max_batch_time = arg;
2016 } else if (token == Opt_min_batch_time) {
2017 sbi->s_min_batch_time = arg;
2018 } else if (token == Opt_inode_readahead_blks) {
2019 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2020 ext4_msg(sb, KERN_ERR,
2021 "EXT4-fs: inode_readahead_blks must be "
2022 "0 or a power of 2 smaller than 2^31");
2025 sbi->s_inode_readahead_blks = arg;
2026 } else if (token == Opt_init_itable) {
2027 set_opt(sb, INIT_INODE_TABLE);
2029 arg = EXT4_DEF_LI_WAIT_MULT;
2030 sbi->s_li_wait_mult = arg;
2031 } else if (token == Opt_max_dir_size_kb) {
2032 sbi->s_max_dir_size_kb = arg;
2033 } else if (token == Opt_stripe) {
2034 sbi->s_stripe = arg;
2035 } else if (token == Opt_resuid) {
2036 uid = make_kuid(current_user_ns(), arg);
2037 if (!uid_valid(uid)) {
2038 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2041 sbi->s_resuid = uid;
2042 } else if (token == Opt_resgid) {
2043 gid = make_kgid(current_user_ns(), arg);
2044 if (!gid_valid(gid)) {
2045 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2048 sbi->s_resgid = gid;
2049 } else if (token == Opt_journal_dev) {
2051 ext4_msg(sb, KERN_ERR,
2052 "Cannot specify journal on remount");
2055 *journal_devnum = arg;
2056 } else if (token == Opt_journal_path) {
2058 struct inode *journal_inode;
2063 ext4_msg(sb, KERN_ERR,
2064 "Cannot specify journal on remount");
2067 journal_path = match_strdup(&args[0]);
2068 if (!journal_path) {
2069 ext4_msg(sb, KERN_ERR, "error: could not dup "
2070 "journal device string");
2074 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2076 ext4_msg(sb, KERN_ERR, "error: could not find "
2077 "journal device path: error %d", error);
2078 kfree(journal_path);
2082 journal_inode = d_inode(path.dentry);
2083 if (!S_ISBLK(journal_inode->i_mode)) {
2084 ext4_msg(sb, KERN_ERR, "error: journal path %s "
2085 "is not a block device", journal_path);
2087 kfree(journal_path);
2091 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
2093 kfree(journal_path);
2094 } else if (token == Opt_journal_ioprio) {
2096 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2101 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2102 } else if (token == Opt_test_dummy_encryption) {
2103 return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2105 } else if (m->flags & MOPT_DATAJ) {
2107 if (!sbi->s_journal)
2108 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2109 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2110 ext4_msg(sb, KERN_ERR,
2111 "Cannot change data mode on remount");
2115 clear_opt(sb, DATA_FLAGS);
2116 sbi->s_mount_opt |= m->mount_opt;
2119 } else if (m->flags & MOPT_QFMT) {
2120 if (sb_any_quota_loaded(sb) &&
2121 sbi->s_jquota_fmt != m->mount_opt) {
2122 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2123 "quota options when quota turned on");
2126 if (ext4_has_feature_quota(sb)) {
2127 ext4_msg(sb, KERN_INFO,
2128 "Quota format mount options ignored "
2129 "when QUOTA feature is enabled");
2132 sbi->s_jquota_fmt = m->mount_opt;
2134 } else if (token == Opt_dax || token == Opt_dax_always ||
2135 token == Opt_dax_inode || token == Opt_dax_never) {
2136 #ifdef CONFIG_FS_DAX
2139 case Opt_dax_always:
2141 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2142 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2143 fail_dax_change_remount:
2144 ext4_msg(sb, KERN_ERR, "can't change "
2145 "dax mount option while remounting");
2149 (test_opt(sb, DATA_FLAGS) ==
2150 EXT4_MOUNT_JOURNAL_DATA)) {
2151 ext4_msg(sb, KERN_ERR, "can't mount with "
2152 "both data=journal and dax");
2155 ext4_msg(sb, KERN_WARNING,
2156 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2157 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2158 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2162 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2163 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2164 goto fail_dax_change_remount;
2165 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2166 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2170 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2171 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2172 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2173 goto fail_dax_change_remount;
2174 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2175 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2176 /* Strictly for printing options */
2177 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2181 ext4_msg(sb, KERN_INFO, "dax option not supported");
2182 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2183 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2186 } else if (token == Opt_data_err_abort) {
2187 sbi->s_mount_opt |= m->mount_opt;
2188 } else if (token == Opt_data_err_ignore) {
2189 sbi->s_mount_opt &= ~m->mount_opt;
2193 if (m->flags & MOPT_CLEAR)
2195 else if (unlikely(!(m->flags & MOPT_SET))) {
2196 ext4_msg(sb, KERN_WARNING,
2197 "buggy handling of option %s", opt);
2202 sbi->s_mount_opt |= m->mount_opt;
2204 sbi->s_mount_opt &= ~m->mount_opt;
2209 static int parse_options(char *options, struct super_block *sb,
2210 unsigned long *journal_devnum,
2211 unsigned int *journal_ioprio,
2214 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2215 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2216 substring_t args[MAX_OPT_ARGS];
2222 while ((p = strsep(&options, ",")) != NULL) {
2226 * Initialize args struct so we know whether arg was
2227 * found; some options take optional arguments.
2229 args[0].to = args[0].from = NULL;
2230 token = match_token(p, tokens, args);
2231 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2232 journal_ioprio, is_remount) < 0)
2237 * We do the test below only for project quotas. 'usrquota' and
2238 * 'grpquota' mount options are allowed even without quota feature
2239 * to support legacy quotas in quota files.
2241 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2242 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2243 "Cannot enable project quota enforcement.");
2246 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2247 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2248 if (usr_qf_name || grp_qf_name) {
2249 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2250 clear_opt(sb, USRQUOTA);
2252 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2253 clear_opt(sb, GRPQUOTA);
2255 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2256 ext4_msg(sb, KERN_ERR, "old and new quota "
2261 if (!sbi->s_jquota_fmt) {
2262 ext4_msg(sb, KERN_ERR, "journaled quota format "
2268 if (test_opt(sb, DIOREAD_NOLOCK)) {
2270 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2271 if (blocksize < PAGE_SIZE)
2272 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2273 "experimental mount option 'dioread_nolock' "
2274 "for blocksize < PAGE_SIZE");
2279 static inline void ext4_show_quota_options(struct seq_file *seq,
2280 struct super_block *sb)
2282 #if defined(CONFIG_QUOTA)
2283 struct ext4_sb_info *sbi = EXT4_SB(sb);
2284 char *usr_qf_name, *grp_qf_name;
2286 if (sbi->s_jquota_fmt) {
2289 switch (sbi->s_jquota_fmt) {
2300 seq_printf(seq, ",jqfmt=%s", fmtname);
2304 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2305 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2307 seq_show_option(seq, "usrjquota", usr_qf_name);
2309 seq_show_option(seq, "grpjquota", grp_qf_name);
2314 static const char *token2str(int token)
2316 const struct match_token *t;
2318 for (t = tokens; t->token != Opt_err; t++)
2319 if (t->token == token && !strchr(t->pattern, '='))
2326 * - it's set to a non-default value OR
2327 * - if the per-sb default is different from the global default
2329 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2332 struct ext4_sb_info *sbi = EXT4_SB(sb);
2333 struct ext4_super_block *es = sbi->s_es;
2334 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2335 const struct mount_opts *m;
2336 char sep = nodefs ? '\n' : ',';
2338 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2339 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2341 if (sbi->s_sb_block != 1)
2342 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2344 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2345 int want_set = m->flags & MOPT_SET;
2346 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2347 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2349 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2350 continue; /* skip if same as the default */
2352 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2353 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2354 continue; /* select Opt_noFoo vs Opt_Foo */
2355 SEQ_OPTS_PRINT("%s", token2str(m->token));
2358 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2359 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2360 SEQ_OPTS_PRINT("resuid=%u",
2361 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2362 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2363 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2364 SEQ_OPTS_PRINT("resgid=%u",
2365 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2366 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2367 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2368 SEQ_OPTS_PUTS("errors=remount-ro");
2369 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2370 SEQ_OPTS_PUTS("errors=continue");
2371 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2372 SEQ_OPTS_PUTS("errors=panic");
2373 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2374 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2375 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2376 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2377 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2378 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2379 if (sb->s_flags & SB_I_VERSION)
2380 SEQ_OPTS_PUTS("i_version");
2381 if (nodefs || sbi->s_stripe)
2382 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2383 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2384 (sbi->s_mount_opt ^ def_mount_opt)) {
2385 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2386 SEQ_OPTS_PUTS("data=journal");
2387 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2388 SEQ_OPTS_PUTS("data=ordered");
2389 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2390 SEQ_OPTS_PUTS("data=writeback");
2393 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2394 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2395 sbi->s_inode_readahead_blks);
2397 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2398 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2399 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2400 if (nodefs || sbi->s_max_dir_size_kb)
2401 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2402 if (test_opt(sb, DATA_ERR_ABORT))
2403 SEQ_OPTS_PUTS("data_err=abort");
2405 fscrypt_show_test_dummy_encryption(seq, sep, sb);
2407 if (test_opt(sb, DAX_ALWAYS)) {
2409 SEQ_OPTS_PUTS("dax");
2411 SEQ_OPTS_PUTS("dax=always");
2412 } else if (test_opt2(sb, DAX_NEVER)) {
2413 SEQ_OPTS_PUTS("dax=never");
2414 } else if (test_opt2(sb, DAX_INODE)) {
2415 SEQ_OPTS_PUTS("dax=inode");
2418 ext4_show_quota_options(seq, sb);
2422 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2424 return _ext4_show_options(seq, root->d_sb, 0);
2427 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2429 struct super_block *sb = seq->private;
2432 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2433 rc = _ext4_show_options(seq, sb, 1);
2434 seq_puts(seq, "\n");
2438 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2441 struct ext4_sb_info *sbi = EXT4_SB(sb);
2444 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2445 ext4_msg(sb, KERN_ERR, "revision level too high, "
2446 "forcing read-only mode");
2452 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2453 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2454 "running e2fsck is recommended");
2455 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2456 ext4_msg(sb, KERN_WARNING,
2457 "warning: mounting fs with errors, "
2458 "running e2fsck is recommended");
2459 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2460 le16_to_cpu(es->s_mnt_count) >=
2461 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2462 ext4_msg(sb, KERN_WARNING,
2463 "warning: maximal mount count reached, "
2464 "running e2fsck is recommended");
2465 else if (le32_to_cpu(es->s_checkinterval) &&
2466 (ext4_get_tstamp(es, s_lastcheck) +
2467 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2468 ext4_msg(sb, KERN_WARNING,
2469 "warning: checktime reached, "
2470 "running e2fsck is recommended");
2471 if (!sbi->s_journal)
2472 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2473 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2474 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2475 le16_add_cpu(&es->s_mnt_count, 1);
2476 ext4_update_tstamp(es, s_mtime);
2478 ext4_set_feature_journal_needs_recovery(sb);
2480 err = ext4_commit_super(sb, 1);
2482 if (test_opt(sb, DEBUG))
2483 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2484 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2486 sbi->s_groups_count,
2487 EXT4_BLOCKS_PER_GROUP(sb),
2488 EXT4_INODES_PER_GROUP(sb),
2489 sbi->s_mount_opt, sbi->s_mount_opt2);
2491 cleancache_init_fs(sb);
2495 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2497 struct ext4_sb_info *sbi = EXT4_SB(sb);
2498 struct flex_groups **old_groups, **new_groups;
2501 if (!sbi->s_log_groups_per_flex)
2504 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2505 if (size <= sbi->s_flex_groups_allocated)
2508 new_groups = kvzalloc(roundup_pow_of_two(size *
2509 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2511 ext4_msg(sb, KERN_ERR,
2512 "not enough memory for %d flex group pointers", size);
2515 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2516 new_groups[i] = kvzalloc(roundup_pow_of_two(
2517 sizeof(struct flex_groups)),
2519 if (!new_groups[i]) {
2520 for (j = sbi->s_flex_groups_allocated; j < i; j++)
2521 kvfree(new_groups[j]);
2523 ext4_msg(sb, KERN_ERR,
2524 "not enough memory for %d flex groups", size);
2529 old_groups = rcu_dereference(sbi->s_flex_groups);
2531 memcpy(new_groups, old_groups,
2532 (sbi->s_flex_groups_allocated *
2533 sizeof(struct flex_groups *)));
2535 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2536 sbi->s_flex_groups_allocated = size;
2538 ext4_kvfree_array_rcu(old_groups);
2542 static int ext4_fill_flex_info(struct super_block *sb)
2544 struct ext4_sb_info *sbi = EXT4_SB(sb);
2545 struct ext4_group_desc *gdp = NULL;
2546 struct flex_groups *fg;
2547 ext4_group_t flex_group;
2550 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2551 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2552 sbi->s_log_groups_per_flex = 0;
2556 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2560 for (i = 0; i < sbi->s_groups_count; i++) {
2561 gdp = ext4_get_group_desc(sb, i, NULL);
2563 flex_group = ext4_flex_group(sbi, i);
2564 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2565 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2566 atomic64_add(ext4_free_group_clusters(sb, gdp),
2567 &fg->free_clusters);
2568 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2576 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2577 struct ext4_group_desc *gdp)
2579 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2581 __le32 le_group = cpu_to_le32(block_group);
2582 struct ext4_sb_info *sbi = EXT4_SB(sb);
2584 if (ext4_has_metadata_csum(sbi->s_sb)) {
2585 /* Use new metadata_csum algorithm */
2587 __u16 dummy_csum = 0;
2589 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2591 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2592 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2593 sizeof(dummy_csum));
2594 offset += sizeof(dummy_csum);
2595 if (offset < sbi->s_desc_size)
2596 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2597 sbi->s_desc_size - offset);
2599 crc = csum32 & 0xFFFF;
2603 /* old crc16 code */
2604 if (!ext4_has_feature_gdt_csum(sb))
2607 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2608 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2609 crc = crc16(crc, (__u8 *)gdp, offset);
2610 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2611 /* for checksum of struct ext4_group_desc do the rest...*/
2612 if (ext4_has_feature_64bit(sb) &&
2613 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2614 crc = crc16(crc, (__u8 *)gdp + offset,
2615 le16_to_cpu(sbi->s_es->s_desc_size) -
2619 return cpu_to_le16(crc);
2622 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2623 struct ext4_group_desc *gdp)
2625 if (ext4_has_group_desc_csum(sb) &&
2626 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2632 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2633 struct ext4_group_desc *gdp)
2635 if (!ext4_has_group_desc_csum(sb))
2637 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2640 /* Called at mount-time, super-block is locked */
2641 static int ext4_check_descriptors(struct super_block *sb,
2642 ext4_fsblk_t sb_block,
2643 ext4_group_t *first_not_zeroed)
2645 struct ext4_sb_info *sbi = EXT4_SB(sb);
2646 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2647 ext4_fsblk_t last_block;
2648 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2649 ext4_fsblk_t block_bitmap;
2650 ext4_fsblk_t inode_bitmap;
2651 ext4_fsblk_t inode_table;
2652 int flexbg_flag = 0;
2653 ext4_group_t i, grp = sbi->s_groups_count;
2655 if (ext4_has_feature_flex_bg(sb))
2658 ext4_debug("Checking group descriptors");
2660 for (i = 0; i < sbi->s_groups_count; i++) {
2661 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2663 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2664 last_block = ext4_blocks_count(sbi->s_es) - 1;
2666 last_block = first_block +
2667 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2669 if ((grp == sbi->s_groups_count) &&
2670 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2673 block_bitmap = ext4_block_bitmap(sb, gdp);
2674 if (block_bitmap == sb_block) {
2675 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2676 "Block bitmap for group %u overlaps "
2681 if (block_bitmap >= sb_block + 1 &&
2682 block_bitmap <= last_bg_block) {
2683 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2684 "Block bitmap for group %u overlaps "
2685 "block group descriptors", i);
2689 if (block_bitmap < first_block || block_bitmap > last_block) {
2690 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2691 "Block bitmap for group %u not in group "
2692 "(block %llu)!", i, block_bitmap);
2695 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2696 if (inode_bitmap == sb_block) {
2697 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2698 "Inode bitmap for group %u overlaps "
2703 if (inode_bitmap >= sb_block + 1 &&
2704 inode_bitmap <= last_bg_block) {
2705 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2706 "Inode bitmap for group %u overlaps "
2707 "block group descriptors", i);
2711 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2712 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2713 "Inode bitmap for group %u not in group "
2714 "(block %llu)!", i, inode_bitmap);
2717 inode_table = ext4_inode_table(sb, gdp);
2718 if (inode_table == sb_block) {
2719 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2720 "Inode table for group %u overlaps "
2725 if (inode_table >= sb_block + 1 &&
2726 inode_table <= last_bg_block) {
2727 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2728 "Inode table for group %u overlaps "
2729 "block group descriptors", i);
2733 if (inode_table < first_block ||
2734 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2735 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2736 "Inode table for group %u not in group "
2737 "(block %llu)!", i, inode_table);
2740 ext4_lock_group(sb, i);
2741 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2742 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2743 "Checksum for group %u failed (%u!=%u)",
2744 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2745 gdp)), le16_to_cpu(gdp->bg_checksum));
2746 if (!sb_rdonly(sb)) {
2747 ext4_unlock_group(sb, i);
2751 ext4_unlock_group(sb, i);
2753 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2755 if (NULL != first_not_zeroed)
2756 *first_not_zeroed = grp;
2760 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2761 * the superblock) which were deleted from all directories, but held open by
2762 * a process at the time of a crash. We walk the list and try to delete these
2763 * inodes at recovery time (only with a read-write filesystem).
2765 * In order to keep the orphan inode chain consistent during traversal (in
2766 * case of crash during recovery), we link each inode into the superblock
2767 * orphan list_head and handle it the same way as an inode deletion during
2768 * normal operation (which journals the operations for us).
2770 * We only do an iget() and an iput() on each inode, which is very safe if we
2771 * accidentally point at an in-use or already deleted inode. The worst that
2772 * can happen in this case is that we get a "bit already cleared" message from
2773 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2774 * e2fsck was run on this filesystem, and it must have already done the orphan
2775 * inode cleanup for us, so we can safely abort without any further action.
2777 static void ext4_orphan_cleanup(struct super_block *sb,
2778 struct ext4_super_block *es)
2780 unsigned int s_flags = sb->s_flags;
2781 int ret, nr_orphans = 0, nr_truncates = 0;
2783 int quota_update = 0;
2786 if (!es->s_last_orphan) {
2787 jbd_debug(4, "no orphan inodes to clean up\n");
2791 if (bdev_read_only(sb->s_bdev)) {
2792 ext4_msg(sb, KERN_ERR, "write access "
2793 "unavailable, skipping orphan cleanup");
2797 /* Check if feature set would not allow a r/w mount */
2798 if (!ext4_feature_set_ok(sb, 0)) {
2799 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2800 "unknown ROCOMPAT features");
2804 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2805 /* don't clear list on RO mount w/ errors */
2806 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2807 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2808 "clearing orphan list.\n");
2809 es->s_last_orphan = 0;
2811 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2815 if (s_flags & SB_RDONLY) {
2816 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2817 sb->s_flags &= ~SB_RDONLY;
2820 /* Needed for iput() to work correctly and not trash data */
2821 sb->s_flags |= SB_ACTIVE;
2824 * Turn on quotas which were not enabled for read-only mounts if
2825 * filesystem has quota feature, so that they are updated correctly.
2827 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2828 int ret = ext4_enable_quotas(sb);
2833 ext4_msg(sb, KERN_ERR,
2834 "Cannot turn on quotas: error %d", ret);
2837 /* Turn on journaled quotas used for old sytle */
2838 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2839 if (EXT4_SB(sb)->s_qf_names[i]) {
2840 int ret = ext4_quota_on_mount(sb, i);
2845 ext4_msg(sb, KERN_ERR,
2846 "Cannot turn on journaled "
2847 "quota: type %d: error %d", i, ret);
2852 while (es->s_last_orphan) {
2853 struct inode *inode;
2856 * We may have encountered an error during cleanup; if
2857 * so, skip the rest.
2859 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2860 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2861 es->s_last_orphan = 0;
2865 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2866 if (IS_ERR(inode)) {
2867 es->s_last_orphan = 0;
2871 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2872 dquot_initialize(inode);
2873 if (inode->i_nlink) {
2874 if (test_opt(sb, DEBUG))
2875 ext4_msg(sb, KERN_DEBUG,
2876 "%s: truncating inode %lu to %lld bytes",
2877 __func__, inode->i_ino, inode->i_size);
2878 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2879 inode->i_ino, inode->i_size);
2881 truncate_inode_pages(inode->i_mapping, inode->i_size);
2882 ret = ext4_truncate(inode);
2884 ext4_std_error(inode->i_sb, ret);
2885 inode_unlock(inode);
2888 if (test_opt(sb, DEBUG))
2889 ext4_msg(sb, KERN_DEBUG,
2890 "%s: deleting unreferenced inode %lu",
2891 __func__, inode->i_ino);
2892 jbd_debug(2, "deleting unreferenced inode %lu\n",
2896 iput(inode); /* The delete magic happens here! */
2899 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2902 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2903 PLURAL(nr_orphans));
2905 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2906 PLURAL(nr_truncates));
2908 /* Turn off quotas if they were enabled for orphan cleanup */
2910 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2911 if (sb_dqopt(sb)->files[i])
2912 dquot_quota_off(sb, i);
2916 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2920 * Maximal extent format file size.
2921 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2922 * extent format containers, within a sector_t, and within i_blocks
2923 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2924 * so that won't be a limiting factor.
2926 * However there is other limiting factor. We do store extents in the form
2927 * of starting block and length, hence the resulting length of the extent
2928 * covering maximum file size must fit into on-disk format containers as
2929 * well. Given that length is always by 1 unit bigger than max unit (because
2930 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2932 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2934 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2937 loff_t upper_limit = MAX_LFS_FILESIZE;
2939 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
2941 if (!has_huge_files) {
2942 upper_limit = (1LL << 32) - 1;
2944 /* total blocks in file system block size */
2945 upper_limit >>= (blkbits - 9);
2946 upper_limit <<= blkbits;
2950 * 32-bit extent-start container, ee_block. We lower the maxbytes
2951 * by one fs block, so ee_len can cover the extent of maximum file
2954 res = (1LL << 32) - 1;
2957 /* Sanity check against vm- & vfs- imposed limits */
2958 if (res > upper_limit)
2965 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2966 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2967 * We need to be 1 filesystem block less than the 2^48 sector limit.
2969 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2971 loff_t res = EXT4_NDIR_BLOCKS;
2974 /* This is calculated to be the largest file size for a dense, block
2975 * mapped file such that the file's total number of 512-byte sectors,
2976 * including data and all indirect blocks, does not exceed (2^48 - 1).
2978 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2979 * number of 512-byte sectors of the file.
2982 if (!has_huge_files) {
2984 * !has_huge_files or implies that the inode i_block field
2985 * represents total file blocks in 2^32 512-byte sectors ==
2986 * size of vfs inode i_blocks * 8
2988 upper_limit = (1LL << 32) - 1;
2990 /* total blocks in file system block size */
2991 upper_limit >>= (bits - 9);
2995 * We use 48 bit ext4_inode i_blocks
2996 * With EXT4_HUGE_FILE_FL set the i_blocks
2997 * represent total number of blocks in
2998 * file system block size
3000 upper_limit = (1LL << 48) - 1;
3004 /* indirect blocks */
3006 /* double indirect blocks */
3007 meta_blocks += 1 + (1LL << (bits-2));
3008 /* tripple indirect blocks */
3009 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3011 upper_limit -= meta_blocks;
3012 upper_limit <<= bits;
3014 res += 1LL << (bits-2);
3015 res += 1LL << (2*(bits-2));
3016 res += 1LL << (3*(bits-2));
3018 if (res > upper_limit)
3021 if (res > MAX_LFS_FILESIZE)
3022 res = MAX_LFS_FILESIZE;
3027 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3028 ext4_fsblk_t logical_sb_block, int nr)
3030 struct ext4_sb_info *sbi = EXT4_SB(sb);
3031 ext4_group_t bg, first_meta_bg;
3034 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3036 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3037 return logical_sb_block + nr + 1;
3038 bg = sbi->s_desc_per_block * nr;
3039 if (ext4_bg_has_super(sb, bg))
3043 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3044 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3045 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3048 if (sb->s_blocksize == 1024 && nr == 0 &&
3049 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3052 return (has_super + ext4_group_first_block_no(sb, bg));
3056 * ext4_get_stripe_size: Get the stripe size.
3057 * @sbi: In memory super block info
3059 * If we have specified it via mount option, then
3060 * use the mount option value. If the value specified at mount time is
3061 * greater than the blocks per group use the super block value.
3062 * If the super block value is greater than blocks per group return 0.
3063 * Allocator needs it be less than blocks per group.
3066 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3068 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3069 unsigned long stripe_width =
3070 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3073 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3074 ret = sbi->s_stripe;
3075 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3077 else if (stride && stride <= sbi->s_blocks_per_group)
3083 * If the stripe width is 1, this makes no sense and
3084 * we set it to 0 to turn off stripe handling code.
3093 * Check whether this filesystem can be mounted based on
3094 * the features present and the RDONLY/RDWR mount requested.
3095 * Returns 1 if this filesystem can be mounted as requested,
3096 * 0 if it cannot be.
3098 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
3100 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3101 ext4_msg(sb, KERN_ERR,
3102 "Couldn't mount because of "
3103 "unsupported optional features (%x)",
3104 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3105 ~EXT4_FEATURE_INCOMPAT_SUPP));
3109 #ifndef CONFIG_UNICODE
3110 if (ext4_has_feature_casefold(sb)) {
3111 ext4_msg(sb, KERN_ERR,
3112 "Filesystem with casefold feature cannot be "
3113 "mounted without CONFIG_UNICODE");
3121 if (ext4_has_feature_readonly(sb)) {
3122 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3123 sb->s_flags |= SB_RDONLY;
3127 /* Check that feature set is OK for a read-write mount */
3128 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3129 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3130 "unsupported optional features (%x)",
3131 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3132 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3135 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3136 ext4_msg(sb, KERN_ERR,
3137 "Can't support bigalloc feature without "
3138 "extents feature\n");
3142 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3143 if (!readonly && (ext4_has_feature_quota(sb) ||
3144 ext4_has_feature_project(sb))) {
3145 ext4_msg(sb, KERN_ERR,
3146 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3149 #endif /* CONFIG_QUOTA */
3154 * This function is called once a day if we have errors logged
3155 * on the file system
3157 static void print_daily_error_info(struct timer_list *t)
3159 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3160 struct super_block *sb = sbi->s_sb;
3161 struct ext4_super_block *es = sbi->s_es;
3163 if (es->s_error_count)
3164 /* fsck newer than v1.41.13 is needed to clean this condition. */
3165 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3166 le32_to_cpu(es->s_error_count));
3167 if (es->s_first_error_time) {
3168 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3170 ext4_get_tstamp(es, s_first_error_time),
3171 (int) sizeof(es->s_first_error_func),
3172 es->s_first_error_func,
3173 le32_to_cpu(es->s_first_error_line));
3174 if (es->s_first_error_ino)
3175 printk(KERN_CONT ": inode %u",
3176 le32_to_cpu(es->s_first_error_ino));
3177 if (es->s_first_error_block)
3178 printk(KERN_CONT ": block %llu", (unsigned long long)
3179 le64_to_cpu(es->s_first_error_block));
3180 printk(KERN_CONT "\n");
3182 if (es->s_last_error_time) {
3183 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3185 ext4_get_tstamp(es, s_last_error_time),
3186 (int) sizeof(es->s_last_error_func),
3187 es->s_last_error_func,
3188 le32_to_cpu(es->s_last_error_line));
3189 if (es->s_last_error_ino)
3190 printk(KERN_CONT ": inode %u",
3191 le32_to_cpu(es->s_last_error_ino));
3192 if (es->s_last_error_block)
3193 printk(KERN_CONT ": block %llu", (unsigned long long)
3194 le64_to_cpu(es->s_last_error_block));
3195 printk(KERN_CONT "\n");
3197 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3200 /* Find next suitable group and run ext4_init_inode_table */
3201 static int ext4_run_li_request(struct ext4_li_request *elr)
3203 struct ext4_group_desc *gdp = NULL;
3204 ext4_group_t group, ngroups;
3205 struct super_block *sb;
3206 unsigned long timeout = 0;
3210 ngroups = EXT4_SB(sb)->s_groups_count;
3212 for (group = elr->lr_next_group; group < ngroups; group++) {
3213 gdp = ext4_get_group_desc(sb, group, NULL);
3219 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3223 if (group >= ngroups)
3228 ret = ext4_init_inode_table(sb, group,
3229 elr->lr_timeout ? 0 : 1);
3230 if (elr->lr_timeout == 0) {
3231 timeout = (jiffies - timeout) *
3232 elr->lr_sbi->s_li_wait_mult;
3233 elr->lr_timeout = timeout;
3235 elr->lr_next_sched = jiffies + elr->lr_timeout;
3236 elr->lr_next_group = group + 1;
3242 * Remove lr_request from the list_request and free the
3243 * request structure. Should be called with li_list_mtx held
3245 static void ext4_remove_li_request(struct ext4_li_request *elr)
3247 struct ext4_sb_info *sbi;
3254 list_del(&elr->lr_request);
3255 sbi->s_li_request = NULL;
3259 static void ext4_unregister_li_request(struct super_block *sb)
3261 mutex_lock(&ext4_li_mtx);
3262 if (!ext4_li_info) {
3263 mutex_unlock(&ext4_li_mtx);
3267 mutex_lock(&ext4_li_info->li_list_mtx);
3268 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3269 mutex_unlock(&ext4_li_info->li_list_mtx);
3270 mutex_unlock(&ext4_li_mtx);
3273 static struct task_struct *ext4_lazyinit_task;
3276 * This is the function where ext4lazyinit thread lives. It walks
3277 * through the request list searching for next scheduled filesystem.
3278 * When such a fs is found, run the lazy initialization request
3279 * (ext4_rn_li_request) and keep track of the time spend in this
3280 * function. Based on that time we compute next schedule time of
3281 * the request. When walking through the list is complete, compute
3282 * next waking time and put itself into sleep.
3284 static int ext4_lazyinit_thread(void *arg)
3286 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3287 struct list_head *pos, *n;
3288 struct ext4_li_request *elr;
3289 unsigned long next_wakeup, cur;
3291 BUG_ON(NULL == eli);
3295 next_wakeup = MAX_JIFFY_OFFSET;
3297 mutex_lock(&eli->li_list_mtx);
3298 if (list_empty(&eli->li_request_list)) {
3299 mutex_unlock(&eli->li_list_mtx);
3302 list_for_each_safe(pos, n, &eli->li_request_list) {
3305 elr = list_entry(pos, struct ext4_li_request,
3308 if (time_before(jiffies, elr->lr_next_sched)) {
3309 if (time_before(elr->lr_next_sched, next_wakeup))
3310 next_wakeup = elr->lr_next_sched;
3313 if (down_read_trylock(&elr->lr_super->s_umount)) {
3314 if (sb_start_write_trylock(elr->lr_super)) {
3317 * We hold sb->s_umount, sb can not
3318 * be removed from the list, it is
3319 * now safe to drop li_list_mtx
3321 mutex_unlock(&eli->li_list_mtx);
3322 err = ext4_run_li_request(elr);
3323 sb_end_write(elr->lr_super);
3324 mutex_lock(&eli->li_list_mtx);
3327 up_read((&elr->lr_super->s_umount));
3329 /* error, remove the lazy_init job */
3331 ext4_remove_li_request(elr);
3335 elr->lr_next_sched = jiffies +
3337 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3339 if (time_before(elr->lr_next_sched, next_wakeup))
3340 next_wakeup = elr->lr_next_sched;
3342 mutex_unlock(&eli->li_list_mtx);
3347 if ((time_after_eq(cur, next_wakeup)) ||
3348 (MAX_JIFFY_OFFSET == next_wakeup)) {
3353 schedule_timeout_interruptible(next_wakeup - cur);
3355 if (kthread_should_stop()) {
3356 ext4_clear_request_list();
3363 * It looks like the request list is empty, but we need
3364 * to check it under the li_list_mtx lock, to prevent any
3365 * additions into it, and of course we should lock ext4_li_mtx
3366 * to atomically free the list and ext4_li_info, because at
3367 * this point another ext4 filesystem could be registering
3370 mutex_lock(&ext4_li_mtx);
3371 mutex_lock(&eli->li_list_mtx);
3372 if (!list_empty(&eli->li_request_list)) {
3373 mutex_unlock(&eli->li_list_mtx);
3374 mutex_unlock(&ext4_li_mtx);
3377 mutex_unlock(&eli->li_list_mtx);
3378 kfree(ext4_li_info);
3379 ext4_li_info = NULL;
3380 mutex_unlock(&ext4_li_mtx);
3385 static void ext4_clear_request_list(void)
3387 struct list_head *pos, *n;
3388 struct ext4_li_request *elr;
3390 mutex_lock(&ext4_li_info->li_list_mtx);
3391 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3392 elr = list_entry(pos, struct ext4_li_request,
3394 ext4_remove_li_request(elr);
3396 mutex_unlock(&ext4_li_info->li_list_mtx);
3399 static int ext4_run_lazyinit_thread(void)
3401 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3402 ext4_li_info, "ext4lazyinit");
3403 if (IS_ERR(ext4_lazyinit_task)) {
3404 int err = PTR_ERR(ext4_lazyinit_task);
3405 ext4_clear_request_list();
3406 kfree(ext4_li_info);
3407 ext4_li_info = NULL;
3408 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3409 "initialization thread\n",
3413 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3418 * Check whether it make sense to run itable init. thread or not.
3419 * If there is at least one uninitialized inode table, return
3420 * corresponding group number, else the loop goes through all
3421 * groups and return total number of groups.
3423 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3425 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3426 struct ext4_group_desc *gdp = NULL;
3428 if (!ext4_has_group_desc_csum(sb))
3431 for (group = 0; group < ngroups; group++) {
3432 gdp = ext4_get_group_desc(sb, group, NULL);
3436 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3443 static int ext4_li_info_new(void)
3445 struct ext4_lazy_init *eli = NULL;
3447 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3451 INIT_LIST_HEAD(&eli->li_request_list);
3452 mutex_init(&eli->li_list_mtx);
3454 eli->li_state |= EXT4_LAZYINIT_QUIT;
3461 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3464 struct ext4_sb_info *sbi = EXT4_SB(sb);
3465 struct ext4_li_request *elr;
3467 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3473 elr->lr_next_group = start;
3476 * Randomize first schedule time of the request to
3477 * spread the inode table initialization requests
3480 elr->lr_next_sched = jiffies + (prandom_u32() %
3481 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3485 int ext4_register_li_request(struct super_block *sb,
3486 ext4_group_t first_not_zeroed)
3488 struct ext4_sb_info *sbi = EXT4_SB(sb);
3489 struct ext4_li_request *elr = NULL;
3490 ext4_group_t ngroups = sbi->s_groups_count;
3493 mutex_lock(&ext4_li_mtx);
3494 if (sbi->s_li_request != NULL) {
3496 * Reset timeout so it can be computed again, because
3497 * s_li_wait_mult might have changed.
3499 sbi->s_li_request->lr_timeout = 0;
3503 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3504 !test_opt(sb, INIT_INODE_TABLE))
3507 elr = ext4_li_request_new(sb, first_not_zeroed);
3513 if (NULL == ext4_li_info) {
3514 ret = ext4_li_info_new();
3519 mutex_lock(&ext4_li_info->li_list_mtx);
3520 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3521 mutex_unlock(&ext4_li_info->li_list_mtx);
3523 sbi->s_li_request = elr;
3525 * set elr to NULL here since it has been inserted to
3526 * the request_list and the removal and free of it is
3527 * handled by ext4_clear_request_list from now on.
3531 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3532 ret = ext4_run_lazyinit_thread();
3537 mutex_unlock(&ext4_li_mtx);
3544 * We do not need to lock anything since this is called on
3547 static void ext4_destroy_lazyinit_thread(void)
3550 * If thread exited earlier
3551 * there's nothing to be done.
3553 if (!ext4_li_info || !ext4_lazyinit_task)
3556 kthread_stop(ext4_lazyinit_task);
3559 static int set_journal_csum_feature_set(struct super_block *sb)
3562 int compat, incompat;
3563 struct ext4_sb_info *sbi = EXT4_SB(sb);
3565 if (ext4_has_metadata_csum(sb)) {
3566 /* journal checksum v3 */
3568 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3570 /* journal checksum v1 */
3571 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3575 jbd2_journal_clear_features(sbi->s_journal,
3576 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3577 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3578 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3579 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3580 ret = jbd2_journal_set_features(sbi->s_journal,
3582 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3584 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3585 ret = jbd2_journal_set_features(sbi->s_journal,
3588 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3589 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3591 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3592 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3599 * Note: calculating the overhead so we can be compatible with
3600 * historical BSD practice is quite difficult in the face of
3601 * clusters/bigalloc. This is because multiple metadata blocks from
3602 * different block group can end up in the same allocation cluster.
3603 * Calculating the exact overhead in the face of clustered allocation
3604 * requires either O(all block bitmaps) in memory or O(number of block
3605 * groups**2) in time. We will still calculate the superblock for
3606 * older file systems --- and if we come across with a bigalloc file
3607 * system with zero in s_overhead_clusters the estimate will be close to
3608 * correct especially for very large cluster sizes --- but for newer
3609 * file systems, it's better to calculate this figure once at mkfs
3610 * time, and store it in the superblock. If the superblock value is
3611 * present (even for non-bigalloc file systems), we will use it.
3613 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3616 struct ext4_sb_info *sbi = EXT4_SB(sb);
3617 struct ext4_group_desc *gdp;
3618 ext4_fsblk_t first_block, last_block, b;
3619 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3620 int s, j, count = 0;
3622 if (!ext4_has_feature_bigalloc(sb))
3623 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3624 sbi->s_itb_per_group + 2);
3626 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3627 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3628 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3629 for (i = 0; i < ngroups; i++) {
3630 gdp = ext4_get_group_desc(sb, i, NULL);
3631 b = ext4_block_bitmap(sb, gdp);
3632 if (b >= first_block && b <= last_block) {
3633 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3636 b = ext4_inode_bitmap(sb, gdp);
3637 if (b >= first_block && b <= last_block) {
3638 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3641 b = ext4_inode_table(sb, gdp);
3642 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3643 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3644 int c = EXT4_B2C(sbi, b - first_block);
3645 ext4_set_bit(c, buf);
3651 if (ext4_bg_has_super(sb, grp)) {
3652 ext4_set_bit(s++, buf);
3655 j = ext4_bg_num_gdb(sb, grp);
3656 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3657 ext4_error(sb, "Invalid number of block group "
3658 "descriptor blocks: %d", j);
3659 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3663 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3667 return EXT4_CLUSTERS_PER_GROUP(sb) -
3668 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3672 * Compute the overhead and stash it in sbi->s_overhead
3674 int ext4_calculate_overhead(struct super_block *sb)
3676 struct ext4_sb_info *sbi = EXT4_SB(sb);
3677 struct ext4_super_block *es = sbi->s_es;
3678 struct inode *j_inode;
3679 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3680 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3681 ext4_fsblk_t overhead = 0;
3682 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3688 * Compute the overhead (FS structures). This is constant
3689 * for a given filesystem unless the number of block groups
3690 * changes so we cache the previous value until it does.
3694 * All of the blocks before first_data_block are overhead
3696 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3699 * Add the overhead found in each block group
3701 for (i = 0; i < ngroups; i++) {
3704 blks = count_overhead(sb, i, buf);
3707 memset(buf, 0, PAGE_SIZE);
3712 * Add the internal journal blocks whether the journal has been
3715 if (sbi->s_journal && !sbi->journal_bdev)
3716 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3717 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3718 /* j_inum for internal journal is non-zero */
3719 j_inode = ext4_get_journal_inode(sb, j_inum);
3721 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3722 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3725 ext4_msg(sb, KERN_ERR, "can't get journal size");
3728 sbi->s_overhead = overhead;
3730 free_page((unsigned long) buf);
3734 static void ext4_set_resv_clusters(struct super_block *sb)
3736 ext4_fsblk_t resv_clusters;
3737 struct ext4_sb_info *sbi = EXT4_SB(sb);
3740 * There's no need to reserve anything when we aren't using extents.
3741 * The space estimates are exact, there are no unwritten extents,
3742 * hole punching doesn't need new metadata... This is needed especially
3743 * to keep ext2/3 backward compatibility.
3745 if (!ext4_has_feature_extents(sb))
3748 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3749 * This should cover the situations where we can not afford to run
3750 * out of space like for example punch hole, or converting
3751 * unwritten extents in delalloc path. In most cases such
3752 * allocation would require 1, or 2 blocks, higher numbers are
3755 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3756 sbi->s_cluster_bits);
3758 do_div(resv_clusters, 50);
3759 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3761 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3764 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3766 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3767 char *orig_data = kstrdup(data, GFP_KERNEL);
3768 struct buffer_head *bh, **group_desc;
3769 struct ext4_super_block *es = NULL;
3770 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3771 struct flex_groups **flex_groups;
3773 ext4_fsblk_t sb_block = get_sb_block(&data);
3774 ext4_fsblk_t logical_sb_block;
3775 unsigned long offset = 0;
3776 unsigned long journal_devnum = 0;
3777 unsigned long def_mount_opts;
3781 int blocksize, clustersize;
3782 unsigned int db_count;
3784 int needs_recovery, has_huge_files;
3787 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3788 ext4_group_t first_not_zeroed;
3790 if ((data && !orig_data) || !sbi)
3793 sbi->s_daxdev = dax_dev;
3794 sbi->s_blockgroup_lock =
3795 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3796 if (!sbi->s_blockgroup_lock)
3799 sb->s_fs_info = sbi;
3801 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3802 sbi->s_sb_block = sb_block;
3803 if (sb->s_bdev->bd_part)
3804 sbi->s_sectors_written_start =
3805 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3807 /* Cleanup superblock name */
3808 strreplace(sb->s_id, '/', '!');
3810 /* -EINVAL is default */
3812 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3814 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3819 * The ext4 superblock will not be buffer aligned for other than 1kB
3820 * block sizes. We need to calculate the offset from buffer start.
3822 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3823 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3824 offset = do_div(logical_sb_block, blocksize);
3826 logical_sb_block = sb_block;
3829 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3830 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3834 * Note: s_es must be initialized as soon as possible because
3835 * some ext4 macro-instructions depend on its value
3837 es = (struct ext4_super_block *) (bh->b_data + offset);
3839 sb->s_magic = le16_to_cpu(es->s_magic);
3840 if (sb->s_magic != EXT4_SUPER_MAGIC)
3842 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3844 /* Warn if metadata_csum and gdt_csum are both set. */
3845 if (ext4_has_feature_metadata_csum(sb) &&
3846 ext4_has_feature_gdt_csum(sb))
3847 ext4_warning(sb, "metadata_csum and uninit_bg are "
3848 "redundant flags; please run fsck.");
3850 /* Check for a known checksum algorithm */
3851 if (!ext4_verify_csum_type(sb, es)) {
3852 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3853 "unknown checksum algorithm.");
3858 /* Load the checksum driver */
3859 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3860 if (IS_ERR(sbi->s_chksum_driver)) {
3861 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3862 ret = PTR_ERR(sbi->s_chksum_driver);
3863 sbi->s_chksum_driver = NULL;
3867 /* Check superblock checksum */
3868 if (!ext4_superblock_csum_verify(sb, es)) {
3869 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3870 "invalid superblock checksum. Run e2fsck?");
3876 /* Precompute checksum seed for all metadata */
3877 if (ext4_has_feature_csum_seed(sb))
3878 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3879 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3880 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3881 sizeof(es->s_uuid));
3883 /* Set defaults before we parse the mount options */
3884 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3885 set_opt(sb, INIT_INODE_TABLE);
3886 if (def_mount_opts & EXT4_DEFM_DEBUG)
3888 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3890 if (def_mount_opts & EXT4_DEFM_UID16)
3891 set_opt(sb, NO_UID32);
3892 /* xattr user namespace & acls are now defaulted on */
3893 set_opt(sb, XATTR_USER);
3894 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3895 set_opt(sb, POSIX_ACL);
3897 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3898 if (ext4_has_metadata_csum(sb))
3899 set_opt(sb, JOURNAL_CHECKSUM);
3901 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3902 set_opt(sb, JOURNAL_DATA);
3903 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3904 set_opt(sb, ORDERED_DATA);
3905 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3906 set_opt(sb, WRITEBACK_DATA);
3908 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3909 set_opt(sb, ERRORS_PANIC);
3910 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3911 set_opt(sb, ERRORS_CONT);
3913 set_opt(sb, ERRORS_RO);
3914 /* block_validity enabled by default; disable with noblock_validity */
3915 set_opt(sb, BLOCK_VALIDITY);
3916 if (def_mount_opts & EXT4_DEFM_DISCARD)
3917 set_opt(sb, DISCARD);
3919 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3920 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3921 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3922 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3923 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3925 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3926 set_opt(sb, BARRIER);
3929 * enable delayed allocation by default
3930 * Use -o nodelalloc to turn it off
3932 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3933 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3934 set_opt(sb, DELALLOC);
3937 * set default s_li_wait_mult for lazyinit, for the case there is
3938 * no mount option specified.
3940 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3942 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3944 if (blocksize == PAGE_SIZE)
3945 set_opt(sb, DIOREAD_NOLOCK);
3947 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3948 blocksize > EXT4_MAX_BLOCK_SIZE) {
3949 ext4_msg(sb, KERN_ERR,
3950 "Unsupported filesystem blocksize %d (%d log_block_size)",
3951 blocksize, le32_to_cpu(es->s_log_block_size));
3955 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3956 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3957 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3959 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3960 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3961 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
3962 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
3966 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3967 (!is_power_of_2(sbi->s_inode_size)) ||
3968 (sbi->s_inode_size > blocksize)) {
3969 ext4_msg(sb, KERN_ERR,
3970 "unsupported inode size: %d",
3972 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
3976 * i_atime_extra is the last extra field available for
3977 * [acm]times in struct ext4_inode. Checking for that
3978 * field should suffice to ensure we have extra space
3981 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
3982 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
3983 sb->s_time_gran = 1;
3984 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
3986 sb->s_time_gran = NSEC_PER_SEC;
3987 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
3989 sb->s_time_min = EXT4_TIMESTAMP_MIN;
3991 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3992 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3993 EXT4_GOOD_OLD_INODE_SIZE;
3994 if (ext4_has_feature_extra_isize(sb)) {
3995 unsigned v, max = (sbi->s_inode_size -
3996 EXT4_GOOD_OLD_INODE_SIZE);
3998 v = le16_to_cpu(es->s_want_extra_isize);
4000 ext4_msg(sb, KERN_ERR,
4001 "bad s_want_extra_isize: %d", v);
4004 if (sbi->s_want_extra_isize < v)
4005 sbi->s_want_extra_isize = v;
4007 v = le16_to_cpu(es->s_min_extra_isize);
4009 ext4_msg(sb, KERN_ERR,
4010 "bad s_min_extra_isize: %d", v);
4013 if (sbi->s_want_extra_isize < v)
4014 sbi->s_want_extra_isize = v;
4018 if (sbi->s_es->s_mount_opts[0]) {
4019 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4020 sizeof(sbi->s_es->s_mount_opts),
4024 if (!parse_options(s_mount_opts, sb, &journal_devnum,
4025 &journal_ioprio, 0)) {
4026 ext4_msg(sb, KERN_WARNING,
4027 "failed to parse options in superblock: %s",
4030 kfree(s_mount_opts);
4032 sbi->s_def_mount_opt = sbi->s_mount_opt;
4033 if (!parse_options((char *) data, sb, &journal_devnum,
4034 &journal_ioprio, 0))
4037 #ifdef CONFIG_UNICODE
4038 if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) {
4039 const struct ext4_sb_encodings *encoding_info;
4040 struct unicode_map *encoding;
4041 __u16 encoding_flags;
4043 if (ext4_has_feature_encrypt(sb)) {
4044 ext4_msg(sb, KERN_ERR,
4045 "Can't mount with encoding and encryption");
4049 if (ext4_sb_read_encoding(es, &encoding_info,
4051 ext4_msg(sb, KERN_ERR,
4052 "Encoding requested by superblock is unknown");
4056 encoding = utf8_load(encoding_info->version);
4057 if (IS_ERR(encoding)) {
4058 ext4_msg(sb, KERN_ERR,
4059 "can't mount with superblock charset: %s-%s "
4060 "not supported by the kernel. flags: 0x%x.",
4061 encoding_info->name, encoding_info->version,
4065 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4066 "%s-%s with flags 0x%hx", encoding_info->name,
4067 encoding_info->version?:"\b", encoding_flags);
4069 sbi->s_encoding = encoding;
4070 sbi->s_encoding_flags = encoding_flags;
4074 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4075 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, and O_DIRECT support!\n");
4076 /* can't mount with both data=journal and dioread_nolock. */
4077 clear_opt(sb, DIOREAD_NOLOCK);
4078 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4079 ext4_msg(sb, KERN_ERR, "can't mount with "
4080 "both data=journal and delalloc");
4083 if (test_opt(sb, DAX_ALWAYS)) {
4084 ext4_msg(sb, KERN_ERR, "can't mount with "
4085 "both data=journal and dax");
4088 if (ext4_has_feature_encrypt(sb)) {
4089 ext4_msg(sb, KERN_WARNING,
4090 "encrypted files will use data=ordered "
4091 "instead of data journaling mode");
4093 if (test_opt(sb, DELALLOC))
4094 clear_opt(sb, DELALLOC);
4096 sb->s_iflags |= SB_I_CGROUPWB;
4099 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4100 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4102 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4103 (ext4_has_compat_features(sb) ||
4104 ext4_has_ro_compat_features(sb) ||
4105 ext4_has_incompat_features(sb)))
4106 ext4_msg(sb, KERN_WARNING,
4107 "feature flags set on rev 0 fs, "
4108 "running e2fsck is recommended");
4110 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4111 set_opt2(sb, HURD_COMPAT);
4112 if (ext4_has_feature_64bit(sb)) {
4113 ext4_msg(sb, KERN_ERR,
4114 "The Hurd can't support 64-bit file systems");
4119 * ea_inode feature uses l_i_version field which is not
4120 * available in HURD_COMPAT mode.
4122 if (ext4_has_feature_ea_inode(sb)) {
4123 ext4_msg(sb, KERN_ERR,
4124 "ea_inode feature is not supported for Hurd");
4129 if (IS_EXT2_SB(sb)) {
4130 if (ext2_feature_set_ok(sb))
4131 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4132 "using the ext4 subsystem");
4135 * If we're probing be silent, if this looks like
4136 * it's actually an ext[34] filesystem.
4138 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4140 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4141 "to feature incompatibilities");
4146 if (IS_EXT3_SB(sb)) {
4147 if (ext3_feature_set_ok(sb))
4148 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4149 "using the ext4 subsystem");
4152 * If we're probing be silent, if this looks like
4153 * it's actually an ext4 filesystem.
4155 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4157 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4158 "to feature incompatibilities");
4164 * Check feature flags regardless of the revision level, since we
4165 * previously didn't change the revision level when setting the flags,
4166 * so there is a chance incompat flags are set on a rev 0 filesystem.
4168 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4171 if (le32_to_cpu(es->s_log_block_size) >
4172 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4173 ext4_msg(sb, KERN_ERR,
4174 "Invalid log block size: %u",
4175 le32_to_cpu(es->s_log_block_size));
4178 if (le32_to_cpu(es->s_log_cluster_size) >
4179 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4180 ext4_msg(sb, KERN_ERR,
4181 "Invalid log cluster size: %u",
4182 le32_to_cpu(es->s_log_cluster_size));
4186 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4187 ext4_msg(sb, KERN_ERR,
4188 "Number of reserved GDT blocks insanely large: %d",
4189 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4193 if (bdev_dax_supported(sb->s_bdev, blocksize))
4194 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4196 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4197 if (ext4_has_feature_inline_data(sb)) {
4198 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4199 " that may contain inline data");
4202 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4203 ext4_msg(sb, KERN_ERR,
4204 "DAX unsupported by block device.");
4209 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4210 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4211 es->s_encryption_level);
4215 if (sb->s_blocksize != blocksize) {
4216 /* Validate the filesystem blocksize */
4217 if (!sb_set_blocksize(sb, blocksize)) {
4218 ext4_msg(sb, KERN_ERR, "bad block size %d",
4224 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4225 offset = do_div(logical_sb_block, blocksize);
4226 bh = sb_bread_unmovable(sb, logical_sb_block);
4228 ext4_msg(sb, KERN_ERR,
4229 "Can't read superblock on 2nd try");
4232 es = (struct ext4_super_block *)(bh->b_data + offset);
4234 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4235 ext4_msg(sb, KERN_ERR,
4236 "Magic mismatch, very weird!");
4241 has_huge_files = ext4_has_feature_huge_file(sb);
4242 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4244 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4246 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4247 if (ext4_has_feature_64bit(sb)) {
4248 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4249 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4250 !is_power_of_2(sbi->s_desc_size)) {
4251 ext4_msg(sb, KERN_ERR,
4252 "unsupported descriptor size %lu",
4257 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4259 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4260 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4262 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4263 if (sbi->s_inodes_per_block == 0)
4265 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4266 sbi->s_inodes_per_group > blocksize * 8) {
4267 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4268 sbi->s_inodes_per_group);
4271 sbi->s_itb_per_group = sbi->s_inodes_per_group /
4272 sbi->s_inodes_per_block;
4273 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4275 sbi->s_mount_state = le16_to_cpu(es->s_state);
4276 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4277 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4279 for (i = 0; i < 4; i++)
4280 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4281 sbi->s_def_hash_version = es->s_def_hash_version;
4282 if (ext4_has_feature_dir_index(sb)) {
4283 i = le32_to_cpu(es->s_flags);
4284 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4285 sbi->s_hash_unsigned = 3;
4286 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4287 #ifdef __CHAR_UNSIGNED__
4290 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4291 sbi->s_hash_unsigned = 3;
4295 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4300 /* Handle clustersize */
4301 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4302 if (ext4_has_feature_bigalloc(sb)) {
4303 if (clustersize < blocksize) {
4304 ext4_msg(sb, KERN_ERR,
4305 "cluster size (%d) smaller than "
4306 "block size (%d)", clustersize, blocksize);
4309 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4310 le32_to_cpu(es->s_log_block_size);
4311 sbi->s_clusters_per_group =
4312 le32_to_cpu(es->s_clusters_per_group);
4313 if (sbi->s_clusters_per_group > blocksize * 8) {
4314 ext4_msg(sb, KERN_ERR,
4315 "#clusters per group too big: %lu",
4316 sbi->s_clusters_per_group);
4319 if (sbi->s_blocks_per_group !=
4320 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4321 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4322 "clusters per group (%lu) inconsistent",
4323 sbi->s_blocks_per_group,
4324 sbi->s_clusters_per_group);
4328 if (clustersize != blocksize) {
4329 ext4_msg(sb, KERN_ERR,
4330 "fragment/cluster size (%d) != "
4331 "block size (%d)", clustersize, blocksize);
4334 if (sbi->s_blocks_per_group > blocksize * 8) {
4335 ext4_msg(sb, KERN_ERR,
4336 "#blocks per group too big: %lu",
4337 sbi->s_blocks_per_group);
4340 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4341 sbi->s_cluster_bits = 0;
4343 sbi->s_cluster_ratio = clustersize / blocksize;
4345 /* Do we have standard group size of clustersize * 8 blocks ? */
4346 if (sbi->s_blocks_per_group == clustersize << 3)
4347 set_opt2(sb, STD_GROUP_SIZE);
4350 * Test whether we have more sectors than will fit in sector_t,
4351 * and whether the max offset is addressable by the page cache.
4353 err = generic_check_addressable(sb->s_blocksize_bits,
4354 ext4_blocks_count(es));
4356 ext4_msg(sb, KERN_ERR, "filesystem"
4357 " too large to mount safely on this system");
4361 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4364 /* check blocks count against device size */
4365 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4366 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4367 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4368 "exceeds size of device (%llu blocks)",
4369 ext4_blocks_count(es), blocks_count);
4374 * It makes no sense for the first data block to be beyond the end
4375 * of the filesystem.
4377 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4378 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4379 "block %u is beyond end of filesystem (%llu)",
4380 le32_to_cpu(es->s_first_data_block),
4381 ext4_blocks_count(es));
4384 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4385 (sbi->s_cluster_ratio == 1)) {
4386 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4387 "block is 0 with a 1k block and cluster size");
4391 blocks_count = (ext4_blocks_count(es) -
4392 le32_to_cpu(es->s_first_data_block) +
4393 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4394 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4395 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4396 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4397 "(block count %llu, first data block %u, "
4398 "blocks per group %lu)", blocks_count,
4399 ext4_blocks_count(es),
4400 le32_to_cpu(es->s_first_data_block),
4401 EXT4_BLOCKS_PER_GROUP(sb));
4404 sbi->s_groups_count = blocks_count;
4405 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4406 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4407 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4408 le32_to_cpu(es->s_inodes_count)) {
4409 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4410 le32_to_cpu(es->s_inodes_count),
4411 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4415 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4416 EXT4_DESC_PER_BLOCK(sb);
4417 if (ext4_has_feature_meta_bg(sb)) {
4418 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4419 ext4_msg(sb, KERN_WARNING,
4420 "first meta block group too large: %u "
4421 "(group descriptor block count %u)",
4422 le32_to_cpu(es->s_first_meta_bg), db_count);
4426 rcu_assign_pointer(sbi->s_group_desc,
4427 kvmalloc_array(db_count,
4428 sizeof(struct buffer_head *),
4430 if (sbi->s_group_desc == NULL) {
4431 ext4_msg(sb, KERN_ERR, "not enough memory");
4436 bgl_lock_init(sbi->s_blockgroup_lock);
4438 /* Pre-read the descriptors into the buffer cache */
4439 for (i = 0; i < db_count; i++) {
4440 block = descriptor_loc(sb, logical_sb_block, i);
4441 sb_breadahead_unmovable(sb, block);
4444 for (i = 0; i < db_count; i++) {
4445 struct buffer_head *bh;
4447 block = descriptor_loc(sb, logical_sb_block, i);
4448 bh = sb_bread_unmovable(sb, block);
4450 ext4_msg(sb, KERN_ERR,
4451 "can't read group descriptor %d", i);
4456 rcu_dereference(sbi->s_group_desc)[i] = bh;
4459 sbi->s_gdb_count = db_count;
4460 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4461 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4462 ret = -EFSCORRUPTED;
4466 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4468 /* Register extent status tree shrinker */
4469 if (ext4_es_register_shrinker(sbi))
4472 sbi->s_stripe = ext4_get_stripe_size(sbi);
4473 sbi->s_extent_max_zeroout_kb = 32;
4476 * set up enough so that it can read an inode
4478 sb->s_op = &ext4_sops;
4479 sb->s_export_op = &ext4_export_ops;
4480 sb->s_xattr = ext4_xattr_handlers;
4481 #ifdef CONFIG_FS_ENCRYPTION
4482 sb->s_cop = &ext4_cryptops;
4484 #ifdef CONFIG_FS_VERITY
4485 sb->s_vop = &ext4_verityops;
4488 sb->dq_op = &ext4_quota_operations;
4489 if (ext4_has_feature_quota(sb))
4490 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4492 sb->s_qcop = &ext4_qctl_operations;
4493 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4495 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4497 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4498 mutex_init(&sbi->s_orphan_lock);
4502 needs_recovery = (es->s_last_orphan != 0 ||
4503 ext4_has_feature_journal_needs_recovery(sb));
4505 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4506 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4507 goto failed_mount3a;
4510 * The first inode we look at is the journal inode. Don't try
4511 * root first: it may be modified in the journal!
4513 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4514 err = ext4_load_journal(sb, es, journal_devnum);
4516 goto failed_mount3a;
4517 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4518 ext4_has_feature_journal_needs_recovery(sb)) {
4519 ext4_msg(sb, KERN_ERR, "required journal recovery "
4520 "suppressed and not mounted read-only");
4521 goto failed_mount_wq;
4523 /* Nojournal mode, all journal mount options are illegal */
4524 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4525 ext4_msg(sb, KERN_ERR, "can't mount with "
4526 "journal_checksum, fs mounted w/o journal");
4527 goto failed_mount_wq;
4529 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4530 ext4_msg(sb, KERN_ERR, "can't mount with "
4531 "journal_async_commit, fs mounted w/o journal");
4532 goto failed_mount_wq;
4534 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4535 ext4_msg(sb, KERN_ERR, "can't mount with "
4536 "commit=%lu, fs mounted w/o journal",
4537 sbi->s_commit_interval / HZ);
4538 goto failed_mount_wq;
4540 if (EXT4_MOUNT_DATA_FLAGS &
4541 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4542 ext4_msg(sb, KERN_ERR, "can't mount with "
4543 "data=, fs mounted w/o journal");
4544 goto failed_mount_wq;
4546 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4547 clear_opt(sb, JOURNAL_CHECKSUM);
4548 clear_opt(sb, DATA_FLAGS);
4549 sbi->s_journal = NULL;
4554 if (ext4_has_feature_64bit(sb) &&
4555 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4556 JBD2_FEATURE_INCOMPAT_64BIT)) {
4557 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4558 goto failed_mount_wq;
4561 if (!set_journal_csum_feature_set(sb)) {
4562 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4564 goto failed_mount_wq;
4567 /* We have now updated the journal if required, so we can
4568 * validate the data journaling mode. */
4569 switch (test_opt(sb, DATA_FLAGS)) {
4571 /* No mode set, assume a default based on the journal
4572 * capabilities: ORDERED_DATA if the journal can
4573 * cope, else JOURNAL_DATA
4575 if (jbd2_journal_check_available_features
4576 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4577 set_opt(sb, ORDERED_DATA);
4578 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4580 set_opt(sb, JOURNAL_DATA);
4581 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4585 case EXT4_MOUNT_ORDERED_DATA:
4586 case EXT4_MOUNT_WRITEBACK_DATA:
4587 if (!jbd2_journal_check_available_features
4588 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4589 ext4_msg(sb, KERN_ERR, "Journal does not support "
4590 "requested data journaling mode");
4591 goto failed_mount_wq;
4597 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4598 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4599 ext4_msg(sb, KERN_ERR, "can't mount with "
4600 "journal_async_commit in data=ordered mode");
4601 goto failed_mount_wq;
4604 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4606 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4609 if (!test_opt(sb, NO_MBCACHE)) {
4610 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4611 if (!sbi->s_ea_block_cache) {
4612 ext4_msg(sb, KERN_ERR,
4613 "Failed to create ea_block_cache");
4614 goto failed_mount_wq;
4617 if (ext4_has_feature_ea_inode(sb)) {
4618 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4619 if (!sbi->s_ea_inode_cache) {
4620 ext4_msg(sb, KERN_ERR,
4621 "Failed to create ea_inode_cache");
4622 goto failed_mount_wq;
4627 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4628 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4629 goto failed_mount_wq;
4632 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4633 !ext4_has_feature_encrypt(sb)) {
4634 ext4_set_feature_encrypt(sb);
4635 ext4_commit_super(sb, 1);
4639 * Get the # of file system overhead blocks from the
4640 * superblock if present.
4642 if (es->s_overhead_clusters)
4643 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4645 err = ext4_calculate_overhead(sb);
4647 goto failed_mount_wq;
4651 * The maximum number of concurrent works can be high and
4652 * concurrency isn't really necessary. Limit it to 1.
4654 EXT4_SB(sb)->rsv_conversion_wq =
4655 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4656 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4657 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4663 * The jbd2_journal_load will have done any necessary log recovery,
4664 * so we can safely mount the rest of the filesystem now.
4667 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4669 ext4_msg(sb, KERN_ERR, "get root inode failed");
4670 ret = PTR_ERR(root);
4674 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4675 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4680 #ifdef CONFIG_UNICODE
4681 if (sbi->s_encoding)
4682 sb->s_d_op = &ext4_dentry_ops;
4685 sb->s_root = d_make_root(root);
4687 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4692 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4693 if (ret == -EROFS) {
4694 sb->s_flags |= SB_RDONLY;
4697 goto failed_mount4a;
4699 ext4_set_resv_clusters(sb);
4701 err = ext4_setup_system_zone(sb);
4703 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4705 goto failed_mount4a;
4709 err = ext4_mb_init(sb);
4711 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4716 block = ext4_count_free_clusters(sb);
4717 ext4_free_blocks_count_set(sbi->s_es,
4718 EXT4_C2B(sbi, block));
4719 ext4_superblock_csum_set(sb);
4720 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4723 unsigned long freei = ext4_count_free_inodes(sb);
4724 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4725 ext4_superblock_csum_set(sb);
4726 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4730 err = percpu_counter_init(&sbi->s_dirs_counter,
4731 ext4_count_dirs(sb), GFP_KERNEL);
4733 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4736 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
4739 ext4_msg(sb, KERN_ERR, "insufficient memory");
4743 if (ext4_has_feature_flex_bg(sb))
4744 if (!ext4_fill_flex_info(sb)) {
4745 ext4_msg(sb, KERN_ERR,
4746 "unable to initialize "
4747 "flex_bg meta info!");
4751 err = ext4_register_li_request(sb, first_not_zeroed);
4755 err = ext4_register_sysfs(sb);
4760 /* Enable quota usage during mount. */
4761 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4762 err = ext4_enable_quotas(sb);
4766 #endif /* CONFIG_QUOTA */
4768 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4769 ext4_orphan_cleanup(sb, es);
4770 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4771 if (needs_recovery) {
4772 ext4_msg(sb, KERN_INFO, "recovery complete");
4773 ext4_mark_recovery_complete(sb, es);
4775 if (EXT4_SB(sb)->s_journal) {
4776 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4777 descr = " journalled data mode";
4778 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4779 descr = " ordered data mode";
4781 descr = " writeback data mode";
4783 descr = "out journal";
4785 if (test_opt(sb, DISCARD)) {
4786 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4787 if (!blk_queue_discard(q))
4788 ext4_msg(sb, KERN_WARNING,
4789 "mounting with \"discard\" option, but "
4790 "the device does not support discard");
4793 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4794 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4795 "Opts: %.*s%s%s", descr,
4796 (int) sizeof(sbi->s_es->s_mount_opts),
4797 sbi->s_es->s_mount_opts,
4798 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4800 if (es->s_error_count)
4801 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4803 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4804 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4805 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4806 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4813 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4818 ext4_unregister_sysfs(sb);
4821 ext4_unregister_li_request(sb);
4823 ext4_mb_release(sb);
4825 flex_groups = rcu_dereference(sbi->s_flex_groups);
4827 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
4828 kvfree(flex_groups[i]);
4829 kvfree(flex_groups);
4832 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4833 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4834 percpu_counter_destroy(&sbi->s_dirs_counter);
4835 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4836 percpu_free_rwsem(&sbi->s_writepages_rwsem);
4838 ext4_ext_release(sb);
4839 ext4_release_system_zone(sb);
4844 ext4_msg(sb, KERN_ERR, "mount failed");
4845 if (EXT4_SB(sb)->rsv_conversion_wq)
4846 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4848 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4849 sbi->s_ea_inode_cache = NULL;
4851 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4852 sbi->s_ea_block_cache = NULL;
4854 if (sbi->s_journal) {
4855 jbd2_journal_destroy(sbi->s_journal);
4856 sbi->s_journal = NULL;
4859 ext4_es_unregister_shrinker(sbi);
4861 del_timer_sync(&sbi->s_err_report);
4863 kthread_stop(sbi->s_mmp_tsk);
4866 group_desc = rcu_dereference(sbi->s_group_desc);
4867 for (i = 0; i < db_count; i++)
4868 brelse(group_desc[i]);
4872 if (sbi->s_chksum_driver)
4873 crypto_free_shash(sbi->s_chksum_driver);
4875 #ifdef CONFIG_UNICODE
4876 utf8_unload(sbi->s_encoding);
4880 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4881 kfree(get_qf_name(sb, sbi, i));
4883 fscrypt_free_dummy_context(&sbi->s_dummy_enc_ctx);
4884 ext4_blkdev_remove(sbi);
4887 sb->s_fs_info = NULL;
4888 kfree(sbi->s_blockgroup_lock);
4892 fs_put_dax(dax_dev);
4893 return err ? err : ret;
4897 * Setup any per-fs journal parameters now. We'll do this both on
4898 * initial mount, once the journal has been initialised but before we've
4899 * done any recovery; and again on any subsequent remount.
4901 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4903 struct ext4_sb_info *sbi = EXT4_SB(sb);
4905 journal->j_commit_interval = sbi->s_commit_interval;
4906 journal->j_min_batch_time = sbi->s_min_batch_time;
4907 journal->j_max_batch_time = sbi->s_max_batch_time;
4909 write_lock(&journal->j_state_lock);
4910 if (test_opt(sb, BARRIER))
4911 journal->j_flags |= JBD2_BARRIER;
4913 journal->j_flags &= ~JBD2_BARRIER;
4914 if (test_opt(sb, DATA_ERR_ABORT))
4915 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4917 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4918 write_unlock(&journal->j_state_lock);
4921 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4922 unsigned int journal_inum)
4924 struct inode *journal_inode;
4927 * Test for the existence of a valid inode on disk. Bad things
4928 * happen if we iget() an unused inode, as the subsequent iput()
4929 * will try to delete it.
4931 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4932 if (IS_ERR(journal_inode)) {
4933 ext4_msg(sb, KERN_ERR, "no journal found");
4936 if (!journal_inode->i_nlink) {
4937 make_bad_inode(journal_inode);
4938 iput(journal_inode);
4939 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4943 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4944 journal_inode, journal_inode->i_size);
4945 if (!S_ISREG(journal_inode->i_mode)) {
4946 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4947 iput(journal_inode);
4950 return journal_inode;
4953 static journal_t *ext4_get_journal(struct super_block *sb,
4954 unsigned int journal_inum)
4956 struct inode *journal_inode;
4959 BUG_ON(!ext4_has_feature_journal(sb));
4961 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4965 journal = jbd2_journal_init_inode(journal_inode);
4967 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4968 iput(journal_inode);
4971 journal->j_private = sb;
4972 ext4_init_journal_params(sb, journal);
4976 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4979 struct buffer_head *bh;
4983 int hblock, blocksize;
4984 ext4_fsblk_t sb_block;
4985 unsigned long offset;
4986 struct ext4_super_block *es;
4987 struct block_device *bdev;
4989 BUG_ON(!ext4_has_feature_journal(sb));
4991 bdev = ext4_blkdev_get(j_dev, sb);
4995 blocksize = sb->s_blocksize;
4996 hblock = bdev_logical_block_size(bdev);
4997 if (blocksize < hblock) {
4998 ext4_msg(sb, KERN_ERR,
4999 "blocksize too small for journal device");
5003 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5004 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5005 set_blocksize(bdev, blocksize);
5006 if (!(bh = __bread(bdev, sb_block, blocksize))) {
5007 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5008 "external journal");
5012 es = (struct ext4_super_block *) (bh->b_data + offset);
5013 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5014 !(le32_to_cpu(es->s_feature_incompat) &
5015 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5016 ext4_msg(sb, KERN_ERR, "external journal has "
5022 if ((le32_to_cpu(es->s_feature_ro_compat) &
5023 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5024 es->s_checksum != ext4_superblock_csum(sb, es)) {
5025 ext4_msg(sb, KERN_ERR, "external journal has "
5026 "corrupt superblock");
5031 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5032 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5037 len = ext4_blocks_count(es);
5038 start = sb_block + 1;
5039 brelse(bh); /* we're done with the superblock */
5041 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5042 start, len, blocksize);
5044 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5047 journal->j_private = sb;
5048 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
5049 wait_on_buffer(journal->j_sb_buffer);
5050 if (!buffer_uptodate(journal->j_sb_buffer)) {
5051 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5054 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5055 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5056 "user (unsupported) - %d",
5057 be32_to_cpu(journal->j_superblock->s_nr_users));
5060 EXT4_SB(sb)->journal_bdev = bdev;
5061 ext4_init_journal_params(sb, journal);
5065 jbd2_journal_destroy(journal);
5067 ext4_blkdev_put(bdev);
5071 static int ext4_load_journal(struct super_block *sb,
5072 struct ext4_super_block *es,
5073 unsigned long journal_devnum)
5076 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5079 int really_read_only;
5081 BUG_ON(!ext4_has_feature_journal(sb));
5083 if (journal_devnum &&
5084 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5085 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5086 "numbers have changed");
5087 journal_dev = new_decode_dev(journal_devnum);
5089 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5091 really_read_only = bdev_read_only(sb->s_bdev);
5094 * Are we loading a blank journal or performing recovery after a
5095 * crash? For recovery, we need to check in advance whether we
5096 * can get read-write access to the device.
5098 if (ext4_has_feature_journal_needs_recovery(sb)) {
5099 if (sb_rdonly(sb)) {
5100 ext4_msg(sb, KERN_INFO, "INFO: recovery "
5101 "required on readonly filesystem");
5102 if (really_read_only) {
5103 ext4_msg(sb, KERN_ERR, "write access "
5104 "unavailable, cannot proceed "
5105 "(try mounting with noload)");
5108 ext4_msg(sb, KERN_INFO, "write access will "
5109 "be enabled during recovery");
5113 if (journal_inum && journal_dev) {
5114 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
5115 "and inode journals!");
5120 if (!(journal = ext4_get_journal(sb, journal_inum)))
5123 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
5127 if (!(journal->j_flags & JBD2_BARRIER))
5128 ext4_msg(sb, KERN_INFO, "barriers disabled");
5130 if (!ext4_has_feature_journal_needs_recovery(sb))
5131 err = jbd2_journal_wipe(journal, !really_read_only);
5133 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5135 memcpy(save, ((char *) es) +
5136 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5137 err = jbd2_journal_load(journal);
5139 memcpy(((char *) es) + EXT4_S_ERR_START,
5140 save, EXT4_S_ERR_LEN);
5145 ext4_msg(sb, KERN_ERR, "error loading journal");
5146 jbd2_journal_destroy(journal);
5150 EXT4_SB(sb)->s_journal = journal;
5151 ext4_clear_journal_err(sb, es);
5153 if (!really_read_only && journal_devnum &&
5154 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5155 es->s_journal_dev = cpu_to_le32(journal_devnum);
5157 /* Make sure we flush the recovery flag to disk. */
5158 ext4_commit_super(sb, 1);
5164 static int ext4_commit_super(struct super_block *sb, int sync)
5166 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5167 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5170 if (!sbh || block_device_ejected(sb))
5174 * The superblock bh should be mapped, but it might not be if the
5175 * device was hot-removed. Not much we can do but fail the I/O.
5177 if (!buffer_mapped(sbh))
5181 * If the file system is mounted read-only, don't update the
5182 * superblock write time. This avoids updating the superblock
5183 * write time when we are mounting the root file system
5184 * read/only but we need to replay the journal; at that point,
5185 * for people who are east of GMT and who make their clock
5186 * tick in localtime for Windows bug-for-bug compatibility,
5187 * the clock is set in the future, and this will cause e2fsck
5188 * to complain and force a full file system check.
5190 if (!(sb->s_flags & SB_RDONLY))
5191 ext4_update_tstamp(es, s_wtime);
5192 if (sb->s_bdev->bd_part)
5193 es->s_kbytes_written =
5194 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
5195 ((part_stat_read(sb->s_bdev->bd_part,
5196 sectors[STAT_WRITE]) -
5197 EXT4_SB(sb)->s_sectors_written_start) >> 1));
5199 es->s_kbytes_written =
5200 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
5201 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
5202 ext4_free_blocks_count_set(es,
5203 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
5204 &EXT4_SB(sb)->s_freeclusters_counter)));
5205 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
5206 es->s_free_inodes_count =
5207 cpu_to_le32(percpu_counter_sum_positive(
5208 &EXT4_SB(sb)->s_freeinodes_counter));
5209 BUFFER_TRACE(sbh, "marking dirty");
5210 ext4_superblock_csum_set(sb);
5213 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5215 * Oh, dear. A previous attempt to write the
5216 * superblock failed. This could happen because the
5217 * USB device was yanked out. Or it could happen to
5218 * be a transient write error and maybe the block will
5219 * be remapped. Nothing we can do but to retry the
5220 * write and hope for the best.
5222 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5223 "superblock detected");
5224 clear_buffer_write_io_error(sbh);
5225 set_buffer_uptodate(sbh);
5227 mark_buffer_dirty(sbh);
5230 error = __sync_dirty_buffer(sbh,
5231 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5232 if (buffer_write_io_error(sbh)) {
5233 ext4_msg(sb, KERN_ERR, "I/O error while writing "
5235 clear_buffer_write_io_error(sbh);
5236 set_buffer_uptodate(sbh);
5243 * Have we just finished recovery? If so, and if we are mounting (or
5244 * remounting) the filesystem readonly, then we will end up with a
5245 * consistent fs on disk. Record that fact.
5247 static void ext4_mark_recovery_complete(struct super_block *sb,
5248 struct ext4_super_block *es)
5250 journal_t *journal = EXT4_SB(sb)->s_journal;
5252 if (!ext4_has_feature_journal(sb)) {
5253 BUG_ON(journal != NULL);
5256 jbd2_journal_lock_updates(journal);
5257 if (jbd2_journal_flush(journal) < 0)
5260 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5261 ext4_clear_feature_journal_needs_recovery(sb);
5262 ext4_commit_super(sb, 1);
5266 jbd2_journal_unlock_updates(journal);
5270 * If we are mounting (or read-write remounting) a filesystem whose journal
5271 * has recorded an error from a previous lifetime, move that error to the
5272 * main filesystem now.
5274 static void ext4_clear_journal_err(struct super_block *sb,
5275 struct ext4_super_block *es)
5281 BUG_ON(!ext4_has_feature_journal(sb));
5283 journal = EXT4_SB(sb)->s_journal;
5286 * Now check for any error status which may have been recorded in the
5287 * journal by a prior ext4_error() or ext4_abort()
5290 j_errno = jbd2_journal_errno(journal);
5294 errstr = ext4_decode_error(sb, j_errno, nbuf);
5295 ext4_warning(sb, "Filesystem error recorded "
5296 "from previous mount: %s", errstr);
5297 ext4_warning(sb, "Marking fs in need of filesystem check.");
5299 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5300 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5301 ext4_commit_super(sb, 1);
5303 jbd2_journal_clear_err(journal);
5304 jbd2_journal_update_sb_errno(journal);
5309 * Force the running and committing transactions to commit,
5310 * and wait on the commit.
5312 int ext4_force_commit(struct super_block *sb)
5319 journal = EXT4_SB(sb)->s_journal;
5320 return ext4_journal_force_commit(journal);
5323 static int ext4_sync_fs(struct super_block *sb, int wait)
5327 bool needs_barrier = false;
5328 struct ext4_sb_info *sbi = EXT4_SB(sb);
5330 if (unlikely(ext4_forced_shutdown(sbi)))
5333 trace_ext4_sync_fs(sb, wait);
5334 flush_workqueue(sbi->rsv_conversion_wq);
5336 * Writeback quota in non-journalled quota case - journalled quota has
5339 dquot_writeback_dquots(sb, -1);
5341 * Data writeback is possible w/o journal transaction, so barrier must
5342 * being sent at the end of the function. But we can skip it if
5343 * transaction_commit will do it for us.
5345 if (sbi->s_journal) {
5346 target = jbd2_get_latest_transaction(sbi->s_journal);
5347 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5348 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5349 needs_barrier = true;
5351 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5353 ret = jbd2_log_wait_commit(sbi->s_journal,
5356 } else if (wait && test_opt(sb, BARRIER))
5357 needs_barrier = true;
5358 if (needs_barrier) {
5360 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL);
5369 * LVM calls this function before a (read-only) snapshot is created. This
5370 * gives us a chance to flush the journal completely and mark the fs clean.
5372 * Note that only this function cannot bring a filesystem to be in a clean
5373 * state independently. It relies on upper layer to stop all data & metadata
5376 static int ext4_freeze(struct super_block *sb)
5384 journal = EXT4_SB(sb)->s_journal;
5387 /* Now we set up the journal barrier. */
5388 jbd2_journal_lock_updates(journal);
5391 * Don't clear the needs_recovery flag if we failed to
5392 * flush the journal.
5394 error = jbd2_journal_flush(journal);
5398 /* Journal blocked and flushed, clear needs_recovery flag. */
5399 ext4_clear_feature_journal_needs_recovery(sb);
5402 error = ext4_commit_super(sb, 1);
5405 /* we rely on upper layer to stop further updates */
5406 jbd2_journal_unlock_updates(journal);
5411 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5412 * flag here, even though the filesystem is not technically dirty yet.
5414 static int ext4_unfreeze(struct super_block *sb)
5416 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5419 if (EXT4_SB(sb)->s_journal) {
5420 /* Reset the needs_recovery flag before the fs is unlocked. */
5421 ext4_set_feature_journal_needs_recovery(sb);
5424 ext4_commit_super(sb, 1);
5429 * Structure to save mount options for ext4_remount's benefit
5431 struct ext4_mount_options {
5432 unsigned long s_mount_opt;
5433 unsigned long s_mount_opt2;
5436 unsigned long s_commit_interval;
5437 u32 s_min_batch_time, s_max_batch_time;
5440 char *s_qf_names[EXT4_MAXQUOTAS];
5444 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5446 struct ext4_super_block *es;
5447 struct ext4_sb_info *sbi = EXT4_SB(sb);
5448 unsigned long old_sb_flags;
5449 struct ext4_mount_options old_opts;
5450 int enable_quota = 0;
5452 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5456 char *to_free[EXT4_MAXQUOTAS];
5458 char *orig_data = kstrdup(data, GFP_KERNEL);
5460 if (data && !orig_data)
5463 /* Store the original options */
5464 old_sb_flags = sb->s_flags;
5465 old_opts.s_mount_opt = sbi->s_mount_opt;
5466 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5467 old_opts.s_resuid = sbi->s_resuid;
5468 old_opts.s_resgid = sbi->s_resgid;
5469 old_opts.s_commit_interval = sbi->s_commit_interval;
5470 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5471 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5473 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5474 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5475 if (sbi->s_qf_names[i]) {
5476 char *qf_name = get_qf_name(sb, sbi, i);
5478 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5479 if (!old_opts.s_qf_names[i]) {
5480 for (j = 0; j < i; j++)
5481 kfree(old_opts.s_qf_names[j]);
5486 old_opts.s_qf_names[i] = NULL;
5488 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5489 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5491 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5496 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5497 test_opt(sb, JOURNAL_CHECKSUM)) {
5498 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5499 "during remount not supported; ignoring");
5500 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5503 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5504 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5505 ext4_msg(sb, KERN_ERR, "can't mount with "
5506 "both data=journal and delalloc");
5510 if (test_opt(sb, DIOREAD_NOLOCK)) {
5511 ext4_msg(sb, KERN_ERR, "can't mount with "
5512 "both data=journal and dioread_nolock");
5516 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5517 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5518 ext4_msg(sb, KERN_ERR, "can't mount with "
5519 "journal_async_commit in data=ordered mode");
5525 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5526 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5531 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5532 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5534 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5535 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5539 if (sbi->s_journal) {
5540 ext4_init_journal_params(sb, sbi->s_journal);
5541 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5544 if (*flags & SB_LAZYTIME)
5545 sb->s_flags |= SB_LAZYTIME;
5547 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5548 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5553 if (*flags & SB_RDONLY) {
5554 err = sync_filesystem(sb);
5557 err = dquot_suspend(sb, -1);
5562 * First of all, the unconditional stuff we have to do
5563 * to disable replay of the journal when we next remount
5565 sb->s_flags |= SB_RDONLY;
5568 * OK, test if we are remounting a valid rw partition
5569 * readonly, and if so set the rdonly flag and then
5570 * mark the partition as valid again.
5572 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5573 (sbi->s_mount_state & EXT4_VALID_FS))
5574 es->s_state = cpu_to_le16(sbi->s_mount_state);
5577 ext4_mark_recovery_complete(sb, es);
5579 kthread_stop(sbi->s_mmp_tsk);
5581 /* Make sure we can mount this feature set readwrite */
5582 if (ext4_has_feature_readonly(sb) ||
5583 !ext4_feature_set_ok(sb, 0)) {
5588 * Make sure the group descriptor checksums
5589 * are sane. If they aren't, refuse to remount r/w.
5591 for (g = 0; g < sbi->s_groups_count; g++) {
5592 struct ext4_group_desc *gdp =
5593 ext4_get_group_desc(sb, g, NULL);
5595 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5596 ext4_msg(sb, KERN_ERR,
5597 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5598 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5599 le16_to_cpu(gdp->bg_checksum));
5606 * If we have an unprocessed orphan list hanging
5607 * around from a previously readonly bdev mount,
5608 * require a full umount/remount for now.
5610 if (es->s_last_orphan) {
5611 ext4_msg(sb, KERN_WARNING, "Couldn't "
5612 "remount RDWR because of unprocessed "
5613 "orphan inode list. Please "
5614 "umount/remount instead");
5620 * Mounting a RDONLY partition read-write, so reread
5621 * and store the current valid flag. (It may have
5622 * been changed by e2fsck since we originally mounted
5626 ext4_clear_journal_err(sb, es);
5627 sbi->s_mount_state = le16_to_cpu(es->s_state);
5629 err = ext4_setup_super(sb, es, 0);
5633 sb->s_flags &= ~SB_RDONLY;
5634 if (ext4_has_feature_mmp(sb))
5635 if (ext4_multi_mount_protect(sb,
5636 le64_to_cpu(es->s_mmp_block))) {
5645 * Reinitialize lazy itable initialization thread based on
5648 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5649 ext4_unregister_li_request(sb);
5651 ext4_group_t first_not_zeroed;
5652 first_not_zeroed = ext4_has_uninit_itable(sb);
5653 ext4_register_li_request(sb, first_not_zeroed);
5656 ext4_setup_system_zone(sb);
5657 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5658 err = ext4_commit_super(sb, 1);
5664 /* Release old quota file names */
5665 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5666 kfree(old_opts.s_qf_names[i]);
5668 if (sb_any_quota_suspended(sb))
5669 dquot_resume(sb, -1);
5670 else if (ext4_has_feature_quota(sb)) {
5671 err = ext4_enable_quotas(sb);
5678 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5679 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5684 sb->s_flags = old_sb_flags;
5685 sbi->s_mount_opt = old_opts.s_mount_opt;
5686 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5687 sbi->s_resuid = old_opts.s_resuid;
5688 sbi->s_resgid = old_opts.s_resgid;
5689 sbi->s_commit_interval = old_opts.s_commit_interval;
5690 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5691 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5693 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5694 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5695 to_free[i] = get_qf_name(sb, sbi, i);
5696 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5699 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5707 static int ext4_statfs_project(struct super_block *sb,
5708 kprojid_t projid, struct kstatfs *buf)
5711 struct dquot *dquot;
5715 qid = make_kqid_projid(projid);
5716 dquot = dqget(sb, qid);
5718 return PTR_ERR(dquot);
5719 spin_lock(&dquot->dq_dqb_lock);
5721 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
5722 dquot->dq_dqb.dqb_bhardlimit);
5723 limit >>= sb->s_blocksize_bits;
5725 if (limit && buf->f_blocks > limit) {
5726 curblock = (dquot->dq_dqb.dqb_curspace +
5727 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5728 buf->f_blocks = limit;
5729 buf->f_bfree = buf->f_bavail =
5730 (buf->f_blocks > curblock) ?
5731 (buf->f_blocks - curblock) : 0;
5734 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
5735 dquot->dq_dqb.dqb_ihardlimit);
5736 if (limit && buf->f_files > limit) {
5737 buf->f_files = limit;
5739 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5740 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5743 spin_unlock(&dquot->dq_dqb_lock);
5749 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5751 struct super_block *sb = dentry->d_sb;
5752 struct ext4_sb_info *sbi = EXT4_SB(sb);
5753 struct ext4_super_block *es = sbi->s_es;
5754 ext4_fsblk_t overhead = 0, resv_blocks;
5757 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5759 if (!test_opt(sb, MINIX_DF))
5760 overhead = sbi->s_overhead;
5762 buf->f_type = EXT4_SUPER_MAGIC;
5763 buf->f_bsize = sb->s_blocksize;
5764 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5765 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5766 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5767 /* prevent underflow in case that few free space is available */
5768 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5769 buf->f_bavail = buf->f_bfree -
5770 (ext4_r_blocks_count(es) + resv_blocks);
5771 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5773 buf->f_files = le32_to_cpu(es->s_inodes_count);
5774 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5775 buf->f_namelen = EXT4_NAME_LEN;
5776 fsid = le64_to_cpup((void *)es->s_uuid) ^
5777 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5778 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5779 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5782 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5783 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5784 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5793 * Helper functions so that transaction is started before we acquire dqio_sem
5794 * to keep correct lock ordering of transaction > dqio_sem
5796 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5798 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5801 static int ext4_write_dquot(struct dquot *dquot)
5805 struct inode *inode;
5807 inode = dquot_to_inode(dquot);
5808 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5809 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5811 return PTR_ERR(handle);
5812 ret = dquot_commit(dquot);
5813 err = ext4_journal_stop(handle);
5819 static int ext4_acquire_dquot(struct dquot *dquot)
5824 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5825 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5827 return PTR_ERR(handle);
5828 ret = dquot_acquire(dquot);
5829 err = ext4_journal_stop(handle);
5835 static int ext4_release_dquot(struct dquot *dquot)
5840 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5841 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5842 if (IS_ERR(handle)) {
5843 /* Release dquot anyway to avoid endless cycle in dqput() */
5844 dquot_release(dquot);
5845 return PTR_ERR(handle);
5847 ret = dquot_release(dquot);
5848 err = ext4_journal_stop(handle);
5854 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5856 struct super_block *sb = dquot->dq_sb;
5857 struct ext4_sb_info *sbi = EXT4_SB(sb);
5859 /* Are we journaling quotas? */
5860 if (ext4_has_feature_quota(sb) ||
5861 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5862 dquot_mark_dquot_dirty(dquot);
5863 return ext4_write_dquot(dquot);
5865 return dquot_mark_dquot_dirty(dquot);
5869 static int ext4_write_info(struct super_block *sb, int type)
5874 /* Data block + inode block */
5875 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5877 return PTR_ERR(handle);
5878 ret = dquot_commit_info(sb, type);
5879 err = ext4_journal_stop(handle);
5886 * Turn on quotas during mount time - we need to find
5887 * the quota file and such...
5889 static int ext4_quota_on_mount(struct super_block *sb, int type)
5891 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
5892 EXT4_SB(sb)->s_jquota_fmt, type);
5895 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5897 struct ext4_inode_info *ei = EXT4_I(inode);
5899 /* The first argument of lockdep_set_subclass has to be
5900 * *exactly* the same as the argument to init_rwsem() --- in
5901 * this case, in init_once() --- or lockdep gets unhappy
5902 * because the name of the lock is set using the
5903 * stringification of the argument to init_rwsem().
5905 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5906 lockdep_set_subclass(&ei->i_data_sem, subclass);
5910 * Standard function to be called on quota_on
5912 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5913 const struct path *path)
5917 if (!test_opt(sb, QUOTA))
5920 /* Quotafile not on the same filesystem? */
5921 if (path->dentry->d_sb != sb)
5923 /* Journaling quota? */
5924 if (EXT4_SB(sb)->s_qf_names[type]) {
5925 /* Quotafile not in fs root? */
5926 if (path->dentry->d_parent != sb->s_root)
5927 ext4_msg(sb, KERN_WARNING,
5928 "Quota file not on filesystem root. "
5929 "Journaled quota will not work");
5930 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5933 * Clear the flag just in case mount options changed since
5936 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5940 * When we journal data on quota file, we have to flush journal to see
5941 * all updates to the file when we bypass pagecache...
5943 if (EXT4_SB(sb)->s_journal &&
5944 ext4_should_journal_data(d_inode(path->dentry))) {
5946 * We don't need to lock updates but journal_flush() could
5947 * otherwise be livelocked...
5949 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5950 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5951 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5956 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5957 err = dquot_quota_on(sb, type, format_id, path);
5959 lockdep_set_quota_inode(path->dentry->d_inode,
5962 struct inode *inode = d_inode(path->dentry);
5966 * Set inode flags to prevent userspace from messing with quota
5967 * files. If this fails, we return success anyway since quotas
5968 * are already enabled and this is not a hard failure.
5971 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5974 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5975 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5976 S_NOATIME | S_IMMUTABLE);
5977 err = ext4_mark_inode_dirty(handle, inode);
5978 ext4_journal_stop(handle);
5980 inode_unlock(inode);
5985 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5989 struct inode *qf_inode;
5990 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5991 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5992 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5993 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5996 BUG_ON(!ext4_has_feature_quota(sb));
5998 if (!qf_inums[type])
6001 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6002 if (IS_ERR(qf_inode)) {
6003 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
6004 return PTR_ERR(qf_inode);
6007 /* Don't account quota for quota files to avoid recursion */
6008 qf_inode->i_flags |= S_NOQUOTA;
6009 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6010 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6012 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6018 /* Enable usage tracking for all quota types. */
6019 static int ext4_enable_quotas(struct super_block *sb)
6022 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6023 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6024 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6025 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6027 bool quota_mopt[EXT4_MAXQUOTAS] = {
6028 test_opt(sb, USRQUOTA),
6029 test_opt(sb, GRPQUOTA),
6030 test_opt(sb, PRJQUOTA),
6033 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6034 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6035 if (qf_inums[type]) {
6036 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6037 DQUOT_USAGE_ENABLED |
6038 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6041 "Failed to enable quota tracking "
6042 "(type=%d, err=%d). Please run "
6043 "e2fsck to fix.", type, err);
6044 for (type--; type >= 0; type--)
6045 dquot_quota_off(sb, type);
6054 static int ext4_quota_off(struct super_block *sb, int type)
6056 struct inode *inode = sb_dqopt(sb)->files[type];
6060 /* Force all delayed allocation blocks to be allocated.
6061 * Caller already holds s_umount sem */
6062 if (test_opt(sb, DELALLOC))
6063 sync_filesystem(sb);
6065 if (!inode || !igrab(inode))
6068 err = dquot_quota_off(sb, type);
6069 if (err || ext4_has_feature_quota(sb))
6074 * Update modification times of quota files when userspace can
6075 * start looking at them. If we fail, we return success anyway since
6076 * this is not a hard failure and quotas are already disabled.
6078 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6079 if (IS_ERR(handle)) {
6080 err = PTR_ERR(handle);
6083 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6084 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6085 inode->i_mtime = inode->i_ctime = current_time(inode);
6086 err = ext4_mark_inode_dirty(handle, inode);
6087 ext4_journal_stop(handle);
6089 inode_unlock(inode);
6091 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6095 return dquot_quota_off(sb, type);
6098 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6099 * acquiring the locks... As quota files are never truncated and quota code
6100 * itself serializes the operations (and no one else should touch the files)
6101 * we don't have to be afraid of races */
6102 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6103 size_t len, loff_t off)
6105 struct inode *inode = sb_dqopt(sb)->files[type];
6106 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6107 int offset = off & (sb->s_blocksize - 1);
6110 struct buffer_head *bh;
6111 loff_t i_size = i_size_read(inode);
6115 if (off+len > i_size)
6118 while (toread > 0) {
6119 tocopy = sb->s_blocksize - offset < toread ?
6120 sb->s_blocksize - offset : toread;
6121 bh = ext4_bread(NULL, inode, blk, 0);
6124 if (!bh) /* A hole? */
6125 memset(data, 0, tocopy);
6127 memcpy(data, bh->b_data+offset, tocopy);
6137 /* Write to quotafile (we know the transaction is already started and has
6138 * enough credits) */
6139 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6140 const char *data, size_t len, loff_t off)
6142 struct inode *inode = sb_dqopt(sb)->files[type];
6143 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6144 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6146 struct buffer_head *bh;
6147 handle_t *handle = journal_current_handle();
6149 if (EXT4_SB(sb)->s_journal && !handle) {
6150 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6151 " cancelled because transaction is not started",
6152 (unsigned long long)off, (unsigned long long)len);
6156 * Since we account only one data block in transaction credits,
6157 * then it is impossible to cross a block boundary.
6159 if (sb->s_blocksize - offset < len) {
6160 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6161 " cancelled because not block aligned",
6162 (unsigned long long)off, (unsigned long long)len);
6167 bh = ext4_bread(handle, inode, blk,
6168 EXT4_GET_BLOCKS_CREATE |
6169 EXT4_GET_BLOCKS_METADATA_NOFAIL);
6170 } while (PTR_ERR(bh) == -ENOSPC &&
6171 ext4_should_retry_alloc(inode->i_sb, &retries));
6176 BUFFER_TRACE(bh, "get write access");
6177 err = ext4_journal_get_write_access(handle, bh);
6183 memcpy(bh->b_data+offset, data, len);
6184 flush_dcache_page(bh->b_page);
6186 err = ext4_handle_dirty_metadata(handle, NULL, bh);
6189 if (inode->i_size < off + len) {
6190 i_size_write(inode, off + len);
6191 EXT4_I(inode)->i_disksize = inode->i_size;
6192 err2 = ext4_mark_inode_dirty(handle, inode);
6193 if (unlikely(err2 && !err))
6196 return err ? err : len;
6200 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6201 const char *dev_name, void *data)
6203 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6206 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6207 static inline void register_as_ext2(void)
6209 int err = register_filesystem(&ext2_fs_type);
6212 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6215 static inline void unregister_as_ext2(void)
6217 unregister_filesystem(&ext2_fs_type);
6220 static inline int ext2_feature_set_ok(struct super_block *sb)
6222 if (ext4_has_unknown_ext2_incompat_features(sb))
6226 if (ext4_has_unknown_ext2_ro_compat_features(sb))
6231 static inline void register_as_ext2(void) { }
6232 static inline void unregister_as_ext2(void) { }
6233 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6236 static inline void register_as_ext3(void)
6238 int err = register_filesystem(&ext3_fs_type);
6241 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6244 static inline void unregister_as_ext3(void)
6246 unregister_filesystem(&ext3_fs_type);
6249 static inline int ext3_feature_set_ok(struct super_block *sb)
6251 if (ext4_has_unknown_ext3_incompat_features(sb))
6253 if (!ext4_has_feature_journal(sb))
6257 if (ext4_has_unknown_ext3_ro_compat_features(sb))
6262 static struct file_system_type ext4_fs_type = {
6263 .owner = THIS_MODULE,
6265 .mount = ext4_mount,
6266 .kill_sb = kill_block_super,
6267 .fs_flags = FS_REQUIRES_DEV,
6269 MODULE_ALIAS_FS("ext4");
6271 /* Shared across all ext4 file systems */
6272 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6274 static int __init ext4_init_fs(void)
6278 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6279 ext4_li_info = NULL;
6280 mutex_init(&ext4_li_mtx);
6282 /* Build-time check for flags consistency */
6283 ext4_check_flag_values();
6285 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6286 init_waitqueue_head(&ext4__ioend_wq[i]);
6288 err = ext4_init_es();
6292 err = ext4_init_pending();
6296 err = ext4_init_post_read_processing();
6300 err = ext4_init_pageio();
6304 err = ext4_init_system_zone();
6308 err = ext4_init_sysfs();
6312 err = ext4_init_mballoc();
6315 err = init_inodecache();
6320 err = register_filesystem(&ext4_fs_type);
6326 unregister_as_ext2();
6327 unregister_as_ext3();
6328 destroy_inodecache();
6330 ext4_exit_mballoc();
6334 ext4_exit_system_zone();
6338 ext4_exit_post_read_processing();
6340 ext4_exit_pending();
6347 static void __exit ext4_exit_fs(void)
6349 ext4_destroy_lazyinit_thread();
6350 unregister_as_ext2();
6351 unregister_as_ext3();
6352 unregister_filesystem(&ext4_fs_type);
6353 destroy_inodecache();
6354 ext4_exit_mballoc();
6356 ext4_exit_system_zone();
6358 ext4_exit_post_read_processing();
6360 ext4_exit_pending();
6363 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6364 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6365 MODULE_LICENSE("GPL");
6366 MODULE_SOFTDEP("pre: crc32c");
6367 module_init(ext4_init_fs)
6368 module_exit(ext4_exit_fs)