5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
8 * Additional technical information is available on
9 * http://www.linux-mtd.infradead.org/doc/nand.html
15 * David Woodhouse for adding multichip support
17 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
18 * rework for 2K page size chips
21 * Enable cached programming for 2k page size chips
22 * Check, if mtd->ecctype should be set to MTD_ECC_HW
23 * if we have HW ECC support.
24 * BBT table is not serialized, has to be fixed
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License version 2 as
28 * published by the Free Software Foundation.
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/module.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/err.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/nand_bch.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
50 #include <linux/mtd/partitions.h>
52 /* Define default oob placement schemes for large and small page devices */
53 static struct nand_ecclayout nand_oob_8 = {
63 static struct nand_ecclayout nand_oob_16 = {
65 .eccpos = {0, 1, 2, 3, 6, 7},
71 static struct nand_ecclayout nand_oob_64 = {
74 40, 41, 42, 43, 44, 45, 46, 47,
75 48, 49, 50, 51, 52, 53, 54, 55,
76 56, 57, 58, 59, 60, 61, 62, 63},
82 static struct nand_ecclayout nand_oob_128 = {
85 80, 81, 82, 83, 84, 85, 86, 87,
86 88, 89, 90, 91, 92, 93, 94, 95,
87 96, 97, 98, 99, 100, 101, 102, 103,
88 104, 105, 106, 107, 108, 109, 110, 111,
89 112, 113, 114, 115, 116, 117, 118, 119,
90 120, 121, 122, 123, 124, 125, 126, 127},
96 static int nand_get_device(struct mtd_info *mtd, int new_state);
98 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
99 struct mtd_oob_ops *ops);
102 * For devices which display every fart in the system on a separate LED. Is
103 * compiled away when LED support is disabled.
105 DEFINE_LED_TRIGGER(nand_led_trigger);
107 static int check_offs_len(struct mtd_info *mtd,
108 loff_t ofs, uint64_t len)
110 struct nand_chip *chip = mtd->priv;
113 /* Start address must align on block boundary */
114 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
115 pr_debug("%s: unaligned address\n", __func__);
119 /* Length must align on block boundary */
120 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
121 pr_debug("%s: length not block aligned\n", __func__);
129 * nand_release_device - [GENERIC] release chip
130 * @mtd: MTD device structure
132 * Release chip lock and wake up anyone waiting on the device.
134 static void nand_release_device(struct mtd_info *mtd)
136 struct nand_chip *chip = mtd->priv;
138 /* Release the controller and the chip */
139 spin_lock(&chip->controller->lock);
140 chip->controller->active = NULL;
141 chip->state = FL_READY;
142 wake_up(&chip->controller->wq);
143 spin_unlock(&chip->controller->lock);
147 * nand_read_byte - [DEFAULT] read one byte from the chip
148 * @mtd: MTD device structure
150 * Default read function for 8bit buswidth
152 static uint8_t nand_read_byte(struct mtd_info *mtd)
154 struct nand_chip *chip = mtd->priv;
155 return readb(chip->IO_ADDR_R);
159 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
160 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
161 * @mtd: MTD device structure
163 * Default read function for 16bit buswidth with endianness conversion.
166 static uint8_t nand_read_byte16(struct mtd_info *mtd)
168 struct nand_chip *chip = mtd->priv;
169 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
173 * nand_read_word - [DEFAULT] read one word from the chip
174 * @mtd: MTD device structure
176 * Default read function for 16bit buswidth without endianness conversion.
178 static u16 nand_read_word(struct mtd_info *mtd)
180 struct nand_chip *chip = mtd->priv;
181 return readw(chip->IO_ADDR_R);
185 * nand_select_chip - [DEFAULT] control CE line
186 * @mtd: MTD device structure
187 * @chipnr: chipnumber to select, -1 for deselect
189 * Default select function for 1 chip devices.
191 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
193 struct nand_chip *chip = mtd->priv;
197 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
208 * nand_write_byte - [DEFAULT] write single byte to chip
209 * @mtd: MTD device structure
210 * @byte: value to write
212 * Default function to write a byte to I/O[7:0]
214 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
216 struct nand_chip *chip = mtd->priv;
218 chip->write_buf(mtd, &byte, 1);
222 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
223 * @mtd: MTD device structure
224 * @byte: value to write
226 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
228 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
230 struct nand_chip *chip = mtd->priv;
231 uint16_t word = byte;
234 * It's not entirely clear what should happen to I/O[15:8] when writing
235 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
237 * When the host supports a 16-bit bus width, only data is
238 * transferred at the 16-bit width. All address and command line
239 * transfers shall use only the lower 8-bits of the data bus. During
240 * command transfers, the host may place any value on the upper
241 * 8-bits of the data bus. During address transfers, the host shall
242 * set the upper 8-bits of the data bus to 00h.
244 * One user of the write_byte callback is nand_onfi_set_features. The
245 * four parameters are specified to be written to I/O[7:0], but this is
246 * neither an address nor a command transfer. Let's assume a 0 on the
247 * upper I/O lines is OK.
249 chip->write_buf(mtd, (uint8_t *)&word, 2);
253 * nand_write_buf - [DEFAULT] write buffer to chip
254 * @mtd: MTD device structure
256 * @len: number of bytes to write
258 * Default write function for 8bit buswidth.
260 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
262 struct nand_chip *chip = mtd->priv;
264 iowrite8_rep(chip->IO_ADDR_W, buf, len);
268 * nand_read_buf - [DEFAULT] read chip data into buffer
269 * @mtd: MTD device structure
270 * @buf: buffer to store date
271 * @len: number of bytes to read
273 * Default read function for 8bit buswidth.
275 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
277 struct nand_chip *chip = mtd->priv;
279 ioread8_rep(chip->IO_ADDR_R, buf, len);
283 * nand_write_buf16 - [DEFAULT] write buffer to chip
284 * @mtd: MTD device structure
286 * @len: number of bytes to write
288 * Default write function for 16bit buswidth.
290 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
292 struct nand_chip *chip = mtd->priv;
293 u16 *p = (u16 *) buf;
295 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
299 * nand_read_buf16 - [DEFAULT] read chip data into buffer
300 * @mtd: MTD device structure
301 * @buf: buffer to store date
302 * @len: number of bytes to read
304 * Default read function for 16bit buswidth.
306 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
308 struct nand_chip *chip = mtd->priv;
309 u16 *p = (u16 *) buf;
311 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
315 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
316 * @mtd: MTD device structure
317 * @ofs: offset from device start
318 * @getchip: 0, if the chip is already selected
320 * Check, if the block is bad.
322 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
324 int page, chipnr, res = 0, i = 0;
325 struct nand_chip *chip = mtd->priv;
328 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
329 ofs += mtd->erasesize - mtd->writesize;
331 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
334 chipnr = (int)(ofs >> chip->chip_shift);
336 nand_get_device(mtd, FL_READING);
338 /* Select the NAND device */
339 chip->select_chip(mtd, chipnr);
343 if (chip->options & NAND_BUSWIDTH_16) {
344 chip->cmdfunc(mtd, NAND_CMD_READOOB,
345 chip->badblockpos & 0xFE, page);
346 bad = cpu_to_le16(chip->read_word(mtd));
347 if (chip->badblockpos & 0x1)
352 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
354 bad = chip->read_byte(mtd);
357 if (likely(chip->badblockbits == 8))
360 res = hweight8(bad) < chip->badblockbits;
361 ofs += mtd->writesize;
362 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
364 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
367 chip->select_chip(mtd, -1);
368 nand_release_device(mtd);
375 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
376 * @mtd: MTD device structure
377 * @ofs: offset from device start
379 * This is the default implementation, which can be overridden by a hardware
380 * specific driver. It provides the details for writing a bad block marker to a
383 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
385 struct nand_chip *chip = mtd->priv;
386 struct mtd_oob_ops ops;
387 uint8_t buf[2] = { 0, 0 };
388 int ret = 0, res, i = 0;
392 ops.ooboffs = chip->badblockpos;
393 if (chip->options & NAND_BUSWIDTH_16) {
394 ops.ooboffs &= ~0x01;
395 ops.len = ops.ooblen = 2;
397 ops.len = ops.ooblen = 1;
399 ops.mode = MTD_OPS_PLACE_OOB;
401 /* Write to first/last page(s) if necessary */
402 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
403 ofs += mtd->erasesize - mtd->writesize;
405 res = nand_do_write_oob(mtd, ofs, &ops);
410 ofs += mtd->writesize;
411 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
417 * nand_block_markbad_lowlevel - mark a block bad
418 * @mtd: MTD device structure
419 * @ofs: offset from device start
421 * This function performs the generic NAND bad block marking steps (i.e., bad
422 * block table(s) and/or marker(s)). We only allow the hardware driver to
423 * specify how to write bad block markers to OOB (chip->block_markbad).
425 * We try operations in the following order:
426 * (1) erase the affected block, to allow OOB marker to be written cleanly
427 * (2) write bad block marker to OOB area of affected block (unless flag
428 * NAND_BBT_NO_OOB_BBM is present)
430 * Note that we retain the first error encountered in (2) or (3), finish the
431 * procedures, and dump the error in the end.
433 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
435 struct nand_chip *chip = mtd->priv;
438 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
439 struct erase_info einfo;
441 /* Attempt erase before marking OOB */
442 memset(&einfo, 0, sizeof(einfo));
445 einfo.len = 1ULL << chip->phys_erase_shift;
446 nand_erase_nand(mtd, &einfo, 0);
448 /* Write bad block marker to OOB */
449 nand_get_device(mtd, FL_WRITING);
450 ret = chip->block_markbad(mtd, ofs);
451 nand_release_device(mtd);
454 /* Mark block bad in BBT */
456 res = nand_markbad_bbt(mtd, ofs);
462 mtd->ecc_stats.badblocks++;
468 * nand_check_wp - [GENERIC] check if the chip is write protected
469 * @mtd: MTD device structure
471 * Check, if the device is write protected. The function expects, that the
472 * device is already selected.
474 static int nand_check_wp(struct mtd_info *mtd)
476 struct nand_chip *chip = mtd->priv;
478 /* Broken xD cards report WP despite being writable */
479 if (chip->options & NAND_BROKEN_XD)
482 /* Check the WP bit */
483 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
484 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
488 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
489 * @mtd: MTD device structure
490 * @ofs: offset from device start
492 * Check if the block is mark as reserved.
494 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
496 struct nand_chip *chip = mtd->priv;
500 /* Return info from the table */
501 return nand_isreserved_bbt(mtd, ofs);
505 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
506 * @mtd: MTD device structure
507 * @ofs: offset from device start
508 * @getchip: 0, if the chip is already selected
509 * @allowbbt: 1, if its allowed to access the bbt area
511 * Check, if the block is bad. Either by reading the bad block table or
512 * calling of the scan function.
514 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
517 struct nand_chip *chip = mtd->priv;
520 return chip->block_bad(mtd, ofs, getchip);
522 /* Return info from the table */
523 return nand_isbad_bbt(mtd, ofs, allowbbt);
527 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
528 * @mtd: MTD device structure
531 * Helper function for nand_wait_ready used when needing to wait in interrupt
534 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
536 struct nand_chip *chip = mtd->priv;
539 /* Wait for the device to get ready */
540 for (i = 0; i < timeo; i++) {
541 if (chip->dev_ready(mtd))
543 touch_softlockup_watchdog();
548 /* Wait for the ready pin, after a command. The timeout is caught later. */
549 void nand_wait_ready(struct mtd_info *mtd)
551 struct nand_chip *chip = mtd->priv;
552 unsigned long timeo = jiffies + msecs_to_jiffies(20);
555 if (in_interrupt() || oops_in_progress)
556 return panic_nand_wait_ready(mtd, 400);
558 led_trigger_event(nand_led_trigger, LED_FULL);
559 /* Wait until command is processed or timeout occurs */
561 if (chip->dev_ready(mtd))
563 touch_softlockup_watchdog();
564 } while (time_before(jiffies, timeo));
565 led_trigger_event(nand_led_trigger, LED_OFF);
567 EXPORT_SYMBOL_GPL(nand_wait_ready);
570 * nand_command - [DEFAULT] Send command to NAND device
571 * @mtd: MTD device structure
572 * @command: the command to be sent
573 * @column: the column address for this command, -1 if none
574 * @page_addr: the page address for this command, -1 if none
576 * Send command to NAND device. This function is used for small page devices
577 * (512 Bytes per page).
579 static void nand_command(struct mtd_info *mtd, unsigned int command,
580 int column, int page_addr)
582 register struct nand_chip *chip = mtd->priv;
583 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
585 /* Write out the command to the device */
586 if (command == NAND_CMD_SEQIN) {
589 if (column >= mtd->writesize) {
591 column -= mtd->writesize;
592 readcmd = NAND_CMD_READOOB;
593 } else if (column < 256) {
594 /* First 256 bytes --> READ0 */
595 readcmd = NAND_CMD_READ0;
598 readcmd = NAND_CMD_READ1;
600 chip->cmd_ctrl(mtd, readcmd, ctrl);
601 ctrl &= ~NAND_CTRL_CHANGE;
603 chip->cmd_ctrl(mtd, command, ctrl);
605 /* Address cycle, when necessary */
606 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
607 /* Serially input address */
609 /* Adjust columns for 16 bit buswidth */
610 if (chip->options & NAND_BUSWIDTH_16 &&
611 !nand_opcode_8bits(command))
613 chip->cmd_ctrl(mtd, column, ctrl);
614 ctrl &= ~NAND_CTRL_CHANGE;
616 if (page_addr != -1) {
617 chip->cmd_ctrl(mtd, page_addr, ctrl);
618 ctrl &= ~NAND_CTRL_CHANGE;
619 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
620 /* One more address cycle for devices > 32MiB */
621 if (chip->chipsize > (32 << 20))
622 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
624 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
627 * Program and erase have their own busy handlers status and sequential
632 case NAND_CMD_PAGEPROG:
633 case NAND_CMD_ERASE1:
634 case NAND_CMD_ERASE2:
636 case NAND_CMD_STATUS:
642 udelay(chip->chip_delay);
643 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
644 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
646 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
647 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
651 /* This applies to read commands */
654 * If we don't have access to the busy pin, we apply the given
657 if (!chip->dev_ready) {
658 udelay(chip->chip_delay);
663 * Apply this short delay always to ensure that we do wait tWB in
664 * any case on any machine.
668 nand_wait_ready(mtd);
672 * nand_command_lp - [DEFAULT] Send command to NAND large page device
673 * @mtd: MTD device structure
674 * @command: the command to be sent
675 * @column: the column address for this command, -1 if none
676 * @page_addr: the page address for this command, -1 if none
678 * Send command to NAND device. This is the version for the new large page
679 * devices. We don't have the separate regions as we have in the small page
680 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
682 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
683 int column, int page_addr)
685 register struct nand_chip *chip = mtd->priv;
687 /* Emulate NAND_CMD_READOOB */
688 if (command == NAND_CMD_READOOB) {
689 column += mtd->writesize;
690 command = NAND_CMD_READ0;
693 /* Command latch cycle */
694 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
696 if (column != -1 || page_addr != -1) {
697 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
699 /* Serially input address */
701 /* Adjust columns for 16 bit buswidth */
702 if (chip->options & NAND_BUSWIDTH_16 &&
703 !nand_opcode_8bits(command))
705 chip->cmd_ctrl(mtd, column, ctrl);
706 ctrl &= ~NAND_CTRL_CHANGE;
707 chip->cmd_ctrl(mtd, column >> 8, ctrl);
709 if (page_addr != -1) {
710 chip->cmd_ctrl(mtd, page_addr, ctrl);
711 chip->cmd_ctrl(mtd, page_addr >> 8,
712 NAND_NCE | NAND_ALE);
713 /* One more address cycle for devices > 128MiB */
714 if (chip->chipsize > (128 << 20))
715 chip->cmd_ctrl(mtd, page_addr >> 16,
716 NAND_NCE | NAND_ALE);
719 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
722 * Program and erase have their own busy handlers status, sequential
723 * in, and deplete1 need no delay.
727 case NAND_CMD_CACHEDPROG:
728 case NAND_CMD_PAGEPROG:
729 case NAND_CMD_ERASE1:
730 case NAND_CMD_ERASE2:
733 case NAND_CMD_STATUS:
739 udelay(chip->chip_delay);
740 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
741 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
742 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
743 NAND_NCE | NAND_CTRL_CHANGE);
744 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
748 case NAND_CMD_RNDOUT:
749 /* No ready / busy check necessary */
750 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
751 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
752 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
753 NAND_NCE | NAND_CTRL_CHANGE);
757 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
758 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
759 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
760 NAND_NCE | NAND_CTRL_CHANGE);
762 /* This applies to read commands */
765 * If we don't have access to the busy pin, we apply the given
768 if (!chip->dev_ready) {
769 udelay(chip->chip_delay);
775 * Apply this short delay always to ensure that we do wait tWB in
776 * any case on any machine.
780 nand_wait_ready(mtd);
784 * panic_nand_get_device - [GENERIC] Get chip for selected access
785 * @chip: the nand chip descriptor
786 * @mtd: MTD device structure
787 * @new_state: the state which is requested
789 * Used when in panic, no locks are taken.
791 static void panic_nand_get_device(struct nand_chip *chip,
792 struct mtd_info *mtd, int new_state)
794 /* Hardware controller shared among independent devices */
795 chip->controller->active = chip;
796 chip->state = new_state;
800 * nand_get_device - [GENERIC] Get chip for selected access
801 * @mtd: MTD device structure
802 * @new_state: the state which is requested
804 * Get the device and lock it for exclusive access
807 nand_get_device(struct mtd_info *mtd, int new_state)
809 struct nand_chip *chip = mtd->priv;
810 spinlock_t *lock = &chip->controller->lock;
811 wait_queue_head_t *wq = &chip->controller->wq;
812 DECLARE_WAITQUEUE(wait, current);
816 /* Hardware controller shared among independent devices */
817 if (!chip->controller->active)
818 chip->controller->active = chip;
820 if (chip->controller->active == chip && chip->state == FL_READY) {
821 chip->state = new_state;
825 if (new_state == FL_PM_SUSPENDED) {
826 if (chip->controller->active->state == FL_PM_SUSPENDED) {
827 chip->state = FL_PM_SUSPENDED;
832 set_current_state(TASK_UNINTERRUPTIBLE);
833 add_wait_queue(wq, &wait);
836 remove_wait_queue(wq, &wait);
841 * panic_nand_wait - [GENERIC] wait until the command is done
842 * @mtd: MTD device structure
843 * @chip: NAND chip structure
846 * Wait for command done. This is a helper function for nand_wait used when
847 * we are in interrupt context. May happen when in panic and trying to write
848 * an oops through mtdoops.
850 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
854 for (i = 0; i < timeo; i++) {
855 if (chip->dev_ready) {
856 if (chip->dev_ready(mtd))
859 if (chip->read_byte(mtd) & NAND_STATUS_READY)
867 * nand_wait - [DEFAULT] wait until the command is done
868 * @mtd: MTD device structure
869 * @chip: NAND chip structure
871 * Wait for command done. This applies to erase and program only. Erase can
872 * take up to 400ms and program up to 20ms according to general NAND and
875 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
878 int status, state = chip->state;
879 unsigned long timeo = (state == FL_ERASING ? 400 : 20);
881 led_trigger_event(nand_led_trigger, LED_FULL);
884 * Apply this short delay always to ensure that we do wait tWB in any
885 * case on any machine.
889 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
891 if (in_interrupt() || oops_in_progress)
892 panic_nand_wait(mtd, chip, timeo);
894 timeo = jiffies + msecs_to_jiffies(timeo);
895 while (time_before(jiffies, timeo)) {
896 if (chip->dev_ready) {
897 if (chip->dev_ready(mtd))
900 if (chip->read_byte(mtd) & NAND_STATUS_READY)
906 led_trigger_event(nand_led_trigger, LED_OFF);
908 status = (int)chip->read_byte(mtd);
909 /* This can happen if in case of timeout or buggy dev_ready */
910 WARN_ON(!(status & NAND_STATUS_READY));
915 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
917 * @ofs: offset to start unlock from
918 * @len: length to unlock
919 * @invert: when = 0, unlock the range of blocks within the lower and
920 * upper boundary address
921 * when = 1, unlock the range of blocks outside the boundaries
922 * of the lower and upper boundary address
924 * Returs unlock status.
926 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
927 uint64_t len, int invert)
931 struct nand_chip *chip = mtd->priv;
933 /* Submit address of first page to unlock */
934 page = ofs >> chip->page_shift;
935 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
937 /* Submit address of last page to unlock */
938 page = (ofs + len) >> chip->page_shift;
939 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
940 (page | invert) & chip->pagemask);
942 /* Call wait ready function */
943 status = chip->waitfunc(mtd, chip);
944 /* See if device thinks it succeeded */
945 if (status & NAND_STATUS_FAIL) {
946 pr_debug("%s: error status = 0x%08x\n",
955 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
957 * @ofs: offset to start unlock from
958 * @len: length to unlock
960 * Returns unlock status.
962 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
966 struct nand_chip *chip = mtd->priv;
968 pr_debug("%s: start = 0x%012llx, len = %llu\n",
969 __func__, (unsigned long long)ofs, len);
971 if (check_offs_len(mtd, ofs, len))
974 /* Align to last block address if size addresses end of the device */
975 if (ofs + len == mtd->size)
976 len -= mtd->erasesize;
978 nand_get_device(mtd, FL_UNLOCKING);
980 /* Shift to get chip number */
981 chipnr = ofs >> chip->chip_shift;
983 chip->select_chip(mtd, chipnr);
985 /* Check, if it is write protected */
986 if (nand_check_wp(mtd)) {
987 pr_debug("%s: device is write protected!\n",
993 ret = __nand_unlock(mtd, ofs, len, 0);
996 chip->select_chip(mtd, -1);
997 nand_release_device(mtd);
1001 EXPORT_SYMBOL(nand_unlock);
1004 * nand_lock - [REPLACEABLE] locks all blocks present in the device
1006 * @ofs: offset to start unlock from
1007 * @len: length to unlock
1009 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1010 * have this feature, but it allows only to lock all blocks, not for specified
1011 * range for block. Implementing 'lock' feature by making use of 'unlock', for
1014 * Returns lock status.
1016 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1019 int chipnr, status, page;
1020 struct nand_chip *chip = mtd->priv;
1022 pr_debug("%s: start = 0x%012llx, len = %llu\n",
1023 __func__, (unsigned long long)ofs, len);
1025 if (check_offs_len(mtd, ofs, len))
1028 nand_get_device(mtd, FL_LOCKING);
1030 /* Shift to get chip number */
1031 chipnr = ofs >> chip->chip_shift;
1033 chip->select_chip(mtd, chipnr);
1035 /* Check, if it is write protected */
1036 if (nand_check_wp(mtd)) {
1037 pr_debug("%s: device is write protected!\n",
1039 status = MTD_ERASE_FAILED;
1044 /* Submit address of first page to lock */
1045 page = ofs >> chip->page_shift;
1046 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1048 /* Call wait ready function */
1049 status = chip->waitfunc(mtd, chip);
1050 /* See if device thinks it succeeded */
1051 if (status & NAND_STATUS_FAIL) {
1052 pr_debug("%s: error status = 0x%08x\n",
1058 ret = __nand_unlock(mtd, ofs, len, 0x1);
1061 chip->select_chip(mtd, -1);
1062 nand_release_device(mtd);
1066 EXPORT_SYMBOL(nand_lock);
1069 * nand_read_page_raw - [INTERN] read raw page data without ecc
1070 * @mtd: mtd info structure
1071 * @chip: nand chip info structure
1072 * @buf: buffer to store read data
1073 * @oob_required: caller requires OOB data read to chip->oob_poi
1074 * @page: page number to read
1076 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1078 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1079 uint8_t *buf, int oob_required, int page)
1081 chip->read_buf(mtd, buf, mtd->writesize);
1083 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1088 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1089 * @mtd: mtd info structure
1090 * @chip: nand chip info structure
1091 * @buf: buffer to store read data
1092 * @oob_required: caller requires OOB data read to chip->oob_poi
1093 * @page: page number to read
1095 * We need a special oob layout and handling even when OOB isn't used.
1097 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1098 struct nand_chip *chip, uint8_t *buf,
1099 int oob_required, int page)
1101 int eccsize = chip->ecc.size;
1102 int eccbytes = chip->ecc.bytes;
1103 uint8_t *oob = chip->oob_poi;
1106 for (steps = chip->ecc.steps; steps > 0; steps--) {
1107 chip->read_buf(mtd, buf, eccsize);
1110 if (chip->ecc.prepad) {
1111 chip->read_buf(mtd, oob, chip->ecc.prepad);
1112 oob += chip->ecc.prepad;
1115 chip->read_buf(mtd, oob, eccbytes);
1118 if (chip->ecc.postpad) {
1119 chip->read_buf(mtd, oob, chip->ecc.postpad);
1120 oob += chip->ecc.postpad;
1124 size = mtd->oobsize - (oob - chip->oob_poi);
1126 chip->read_buf(mtd, oob, size);
1132 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1133 * @mtd: mtd info structure
1134 * @chip: nand chip info structure
1135 * @buf: buffer to store read data
1136 * @oob_required: caller requires OOB data read to chip->oob_poi
1137 * @page: page number to read
1139 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1140 uint8_t *buf, int oob_required, int page)
1142 int i, eccsize = chip->ecc.size;
1143 int eccbytes = chip->ecc.bytes;
1144 int eccsteps = chip->ecc.steps;
1146 uint8_t *ecc_calc = chip->buffers->ecccalc;
1147 uint8_t *ecc_code = chip->buffers->ecccode;
1148 uint32_t *eccpos = chip->ecc.layout->eccpos;
1149 unsigned int max_bitflips = 0;
1151 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1153 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1154 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1156 for (i = 0; i < chip->ecc.total; i++)
1157 ecc_code[i] = chip->oob_poi[eccpos[i]];
1159 eccsteps = chip->ecc.steps;
1162 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1165 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1167 mtd->ecc_stats.failed++;
1169 mtd->ecc_stats.corrected += stat;
1170 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1173 return max_bitflips;
1177 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1178 * @mtd: mtd info structure
1179 * @chip: nand chip info structure
1180 * @data_offs: offset of requested data within the page
1181 * @readlen: data length
1182 * @bufpoi: buffer to store read data
1183 * @page: page number to read
1185 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1186 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1189 int start_step, end_step, num_steps;
1190 uint32_t *eccpos = chip->ecc.layout->eccpos;
1192 int data_col_addr, i, gaps = 0;
1193 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1194 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1196 unsigned int max_bitflips = 0;
1198 /* Column address within the page aligned to ECC size (256bytes) */
1199 start_step = data_offs / chip->ecc.size;
1200 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1201 num_steps = end_step - start_step + 1;
1202 index = start_step * chip->ecc.bytes;
1204 /* Data size aligned to ECC ecc.size */
1205 datafrag_len = num_steps * chip->ecc.size;
1206 eccfrag_len = num_steps * chip->ecc.bytes;
1208 data_col_addr = start_step * chip->ecc.size;
1209 /* If we read not a page aligned data */
1210 if (data_col_addr != 0)
1211 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1213 p = bufpoi + data_col_addr;
1214 chip->read_buf(mtd, p, datafrag_len);
1217 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1218 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1221 * The performance is faster if we position offsets according to
1222 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1224 for (i = 0; i < eccfrag_len - 1; i++) {
1225 if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1231 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1232 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1235 * Send the command to read the particular ECC bytes take care
1236 * about buswidth alignment in read_buf.
1238 aligned_pos = eccpos[index] & ~(busw - 1);
1239 aligned_len = eccfrag_len;
1240 if (eccpos[index] & (busw - 1))
1242 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1245 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1246 mtd->writesize + aligned_pos, -1);
1247 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1250 for (i = 0; i < eccfrag_len; i++)
1251 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1253 p = bufpoi + data_col_addr;
1254 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1257 stat = chip->ecc.correct(mtd, p,
1258 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1260 mtd->ecc_stats.failed++;
1262 mtd->ecc_stats.corrected += stat;
1263 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1266 return max_bitflips;
1270 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1271 * @mtd: mtd info structure
1272 * @chip: nand chip info structure
1273 * @buf: buffer to store read data
1274 * @oob_required: caller requires OOB data read to chip->oob_poi
1275 * @page: page number to read
1277 * Not for syndrome calculating ECC controllers which need a special oob layout.
1279 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1280 uint8_t *buf, int oob_required, int page)
1282 int i, eccsize = chip->ecc.size;
1283 int eccbytes = chip->ecc.bytes;
1284 int eccsteps = chip->ecc.steps;
1286 uint8_t *ecc_calc = chip->buffers->ecccalc;
1287 uint8_t *ecc_code = chip->buffers->ecccode;
1288 uint32_t *eccpos = chip->ecc.layout->eccpos;
1289 unsigned int max_bitflips = 0;
1291 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1292 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1293 chip->read_buf(mtd, p, eccsize);
1294 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1296 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1298 for (i = 0; i < chip->ecc.total; i++)
1299 ecc_code[i] = chip->oob_poi[eccpos[i]];
1301 eccsteps = chip->ecc.steps;
1304 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1307 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1309 mtd->ecc_stats.failed++;
1311 mtd->ecc_stats.corrected += stat;
1312 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1315 return max_bitflips;
1319 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1320 * @mtd: mtd info structure
1321 * @chip: nand chip info structure
1322 * @buf: buffer to store read data
1323 * @oob_required: caller requires OOB data read to chip->oob_poi
1324 * @page: page number to read
1326 * Hardware ECC for large page chips, require OOB to be read first. For this
1327 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1328 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1329 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1330 * the data area, by overwriting the NAND manufacturer bad block markings.
1332 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1333 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1335 int i, eccsize = chip->ecc.size;
1336 int eccbytes = chip->ecc.bytes;
1337 int eccsteps = chip->ecc.steps;
1339 uint8_t *ecc_code = chip->buffers->ecccode;
1340 uint32_t *eccpos = chip->ecc.layout->eccpos;
1341 uint8_t *ecc_calc = chip->buffers->ecccalc;
1342 unsigned int max_bitflips = 0;
1344 /* Read the OOB area first */
1345 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1346 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1347 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1349 for (i = 0; i < chip->ecc.total; i++)
1350 ecc_code[i] = chip->oob_poi[eccpos[i]];
1352 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1355 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1356 chip->read_buf(mtd, p, eccsize);
1357 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1359 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1361 mtd->ecc_stats.failed++;
1363 mtd->ecc_stats.corrected += stat;
1364 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1367 return max_bitflips;
1371 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1372 * @mtd: mtd info structure
1373 * @chip: nand chip info structure
1374 * @buf: buffer to store read data
1375 * @oob_required: caller requires OOB data read to chip->oob_poi
1376 * @page: page number to read
1378 * The hw generator calculates the error syndrome automatically. Therefore we
1379 * need a special oob layout and handling.
1381 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1382 uint8_t *buf, int oob_required, int page)
1384 int i, eccsize = chip->ecc.size;
1385 int eccbytes = chip->ecc.bytes;
1386 int eccsteps = chip->ecc.steps;
1388 uint8_t *oob = chip->oob_poi;
1389 unsigned int max_bitflips = 0;
1391 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1394 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1395 chip->read_buf(mtd, p, eccsize);
1397 if (chip->ecc.prepad) {
1398 chip->read_buf(mtd, oob, chip->ecc.prepad);
1399 oob += chip->ecc.prepad;
1402 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1403 chip->read_buf(mtd, oob, eccbytes);
1404 stat = chip->ecc.correct(mtd, p, oob, NULL);
1407 mtd->ecc_stats.failed++;
1409 mtd->ecc_stats.corrected += stat;
1410 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1415 if (chip->ecc.postpad) {
1416 chip->read_buf(mtd, oob, chip->ecc.postpad);
1417 oob += chip->ecc.postpad;
1421 /* Calculate remaining oob bytes */
1422 i = mtd->oobsize - (oob - chip->oob_poi);
1424 chip->read_buf(mtd, oob, i);
1426 return max_bitflips;
1430 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1431 * @chip: nand chip structure
1432 * @oob: oob destination address
1433 * @ops: oob ops structure
1434 * @len: size of oob to transfer
1436 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1437 struct mtd_oob_ops *ops, size_t len)
1439 switch (ops->mode) {
1441 case MTD_OPS_PLACE_OOB:
1443 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1446 case MTD_OPS_AUTO_OOB: {
1447 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1448 uint32_t boffs = 0, roffs = ops->ooboffs;
1451 for (; free->length && len; free++, len -= bytes) {
1452 /* Read request not from offset 0? */
1453 if (unlikely(roffs)) {
1454 if (roffs >= free->length) {
1455 roffs -= free->length;
1458 boffs = free->offset + roffs;
1459 bytes = min_t(size_t, len,
1460 (free->length - roffs));
1463 bytes = min_t(size_t, len, free->length);
1464 boffs = free->offset;
1466 memcpy(oob, chip->oob_poi + boffs, bytes);
1478 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1479 * @mtd: MTD device structure
1480 * @retry_mode: the retry mode to use
1482 * Some vendors supply a special command to shift the Vt threshold, to be used
1483 * when there are too many bitflips in a page (i.e., ECC error). After setting
1484 * a new threshold, the host should retry reading the page.
1486 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1488 struct nand_chip *chip = mtd->priv;
1490 pr_debug("setting READ RETRY mode %d\n", retry_mode);
1492 if (retry_mode >= chip->read_retries)
1495 if (!chip->setup_read_retry)
1498 return chip->setup_read_retry(mtd, retry_mode);
1502 * nand_do_read_ops - [INTERN] Read data with ECC
1503 * @mtd: MTD device structure
1504 * @from: offset to read from
1505 * @ops: oob ops structure
1507 * Internal function. Called with chip held.
1509 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1510 struct mtd_oob_ops *ops)
1512 int chipnr, page, realpage, col, bytes, aligned, oob_required;
1513 struct nand_chip *chip = mtd->priv;
1515 uint32_t readlen = ops->len;
1516 uint32_t oobreadlen = ops->ooblen;
1517 uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1518 mtd->oobavail : mtd->oobsize;
1520 uint8_t *bufpoi, *oob, *buf;
1522 unsigned int max_bitflips = 0;
1524 bool ecc_fail = false;
1526 chipnr = (int)(from >> chip->chip_shift);
1527 chip->select_chip(mtd, chipnr);
1529 realpage = (int)(from >> chip->page_shift);
1530 page = realpage & chip->pagemask;
1532 col = (int)(from & (mtd->writesize - 1));
1536 oob_required = oob ? 1 : 0;
1539 unsigned int ecc_failures = mtd->ecc_stats.failed;
1541 bytes = min(mtd->writesize - col, readlen);
1542 aligned = (bytes == mtd->writesize);
1546 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1547 use_bufpoi = !virt_addr_valid(buf);
1551 /* Is the current page in the buffer? */
1552 if (realpage != chip->pagebuf || oob) {
1553 bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1555 if (use_bufpoi && aligned)
1556 pr_debug("%s: using read bounce buffer for buf@%p\n",
1560 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1563 * Now read the page into the buffer. Absent an error,
1564 * the read methods return max bitflips per ecc step.
1566 if (unlikely(ops->mode == MTD_OPS_RAW))
1567 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1570 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1572 ret = chip->ecc.read_subpage(mtd, chip,
1576 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1577 oob_required, page);
1580 /* Invalidate page cache */
1585 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1587 /* Transfer not aligned data */
1589 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1590 !(mtd->ecc_stats.failed - ecc_failures) &&
1591 (ops->mode != MTD_OPS_RAW)) {
1592 chip->pagebuf = realpage;
1593 chip->pagebuf_bitflips = ret;
1595 /* Invalidate page cache */
1598 memcpy(buf, chip->buffers->databuf + col, bytes);
1601 if (unlikely(oob)) {
1602 int toread = min(oobreadlen, max_oobsize);
1605 oob = nand_transfer_oob(chip,
1607 oobreadlen -= toread;
1611 if (chip->options & NAND_NEED_READRDY) {
1612 /* Apply delay or wait for ready/busy pin */
1613 if (!chip->dev_ready)
1614 udelay(chip->chip_delay);
1616 nand_wait_ready(mtd);
1619 if (mtd->ecc_stats.failed - ecc_failures) {
1620 if (retry_mode + 1 < chip->read_retries) {
1622 ret = nand_setup_read_retry(mtd,
1627 /* Reset failures; retry */
1628 mtd->ecc_stats.failed = ecc_failures;
1631 /* No more retry modes; real failure */
1638 memcpy(buf, chip->buffers->databuf + col, bytes);
1640 max_bitflips = max_t(unsigned int, max_bitflips,
1641 chip->pagebuf_bitflips);
1646 /* Reset to retry mode 0 */
1648 ret = nand_setup_read_retry(mtd, 0);
1657 /* For subsequent reads align to page boundary */
1659 /* Increment page address */
1662 page = realpage & chip->pagemask;
1663 /* Check, if we cross a chip boundary */
1666 chip->select_chip(mtd, -1);
1667 chip->select_chip(mtd, chipnr);
1670 chip->select_chip(mtd, -1);
1672 ops->retlen = ops->len - (size_t) readlen;
1674 ops->oobretlen = ops->ooblen - oobreadlen;
1682 return max_bitflips;
1686 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1687 * @mtd: MTD device structure
1688 * @from: offset to read from
1689 * @len: number of bytes to read
1690 * @retlen: pointer to variable to store the number of read bytes
1691 * @buf: the databuffer to put data
1693 * Get hold of the chip and call nand_do_read.
1695 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1696 size_t *retlen, uint8_t *buf)
1698 struct mtd_oob_ops ops;
1701 nand_get_device(mtd, FL_READING);
1705 ops.mode = MTD_OPS_PLACE_OOB;
1706 ret = nand_do_read_ops(mtd, from, &ops);
1707 *retlen = ops.retlen;
1708 nand_release_device(mtd);
1713 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1714 * @mtd: mtd info structure
1715 * @chip: nand chip info structure
1716 * @page: page number to read
1718 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1721 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1722 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1727 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1729 * @mtd: mtd info structure
1730 * @chip: nand chip info structure
1731 * @page: page number to read
1733 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1736 uint8_t *buf = chip->oob_poi;
1737 int length = mtd->oobsize;
1738 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1739 int eccsize = chip->ecc.size;
1740 uint8_t *bufpoi = buf;
1741 int i, toread, sndrnd = 0, pos;
1743 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1744 for (i = 0; i < chip->ecc.steps; i++) {
1746 pos = eccsize + i * (eccsize + chunk);
1747 if (mtd->writesize > 512)
1748 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1750 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1753 toread = min_t(int, length, chunk);
1754 chip->read_buf(mtd, bufpoi, toread);
1759 chip->read_buf(mtd, bufpoi, length);
1765 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1766 * @mtd: mtd info structure
1767 * @chip: nand chip info structure
1768 * @page: page number to write
1770 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1774 const uint8_t *buf = chip->oob_poi;
1775 int length = mtd->oobsize;
1777 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1778 chip->write_buf(mtd, buf, length);
1779 /* Send command to program the OOB data */
1780 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1782 status = chip->waitfunc(mtd, chip);
1784 return status & NAND_STATUS_FAIL ? -EIO : 0;
1788 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1789 * with syndrome - only for large page flash
1790 * @mtd: mtd info structure
1791 * @chip: nand chip info structure
1792 * @page: page number to write
1794 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1795 struct nand_chip *chip, int page)
1797 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1798 int eccsize = chip->ecc.size, length = mtd->oobsize;
1799 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1800 const uint8_t *bufpoi = chip->oob_poi;
1803 * data-ecc-data-ecc ... ecc-oob
1805 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1807 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1808 pos = steps * (eccsize + chunk);
1813 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1814 for (i = 0; i < steps; i++) {
1816 if (mtd->writesize <= 512) {
1817 uint32_t fill = 0xFFFFFFFF;
1821 int num = min_t(int, len, 4);
1822 chip->write_buf(mtd, (uint8_t *)&fill,
1827 pos = eccsize + i * (eccsize + chunk);
1828 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1832 len = min_t(int, length, chunk);
1833 chip->write_buf(mtd, bufpoi, len);
1838 chip->write_buf(mtd, bufpoi, length);
1840 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1841 status = chip->waitfunc(mtd, chip);
1843 return status & NAND_STATUS_FAIL ? -EIO : 0;
1847 * nand_do_read_oob - [INTERN] NAND read out-of-band
1848 * @mtd: MTD device structure
1849 * @from: offset to read from
1850 * @ops: oob operations description structure
1852 * NAND read out-of-band data from the spare area.
1854 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1855 struct mtd_oob_ops *ops)
1857 int page, realpage, chipnr;
1858 struct nand_chip *chip = mtd->priv;
1859 struct mtd_ecc_stats stats;
1860 int readlen = ops->ooblen;
1862 uint8_t *buf = ops->oobbuf;
1865 pr_debug("%s: from = 0x%08Lx, len = %i\n",
1866 __func__, (unsigned long long)from, readlen);
1868 stats = mtd->ecc_stats;
1870 if (ops->mode == MTD_OPS_AUTO_OOB)
1871 len = chip->ecc.layout->oobavail;
1875 if (unlikely(ops->ooboffs >= len)) {
1876 pr_debug("%s: attempt to start read outside oob\n",
1881 /* Do not allow reads past end of device */
1882 if (unlikely(from >= mtd->size ||
1883 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1884 (from >> chip->page_shift)) * len)) {
1885 pr_debug("%s: attempt to read beyond end of device\n",
1890 chipnr = (int)(from >> chip->chip_shift);
1891 chip->select_chip(mtd, chipnr);
1893 /* Shift to get page */
1894 realpage = (int)(from >> chip->page_shift);
1895 page = realpage & chip->pagemask;
1898 if (ops->mode == MTD_OPS_RAW)
1899 ret = chip->ecc.read_oob_raw(mtd, chip, page);
1901 ret = chip->ecc.read_oob(mtd, chip, page);
1906 len = min(len, readlen);
1907 buf = nand_transfer_oob(chip, buf, ops, len);
1909 if (chip->options & NAND_NEED_READRDY) {
1910 /* Apply delay or wait for ready/busy pin */
1911 if (!chip->dev_ready)
1912 udelay(chip->chip_delay);
1914 nand_wait_ready(mtd);
1921 /* Increment page address */
1924 page = realpage & chip->pagemask;
1925 /* Check, if we cross a chip boundary */
1928 chip->select_chip(mtd, -1);
1929 chip->select_chip(mtd, chipnr);
1932 chip->select_chip(mtd, -1);
1934 ops->oobretlen = ops->ooblen - readlen;
1939 if (mtd->ecc_stats.failed - stats.failed)
1942 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1946 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1947 * @mtd: MTD device structure
1948 * @from: offset to read from
1949 * @ops: oob operation description structure
1951 * NAND read data and/or out-of-band data.
1953 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1954 struct mtd_oob_ops *ops)
1956 int ret = -ENOTSUPP;
1960 /* Do not allow reads past end of device */
1961 if (ops->datbuf && (from + ops->len) > mtd->size) {
1962 pr_debug("%s: attempt to read beyond end of device\n",
1967 nand_get_device(mtd, FL_READING);
1969 switch (ops->mode) {
1970 case MTD_OPS_PLACE_OOB:
1971 case MTD_OPS_AUTO_OOB:
1980 ret = nand_do_read_oob(mtd, from, ops);
1982 ret = nand_do_read_ops(mtd, from, ops);
1985 nand_release_device(mtd);
1991 * nand_write_page_raw - [INTERN] raw page write function
1992 * @mtd: mtd info structure
1993 * @chip: nand chip info structure
1995 * @oob_required: must write chip->oob_poi to OOB
1997 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1999 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2000 const uint8_t *buf, int oob_required)
2002 chip->write_buf(mtd, buf, mtd->writesize);
2004 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2010 * nand_write_page_raw_syndrome - [INTERN] raw page write function
2011 * @mtd: mtd info structure
2012 * @chip: nand chip info structure
2014 * @oob_required: must write chip->oob_poi to OOB
2016 * We need a special oob layout and handling even when ECC isn't checked.
2018 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2019 struct nand_chip *chip,
2020 const uint8_t *buf, int oob_required)
2022 int eccsize = chip->ecc.size;
2023 int eccbytes = chip->ecc.bytes;
2024 uint8_t *oob = chip->oob_poi;
2027 for (steps = chip->ecc.steps; steps > 0; steps--) {
2028 chip->write_buf(mtd, buf, eccsize);
2031 if (chip->ecc.prepad) {
2032 chip->write_buf(mtd, oob, chip->ecc.prepad);
2033 oob += chip->ecc.prepad;
2036 chip->write_buf(mtd, oob, eccbytes);
2039 if (chip->ecc.postpad) {
2040 chip->write_buf(mtd, oob, chip->ecc.postpad);
2041 oob += chip->ecc.postpad;
2045 size = mtd->oobsize - (oob - chip->oob_poi);
2047 chip->write_buf(mtd, oob, size);
2052 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2053 * @mtd: mtd info structure
2054 * @chip: nand chip info structure
2056 * @oob_required: must write chip->oob_poi to OOB
2058 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2059 const uint8_t *buf, int oob_required)
2061 int i, eccsize = chip->ecc.size;
2062 int eccbytes = chip->ecc.bytes;
2063 int eccsteps = chip->ecc.steps;
2064 uint8_t *ecc_calc = chip->buffers->ecccalc;
2065 const uint8_t *p = buf;
2066 uint32_t *eccpos = chip->ecc.layout->eccpos;
2068 /* Software ECC calculation */
2069 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2070 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2072 for (i = 0; i < chip->ecc.total; i++)
2073 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2075 return chip->ecc.write_page_raw(mtd, chip, buf, 1);
2079 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2080 * @mtd: mtd info structure
2081 * @chip: nand chip info structure
2083 * @oob_required: must write chip->oob_poi to OOB
2085 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2086 const uint8_t *buf, int oob_required)
2088 int i, eccsize = chip->ecc.size;
2089 int eccbytes = chip->ecc.bytes;
2090 int eccsteps = chip->ecc.steps;
2091 uint8_t *ecc_calc = chip->buffers->ecccalc;
2092 const uint8_t *p = buf;
2093 uint32_t *eccpos = chip->ecc.layout->eccpos;
2095 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2096 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2097 chip->write_buf(mtd, p, eccsize);
2098 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2101 for (i = 0; i < chip->ecc.total; i++)
2102 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2104 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2111 * nand_write_subpage_hwecc - [REPLACABLE] hardware ECC based subpage write
2112 * @mtd: mtd info structure
2113 * @chip: nand chip info structure
2114 * @offset: column address of subpage within the page
2115 * @data_len: data length
2117 * @oob_required: must write chip->oob_poi to OOB
2119 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2120 struct nand_chip *chip, uint32_t offset,
2121 uint32_t data_len, const uint8_t *buf,
2124 uint8_t *oob_buf = chip->oob_poi;
2125 uint8_t *ecc_calc = chip->buffers->ecccalc;
2126 int ecc_size = chip->ecc.size;
2127 int ecc_bytes = chip->ecc.bytes;
2128 int ecc_steps = chip->ecc.steps;
2129 uint32_t *eccpos = chip->ecc.layout->eccpos;
2130 uint32_t start_step = offset / ecc_size;
2131 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2132 int oob_bytes = mtd->oobsize / ecc_steps;
2135 for (step = 0; step < ecc_steps; step++) {
2136 /* configure controller for WRITE access */
2137 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2139 /* write data (untouched subpages already masked by 0xFF) */
2140 chip->write_buf(mtd, buf, ecc_size);
2142 /* mask ECC of un-touched subpages by padding 0xFF */
2143 if ((step < start_step) || (step > end_step))
2144 memset(ecc_calc, 0xff, ecc_bytes);
2146 chip->ecc.calculate(mtd, buf, ecc_calc);
2148 /* mask OOB of un-touched subpages by padding 0xFF */
2149 /* if oob_required, preserve OOB metadata of written subpage */
2150 if (!oob_required || (step < start_step) || (step > end_step))
2151 memset(oob_buf, 0xff, oob_bytes);
2154 ecc_calc += ecc_bytes;
2155 oob_buf += oob_bytes;
2158 /* copy calculated ECC for whole page to chip->buffer->oob */
2159 /* this include masked-value(0xFF) for unwritten subpages */
2160 ecc_calc = chip->buffers->ecccalc;
2161 for (i = 0; i < chip->ecc.total; i++)
2162 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2164 /* write OOB buffer to NAND device */
2165 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2172 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2173 * @mtd: mtd info structure
2174 * @chip: nand chip info structure
2176 * @oob_required: must write chip->oob_poi to OOB
2178 * The hw generator calculates the error syndrome automatically. Therefore we
2179 * need a special oob layout and handling.
2181 static int nand_write_page_syndrome(struct mtd_info *mtd,
2182 struct nand_chip *chip,
2183 const uint8_t *buf, int oob_required)
2185 int i, eccsize = chip->ecc.size;
2186 int eccbytes = chip->ecc.bytes;
2187 int eccsteps = chip->ecc.steps;
2188 const uint8_t *p = buf;
2189 uint8_t *oob = chip->oob_poi;
2191 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2193 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2194 chip->write_buf(mtd, p, eccsize);
2196 if (chip->ecc.prepad) {
2197 chip->write_buf(mtd, oob, chip->ecc.prepad);
2198 oob += chip->ecc.prepad;
2201 chip->ecc.calculate(mtd, p, oob);
2202 chip->write_buf(mtd, oob, eccbytes);
2205 if (chip->ecc.postpad) {
2206 chip->write_buf(mtd, oob, chip->ecc.postpad);
2207 oob += chip->ecc.postpad;
2211 /* Calculate remaining oob bytes */
2212 i = mtd->oobsize - (oob - chip->oob_poi);
2214 chip->write_buf(mtd, oob, i);
2220 * nand_write_page - [REPLACEABLE] write one page
2221 * @mtd: MTD device structure
2222 * @chip: NAND chip descriptor
2223 * @offset: address offset within the page
2224 * @data_len: length of actual data to be written
2225 * @buf: the data to write
2226 * @oob_required: must write chip->oob_poi to OOB
2227 * @page: page number to write
2228 * @cached: cached programming
2229 * @raw: use _raw version of write_page
2231 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2232 uint32_t offset, int data_len, const uint8_t *buf,
2233 int oob_required, int page, int cached, int raw)
2235 int status, subpage;
2237 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2238 chip->ecc.write_subpage)
2239 subpage = offset || (data_len < mtd->writesize);
2243 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2246 status = chip->ecc.write_page_raw(mtd, chip, buf,
2249 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2252 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2258 * Cached progamming disabled for now. Not sure if it's worth the
2259 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2263 if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2265 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2266 status = chip->waitfunc(mtd, chip);
2268 * See if operation failed and additional status checks are
2271 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2272 status = chip->errstat(mtd, chip, FL_WRITING, status,
2275 if (status & NAND_STATUS_FAIL)
2278 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2279 status = chip->waitfunc(mtd, chip);
2286 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2287 * @mtd: MTD device structure
2288 * @oob: oob data buffer
2289 * @len: oob data write length
2290 * @ops: oob ops structure
2292 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2293 struct mtd_oob_ops *ops)
2295 struct nand_chip *chip = mtd->priv;
2298 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2299 * data from a previous OOB read.
2301 memset(chip->oob_poi, 0xff, mtd->oobsize);
2303 switch (ops->mode) {
2305 case MTD_OPS_PLACE_OOB:
2307 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2310 case MTD_OPS_AUTO_OOB: {
2311 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2312 uint32_t boffs = 0, woffs = ops->ooboffs;
2315 for (; free->length && len; free++, len -= bytes) {
2316 /* Write request not from offset 0? */
2317 if (unlikely(woffs)) {
2318 if (woffs >= free->length) {
2319 woffs -= free->length;
2322 boffs = free->offset + woffs;
2323 bytes = min_t(size_t, len,
2324 (free->length - woffs));
2327 bytes = min_t(size_t, len, free->length);
2328 boffs = free->offset;
2330 memcpy(chip->oob_poi + boffs, oob, bytes);
2341 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2344 * nand_do_write_ops - [INTERN] NAND write with ECC
2345 * @mtd: MTD device structure
2346 * @to: offset to write to
2347 * @ops: oob operations description structure
2349 * NAND write with ECC.
2351 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2352 struct mtd_oob_ops *ops)
2354 int chipnr, realpage, page, blockmask, column;
2355 struct nand_chip *chip = mtd->priv;
2356 uint32_t writelen = ops->len;
2358 uint32_t oobwritelen = ops->ooblen;
2359 uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2360 mtd->oobavail : mtd->oobsize;
2362 uint8_t *oob = ops->oobbuf;
2363 uint8_t *buf = ops->datbuf;
2365 int oob_required = oob ? 1 : 0;
2371 /* Reject writes, which are not page aligned */
2372 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2373 pr_notice("%s: attempt to write non page aligned data\n",
2378 column = to & (mtd->writesize - 1);
2380 chipnr = (int)(to >> chip->chip_shift);
2381 chip->select_chip(mtd, chipnr);
2383 /* Check, if it is write protected */
2384 if (nand_check_wp(mtd)) {
2389 realpage = (int)(to >> chip->page_shift);
2390 page = realpage & chip->pagemask;
2391 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2393 /* Invalidate the page cache, when we write to the cached page */
2394 if (to <= (chip->pagebuf << chip->page_shift) &&
2395 (chip->pagebuf << chip->page_shift) < (to + ops->len))
2398 /* Don't allow multipage oob writes with offset */
2399 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2405 int bytes = mtd->writesize;
2406 int cached = writelen > bytes && page != blockmask;
2407 uint8_t *wbuf = buf;
2409 int part_pagewr = (column || writelen < (mtd->writesize - 1));
2413 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2414 use_bufpoi = !virt_addr_valid(buf);
2418 /* Partial page write?, or need to use bounce buffer */
2420 pr_debug("%s: using write bounce buffer for buf@%p\n",
2424 bytes = min_t(int, bytes - column, writelen);
2426 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2427 memcpy(&chip->buffers->databuf[column], buf, bytes);
2428 wbuf = chip->buffers->databuf;
2431 if (unlikely(oob)) {
2432 size_t len = min(oobwritelen, oobmaxlen);
2433 oob = nand_fill_oob(mtd, oob, len, ops);
2436 /* We still need to erase leftover OOB data */
2437 memset(chip->oob_poi, 0xff, mtd->oobsize);
2439 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2440 oob_required, page, cached,
2441 (ops->mode == MTD_OPS_RAW));
2453 page = realpage & chip->pagemask;
2454 /* Check, if we cross a chip boundary */
2457 chip->select_chip(mtd, -1);
2458 chip->select_chip(mtd, chipnr);
2462 ops->retlen = ops->len - writelen;
2464 ops->oobretlen = ops->ooblen;
2467 chip->select_chip(mtd, -1);
2472 * panic_nand_write - [MTD Interface] NAND write with ECC
2473 * @mtd: MTD device structure
2474 * @to: offset to write to
2475 * @len: number of bytes to write
2476 * @retlen: pointer to variable to store the number of written bytes
2477 * @buf: the data to write
2479 * NAND write with ECC. Used when performing writes in interrupt context, this
2480 * may for example be called by mtdoops when writing an oops while in panic.
2482 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2483 size_t *retlen, const uint8_t *buf)
2485 struct nand_chip *chip = mtd->priv;
2486 struct mtd_oob_ops ops;
2489 /* Wait for the device to get ready */
2490 panic_nand_wait(mtd, chip, 400);
2492 /* Grab the device */
2493 panic_nand_get_device(chip, mtd, FL_WRITING);
2496 ops.datbuf = (uint8_t *)buf;
2498 ops.mode = MTD_OPS_PLACE_OOB;
2500 ret = nand_do_write_ops(mtd, to, &ops);
2502 *retlen = ops.retlen;
2507 * nand_write - [MTD Interface] NAND write with ECC
2508 * @mtd: MTD device structure
2509 * @to: offset to write to
2510 * @len: number of bytes to write
2511 * @retlen: pointer to variable to store the number of written bytes
2512 * @buf: the data to write
2514 * NAND write with ECC.
2516 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2517 size_t *retlen, const uint8_t *buf)
2519 struct mtd_oob_ops ops;
2522 nand_get_device(mtd, FL_WRITING);
2524 ops.datbuf = (uint8_t *)buf;
2526 ops.mode = MTD_OPS_PLACE_OOB;
2527 ret = nand_do_write_ops(mtd, to, &ops);
2528 *retlen = ops.retlen;
2529 nand_release_device(mtd);
2534 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2535 * @mtd: MTD device structure
2536 * @to: offset to write to
2537 * @ops: oob operation description structure
2539 * NAND write out-of-band.
2541 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2542 struct mtd_oob_ops *ops)
2544 int chipnr, page, status, len;
2545 struct nand_chip *chip = mtd->priv;
2547 pr_debug("%s: to = 0x%08x, len = %i\n",
2548 __func__, (unsigned int)to, (int)ops->ooblen);
2550 if (ops->mode == MTD_OPS_AUTO_OOB)
2551 len = chip->ecc.layout->oobavail;
2555 /* Do not allow write past end of page */
2556 if ((ops->ooboffs + ops->ooblen) > len) {
2557 pr_debug("%s: attempt to write past end of page\n",
2562 if (unlikely(ops->ooboffs >= len)) {
2563 pr_debug("%s: attempt to start write outside oob\n",
2568 /* Do not allow write past end of device */
2569 if (unlikely(to >= mtd->size ||
2570 ops->ooboffs + ops->ooblen >
2571 ((mtd->size >> chip->page_shift) -
2572 (to >> chip->page_shift)) * len)) {
2573 pr_debug("%s: attempt to write beyond end of device\n",
2578 chipnr = (int)(to >> chip->chip_shift);
2579 chip->select_chip(mtd, chipnr);
2581 /* Shift to get page */
2582 page = (int)(to >> chip->page_shift);
2585 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2586 * of my DiskOnChip 2000 test units) will clear the whole data page too
2587 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2588 * it in the doc2000 driver in August 1999. dwmw2.
2590 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2592 /* Check, if it is write protected */
2593 if (nand_check_wp(mtd)) {
2594 chip->select_chip(mtd, -1);
2598 /* Invalidate the page cache, if we write to the cached page */
2599 if (page == chip->pagebuf)
2602 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2604 if (ops->mode == MTD_OPS_RAW)
2605 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2607 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2609 chip->select_chip(mtd, -1);
2614 ops->oobretlen = ops->ooblen;
2620 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2621 * @mtd: MTD device structure
2622 * @to: offset to write to
2623 * @ops: oob operation description structure
2625 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2626 struct mtd_oob_ops *ops)
2628 int ret = -ENOTSUPP;
2632 /* Do not allow writes past end of device */
2633 if (ops->datbuf && (to + ops->len) > mtd->size) {
2634 pr_debug("%s: attempt to write beyond end of device\n",
2639 nand_get_device(mtd, FL_WRITING);
2641 switch (ops->mode) {
2642 case MTD_OPS_PLACE_OOB:
2643 case MTD_OPS_AUTO_OOB:
2652 ret = nand_do_write_oob(mtd, to, ops);
2654 ret = nand_do_write_ops(mtd, to, ops);
2657 nand_release_device(mtd);
2662 * single_erase - [GENERIC] NAND standard block erase command function
2663 * @mtd: MTD device structure
2664 * @page: the page address of the block which will be erased
2666 * Standard erase command for NAND chips. Returns NAND status.
2668 static int single_erase(struct mtd_info *mtd, int page)
2670 struct nand_chip *chip = mtd->priv;
2671 /* Send commands to erase a block */
2672 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2673 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2675 return chip->waitfunc(mtd, chip);
2679 * nand_erase - [MTD Interface] erase block(s)
2680 * @mtd: MTD device structure
2681 * @instr: erase instruction
2683 * Erase one ore more blocks.
2685 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2687 return nand_erase_nand(mtd, instr, 0);
2691 * nand_erase_nand - [INTERN] erase block(s)
2692 * @mtd: MTD device structure
2693 * @instr: erase instruction
2694 * @allowbbt: allow erasing the bbt area
2696 * Erase one ore more blocks.
2698 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2701 int page, status, pages_per_block, ret, chipnr;
2702 struct nand_chip *chip = mtd->priv;
2705 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2706 __func__, (unsigned long long)instr->addr,
2707 (unsigned long long)instr->len);
2709 if (check_offs_len(mtd, instr->addr, instr->len))
2712 /* Grab the lock and see if the device is available */
2713 nand_get_device(mtd, FL_ERASING);
2715 /* Shift to get first page */
2716 page = (int)(instr->addr >> chip->page_shift);
2717 chipnr = (int)(instr->addr >> chip->chip_shift);
2719 /* Calculate pages in each block */
2720 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2722 /* Select the NAND device */
2723 chip->select_chip(mtd, chipnr);
2725 /* Check, if it is write protected */
2726 if (nand_check_wp(mtd)) {
2727 pr_debug("%s: device is write protected!\n",
2729 instr->state = MTD_ERASE_FAILED;
2733 /* Loop through the pages */
2736 instr->state = MTD_ERASING;
2739 /* Check if we have a bad block, we do not erase bad blocks! */
2740 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2741 chip->page_shift, 0, allowbbt)) {
2742 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2744 instr->state = MTD_ERASE_FAILED;
2749 * Invalidate the page cache, if we erase the block which
2750 * contains the current cached page.
2752 if (page <= chip->pagebuf && chip->pagebuf <
2753 (page + pages_per_block))
2756 status = chip->erase(mtd, page & chip->pagemask);
2759 * See if operation failed and additional status checks are
2762 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2763 status = chip->errstat(mtd, chip, FL_ERASING,
2766 /* See if block erase succeeded */
2767 if (status & NAND_STATUS_FAIL) {
2768 pr_debug("%s: failed erase, page 0x%08x\n",
2770 instr->state = MTD_ERASE_FAILED;
2772 ((loff_t)page << chip->page_shift);
2776 /* Increment page address and decrement length */
2777 len -= (1ULL << chip->phys_erase_shift);
2778 page += pages_per_block;
2780 /* Check, if we cross a chip boundary */
2781 if (len && !(page & chip->pagemask)) {
2783 chip->select_chip(mtd, -1);
2784 chip->select_chip(mtd, chipnr);
2787 instr->state = MTD_ERASE_DONE;
2791 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2793 /* Deselect and wake up anyone waiting on the device */
2794 chip->select_chip(mtd, -1);
2795 nand_release_device(mtd);
2797 /* Do call back function */
2799 mtd_erase_callback(instr);
2801 /* Return more or less happy */
2806 * nand_sync - [MTD Interface] sync
2807 * @mtd: MTD device structure
2809 * Sync is actually a wait for chip ready function.
2811 static void nand_sync(struct mtd_info *mtd)
2813 pr_debug("%s: called\n", __func__);
2815 /* Grab the lock and see if the device is available */
2816 nand_get_device(mtd, FL_SYNCING);
2817 /* Release it and go back */
2818 nand_release_device(mtd);
2822 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2823 * @mtd: MTD device structure
2824 * @offs: offset relative to mtd start
2826 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2828 return nand_block_checkbad(mtd, offs, 1, 0);
2832 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2833 * @mtd: MTD device structure
2834 * @ofs: offset relative to mtd start
2836 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2840 ret = nand_block_isbad(mtd, ofs);
2842 /* If it was bad already, return success and do nothing */
2848 return nand_block_markbad_lowlevel(mtd, ofs);
2852 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2853 * @mtd: MTD device structure
2854 * @chip: nand chip info structure
2855 * @addr: feature address.
2856 * @subfeature_param: the subfeature parameters, a four bytes array.
2858 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2859 int addr, uint8_t *subfeature_param)
2864 if (!chip->onfi_version ||
2865 !(le16_to_cpu(chip->onfi_params.opt_cmd)
2866 & ONFI_OPT_CMD_SET_GET_FEATURES))
2869 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2870 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2871 chip->write_byte(mtd, subfeature_param[i]);
2873 status = chip->waitfunc(mtd, chip);
2874 if (status & NAND_STATUS_FAIL)
2880 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2881 * @mtd: MTD device structure
2882 * @chip: nand chip info structure
2883 * @addr: feature address.
2884 * @subfeature_param: the subfeature parameters, a four bytes array.
2886 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2887 int addr, uint8_t *subfeature_param)
2891 if (!chip->onfi_version ||
2892 !(le16_to_cpu(chip->onfi_params.opt_cmd)
2893 & ONFI_OPT_CMD_SET_GET_FEATURES))
2896 /* clear the sub feature parameters */
2897 memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2899 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2900 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2901 *subfeature_param++ = chip->read_byte(mtd);
2906 * nand_suspend - [MTD Interface] Suspend the NAND flash
2907 * @mtd: MTD device structure
2909 static int nand_suspend(struct mtd_info *mtd)
2911 return nand_get_device(mtd, FL_PM_SUSPENDED);
2915 * nand_resume - [MTD Interface] Resume the NAND flash
2916 * @mtd: MTD device structure
2918 static void nand_resume(struct mtd_info *mtd)
2920 struct nand_chip *chip = mtd->priv;
2922 if (chip->state == FL_PM_SUSPENDED)
2923 nand_release_device(mtd);
2925 pr_err("%s called for a chip which is not in suspended state\n",
2929 /* Set default functions */
2930 static void nand_set_defaults(struct nand_chip *chip, int busw)
2932 /* check for proper chip_delay setup, set 20us if not */
2933 if (!chip->chip_delay)
2934 chip->chip_delay = 20;
2936 /* check, if a user supplied command function given */
2937 if (chip->cmdfunc == NULL)
2938 chip->cmdfunc = nand_command;
2940 /* check, if a user supplied wait function given */
2941 if (chip->waitfunc == NULL)
2942 chip->waitfunc = nand_wait;
2944 if (!chip->select_chip)
2945 chip->select_chip = nand_select_chip;
2947 /* set for ONFI nand */
2948 if (!chip->onfi_set_features)
2949 chip->onfi_set_features = nand_onfi_set_features;
2950 if (!chip->onfi_get_features)
2951 chip->onfi_get_features = nand_onfi_get_features;
2953 /* If called twice, pointers that depend on busw may need to be reset */
2954 if (!chip->read_byte || chip->read_byte == nand_read_byte)
2955 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2956 if (!chip->read_word)
2957 chip->read_word = nand_read_word;
2958 if (!chip->block_bad)
2959 chip->block_bad = nand_block_bad;
2960 if (!chip->block_markbad)
2961 chip->block_markbad = nand_default_block_markbad;
2962 if (!chip->write_buf || chip->write_buf == nand_write_buf)
2963 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2964 if (!chip->write_byte || chip->write_byte == nand_write_byte)
2965 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
2966 if (!chip->read_buf || chip->read_buf == nand_read_buf)
2967 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2968 if (!chip->scan_bbt)
2969 chip->scan_bbt = nand_default_bbt;
2971 if (!chip->controller) {
2972 chip->controller = &chip->hwcontrol;
2973 spin_lock_init(&chip->controller->lock);
2974 init_waitqueue_head(&chip->controller->wq);
2979 /* Sanitize ONFI strings so we can safely print them */
2980 static void sanitize_string(uint8_t *s, size_t len)
2984 /* Null terminate */
2987 /* Remove non printable chars */
2988 for (i = 0; i < len - 1; i++) {
2989 if (s[i] < ' ' || s[i] > 127)
2993 /* Remove trailing spaces */
2997 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3002 for (i = 0; i < 8; i++)
3003 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3009 /* Parse the Extended Parameter Page. */
3010 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3011 struct nand_chip *chip, struct nand_onfi_params *p)
3013 struct onfi_ext_param_page *ep;
3014 struct onfi_ext_section *s;
3015 struct onfi_ext_ecc_info *ecc;
3021 len = le16_to_cpu(p->ext_param_page_length) * 16;
3022 ep = kmalloc(len, GFP_KERNEL);
3026 /* Send our own NAND_CMD_PARAM. */
3027 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3029 /* Use the Change Read Column command to skip the ONFI param pages. */
3030 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3031 sizeof(*p) * p->num_of_param_pages , -1);
3033 /* Read out the Extended Parameter Page. */
3034 chip->read_buf(mtd, (uint8_t *)ep, len);
3035 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3036 != le16_to_cpu(ep->crc))) {
3037 pr_debug("fail in the CRC.\n");
3042 * Check the signature.
3043 * Do not strictly follow the ONFI spec, maybe changed in future.
3045 if (strncmp(ep->sig, "EPPS", 4)) {
3046 pr_debug("The signature is invalid.\n");
3050 /* find the ECC section. */
3051 cursor = (uint8_t *)(ep + 1);
3052 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3053 s = ep->sections + i;
3054 if (s->type == ONFI_SECTION_TYPE_2)
3056 cursor += s->length * 16;
3058 if (i == ONFI_EXT_SECTION_MAX) {
3059 pr_debug("We can not find the ECC section.\n");
3063 /* get the info we want. */
3064 ecc = (struct onfi_ext_ecc_info *)cursor;
3066 if (!ecc->codeword_size) {
3067 pr_debug("Invalid codeword size\n");
3071 chip->ecc_strength_ds = ecc->ecc_bits;
3072 chip->ecc_step_ds = 1 << ecc->codeword_size;
3080 static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3082 struct nand_chip *chip = mtd->priv;
3083 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3085 return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3090 * Configure chip properties from Micron vendor-specific ONFI table
3092 static void nand_onfi_detect_micron(struct nand_chip *chip,
3093 struct nand_onfi_params *p)
3095 struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3097 if (le16_to_cpu(p->vendor_revision) < 1)
3100 chip->read_retries = micron->read_retry_options;
3101 chip->setup_read_retry = nand_setup_read_retry_micron;
3105 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3107 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3110 struct nand_onfi_params *p = &chip->onfi_params;
3114 /* Try ONFI for unknown chip or LP */
3115 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3116 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3117 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3120 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3121 for (i = 0; i < 3; i++) {
3122 for (j = 0; j < sizeof(*p); j++)
3123 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3124 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3125 le16_to_cpu(p->crc)) {
3131 pr_err("Could not find valid ONFI parameter page; aborting\n");
3136 val = le16_to_cpu(p->revision);
3138 chip->onfi_version = 23;
3139 else if (val & (1 << 4))
3140 chip->onfi_version = 22;
3141 else if (val & (1 << 3))
3142 chip->onfi_version = 21;
3143 else if (val & (1 << 2))
3144 chip->onfi_version = 20;
3145 else if (val & (1 << 1))
3146 chip->onfi_version = 10;
3148 if (!chip->onfi_version) {
3149 pr_info("unsupported ONFI version: %d\n", val);
3153 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3154 sanitize_string(p->model, sizeof(p->model));
3156 mtd->name = p->model;
3158 mtd->writesize = le32_to_cpu(p->byte_per_page);
3161 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3162 * (don't ask me who thought of this...). MTD assumes that these
3163 * dimensions will be power-of-2, so just truncate the remaining area.
3165 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3166 mtd->erasesize *= mtd->writesize;
3168 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3170 /* See erasesize comment */
3171 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3172 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3173 chip->bits_per_cell = p->bits_per_cell;
3175 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3176 *busw = NAND_BUSWIDTH_16;
3180 if (p->ecc_bits != 0xff) {
3181 chip->ecc_strength_ds = p->ecc_bits;
3182 chip->ecc_step_ds = 512;
3183 } else if (chip->onfi_version >= 21 &&
3184 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3187 * The nand_flash_detect_ext_param_page() uses the
3188 * Change Read Column command which maybe not supported
3189 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3190 * now. We do not replace user supplied command function.
3192 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3193 chip->cmdfunc = nand_command_lp;
3195 /* The Extended Parameter Page is supported since ONFI 2.1. */
3196 if (nand_flash_detect_ext_param_page(mtd, chip, p))
3197 pr_warn("Failed to detect ONFI extended param page\n");
3199 pr_warn("Could not retrieve ONFI ECC requirements\n");
3202 if (p->jedec_id == NAND_MFR_MICRON)
3203 nand_onfi_detect_micron(chip, p);
3209 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3211 static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3214 struct nand_jedec_params *p = &chip->jedec_params;
3215 struct jedec_ecc_info *ecc;
3219 /* Try JEDEC for unknown chip or LP */
3220 chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3221 if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3222 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3223 chip->read_byte(mtd) != 'C')
3226 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3227 for (i = 0; i < 3; i++) {
3228 for (j = 0; j < sizeof(*p); j++)
3229 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3231 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3232 le16_to_cpu(p->crc))
3237 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3242 val = le16_to_cpu(p->revision);
3244 chip->jedec_version = 10;
3245 else if (val & (1 << 1))
3246 chip->jedec_version = 1; /* vendor specific version */
3248 if (!chip->jedec_version) {
3249 pr_info("unsupported JEDEC version: %d\n", val);
3253 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3254 sanitize_string(p->model, sizeof(p->model));
3256 mtd->name = p->model;
3258 mtd->writesize = le32_to_cpu(p->byte_per_page);
3260 /* Please reference to the comment for nand_flash_detect_onfi. */
3261 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3262 mtd->erasesize *= mtd->writesize;
3264 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3266 /* Please reference to the comment for nand_flash_detect_onfi. */
3267 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3268 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3269 chip->bits_per_cell = p->bits_per_cell;
3271 if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3272 *busw = NAND_BUSWIDTH_16;
3277 ecc = &p->ecc_info[0];
3279 if (ecc->codeword_size >= 9) {
3280 chip->ecc_strength_ds = ecc->ecc_bits;
3281 chip->ecc_step_ds = 1 << ecc->codeword_size;
3283 pr_warn("Invalid codeword size\n");
3290 * nand_id_has_period - Check if an ID string has a given wraparound period
3291 * @id_data: the ID string
3292 * @arrlen: the length of the @id_data array
3293 * @period: the period of repitition
3295 * Check if an ID string is repeated within a given sequence of bytes at
3296 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3297 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3298 * if the repetition has a period of @period; otherwise, returns zero.
3300 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3303 for (i = 0; i < period; i++)
3304 for (j = i + period; j < arrlen; j += period)
3305 if (id_data[i] != id_data[j])
3311 * nand_id_len - Get the length of an ID string returned by CMD_READID
3312 * @id_data: the ID string
3313 * @arrlen: the length of the @id_data array
3315 * Returns the length of the ID string, according to known wraparound/trailing
3316 * zero patterns. If no pattern exists, returns the length of the array.
3318 static int nand_id_len(u8 *id_data, int arrlen)
3320 int last_nonzero, period;
3322 /* Find last non-zero byte */
3323 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3324 if (id_data[last_nonzero])
3328 if (last_nonzero < 0)
3331 /* Calculate wraparound period */
3332 for (period = 1; period < arrlen; period++)
3333 if (nand_id_has_period(id_data, arrlen, period))
3336 /* There's a repeated pattern */
3337 if (period < arrlen)
3340 /* There are trailing zeros */
3341 if (last_nonzero < arrlen - 1)
3342 return last_nonzero + 1;
3344 /* No pattern detected */
3348 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3349 static int nand_get_bits_per_cell(u8 cellinfo)
3353 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3354 bits >>= NAND_CI_CELLTYPE_SHIFT;
3359 * Many new NAND share similar device ID codes, which represent the size of the
3360 * chip. The rest of the parameters must be decoded according to generic or
3361 * manufacturer-specific "extended ID" decoding patterns.
3363 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3364 u8 id_data[8], int *busw)
3367 /* The 3rd id byte holds MLC / multichip data */
3368 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3369 /* The 4th id byte is the important one */
3372 id_len = nand_id_len(id_data, 8);
3375 * Field definitions are in the following datasheets:
3376 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3377 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3378 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
3380 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3381 * ID to decide what to do.
3383 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3384 !nand_is_slc(chip) && id_data[5] != 0x00) {
3386 mtd->writesize = 2048 << (extid & 0x03);
3389 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3409 default: /* Other cases are "reserved" (unknown) */
3410 mtd->oobsize = 1024;
3414 /* Calc blocksize */
3415 mtd->erasesize = (128 * 1024) <<
3416 (((extid >> 1) & 0x04) | (extid & 0x03));
3418 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3419 !nand_is_slc(chip)) {
3423 mtd->writesize = 2048 << (extid & 0x03);
3426 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3450 /* Calc blocksize */
3451 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3453 mtd->erasesize = (128 * 1024) << tmp;
3454 else if (tmp == 0x03)
3455 mtd->erasesize = 768 * 1024;
3457 mtd->erasesize = (64 * 1024) << tmp;
3461 mtd->writesize = 1024 << (extid & 0x03);
3464 mtd->oobsize = (8 << (extid & 0x01)) *
3465 (mtd->writesize >> 9);
3467 /* Calc blocksize. Blocksize is multiples of 64KiB */
3468 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3470 /* Get buswidth information */
3471 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3474 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3475 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3477 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3479 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3481 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3482 nand_is_slc(chip) &&
3483 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3484 !(id_data[4] & 0x80) /* !BENAND */) {
3485 mtd->oobsize = 32 * mtd->writesize >> 9;
3492 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3493 * decodes a matching ID table entry and assigns the MTD size parameters for
3496 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3497 struct nand_flash_dev *type, u8 id_data[8],
3500 int maf_id = id_data[0];
3502 mtd->erasesize = type->erasesize;
3503 mtd->writesize = type->pagesize;
3504 mtd->oobsize = mtd->writesize / 32;
3505 *busw = type->options & NAND_BUSWIDTH_16;
3507 /* All legacy ID NAND are small-page, SLC */
3508 chip->bits_per_cell = 1;
3511 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3512 * some Spansion chips have erasesize that conflicts with size
3513 * listed in nand_ids table.
3514 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3516 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3517 && id_data[6] == 0x00 && id_data[7] == 0x00
3518 && mtd->writesize == 512) {
3519 mtd->erasesize = 128 * 1024;
3520 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3525 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3526 * heuristic patterns using various detected parameters (e.g., manufacturer,
3527 * page size, cell-type information).
3529 static void nand_decode_bbm_options(struct mtd_info *mtd,
3530 struct nand_chip *chip, u8 id_data[8])
3532 int maf_id = id_data[0];
3534 /* Set the bad block position */
3535 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3536 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3538 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3541 * Bad block marker is stored in the last page of each block on Samsung
3542 * and Hynix MLC devices; stored in first two pages of each block on
3543 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3544 * AMD/Spansion, and Macronix. All others scan only the first page.
3546 if (!nand_is_slc(chip) &&
3547 (maf_id == NAND_MFR_SAMSUNG ||
3548 maf_id == NAND_MFR_HYNIX))
3549 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3550 else if ((nand_is_slc(chip) &&
3551 (maf_id == NAND_MFR_SAMSUNG ||
3552 maf_id == NAND_MFR_HYNIX ||
3553 maf_id == NAND_MFR_TOSHIBA ||
3554 maf_id == NAND_MFR_AMD ||
3555 maf_id == NAND_MFR_MACRONIX)) ||
3556 (mtd->writesize == 2048 &&
3557 maf_id == NAND_MFR_MICRON))
3558 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3561 static inline bool is_full_id_nand(struct nand_flash_dev *type)
3563 return type->id_len;
3566 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3567 struct nand_flash_dev *type, u8 *id_data, int *busw)
3569 if (!strncmp(type->id, id_data, type->id_len)) {
3570 mtd->writesize = type->pagesize;
3571 mtd->erasesize = type->erasesize;
3572 mtd->oobsize = type->oobsize;
3574 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3575 chip->chipsize = (uint64_t)type->chipsize << 20;
3576 chip->options |= type->options;
3577 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3578 chip->ecc_step_ds = NAND_ECC_STEP(type);
3580 *busw = type->options & NAND_BUSWIDTH_16;
3583 mtd->name = type->name;
3591 * Get the flash and manufacturer id and lookup if the type is supported.
3593 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3594 struct nand_chip *chip,
3595 int *maf_id, int *dev_id,
3596 struct nand_flash_dev *type)
3602 /* Select the device */
3603 chip->select_chip(mtd, 0);
3606 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3609 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3611 /* Send the command for reading device ID */
3612 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3614 /* Read manufacturer and device IDs */
3615 *maf_id = chip->read_byte(mtd);
3616 *dev_id = chip->read_byte(mtd);
3619 * Try again to make sure, as some systems the bus-hold or other
3620 * interface concerns can cause random data which looks like a
3621 * possibly credible NAND flash to appear. If the two results do
3622 * not match, ignore the device completely.
3625 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3627 /* Read entire ID string */
3628 for (i = 0; i < 8; i++)
3629 id_data[i] = chip->read_byte(mtd);
3631 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3632 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3633 *maf_id, *dev_id, id_data[0], id_data[1]);
3634 return ERR_PTR(-ENODEV);
3638 type = nand_flash_ids;
3640 for (; type->name != NULL; type++) {
3641 if (is_full_id_nand(type)) {
3642 if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3644 } else if (*dev_id == type->dev_id) {
3649 chip->onfi_version = 0;
3650 if (!type->name || !type->pagesize) {
3651 /* Check if the chip is ONFI compliant */
3652 if (nand_flash_detect_onfi(mtd, chip, &busw))
3655 /* Check if the chip is JEDEC compliant */
3656 if (nand_flash_detect_jedec(mtd, chip, &busw))
3661 return ERR_PTR(-ENODEV);
3664 mtd->name = type->name;
3666 chip->chipsize = (uint64_t)type->chipsize << 20;
3668 if (!type->pagesize && chip->init_size) {
3669 /* Set the pagesize, oobsize, erasesize by the driver */
3670 busw = chip->init_size(mtd, chip, id_data);
3671 } else if (!type->pagesize) {
3672 /* Decode parameters from extended ID */
3673 nand_decode_ext_id(mtd, chip, id_data, &busw);
3675 nand_decode_id(mtd, chip, type, id_data, &busw);
3677 /* Get chip options */
3678 chip->options |= type->options;
3681 * Check if chip is not a Samsung device. Do not clear the
3682 * options for chips which do not have an extended id.
3684 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3685 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3688 /* Try to identify manufacturer */
3689 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3690 if (nand_manuf_ids[maf_idx].id == *maf_id)
3694 if (chip->options & NAND_BUSWIDTH_AUTO) {
3695 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3696 chip->options |= busw;
3697 nand_set_defaults(chip, busw);
3698 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3700 * Check, if buswidth is correct. Hardware drivers should set
3703 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3705 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3706 pr_warn("bus width %d instead %d bit\n",
3707 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3709 return ERR_PTR(-EINVAL);
3712 nand_decode_bbm_options(mtd, chip, id_data);
3714 /* Calculate the address shift from the page size */
3715 chip->page_shift = ffs(mtd->writesize) - 1;
3716 /* Convert chipsize to number of pages per chip -1 */
3717 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3719 chip->bbt_erase_shift = chip->phys_erase_shift =
3720 ffs(mtd->erasesize) - 1;
3721 if (chip->chipsize & 0xffffffff)
3722 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3724 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3725 chip->chip_shift += 32 - 1;
3728 chip->badblockbits = 8;
3729 chip->erase = single_erase;
3731 /* Do not replace user supplied command function! */
3732 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3733 chip->cmdfunc = nand_command_lp;
3735 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3738 if (chip->onfi_version)
3739 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3740 chip->onfi_params.model);
3741 else if (chip->jedec_version)
3742 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3743 chip->jedec_params.model);
3745 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3748 pr_info("%dMiB, %s, page size: %d, OOB size: %d\n",
3749 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3750 mtd->writesize, mtd->oobsize);
3755 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3756 * @mtd: MTD device structure
3757 * @maxchips: number of chips to scan for
3758 * @table: alternative NAND ID table
3760 * This is the first phase of the normal nand_scan() function. It reads the
3761 * flash ID and sets up MTD fields accordingly.
3763 * The mtd->owner field must be set to the module of the caller.
3765 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3766 struct nand_flash_dev *table)
3768 int i, nand_maf_id, nand_dev_id;
3769 struct nand_chip *chip = mtd->priv;
3770 struct nand_flash_dev *type;
3772 /* Set the default functions */
3773 nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
3775 /* Read the flash type */
3776 type = nand_get_flash_type(mtd, chip, &nand_maf_id,
3777 &nand_dev_id, table);
3780 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3781 pr_warn("No NAND device found\n");
3782 chip->select_chip(mtd, -1);
3783 return PTR_ERR(type);
3786 chip->select_chip(mtd, -1);
3788 /* Check for a chip array */
3789 for (i = 1; i < maxchips; i++) {
3790 chip->select_chip(mtd, i);
3791 /* See comment in nand_get_flash_type for reset */
3792 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3793 /* Send the command for reading device ID */
3794 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3795 /* Read manufacturer and device IDs */
3796 if (nand_maf_id != chip->read_byte(mtd) ||
3797 nand_dev_id != chip->read_byte(mtd)) {
3798 chip->select_chip(mtd, -1);
3801 chip->select_chip(mtd, -1);
3804 pr_info("%d chips detected\n", i);
3806 /* Store the number of chips and calc total size for mtd */
3808 mtd->size = i * chip->chipsize;
3812 EXPORT_SYMBOL(nand_scan_ident);
3815 * Check if the chip configuration meet the datasheet requirements.
3817 * If our configuration corrects A bits per B bytes and the minimum
3818 * required correction level is X bits per Y bytes, then we must ensure
3819 * both of the following are true:
3821 * (1) A / B >= X / Y
3824 * Requirement (1) ensures we can correct for the required bitflip density.
3825 * Requirement (2) ensures we can correct even when all bitflips are clumped
3826 * in the same sector.
3828 static bool nand_ecc_strength_good(struct mtd_info *mtd)
3830 struct nand_chip *chip = mtd->priv;
3831 struct nand_ecc_ctrl *ecc = &chip->ecc;
3834 if (ecc->size == 0 || chip->ecc_step_ds == 0)
3835 /* Not enough information */
3839 * We get the number of corrected bits per page to compare
3840 * the correction density.
3842 corr = (mtd->writesize * ecc->strength) / ecc->size;
3843 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
3845 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
3849 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3850 * @mtd: MTD device structure
3852 * This is the second phase of the normal nand_scan() function. It fills out
3853 * all the uninitialized function pointers with the defaults and scans for a
3854 * bad block table if appropriate.
3856 int nand_scan_tail(struct mtd_info *mtd)
3859 struct nand_chip *chip = mtd->priv;
3860 struct nand_ecc_ctrl *ecc = &chip->ecc;
3861 struct nand_buffers *nbuf;
3863 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3864 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3865 !(chip->bbt_options & NAND_BBT_USE_FLASH));
3867 if (!(chip->options & NAND_OWN_BUFFERS)) {
3868 nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
3869 + mtd->oobsize * 3, GFP_KERNEL);
3872 nbuf->ecccalc = (uint8_t *)(nbuf + 1);
3873 nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
3874 nbuf->databuf = nbuf->ecccode + mtd->oobsize;
3876 chip->buffers = nbuf;
3882 /* Set the internal oob buffer location, just after the page data */
3883 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3886 * If no default placement scheme is given, select an appropriate one.
3888 if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
3889 switch (mtd->oobsize) {
3891 ecc->layout = &nand_oob_8;
3894 ecc->layout = &nand_oob_16;
3897 ecc->layout = &nand_oob_64;
3900 ecc->layout = &nand_oob_128;
3903 pr_warn("No oob scheme defined for oobsize %d\n",
3909 if (!chip->write_page)
3910 chip->write_page = nand_write_page;
3913 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3914 * selected and we have 256 byte pagesize fallback to software ECC
3917 switch (ecc->mode) {
3918 case NAND_ECC_HW_OOB_FIRST:
3919 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3920 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
3921 pr_warn("No ECC functions supplied; "
3922 "hardware ECC not possible\n");
3925 if (!ecc->read_page)
3926 ecc->read_page = nand_read_page_hwecc_oob_first;
3929 /* Use standard hwecc read page function? */
3930 if (!ecc->read_page)
3931 ecc->read_page = nand_read_page_hwecc;
3932 if (!ecc->write_page)
3933 ecc->write_page = nand_write_page_hwecc;
3934 if (!ecc->read_page_raw)
3935 ecc->read_page_raw = nand_read_page_raw;
3936 if (!ecc->write_page_raw)
3937 ecc->write_page_raw = nand_write_page_raw;
3939 ecc->read_oob = nand_read_oob_std;
3940 if (!ecc->write_oob)
3941 ecc->write_oob = nand_write_oob_std;
3942 if (!ecc->read_subpage)
3943 ecc->read_subpage = nand_read_subpage;
3944 if (!ecc->write_subpage)
3945 ecc->write_subpage = nand_write_subpage_hwecc;
3947 case NAND_ECC_HW_SYNDROME:
3948 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
3950 ecc->read_page == nand_read_page_hwecc ||
3952 ecc->write_page == nand_write_page_hwecc)) {
3953 pr_warn("No ECC functions supplied; "
3954 "hardware ECC not possible\n");
3957 /* Use standard syndrome read/write page function? */
3958 if (!ecc->read_page)
3959 ecc->read_page = nand_read_page_syndrome;
3960 if (!ecc->write_page)
3961 ecc->write_page = nand_write_page_syndrome;
3962 if (!ecc->read_page_raw)
3963 ecc->read_page_raw = nand_read_page_raw_syndrome;
3964 if (!ecc->write_page_raw)
3965 ecc->write_page_raw = nand_write_page_raw_syndrome;
3967 ecc->read_oob = nand_read_oob_syndrome;
3968 if (!ecc->write_oob)
3969 ecc->write_oob = nand_write_oob_syndrome;
3971 if (mtd->writesize >= ecc->size) {
3972 if (!ecc->strength) {
3973 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3978 pr_warn("%d byte HW ECC not possible on "
3979 "%d byte page size, fallback to SW ECC\n",
3980 ecc->size, mtd->writesize);
3981 ecc->mode = NAND_ECC_SOFT;
3984 ecc->calculate = nand_calculate_ecc;
3985 ecc->correct = nand_correct_data;
3986 ecc->read_page = nand_read_page_swecc;
3987 ecc->read_subpage = nand_read_subpage;
3988 ecc->write_page = nand_write_page_swecc;
3989 ecc->read_page_raw = nand_read_page_raw;
3990 ecc->write_page_raw = nand_write_page_raw;
3991 ecc->read_oob = nand_read_oob_std;
3992 ecc->write_oob = nand_write_oob_std;
3999 case NAND_ECC_SOFT_BCH:
4000 if (!mtd_nand_has_bch()) {
4001 pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4004 ecc->calculate = nand_bch_calculate_ecc;
4005 ecc->correct = nand_bch_correct_data;
4006 ecc->read_page = nand_read_page_swecc;
4007 ecc->read_subpage = nand_read_subpage;
4008 ecc->write_page = nand_write_page_swecc;
4009 ecc->read_page_raw = nand_read_page_raw;
4010 ecc->write_page_raw = nand_write_page_raw;
4011 ecc->read_oob = nand_read_oob_std;
4012 ecc->write_oob = nand_write_oob_std;
4014 * Board driver should supply ecc.size and ecc.bytes values to
4015 * select how many bits are correctable; see nand_bch_init()
4016 * for details. Otherwise, default to 4 bits for large page
4019 if (!ecc->size && (mtd->oobsize >= 64)) {
4023 ecc->priv = nand_bch_init(mtd, ecc->size, ecc->bytes,
4026 pr_warn("BCH ECC initialization failed!\n");
4029 ecc->strength = ecc->bytes * 8 / fls(8 * ecc->size);
4033 pr_warn("NAND_ECC_NONE selected by board driver. "
4034 "This is not recommended!\n");
4035 ecc->read_page = nand_read_page_raw;
4036 ecc->write_page = nand_write_page_raw;
4037 ecc->read_oob = nand_read_oob_std;
4038 ecc->read_page_raw = nand_read_page_raw;
4039 ecc->write_page_raw = nand_write_page_raw;
4040 ecc->write_oob = nand_write_oob_std;
4041 ecc->size = mtd->writesize;
4047 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
4051 /* For many systems, the standard OOB write also works for raw */
4052 if (!ecc->read_oob_raw)
4053 ecc->read_oob_raw = ecc->read_oob;
4054 if (!ecc->write_oob_raw)
4055 ecc->write_oob_raw = ecc->write_oob;
4058 * The number of bytes available for a client to place data into
4059 * the out of band area.
4061 ecc->layout->oobavail = 0;
4062 for (i = 0; ecc->layout->oobfree[i].length
4063 && i < ARRAY_SIZE(ecc->layout->oobfree); i++)
4064 ecc->layout->oobavail += ecc->layout->oobfree[i].length;
4065 mtd->oobavail = ecc->layout->oobavail;
4067 /* ECC sanity check: warn noisily if it's too weak */
4068 WARN_ON(!nand_ecc_strength_good(mtd));
4071 * Set the number of read / write steps for one page depending on ECC
4074 ecc->steps = mtd->writesize / ecc->size;
4075 if (ecc->steps * ecc->size != mtd->writesize) {
4076 pr_warn("Invalid ECC parameters\n");
4079 ecc->total = ecc->steps * ecc->bytes;
4081 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4082 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4083 switch (ecc->steps) {
4085 mtd->subpage_sft = 1;
4090 mtd->subpage_sft = 2;
4094 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4096 /* Initialize state */
4097 chip->state = FL_READY;
4099 /* Invalidate the pagebuffer reference */
4102 /* Large page NAND with SOFT_ECC should support subpage reads */
4103 switch (ecc->mode) {
4105 case NAND_ECC_SOFT_BCH:
4106 if (chip->page_shift > 9)
4107 chip->options |= NAND_SUBPAGE_READ;
4114 /* Fill in remaining MTD driver data */
4115 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4116 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4118 mtd->_erase = nand_erase;
4120 mtd->_unpoint = NULL;
4121 mtd->_read = nand_read;
4122 mtd->_write = nand_write;
4123 mtd->_panic_write = panic_nand_write;
4124 mtd->_read_oob = nand_read_oob;
4125 mtd->_write_oob = nand_write_oob;
4126 mtd->_sync = nand_sync;
4128 mtd->_unlock = NULL;
4129 mtd->_suspend = nand_suspend;
4130 mtd->_resume = nand_resume;
4131 mtd->_block_isreserved = nand_block_isreserved;
4132 mtd->_block_isbad = nand_block_isbad;
4133 mtd->_block_markbad = nand_block_markbad;
4134 mtd->writebufsize = mtd->writesize;
4136 /* propagate ecc info to mtd_info */
4137 mtd->ecclayout = ecc->layout;
4138 mtd->ecc_strength = ecc->strength;
4139 mtd->ecc_step_size = ecc->size;
4141 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4142 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4145 if (!mtd->bitflip_threshold)
4146 mtd->bitflip_threshold = mtd->ecc_strength;
4148 /* Check, if we should skip the bad block table scan */
4149 if (chip->options & NAND_SKIP_BBTSCAN)
4152 /* Build bad block table */
4153 return chip->scan_bbt(mtd);
4155 EXPORT_SYMBOL(nand_scan_tail);
4158 * is_module_text_address() isn't exported, and it's mostly a pointless
4159 * test if this is a module _anyway_ -- they'd have to try _really_ hard
4160 * to call us from in-kernel code if the core NAND support is modular.
4163 #define caller_is_module() (1)
4165 #define caller_is_module() \
4166 is_module_text_address((unsigned long)__builtin_return_address(0))
4170 * nand_scan - [NAND Interface] Scan for the NAND device
4171 * @mtd: MTD device structure
4172 * @maxchips: number of chips to scan for
4174 * This fills out all the uninitialized function pointers with the defaults.
4175 * The flash ID is read and the mtd/chip structures are filled with the
4176 * appropriate values. The mtd->owner field must be set to the module of the
4179 int nand_scan(struct mtd_info *mtd, int maxchips)
4183 /* Many callers got this wrong, so check for it for a while... */
4184 if (!mtd->owner && caller_is_module()) {
4185 pr_crit("%s called with NULL mtd->owner!\n", __func__);
4189 ret = nand_scan_ident(mtd, maxchips, NULL);
4191 ret = nand_scan_tail(mtd);
4194 EXPORT_SYMBOL(nand_scan);
4197 * nand_release - [NAND Interface] Free resources held by the NAND device
4198 * @mtd: MTD device structure
4200 void nand_release(struct mtd_info *mtd)
4202 struct nand_chip *chip = mtd->priv;
4204 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
4205 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4207 mtd_device_unregister(mtd);
4209 /* Free bad block table memory */
4211 if (!(chip->options & NAND_OWN_BUFFERS))
4212 kfree(chip->buffers);
4214 /* Free bad block descriptor memory */
4215 if (chip->badblock_pattern && chip->badblock_pattern->options
4216 & NAND_BBT_DYNAMICSTRUCT)
4217 kfree(chip->badblock_pattern);
4219 EXPORT_SYMBOL_GPL(nand_release);
4221 static int __init nand_base_init(void)
4223 led_trigger_register_simple("nand-disk", &nand_led_trigger);
4227 static void __exit nand_base_exit(void)
4229 led_trigger_unregister_simple(nand_led_trigger);
4232 module_init(nand_base_init);
4233 module_exit(nand_base_exit);
4235 MODULE_LICENSE("GPL");
4238 MODULE_DESCRIPTION("Generic NAND flash driver code");