2 * Scatterlist Cryptographic API.
9 * and Nettle, by Niels Möller.
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
17 #ifndef _LINUX_CRYPTO_H
18 #define _LINUX_CRYPTO_H
20 #include <linux/atomic.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/bug.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/completion.h>
30 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
31 * arbitrary modules to be loaded. Loading from userspace may still need the
32 * unprefixed names, so retains those aliases as well.
33 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
34 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
35 * expands twice on the same line. Instead, use a separate base name for the
38 #define MODULE_ALIAS_CRYPTO(name) \
39 __MODULE_INFO(alias, alias_userspace, name); \
40 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
43 * Algorithm masks and types.
45 #define CRYPTO_ALG_TYPE_MASK 0x0000000f
46 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001
47 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
48 #define CRYPTO_ALG_TYPE_AEAD 0x00000003
49 #define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004
50 #define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005
51 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005
52 #define CRYPTO_ALG_TYPE_KPP 0x00000008
53 #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a
54 #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b
55 #define CRYPTO_ALG_TYPE_RNG 0x0000000c
56 #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d
57 #define CRYPTO_ALG_TYPE_DIGEST 0x0000000e
58 #define CRYPTO_ALG_TYPE_HASH 0x0000000e
59 #define CRYPTO_ALG_TYPE_SHASH 0x0000000e
60 #define CRYPTO_ALG_TYPE_AHASH 0x0000000f
62 #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e
63 #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e
64 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c
65 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e
67 #define CRYPTO_ALG_LARVAL 0x00000010
68 #define CRYPTO_ALG_DEAD 0x00000020
69 #define CRYPTO_ALG_DYING 0x00000040
70 #define CRYPTO_ALG_ASYNC 0x00000080
73 * Set this bit if and only if the algorithm requires another algorithm of
74 * the same type to handle corner cases.
76 #define CRYPTO_ALG_NEED_FALLBACK 0x00000100
79 * Set if the algorithm has passed automated run-time testing. Note that
80 * if there is no run-time testing for a given algorithm it is considered
84 #define CRYPTO_ALG_TESTED 0x00000400
87 * Set if the algorithm is an instance that is built from templates.
89 #define CRYPTO_ALG_INSTANCE 0x00000800
91 /* Set this bit if the algorithm provided is hardware accelerated but
92 * not available to userspace via instruction set or so.
94 #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000
97 * Mark a cipher as a service implementation only usable by another
98 * cipher and never by a normal user of the kernel crypto API
100 #define CRYPTO_ALG_INTERNAL 0x00002000
103 * Set if the algorithm has a ->setkey() method but can be used without
104 * calling it first, i.e. there is a default key.
106 #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000
109 * Don't trigger module loading
111 #define CRYPTO_NOLOAD 0x00008000
114 * Transform masks and values (for crt_flags).
116 #define CRYPTO_TFM_NEED_KEY 0x00000001
118 #define CRYPTO_TFM_REQ_MASK 0x000fff00
119 #define CRYPTO_TFM_RES_MASK 0xfff00000
121 #define CRYPTO_TFM_REQ_WEAK_KEY 0x00000100
122 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200
123 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400
124 #define CRYPTO_TFM_RES_WEAK_KEY 0x00100000
125 #define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000
126 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000
127 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000
128 #define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000
131 * Miscellaneous stuff.
133 #define CRYPTO_MAX_ALG_NAME 128
136 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
137 * declaration) is used to ensure that the crypto_tfm context structure is
138 * aligned correctly for the given architecture so that there are no alignment
139 * faults for C data types. In particular, this is required on platforms such
140 * as arm where pointers are 32-bit aligned but there are data types such as
141 * u64 which require 64-bit alignment.
143 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
145 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
148 struct crypto_ablkcipher;
149 struct crypto_async_request;
150 struct crypto_blkcipher;
154 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
157 * DOC: Block Cipher Context Data Structures
159 * These data structures define the operating context for each block cipher
163 struct crypto_async_request {
164 struct list_head list;
165 crypto_completion_t complete;
167 struct crypto_tfm *tfm;
172 struct ablkcipher_request {
173 struct crypto_async_request base;
179 struct scatterlist *src;
180 struct scatterlist *dst;
182 void *__ctx[] CRYPTO_MINALIGN_ATTR;
185 struct blkcipher_desc {
186 struct crypto_blkcipher *tfm;
192 struct crypto_tfm *tfm;
193 void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
194 unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
195 const u8 *src, unsigned int nbytes);
200 * DOC: Block Cipher Algorithm Definitions
202 * These data structures define modular crypto algorithm implementations,
203 * managed via crypto_register_alg() and crypto_unregister_alg().
207 * struct ablkcipher_alg - asynchronous block cipher definition
208 * @min_keysize: Minimum key size supported by the transformation. This is the
209 * smallest key length supported by this transformation algorithm.
210 * This must be set to one of the pre-defined values as this is
211 * not hardware specific. Possible values for this field can be
212 * found via git grep "_MIN_KEY_SIZE" include/crypto/
213 * @max_keysize: Maximum key size supported by the transformation. This is the
214 * largest key length supported by this transformation algorithm.
215 * This must be set to one of the pre-defined values as this is
216 * not hardware specific. Possible values for this field can be
217 * found via git grep "_MAX_KEY_SIZE" include/crypto/
218 * @setkey: Set key for the transformation. This function is used to either
219 * program a supplied key into the hardware or store the key in the
220 * transformation context for programming it later. Note that this
221 * function does modify the transformation context. This function can
222 * be called multiple times during the existence of the transformation
223 * object, so one must make sure the key is properly reprogrammed into
224 * the hardware. This function is also responsible for checking the key
225 * length for validity. In case a software fallback was put in place in
226 * the @cra_init call, this function might need to use the fallback if
227 * the algorithm doesn't support all of the key sizes.
228 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
229 * the supplied scatterlist containing the blocks of data. The crypto
230 * API consumer is responsible for aligning the entries of the
231 * scatterlist properly and making sure the chunks are correctly
232 * sized. In case a software fallback was put in place in the
233 * @cra_init call, this function might need to use the fallback if
234 * the algorithm doesn't support all of the key sizes. In case the
235 * key was stored in transformation context, the key might need to be
236 * re-programmed into the hardware in this function. This function
237 * shall not modify the transformation context, as this function may
238 * be called in parallel with the same transformation object.
239 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
240 * and the conditions are exactly the same.
241 * @ivsize: IV size applicable for transformation. The consumer must provide an
242 * IV of exactly that size to perform the encrypt or decrypt operation.
244 * All fields except @ivsize are mandatory and must be filled.
246 struct ablkcipher_alg {
247 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
248 unsigned int keylen);
249 int (*encrypt)(struct ablkcipher_request *req);
250 int (*decrypt)(struct ablkcipher_request *req);
252 unsigned int min_keysize;
253 unsigned int max_keysize;
258 * struct blkcipher_alg - synchronous block cipher definition
259 * @min_keysize: see struct ablkcipher_alg
260 * @max_keysize: see struct ablkcipher_alg
261 * @setkey: see struct ablkcipher_alg
262 * @encrypt: see struct ablkcipher_alg
263 * @decrypt: see struct ablkcipher_alg
264 * @ivsize: see struct ablkcipher_alg
266 * All fields except @ivsize are mandatory and must be filled.
268 struct blkcipher_alg {
269 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
270 unsigned int keylen);
271 int (*encrypt)(struct blkcipher_desc *desc,
272 struct scatterlist *dst, struct scatterlist *src,
273 unsigned int nbytes);
274 int (*decrypt)(struct blkcipher_desc *desc,
275 struct scatterlist *dst, struct scatterlist *src,
276 unsigned int nbytes);
278 unsigned int min_keysize;
279 unsigned int max_keysize;
284 * struct cipher_alg - single-block symmetric ciphers definition
285 * @cia_min_keysize: Minimum key size supported by the transformation. This is
286 * the smallest key length supported by this transformation
287 * algorithm. This must be set to one of the pre-defined
288 * values as this is not hardware specific. Possible values
289 * for this field can be found via git grep "_MIN_KEY_SIZE"
291 * @cia_max_keysize: Maximum key size supported by the transformation. This is
292 * the largest key length supported by this transformation
293 * algorithm. This must be set to one of the pre-defined values
294 * as this is not hardware specific. Possible values for this
295 * field can be found via git grep "_MAX_KEY_SIZE"
297 * @cia_setkey: Set key for the transformation. This function is used to either
298 * program a supplied key into the hardware or store the key in the
299 * transformation context for programming it later. Note that this
300 * function does modify the transformation context. This function
301 * can be called multiple times during the existence of the
302 * transformation object, so one must make sure the key is properly
303 * reprogrammed into the hardware. This function is also
304 * responsible for checking the key length for validity.
305 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
306 * single block of data, which must be @cra_blocksize big. This
307 * always operates on a full @cra_blocksize and it is not possible
308 * to encrypt a block of smaller size. The supplied buffers must
309 * therefore also be at least of @cra_blocksize size. Both the
310 * input and output buffers are always aligned to @cra_alignmask.
311 * In case either of the input or output buffer supplied by user
312 * of the crypto API is not aligned to @cra_alignmask, the crypto
313 * API will re-align the buffers. The re-alignment means that a
314 * new buffer will be allocated, the data will be copied into the
315 * new buffer, then the processing will happen on the new buffer,
316 * then the data will be copied back into the original buffer and
317 * finally the new buffer will be freed. In case a software
318 * fallback was put in place in the @cra_init call, this function
319 * might need to use the fallback if the algorithm doesn't support
320 * all of the key sizes. In case the key was stored in
321 * transformation context, the key might need to be re-programmed
322 * into the hardware in this function. This function shall not
323 * modify the transformation context, as this function may be
324 * called in parallel with the same transformation object.
325 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
326 * @cia_encrypt, and the conditions are exactly the same.
328 * All fields are mandatory and must be filled.
331 unsigned int cia_min_keysize;
332 unsigned int cia_max_keysize;
333 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
334 unsigned int keylen);
335 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
336 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
339 struct compress_alg {
340 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
341 unsigned int slen, u8 *dst, unsigned int *dlen);
342 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
343 unsigned int slen, u8 *dst, unsigned int *dlen);
346 #ifdef CONFIG_CRYPTO_STATS
348 * struct crypto_istat_aead - statistics for AEAD algorithm
349 * @encrypt_cnt: number of encrypt requests
350 * @encrypt_tlen: total data size handled by encrypt requests
351 * @decrypt_cnt: number of decrypt requests
352 * @decrypt_tlen: total data size handled by decrypt requests
353 * @err_cnt: number of error for AEAD requests
355 struct crypto_istat_aead {
356 atomic64_t encrypt_cnt;
357 atomic64_t encrypt_tlen;
358 atomic64_t decrypt_cnt;
359 atomic64_t decrypt_tlen;
364 * struct crypto_istat_akcipher - statistics for akcipher algorithm
365 * @encrypt_cnt: number of encrypt requests
366 * @encrypt_tlen: total data size handled by encrypt requests
367 * @decrypt_cnt: number of decrypt requests
368 * @decrypt_tlen: total data size handled by decrypt requests
369 * @verify_cnt: number of verify operation
370 * @sign_cnt: number of sign requests
371 * @err_cnt: number of error for akcipher requests
373 struct crypto_istat_akcipher {
374 atomic64_t encrypt_cnt;
375 atomic64_t encrypt_tlen;
376 atomic64_t decrypt_cnt;
377 atomic64_t decrypt_tlen;
378 atomic64_t verify_cnt;
384 * struct crypto_istat_cipher - statistics for cipher algorithm
385 * @encrypt_cnt: number of encrypt requests
386 * @encrypt_tlen: total data size handled by encrypt requests
387 * @decrypt_cnt: number of decrypt requests
388 * @decrypt_tlen: total data size handled by decrypt requests
389 * @err_cnt: number of error for cipher requests
391 struct crypto_istat_cipher {
392 atomic64_t encrypt_cnt;
393 atomic64_t encrypt_tlen;
394 atomic64_t decrypt_cnt;
395 atomic64_t decrypt_tlen;
400 * struct crypto_istat_compress - statistics for compress algorithm
401 * @compress_cnt: number of compress requests
402 * @compress_tlen: total data size handled by compress requests
403 * @decompress_cnt: number of decompress requests
404 * @decompress_tlen: total data size handled by decompress requests
405 * @err_cnt: number of error for compress requests
407 struct crypto_istat_compress {
408 atomic64_t compress_cnt;
409 atomic64_t compress_tlen;
410 atomic64_t decompress_cnt;
411 atomic64_t decompress_tlen;
416 * struct crypto_istat_hash - statistics for has algorithm
417 * @hash_cnt: number of hash requests
418 * @hash_tlen: total data size hashed
419 * @err_cnt: number of error for hash requests
421 struct crypto_istat_hash {
423 atomic64_t hash_tlen;
428 * struct crypto_istat_kpp - statistics for KPP algorithm
429 * @setsecret_cnt: number of setsecrey operation
430 * @generate_public_key_cnt: number of generate_public_key operation
431 * @compute_shared_secret_cnt: number of compute_shared_secret operation
432 * @err_cnt: number of error for KPP requests
434 struct crypto_istat_kpp {
435 atomic64_t setsecret_cnt;
436 atomic64_t generate_public_key_cnt;
437 atomic64_t compute_shared_secret_cnt;
442 * struct crypto_istat_rng: statistics for RNG algorithm
443 * @generate_cnt: number of RNG generate requests
444 * @generate_tlen: total data size of generated data by the RNG
445 * @seed_cnt: number of times the RNG was seeded
446 * @err_cnt: number of error for RNG requests
448 struct crypto_istat_rng {
449 atomic64_t generate_cnt;
450 atomic64_t generate_tlen;
454 #endif /* CONFIG_CRYPTO_STATS */
456 #define cra_ablkcipher cra_u.ablkcipher
457 #define cra_blkcipher cra_u.blkcipher
458 #define cra_cipher cra_u.cipher
459 #define cra_compress cra_u.compress
462 * struct crypto_alg - definition of a cryptograpic cipher algorithm
463 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
464 * CRYPTO_ALG_* flags for the flags which go in here. Those are
465 * used for fine-tuning the description of the transformation
467 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
468 * of the smallest possible unit which can be transformed with
469 * this algorithm. The users must respect this value.
470 * In case of HASH transformation, it is possible for a smaller
471 * block than @cra_blocksize to be passed to the crypto API for
472 * transformation, in case of any other transformation type, an
473 * error will be returned upon any attempt to transform smaller
474 * than @cra_blocksize chunks.
475 * @cra_ctxsize: Size of the operational context of the transformation. This
476 * value informs the kernel crypto API about the memory size
477 * needed to be allocated for the transformation context.
478 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
479 * buffer containing the input data for the algorithm must be
480 * aligned to this alignment mask. The data buffer for the
481 * output data must be aligned to this alignment mask. Note that
482 * the Crypto API will do the re-alignment in software, but
483 * only under special conditions and there is a performance hit.
484 * The re-alignment happens at these occasions for different
485 * @cra_u types: cipher -- For both input data and output data
486 * buffer; ahash -- For output hash destination buf; shash --
487 * For output hash destination buf.
488 * This is needed on hardware which is flawed by design and
489 * cannot pick data from arbitrary addresses.
490 * @cra_priority: Priority of this transformation implementation. In case
491 * multiple transformations with same @cra_name are available to
492 * the Crypto API, the kernel will use the one with highest
494 * @cra_name: Generic name (usable by multiple implementations) of the
495 * transformation algorithm. This is the name of the transformation
496 * itself. This field is used by the kernel when looking up the
497 * providers of particular transformation.
498 * @cra_driver_name: Unique name of the transformation provider. This is the
499 * name of the provider of the transformation. This can be any
500 * arbitrary value, but in the usual case, this contains the
501 * name of the chip or provider and the name of the
502 * transformation algorithm.
503 * @cra_type: Type of the cryptographic transformation. This is a pointer to
504 * struct crypto_type, which implements callbacks common for all
505 * transformation types. There are multiple options:
506 * &crypto_blkcipher_type, &crypto_ablkcipher_type,
507 * &crypto_ahash_type, &crypto_rng_type.
508 * This field might be empty. In that case, there are no common
509 * callbacks. This is the case for: cipher, compress, shash.
510 * @cra_u: Callbacks implementing the transformation. This is a union of
511 * multiple structures. Depending on the type of transformation selected
512 * by @cra_type and @cra_flags above, the associated structure must be
513 * filled with callbacks. This field might be empty. This is the case
515 * @cra_init: Initialize the cryptographic transformation object. This function
516 * is used to initialize the cryptographic transformation object.
517 * This function is called only once at the instantiation time, right
518 * after the transformation context was allocated. In case the
519 * cryptographic hardware has some special requirements which need to
520 * be handled by software, this function shall check for the precise
521 * requirement of the transformation and put any software fallbacks
523 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
524 * counterpart to @cra_init, used to remove various changes set in
526 * @cra_u.ablkcipher: Union member which contains an asynchronous block cipher
527 * definition. See @struct @ablkcipher_alg.
528 * @cra_u.blkcipher: Union member which contains a synchronous block cipher
529 * definition See @struct @blkcipher_alg.
530 * @cra_u.cipher: Union member which contains a single-block symmetric cipher
531 * definition. See @struct @cipher_alg.
532 * @cra_u.compress: Union member which contains a (de)compression algorithm.
533 * See @struct @compress_alg.
534 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
535 * @cra_list: internally used
536 * @cra_users: internally used
537 * @cra_refcnt: internally used
538 * @cra_destroy: internally used
540 * @stats: union of all possible crypto_istat_xxx structures
541 * @stats.aead: statistics for AEAD algorithm
542 * @stats.akcipher: statistics for akcipher algorithm
543 * @stats.cipher: statistics for cipher algorithm
544 * @stats.compress: statistics for compress algorithm
545 * @stats.hash: statistics for hash algorithm
546 * @stats.rng: statistics for rng algorithm
547 * @stats.kpp: statistics for KPP algorithm
549 * The struct crypto_alg describes a generic Crypto API algorithm and is common
550 * for all of the transformations. Any variable not documented here shall not
551 * be used by a cipher implementation as it is internal to the Crypto API.
554 struct list_head cra_list;
555 struct list_head cra_users;
558 unsigned int cra_blocksize;
559 unsigned int cra_ctxsize;
560 unsigned int cra_alignmask;
563 refcount_t cra_refcnt;
565 char cra_name[CRYPTO_MAX_ALG_NAME];
566 char cra_driver_name[CRYPTO_MAX_ALG_NAME];
568 const struct crypto_type *cra_type;
571 struct ablkcipher_alg ablkcipher;
572 struct blkcipher_alg blkcipher;
573 struct cipher_alg cipher;
574 struct compress_alg compress;
577 int (*cra_init)(struct crypto_tfm *tfm);
578 void (*cra_exit)(struct crypto_tfm *tfm);
579 void (*cra_destroy)(struct crypto_alg *alg);
581 struct module *cra_module;
583 #ifdef CONFIG_CRYPTO_STATS
585 struct crypto_istat_aead aead;
586 struct crypto_istat_akcipher akcipher;
587 struct crypto_istat_cipher cipher;
588 struct crypto_istat_compress compress;
589 struct crypto_istat_hash hash;
590 struct crypto_istat_rng rng;
591 struct crypto_istat_kpp kpp;
593 #endif /* CONFIG_CRYPTO_STATS */
595 } CRYPTO_MINALIGN_ATTR;
597 #ifdef CONFIG_CRYPTO_STATS
598 void crypto_stats_init(struct crypto_alg *alg);
599 void crypto_stats_get(struct crypto_alg *alg);
600 void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg);
601 void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg);
602 void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
603 void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
604 void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg);
605 void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg);
606 void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
607 void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
608 void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg);
609 void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg);
610 void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg);
611 void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg);
612 void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret);
613 void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret);
614 void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret);
615 void crypto_stats_rng_seed(struct crypto_alg *alg, int ret);
616 void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret);
617 void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
618 void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
620 static inline void crypto_stats_init(struct crypto_alg *alg)
622 static inline void crypto_stats_get(struct crypto_alg *alg)
624 static inline void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg)
626 static inline void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg)
628 static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
630 static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
632 static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg)
634 static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg)
636 static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
638 static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
640 static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg)
642 static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg)
644 static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg)
646 static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg)
648 static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret)
650 static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret)
652 static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret)
654 static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret)
656 static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret)
658 static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
660 static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
664 * A helper struct for waiting for completion of async crypto ops
667 struct completion completion;
672 * Macro for declaring a crypto op async wait object on stack
674 #define DECLARE_CRYPTO_WAIT(_wait) \
675 struct crypto_wait _wait = { \
676 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
679 * Async ops completion helper functioons
681 void crypto_req_done(struct crypto_async_request *req, int err);
683 static inline int crypto_wait_req(int err, struct crypto_wait *wait)
688 wait_for_completion(&wait->completion);
689 reinit_completion(&wait->completion);
697 static inline void crypto_init_wait(struct crypto_wait *wait)
699 init_completion(&wait->completion);
703 * Algorithm registration interface.
705 int crypto_register_alg(struct crypto_alg *alg);
706 int crypto_unregister_alg(struct crypto_alg *alg);
707 int crypto_register_algs(struct crypto_alg *algs, int count);
708 int crypto_unregister_algs(struct crypto_alg *algs, int count);
711 * Algorithm query interface.
713 int crypto_has_alg(const char *name, u32 type, u32 mask);
716 * Transforms: user-instantiated objects which encapsulate algorithms
717 * and core processing logic. Managed via crypto_alloc_*() and
718 * crypto_free_*(), as well as the various helpers below.
721 struct ablkcipher_tfm {
722 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
723 unsigned int keylen);
724 int (*encrypt)(struct ablkcipher_request *req);
725 int (*decrypt)(struct ablkcipher_request *req);
727 struct crypto_ablkcipher *base;
730 unsigned int reqsize;
733 struct blkcipher_tfm {
735 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
736 unsigned int keylen);
737 int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
738 struct scatterlist *src, unsigned int nbytes);
739 int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
740 struct scatterlist *src, unsigned int nbytes);
744 int (*cit_setkey)(struct crypto_tfm *tfm,
745 const u8 *key, unsigned int keylen);
746 void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
747 void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
750 struct compress_tfm {
751 int (*cot_compress)(struct crypto_tfm *tfm,
752 const u8 *src, unsigned int slen,
753 u8 *dst, unsigned int *dlen);
754 int (*cot_decompress)(struct crypto_tfm *tfm,
755 const u8 *src, unsigned int slen,
756 u8 *dst, unsigned int *dlen);
759 #define crt_ablkcipher crt_u.ablkcipher
760 #define crt_blkcipher crt_u.blkcipher
761 #define crt_cipher crt_u.cipher
762 #define crt_compress crt_u.compress
769 struct ablkcipher_tfm ablkcipher;
770 struct blkcipher_tfm blkcipher;
771 struct cipher_tfm cipher;
772 struct compress_tfm compress;
775 void (*exit)(struct crypto_tfm *tfm);
777 struct crypto_alg *__crt_alg;
779 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
782 struct crypto_ablkcipher {
783 struct crypto_tfm base;
786 struct crypto_blkcipher {
787 struct crypto_tfm base;
790 struct crypto_cipher {
791 struct crypto_tfm base;
795 struct crypto_tfm base;
806 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
808 /* Maximum number of (rtattr) parameters for each template. */
809 #define CRYPTO_MAX_ATTRS 32
811 struct crypto_attr_alg {
812 char name[CRYPTO_MAX_ALG_NAME];
815 struct crypto_attr_type {
820 struct crypto_attr_u32 {
825 * Transform user interface.
828 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
829 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
831 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
833 return crypto_destroy_tfm(tfm, tfm);
836 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
839 * Transform helpers which query the underlying algorithm.
841 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
843 return tfm->__crt_alg->cra_name;
846 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
848 return tfm->__crt_alg->cra_driver_name;
851 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
853 return tfm->__crt_alg->cra_priority;
856 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
858 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
861 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
863 return tfm->__crt_alg->cra_blocksize;
866 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
868 return tfm->__crt_alg->cra_alignmask;
871 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
873 return tfm->crt_flags;
876 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
878 tfm->crt_flags |= flags;
881 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
883 tfm->crt_flags &= ~flags;
886 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
888 return tfm->__crt_ctx;
891 static inline unsigned int crypto_tfm_ctx_alignment(void)
893 struct crypto_tfm *tfm;
894 return __alignof__(tfm->__crt_ctx);
900 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
901 struct crypto_tfm *tfm)
903 return (struct crypto_ablkcipher *)tfm;
906 static inline u32 crypto_skcipher_type(u32 type)
908 type &= ~CRYPTO_ALG_TYPE_MASK;
909 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
913 static inline u32 crypto_skcipher_mask(u32 mask)
915 mask &= ~CRYPTO_ALG_TYPE_MASK;
916 mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
921 * DOC: Asynchronous Block Cipher API
923 * Asynchronous block cipher API is used with the ciphers of type
924 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
926 * Asynchronous cipher operations imply that the function invocation for a
927 * cipher request returns immediately before the completion of the operation.
928 * The cipher request is scheduled as a separate kernel thread and therefore
929 * load-balanced on the different CPUs via the process scheduler. To allow
930 * the kernel crypto API to inform the caller about the completion of a cipher
931 * request, the caller must provide a callback function. That function is
932 * invoked with the cipher handle when the request completes.
934 * To support the asynchronous operation, additional information than just the
935 * cipher handle must be supplied to the kernel crypto API. That additional
936 * information is given by filling in the ablkcipher_request data structure.
938 * For the asynchronous block cipher API, the state is maintained with the tfm
939 * cipher handle. A single tfm can be used across multiple calls and in
940 * parallel. For asynchronous block cipher calls, context data supplied and
941 * only used by the caller can be referenced the request data structure in
942 * addition to the IV used for the cipher request. The maintenance of such
943 * state information would be important for a crypto driver implementer to
944 * have, because when calling the callback function upon completion of the
945 * cipher operation, that callback function may need some information about
946 * which operation just finished if it invoked multiple in parallel. This
947 * state information is unused by the kernel crypto API.
950 static inline struct crypto_tfm *crypto_ablkcipher_tfm(
951 struct crypto_ablkcipher *tfm)
957 * crypto_free_ablkcipher() - zeroize and free cipher handle
958 * @tfm: cipher handle to be freed
960 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
962 crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
966 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
967 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
969 * @type: specifies the type of the cipher
970 * @mask: specifies the mask for the cipher
972 * Return: true when the ablkcipher is known to the kernel crypto API; false
975 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
978 return crypto_has_alg(alg_name, crypto_skcipher_type(type),
979 crypto_skcipher_mask(mask));
982 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
983 struct crypto_ablkcipher *tfm)
985 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
989 * crypto_ablkcipher_ivsize() - obtain IV size
990 * @tfm: cipher handle
992 * The size of the IV for the ablkcipher referenced by the cipher handle is
993 * returned. This IV size may be zero if the cipher does not need an IV.
995 * Return: IV size in bytes
997 static inline unsigned int crypto_ablkcipher_ivsize(
998 struct crypto_ablkcipher *tfm)
1000 return crypto_ablkcipher_crt(tfm)->ivsize;
1004 * crypto_ablkcipher_blocksize() - obtain block size of cipher
1005 * @tfm: cipher handle
1007 * The block size for the ablkcipher referenced with the cipher handle is
1008 * returned. The caller may use that information to allocate appropriate
1009 * memory for the data returned by the encryption or decryption operation
1011 * Return: block size of cipher
1013 static inline unsigned int crypto_ablkcipher_blocksize(
1014 struct crypto_ablkcipher *tfm)
1016 return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
1019 static inline unsigned int crypto_ablkcipher_alignmask(
1020 struct crypto_ablkcipher *tfm)
1022 return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
1025 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
1027 return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
1030 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
1033 crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
1036 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
1039 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
1043 * crypto_ablkcipher_setkey() - set key for cipher
1044 * @tfm: cipher handle
1045 * @key: buffer holding the key
1046 * @keylen: length of the key in bytes
1048 * The caller provided key is set for the ablkcipher referenced by the cipher
1051 * Note, the key length determines the cipher type. Many block ciphers implement
1052 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1053 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1056 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1058 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
1059 const u8 *key, unsigned int keylen)
1061 struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
1063 return crt->setkey(crt->base, key, keylen);
1067 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
1068 * @req: ablkcipher_request out of which the cipher handle is to be obtained
1070 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
1073 * Return: crypto_ablkcipher handle
1075 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
1076 struct ablkcipher_request *req)
1078 return __crypto_ablkcipher_cast(req->base.tfm);
1082 * crypto_ablkcipher_encrypt() - encrypt plaintext
1083 * @req: reference to the ablkcipher_request handle that holds all information
1084 * needed to perform the cipher operation
1086 * Encrypt plaintext data using the ablkcipher_request handle. That data
1087 * structure and how it is filled with data is discussed with the
1088 * ablkcipher_request_* functions.
1090 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1092 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
1094 struct ablkcipher_tfm *crt =
1095 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
1096 struct crypto_alg *alg = crt->base->base.__crt_alg;
1097 unsigned int nbytes = req->nbytes;
1100 crypto_stats_get(alg);
1101 ret = crt->encrypt(req);
1102 crypto_stats_ablkcipher_encrypt(nbytes, ret, alg);
1107 * crypto_ablkcipher_decrypt() - decrypt ciphertext
1108 * @req: reference to the ablkcipher_request handle that holds all information
1109 * needed to perform the cipher operation
1111 * Decrypt ciphertext data using the ablkcipher_request handle. That data
1112 * structure and how it is filled with data is discussed with the
1113 * ablkcipher_request_* functions.
1115 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1117 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
1119 struct ablkcipher_tfm *crt =
1120 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
1121 struct crypto_alg *alg = crt->base->base.__crt_alg;
1122 unsigned int nbytes = req->nbytes;
1125 crypto_stats_get(alg);
1126 ret = crt->decrypt(req);
1127 crypto_stats_ablkcipher_decrypt(nbytes, ret, alg);
1132 * DOC: Asynchronous Cipher Request Handle
1134 * The ablkcipher_request data structure contains all pointers to data
1135 * required for the asynchronous cipher operation. This includes the cipher
1136 * handle (which can be used by multiple ablkcipher_request instances), pointer
1137 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
1138 * as a handle to the ablkcipher_request_* API calls in a similar way as
1139 * ablkcipher handle to the crypto_ablkcipher_* API calls.
1143 * crypto_ablkcipher_reqsize() - obtain size of the request data structure
1144 * @tfm: cipher handle
1146 * Return: number of bytes
1148 static inline unsigned int crypto_ablkcipher_reqsize(
1149 struct crypto_ablkcipher *tfm)
1151 return crypto_ablkcipher_crt(tfm)->reqsize;
1155 * ablkcipher_request_set_tfm() - update cipher handle reference in request
1156 * @req: request handle to be modified
1157 * @tfm: cipher handle that shall be added to the request handle
1159 * Allow the caller to replace the existing ablkcipher handle in the request
1160 * data structure with a different one.
1162 static inline void ablkcipher_request_set_tfm(
1163 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
1165 req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
1168 static inline struct ablkcipher_request *ablkcipher_request_cast(
1169 struct crypto_async_request *req)
1171 return container_of(req, struct ablkcipher_request, base);
1175 * ablkcipher_request_alloc() - allocate request data structure
1176 * @tfm: cipher handle to be registered with the request
1177 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
1179 * Allocate the request data structure that must be used with the ablkcipher
1180 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
1181 * handle is registered in the request data structure.
1183 * Return: allocated request handle in case of success, or NULL if out of memory
1185 static inline struct ablkcipher_request *ablkcipher_request_alloc(
1186 struct crypto_ablkcipher *tfm, gfp_t gfp)
1188 struct ablkcipher_request *req;
1190 req = kmalloc(sizeof(struct ablkcipher_request) +
1191 crypto_ablkcipher_reqsize(tfm), gfp);
1194 ablkcipher_request_set_tfm(req, tfm);
1200 * ablkcipher_request_free() - zeroize and free request data structure
1201 * @req: request data structure cipher handle to be freed
1203 static inline void ablkcipher_request_free(struct ablkcipher_request *req)
1209 * ablkcipher_request_set_callback() - set asynchronous callback function
1210 * @req: request handle
1211 * @flags: specify zero or an ORing of the flags
1212 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1213 * increase the wait queue beyond the initial maximum size;
1214 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1215 * @compl: callback function pointer to be registered with the request handle
1216 * @data: The data pointer refers to memory that is not used by the kernel
1217 * crypto API, but provided to the callback function for it to use. Here,
1218 * the caller can provide a reference to memory the callback function can
1219 * operate on. As the callback function is invoked asynchronously to the
1220 * related functionality, it may need to access data structures of the
1221 * related functionality which can be referenced using this pointer. The
1222 * callback function can access the memory via the "data" field in the
1223 * crypto_async_request data structure provided to the callback function.
1225 * This function allows setting the callback function that is triggered once the
1226 * cipher operation completes.
1228 * The callback function is registered with the ablkcipher_request handle and
1229 * must comply with the following template::
1231 * void callback_function(struct crypto_async_request *req, int error)
1233 static inline void ablkcipher_request_set_callback(
1234 struct ablkcipher_request *req,
1235 u32 flags, crypto_completion_t compl, void *data)
1237 req->base.complete = compl;
1238 req->base.data = data;
1239 req->base.flags = flags;
1243 * ablkcipher_request_set_crypt() - set data buffers
1244 * @req: request handle
1245 * @src: source scatter / gather list
1246 * @dst: destination scatter / gather list
1247 * @nbytes: number of bytes to process from @src
1248 * @iv: IV for the cipher operation which must comply with the IV size defined
1249 * by crypto_ablkcipher_ivsize
1251 * This function allows setting of the source data and destination data
1252 * scatter / gather lists.
1254 * For encryption, the source is treated as the plaintext and the
1255 * destination is the ciphertext. For a decryption operation, the use is
1256 * reversed - the source is the ciphertext and the destination is the plaintext.
1258 static inline void ablkcipher_request_set_crypt(
1259 struct ablkcipher_request *req,
1260 struct scatterlist *src, struct scatterlist *dst,
1261 unsigned int nbytes, void *iv)
1265 req->nbytes = nbytes;
1270 * DOC: Synchronous Block Cipher API
1272 * The synchronous block cipher API is used with the ciphers of type
1273 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1275 * Synchronous calls, have a context in the tfm. But since a single tfm can be
1276 * used in multiple calls and in parallel, this info should not be changeable
1277 * (unless a lock is used). This applies, for example, to the symmetric key.
1278 * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1279 * structure for synchronous blkcipher api. So, its the only state info that can
1280 * be kept for synchronous calls without using a big lock across a tfm.
1282 * The block cipher API allows the use of a complete cipher, i.e. a cipher
1283 * consisting of a template (a block chaining mode) and a single block cipher
1284 * primitive (e.g. AES).
1286 * The plaintext data buffer and the ciphertext data buffer are pointed to
1287 * by using scatter/gather lists. The cipher operation is performed
1288 * on all segments of the provided scatter/gather lists.
1290 * The kernel crypto API supports a cipher operation "in-place" which means that
1291 * the caller may provide the same scatter/gather list for the plaintext and
1292 * cipher text. After the completion of the cipher operation, the plaintext
1293 * data is replaced with the ciphertext data in case of an encryption and vice
1294 * versa for a decryption. The caller must ensure that the scatter/gather lists
1295 * for the output data point to sufficiently large buffers, i.e. multiples of
1296 * the block size of the cipher.
1299 static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1300 struct crypto_tfm *tfm)
1302 return (struct crypto_blkcipher *)tfm;
1305 static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1306 struct crypto_tfm *tfm)
1308 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1309 return __crypto_blkcipher_cast(tfm);
1313 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1314 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1316 * @type: specifies the type of the cipher
1317 * @mask: specifies the mask for the cipher
1319 * Allocate a cipher handle for a block cipher. The returned struct
1320 * crypto_blkcipher is the cipher handle that is required for any subsequent
1321 * API invocation for that block cipher.
1323 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1324 * of an error, PTR_ERR() returns the error code.
1326 static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1327 const char *alg_name, u32 type, u32 mask)
1329 type &= ~CRYPTO_ALG_TYPE_MASK;
1330 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1331 mask |= CRYPTO_ALG_TYPE_MASK;
1333 return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1336 static inline struct crypto_tfm *crypto_blkcipher_tfm(
1337 struct crypto_blkcipher *tfm)
1343 * crypto_free_blkcipher() - zeroize and free the block cipher handle
1344 * @tfm: cipher handle to be freed
1346 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1348 crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1352 * crypto_has_blkcipher() - Search for the availability of a block cipher
1353 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1355 * @type: specifies the type of the cipher
1356 * @mask: specifies the mask for the cipher
1358 * Return: true when the block cipher is known to the kernel crypto API; false
1361 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1363 type &= ~CRYPTO_ALG_TYPE_MASK;
1364 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1365 mask |= CRYPTO_ALG_TYPE_MASK;
1367 return crypto_has_alg(alg_name, type, mask);
1371 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1372 * @tfm: cipher handle
1374 * Return: The character string holding the name of the cipher
1376 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1378 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1381 static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1382 struct crypto_blkcipher *tfm)
1384 return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1387 static inline struct blkcipher_alg *crypto_blkcipher_alg(
1388 struct crypto_blkcipher *tfm)
1390 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1394 * crypto_blkcipher_ivsize() - obtain IV size
1395 * @tfm: cipher handle
1397 * The size of the IV for the block cipher referenced by the cipher handle is
1398 * returned. This IV size may be zero if the cipher does not need an IV.
1400 * Return: IV size in bytes
1402 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1404 return crypto_blkcipher_alg(tfm)->ivsize;
1408 * crypto_blkcipher_blocksize() - obtain block size of cipher
1409 * @tfm: cipher handle
1411 * The block size for the block cipher referenced with the cipher handle is
1412 * returned. The caller may use that information to allocate appropriate
1413 * memory for the data returned by the encryption or decryption operation.
1415 * Return: block size of cipher
1417 static inline unsigned int crypto_blkcipher_blocksize(
1418 struct crypto_blkcipher *tfm)
1420 return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1423 static inline unsigned int crypto_blkcipher_alignmask(
1424 struct crypto_blkcipher *tfm)
1426 return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1429 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1431 return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1434 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1437 crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1440 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1443 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1447 * crypto_blkcipher_setkey() - set key for cipher
1448 * @tfm: cipher handle
1449 * @key: buffer holding the key
1450 * @keylen: length of the key in bytes
1452 * The caller provided key is set for the block cipher referenced by the cipher
1455 * Note, the key length determines the cipher type. Many block ciphers implement
1456 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1457 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1460 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1462 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1463 const u8 *key, unsigned int keylen)
1465 return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1470 * crypto_blkcipher_encrypt() - encrypt plaintext
1471 * @desc: reference to the block cipher handle with meta data
1472 * @dst: scatter/gather list that is filled by the cipher operation with the
1474 * @src: scatter/gather list that holds the plaintext
1475 * @nbytes: number of bytes of the plaintext to encrypt.
1477 * Encrypt plaintext data using the IV set by the caller with a preceding
1478 * call of crypto_blkcipher_set_iv.
1480 * The blkcipher_desc data structure must be filled by the caller and can
1481 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1482 * with the block cipher handle; desc.flags is filled with either
1483 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1485 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1487 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1488 struct scatterlist *dst,
1489 struct scatterlist *src,
1490 unsigned int nbytes)
1492 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1493 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1497 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1498 * @desc: reference to the block cipher handle with meta data
1499 * @dst: scatter/gather list that is filled by the cipher operation with the
1501 * @src: scatter/gather list that holds the plaintext
1502 * @nbytes: number of bytes of the plaintext to encrypt.
1504 * Encrypt plaintext data with the use of an IV that is solely used for this
1505 * cipher operation. Any previously set IV is not used.
1507 * The blkcipher_desc data structure must be filled by the caller and can
1508 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1509 * with the block cipher handle; desc.info is filled with the IV to be used for
1510 * the current operation; desc.flags is filled with either
1511 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1513 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1515 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1516 struct scatterlist *dst,
1517 struct scatterlist *src,
1518 unsigned int nbytes)
1520 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1524 * crypto_blkcipher_decrypt() - decrypt ciphertext
1525 * @desc: reference to the block cipher handle with meta data
1526 * @dst: scatter/gather list that is filled by the cipher operation with the
1528 * @src: scatter/gather list that holds the ciphertext
1529 * @nbytes: number of bytes of the ciphertext to decrypt.
1531 * Decrypt ciphertext data using the IV set by the caller with a preceding
1532 * call of crypto_blkcipher_set_iv.
1534 * The blkcipher_desc data structure must be filled by the caller as documented
1535 * for the crypto_blkcipher_encrypt call above.
1537 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1540 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1541 struct scatterlist *dst,
1542 struct scatterlist *src,
1543 unsigned int nbytes)
1545 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1546 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1550 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1551 * @desc: reference to the block cipher handle with meta data
1552 * @dst: scatter/gather list that is filled by the cipher operation with the
1554 * @src: scatter/gather list that holds the ciphertext
1555 * @nbytes: number of bytes of the ciphertext to decrypt.
1557 * Decrypt ciphertext data with the use of an IV that is solely used for this
1558 * cipher operation. Any previously set IV is not used.
1560 * The blkcipher_desc data structure must be filled by the caller as documented
1561 * for the crypto_blkcipher_encrypt_iv call above.
1563 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1565 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1566 struct scatterlist *dst,
1567 struct scatterlist *src,
1568 unsigned int nbytes)
1570 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1574 * crypto_blkcipher_set_iv() - set IV for cipher
1575 * @tfm: cipher handle
1576 * @src: buffer holding the IV
1577 * @len: length of the IV in bytes
1579 * The caller provided IV is set for the block cipher referenced by the cipher
1582 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1583 const u8 *src, unsigned int len)
1585 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1589 * crypto_blkcipher_get_iv() - obtain IV from cipher
1590 * @tfm: cipher handle
1591 * @dst: buffer filled with the IV
1592 * @len: length of the buffer dst
1594 * The caller can obtain the IV set for the block cipher referenced by the
1595 * cipher handle and store it into the user-provided buffer. If the buffer
1596 * has an insufficient space, the IV is truncated to fit the buffer.
1598 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1599 u8 *dst, unsigned int len)
1601 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1605 * DOC: Single Block Cipher API
1607 * The single block cipher API is used with the ciphers of type
1608 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1610 * Using the single block cipher API calls, operations with the basic cipher
1611 * primitive can be implemented. These cipher primitives exclude any block
1612 * chaining operations including IV handling.
1614 * The purpose of this single block cipher API is to support the implementation
1615 * of templates or other concepts that only need to perform the cipher operation
1616 * on one block at a time. Templates invoke the underlying cipher primitive
1617 * block-wise and process either the input or the output data of these cipher
1621 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1623 return (struct crypto_cipher *)tfm;
1626 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1628 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1629 return __crypto_cipher_cast(tfm);
1633 * crypto_alloc_cipher() - allocate single block cipher handle
1634 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1635 * single block cipher
1636 * @type: specifies the type of the cipher
1637 * @mask: specifies the mask for the cipher
1639 * Allocate a cipher handle for a single block cipher. The returned struct
1640 * crypto_cipher is the cipher handle that is required for any subsequent API
1641 * invocation for that single block cipher.
1643 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1644 * of an error, PTR_ERR() returns the error code.
1646 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1649 type &= ~CRYPTO_ALG_TYPE_MASK;
1650 type |= CRYPTO_ALG_TYPE_CIPHER;
1651 mask |= CRYPTO_ALG_TYPE_MASK;
1653 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1656 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1662 * crypto_free_cipher() - zeroize and free the single block cipher handle
1663 * @tfm: cipher handle to be freed
1665 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1667 crypto_free_tfm(crypto_cipher_tfm(tfm));
1671 * crypto_has_cipher() - Search for the availability of a single block cipher
1672 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1673 * single block cipher
1674 * @type: specifies the type of the cipher
1675 * @mask: specifies the mask for the cipher
1677 * Return: true when the single block cipher is known to the kernel crypto API;
1680 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1682 type &= ~CRYPTO_ALG_TYPE_MASK;
1683 type |= CRYPTO_ALG_TYPE_CIPHER;
1684 mask |= CRYPTO_ALG_TYPE_MASK;
1686 return crypto_has_alg(alg_name, type, mask);
1689 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1691 return &crypto_cipher_tfm(tfm)->crt_cipher;
1695 * crypto_cipher_blocksize() - obtain block size for cipher
1696 * @tfm: cipher handle
1698 * The block size for the single block cipher referenced with the cipher handle
1699 * tfm is returned. The caller may use that information to allocate appropriate
1700 * memory for the data returned by the encryption or decryption operation
1702 * Return: block size of cipher
1704 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1706 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1709 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1711 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1714 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1716 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1719 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1722 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1725 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1728 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1732 * crypto_cipher_setkey() - set key for cipher
1733 * @tfm: cipher handle
1734 * @key: buffer holding the key
1735 * @keylen: length of the key in bytes
1737 * The caller provided key is set for the single block cipher referenced by the
1740 * Note, the key length determines the cipher type. Many block ciphers implement
1741 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1742 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1745 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1747 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1748 const u8 *key, unsigned int keylen)
1750 return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1755 * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1756 * @tfm: cipher handle
1757 * @dst: points to the buffer that will be filled with the ciphertext
1758 * @src: buffer holding the plaintext to be encrypted
1760 * Invoke the encryption operation of one block. The caller must ensure that
1761 * the plaintext and ciphertext buffers are at least one block in size.
1763 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1764 u8 *dst, const u8 *src)
1766 crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1771 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1772 * @tfm: cipher handle
1773 * @dst: points to the buffer that will be filled with the plaintext
1774 * @src: buffer holding the ciphertext to be decrypted
1776 * Invoke the decryption operation of one block. The caller must ensure that
1777 * the plaintext and ciphertext buffers are at least one block in size.
1779 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1780 u8 *dst, const u8 *src)
1782 crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1786 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1788 return (struct crypto_comp *)tfm;
1791 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1793 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1794 CRYPTO_ALG_TYPE_MASK);
1795 return __crypto_comp_cast(tfm);
1798 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1801 type &= ~CRYPTO_ALG_TYPE_MASK;
1802 type |= CRYPTO_ALG_TYPE_COMPRESS;
1803 mask |= CRYPTO_ALG_TYPE_MASK;
1805 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1808 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1813 static inline void crypto_free_comp(struct crypto_comp *tfm)
1815 crypto_free_tfm(crypto_comp_tfm(tfm));
1818 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1820 type &= ~CRYPTO_ALG_TYPE_MASK;
1821 type |= CRYPTO_ALG_TYPE_COMPRESS;
1822 mask |= CRYPTO_ALG_TYPE_MASK;
1824 return crypto_has_alg(alg_name, type, mask);
1827 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1829 return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1832 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1834 return &crypto_comp_tfm(tfm)->crt_compress;
1837 static inline int crypto_comp_compress(struct crypto_comp *tfm,
1838 const u8 *src, unsigned int slen,
1839 u8 *dst, unsigned int *dlen)
1841 return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1842 src, slen, dst, dlen);
1845 static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1846 const u8 *src, unsigned int slen,
1847 u8 *dst, unsigned int *dlen)
1849 return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1850 src, slen, dst, dlen);
1853 #endif /* _LINUX_CRYPTO_H */