2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/keyslot-manager.h>
33 #define DM_MSG_PREFIX "core"
36 * Cookies are numeric values sent with CHANGE and REMOVE
37 * uevents while resuming, removing or renaming the device.
39 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
40 #define DM_COOKIE_LENGTH 24
42 static const char *_name = DM_NAME;
44 static unsigned int major = 0;
45 static unsigned int _major = 0;
47 static DEFINE_IDR(_minor_idr);
49 static DEFINE_SPINLOCK(_minor_lock);
51 static void do_deferred_remove(struct work_struct *w);
53 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
55 static struct workqueue_struct *deferred_remove_workqueue;
57 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
58 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
60 void dm_issue_global_event(void)
62 atomic_inc(&dm_global_event_nr);
63 wake_up(&dm_global_eventq);
67 * One of these is allocated (on-stack) per original bio.
74 unsigned sector_count;
78 * One of these is allocated per clone bio.
80 #define DM_TIO_MAGIC 7282014
85 unsigned target_bio_nr;
92 * One of these is allocated per original bio.
93 * It contains the first clone used for that original.
95 #define DM_IO_MAGIC 5191977
98 struct mapped_device *md;
101 struct bio *orig_bio;
102 unsigned long start_time;
103 spinlock_t endio_lock;
104 struct dm_stats_aux stats_aux;
105 /* last member of dm_target_io is 'struct bio' */
106 struct dm_target_io tio;
109 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
110 #define DM_IO_BIO_OFFSET \
111 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
113 void *dm_per_bio_data(struct bio *bio, size_t data_size)
115 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
116 if (!tio->inside_dm_io)
117 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
118 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
120 EXPORT_SYMBOL_GPL(dm_per_bio_data);
122 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
124 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
125 if (io->magic == DM_IO_MAGIC)
126 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
127 BUG_ON(io->magic != DM_TIO_MAGIC);
128 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
130 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
132 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
134 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
136 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
138 #define MINOR_ALLOCED ((void *)-1)
141 * Bits for the md->flags field.
143 #define DMF_BLOCK_IO_FOR_SUSPEND 0
144 #define DMF_SUSPENDED 1
146 #define DMF_FREEING 3
147 #define DMF_DELETING 4
148 #define DMF_NOFLUSH_SUSPENDING 5
149 #define DMF_DEFERRED_REMOVE 6
150 #define DMF_SUSPENDED_INTERNALLY 7
151 #define DMF_POST_SUSPENDING 8
153 #define DM_NUMA_NODE NUMA_NO_NODE
154 static int dm_numa_node = DM_NUMA_NODE;
156 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
157 static int swap_bios = DEFAULT_SWAP_BIOS;
158 static int get_swap_bios(void)
160 int latch = READ_ONCE(swap_bios);
161 if (unlikely(latch <= 0))
162 latch = DEFAULT_SWAP_BIOS;
167 * For mempools pre-allocation at the table loading time.
169 struct dm_md_mempools {
171 struct bio_set io_bs;
174 struct table_device {
175 struct list_head list;
177 struct dm_dev dm_dev;
181 * Bio-based DM's mempools' reserved IOs set by the user.
183 #define RESERVED_BIO_BASED_IOS 16
184 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
186 static int __dm_get_module_param_int(int *module_param, int min, int max)
188 int param = READ_ONCE(*module_param);
189 int modified_param = 0;
190 bool modified = true;
193 modified_param = min;
194 else if (param > max)
195 modified_param = max;
200 (void)cmpxchg(module_param, param, modified_param);
201 param = modified_param;
207 unsigned __dm_get_module_param(unsigned *module_param,
208 unsigned def, unsigned max)
210 unsigned param = READ_ONCE(*module_param);
211 unsigned modified_param = 0;
214 modified_param = def;
215 else if (param > max)
216 modified_param = max;
218 if (modified_param) {
219 (void)cmpxchg(module_param, param, modified_param);
220 param = modified_param;
226 unsigned dm_get_reserved_bio_based_ios(void)
228 return __dm_get_module_param(&reserved_bio_based_ios,
229 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
231 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
233 static unsigned dm_get_numa_node(void)
235 return __dm_get_module_param_int(&dm_numa_node,
236 DM_NUMA_NODE, num_online_nodes() - 1);
239 static int __init local_init(void)
243 r = dm_uevent_init();
247 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
248 if (!deferred_remove_workqueue) {
250 goto out_uevent_exit;
254 r = register_blkdev(_major, _name);
256 goto out_free_workqueue;
264 destroy_workqueue(deferred_remove_workqueue);
271 static void local_exit(void)
273 flush_scheduled_work();
274 destroy_workqueue(deferred_remove_workqueue);
276 unregister_blkdev(_major, _name);
281 DMINFO("cleaned up");
284 static int (*_inits[])(void) __initdata = {
295 static void (*_exits[])(void) = {
306 static int __init dm_init(void)
308 const int count = ARRAY_SIZE(_inits);
312 for (i = 0; i < count; i++) {
327 static void __exit dm_exit(void)
329 int i = ARRAY_SIZE(_exits);
335 * Should be empty by this point.
337 idr_destroy(&_minor_idr);
341 * Block device functions
343 int dm_deleting_md(struct mapped_device *md)
345 return test_bit(DMF_DELETING, &md->flags);
348 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
350 struct mapped_device *md;
352 spin_lock(&_minor_lock);
354 md = bdev->bd_disk->private_data;
358 if (test_bit(DMF_FREEING, &md->flags) ||
359 dm_deleting_md(md)) {
365 atomic_inc(&md->open_count);
367 spin_unlock(&_minor_lock);
369 return md ? 0 : -ENXIO;
372 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
374 struct mapped_device *md;
376 spin_lock(&_minor_lock);
378 md = disk->private_data;
382 if (atomic_dec_and_test(&md->open_count) &&
383 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
384 queue_work(deferred_remove_workqueue, &deferred_remove_work);
388 spin_unlock(&_minor_lock);
391 int dm_open_count(struct mapped_device *md)
393 return atomic_read(&md->open_count);
397 * Guarantees nothing is using the device before it's deleted.
399 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
403 spin_lock(&_minor_lock);
405 if (dm_open_count(md)) {
408 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
409 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
412 set_bit(DMF_DELETING, &md->flags);
414 spin_unlock(&_minor_lock);
419 int dm_cancel_deferred_remove(struct mapped_device *md)
423 spin_lock(&_minor_lock);
425 if (test_bit(DMF_DELETING, &md->flags))
428 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
430 spin_unlock(&_minor_lock);
435 static void do_deferred_remove(struct work_struct *w)
437 dm_deferred_remove();
440 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
442 struct mapped_device *md = bdev->bd_disk->private_data;
444 return dm_get_geometry(md, geo);
447 #ifdef CONFIG_BLK_DEV_ZONED
448 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
450 struct dm_report_zones_args *args = data;
451 sector_t sector_diff = args->tgt->begin - args->start;
454 * Ignore zones beyond the target range.
456 if (zone->start >= args->start + args->tgt->len)
460 * Remap the start sector and write pointer position of the zone
461 * to match its position in the target range.
463 zone->start += sector_diff;
464 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
465 if (zone->cond == BLK_ZONE_COND_FULL)
466 zone->wp = zone->start + zone->len;
467 else if (zone->cond == BLK_ZONE_COND_EMPTY)
468 zone->wp = zone->start;
470 zone->wp += sector_diff;
473 args->next_sector = zone->start + zone->len;
474 return args->orig_cb(zone, args->zone_idx++, args->orig_data);
476 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
478 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
479 unsigned int nr_zones, report_zones_cb cb, void *data)
481 struct mapped_device *md = disk->private_data;
482 struct dm_table *map;
484 struct dm_report_zones_args args = {
485 .next_sector = sector,
490 if (dm_suspended_md(md))
493 map = dm_get_live_table(md, &srcu_idx);
500 struct dm_target *tgt;
502 tgt = dm_table_find_target(map, args.next_sector);
503 if (WARN_ON_ONCE(!tgt->type->report_zones)) {
509 ret = tgt->type->report_zones(tgt, &args,
510 nr_zones - args.zone_idx);
513 } while (args.zone_idx < nr_zones &&
514 args.next_sector < get_capacity(disk));
518 dm_put_live_table(md, srcu_idx);
522 #define dm_blk_report_zones NULL
523 #endif /* CONFIG_BLK_DEV_ZONED */
525 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
526 struct block_device **bdev)
528 struct dm_target *tgt;
529 struct dm_table *map;
534 map = dm_get_live_table(md, srcu_idx);
535 if (!map || !dm_table_get_size(map))
538 /* We only support devices that have a single target */
539 if (dm_table_get_num_targets(map) != 1)
542 tgt = dm_table_get_target(map, 0);
543 if (!tgt->type->prepare_ioctl)
546 if (dm_suspended_md(md))
549 r = tgt->type->prepare_ioctl(tgt, bdev);
550 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
551 dm_put_live_table(md, *srcu_idx);
559 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
561 dm_put_live_table(md, srcu_idx);
564 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
565 unsigned int cmd, unsigned long arg)
567 struct mapped_device *md = bdev->bd_disk->private_data;
570 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
576 * Target determined this ioctl is being issued against a
577 * subset of the parent bdev; require extra privileges.
579 if (!capable(CAP_SYS_RAWIO)) {
581 "%s: sending ioctl %x to DM device without required privilege.",
588 if (!bdev->bd_disk->fops->ioctl)
591 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
593 dm_unprepare_ioctl(md, srcu_idx);
597 u64 dm_start_time_ns_from_clone(struct bio *bio)
599 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
600 struct dm_io *io = tio->io;
602 return jiffies_to_nsecs(io->start_time);
604 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
606 static void start_io_acct(struct dm_io *io)
608 struct mapped_device *md = io->md;
609 struct bio *bio = io->orig_bio;
611 io->start_time = bio_start_io_acct(bio);
612 if (unlikely(dm_stats_used(&md->stats)))
613 dm_stats_account_io(&md->stats, bio_data_dir(bio),
614 bio->bi_iter.bi_sector, bio_sectors(bio),
615 false, 0, &io->stats_aux);
618 static void end_io_acct(struct dm_io *io)
620 struct mapped_device *md = io->md;
621 struct bio *bio = io->orig_bio;
622 unsigned long duration = jiffies - io->start_time;
624 bio_end_io_acct(bio, io->start_time);
626 if (unlikely(dm_stats_used(&md->stats)))
627 dm_stats_account_io(&md->stats, bio_data_dir(bio),
628 bio->bi_iter.bi_sector, bio_sectors(bio),
629 true, duration, &io->stats_aux);
631 /* nudge anyone waiting on suspend queue */
632 if (unlikely(wq_has_sleeper(&md->wait)))
636 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
639 struct dm_target_io *tio;
642 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
646 tio = container_of(clone, struct dm_target_io, clone);
647 tio->inside_dm_io = true;
650 io = container_of(tio, struct dm_io, tio);
651 io->magic = DM_IO_MAGIC;
653 atomic_set(&io->io_count, 1);
656 spin_lock_init(&io->endio_lock);
663 static void free_io(struct mapped_device *md, struct dm_io *io)
665 bio_put(&io->tio.clone);
668 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
669 unsigned target_bio_nr, gfp_t gfp_mask)
671 struct dm_target_io *tio;
673 if (!ci->io->tio.io) {
674 /* the dm_target_io embedded in ci->io is available */
677 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
681 tio = container_of(clone, struct dm_target_io, clone);
682 tio->inside_dm_io = false;
685 tio->magic = DM_TIO_MAGIC;
688 tio->target_bio_nr = target_bio_nr;
693 static void free_tio(struct dm_target_io *tio)
695 if (tio->inside_dm_io)
697 bio_put(&tio->clone);
701 * Add the bio to the list of deferred io.
703 static void queue_io(struct mapped_device *md, struct bio *bio)
707 spin_lock_irqsave(&md->deferred_lock, flags);
708 bio_list_add(&md->deferred, bio);
709 spin_unlock_irqrestore(&md->deferred_lock, flags);
710 queue_work(md->wq, &md->work);
714 * Everyone (including functions in this file), should use this
715 * function to access the md->map field, and make sure they call
716 * dm_put_live_table() when finished.
718 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
720 *srcu_idx = srcu_read_lock(&md->io_barrier);
722 return srcu_dereference(md->map, &md->io_barrier);
725 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
727 srcu_read_unlock(&md->io_barrier, srcu_idx);
730 void dm_sync_table(struct mapped_device *md)
732 synchronize_srcu(&md->io_barrier);
733 synchronize_rcu_expedited();
737 * A fast alternative to dm_get_live_table/dm_put_live_table.
738 * The caller must not block between these two functions.
740 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
743 return rcu_dereference(md->map);
746 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
751 static char *_dm_claim_ptr = "I belong to device-mapper";
754 * Open a table device so we can use it as a map destination.
756 static int open_table_device(struct table_device *td, dev_t dev,
757 struct mapped_device *md)
759 struct block_device *bdev;
763 BUG_ON(td->dm_dev.bdev);
765 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
767 return PTR_ERR(bdev);
769 r = bd_link_disk_holder(bdev, dm_disk(md));
771 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
775 td->dm_dev.bdev = bdev;
776 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
781 * Close a table device that we've been using.
783 static void close_table_device(struct table_device *td, struct mapped_device *md)
785 if (!td->dm_dev.bdev)
788 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
789 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
790 put_dax(td->dm_dev.dax_dev);
791 td->dm_dev.bdev = NULL;
792 td->dm_dev.dax_dev = NULL;
795 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
798 struct table_device *td;
800 list_for_each_entry(td, l, list)
801 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
807 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
808 struct dm_dev **result)
811 struct table_device *td;
813 mutex_lock(&md->table_devices_lock);
814 td = find_table_device(&md->table_devices, dev, mode);
816 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
818 mutex_unlock(&md->table_devices_lock);
822 td->dm_dev.mode = mode;
823 td->dm_dev.bdev = NULL;
825 if ((r = open_table_device(td, dev, md))) {
826 mutex_unlock(&md->table_devices_lock);
831 format_dev_t(td->dm_dev.name, dev);
833 refcount_set(&td->count, 1);
834 list_add(&td->list, &md->table_devices);
836 refcount_inc(&td->count);
838 mutex_unlock(&md->table_devices_lock);
840 *result = &td->dm_dev;
844 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
846 struct table_device *td = container_of(d, struct table_device, dm_dev);
848 mutex_lock(&md->table_devices_lock);
849 if (refcount_dec_and_test(&td->count)) {
850 close_table_device(td, md);
854 mutex_unlock(&md->table_devices_lock);
857 static void free_table_devices(struct list_head *devices)
859 struct list_head *tmp, *next;
861 list_for_each_safe(tmp, next, devices) {
862 struct table_device *td = list_entry(tmp, struct table_device, list);
864 DMWARN("dm_destroy: %s still exists with %d references",
865 td->dm_dev.name, refcount_read(&td->count));
871 * Get the geometry associated with a dm device
873 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
881 * Set the geometry of a device.
883 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
885 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
887 if (geo->start > sz) {
888 DMWARN("Start sector is beyond the geometry limits.");
897 static int __noflush_suspending(struct mapped_device *md)
899 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
903 * Decrements the number of outstanding ios that a bio has been
904 * cloned into, completing the original io if necc.
906 static void dec_pending(struct dm_io *io, blk_status_t error)
909 blk_status_t io_error;
911 struct mapped_device *md = io->md;
913 /* Push-back supersedes any I/O errors */
914 if (unlikely(error)) {
915 spin_lock_irqsave(&io->endio_lock, flags);
916 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
918 spin_unlock_irqrestore(&io->endio_lock, flags);
921 if (atomic_dec_and_test(&io->io_count)) {
922 if (io->status == BLK_STS_DM_REQUEUE) {
924 * Target requested pushing back the I/O.
926 spin_lock_irqsave(&md->deferred_lock, flags);
927 if (__noflush_suspending(md))
928 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
929 bio_list_add_head(&md->deferred, io->orig_bio);
931 /* noflush suspend was interrupted. */
932 io->status = BLK_STS_IOERR;
933 spin_unlock_irqrestore(&md->deferred_lock, flags);
936 io_error = io->status;
941 if (io_error == BLK_STS_DM_REQUEUE)
944 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
946 * Preflush done for flush with data, reissue
947 * without REQ_PREFLUSH.
949 bio->bi_opf &= ~REQ_PREFLUSH;
952 /* done with normal IO or empty flush */
954 bio->bi_status = io_error;
960 void disable_discard(struct mapped_device *md)
962 struct queue_limits *limits = dm_get_queue_limits(md);
964 /* device doesn't really support DISCARD, disable it */
965 limits->max_discard_sectors = 0;
966 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
969 void disable_write_same(struct mapped_device *md)
971 struct queue_limits *limits = dm_get_queue_limits(md);
973 /* device doesn't really support WRITE SAME, disable it */
974 limits->max_write_same_sectors = 0;
977 void disable_write_zeroes(struct mapped_device *md)
979 struct queue_limits *limits = dm_get_queue_limits(md);
981 /* device doesn't really support WRITE ZEROES, disable it */
982 limits->max_write_zeroes_sectors = 0;
985 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
987 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
990 static void clone_endio(struct bio *bio)
992 blk_status_t error = bio->bi_status;
993 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
994 struct dm_io *io = tio->io;
995 struct mapped_device *md = tio->io->md;
996 dm_endio_fn endio = tio->ti->type->end_io;
997 struct bio *orig_bio = io->orig_bio;
998 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1000 if (unlikely(error == BLK_STS_TARGET)) {
1001 if (bio_op(bio) == REQ_OP_DISCARD &&
1002 !q->limits.max_discard_sectors)
1003 disable_discard(md);
1004 else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1005 !q->limits.max_write_same_sectors)
1006 disable_write_same(md);
1007 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1008 !q->limits.max_write_zeroes_sectors)
1009 disable_write_zeroes(md);
1013 * For zone-append bios get offset in zone of the written
1014 * sector and add that to the original bio sector pos.
1016 if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
1017 sector_t written_sector = bio->bi_iter.bi_sector;
1018 struct request_queue *q = orig_bio->bi_bdev->bd_disk->queue;
1019 u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1021 orig_bio->bi_iter.bi_sector += written_sector & mask;
1025 int r = endio(tio->ti, bio, &error);
1027 case DM_ENDIO_REQUEUE:
1028 error = BLK_STS_DM_REQUEUE;
1032 case DM_ENDIO_INCOMPLETE:
1033 /* The target will handle the io */
1036 DMWARN("unimplemented target endio return value: %d", r);
1041 if (unlikely(swap_bios_limit(tio->ti, bio))) {
1042 struct mapped_device *md = io->md;
1043 up(&md->swap_bios_semaphore);
1047 dec_pending(io, error);
1051 * Return maximum size of I/O possible at the supplied sector up to the current
1054 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1055 sector_t target_offset)
1057 return ti->len - target_offset;
1060 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1062 sector_t target_offset = dm_target_offset(ti, sector);
1063 sector_t len = max_io_len_target_boundary(ti, target_offset);
1067 * Does the target need to split IO even further?
1068 * - varied (per target) IO splitting is a tenet of DM; this
1069 * explains why stacked chunk_sectors based splitting via
1070 * blk_max_size_offset() isn't possible here. So pass in
1071 * ti->max_io_len to override stacked chunk_sectors.
1073 if (ti->max_io_len) {
1074 max_len = blk_max_size_offset(ti->table->md->queue,
1075 target_offset, ti->max_io_len);
1083 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1085 if (len > UINT_MAX) {
1086 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1087 (unsigned long long)len, UINT_MAX);
1088 ti->error = "Maximum size of target IO is too large";
1092 ti->max_io_len = (uint32_t) len;
1096 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1098 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1099 sector_t sector, int *srcu_idx)
1100 __acquires(md->io_barrier)
1102 struct dm_table *map;
1103 struct dm_target *ti;
1105 map = dm_get_live_table(md, srcu_idx);
1109 ti = dm_table_find_target(map, sector);
1116 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1117 long nr_pages, void **kaddr, pfn_t *pfn)
1119 struct mapped_device *md = dax_get_private(dax_dev);
1120 sector_t sector = pgoff * PAGE_SECTORS;
1121 struct dm_target *ti;
1122 long len, ret = -EIO;
1125 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1129 if (!ti->type->direct_access)
1131 len = max_io_len(ti, sector) / PAGE_SECTORS;
1134 nr_pages = min(len, nr_pages);
1135 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1138 dm_put_live_table(md, srcu_idx);
1143 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1144 int blocksize, sector_t start, sector_t len)
1146 struct mapped_device *md = dax_get_private(dax_dev);
1147 struct dm_table *map;
1151 map = dm_get_live_table(md, &srcu_idx);
1155 ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize);
1158 dm_put_live_table(md, srcu_idx);
1163 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1164 void *addr, size_t bytes, struct iov_iter *i)
1166 struct mapped_device *md = dax_get_private(dax_dev);
1167 sector_t sector = pgoff * PAGE_SECTORS;
1168 struct dm_target *ti;
1172 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1176 if (!ti->type->dax_copy_from_iter) {
1177 ret = copy_from_iter(addr, bytes, i);
1180 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1182 dm_put_live_table(md, srcu_idx);
1187 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1188 void *addr, size_t bytes, struct iov_iter *i)
1190 struct mapped_device *md = dax_get_private(dax_dev);
1191 sector_t sector = pgoff * PAGE_SECTORS;
1192 struct dm_target *ti;
1196 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1200 if (!ti->type->dax_copy_to_iter) {
1201 ret = copy_to_iter(addr, bytes, i);
1204 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1206 dm_put_live_table(md, srcu_idx);
1211 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1214 struct mapped_device *md = dax_get_private(dax_dev);
1215 sector_t sector = pgoff * PAGE_SECTORS;
1216 struct dm_target *ti;
1220 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1224 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1226 * ->zero_page_range() is mandatory dax operation. If we are
1227 * here, something is wrong.
1231 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1233 dm_put_live_table(md, srcu_idx);
1239 * A target may call dm_accept_partial_bio only from the map routine. It is
1240 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1241 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1243 * dm_accept_partial_bio informs the dm that the target only wants to process
1244 * additional n_sectors sectors of the bio and the rest of the data should be
1245 * sent in a next bio.
1247 * A diagram that explains the arithmetics:
1248 * +--------------------+---------------+-------+
1250 * +--------------------+---------------+-------+
1252 * <-------------- *tio->len_ptr --------------->
1253 * <------- bi_size ------->
1256 * Region 1 was already iterated over with bio_advance or similar function.
1257 * (it may be empty if the target doesn't use bio_advance)
1258 * Region 2 is the remaining bio size that the target wants to process.
1259 * (it may be empty if region 1 is non-empty, although there is no reason
1261 * The target requires that region 3 is to be sent in the next bio.
1263 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1264 * the partially processed part (the sum of regions 1+2) must be the same for all
1265 * copies of the bio.
1267 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1269 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1270 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1271 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1272 BUG_ON(bi_size > *tio->len_ptr);
1273 BUG_ON(n_sectors > bi_size);
1274 *tio->len_ptr -= bi_size - n_sectors;
1275 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1277 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1279 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1281 mutex_lock(&md->swap_bios_lock);
1282 while (latch < md->swap_bios) {
1284 down(&md->swap_bios_semaphore);
1287 while (latch > md->swap_bios) {
1289 up(&md->swap_bios_semaphore);
1292 mutex_unlock(&md->swap_bios_lock);
1295 static blk_qc_t __map_bio(struct dm_target_io *tio)
1299 struct bio *clone = &tio->clone;
1300 struct dm_io *io = tio->io;
1301 struct dm_target *ti = tio->ti;
1302 blk_qc_t ret = BLK_QC_T_NONE;
1304 clone->bi_end_io = clone_endio;
1307 * Map the clone. If r == 0 we don't need to do
1308 * anything, the target has assumed ownership of
1311 atomic_inc(&io->io_count);
1312 sector = clone->bi_iter.bi_sector;
1314 if (unlikely(swap_bios_limit(ti, clone))) {
1315 struct mapped_device *md = io->md;
1316 int latch = get_swap_bios();
1317 if (unlikely(latch != md->swap_bios))
1318 __set_swap_bios_limit(md, latch);
1319 down(&md->swap_bios_semaphore);
1322 r = ti->type->map(ti, clone);
1324 case DM_MAPIO_SUBMITTED:
1326 case DM_MAPIO_REMAPPED:
1327 /* the bio has been remapped so dispatch it */
1328 trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector);
1329 ret = submit_bio_noacct(clone);
1332 if (unlikely(swap_bios_limit(ti, clone))) {
1333 struct mapped_device *md = io->md;
1334 up(&md->swap_bios_semaphore);
1337 dec_pending(io, BLK_STS_IOERR);
1339 case DM_MAPIO_REQUEUE:
1340 if (unlikely(swap_bios_limit(ti, clone))) {
1341 struct mapped_device *md = io->md;
1342 up(&md->swap_bios_semaphore);
1345 dec_pending(io, BLK_STS_DM_REQUEUE);
1348 DMWARN("unimplemented target map return value: %d", r);
1355 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1357 bio->bi_iter.bi_sector = sector;
1358 bio->bi_iter.bi_size = to_bytes(len);
1362 * Creates a bio that consists of range of complete bvecs.
1364 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1365 sector_t sector, unsigned len)
1367 struct bio *clone = &tio->clone;
1370 __bio_clone_fast(clone, bio);
1372 r = bio_crypt_clone(clone, bio, GFP_NOIO);
1376 if (bio_integrity(bio)) {
1377 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1378 !dm_target_passes_integrity(tio->ti->type))) {
1379 DMWARN("%s: the target %s doesn't support integrity data.",
1380 dm_device_name(tio->io->md),
1381 tio->ti->type->name);
1385 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1390 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1391 clone->bi_iter.bi_size = to_bytes(len);
1393 if (bio_integrity(bio))
1394 bio_integrity_trim(clone);
1399 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1400 struct dm_target *ti, unsigned num_bios)
1402 struct dm_target_io *tio;
1408 if (num_bios == 1) {
1409 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1410 bio_list_add(blist, &tio->clone);
1414 for (try = 0; try < 2; try++) {
1419 mutex_lock(&ci->io->md->table_devices_lock);
1420 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1421 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1425 bio_list_add(blist, &tio->clone);
1428 mutex_unlock(&ci->io->md->table_devices_lock);
1429 if (bio_nr == num_bios)
1432 while ((bio = bio_list_pop(blist))) {
1433 tio = container_of(bio, struct dm_target_io, clone);
1439 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1440 struct dm_target_io *tio, unsigned *len)
1442 struct bio *clone = &tio->clone;
1446 __bio_clone_fast(clone, ci->bio);
1448 bio_setup_sector(clone, ci->sector, *len);
1450 return __map_bio(tio);
1453 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1454 unsigned num_bios, unsigned *len)
1456 struct bio_list blist = BIO_EMPTY_LIST;
1458 struct dm_target_io *tio;
1460 alloc_multiple_bios(&blist, ci, ti, num_bios);
1462 while ((bio = bio_list_pop(&blist))) {
1463 tio = container_of(bio, struct dm_target_io, clone);
1464 (void) __clone_and_map_simple_bio(ci, tio, len);
1468 static int __send_empty_flush(struct clone_info *ci)
1470 unsigned target_nr = 0;
1471 struct dm_target *ti;
1472 struct bio flush_bio;
1475 * Use an on-stack bio for this, it's safe since we don't
1476 * need to reference it after submit. It's just used as
1477 * the basis for the clone(s).
1479 bio_init(&flush_bio, NULL, 0);
1480 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1481 bio_set_dev(&flush_bio, ci->io->md->disk->part0);
1483 ci->bio = &flush_bio;
1484 ci->sector_count = 0;
1486 BUG_ON(bio_has_data(ci->bio));
1487 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1488 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1490 bio_uninit(ci->bio);
1494 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1495 sector_t sector, unsigned *len)
1497 struct bio *bio = ci->bio;
1498 struct dm_target_io *tio;
1501 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1503 r = clone_bio(tio, bio, sector, *len);
1508 (void) __map_bio(tio);
1513 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1519 * Even though the device advertised support for this type of
1520 * request, that does not mean every target supports it, and
1521 * reconfiguration might also have changed that since the
1522 * check was performed.
1527 len = min_t(sector_t, ci->sector_count,
1528 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1530 __send_duplicate_bios(ci, ti, num_bios, &len);
1533 ci->sector_count -= len;
1538 static bool is_abnormal_io(struct bio *bio)
1542 switch (bio_op(bio)) {
1543 case REQ_OP_DISCARD:
1544 case REQ_OP_SECURE_ERASE:
1545 case REQ_OP_WRITE_SAME:
1546 case REQ_OP_WRITE_ZEROES:
1554 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1557 struct bio *bio = ci->bio;
1558 unsigned num_bios = 0;
1560 switch (bio_op(bio)) {
1561 case REQ_OP_DISCARD:
1562 num_bios = ti->num_discard_bios;
1564 case REQ_OP_SECURE_ERASE:
1565 num_bios = ti->num_secure_erase_bios;
1567 case REQ_OP_WRITE_SAME:
1568 num_bios = ti->num_write_same_bios;
1570 case REQ_OP_WRITE_ZEROES:
1571 num_bios = ti->num_write_zeroes_bios;
1577 *result = __send_changing_extent_only(ci, ti, num_bios);
1582 * Select the correct strategy for processing a non-flush bio.
1584 static int __split_and_process_non_flush(struct clone_info *ci)
1586 struct dm_target *ti;
1590 ti = dm_table_find_target(ci->map, ci->sector);
1594 if (__process_abnormal_io(ci, ti, &r))
1597 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1599 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1604 ci->sector_count -= len;
1609 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1610 struct dm_table *map, struct bio *bio)
1613 ci->io = alloc_io(md, bio);
1614 ci->sector = bio->bi_iter.bi_sector;
1617 #define __dm_part_stat_sub(part, field, subnd) \
1618 (part_stat_get(part, field) -= (subnd))
1621 * Entry point to split a bio into clones and submit them to the targets.
1623 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1624 struct dm_table *map, struct bio *bio)
1626 struct clone_info ci;
1627 blk_qc_t ret = BLK_QC_T_NONE;
1630 init_clone_info(&ci, md, map, bio);
1632 if (bio->bi_opf & REQ_PREFLUSH) {
1633 error = __send_empty_flush(&ci);
1634 /* dec_pending submits any data associated with flush */
1635 } else if (op_is_zone_mgmt(bio_op(bio))) {
1637 ci.sector_count = 0;
1638 error = __split_and_process_non_flush(&ci);
1641 ci.sector_count = bio_sectors(bio);
1642 error = __split_and_process_non_flush(&ci);
1643 if (ci.sector_count && !error) {
1645 * Remainder must be passed to submit_bio_noacct()
1646 * so that it gets handled *after* bios already submitted
1647 * have been completely processed.
1648 * We take a clone of the original to store in
1649 * ci.io->orig_bio to be used by end_io_acct() and
1650 * for dec_pending to use for completion handling.
1652 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1653 GFP_NOIO, &md->queue->bio_split);
1654 ci.io->orig_bio = b;
1657 * Adjust IO stats for each split, otherwise upon queue
1658 * reentry there will be redundant IO accounting.
1659 * NOTE: this is a stop-gap fix, a proper fix involves
1660 * significant refactoring of DM core's bio splitting
1661 * (by eliminating DM's splitting and just using bio_split)
1664 __dm_part_stat_sub(dm_disk(md)->part0,
1665 sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1669 trace_block_split(b, bio->bi_iter.bi_sector);
1670 ret = submit_bio_noacct(bio);
1674 /* drop the extra reference count */
1675 dec_pending(ci.io, errno_to_blk_status(error));
1679 static blk_qc_t dm_submit_bio(struct bio *bio)
1681 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1682 blk_qc_t ret = BLK_QC_T_NONE;
1684 struct dm_table *map;
1686 map = dm_get_live_table(md, &srcu_idx);
1687 if (unlikely(!map)) {
1688 DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1689 dm_device_name(md));
1694 /* If suspended, queue this IO for later */
1695 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1696 if (bio->bi_opf & REQ_NOWAIT)
1697 bio_wouldblock_error(bio);
1698 else if (bio->bi_opf & REQ_RAHEAD)
1706 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1707 * otherwise associated queue_limits won't be imposed.
1709 if (is_abnormal_io(bio))
1710 blk_queue_split(&bio);
1712 ret = __split_and_process_bio(md, map, bio);
1714 dm_put_live_table(md, srcu_idx);
1718 /*-----------------------------------------------------------------
1719 * An IDR is used to keep track of allocated minor numbers.
1720 *---------------------------------------------------------------*/
1721 static void free_minor(int minor)
1723 spin_lock(&_minor_lock);
1724 idr_remove(&_minor_idr, minor);
1725 spin_unlock(&_minor_lock);
1729 * See if the device with a specific minor # is free.
1731 static int specific_minor(int minor)
1735 if (minor >= (1 << MINORBITS))
1738 idr_preload(GFP_KERNEL);
1739 spin_lock(&_minor_lock);
1741 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1743 spin_unlock(&_minor_lock);
1746 return r == -ENOSPC ? -EBUSY : r;
1750 static int next_free_minor(int *minor)
1754 idr_preload(GFP_KERNEL);
1755 spin_lock(&_minor_lock);
1757 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1759 spin_unlock(&_minor_lock);
1767 static const struct block_device_operations dm_blk_dops;
1768 static const struct block_device_operations dm_rq_blk_dops;
1769 static const struct dax_operations dm_dax_ops;
1771 static void dm_wq_work(struct work_struct *work);
1773 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1774 static void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1776 dm_destroy_keyslot_manager(q->ksm);
1779 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1781 static inline void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1784 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1786 static void cleanup_mapped_device(struct mapped_device *md)
1789 destroy_workqueue(md->wq);
1790 bioset_exit(&md->bs);
1791 bioset_exit(&md->io_bs);
1794 kill_dax(md->dax_dev);
1795 put_dax(md->dax_dev);
1800 spin_lock(&_minor_lock);
1801 md->disk->private_data = NULL;
1802 spin_unlock(&_minor_lock);
1803 del_gendisk(md->disk);
1808 dm_queue_destroy_keyslot_manager(md->queue);
1809 blk_cleanup_queue(md->queue);
1812 cleanup_srcu_struct(&md->io_barrier);
1814 mutex_destroy(&md->suspend_lock);
1815 mutex_destroy(&md->type_lock);
1816 mutex_destroy(&md->table_devices_lock);
1817 mutex_destroy(&md->swap_bios_lock);
1819 dm_mq_cleanup_mapped_device(md);
1823 * Allocate and initialise a blank device with a given minor.
1825 static struct mapped_device *alloc_dev(int minor)
1827 int r, numa_node_id = dm_get_numa_node();
1828 struct mapped_device *md;
1831 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1833 DMWARN("unable to allocate device, out of memory.");
1837 if (!try_module_get(THIS_MODULE))
1838 goto bad_module_get;
1840 /* get a minor number for the dev */
1841 if (minor == DM_ANY_MINOR)
1842 r = next_free_minor(&minor);
1844 r = specific_minor(minor);
1848 r = init_srcu_struct(&md->io_barrier);
1850 goto bad_io_barrier;
1852 md->numa_node_id = numa_node_id;
1853 md->init_tio_pdu = false;
1854 md->type = DM_TYPE_NONE;
1855 mutex_init(&md->suspend_lock);
1856 mutex_init(&md->type_lock);
1857 mutex_init(&md->table_devices_lock);
1858 spin_lock_init(&md->deferred_lock);
1859 atomic_set(&md->holders, 1);
1860 atomic_set(&md->open_count, 0);
1861 atomic_set(&md->event_nr, 0);
1862 atomic_set(&md->uevent_seq, 0);
1863 INIT_LIST_HEAD(&md->uevent_list);
1864 INIT_LIST_HEAD(&md->table_devices);
1865 spin_lock_init(&md->uevent_lock);
1868 * default to bio-based until DM table is loaded and md->type
1869 * established. If request-based table is loaded: blk-mq will
1870 * override accordingly.
1872 md->queue = blk_alloc_queue(numa_node_id);
1876 md->disk = alloc_disk_node(1, md->numa_node_id);
1880 init_waitqueue_head(&md->wait);
1881 INIT_WORK(&md->work, dm_wq_work);
1882 init_waitqueue_head(&md->eventq);
1883 init_completion(&md->kobj_holder.completion);
1885 md->swap_bios = get_swap_bios();
1886 sema_init(&md->swap_bios_semaphore, md->swap_bios);
1887 mutex_init(&md->swap_bios_lock);
1889 md->disk->major = _major;
1890 md->disk->first_minor = minor;
1891 md->disk->fops = &dm_blk_dops;
1892 md->disk->queue = md->queue;
1893 md->disk->private_data = md;
1894 sprintf(md->disk->disk_name, "dm-%d", minor);
1896 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1897 md->dax_dev = alloc_dax(md, md->disk->disk_name,
1899 if (IS_ERR(md->dax_dev))
1903 add_disk_no_queue_reg(md->disk);
1904 format_dev_t(md->name, MKDEV(_major, minor));
1906 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1910 dm_stats_init(&md->stats);
1912 /* Populate the mapping, nobody knows we exist yet */
1913 spin_lock(&_minor_lock);
1914 old_md = idr_replace(&_minor_idr, md, minor);
1915 spin_unlock(&_minor_lock);
1917 BUG_ON(old_md != MINOR_ALLOCED);
1922 cleanup_mapped_device(md);
1926 module_put(THIS_MODULE);
1932 static void unlock_fs(struct mapped_device *md);
1934 static void free_dev(struct mapped_device *md)
1936 int minor = MINOR(disk_devt(md->disk));
1940 cleanup_mapped_device(md);
1942 free_table_devices(&md->table_devices);
1943 dm_stats_cleanup(&md->stats);
1946 module_put(THIS_MODULE);
1950 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1952 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1955 if (dm_table_bio_based(t)) {
1957 * The md may already have mempools that need changing.
1958 * If so, reload bioset because front_pad may have changed
1959 * because a different table was loaded.
1961 bioset_exit(&md->bs);
1962 bioset_exit(&md->io_bs);
1964 } else if (bioset_initialized(&md->bs)) {
1966 * There's no need to reload with request-based dm
1967 * because the size of front_pad doesn't change.
1968 * Note for future: If you are to reload bioset,
1969 * prep-ed requests in the queue may refer
1970 * to bio from the old bioset, so you must walk
1971 * through the queue to unprep.
1977 bioset_initialized(&md->bs) ||
1978 bioset_initialized(&md->io_bs));
1980 ret = bioset_init_from_src(&md->bs, &p->bs);
1983 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1985 bioset_exit(&md->bs);
1987 /* mempool bind completed, no longer need any mempools in the table */
1988 dm_table_free_md_mempools(t);
1993 * Bind a table to the device.
1995 static void event_callback(void *context)
1997 unsigned long flags;
1999 struct mapped_device *md = (struct mapped_device *) context;
2001 spin_lock_irqsave(&md->uevent_lock, flags);
2002 list_splice_init(&md->uevent_list, &uevents);
2003 spin_unlock_irqrestore(&md->uevent_lock, flags);
2005 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2007 atomic_inc(&md->event_nr);
2008 wake_up(&md->eventq);
2009 dm_issue_global_event();
2013 * Returns old map, which caller must destroy.
2015 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2016 struct queue_limits *limits)
2018 struct dm_table *old_map;
2019 struct request_queue *q = md->queue;
2020 bool request_based = dm_table_request_based(t);
2024 lockdep_assert_held(&md->suspend_lock);
2026 size = dm_table_get_size(t);
2029 * Wipe any geometry if the size of the table changed.
2031 if (size != dm_get_size(md))
2032 memset(&md->geometry, 0, sizeof(md->geometry));
2034 if (!get_capacity(md->disk))
2035 set_capacity(md->disk, size);
2037 set_capacity_and_notify(md->disk, size);
2039 dm_table_event_callback(t, event_callback, md);
2042 * The queue hasn't been stopped yet, if the old table type wasn't
2043 * for request-based during suspension. So stop it to prevent
2044 * I/O mapping before resume.
2045 * This must be done before setting the queue restrictions,
2046 * because request-based dm may be run just after the setting.
2051 if (request_based) {
2053 * Leverage the fact that request-based DM targets are
2054 * immutable singletons - used to optimize dm_mq_queue_rq.
2056 md->immutable_target = dm_table_get_immutable_target(t);
2059 ret = __bind_mempools(md, t);
2061 old_map = ERR_PTR(ret);
2065 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2066 rcu_assign_pointer(md->map, (void *)t);
2067 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2069 dm_table_set_restrictions(t, q, limits);
2078 * Returns unbound table for the caller to free.
2080 static struct dm_table *__unbind(struct mapped_device *md)
2082 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2087 dm_table_event_callback(map, NULL, NULL);
2088 RCU_INIT_POINTER(md->map, NULL);
2095 * Constructor for a new device.
2097 int dm_create(int minor, struct mapped_device **result)
2100 struct mapped_device *md;
2102 md = alloc_dev(minor);
2106 r = dm_sysfs_init(md);
2117 * Functions to manage md->type.
2118 * All are required to hold md->type_lock.
2120 void dm_lock_md_type(struct mapped_device *md)
2122 mutex_lock(&md->type_lock);
2125 void dm_unlock_md_type(struct mapped_device *md)
2127 mutex_unlock(&md->type_lock);
2130 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2132 BUG_ON(!mutex_is_locked(&md->type_lock));
2136 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2141 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2143 return md->immutable_target_type;
2147 * The queue_limits are only valid as long as you have a reference
2150 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2152 BUG_ON(!atomic_read(&md->holders));
2153 return &md->queue->limits;
2155 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2158 * Setup the DM device's queue based on md's type
2160 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2163 struct queue_limits limits;
2164 enum dm_queue_mode type = dm_get_md_type(md);
2167 case DM_TYPE_REQUEST_BASED:
2168 md->disk->fops = &dm_rq_blk_dops;
2169 r = dm_mq_init_request_queue(md, t);
2171 DMERR("Cannot initialize queue for request-based dm mapped device");
2175 case DM_TYPE_BIO_BASED:
2176 case DM_TYPE_DAX_BIO_BASED:
2183 r = dm_calculate_queue_limits(t, &limits);
2185 DMERR("Cannot calculate initial queue limits");
2188 dm_table_set_restrictions(t, md->queue, &limits);
2189 blk_register_queue(md->disk);
2194 struct mapped_device *dm_get_md(dev_t dev)
2196 struct mapped_device *md;
2197 unsigned minor = MINOR(dev);
2199 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2202 spin_lock(&_minor_lock);
2204 md = idr_find(&_minor_idr, minor);
2205 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2206 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2212 spin_unlock(&_minor_lock);
2216 EXPORT_SYMBOL_GPL(dm_get_md);
2218 void *dm_get_mdptr(struct mapped_device *md)
2220 return md->interface_ptr;
2223 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2225 md->interface_ptr = ptr;
2228 void dm_get(struct mapped_device *md)
2230 atomic_inc(&md->holders);
2231 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2234 int dm_hold(struct mapped_device *md)
2236 spin_lock(&_minor_lock);
2237 if (test_bit(DMF_FREEING, &md->flags)) {
2238 spin_unlock(&_minor_lock);
2242 spin_unlock(&_minor_lock);
2245 EXPORT_SYMBOL_GPL(dm_hold);
2247 const char *dm_device_name(struct mapped_device *md)
2251 EXPORT_SYMBOL_GPL(dm_device_name);
2253 static void __dm_destroy(struct mapped_device *md, bool wait)
2255 struct dm_table *map;
2260 spin_lock(&_minor_lock);
2261 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2262 set_bit(DMF_FREEING, &md->flags);
2263 spin_unlock(&_minor_lock);
2265 blk_set_queue_dying(md->queue);
2268 * Take suspend_lock so that presuspend and postsuspend methods
2269 * do not race with internal suspend.
2271 mutex_lock(&md->suspend_lock);
2272 map = dm_get_live_table(md, &srcu_idx);
2273 if (!dm_suspended_md(md)) {
2274 dm_table_presuspend_targets(map);
2275 set_bit(DMF_SUSPENDED, &md->flags);
2276 set_bit(DMF_POST_SUSPENDING, &md->flags);
2277 dm_table_postsuspend_targets(map);
2279 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2280 dm_put_live_table(md, srcu_idx);
2281 mutex_unlock(&md->suspend_lock);
2284 * Rare, but there may be I/O requests still going to complete,
2285 * for example. Wait for all references to disappear.
2286 * No one should increment the reference count of the mapped_device,
2287 * after the mapped_device state becomes DMF_FREEING.
2290 while (atomic_read(&md->holders))
2292 else if (atomic_read(&md->holders))
2293 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2294 dm_device_name(md), atomic_read(&md->holders));
2297 dm_table_destroy(__unbind(md));
2301 void dm_destroy(struct mapped_device *md)
2303 __dm_destroy(md, true);
2306 void dm_destroy_immediate(struct mapped_device *md)
2308 __dm_destroy(md, false);
2311 void dm_put(struct mapped_device *md)
2313 atomic_dec(&md->holders);
2315 EXPORT_SYMBOL_GPL(dm_put);
2317 static bool md_in_flight_bios(struct mapped_device *md)
2320 struct block_device *part = dm_disk(md)->part0;
2323 for_each_possible_cpu(cpu) {
2324 sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2325 sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2331 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2337 prepare_to_wait(&md->wait, &wait, task_state);
2339 if (!md_in_flight_bios(md))
2342 if (signal_pending_state(task_state, current)) {
2349 finish_wait(&md->wait, &wait);
2354 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2358 if (!queue_is_mq(md->queue))
2359 return dm_wait_for_bios_completion(md, task_state);
2362 if (!blk_mq_queue_inflight(md->queue))
2365 if (signal_pending_state(task_state, current)) {
2377 * Process the deferred bios
2379 static void dm_wq_work(struct work_struct *work)
2381 struct mapped_device *md = container_of(work, struct mapped_device, work);
2384 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2385 spin_lock_irq(&md->deferred_lock);
2386 bio = bio_list_pop(&md->deferred);
2387 spin_unlock_irq(&md->deferred_lock);
2392 submit_bio_noacct(bio);
2396 static void dm_queue_flush(struct mapped_device *md)
2398 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2399 smp_mb__after_atomic();
2400 queue_work(md->wq, &md->work);
2404 * Swap in a new table, returning the old one for the caller to destroy.
2406 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2408 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2409 struct queue_limits limits;
2412 mutex_lock(&md->suspend_lock);
2414 /* device must be suspended */
2415 if (!dm_suspended_md(md))
2419 * If the new table has no data devices, retain the existing limits.
2420 * This helps multipath with queue_if_no_path if all paths disappear,
2421 * then new I/O is queued based on these limits, and then some paths
2424 if (dm_table_has_no_data_devices(table)) {
2425 live_map = dm_get_live_table_fast(md);
2427 limits = md->queue->limits;
2428 dm_put_live_table_fast(md);
2432 r = dm_calculate_queue_limits(table, &limits);
2439 map = __bind(md, table, &limits);
2440 dm_issue_global_event();
2443 mutex_unlock(&md->suspend_lock);
2448 * Functions to lock and unlock any filesystem running on the
2451 static int lock_fs(struct mapped_device *md)
2455 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2457 r = freeze_bdev(md->disk->part0);
2459 set_bit(DMF_FROZEN, &md->flags);
2463 static void unlock_fs(struct mapped_device *md)
2465 if (!test_bit(DMF_FROZEN, &md->flags))
2467 thaw_bdev(md->disk->part0);
2468 clear_bit(DMF_FROZEN, &md->flags);
2472 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2473 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2474 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2476 * If __dm_suspend returns 0, the device is completely quiescent
2477 * now. There is no request-processing activity. All new requests
2478 * are being added to md->deferred list.
2480 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2481 unsigned suspend_flags, long task_state,
2482 int dmf_suspended_flag)
2484 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2485 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2488 lockdep_assert_held(&md->suspend_lock);
2491 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2492 * This flag is cleared before dm_suspend returns.
2495 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2497 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2500 * This gets reverted if there's an error later and the targets
2501 * provide the .presuspend_undo hook.
2503 dm_table_presuspend_targets(map);
2506 * Flush I/O to the device.
2507 * Any I/O submitted after lock_fs() may not be flushed.
2508 * noflush takes precedence over do_lockfs.
2509 * (lock_fs() flushes I/Os and waits for them to complete.)
2511 if (!noflush && do_lockfs) {
2514 dm_table_presuspend_undo_targets(map);
2520 * Here we must make sure that no processes are submitting requests
2521 * to target drivers i.e. no one may be executing
2522 * __split_and_process_bio from dm_submit_bio.
2524 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2525 * we take the write lock. To prevent any process from reentering
2526 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2527 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2528 * flush_workqueue(md->wq).
2530 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2532 synchronize_srcu(&md->io_barrier);
2535 * Stop md->queue before flushing md->wq in case request-based
2536 * dm defers requests to md->wq from md->queue.
2538 if (dm_request_based(md))
2539 dm_stop_queue(md->queue);
2541 flush_workqueue(md->wq);
2544 * At this point no more requests are entering target request routines.
2545 * We call dm_wait_for_completion to wait for all existing requests
2548 r = dm_wait_for_completion(md, task_state);
2550 set_bit(dmf_suspended_flag, &md->flags);
2553 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2555 synchronize_srcu(&md->io_barrier);
2557 /* were we interrupted ? */
2561 if (dm_request_based(md))
2562 dm_start_queue(md->queue);
2565 dm_table_presuspend_undo_targets(map);
2566 /* pushback list is already flushed, so skip flush */
2573 * We need to be able to change a mapping table under a mounted
2574 * filesystem. For example we might want to move some data in
2575 * the background. Before the table can be swapped with
2576 * dm_bind_table, dm_suspend must be called to flush any in
2577 * flight bios and ensure that any further io gets deferred.
2580 * Suspend mechanism in request-based dm.
2582 * 1. Flush all I/Os by lock_fs() if needed.
2583 * 2. Stop dispatching any I/O by stopping the request_queue.
2584 * 3. Wait for all in-flight I/Os to be completed or requeued.
2586 * To abort suspend, start the request_queue.
2588 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2590 struct dm_table *map = NULL;
2594 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2596 if (dm_suspended_md(md)) {
2601 if (dm_suspended_internally_md(md)) {
2602 /* already internally suspended, wait for internal resume */
2603 mutex_unlock(&md->suspend_lock);
2604 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2610 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2612 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2616 set_bit(DMF_POST_SUSPENDING, &md->flags);
2617 dm_table_postsuspend_targets(map);
2618 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2621 mutex_unlock(&md->suspend_lock);
2625 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2628 int r = dm_table_resume_targets(map);
2636 * Flushing deferred I/Os must be done after targets are resumed
2637 * so that mapping of targets can work correctly.
2638 * Request-based dm is queueing the deferred I/Os in its request_queue.
2640 if (dm_request_based(md))
2641 dm_start_queue(md->queue);
2648 int dm_resume(struct mapped_device *md)
2651 struct dm_table *map = NULL;
2655 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2657 if (!dm_suspended_md(md))
2660 if (dm_suspended_internally_md(md)) {
2661 /* already internally suspended, wait for internal resume */
2662 mutex_unlock(&md->suspend_lock);
2663 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2669 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2670 if (!map || !dm_table_get_size(map))
2673 r = __dm_resume(md, map);
2677 clear_bit(DMF_SUSPENDED, &md->flags);
2679 mutex_unlock(&md->suspend_lock);
2685 * Internal suspend/resume works like userspace-driven suspend. It waits
2686 * until all bios finish and prevents issuing new bios to the target drivers.
2687 * It may be used only from the kernel.
2690 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2692 struct dm_table *map = NULL;
2694 lockdep_assert_held(&md->suspend_lock);
2696 if (md->internal_suspend_count++)
2697 return; /* nested internal suspend */
2699 if (dm_suspended_md(md)) {
2700 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2701 return; /* nest suspend */
2704 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2707 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2708 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2709 * would require changing .presuspend to return an error -- avoid this
2710 * until there is a need for more elaborate variants of internal suspend.
2712 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2713 DMF_SUSPENDED_INTERNALLY);
2715 set_bit(DMF_POST_SUSPENDING, &md->flags);
2716 dm_table_postsuspend_targets(map);
2717 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2720 static void __dm_internal_resume(struct mapped_device *md)
2722 BUG_ON(!md->internal_suspend_count);
2724 if (--md->internal_suspend_count)
2725 return; /* resume from nested internal suspend */
2727 if (dm_suspended_md(md))
2728 goto done; /* resume from nested suspend */
2731 * NOTE: existing callers don't need to call dm_table_resume_targets
2732 * (which may fail -- so best to avoid it for now by passing NULL map)
2734 (void) __dm_resume(md, NULL);
2737 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2738 smp_mb__after_atomic();
2739 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2742 void dm_internal_suspend_noflush(struct mapped_device *md)
2744 mutex_lock(&md->suspend_lock);
2745 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2746 mutex_unlock(&md->suspend_lock);
2748 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2750 void dm_internal_resume(struct mapped_device *md)
2752 mutex_lock(&md->suspend_lock);
2753 __dm_internal_resume(md);
2754 mutex_unlock(&md->suspend_lock);
2756 EXPORT_SYMBOL_GPL(dm_internal_resume);
2759 * Fast variants of internal suspend/resume hold md->suspend_lock,
2760 * which prevents interaction with userspace-driven suspend.
2763 void dm_internal_suspend_fast(struct mapped_device *md)
2765 mutex_lock(&md->suspend_lock);
2766 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2769 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2770 synchronize_srcu(&md->io_barrier);
2771 flush_workqueue(md->wq);
2772 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2774 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2776 void dm_internal_resume_fast(struct mapped_device *md)
2778 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2784 mutex_unlock(&md->suspend_lock);
2786 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2788 /*-----------------------------------------------------------------
2789 * Event notification.
2790 *---------------------------------------------------------------*/
2791 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2796 char udev_cookie[DM_COOKIE_LENGTH];
2797 char *envp[] = { udev_cookie, NULL };
2799 noio_flag = memalloc_noio_save();
2802 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2804 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2805 DM_COOKIE_ENV_VAR_NAME, cookie);
2806 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2810 memalloc_noio_restore(noio_flag);
2815 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2817 return atomic_add_return(1, &md->uevent_seq);
2820 uint32_t dm_get_event_nr(struct mapped_device *md)
2822 return atomic_read(&md->event_nr);
2825 int dm_wait_event(struct mapped_device *md, int event_nr)
2827 return wait_event_interruptible(md->eventq,
2828 (event_nr != atomic_read(&md->event_nr)));
2831 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2833 unsigned long flags;
2835 spin_lock_irqsave(&md->uevent_lock, flags);
2836 list_add(elist, &md->uevent_list);
2837 spin_unlock_irqrestore(&md->uevent_lock, flags);
2841 * The gendisk is only valid as long as you have a reference
2844 struct gendisk *dm_disk(struct mapped_device *md)
2848 EXPORT_SYMBOL_GPL(dm_disk);
2850 struct kobject *dm_kobject(struct mapped_device *md)
2852 return &md->kobj_holder.kobj;
2855 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2857 struct mapped_device *md;
2859 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2861 spin_lock(&_minor_lock);
2862 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2868 spin_unlock(&_minor_lock);
2873 int dm_suspended_md(struct mapped_device *md)
2875 return test_bit(DMF_SUSPENDED, &md->flags);
2878 static int dm_post_suspending_md(struct mapped_device *md)
2880 return test_bit(DMF_POST_SUSPENDING, &md->flags);
2883 int dm_suspended_internally_md(struct mapped_device *md)
2885 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2888 int dm_test_deferred_remove_flag(struct mapped_device *md)
2890 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2893 int dm_suspended(struct dm_target *ti)
2895 return dm_suspended_md(ti->table->md);
2897 EXPORT_SYMBOL_GPL(dm_suspended);
2899 int dm_post_suspending(struct dm_target *ti)
2901 return dm_post_suspending_md(ti->table->md);
2903 EXPORT_SYMBOL_GPL(dm_post_suspending);
2905 int dm_noflush_suspending(struct dm_target *ti)
2907 return __noflush_suspending(ti->table->md);
2909 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2911 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2912 unsigned integrity, unsigned per_io_data_size,
2913 unsigned min_pool_size)
2915 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2916 unsigned int pool_size = 0;
2917 unsigned int front_pad, io_front_pad;
2924 case DM_TYPE_BIO_BASED:
2925 case DM_TYPE_DAX_BIO_BASED:
2926 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2927 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2928 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2929 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2932 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2935 case DM_TYPE_REQUEST_BASED:
2936 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2937 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2938 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2944 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2948 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2954 dm_free_md_mempools(pools);
2959 void dm_free_md_mempools(struct dm_md_mempools *pools)
2964 bioset_exit(&pools->bs);
2965 bioset_exit(&pools->io_bs);
2977 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2980 struct mapped_device *md = bdev->bd_disk->private_data;
2981 struct dm_table *table;
2982 struct dm_target *ti;
2983 int ret = -ENOTTY, srcu_idx;
2985 table = dm_get_live_table(md, &srcu_idx);
2986 if (!table || !dm_table_get_size(table))
2989 /* We only support devices that have a single target */
2990 if (dm_table_get_num_targets(table) != 1)
2992 ti = dm_table_get_target(table, 0);
2995 if (!ti->type->iterate_devices)
2998 ret = ti->type->iterate_devices(ti, fn, data);
3000 dm_put_live_table(md, srcu_idx);
3005 * For register / unregister we need to manually call out to every path.
3007 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3008 sector_t start, sector_t len, void *data)
3010 struct dm_pr *pr = data;
3011 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3013 if (!ops || !ops->pr_register)
3015 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3018 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3029 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3030 if (ret && new_key) {
3031 /* unregister all paths if we failed to register any path */
3032 pr.old_key = new_key;
3035 pr.fail_early = false;
3036 dm_call_pr(bdev, __dm_pr_register, &pr);
3042 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3045 struct mapped_device *md = bdev->bd_disk->private_data;
3046 const struct pr_ops *ops;
3049 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3053 ops = bdev->bd_disk->fops->pr_ops;
3054 if (ops && ops->pr_reserve)
3055 r = ops->pr_reserve(bdev, key, type, flags);
3059 dm_unprepare_ioctl(md, srcu_idx);
3063 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3065 struct mapped_device *md = bdev->bd_disk->private_data;
3066 const struct pr_ops *ops;
3069 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3073 ops = bdev->bd_disk->fops->pr_ops;
3074 if (ops && ops->pr_release)
3075 r = ops->pr_release(bdev, key, type);
3079 dm_unprepare_ioctl(md, srcu_idx);
3083 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3084 enum pr_type type, bool abort)
3086 struct mapped_device *md = bdev->bd_disk->private_data;
3087 const struct pr_ops *ops;
3090 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3094 ops = bdev->bd_disk->fops->pr_ops;
3095 if (ops && ops->pr_preempt)
3096 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3100 dm_unprepare_ioctl(md, srcu_idx);
3104 static int dm_pr_clear(struct block_device *bdev, u64 key)
3106 struct mapped_device *md = bdev->bd_disk->private_data;
3107 const struct pr_ops *ops;
3110 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3114 ops = bdev->bd_disk->fops->pr_ops;
3115 if (ops && ops->pr_clear)
3116 r = ops->pr_clear(bdev, key);
3120 dm_unprepare_ioctl(md, srcu_idx);
3124 static const struct pr_ops dm_pr_ops = {
3125 .pr_register = dm_pr_register,
3126 .pr_reserve = dm_pr_reserve,
3127 .pr_release = dm_pr_release,
3128 .pr_preempt = dm_pr_preempt,
3129 .pr_clear = dm_pr_clear,
3132 static const struct block_device_operations dm_blk_dops = {
3133 .submit_bio = dm_submit_bio,
3134 .open = dm_blk_open,
3135 .release = dm_blk_close,
3136 .ioctl = dm_blk_ioctl,
3137 .getgeo = dm_blk_getgeo,
3138 .report_zones = dm_blk_report_zones,
3139 .pr_ops = &dm_pr_ops,
3140 .owner = THIS_MODULE
3143 static const struct block_device_operations dm_rq_blk_dops = {
3144 .open = dm_blk_open,
3145 .release = dm_blk_close,
3146 .ioctl = dm_blk_ioctl,
3147 .getgeo = dm_blk_getgeo,
3148 .pr_ops = &dm_pr_ops,
3149 .owner = THIS_MODULE
3152 static const struct dax_operations dm_dax_ops = {
3153 .direct_access = dm_dax_direct_access,
3154 .dax_supported = dm_dax_supported,
3155 .copy_from_iter = dm_dax_copy_from_iter,
3156 .copy_to_iter = dm_dax_copy_to_iter,
3157 .zero_page_range = dm_dax_zero_page_range,
3163 module_init(dm_init);
3164 module_exit(dm_exit);
3166 module_param(major, uint, 0);
3167 MODULE_PARM_DESC(major, "The major number of the device mapper");
3169 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3170 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3172 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3173 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3175 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3176 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3178 MODULE_DESCRIPTION(DM_NAME " driver");
3180 MODULE_LICENSE("GPL");