2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
4 * Copyright 2016 Microsemi Corporation
5 * Copyright 2014-2015 PMC-Sierra, Inc.
6 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; version 2 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15 * NON INFRINGEMENT. See the GNU General Public License for more details.
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/types.h>
24 #include <linux/pci.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
63 #define HPSA_DRIVER_VERSION "3.4.20-200"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 /* How long to wait before giving up on a command */
77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
79 /* Embedded module documentation macros - see modules.h */
80 MODULE_AUTHOR("Hewlett-Packard Company");
81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
83 MODULE_VERSION(HPSA_DRIVER_VERSION);
84 MODULE_LICENSE("GPL");
85 MODULE_ALIAS("cciss");
87 static int hpsa_simple_mode;
88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
89 MODULE_PARM_DESC(hpsa_simple_mode,
90 "Use 'simple mode' rather than 'performant mode'");
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id[] = {
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1920},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1925},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
135 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
148 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149 {PCI_VENDOR_ID_COMPAQ, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
150 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
156 /* board_id = Subsystem Device ID & Vendor ID
157 * product = Marketing Name for the board
158 * access = Address of the struct of function pointers
160 static struct board_type products[] = {
161 {0x40700E11, "Smart Array 5300", &SA5A_access},
162 {0x40800E11, "Smart Array 5i", &SA5B_access},
163 {0x40820E11, "Smart Array 532", &SA5B_access},
164 {0x40830E11, "Smart Array 5312", &SA5B_access},
165 {0x409A0E11, "Smart Array 641", &SA5A_access},
166 {0x409B0E11, "Smart Array 642", &SA5A_access},
167 {0x409C0E11, "Smart Array 6400", &SA5A_access},
168 {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
169 {0x40910E11, "Smart Array 6i", &SA5A_access},
170 {0x3225103C, "Smart Array P600", &SA5A_access},
171 {0x3223103C, "Smart Array P800", &SA5A_access},
172 {0x3234103C, "Smart Array P400", &SA5A_access},
173 {0x3235103C, "Smart Array P400i", &SA5A_access},
174 {0x3211103C, "Smart Array E200i", &SA5A_access},
175 {0x3212103C, "Smart Array E200", &SA5A_access},
176 {0x3213103C, "Smart Array E200i", &SA5A_access},
177 {0x3214103C, "Smart Array E200i", &SA5A_access},
178 {0x3215103C, "Smart Array E200i", &SA5A_access},
179 {0x3237103C, "Smart Array E500", &SA5A_access},
180 {0x323D103C, "Smart Array P700m", &SA5A_access},
181 {0x3241103C, "Smart Array P212", &SA5_access},
182 {0x3243103C, "Smart Array P410", &SA5_access},
183 {0x3245103C, "Smart Array P410i", &SA5_access},
184 {0x3247103C, "Smart Array P411", &SA5_access},
185 {0x3249103C, "Smart Array P812", &SA5_access},
186 {0x324A103C, "Smart Array P712m", &SA5_access},
187 {0x324B103C, "Smart Array P711m", &SA5_access},
188 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
189 {0x3350103C, "Smart Array P222", &SA5_access},
190 {0x3351103C, "Smart Array P420", &SA5_access},
191 {0x3352103C, "Smart Array P421", &SA5_access},
192 {0x3353103C, "Smart Array P822", &SA5_access},
193 {0x3354103C, "Smart Array P420i", &SA5_access},
194 {0x3355103C, "Smart Array P220i", &SA5_access},
195 {0x3356103C, "Smart Array P721m", &SA5_access},
196 {0x1920103C, "Smart Array P430i", &SA5_access},
197 {0x1921103C, "Smart Array P830i", &SA5_access},
198 {0x1922103C, "Smart Array P430", &SA5_access},
199 {0x1923103C, "Smart Array P431", &SA5_access},
200 {0x1924103C, "Smart Array P830", &SA5_access},
201 {0x1925103C, "Smart Array P831", &SA5_access},
202 {0x1926103C, "Smart Array P731m", &SA5_access},
203 {0x1928103C, "Smart Array P230i", &SA5_access},
204 {0x1929103C, "Smart Array P530", &SA5_access},
205 {0x21BD103C, "Smart Array P244br", &SA5_access},
206 {0x21BE103C, "Smart Array P741m", &SA5_access},
207 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
208 {0x21C0103C, "Smart Array P440ar", &SA5_access},
209 {0x21C1103C, "Smart Array P840ar", &SA5_access},
210 {0x21C2103C, "Smart Array P440", &SA5_access},
211 {0x21C3103C, "Smart Array P441", &SA5_access},
212 {0x21C4103C, "Smart Array", &SA5_access},
213 {0x21C5103C, "Smart Array P841", &SA5_access},
214 {0x21C6103C, "Smart HBA H244br", &SA5_access},
215 {0x21C7103C, "Smart HBA H240", &SA5_access},
216 {0x21C8103C, "Smart HBA H241", &SA5_access},
217 {0x21C9103C, "Smart Array", &SA5_access},
218 {0x21CA103C, "Smart Array P246br", &SA5_access},
219 {0x21CB103C, "Smart Array P840", &SA5_access},
220 {0x21CC103C, "Smart Array", &SA5_access},
221 {0x21CD103C, "Smart Array", &SA5_access},
222 {0x21CE103C, "Smart HBA", &SA5_access},
223 {0x05809005, "SmartHBA-SA", &SA5_access},
224 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
225 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
226 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
227 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
228 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
229 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
230 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
231 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
232 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
233 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
234 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
237 static struct scsi_transport_template *hpsa_sas_transport_template;
238 static int hpsa_add_sas_host(struct ctlr_info *h);
239 static void hpsa_delete_sas_host(struct ctlr_info *h);
240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
241 struct hpsa_scsi_dev_t *device);
242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
243 static struct hpsa_scsi_dev_t
244 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
245 struct sas_rphy *rphy);
247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
248 static const struct scsi_cmnd hpsa_cmd_busy;
249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
250 static const struct scsi_cmnd hpsa_cmd_idle;
251 static int number_of_controllers;
253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
257 static int hpsa_passthru_ioctl(struct ctlr_info *h,
258 IOCTL_Command_struct *iocommand);
259 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
260 BIG_IOCTL_Command_struct *ioc);
263 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
267 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
268 static struct CommandList *cmd_alloc(struct ctlr_info *h);
269 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
270 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
271 struct scsi_cmnd *scmd);
272 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
273 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
275 static void hpsa_free_cmd_pool(struct ctlr_info *h);
276 #define VPD_PAGE (1 << 8)
277 #define HPSA_SIMPLE_ERROR_BITS 0x03
279 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
280 static void hpsa_scan_start(struct Scsi_Host *);
281 static int hpsa_scan_finished(struct Scsi_Host *sh,
282 unsigned long elapsed_time);
283 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
285 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
286 static int hpsa_slave_alloc(struct scsi_device *sdev);
287 static int hpsa_slave_configure(struct scsi_device *sdev);
288 static void hpsa_slave_destroy(struct scsi_device *sdev);
290 static void hpsa_update_scsi_devices(struct ctlr_info *h);
291 static int check_for_unit_attention(struct ctlr_info *h,
292 struct CommandList *c);
293 static void check_ioctl_unit_attention(struct ctlr_info *h,
294 struct CommandList *c);
295 /* performant mode helper functions */
296 static void calc_bucket_map(int *bucket, int num_buckets,
297 int nsgs, int min_blocks, u32 *bucket_map);
298 static void hpsa_free_performant_mode(struct ctlr_info *h);
299 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
300 static inline u32 next_command(struct ctlr_info *h, u8 q);
301 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
302 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
304 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
305 unsigned long *memory_bar);
306 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
308 static int wait_for_device_to_become_ready(struct ctlr_info *h,
309 unsigned char lunaddr[],
311 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
313 static inline void finish_cmd(struct CommandList *c);
314 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
315 #define BOARD_NOT_READY 0
316 #define BOARD_READY 1
317 static void hpsa_drain_accel_commands(struct ctlr_info *h);
318 static void hpsa_flush_cache(struct ctlr_info *h);
319 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
320 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
321 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
322 static void hpsa_command_resubmit_worker(struct work_struct *work);
323 static u32 lockup_detected(struct ctlr_info *h);
324 static int detect_controller_lockup(struct ctlr_info *h);
325 static void hpsa_disable_rld_caching(struct ctlr_info *h);
326 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
327 struct ReportExtendedLUNdata *buf, int bufsize);
328 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
329 unsigned char scsi3addr[], u8 page);
330 static int hpsa_luns_changed(struct ctlr_info *h);
331 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
332 struct hpsa_scsi_dev_t *dev,
333 unsigned char *scsi3addr);
335 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
337 unsigned long *priv = shost_priv(sdev->host);
338 return (struct ctlr_info *) *priv;
341 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
343 unsigned long *priv = shost_priv(sh);
344 return (struct ctlr_info *) *priv;
347 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
349 return c->scsi_cmd == SCSI_CMD_IDLE;
352 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
353 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
354 u8 *sense_key, u8 *asc, u8 *ascq)
356 struct scsi_sense_hdr sshdr;
363 if (sense_data_len < 1)
366 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
368 *sense_key = sshdr.sense_key;
374 static int check_for_unit_attention(struct ctlr_info *h,
375 struct CommandList *c)
377 u8 sense_key, asc, ascq;
380 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
381 sense_len = sizeof(c->err_info->SenseInfo);
383 sense_len = c->err_info->SenseLen;
385 decode_sense_data(c->err_info->SenseInfo, sense_len,
386 &sense_key, &asc, &ascq);
387 if (sense_key != UNIT_ATTENTION || asc == 0xff)
392 dev_warn(&h->pdev->dev,
393 "%s: a state change detected, command retried\n",
397 dev_warn(&h->pdev->dev,
398 "%s: LUN failure detected\n", h->devname);
400 case REPORT_LUNS_CHANGED:
401 dev_warn(&h->pdev->dev,
402 "%s: report LUN data changed\n", h->devname);
404 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
405 * target (array) devices.
409 dev_warn(&h->pdev->dev,
410 "%s: a power on or device reset detected\n",
413 case UNIT_ATTENTION_CLEARED:
414 dev_warn(&h->pdev->dev,
415 "%s: unit attention cleared by another initiator\n",
419 dev_warn(&h->pdev->dev,
420 "%s: unknown unit attention detected\n",
427 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
429 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
430 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
431 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
433 dev_warn(&h->pdev->dev, HPSA "device busy");
437 static u32 lockup_detected(struct ctlr_info *h);
438 static ssize_t host_show_lockup_detected(struct device *dev,
439 struct device_attribute *attr, char *buf)
443 struct Scsi_Host *shost = class_to_shost(dev);
445 h = shost_to_hba(shost);
446 ld = lockup_detected(h);
448 return sprintf(buf, "ld=%d\n", ld);
451 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
452 struct device_attribute *attr,
453 const char *buf, size_t count)
457 struct Scsi_Host *shost = class_to_shost(dev);
460 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
462 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463 strncpy(tmpbuf, buf, len);
465 if (sscanf(tmpbuf, "%d", &status) != 1)
467 h = shost_to_hba(shost);
468 h->acciopath_status = !!status;
469 dev_warn(&h->pdev->dev,
470 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
471 h->acciopath_status ? "enabled" : "disabled");
475 static ssize_t host_store_raid_offload_debug(struct device *dev,
476 struct device_attribute *attr,
477 const char *buf, size_t count)
479 int debug_level, len;
481 struct Scsi_Host *shost = class_to_shost(dev);
484 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
486 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
487 strncpy(tmpbuf, buf, len);
489 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
493 h = shost_to_hba(shost);
494 h->raid_offload_debug = debug_level;
495 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
496 h->raid_offload_debug);
500 static ssize_t host_store_rescan(struct device *dev,
501 struct device_attribute *attr,
502 const char *buf, size_t count)
505 struct Scsi_Host *shost = class_to_shost(dev);
506 h = shost_to_hba(shost);
507 hpsa_scan_start(h->scsi_host);
511 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
513 device->offload_enabled = 0;
514 device->offload_to_be_enabled = 0;
517 static ssize_t host_show_firmware_revision(struct device *dev,
518 struct device_attribute *attr, char *buf)
521 struct Scsi_Host *shost = class_to_shost(dev);
522 unsigned char *fwrev;
524 h = shost_to_hba(shost);
525 if (!h->hba_inquiry_data)
527 fwrev = &h->hba_inquiry_data[32];
528 return snprintf(buf, 20, "%c%c%c%c\n",
529 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
532 static ssize_t host_show_commands_outstanding(struct device *dev,
533 struct device_attribute *attr, char *buf)
535 struct Scsi_Host *shost = class_to_shost(dev);
536 struct ctlr_info *h = shost_to_hba(shost);
538 return snprintf(buf, 20, "%d\n",
539 atomic_read(&h->commands_outstanding));
542 static ssize_t host_show_transport_mode(struct device *dev,
543 struct device_attribute *attr, char *buf)
546 struct Scsi_Host *shost = class_to_shost(dev);
548 h = shost_to_hba(shost);
549 return snprintf(buf, 20, "%s\n",
550 h->transMethod & CFGTBL_Trans_Performant ?
551 "performant" : "simple");
554 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
555 struct device_attribute *attr, char *buf)
558 struct Scsi_Host *shost = class_to_shost(dev);
560 h = shost_to_hba(shost);
561 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
562 (h->acciopath_status == 1) ? "enabled" : "disabled");
565 /* List of controllers which cannot be hard reset on kexec with reset_devices */
566 static u32 unresettable_controller[] = {
567 0x324a103C, /* Smart Array P712m */
568 0x324b103C, /* Smart Array P711m */
569 0x3223103C, /* Smart Array P800 */
570 0x3234103C, /* Smart Array P400 */
571 0x3235103C, /* Smart Array P400i */
572 0x3211103C, /* Smart Array E200i */
573 0x3212103C, /* Smart Array E200 */
574 0x3213103C, /* Smart Array E200i */
575 0x3214103C, /* Smart Array E200i */
576 0x3215103C, /* Smart Array E200i */
577 0x3237103C, /* Smart Array E500 */
578 0x323D103C, /* Smart Array P700m */
579 0x40800E11, /* Smart Array 5i */
580 0x409C0E11, /* Smart Array 6400 */
581 0x409D0E11, /* Smart Array 6400 EM */
582 0x40700E11, /* Smart Array 5300 */
583 0x40820E11, /* Smart Array 532 */
584 0x40830E11, /* Smart Array 5312 */
585 0x409A0E11, /* Smart Array 641 */
586 0x409B0E11, /* Smart Array 642 */
587 0x40910E11, /* Smart Array 6i */
590 /* List of controllers which cannot even be soft reset */
591 static u32 soft_unresettable_controller[] = {
592 0x40800E11, /* Smart Array 5i */
593 0x40700E11, /* Smart Array 5300 */
594 0x40820E11, /* Smart Array 532 */
595 0x40830E11, /* Smart Array 5312 */
596 0x409A0E11, /* Smart Array 641 */
597 0x409B0E11, /* Smart Array 642 */
598 0x40910E11, /* Smart Array 6i */
599 /* Exclude 640x boards. These are two pci devices in one slot
600 * which share a battery backed cache module. One controls the
601 * cache, the other accesses the cache through the one that controls
602 * it. If we reset the one controlling the cache, the other will
603 * likely not be happy. Just forbid resetting this conjoined mess.
604 * The 640x isn't really supported by hpsa anyway.
606 0x409C0E11, /* Smart Array 6400 */
607 0x409D0E11, /* Smart Array 6400 EM */
610 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
614 for (i = 0; i < nelems; i++)
615 if (a[i] == board_id)
620 static int ctlr_is_hard_resettable(u32 board_id)
622 return !board_id_in_array(unresettable_controller,
623 ARRAY_SIZE(unresettable_controller), board_id);
626 static int ctlr_is_soft_resettable(u32 board_id)
628 return !board_id_in_array(soft_unresettable_controller,
629 ARRAY_SIZE(soft_unresettable_controller), board_id);
632 static int ctlr_is_resettable(u32 board_id)
634 return ctlr_is_hard_resettable(board_id) ||
635 ctlr_is_soft_resettable(board_id);
638 static ssize_t host_show_resettable(struct device *dev,
639 struct device_attribute *attr, char *buf)
642 struct Scsi_Host *shost = class_to_shost(dev);
644 h = shost_to_hba(shost);
645 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
648 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
650 return (scsi3addr[3] & 0xC0) == 0x40;
653 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
654 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
656 #define HPSA_RAID_0 0
657 #define HPSA_RAID_4 1
658 #define HPSA_RAID_1 2 /* also used for RAID 10 */
659 #define HPSA_RAID_5 3 /* also used for RAID 50 */
660 #define HPSA_RAID_51 4
661 #define HPSA_RAID_6 5 /* also used for RAID 60 */
662 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
663 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
664 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
666 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
668 return !device->physical_device;
671 static ssize_t raid_level_show(struct device *dev,
672 struct device_attribute *attr, char *buf)
675 unsigned char rlevel;
677 struct scsi_device *sdev;
678 struct hpsa_scsi_dev_t *hdev;
681 sdev = to_scsi_device(dev);
682 h = sdev_to_hba(sdev);
683 spin_lock_irqsave(&h->lock, flags);
684 hdev = sdev->hostdata;
686 spin_unlock_irqrestore(&h->lock, flags);
690 /* Is this even a logical drive? */
691 if (!is_logical_device(hdev)) {
692 spin_unlock_irqrestore(&h->lock, flags);
693 l = snprintf(buf, PAGE_SIZE, "N/A\n");
697 rlevel = hdev->raid_level;
698 spin_unlock_irqrestore(&h->lock, flags);
699 if (rlevel > RAID_UNKNOWN)
700 rlevel = RAID_UNKNOWN;
701 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
705 static ssize_t lunid_show(struct device *dev,
706 struct device_attribute *attr, char *buf)
709 struct scsi_device *sdev;
710 struct hpsa_scsi_dev_t *hdev;
712 unsigned char lunid[8];
714 sdev = to_scsi_device(dev);
715 h = sdev_to_hba(sdev);
716 spin_lock_irqsave(&h->lock, flags);
717 hdev = sdev->hostdata;
719 spin_unlock_irqrestore(&h->lock, flags);
722 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
723 spin_unlock_irqrestore(&h->lock, flags);
724 return snprintf(buf, 20, "0x%8phN\n", lunid);
727 static ssize_t unique_id_show(struct device *dev,
728 struct device_attribute *attr, char *buf)
731 struct scsi_device *sdev;
732 struct hpsa_scsi_dev_t *hdev;
734 unsigned char sn[16];
736 sdev = to_scsi_device(dev);
737 h = sdev_to_hba(sdev);
738 spin_lock_irqsave(&h->lock, flags);
739 hdev = sdev->hostdata;
741 spin_unlock_irqrestore(&h->lock, flags);
744 memcpy(sn, hdev->device_id, sizeof(sn));
745 spin_unlock_irqrestore(&h->lock, flags);
746 return snprintf(buf, 16 * 2 + 2,
747 "%02X%02X%02X%02X%02X%02X%02X%02X"
748 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
749 sn[0], sn[1], sn[2], sn[3],
750 sn[4], sn[5], sn[6], sn[7],
751 sn[8], sn[9], sn[10], sn[11],
752 sn[12], sn[13], sn[14], sn[15]);
755 static ssize_t sas_address_show(struct device *dev,
756 struct device_attribute *attr, char *buf)
759 struct scsi_device *sdev;
760 struct hpsa_scsi_dev_t *hdev;
764 sdev = to_scsi_device(dev);
765 h = sdev_to_hba(sdev);
766 spin_lock_irqsave(&h->lock, flags);
767 hdev = sdev->hostdata;
768 if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
769 spin_unlock_irqrestore(&h->lock, flags);
772 sas_address = hdev->sas_address;
773 spin_unlock_irqrestore(&h->lock, flags);
775 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
778 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
779 struct device_attribute *attr, char *buf)
782 struct scsi_device *sdev;
783 struct hpsa_scsi_dev_t *hdev;
787 sdev = to_scsi_device(dev);
788 h = sdev_to_hba(sdev);
789 spin_lock_irqsave(&h->lock, flags);
790 hdev = sdev->hostdata;
792 spin_unlock_irqrestore(&h->lock, flags);
795 offload_enabled = hdev->offload_enabled;
796 spin_unlock_irqrestore(&h->lock, flags);
798 if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
799 return snprintf(buf, 20, "%d\n", offload_enabled);
801 return snprintf(buf, 40, "%s\n",
802 "Not applicable for a controller");
806 static ssize_t path_info_show(struct device *dev,
807 struct device_attribute *attr, char *buf)
810 struct scsi_device *sdev;
811 struct hpsa_scsi_dev_t *hdev;
817 u8 path_map_index = 0;
819 unsigned char phys_connector[2];
821 sdev = to_scsi_device(dev);
822 h = sdev_to_hba(sdev);
823 spin_lock_irqsave(&h->devlock, flags);
824 hdev = sdev->hostdata;
826 spin_unlock_irqrestore(&h->devlock, flags);
831 for (i = 0; i < MAX_PATHS; i++) {
832 path_map_index = 1<<i;
833 if (i == hdev->active_path_index)
835 else if (hdev->path_map & path_map_index)
840 output_len += scnprintf(buf + output_len,
841 PAGE_SIZE - output_len,
842 "[%d:%d:%d:%d] %20.20s ",
843 h->scsi_host->host_no,
844 hdev->bus, hdev->target, hdev->lun,
845 scsi_device_type(hdev->devtype));
847 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
848 output_len += scnprintf(buf + output_len,
849 PAGE_SIZE - output_len,
855 memcpy(&phys_connector, &hdev->phys_connector[i],
856 sizeof(phys_connector));
857 if (phys_connector[0] < '0')
858 phys_connector[0] = '0';
859 if (phys_connector[1] < '0')
860 phys_connector[1] = '0';
861 output_len += scnprintf(buf + output_len,
862 PAGE_SIZE - output_len,
865 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
866 hdev->expose_device) {
867 if (box == 0 || box == 0xFF) {
868 output_len += scnprintf(buf + output_len,
869 PAGE_SIZE - output_len,
873 output_len += scnprintf(buf + output_len,
874 PAGE_SIZE - output_len,
875 "BOX: %hhu BAY: %hhu %s\n",
878 } else if (box != 0 && box != 0xFF) {
879 output_len += scnprintf(buf + output_len,
880 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
883 output_len += scnprintf(buf + output_len,
884 PAGE_SIZE - output_len, "%s\n", active);
887 spin_unlock_irqrestore(&h->devlock, flags);
891 static ssize_t host_show_ctlr_num(struct device *dev,
892 struct device_attribute *attr, char *buf)
895 struct Scsi_Host *shost = class_to_shost(dev);
897 h = shost_to_hba(shost);
898 return snprintf(buf, 20, "%d\n", h->ctlr);
901 static ssize_t host_show_legacy_board(struct device *dev,
902 struct device_attribute *attr, char *buf)
905 struct Scsi_Host *shost = class_to_shost(dev);
907 h = shost_to_hba(shost);
908 return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
911 static DEVICE_ATTR_RO(raid_level);
912 static DEVICE_ATTR_RO(lunid);
913 static DEVICE_ATTR_RO(unique_id);
914 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
915 static DEVICE_ATTR_RO(sas_address);
916 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
917 host_show_hp_ssd_smart_path_enabled, NULL);
918 static DEVICE_ATTR_RO(path_info);
919 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
920 host_show_hp_ssd_smart_path_status,
921 host_store_hp_ssd_smart_path_status);
922 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
923 host_store_raid_offload_debug);
924 static DEVICE_ATTR(firmware_revision, S_IRUGO,
925 host_show_firmware_revision, NULL);
926 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
927 host_show_commands_outstanding, NULL);
928 static DEVICE_ATTR(transport_mode, S_IRUGO,
929 host_show_transport_mode, NULL);
930 static DEVICE_ATTR(resettable, S_IRUGO,
931 host_show_resettable, NULL);
932 static DEVICE_ATTR(lockup_detected, S_IRUGO,
933 host_show_lockup_detected, NULL);
934 static DEVICE_ATTR(ctlr_num, S_IRUGO,
935 host_show_ctlr_num, NULL);
936 static DEVICE_ATTR(legacy_board, S_IRUGO,
937 host_show_legacy_board, NULL);
939 static struct attribute *hpsa_sdev_attrs[] = {
940 &dev_attr_raid_level.attr,
941 &dev_attr_lunid.attr,
942 &dev_attr_unique_id.attr,
943 &dev_attr_hp_ssd_smart_path_enabled.attr,
944 &dev_attr_path_info.attr,
945 &dev_attr_sas_address.attr,
949 ATTRIBUTE_GROUPS(hpsa_sdev);
951 static struct attribute *hpsa_shost_attrs[] = {
952 &dev_attr_rescan.attr,
953 &dev_attr_firmware_revision.attr,
954 &dev_attr_commands_outstanding.attr,
955 &dev_attr_transport_mode.attr,
956 &dev_attr_resettable.attr,
957 &dev_attr_hp_ssd_smart_path_status.attr,
958 &dev_attr_raid_offload_debug.attr,
959 &dev_attr_lockup_detected.attr,
960 &dev_attr_ctlr_num.attr,
961 &dev_attr_legacy_board.attr,
965 ATTRIBUTE_GROUPS(hpsa_shost);
967 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\
968 HPSA_MAX_CONCURRENT_PASSTHRUS)
970 static struct scsi_host_template hpsa_driver_template = {
971 .module = THIS_MODULE,
974 .queuecommand = hpsa_scsi_queue_command,
975 .scan_start = hpsa_scan_start,
976 .scan_finished = hpsa_scan_finished,
977 .change_queue_depth = hpsa_change_queue_depth,
979 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
981 .slave_alloc = hpsa_slave_alloc,
982 .slave_configure = hpsa_slave_configure,
983 .slave_destroy = hpsa_slave_destroy,
985 .compat_ioctl = hpsa_compat_ioctl,
987 .sdev_groups = hpsa_sdev_groups,
988 .shost_groups = hpsa_shost_groups,
993 static inline u32 next_command(struct ctlr_info *h, u8 q)
996 struct reply_queue_buffer *rq = &h->reply_queue[q];
998 if (h->transMethod & CFGTBL_Trans_io_accel1)
999 return h->access.command_completed(h, q);
1001 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
1002 return h->access.command_completed(h, q);
1004 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
1005 a = rq->head[rq->current_entry];
1006 rq->current_entry++;
1007 atomic_dec(&h->commands_outstanding);
1011 /* Check for wraparound */
1012 if (rq->current_entry == h->max_commands) {
1013 rq->current_entry = 0;
1014 rq->wraparound ^= 1;
1020 * There are some special bits in the bus address of the
1021 * command that we have to set for the controller to know
1022 * how to process the command:
1024 * Normal performant mode:
1025 * bit 0: 1 means performant mode, 0 means simple mode.
1026 * bits 1-3 = block fetch table entry
1027 * bits 4-6 = command type (== 0)
1030 * bit 0 = "performant mode" bit.
1031 * bits 1-3 = block fetch table entry
1032 * bits 4-6 = command type (== 110)
1033 * (command type is needed because ioaccel1 mode
1034 * commands are submitted through the same register as normal
1035 * mode commands, so this is how the controller knows whether
1036 * the command is normal mode or ioaccel1 mode.)
1039 * bit 0 = "performant mode" bit.
1040 * bits 1-4 = block fetch table entry (note extra bit)
1041 * bits 4-6 = not needed, because ioaccel2 mode has
1042 * a separate special register for submitting commands.
1046 * set_performant_mode: Modify the tag for cciss performant
1047 * set bit 0 for pull model, bits 3-1 for block fetch
1050 #define DEFAULT_REPLY_QUEUE (-1)
1051 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1054 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1055 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1056 if (unlikely(!h->msix_vectors))
1058 c->Header.ReplyQueue = reply_queue;
1062 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1063 struct CommandList *c,
1066 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1069 * Tell the controller to post the reply to the queue for this
1070 * processor. This seems to give the best I/O throughput.
1072 cp->ReplyQueue = reply_queue;
1074 * Set the bits in the address sent down to include:
1075 * - performant mode bit (bit 0)
1076 * - pull count (bits 1-3)
1077 * - command type (bits 4-6)
1079 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1080 IOACCEL1_BUSADDR_CMDTYPE;
1083 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1084 struct CommandList *c,
1087 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1088 &h->ioaccel2_cmd_pool[c->cmdindex];
1090 /* Tell the controller to post the reply to the queue for this
1091 * processor. This seems to give the best I/O throughput.
1093 cp->reply_queue = reply_queue;
1094 /* Set the bits in the address sent down to include:
1095 * - performant mode bit not used in ioaccel mode 2
1096 * - pull count (bits 0-3)
1097 * - command type isn't needed for ioaccel2
1099 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1102 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1103 struct CommandList *c,
1106 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1109 * Tell the controller to post the reply to the queue for this
1110 * processor. This seems to give the best I/O throughput.
1112 cp->reply_queue = reply_queue;
1114 * Set the bits in the address sent down to include:
1115 * - performant mode bit not used in ioaccel mode 2
1116 * - pull count (bits 0-3)
1117 * - command type isn't needed for ioaccel2
1119 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1122 static int is_firmware_flash_cmd(u8 *cdb)
1124 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1128 * During firmware flash, the heartbeat register may not update as frequently
1129 * as it should. So we dial down lockup detection during firmware flash. and
1130 * dial it back up when firmware flash completes.
1132 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1133 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1134 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1135 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1136 struct CommandList *c)
1138 if (!is_firmware_flash_cmd(c->Request.CDB))
1140 atomic_inc(&h->firmware_flash_in_progress);
1141 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1144 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1145 struct CommandList *c)
1147 if (is_firmware_flash_cmd(c->Request.CDB) &&
1148 atomic_dec_and_test(&h->firmware_flash_in_progress))
1149 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1152 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1153 struct CommandList *c, int reply_queue)
1155 dial_down_lockup_detection_during_fw_flash(h, c);
1156 atomic_inc(&h->commands_outstanding);
1158 * Check to see if the command is being retried.
1160 if (c->device && !c->retry_pending)
1161 atomic_inc(&c->device->commands_outstanding);
1163 reply_queue = h->reply_map[raw_smp_processor_id()];
1164 switch (c->cmd_type) {
1166 set_ioaccel1_performant_mode(h, c, reply_queue);
1167 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1170 set_ioaccel2_performant_mode(h, c, reply_queue);
1171 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1174 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1175 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1178 set_performant_mode(h, c, reply_queue);
1179 h->access.submit_command(h, c);
1183 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1185 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1188 static inline int is_hba_lunid(unsigned char scsi3addr[])
1190 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1193 static inline int is_scsi_rev_5(struct ctlr_info *h)
1195 if (!h->hba_inquiry_data)
1197 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1202 static int hpsa_find_target_lun(struct ctlr_info *h,
1203 unsigned char scsi3addr[], int bus, int *target, int *lun)
1205 /* finds an unused bus, target, lun for a new physical device
1206 * assumes h->devlock is held
1209 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1211 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1213 for (i = 0; i < h->ndevices; i++) {
1214 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1215 __set_bit(h->dev[i]->target, lun_taken);
1218 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1219 if (i < HPSA_MAX_DEVICES) {
1228 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1229 struct hpsa_scsi_dev_t *dev, char *description)
1231 #define LABEL_SIZE 25
1232 char label[LABEL_SIZE];
1234 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1237 switch (dev->devtype) {
1239 snprintf(label, LABEL_SIZE, "controller");
1241 case TYPE_ENCLOSURE:
1242 snprintf(label, LABEL_SIZE, "enclosure");
1247 snprintf(label, LABEL_SIZE, "external");
1248 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1249 snprintf(label, LABEL_SIZE, "%s",
1250 raid_label[PHYSICAL_DRIVE]);
1252 snprintf(label, LABEL_SIZE, "RAID-%s",
1253 dev->raid_level > RAID_UNKNOWN ? "?" :
1254 raid_label[dev->raid_level]);
1257 snprintf(label, LABEL_SIZE, "rom");
1260 snprintf(label, LABEL_SIZE, "tape");
1262 case TYPE_MEDIUM_CHANGER:
1263 snprintf(label, LABEL_SIZE, "changer");
1266 snprintf(label, LABEL_SIZE, "UNKNOWN");
1270 dev_printk(level, &h->pdev->dev,
1271 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1272 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1274 scsi_device_type(dev->devtype),
1278 dev->offload_config ? '+' : '-',
1279 dev->offload_to_be_enabled ? '+' : '-',
1280 dev->expose_device);
1283 /* Add an entry into h->dev[] array. */
1284 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1285 struct hpsa_scsi_dev_t *device,
1286 struct hpsa_scsi_dev_t *added[], int *nadded)
1288 /* assumes h->devlock is held */
1289 int n = h->ndevices;
1291 unsigned char addr1[8], addr2[8];
1292 struct hpsa_scsi_dev_t *sd;
1294 if (n >= HPSA_MAX_DEVICES) {
1295 dev_err(&h->pdev->dev, "too many devices, some will be "
1300 /* physical devices do not have lun or target assigned until now. */
1301 if (device->lun != -1)
1302 /* Logical device, lun is already assigned. */
1305 /* If this device a non-zero lun of a multi-lun device
1306 * byte 4 of the 8-byte LUN addr will contain the logical
1307 * unit no, zero otherwise.
1309 if (device->scsi3addr[4] == 0) {
1310 /* This is not a non-zero lun of a multi-lun device */
1311 if (hpsa_find_target_lun(h, device->scsi3addr,
1312 device->bus, &device->target, &device->lun) != 0)
1317 /* This is a non-zero lun of a multi-lun device.
1318 * Search through our list and find the device which
1319 * has the same 8 byte LUN address, excepting byte 4 and 5.
1320 * Assign the same bus and target for this new LUN.
1321 * Use the logical unit number from the firmware.
1323 memcpy(addr1, device->scsi3addr, 8);
1326 for (i = 0; i < n; i++) {
1328 memcpy(addr2, sd->scsi3addr, 8);
1331 /* differ only in byte 4 and 5? */
1332 if (memcmp(addr1, addr2, 8) == 0) {
1333 device->bus = sd->bus;
1334 device->target = sd->target;
1335 device->lun = device->scsi3addr[4];
1339 if (device->lun == -1) {
1340 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1341 " suspect firmware bug or unsupported hardware "
1342 "configuration.\n");
1350 added[*nadded] = device;
1352 hpsa_show_dev_msg(KERN_INFO, h, device,
1353 device->expose_device ? "added" : "masked");
1358 * Called during a scan operation.
1360 * Update an entry in h->dev[] array.
1362 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1363 int entry, struct hpsa_scsi_dev_t *new_entry)
1365 /* assumes h->devlock is held */
1366 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1368 /* Raid level changed. */
1369 h->dev[entry]->raid_level = new_entry->raid_level;
1372 * ioacccel_handle may have changed for a dual domain disk
1374 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1376 /* Raid offload parameters changed. Careful about the ordering. */
1377 if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1379 * if drive is newly offload_enabled, we want to copy the
1380 * raid map data first. If previously offload_enabled and
1381 * offload_config were set, raid map data had better be
1382 * the same as it was before. If raid map data has changed
1383 * then it had better be the case that
1384 * h->dev[entry]->offload_enabled is currently 0.
1386 h->dev[entry]->raid_map = new_entry->raid_map;
1387 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1389 if (new_entry->offload_to_be_enabled) {
1390 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1391 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1393 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1394 h->dev[entry]->offload_config = new_entry->offload_config;
1395 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1396 h->dev[entry]->queue_depth = new_entry->queue_depth;
1399 * We can turn off ioaccel offload now, but need to delay turning
1400 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1401 * can't do that until all the devices are updated.
1403 h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1406 * turn ioaccel off immediately if told to do so.
1408 if (!new_entry->offload_to_be_enabled)
1409 h->dev[entry]->offload_enabled = 0;
1411 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1414 /* Replace an entry from h->dev[] array. */
1415 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1416 int entry, struct hpsa_scsi_dev_t *new_entry,
1417 struct hpsa_scsi_dev_t *added[], int *nadded,
1418 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1420 /* assumes h->devlock is held */
1421 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1422 removed[*nremoved] = h->dev[entry];
1426 * New physical devices won't have target/lun assigned yet
1427 * so we need to preserve the values in the slot we are replacing.
1429 if (new_entry->target == -1) {
1430 new_entry->target = h->dev[entry]->target;
1431 new_entry->lun = h->dev[entry]->lun;
1434 h->dev[entry] = new_entry;
1435 added[*nadded] = new_entry;
1438 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1441 /* Remove an entry from h->dev[] array. */
1442 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1443 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1445 /* assumes h->devlock is held */
1447 struct hpsa_scsi_dev_t *sd;
1449 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1452 removed[*nremoved] = h->dev[entry];
1455 for (i = entry; i < h->ndevices-1; i++)
1456 h->dev[i] = h->dev[i+1];
1458 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1461 #define SCSI3ADDR_EQ(a, b) ( \
1462 (a)[7] == (b)[7] && \
1463 (a)[6] == (b)[6] && \
1464 (a)[5] == (b)[5] && \
1465 (a)[4] == (b)[4] && \
1466 (a)[3] == (b)[3] && \
1467 (a)[2] == (b)[2] && \
1468 (a)[1] == (b)[1] && \
1471 static void fixup_botched_add(struct ctlr_info *h,
1472 struct hpsa_scsi_dev_t *added)
1474 /* called when scsi_add_device fails in order to re-adjust
1475 * h->dev[] to match the mid layer's view.
1477 unsigned long flags;
1480 spin_lock_irqsave(&h->lock, flags);
1481 for (i = 0; i < h->ndevices; i++) {
1482 if (h->dev[i] == added) {
1483 for (j = i; j < h->ndevices-1; j++)
1484 h->dev[j] = h->dev[j+1];
1489 spin_unlock_irqrestore(&h->lock, flags);
1493 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1494 struct hpsa_scsi_dev_t *dev2)
1496 /* we compare everything except lun and target as these
1497 * are not yet assigned. Compare parts likely
1500 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1501 sizeof(dev1->scsi3addr)) != 0)
1503 if (memcmp(dev1->device_id, dev2->device_id,
1504 sizeof(dev1->device_id)) != 0)
1506 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1508 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1510 if (dev1->devtype != dev2->devtype)
1512 if (dev1->bus != dev2->bus)
1517 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1518 struct hpsa_scsi_dev_t *dev2)
1520 /* Device attributes that can change, but don't mean
1521 * that the device is a different device, nor that the OS
1522 * needs to be told anything about the change.
1524 if (dev1->raid_level != dev2->raid_level)
1526 if (dev1->offload_config != dev2->offload_config)
1528 if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1530 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1531 if (dev1->queue_depth != dev2->queue_depth)
1534 * This can happen for dual domain devices. An active
1535 * path change causes the ioaccel handle to change
1537 * for example note the handle differences between p0 and p1
1538 * Device WWN ,WWN hash,Handle
1539 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1540 * p1 0x5000C5005FC4DAC9,0x6798C0,0x00040004
1542 if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1547 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1548 * and return needle location in *index. If scsi3addr matches, but not
1549 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1550 * location in *index.
1551 * In the case of a minor device attribute change, such as RAID level, just
1552 * return DEVICE_UPDATED, along with the updated device's location in index.
1553 * If needle not found, return DEVICE_NOT_FOUND.
1555 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1556 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1560 #define DEVICE_NOT_FOUND 0
1561 #define DEVICE_CHANGED 1
1562 #define DEVICE_SAME 2
1563 #define DEVICE_UPDATED 3
1565 return DEVICE_NOT_FOUND;
1567 for (i = 0; i < haystack_size; i++) {
1568 if (haystack[i] == NULL) /* previously removed. */
1570 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1572 if (device_is_the_same(needle, haystack[i])) {
1573 if (device_updated(needle, haystack[i]))
1574 return DEVICE_UPDATED;
1577 /* Keep offline devices offline */
1578 if (needle->volume_offline)
1579 return DEVICE_NOT_FOUND;
1580 return DEVICE_CHANGED;
1585 return DEVICE_NOT_FOUND;
1588 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1589 unsigned char scsi3addr[])
1591 struct offline_device_entry *device;
1592 unsigned long flags;
1594 /* Check to see if device is already on the list */
1595 spin_lock_irqsave(&h->offline_device_lock, flags);
1596 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1597 if (memcmp(device->scsi3addr, scsi3addr,
1598 sizeof(device->scsi3addr)) == 0) {
1599 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1603 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1605 /* Device is not on the list, add it. */
1606 device = kmalloc(sizeof(*device), GFP_KERNEL);
1610 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1611 spin_lock_irqsave(&h->offline_device_lock, flags);
1612 list_add_tail(&device->offline_list, &h->offline_device_list);
1613 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1616 /* Print a message explaining various offline volume states */
1617 static void hpsa_show_volume_status(struct ctlr_info *h,
1618 struct hpsa_scsi_dev_t *sd)
1620 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1621 dev_info(&h->pdev->dev,
1622 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1623 h->scsi_host->host_no,
1624 sd->bus, sd->target, sd->lun);
1625 switch (sd->volume_offline) {
1628 case HPSA_LV_UNDERGOING_ERASE:
1629 dev_info(&h->pdev->dev,
1630 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1631 h->scsi_host->host_no,
1632 sd->bus, sd->target, sd->lun);
1634 case HPSA_LV_NOT_AVAILABLE:
1635 dev_info(&h->pdev->dev,
1636 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1637 h->scsi_host->host_no,
1638 sd->bus, sd->target, sd->lun);
1640 case HPSA_LV_UNDERGOING_RPI:
1641 dev_info(&h->pdev->dev,
1642 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1643 h->scsi_host->host_no,
1644 sd->bus, sd->target, sd->lun);
1646 case HPSA_LV_PENDING_RPI:
1647 dev_info(&h->pdev->dev,
1648 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1649 h->scsi_host->host_no,
1650 sd->bus, sd->target, sd->lun);
1652 case HPSA_LV_ENCRYPTED_NO_KEY:
1653 dev_info(&h->pdev->dev,
1654 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1655 h->scsi_host->host_no,
1656 sd->bus, sd->target, sd->lun);
1658 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1659 dev_info(&h->pdev->dev,
1660 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1661 h->scsi_host->host_no,
1662 sd->bus, sd->target, sd->lun);
1664 case HPSA_LV_UNDERGOING_ENCRYPTION:
1665 dev_info(&h->pdev->dev,
1666 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1667 h->scsi_host->host_no,
1668 sd->bus, sd->target, sd->lun);
1670 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1671 dev_info(&h->pdev->dev,
1672 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1673 h->scsi_host->host_no,
1674 sd->bus, sd->target, sd->lun);
1676 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1677 dev_info(&h->pdev->dev,
1678 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1679 h->scsi_host->host_no,
1680 sd->bus, sd->target, sd->lun);
1682 case HPSA_LV_PENDING_ENCRYPTION:
1683 dev_info(&h->pdev->dev,
1684 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1685 h->scsi_host->host_no,
1686 sd->bus, sd->target, sd->lun);
1688 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1689 dev_info(&h->pdev->dev,
1690 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1691 h->scsi_host->host_no,
1692 sd->bus, sd->target, sd->lun);
1698 * Figure the list of physical drive pointers for a logical drive with
1699 * raid offload configured.
1701 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1702 struct hpsa_scsi_dev_t *dev[], int ndevices,
1703 struct hpsa_scsi_dev_t *logical_drive)
1705 struct raid_map_data *map = &logical_drive->raid_map;
1706 struct raid_map_disk_data *dd = &map->data[0];
1708 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1709 le16_to_cpu(map->metadata_disks_per_row);
1710 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1711 le16_to_cpu(map->layout_map_count) *
1712 total_disks_per_row;
1713 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1714 total_disks_per_row;
1717 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1718 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1720 logical_drive->nphysical_disks = nraid_map_entries;
1723 for (i = 0; i < nraid_map_entries; i++) {
1724 logical_drive->phys_disk[i] = NULL;
1725 if (!logical_drive->offload_config)
1727 for (j = 0; j < ndevices; j++) {
1730 if (dev[j]->devtype != TYPE_DISK &&
1731 dev[j]->devtype != TYPE_ZBC)
1733 if (is_logical_device(dev[j]))
1735 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1738 logical_drive->phys_disk[i] = dev[j];
1740 qdepth = min(h->nr_cmds, qdepth +
1741 logical_drive->phys_disk[i]->queue_depth);
1746 * This can happen if a physical drive is removed and
1747 * the logical drive is degraded. In that case, the RAID
1748 * map data will refer to a physical disk which isn't actually
1749 * present. And in that case offload_enabled should already
1750 * be 0, but we'll turn it off here just in case
1752 if (!logical_drive->phys_disk[i]) {
1753 dev_warn(&h->pdev->dev,
1754 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1756 h->scsi_host->host_no, logical_drive->bus,
1757 logical_drive->target, logical_drive->lun);
1758 hpsa_turn_off_ioaccel_for_device(logical_drive);
1759 logical_drive->queue_depth = 8;
1762 if (nraid_map_entries)
1764 * This is correct for reads, too high for full stripe writes,
1765 * way too high for partial stripe writes
1767 logical_drive->queue_depth = qdepth;
1769 if (logical_drive->external)
1770 logical_drive->queue_depth = EXTERNAL_QD;
1772 logical_drive->queue_depth = h->nr_cmds;
1776 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1777 struct hpsa_scsi_dev_t *dev[], int ndevices)
1781 for (i = 0; i < ndevices; i++) {
1784 if (dev[i]->devtype != TYPE_DISK &&
1785 dev[i]->devtype != TYPE_ZBC)
1787 if (!is_logical_device(dev[i]))
1791 * If offload is currently enabled, the RAID map and
1792 * phys_disk[] assignment *better* not be changing
1793 * because we would be changing ioaccel phsy_disk[] pointers
1794 * on a ioaccel volume processing I/O requests.
1796 * If an ioaccel volume status changed, initially because it was
1797 * re-configured and thus underwent a transformation, or
1798 * a drive failed, we would have received a state change
1799 * request and ioaccel should have been turned off. When the
1800 * transformation completes, we get another state change
1801 * request to turn ioaccel back on. In this case, we need
1802 * to update the ioaccel information.
1804 * Thus: If it is not currently enabled, but will be after
1805 * the scan completes, make sure the ioaccel pointers
1809 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1810 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1814 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1821 if (is_logical_device(device)) /* RAID */
1822 rc = scsi_add_device(h->scsi_host, device->bus,
1823 device->target, device->lun);
1825 rc = hpsa_add_sas_device(h->sas_host, device);
1830 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1831 struct hpsa_scsi_dev_t *dev)
1836 for (i = 0; i < h->nr_cmds; i++) {
1837 struct CommandList *c = h->cmd_pool + i;
1838 int refcount = atomic_inc_return(&c->refcount);
1840 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1842 unsigned long flags;
1844 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
1845 if (!hpsa_is_cmd_idle(c))
1847 spin_unlock_irqrestore(&h->lock, flags);
1857 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1858 struct hpsa_scsi_dev_t *device)
1862 int num_wait = NUM_WAIT;
1864 if (device->external)
1865 num_wait = HPSA_EH_PTRAID_TIMEOUT;
1868 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1871 if (++waits > num_wait)
1876 if (waits > num_wait) {
1877 dev_warn(&h->pdev->dev,
1878 "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1880 h->scsi_host->host_no,
1881 device->bus, device->target, device->lun, cmds);
1885 static void hpsa_remove_device(struct ctlr_info *h,
1886 struct hpsa_scsi_dev_t *device)
1888 struct scsi_device *sdev = NULL;
1894 * Allow for commands to drain
1896 device->removed = 1;
1897 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1899 if (is_logical_device(device)) { /* RAID */
1900 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1901 device->target, device->lun);
1903 scsi_remove_device(sdev);
1904 scsi_device_put(sdev);
1907 * We don't expect to get here. Future commands
1908 * to this device will get a selection timeout as
1909 * if the device were gone.
1911 hpsa_show_dev_msg(KERN_WARNING, h, device,
1912 "didn't find device for removal.");
1916 hpsa_remove_sas_device(device);
1920 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1921 struct hpsa_scsi_dev_t *sd[], int nsds)
1923 /* sd contains scsi3 addresses and devtypes, and inquiry
1924 * data. This function takes what's in sd to be the current
1925 * reality and updates h->dev[] to reflect that reality.
1927 int i, entry, device_change, changes = 0;
1928 struct hpsa_scsi_dev_t *csd;
1929 unsigned long flags;
1930 struct hpsa_scsi_dev_t **added, **removed;
1931 int nadded, nremoved;
1934 * A reset can cause a device status to change
1935 * re-schedule the scan to see what happened.
1937 spin_lock_irqsave(&h->reset_lock, flags);
1938 if (h->reset_in_progress) {
1939 h->drv_req_rescan = 1;
1940 spin_unlock_irqrestore(&h->reset_lock, flags);
1943 spin_unlock_irqrestore(&h->reset_lock, flags);
1945 added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1946 removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1948 if (!added || !removed) {
1949 dev_warn(&h->pdev->dev, "out of memory in "
1950 "adjust_hpsa_scsi_table\n");
1954 spin_lock_irqsave(&h->devlock, flags);
1956 /* find any devices in h->dev[] that are not in
1957 * sd[] and remove them from h->dev[], and for any
1958 * devices which have changed, remove the old device
1959 * info and add the new device info.
1960 * If minor device attributes change, just update
1961 * the existing device structure.
1966 while (i < h->ndevices) {
1968 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1969 if (device_change == DEVICE_NOT_FOUND) {
1971 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1972 continue; /* remove ^^^, hence i not incremented */
1973 } else if (device_change == DEVICE_CHANGED) {
1975 hpsa_scsi_replace_entry(h, i, sd[entry],
1976 added, &nadded, removed, &nremoved);
1977 /* Set it to NULL to prevent it from being freed
1978 * at the bottom of hpsa_update_scsi_devices()
1981 } else if (device_change == DEVICE_UPDATED) {
1982 hpsa_scsi_update_entry(h, i, sd[entry]);
1987 /* Now, make sure every device listed in sd[] is also
1988 * listed in h->dev[], adding them if they aren't found
1991 for (i = 0; i < nsds; i++) {
1992 if (!sd[i]) /* if already added above. */
1995 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1996 * as the SCSI mid-layer does not handle such devices well.
1997 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1998 * at 160Hz, and prevents the system from coming up.
2000 if (sd[i]->volume_offline) {
2001 hpsa_show_volume_status(h, sd[i]);
2002 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
2006 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
2007 h->ndevices, &entry);
2008 if (device_change == DEVICE_NOT_FOUND) {
2010 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2012 sd[i] = NULL; /* prevent from being freed later. */
2013 } else if (device_change == DEVICE_CHANGED) {
2014 /* should never happen... */
2016 dev_warn(&h->pdev->dev,
2017 "device unexpectedly changed.\n");
2018 /* but if it does happen, we just ignore that device */
2021 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2024 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2025 * any logical drives that need it enabled.
2027 * The raid map should be current by now.
2029 * We are updating the device list used for I/O requests.
2031 for (i = 0; i < h->ndevices; i++) {
2032 if (h->dev[i] == NULL)
2034 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2037 spin_unlock_irqrestore(&h->devlock, flags);
2039 /* Monitor devices which are in one of several NOT READY states to be
2040 * brought online later. This must be done without holding h->devlock,
2041 * so don't touch h->dev[]
2043 for (i = 0; i < nsds; i++) {
2044 if (!sd[i]) /* if already added above. */
2046 if (sd[i]->volume_offline)
2047 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2050 /* Don't notify scsi mid layer of any changes the first time through
2051 * (or if there are no changes) scsi_scan_host will do it later the
2052 * first time through.
2057 /* Notify scsi mid layer of any removed devices */
2058 for (i = 0; i < nremoved; i++) {
2059 if (removed[i] == NULL)
2061 if (removed[i]->expose_device)
2062 hpsa_remove_device(h, removed[i]);
2067 /* Notify scsi mid layer of any added devices */
2068 for (i = 0; i < nadded; i++) {
2071 if (added[i] == NULL)
2073 if (!(added[i]->expose_device))
2075 rc = hpsa_add_device(h, added[i]);
2078 dev_warn(&h->pdev->dev,
2079 "addition failed %d, device not added.", rc);
2080 /* now we have to remove it from h->dev,
2081 * since it didn't get added to scsi mid layer
2083 fixup_botched_add(h, added[i]);
2084 h->drv_req_rescan = 1;
2093 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2094 * Assume's h->devlock is held.
2096 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2097 int bus, int target, int lun)
2100 struct hpsa_scsi_dev_t *sd;
2102 for (i = 0; i < h->ndevices; i++) {
2104 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2110 static int hpsa_slave_alloc(struct scsi_device *sdev)
2112 struct hpsa_scsi_dev_t *sd = NULL;
2113 unsigned long flags;
2114 struct ctlr_info *h;
2116 h = sdev_to_hba(sdev);
2117 spin_lock_irqsave(&h->devlock, flags);
2118 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2119 struct scsi_target *starget;
2120 struct sas_rphy *rphy;
2122 starget = scsi_target(sdev);
2123 rphy = target_to_rphy(starget);
2124 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2126 sd->target = sdev_id(sdev);
2127 sd->lun = sdev->lun;
2131 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2132 sdev_id(sdev), sdev->lun);
2134 if (sd && sd->expose_device) {
2135 atomic_set(&sd->ioaccel_cmds_out, 0);
2136 sdev->hostdata = sd;
2138 sdev->hostdata = NULL;
2139 spin_unlock_irqrestore(&h->devlock, flags);
2143 /* configure scsi device based on internal per-device structure */
2144 #define CTLR_TIMEOUT (120 * HZ)
2145 static int hpsa_slave_configure(struct scsi_device *sdev)
2147 struct hpsa_scsi_dev_t *sd;
2150 sd = sdev->hostdata;
2151 sdev->no_uld_attach = !sd || !sd->expose_device;
2154 sd->was_removed = 0;
2155 queue_depth = sd->queue_depth != 0 ?
2156 sd->queue_depth : sdev->host->can_queue;
2158 queue_depth = EXTERNAL_QD;
2159 sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2160 blk_queue_rq_timeout(sdev->request_queue,
2161 HPSA_EH_PTRAID_TIMEOUT);
2163 if (is_hba_lunid(sd->scsi3addr)) {
2164 sdev->eh_timeout = CTLR_TIMEOUT;
2165 blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
2168 queue_depth = sdev->host->can_queue;
2171 scsi_change_queue_depth(sdev, queue_depth);
2176 static void hpsa_slave_destroy(struct scsi_device *sdev)
2178 struct hpsa_scsi_dev_t *hdev = NULL;
2180 hdev = sdev->hostdata;
2183 hdev->was_removed = 1;
2186 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2190 if (!h->ioaccel2_cmd_sg_list)
2192 for (i = 0; i < h->nr_cmds; i++) {
2193 kfree(h->ioaccel2_cmd_sg_list[i]);
2194 h->ioaccel2_cmd_sg_list[i] = NULL;
2196 kfree(h->ioaccel2_cmd_sg_list);
2197 h->ioaccel2_cmd_sg_list = NULL;
2200 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2204 if (h->chainsize <= 0)
2207 h->ioaccel2_cmd_sg_list =
2208 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2210 if (!h->ioaccel2_cmd_sg_list)
2212 for (i = 0; i < h->nr_cmds; i++) {
2213 h->ioaccel2_cmd_sg_list[i] =
2214 kmalloc_array(h->maxsgentries,
2215 sizeof(*h->ioaccel2_cmd_sg_list[i]),
2217 if (!h->ioaccel2_cmd_sg_list[i])
2223 hpsa_free_ioaccel2_sg_chain_blocks(h);
2227 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2231 if (!h->cmd_sg_list)
2233 for (i = 0; i < h->nr_cmds; i++) {
2234 kfree(h->cmd_sg_list[i]);
2235 h->cmd_sg_list[i] = NULL;
2237 kfree(h->cmd_sg_list);
2238 h->cmd_sg_list = NULL;
2241 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2245 if (h->chainsize <= 0)
2248 h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2250 if (!h->cmd_sg_list)
2253 for (i = 0; i < h->nr_cmds; i++) {
2254 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2255 sizeof(*h->cmd_sg_list[i]),
2257 if (!h->cmd_sg_list[i])
2264 hpsa_free_sg_chain_blocks(h);
2268 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2269 struct io_accel2_cmd *cp, struct CommandList *c)
2271 struct ioaccel2_sg_element *chain_block;
2275 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2276 chain_size = le32_to_cpu(cp->sg[0].length);
2277 temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2279 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2280 /* prevent subsequent unmapping */
2281 cp->sg->address = 0;
2284 cp->sg->address = cpu_to_le64(temp64);
2288 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2289 struct io_accel2_cmd *cp)
2291 struct ioaccel2_sg_element *chain_sg;
2296 temp64 = le64_to_cpu(chain_sg->address);
2297 chain_size = le32_to_cpu(cp->sg[0].length);
2298 dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2301 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2302 struct CommandList *c)
2304 struct SGDescriptor *chain_sg, *chain_block;
2308 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2309 chain_block = h->cmd_sg_list[c->cmdindex];
2310 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2311 chain_len = sizeof(*chain_sg) *
2312 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2313 chain_sg->Len = cpu_to_le32(chain_len);
2314 temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2316 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2317 /* prevent subsequent unmapping */
2318 chain_sg->Addr = cpu_to_le64(0);
2321 chain_sg->Addr = cpu_to_le64(temp64);
2325 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2326 struct CommandList *c)
2328 struct SGDescriptor *chain_sg;
2330 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2333 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2334 dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2335 le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2339 /* Decode the various types of errors on ioaccel2 path.
2340 * Return 1 for any error that should generate a RAID path retry.
2341 * Return 0 for errors that don't require a RAID path retry.
2343 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2344 struct CommandList *c,
2345 struct scsi_cmnd *cmd,
2346 struct io_accel2_cmd *c2,
2347 struct hpsa_scsi_dev_t *dev)
2351 u32 ioaccel2_resid = 0;
2353 switch (c2->error_data.serv_response) {
2354 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2355 switch (c2->error_data.status) {
2356 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2360 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2361 cmd->result |= SAM_STAT_CHECK_CONDITION;
2362 if (c2->error_data.data_present !=
2363 IOACCEL2_SENSE_DATA_PRESENT) {
2364 memset(cmd->sense_buffer, 0,
2365 SCSI_SENSE_BUFFERSIZE);
2368 /* copy the sense data */
2369 data_len = c2->error_data.sense_data_len;
2370 if (data_len > SCSI_SENSE_BUFFERSIZE)
2371 data_len = SCSI_SENSE_BUFFERSIZE;
2372 if (data_len > sizeof(c2->error_data.sense_data_buff))
2374 sizeof(c2->error_data.sense_data_buff);
2375 memcpy(cmd->sense_buffer,
2376 c2->error_data.sense_data_buff, data_len);
2379 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2382 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2385 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2388 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2396 case IOACCEL2_SERV_RESPONSE_FAILURE:
2397 switch (c2->error_data.status) {
2398 case IOACCEL2_STATUS_SR_IO_ERROR:
2399 case IOACCEL2_STATUS_SR_IO_ABORTED:
2400 case IOACCEL2_STATUS_SR_OVERRUN:
2403 case IOACCEL2_STATUS_SR_UNDERRUN:
2404 cmd->result = (DID_OK << 16); /* host byte */
2405 ioaccel2_resid = get_unaligned_le32(
2406 &c2->error_data.resid_cnt[0]);
2407 scsi_set_resid(cmd, ioaccel2_resid);
2409 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2410 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2411 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2413 * Did an HBA disk disappear? We will eventually
2414 * get a state change event from the controller but
2415 * in the meantime, we need to tell the OS that the
2416 * HBA disk is no longer there and stop I/O
2417 * from going down. This allows the potential re-insert
2418 * of the disk to get the same device node.
2420 if (dev->physical_device && dev->expose_device) {
2421 cmd->result = DID_NO_CONNECT << 16;
2423 h->drv_req_rescan = 1;
2424 dev_warn(&h->pdev->dev,
2425 "%s: device is gone!\n", __func__);
2428 * Retry by sending down the RAID path.
2429 * We will get an event from ctlr to
2430 * trigger rescan regardless.
2438 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2440 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2442 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2445 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2455 return retry; /* retry on raid path? */
2458 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2459 struct CommandList *c)
2461 struct hpsa_scsi_dev_t *dev = c->device;
2464 * Reset c->scsi_cmd here so that the reset handler will know
2465 * this command has completed. Then, check to see if the handler is
2466 * waiting for this command, and, if so, wake it.
2468 c->scsi_cmd = SCSI_CMD_IDLE;
2469 mb(); /* Declare command idle before checking for pending events. */
2471 atomic_dec(&dev->commands_outstanding);
2472 if (dev->in_reset &&
2473 atomic_read(&dev->commands_outstanding) <= 0)
2474 wake_up_all(&h->event_sync_wait_queue);
2478 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2479 struct CommandList *c)
2481 hpsa_cmd_resolve_events(h, c);
2482 cmd_tagged_free(h, c);
2485 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2486 struct CommandList *c, struct scsi_cmnd *cmd)
2488 hpsa_cmd_resolve_and_free(h, c);
2493 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2495 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2496 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2499 static void process_ioaccel2_completion(struct ctlr_info *h,
2500 struct CommandList *c, struct scsi_cmnd *cmd,
2501 struct hpsa_scsi_dev_t *dev)
2503 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2505 /* check for good status */
2506 if (likely(c2->error_data.serv_response == 0 &&
2507 c2->error_data.status == 0)) {
2509 return hpsa_cmd_free_and_done(h, c, cmd);
2513 * Any RAID offload error results in retry which will use
2514 * the normal I/O path so the controller can handle whatever is
2517 if (is_logical_device(dev) &&
2518 c2->error_data.serv_response ==
2519 IOACCEL2_SERV_RESPONSE_FAILURE) {
2520 if (c2->error_data.status ==
2521 IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2522 hpsa_turn_off_ioaccel_for_device(dev);
2525 if (dev->in_reset) {
2526 cmd->result = DID_RESET << 16;
2527 return hpsa_cmd_free_and_done(h, c, cmd);
2530 return hpsa_retry_cmd(h, c);
2533 if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2534 return hpsa_retry_cmd(h, c);
2536 return hpsa_cmd_free_and_done(h, c, cmd);
2539 /* Returns 0 on success, < 0 otherwise. */
2540 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2541 struct CommandList *cp)
2543 u8 tmf_status = cp->err_info->ScsiStatus;
2545 switch (tmf_status) {
2546 case CISS_TMF_COMPLETE:
2548 * CISS_TMF_COMPLETE never happens, instead,
2549 * ei->CommandStatus == 0 for this case.
2551 case CISS_TMF_SUCCESS:
2553 case CISS_TMF_INVALID_FRAME:
2554 case CISS_TMF_NOT_SUPPORTED:
2555 case CISS_TMF_FAILED:
2556 case CISS_TMF_WRONG_LUN:
2557 case CISS_TMF_OVERLAPPED_TAG:
2560 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2567 static void complete_scsi_command(struct CommandList *cp)
2569 struct scsi_cmnd *cmd;
2570 struct ctlr_info *h;
2571 struct ErrorInfo *ei;
2572 struct hpsa_scsi_dev_t *dev;
2573 struct io_accel2_cmd *c2;
2576 u8 asc; /* additional sense code */
2577 u8 ascq; /* additional sense code qualifier */
2578 unsigned long sense_data_size;
2585 cmd->result = DID_NO_CONNECT << 16;
2586 return hpsa_cmd_free_and_done(h, cp, cmd);
2589 dev = cmd->device->hostdata;
2591 cmd->result = DID_NO_CONNECT << 16;
2592 return hpsa_cmd_free_and_done(h, cp, cmd);
2594 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2596 scsi_dma_unmap(cmd); /* undo the DMA mappings */
2597 if ((cp->cmd_type == CMD_SCSI) &&
2598 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2599 hpsa_unmap_sg_chain_block(h, cp);
2601 if ((cp->cmd_type == CMD_IOACCEL2) &&
2602 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2603 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2605 cmd->result = (DID_OK << 16); /* host byte */
2607 /* SCSI command has already been cleaned up in SML */
2608 if (dev->was_removed) {
2609 hpsa_cmd_resolve_and_free(h, cp);
2613 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2614 if (dev->physical_device && dev->expose_device &&
2616 cmd->result = DID_NO_CONNECT << 16;
2617 return hpsa_cmd_free_and_done(h, cp, cmd);
2619 if (likely(cp->phys_disk != NULL))
2620 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2624 * We check for lockup status here as it may be set for
2625 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2626 * fail_all_oustanding_cmds()
2628 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2629 /* DID_NO_CONNECT will prevent a retry */
2630 cmd->result = DID_NO_CONNECT << 16;
2631 return hpsa_cmd_free_and_done(h, cp, cmd);
2634 if (cp->cmd_type == CMD_IOACCEL2)
2635 return process_ioaccel2_completion(h, cp, cmd, dev);
2637 scsi_set_resid(cmd, ei->ResidualCnt);
2638 if (ei->CommandStatus == 0)
2639 return hpsa_cmd_free_and_done(h, cp, cmd);
2641 /* For I/O accelerator commands, copy over some fields to the normal
2642 * CISS header used below for error handling.
2644 if (cp->cmd_type == CMD_IOACCEL1) {
2645 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2646 cp->Header.SGList = scsi_sg_count(cmd);
2647 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2648 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2649 IOACCEL1_IOFLAGS_CDBLEN_MASK;
2650 cp->Header.tag = c->tag;
2651 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2652 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2654 /* Any RAID offload error results in retry which will use
2655 * the normal I/O path so the controller can handle whatever's
2658 if (is_logical_device(dev)) {
2659 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2660 dev->offload_enabled = 0;
2661 return hpsa_retry_cmd(h, cp);
2665 /* an error has occurred */
2666 switch (ei->CommandStatus) {
2668 case CMD_TARGET_STATUS:
2669 cmd->result |= ei->ScsiStatus;
2670 /* copy the sense data */
2671 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2672 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2674 sense_data_size = sizeof(ei->SenseInfo);
2675 if (ei->SenseLen < sense_data_size)
2676 sense_data_size = ei->SenseLen;
2677 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2679 decode_sense_data(ei->SenseInfo, sense_data_size,
2680 &sense_key, &asc, &ascq);
2681 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2682 switch (sense_key) {
2683 case ABORTED_COMMAND:
2684 cmd->result |= DID_SOFT_ERROR << 16;
2686 case UNIT_ATTENTION:
2687 if (asc == 0x3F && ascq == 0x0E)
2688 h->drv_req_rescan = 1;
2690 case ILLEGAL_REQUEST:
2691 if (asc == 0x25 && ascq == 0x00) {
2693 cmd->result = DID_NO_CONNECT << 16;
2699 /* Problem was not a check condition
2700 * Pass it up to the upper layers...
2702 if (ei->ScsiStatus) {
2703 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2704 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2705 "Returning result: 0x%x\n",
2707 sense_key, asc, ascq,
2709 } else { /* scsi status is zero??? How??? */
2710 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2711 "Returning no connection.\n", cp),
2713 /* Ordinarily, this case should never happen,
2714 * but there is a bug in some released firmware
2715 * revisions that allows it to happen if, for
2716 * example, a 4100 backplane loses power and
2717 * the tape drive is in it. We assume that
2718 * it's a fatal error of some kind because we
2719 * can't show that it wasn't. We will make it
2720 * look like selection timeout since that is
2721 * the most common reason for this to occur,
2722 * and it's severe enough.
2725 cmd->result = DID_NO_CONNECT << 16;
2729 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2731 case CMD_DATA_OVERRUN:
2732 dev_warn(&h->pdev->dev,
2733 "CDB %16phN data overrun\n", cp->Request.CDB);
2736 /* print_bytes(cp, sizeof(*cp), 1, 0);
2738 /* We get CMD_INVALID if you address a non-existent device
2739 * instead of a selection timeout (no response). You will
2740 * see this if you yank out a drive, then try to access it.
2741 * This is kind of a shame because it means that any other
2742 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2743 * missing target. */
2744 cmd->result = DID_NO_CONNECT << 16;
2747 case CMD_PROTOCOL_ERR:
2748 cmd->result = DID_ERROR << 16;
2749 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2752 case CMD_HARDWARE_ERR:
2753 cmd->result = DID_ERROR << 16;
2754 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2757 case CMD_CONNECTION_LOST:
2758 cmd->result = DID_ERROR << 16;
2759 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2763 cmd->result = DID_ABORT << 16;
2765 case CMD_ABORT_FAILED:
2766 cmd->result = DID_ERROR << 16;
2767 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2770 case CMD_UNSOLICITED_ABORT:
2771 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2772 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2776 cmd->result = DID_TIME_OUT << 16;
2777 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2780 case CMD_UNABORTABLE:
2781 cmd->result = DID_ERROR << 16;
2782 dev_warn(&h->pdev->dev, "Command unabortable\n");
2784 case CMD_TMF_STATUS:
2785 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2786 cmd->result = DID_ERROR << 16;
2788 case CMD_IOACCEL_DISABLED:
2789 /* This only handles the direct pass-through case since RAID
2790 * offload is handled above. Just attempt a retry.
2792 cmd->result = DID_SOFT_ERROR << 16;
2793 dev_warn(&h->pdev->dev,
2794 "cp %p had HP SSD Smart Path error\n", cp);
2797 cmd->result = DID_ERROR << 16;
2798 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2799 cp, ei->CommandStatus);
2802 return hpsa_cmd_free_and_done(h, cp, cmd);
2805 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2806 int sg_used, enum dma_data_direction data_direction)
2810 for (i = 0; i < sg_used; i++)
2811 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2812 le32_to_cpu(c->SG[i].Len),
2816 static int hpsa_map_one(struct pci_dev *pdev,
2817 struct CommandList *cp,
2820 enum dma_data_direction data_direction)
2824 if (buflen == 0 || data_direction == DMA_NONE) {
2825 cp->Header.SGList = 0;
2826 cp->Header.SGTotal = cpu_to_le16(0);
2830 addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2831 if (dma_mapping_error(&pdev->dev, addr64)) {
2832 /* Prevent subsequent unmap of something never mapped */
2833 cp->Header.SGList = 0;
2834 cp->Header.SGTotal = cpu_to_le16(0);
2837 cp->SG[0].Addr = cpu_to_le64(addr64);
2838 cp->SG[0].Len = cpu_to_le32(buflen);
2839 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2840 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2841 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2845 #define NO_TIMEOUT ((unsigned long) -1)
2846 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2847 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2848 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2850 DECLARE_COMPLETION_ONSTACK(wait);
2853 __enqueue_cmd_and_start_io(h, c, reply_queue);
2854 if (timeout_msecs == NO_TIMEOUT) {
2855 /* TODO: get rid of this no-timeout thing */
2856 wait_for_completion_io(&wait);
2859 if (!wait_for_completion_io_timeout(&wait,
2860 msecs_to_jiffies(timeout_msecs))) {
2861 dev_warn(&h->pdev->dev, "Command timed out.\n");
2867 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2868 int reply_queue, unsigned long timeout_msecs)
2870 if (unlikely(lockup_detected(h))) {
2871 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2874 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2877 static u32 lockup_detected(struct ctlr_info *h)
2880 u32 rc, *lockup_detected;
2883 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2884 rc = *lockup_detected;
2889 #define MAX_DRIVER_CMD_RETRIES 25
2890 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2891 struct CommandList *c, enum dma_data_direction data_direction,
2892 unsigned long timeout_msecs)
2894 int backoff_time = 10, retry_count = 0;
2898 memset(c->err_info, 0, sizeof(*c->err_info));
2899 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2904 if (retry_count > 3) {
2905 msleep(backoff_time);
2906 if (backoff_time < 1000)
2909 } while ((check_for_unit_attention(h, c) ||
2910 check_for_busy(h, c)) &&
2911 retry_count <= MAX_DRIVER_CMD_RETRIES);
2912 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2913 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2918 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2919 struct CommandList *c)
2921 const u8 *cdb = c->Request.CDB;
2922 const u8 *lun = c->Header.LUN.LunAddrBytes;
2924 dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2928 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2929 struct CommandList *cp)
2931 const struct ErrorInfo *ei = cp->err_info;
2932 struct device *d = &cp->h->pdev->dev;
2933 u8 sense_key, asc, ascq;
2936 switch (ei->CommandStatus) {
2937 case CMD_TARGET_STATUS:
2938 if (ei->SenseLen > sizeof(ei->SenseInfo))
2939 sense_len = sizeof(ei->SenseInfo);
2941 sense_len = ei->SenseLen;
2942 decode_sense_data(ei->SenseInfo, sense_len,
2943 &sense_key, &asc, &ascq);
2944 hpsa_print_cmd(h, "SCSI status", cp);
2945 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2946 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2947 sense_key, asc, ascq);
2949 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2950 if (ei->ScsiStatus == 0)
2951 dev_warn(d, "SCSI status is abnormally zero. "
2952 "(probably indicates selection timeout "
2953 "reported incorrectly due to a known "
2954 "firmware bug, circa July, 2001.)\n");
2956 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2958 case CMD_DATA_OVERRUN:
2959 hpsa_print_cmd(h, "overrun condition", cp);
2962 /* controller unfortunately reports SCSI passthru's
2963 * to non-existent targets as invalid commands.
2965 hpsa_print_cmd(h, "invalid command", cp);
2966 dev_warn(d, "probably means device no longer present\n");
2969 case CMD_PROTOCOL_ERR:
2970 hpsa_print_cmd(h, "protocol error", cp);
2972 case CMD_HARDWARE_ERR:
2973 hpsa_print_cmd(h, "hardware error", cp);
2975 case CMD_CONNECTION_LOST:
2976 hpsa_print_cmd(h, "connection lost", cp);
2979 hpsa_print_cmd(h, "aborted", cp);
2981 case CMD_ABORT_FAILED:
2982 hpsa_print_cmd(h, "abort failed", cp);
2984 case CMD_UNSOLICITED_ABORT:
2985 hpsa_print_cmd(h, "unsolicited abort", cp);
2988 hpsa_print_cmd(h, "timed out", cp);
2990 case CMD_UNABORTABLE:
2991 hpsa_print_cmd(h, "unabortable", cp);
2993 case CMD_CTLR_LOCKUP:
2994 hpsa_print_cmd(h, "controller lockup detected", cp);
2997 hpsa_print_cmd(h, "unknown status", cp);
2998 dev_warn(d, "Unknown command status %x\n",
3003 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
3004 u8 page, u8 *buf, size_t bufsize)
3007 struct CommandList *c;
3008 struct ErrorInfo *ei;
3011 if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
3012 page, scsi3addr, TYPE_CMD)) {
3016 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3021 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3022 hpsa_scsi_interpret_error(h, c);
3030 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3037 buf = kzalloc(1024, GFP_KERNEL);
3041 rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3047 sa = get_unaligned_be64(buf+12);
3054 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3055 u16 page, unsigned char *buf,
3056 unsigned char bufsize)
3059 struct CommandList *c;
3060 struct ErrorInfo *ei;
3064 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3065 page, scsi3addr, TYPE_CMD)) {
3069 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3074 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3075 hpsa_scsi_interpret_error(h, c);
3083 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3084 u8 reset_type, int reply_queue)
3087 struct CommandList *c;
3088 struct ErrorInfo *ei;
3093 /* fill_cmd can't fail here, no data buffer to map. */
3094 (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3095 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3097 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3100 /* no unmap needed here because no data xfer. */
3103 if (ei->CommandStatus != 0) {
3104 hpsa_scsi_interpret_error(h, c);
3112 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3113 struct hpsa_scsi_dev_t *dev,
3114 unsigned char *scsi3addr)
3118 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3119 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3121 if (hpsa_is_cmd_idle(c))
3124 switch (c->cmd_type) {
3126 case CMD_IOCTL_PEND:
3127 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3128 sizeof(c->Header.LUN.LunAddrBytes));
3133 if (c->phys_disk == dev) {
3134 /* HBA mode match */
3137 /* Possible RAID mode -- check each phys dev. */
3138 /* FIXME: Do we need to take out a lock here? If
3139 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3141 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3142 /* FIXME: an alternate test might be
3144 * match = dev->phys_disk[i]->ioaccel_handle
3145 * == c2->scsi_nexus; */
3146 match = dev->phys_disk[i] == c->phys_disk;
3152 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3153 match = dev->phys_disk[i]->ioaccel_handle ==
3154 le32_to_cpu(ac->it_nexus);
3158 case 0: /* The command is in the middle of being initialized. */
3163 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3171 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3172 u8 reset_type, int reply_queue)
3176 /* We can really only handle one reset at a time */
3177 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3178 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3182 rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3184 /* incremented by sending the reset request */
3185 atomic_dec(&dev->commands_outstanding);
3186 wait_event(h->event_sync_wait_queue,
3187 atomic_read(&dev->commands_outstanding) <= 0 ||
3188 lockup_detected(h));
3191 if (unlikely(lockup_detected(h))) {
3192 dev_warn(&h->pdev->dev,
3193 "Controller lockup detected during reset wait\n");
3198 rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3200 mutex_unlock(&h->reset_mutex);
3204 static void hpsa_get_raid_level(struct ctlr_info *h,
3205 unsigned char *scsi3addr, unsigned char *raid_level)
3210 *raid_level = RAID_UNKNOWN;
3211 buf = kzalloc(64, GFP_KERNEL);
3215 if (!hpsa_vpd_page_supported(h, scsi3addr,
3216 HPSA_VPD_LV_DEVICE_GEOMETRY))
3219 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3220 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3223 *raid_level = buf[8];
3224 if (*raid_level > RAID_UNKNOWN)
3225 *raid_level = RAID_UNKNOWN;
3231 #define HPSA_MAP_DEBUG
3232 #ifdef HPSA_MAP_DEBUG
3233 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3234 struct raid_map_data *map_buff)
3236 struct raid_map_disk_data *dd = &map_buff->data[0];
3238 u16 map_cnt, row_cnt, disks_per_row;
3243 /* Show details only if debugging has been activated. */
3244 if (h->raid_offload_debug < 2)
3247 dev_info(&h->pdev->dev, "structure_size = %u\n",
3248 le32_to_cpu(map_buff->structure_size));
3249 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3250 le32_to_cpu(map_buff->volume_blk_size));
3251 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3252 le64_to_cpu(map_buff->volume_blk_cnt));
3253 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3254 map_buff->phys_blk_shift);
3255 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3256 map_buff->parity_rotation_shift);
3257 dev_info(&h->pdev->dev, "strip_size = %u\n",
3258 le16_to_cpu(map_buff->strip_size));
3259 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3260 le64_to_cpu(map_buff->disk_starting_blk));
3261 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3262 le64_to_cpu(map_buff->disk_blk_cnt));
3263 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3264 le16_to_cpu(map_buff->data_disks_per_row));
3265 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3266 le16_to_cpu(map_buff->metadata_disks_per_row));
3267 dev_info(&h->pdev->dev, "row_cnt = %u\n",
3268 le16_to_cpu(map_buff->row_cnt));
3269 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3270 le16_to_cpu(map_buff->layout_map_count));
3271 dev_info(&h->pdev->dev, "flags = 0x%x\n",
3272 le16_to_cpu(map_buff->flags));
3273 dev_info(&h->pdev->dev, "encryption = %s\n",
3274 le16_to_cpu(map_buff->flags) &
3275 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
3276 dev_info(&h->pdev->dev, "dekindex = %u\n",
3277 le16_to_cpu(map_buff->dekindex));
3278 map_cnt = le16_to_cpu(map_buff->layout_map_count);
3279 for (map = 0; map < map_cnt; map++) {
3280 dev_info(&h->pdev->dev, "Map%u:\n", map);
3281 row_cnt = le16_to_cpu(map_buff->row_cnt);
3282 for (row = 0; row < row_cnt; row++) {
3283 dev_info(&h->pdev->dev, " Row%u:\n", row);
3285 le16_to_cpu(map_buff->data_disks_per_row);
3286 for (col = 0; col < disks_per_row; col++, dd++)
3287 dev_info(&h->pdev->dev,
3288 " D%02u: h=0x%04x xor=%u,%u\n",
3289 col, dd->ioaccel_handle,
3290 dd->xor_mult[0], dd->xor_mult[1]);
3292 le16_to_cpu(map_buff->metadata_disks_per_row);
3293 for (col = 0; col < disks_per_row; col++, dd++)
3294 dev_info(&h->pdev->dev,
3295 " M%02u: h=0x%04x xor=%u,%u\n",
3296 col, dd->ioaccel_handle,
3297 dd->xor_mult[0], dd->xor_mult[1]);
3302 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3303 __attribute__((unused)) int rc,
3304 __attribute__((unused)) struct raid_map_data *map_buff)
3309 static int hpsa_get_raid_map(struct ctlr_info *h,
3310 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3313 struct CommandList *c;
3314 struct ErrorInfo *ei;
3318 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3319 sizeof(this_device->raid_map), 0,
3320 scsi3addr, TYPE_CMD)) {
3321 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3325 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3330 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3331 hpsa_scsi_interpret_error(h, c);
3337 /* @todo in the future, dynamically allocate RAID map memory */
3338 if (le32_to_cpu(this_device->raid_map.structure_size) >
3339 sizeof(this_device->raid_map)) {
3340 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3343 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3350 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3351 unsigned char scsi3addr[], u16 bmic_device_index,
3352 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3355 struct CommandList *c;
3356 struct ErrorInfo *ei;
3360 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3361 0, RAID_CTLR_LUNID, TYPE_CMD);
3365 c->Request.CDB[2] = bmic_device_index & 0xff;
3366 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3368 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3373 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3374 hpsa_scsi_interpret_error(h, c);
3382 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3383 struct bmic_identify_controller *buf, size_t bufsize)
3386 struct CommandList *c;
3387 struct ErrorInfo *ei;
3391 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3392 0, RAID_CTLR_LUNID, TYPE_CMD);
3396 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3401 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3402 hpsa_scsi_interpret_error(h, c);
3410 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3411 unsigned char scsi3addr[], u16 bmic_device_index,
3412 struct bmic_identify_physical_device *buf, size_t bufsize)
3415 struct CommandList *c;
3416 struct ErrorInfo *ei;
3419 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3420 0, RAID_CTLR_LUNID, TYPE_CMD);
3424 c->Request.CDB[2] = bmic_device_index & 0xff;
3425 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3427 hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3430 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3431 hpsa_scsi_interpret_error(h, c);
3441 * get enclosure information
3442 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3443 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3444 * Uses id_physical_device to determine the box_index.
3446 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3447 unsigned char *scsi3addr,
3448 struct ReportExtendedLUNdata *rlep, int rle_index,
3449 struct hpsa_scsi_dev_t *encl_dev)
3452 struct CommandList *c = NULL;
3453 struct ErrorInfo *ei = NULL;
3454 struct bmic_sense_storage_box_params *bssbp = NULL;
3455 struct bmic_identify_physical_device *id_phys = NULL;
3456 struct ext_report_lun_entry *rle;
3457 u16 bmic_device_index = 0;
3459 if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
3462 rle = &rlep->LUN[rle_index];
3465 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3467 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3469 if (encl_dev->target == -1 || encl_dev->lun == -1) {
3474 if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3479 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3483 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3487 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3488 id_phys, sizeof(*id_phys));
3490 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3491 __func__, encl_dev->external, bmic_device_index);
3497 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3498 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3503 if (id_phys->phys_connector[1] == 'E')
3504 c->Request.CDB[5] = id_phys->box_index;
3506 c->Request.CDB[5] = 0;
3508 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3514 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3519 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3520 memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3521 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3532 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3533 "Error, could not get enclosure information");
3536 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3537 unsigned char *scsi3addr)
3539 struct ReportExtendedLUNdata *physdev;
3544 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3548 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3549 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3553 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3555 for (i = 0; i < nphysicals; i++)
3556 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3557 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3566 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3567 struct hpsa_scsi_dev_t *dev)
3572 if (is_hba_lunid(scsi3addr)) {
3573 struct bmic_sense_subsystem_info *ssi;
3575 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3579 rc = hpsa_bmic_sense_subsystem_information(h,
3580 scsi3addr, 0, ssi, sizeof(*ssi));
3582 sa = get_unaligned_be64(ssi->primary_world_wide_id);
3583 h->sas_address = sa;
3588 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3590 dev->sas_address = sa;
3593 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3594 struct ReportExtendedLUNdata *physdev)
3599 if (h->discovery_polling)
3602 nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3604 for (i = 0; i < nphysicals; i++) {
3605 if (physdev->LUN[i].device_type ==
3606 BMIC_DEVICE_TYPE_CONTROLLER
3607 && !is_hba_lunid(physdev->LUN[i].lunid)) {
3608 dev_info(&h->pdev->dev,
3609 "External controller present, activate discovery polling and disable rld caching\n");
3610 hpsa_disable_rld_caching(h);
3611 h->discovery_polling = 1;
3617 /* Get a device id from inquiry page 0x83 */
3618 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3619 unsigned char scsi3addr[], u8 page)
3624 unsigned char *buf, bufsize;
3626 buf = kzalloc(256, GFP_KERNEL);
3630 /* Get the size of the page list first */
3631 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3632 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3633 buf, HPSA_VPD_HEADER_SZ);
3635 goto exit_unsupported;
3637 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3638 bufsize = pages + HPSA_VPD_HEADER_SZ;
3642 /* Get the whole VPD page list */
3643 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3644 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3647 goto exit_unsupported;
3650 for (i = 1; i <= pages; i++)
3651 if (buf[3 + i] == page)
3652 goto exit_supported;
3662 * Called during a scan operation.
3663 * Sets ioaccel status on the new device list, not the existing device list
3665 * The device list used during I/O will be updated later in
3666 * adjust_hpsa_scsi_table.
3668 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3669 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3675 this_device->offload_config = 0;
3676 this_device->offload_enabled = 0;
3677 this_device->offload_to_be_enabled = 0;
3679 buf = kzalloc(64, GFP_KERNEL);
3682 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3684 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3685 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3689 #define IOACCEL_STATUS_BYTE 4
3690 #define OFFLOAD_CONFIGURED_BIT 0x01
3691 #define OFFLOAD_ENABLED_BIT 0x02
3692 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3693 this_device->offload_config =
3694 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3695 if (this_device->offload_config) {
3696 bool offload_enabled =
3697 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3699 * Check to see if offload can be enabled.
3701 if (offload_enabled) {
3702 rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3703 if (rc) /* could not load raid_map */
3705 this_device->offload_to_be_enabled = 1;
3714 /* Get the device id from inquiry page 0x83 */
3715 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3716 unsigned char *device_id, int index, int buflen)
3721 /* Does controller have VPD for device id? */
3722 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3723 return 1; /* not supported */
3725 buf = kzalloc(64, GFP_KERNEL);
3729 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3730 HPSA_VPD_LV_DEVICE_ID, buf, 64);
3734 memcpy(device_id, &buf[8], buflen);
3739 return rc; /*0 - got id, otherwise, didn't */
3742 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3743 void *buf, int bufsize,
3744 int extended_response)
3747 struct CommandList *c;
3748 unsigned char scsi3addr[8];
3749 struct ErrorInfo *ei;
3753 /* address the controller */
3754 memset(scsi3addr, 0, sizeof(scsi3addr));
3755 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3756 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3760 if (extended_response)
3761 c->Request.CDB[1] = extended_response;
3762 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3767 if (ei->CommandStatus != 0 &&
3768 ei->CommandStatus != CMD_DATA_UNDERRUN) {
3769 hpsa_scsi_interpret_error(h, c);
3772 struct ReportLUNdata *rld = buf;
3774 if (rld->extended_response_flag != extended_response) {
3775 if (!h->legacy_board) {
3776 dev_err(&h->pdev->dev,
3777 "report luns requested format %u, got %u\n",
3779 rld->extended_response_flag);
3790 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3791 struct ReportExtendedLUNdata *buf, int bufsize)
3794 struct ReportLUNdata *lbuf;
3796 rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3797 HPSA_REPORT_PHYS_EXTENDED);
3798 if (!rc || rc != -EOPNOTSUPP)
3801 /* REPORT PHYS EXTENDED is not supported */
3802 lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3806 rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3811 /* Copy ReportLUNdata header */
3812 memcpy(buf, lbuf, 8);
3813 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3814 for (i = 0; i < nphys; i++)
3815 memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3821 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3822 struct ReportLUNdata *buf, int bufsize)
3824 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3827 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3828 int bus, int target, int lun)
3831 device->target = target;
3835 /* Use VPD inquiry to get details of volume status */
3836 static int hpsa_get_volume_status(struct ctlr_info *h,
3837 unsigned char scsi3addr[])
3844 buf = kzalloc(64, GFP_KERNEL);
3846 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3848 /* Does controller have VPD for logical volume status? */
3849 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3852 /* Get the size of the VPD return buffer */
3853 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3854 buf, HPSA_VPD_HEADER_SZ);
3859 /* Now get the whole VPD buffer */
3860 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3861 buf, size + HPSA_VPD_HEADER_SZ);
3864 status = buf[4]; /* status byte */
3870 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3873 /* Determine offline status of a volume.
3876 * 0xff (offline for unknown reasons)
3877 * # (integer code indicating one of several NOT READY states
3878 * describing why a volume is to be kept offline)
3880 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3881 unsigned char scsi3addr[])
3883 struct CommandList *c;
3884 unsigned char *sense;
3885 u8 sense_key, asc, ascq;
3888 #define ASC_LUN_NOT_READY 0x04
3889 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3890 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3894 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3895 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3899 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3901 sense = c->err_info->SenseInfo;
3902 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3903 sense_len = sizeof(c->err_info->SenseInfo);
3905 sense_len = c->err_info->SenseLen;
3906 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3909 /* Determine the reason for not ready state */
3910 ldstat = hpsa_get_volume_status(h, scsi3addr);
3912 /* Keep volume offline in certain cases: */
3914 case HPSA_LV_FAILED:
3915 case HPSA_LV_UNDERGOING_ERASE:
3916 case HPSA_LV_NOT_AVAILABLE:
3917 case HPSA_LV_UNDERGOING_RPI:
3918 case HPSA_LV_PENDING_RPI:
3919 case HPSA_LV_ENCRYPTED_NO_KEY:
3920 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3921 case HPSA_LV_UNDERGOING_ENCRYPTION:
3922 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3923 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3925 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3926 /* If VPD status page isn't available,
3927 * use ASC/ASCQ to determine state
3929 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3930 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3939 static int hpsa_update_device_info(struct ctlr_info *h,
3940 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3941 unsigned char *is_OBDR_device)
3944 #define OBDR_SIG_OFFSET 43
3945 #define OBDR_TAPE_SIG "$DR-10"
3946 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3947 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3949 unsigned char *inq_buff;
3950 unsigned char *obdr_sig;
3953 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3959 /* Do an inquiry to the device to see what it is. */
3960 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3961 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3962 dev_err(&h->pdev->dev,
3963 "%s: inquiry failed, device will be skipped.\n",
3965 rc = HPSA_INQUIRY_FAILED;
3969 scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3970 scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3972 this_device->devtype = (inq_buff[0] & 0x1f);
3973 memcpy(this_device->scsi3addr, scsi3addr, 8);
3974 memcpy(this_device->vendor, &inq_buff[8],
3975 sizeof(this_device->vendor));
3976 memcpy(this_device->model, &inq_buff[16],
3977 sizeof(this_device->model));
3978 this_device->rev = inq_buff[2];
3979 memset(this_device->device_id, 0,
3980 sizeof(this_device->device_id));
3981 if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3982 sizeof(this_device->device_id)) < 0) {
3983 dev_err(&h->pdev->dev,
3984 "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3986 h->scsi_host->host_no,
3987 this_device->bus, this_device->target,
3989 scsi_device_type(this_device->devtype),
3990 this_device->model);
3991 rc = HPSA_LV_FAILED;
3995 if ((this_device->devtype == TYPE_DISK ||
3996 this_device->devtype == TYPE_ZBC) &&
3997 is_logical_dev_addr_mode(scsi3addr)) {
3998 unsigned char volume_offline;
4000 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
4001 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
4002 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
4003 volume_offline = hpsa_volume_offline(h, scsi3addr);
4004 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
4007 * Legacy boards might not support volume status
4009 dev_info(&h->pdev->dev,
4010 "C0:T%d:L%d Volume status not available, assuming online.\n",
4011 this_device->target, this_device->lun);
4014 this_device->volume_offline = volume_offline;
4015 if (volume_offline == HPSA_LV_FAILED) {
4016 rc = HPSA_LV_FAILED;
4017 dev_err(&h->pdev->dev,
4018 "%s: LV failed, device will be skipped.\n",
4023 this_device->raid_level = RAID_UNKNOWN;
4024 this_device->offload_config = 0;
4025 hpsa_turn_off_ioaccel_for_device(this_device);
4026 this_device->hba_ioaccel_enabled = 0;
4027 this_device->volume_offline = 0;
4028 this_device->queue_depth = h->nr_cmds;
4031 if (this_device->external)
4032 this_device->queue_depth = EXTERNAL_QD;
4034 if (is_OBDR_device) {
4035 /* See if this is a One-Button-Disaster-Recovery device
4036 * by looking for "$DR-10" at offset 43 in inquiry data.
4038 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4039 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4040 strncmp(obdr_sig, OBDR_TAPE_SIG,
4041 OBDR_SIG_LEN) == 0);
4052 * Helper function to assign bus, target, lun mapping of devices.
4053 * Logical drive target and lun are assigned at this time, but
4054 * physical device lun and target assignment are deferred (assigned
4055 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4057 static void figure_bus_target_lun(struct ctlr_info *h,
4058 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4060 u32 lunid = get_unaligned_le32(lunaddrbytes);
4062 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4063 /* physical device, target and lun filled in later */
4064 if (is_hba_lunid(lunaddrbytes)) {
4065 int bus = HPSA_HBA_BUS;
4068 bus = HPSA_LEGACY_HBA_BUS;
4069 hpsa_set_bus_target_lun(device,
4070 bus, 0, lunid & 0x3fff);
4072 /* defer target, lun assignment for physical devices */
4073 hpsa_set_bus_target_lun(device,
4074 HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4077 /* It's a logical device */
4078 if (device->external) {
4079 hpsa_set_bus_target_lun(device,
4080 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4084 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4088 static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4089 int i, int nphysicals, int nlocal_logicals)
4091 /* In report logicals, local logicals are listed first,
4092 * then any externals.
4094 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4096 if (i == raid_ctlr_position)
4099 if (i < logicals_start)
4102 /* i is in logicals range, but still within local logicals */
4103 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4106 return 1; /* it's an external lun */
4110 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
4111 * logdev. The number of luns in physdev and logdev are returned in
4112 * *nphysicals and *nlogicals, respectively.
4113 * Returns 0 on success, -1 otherwise.
4115 static int hpsa_gather_lun_info(struct ctlr_info *h,
4116 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4117 struct ReportLUNdata *logdev, u32 *nlogicals)
4119 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4120 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4123 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4124 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4125 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4126 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4127 *nphysicals = HPSA_MAX_PHYS_LUN;
4129 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4130 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4133 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4134 /* Reject Logicals in excess of our max capability. */
4135 if (*nlogicals > HPSA_MAX_LUN) {
4136 dev_warn(&h->pdev->dev,
4137 "maximum logical LUNs (%d) exceeded. "
4138 "%d LUNs ignored.\n", HPSA_MAX_LUN,
4139 *nlogicals - HPSA_MAX_LUN);
4140 *nlogicals = HPSA_MAX_LUN;
4142 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4143 dev_warn(&h->pdev->dev,
4144 "maximum logical + physical LUNs (%d) exceeded. "
4145 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4146 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4147 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4152 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4153 int i, int nphysicals, int nlogicals,
4154 struct ReportExtendedLUNdata *physdev_list,
4155 struct ReportLUNdata *logdev_list)
4157 /* Helper function, figure out where the LUN ID info is coming from
4158 * given index i, lists of physical and logical devices, where in
4159 * the list the raid controller is supposed to appear (first or last)
4162 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4163 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4165 if (i == raid_ctlr_position)
4166 return RAID_CTLR_LUNID;
4168 if (i < logicals_start)
4169 return &physdev_list->LUN[i -
4170 (raid_ctlr_position == 0)].lunid[0];
4172 if (i < last_device)
4173 return &logdev_list->LUN[i - nphysicals -
4174 (raid_ctlr_position == 0)][0];
4179 /* get physical drive ioaccel handle and queue depth */
4180 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4181 struct hpsa_scsi_dev_t *dev,
4182 struct ReportExtendedLUNdata *rlep, int rle_index,
4183 struct bmic_identify_physical_device *id_phys)
4186 struct ext_report_lun_entry *rle;
4188 if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4191 rle = &rlep->LUN[rle_index];
4193 dev->ioaccel_handle = rle->ioaccel_handle;
4194 if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4195 dev->hba_ioaccel_enabled = 1;
4196 memset(id_phys, 0, sizeof(*id_phys));
4197 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4198 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4201 /* Reserve space for FW operations */
4202 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4203 #define DRIVE_QUEUE_DEPTH 7
4205 le16_to_cpu(id_phys->current_queue_depth_limit) -
4206 DRIVE_CMDS_RESERVED_FOR_FW;
4208 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4211 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4212 struct ReportExtendedLUNdata *rlep, int rle_index,
4213 struct bmic_identify_physical_device *id_phys)
4215 struct ext_report_lun_entry *rle;
4217 if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4220 rle = &rlep->LUN[rle_index];
4222 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4223 this_device->hba_ioaccel_enabled = 1;
4225 memcpy(&this_device->active_path_index,
4226 &id_phys->active_path_number,
4227 sizeof(this_device->active_path_index));
4228 memcpy(&this_device->path_map,
4229 &id_phys->redundant_path_present_map,
4230 sizeof(this_device->path_map));
4231 memcpy(&this_device->box,
4232 &id_phys->alternate_paths_phys_box_on_port,
4233 sizeof(this_device->box));
4234 memcpy(&this_device->phys_connector,
4235 &id_phys->alternate_paths_phys_connector,
4236 sizeof(this_device->phys_connector));
4237 memcpy(&this_device->bay,
4238 &id_phys->phys_bay_in_box,
4239 sizeof(this_device->bay));
4242 /* get number of local logical disks. */
4243 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4244 struct bmic_identify_controller *id_ctlr,
4250 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4254 memset(id_ctlr, 0, sizeof(*id_ctlr));
4255 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4257 if (id_ctlr->configured_logical_drive_count < 255)
4258 *nlocals = id_ctlr->configured_logical_drive_count;
4260 *nlocals = le16_to_cpu(
4261 id_ctlr->extended_logical_unit_count);
4267 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4269 struct bmic_identify_physical_device *id_phys;
4270 bool is_spare = false;
4273 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4277 rc = hpsa_bmic_id_physical_device(h,
4279 GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4280 id_phys, sizeof(*id_phys));
4282 is_spare = (id_phys->more_flags >> 6) & 0x01;
4288 #define RPL_DEV_FLAG_NON_DISK 0x1
4289 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4290 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4292 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4294 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4295 struct ext_report_lun_entry *rle)
4300 if (!MASKED_DEVICE(lunaddrbytes))
4303 device_flags = rle->device_flags;
4304 device_type = rle->device_type;
4306 if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4307 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4312 if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4315 if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4319 * Spares may be spun down, we do not want to
4320 * do an Inquiry to a RAID set spare drive as
4321 * that would have them spun up, that is a
4322 * performance hit because I/O to the RAID device
4323 * stops while the spin up occurs which can take
4326 if (hpsa_is_disk_spare(h, lunaddrbytes))
4332 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4334 /* the idea here is we could get notified
4335 * that some devices have changed, so we do a report
4336 * physical luns and report logical luns cmd, and adjust
4337 * our list of devices accordingly.
4339 * The scsi3addr's of devices won't change so long as the
4340 * adapter is not reset. That means we can rescan and
4341 * tell which devices we already know about, vs. new
4342 * devices, vs. disappearing devices.
4344 struct ReportExtendedLUNdata *physdev_list = NULL;
4345 struct ReportLUNdata *logdev_list = NULL;
4346 struct bmic_identify_physical_device *id_phys = NULL;
4347 struct bmic_identify_controller *id_ctlr = NULL;
4350 u32 nlocal_logicals = 0;
4351 u32 ndev_allocated = 0;
4352 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4354 int i, ndevs_to_allocate;
4355 int raid_ctlr_position;
4356 bool physical_device;
4357 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4359 currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4360 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4361 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4362 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4363 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4364 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4366 if (!currentsd || !physdev_list || !logdev_list ||
4367 !tmpdevice || !id_phys || !id_ctlr) {
4368 dev_err(&h->pdev->dev, "out of memory\n");
4371 memset(lunzerobits, 0, sizeof(lunzerobits));
4373 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4375 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4376 logdev_list, &nlogicals)) {
4377 h->drv_req_rescan = 1;
4381 /* Set number of local logicals (non PTRAID) */
4382 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4383 dev_warn(&h->pdev->dev,
4384 "%s: Can't determine number of local logical devices.\n",
4388 /* We might see up to the maximum number of logical and physical disks
4389 * plus external target devices, and a device for the local RAID
4392 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4394 hpsa_ext_ctrl_present(h, physdev_list);
4396 /* Allocate the per device structures */
4397 for (i = 0; i < ndevs_to_allocate; i++) {
4398 if (i >= HPSA_MAX_DEVICES) {
4399 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4400 " %d devices ignored.\n", HPSA_MAX_DEVICES,
4401 ndevs_to_allocate - HPSA_MAX_DEVICES);
4405 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4406 if (!currentsd[i]) {
4407 h->drv_req_rescan = 1;
4413 if (is_scsi_rev_5(h))
4414 raid_ctlr_position = 0;
4416 raid_ctlr_position = nphysicals + nlogicals;
4418 /* adjust our table of devices */
4419 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4420 u8 *lunaddrbytes, is_OBDR = 0;
4422 int phys_dev_index = i - (raid_ctlr_position == 0);
4423 bool skip_device = false;
4425 memset(tmpdevice, 0, sizeof(*tmpdevice));
4427 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4429 /* Figure out where the LUN ID info is coming from */
4430 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4431 i, nphysicals, nlogicals, physdev_list, logdev_list);
4433 /* Determine if this is a lun from an external target array */
4434 tmpdevice->external =
4435 figure_external_status(h, raid_ctlr_position, i,
4436 nphysicals, nlocal_logicals);
4439 * Skip over some devices such as a spare.
4441 if (phys_dev_index >= 0 && !tmpdevice->external &&
4443 skip_device = hpsa_skip_device(h, lunaddrbytes,
4444 &physdev_list->LUN[phys_dev_index]);
4449 /* Get device type, vendor, model, device id, raid_map */
4450 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4452 if (rc == -ENOMEM) {
4453 dev_warn(&h->pdev->dev,
4454 "Out of memory, rescan deferred.\n");
4455 h->drv_req_rescan = 1;
4459 h->drv_req_rescan = 1;
4463 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4464 this_device = currentsd[ncurrent];
4466 *this_device = *tmpdevice;
4467 this_device->physical_device = physical_device;
4470 * Expose all devices except for physical devices that
4473 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4474 this_device->expose_device = 0;
4476 this_device->expose_device = 1;
4480 * Get the SAS address for physical devices that are exposed.
4482 if (this_device->physical_device && this_device->expose_device)
4483 hpsa_get_sas_address(h, lunaddrbytes, this_device);
4485 switch (this_device->devtype) {
4487 /* We don't *really* support actual CD-ROM devices,
4488 * just "One Button Disaster Recovery" tape drive
4489 * which temporarily pretends to be a CD-ROM drive.
4490 * So we check that the device is really an OBDR tape
4491 * device by checking for "$DR-10" in bytes 43-48 of
4499 if (this_device->physical_device) {
4500 /* The disk is in HBA mode. */
4501 /* Never use RAID mapper in HBA mode. */
4502 this_device->offload_enabled = 0;
4503 hpsa_get_ioaccel_drive_info(h, this_device,
4504 physdev_list, phys_dev_index, id_phys);
4505 hpsa_get_path_info(this_device,
4506 physdev_list, phys_dev_index, id_phys);
4511 case TYPE_MEDIUM_CHANGER:
4514 case TYPE_ENCLOSURE:
4515 if (!this_device->external)
4516 hpsa_get_enclosure_info(h, lunaddrbytes,
4517 physdev_list, phys_dev_index,
4522 /* Only present the Smartarray HBA as a RAID controller.
4523 * If it's a RAID controller other than the HBA itself
4524 * (an external RAID controller, MSA500 or similar)
4527 if (!is_hba_lunid(lunaddrbytes))
4534 if (ncurrent >= HPSA_MAX_DEVICES)
4538 if (h->sas_host == NULL) {
4541 rc = hpsa_add_sas_host(h);
4543 dev_warn(&h->pdev->dev,
4544 "Could not add sas host %d\n", rc);
4549 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4552 for (i = 0; i < ndev_allocated; i++)
4553 kfree(currentsd[i]);
4555 kfree(physdev_list);
4561 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4562 struct scatterlist *sg)
4564 u64 addr64 = (u64) sg_dma_address(sg);
4565 unsigned int len = sg_dma_len(sg);
4567 desc->Addr = cpu_to_le64(addr64);
4568 desc->Len = cpu_to_le32(len);
4573 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4574 * dma mapping and fills in the scatter gather entries of the
4577 static int hpsa_scatter_gather(struct ctlr_info *h,
4578 struct CommandList *cp,
4579 struct scsi_cmnd *cmd)
4581 struct scatterlist *sg;
4582 int use_sg, i, sg_limit, chained;
4583 struct SGDescriptor *curr_sg;
4585 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4587 use_sg = scsi_dma_map(cmd);
4592 goto sglist_finished;
4595 * If the number of entries is greater than the max for a single list,
4596 * then we have a chained list; we will set up all but one entry in the
4597 * first list (the last entry is saved for link information);
4598 * otherwise, we don't have a chained list and we'll set up at each of
4599 * the entries in the one list.
4602 chained = use_sg > h->max_cmd_sg_entries;
4603 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4604 scsi_for_each_sg(cmd, sg, sg_limit, i) {
4605 hpsa_set_sg_descriptor(curr_sg, sg);
4611 * Continue with the chained list. Set curr_sg to the chained
4612 * list. Modify the limit to the total count less the entries
4613 * we've already set up. Resume the scan at the list entry
4614 * where the previous loop left off.
4616 curr_sg = h->cmd_sg_list[cp->cmdindex];
4617 sg_limit = use_sg - sg_limit;
4618 for_each_sg(sg, sg, sg_limit, i) {
4619 hpsa_set_sg_descriptor(curr_sg, sg);
4624 /* Back the pointer up to the last entry and mark it as "last". */
4625 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4627 if (use_sg + chained > h->maxSG)
4628 h->maxSG = use_sg + chained;
4631 cp->Header.SGList = h->max_cmd_sg_entries;
4632 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4633 if (hpsa_map_sg_chain_block(h, cp)) {
4634 scsi_dma_unmap(cmd);
4642 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
4643 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4647 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4648 u8 *cdb, int cdb_len,
4651 dev_warn(&h->pdev->dev,
4652 "%s: Blocking zero-length request: CDB:%*phN\n",
4653 func, cdb_len, cdb);
4656 #define IO_ACCEL_INELIGIBLE 1
4657 /* zero-length transfers trigger hardware errors. */
4658 static bool is_zero_length_transfer(u8 *cdb)
4662 /* Block zero-length transfer sizes on certain commands. */
4666 case VERIFY: /* 0x2F */
4667 case WRITE_VERIFY: /* 0x2E */
4668 block_cnt = get_unaligned_be16(&cdb[7]);
4672 case VERIFY_12: /* 0xAF */
4673 case WRITE_VERIFY_12: /* 0xAE */
4674 block_cnt = get_unaligned_be32(&cdb[6]);
4678 case VERIFY_16: /* 0x8F */
4679 block_cnt = get_unaligned_be32(&cdb[10]);
4685 return block_cnt == 0;
4688 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4694 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4702 if (*cdb_len == 6) {
4703 block = (((cdb[1] & 0x1F) << 16) |
4710 BUG_ON(*cdb_len != 12);
4711 block = get_unaligned_be32(&cdb[2]);
4712 block_cnt = get_unaligned_be32(&cdb[6]);
4714 if (block_cnt > 0xffff)
4715 return IO_ACCEL_INELIGIBLE;
4717 cdb[0] = is_write ? WRITE_10 : READ_10;
4719 cdb[2] = (u8) (block >> 24);
4720 cdb[3] = (u8) (block >> 16);
4721 cdb[4] = (u8) (block >> 8);
4722 cdb[5] = (u8) (block);
4724 cdb[7] = (u8) (block_cnt >> 8);
4725 cdb[8] = (u8) (block_cnt);
4733 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4734 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4735 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4737 struct scsi_cmnd *cmd = c->scsi_cmd;
4738 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4740 unsigned int total_len = 0;
4741 struct scatterlist *sg;
4744 struct SGDescriptor *curr_sg;
4745 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4747 /* TODO: implement chaining support */
4748 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4749 atomic_dec(&phys_disk->ioaccel_cmds_out);
4750 return IO_ACCEL_INELIGIBLE;
4753 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4755 if (is_zero_length_transfer(cdb)) {
4756 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4757 atomic_dec(&phys_disk->ioaccel_cmds_out);
4758 return IO_ACCEL_INELIGIBLE;
4761 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4762 atomic_dec(&phys_disk->ioaccel_cmds_out);
4763 return IO_ACCEL_INELIGIBLE;
4766 c->cmd_type = CMD_IOACCEL1;
4768 /* Adjust the DMA address to point to the accelerated command buffer */
4769 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4770 (c->cmdindex * sizeof(*cp));
4771 BUG_ON(c->busaddr & 0x0000007F);
4773 use_sg = scsi_dma_map(cmd);
4775 atomic_dec(&phys_disk->ioaccel_cmds_out);
4781 scsi_for_each_sg(cmd, sg, use_sg, i) {
4782 addr64 = (u64) sg_dma_address(sg);
4783 len = sg_dma_len(sg);
4785 curr_sg->Addr = cpu_to_le64(addr64);
4786 curr_sg->Len = cpu_to_le32(len);
4787 curr_sg->Ext = cpu_to_le32(0);
4790 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4792 switch (cmd->sc_data_direction) {
4794 control |= IOACCEL1_CONTROL_DATA_OUT;
4796 case DMA_FROM_DEVICE:
4797 control |= IOACCEL1_CONTROL_DATA_IN;
4800 control |= IOACCEL1_CONTROL_NODATAXFER;
4803 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4804 cmd->sc_data_direction);
4809 control |= IOACCEL1_CONTROL_NODATAXFER;
4812 c->Header.SGList = use_sg;
4813 /* Fill out the command structure to submit */
4814 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4815 cp->transfer_len = cpu_to_le32(total_len);
4816 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4817 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4818 cp->control = cpu_to_le32(control);
4819 memcpy(cp->CDB, cdb, cdb_len);
4820 memcpy(cp->CISS_LUN, scsi3addr, 8);
4821 /* Tag was already set at init time. */
4822 enqueue_cmd_and_start_io(h, c);
4827 * Queue a command directly to a device behind the controller using the
4828 * I/O accelerator path.
4830 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4831 struct CommandList *c)
4833 struct scsi_cmnd *cmd = c->scsi_cmd;
4834 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4844 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4845 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4849 * Set encryption parameters for the ioaccel2 request
4851 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4852 struct CommandList *c, struct io_accel2_cmd *cp)
4854 struct scsi_cmnd *cmd = c->scsi_cmd;
4855 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4856 struct raid_map_data *map = &dev->raid_map;
4859 /* Are we doing encryption on this device */
4860 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4862 /* Set the data encryption key index. */
4863 cp->dekindex = map->dekindex;
4865 /* Set the encryption enable flag, encoded into direction field. */
4866 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4868 /* Set encryption tweak values based on logical block address
4869 * If block size is 512, tweak value is LBA.
4870 * For other block sizes, tweak is (LBA * block size)/ 512)
4872 switch (cmd->cmnd[0]) {
4873 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4876 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4877 (cmd->cmnd[2] << 8) |
4882 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4885 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4889 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4892 dev_err(&h->pdev->dev,
4893 "ERROR: %s: size (0x%x) not supported for encryption\n",
4894 __func__, cmd->cmnd[0]);
4899 if (le32_to_cpu(map->volume_blk_size) != 512)
4900 first_block = first_block *
4901 le32_to_cpu(map->volume_blk_size)/512;
4903 cp->tweak_lower = cpu_to_le32(first_block);
4904 cp->tweak_upper = cpu_to_le32(first_block >> 32);
4907 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4908 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4909 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4911 struct scsi_cmnd *cmd = c->scsi_cmd;
4912 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4913 struct ioaccel2_sg_element *curr_sg;
4915 struct scatterlist *sg;
4923 if (!cmd->device->hostdata)
4926 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4928 if (is_zero_length_transfer(cdb)) {
4929 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4930 atomic_dec(&phys_disk->ioaccel_cmds_out);
4931 return IO_ACCEL_INELIGIBLE;
4934 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4935 atomic_dec(&phys_disk->ioaccel_cmds_out);
4936 return IO_ACCEL_INELIGIBLE;
4939 c->cmd_type = CMD_IOACCEL2;
4940 /* Adjust the DMA address to point to the accelerated command buffer */
4941 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4942 (c->cmdindex * sizeof(*cp));
4943 BUG_ON(c->busaddr & 0x0000007F);
4945 memset(cp, 0, sizeof(*cp));
4946 cp->IU_type = IOACCEL2_IU_TYPE;
4948 use_sg = scsi_dma_map(cmd);
4950 atomic_dec(&phys_disk->ioaccel_cmds_out);
4956 if (use_sg > h->ioaccel_maxsg) {
4957 addr64 = le64_to_cpu(
4958 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4959 curr_sg->address = cpu_to_le64(addr64);
4960 curr_sg->length = 0;
4961 curr_sg->reserved[0] = 0;
4962 curr_sg->reserved[1] = 0;
4963 curr_sg->reserved[2] = 0;
4964 curr_sg->chain_indicator = IOACCEL2_CHAIN;
4966 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4968 scsi_for_each_sg(cmd, sg, use_sg, i) {
4969 addr64 = (u64) sg_dma_address(sg);
4970 len = sg_dma_len(sg);
4972 curr_sg->address = cpu_to_le64(addr64);
4973 curr_sg->length = cpu_to_le32(len);
4974 curr_sg->reserved[0] = 0;
4975 curr_sg->reserved[1] = 0;
4976 curr_sg->reserved[2] = 0;
4977 curr_sg->chain_indicator = 0;
4982 * Set the last s/g element bit
4984 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4986 switch (cmd->sc_data_direction) {
4988 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4989 cp->direction |= IOACCEL2_DIR_DATA_OUT;
4991 case DMA_FROM_DEVICE:
4992 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4993 cp->direction |= IOACCEL2_DIR_DATA_IN;
4996 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4997 cp->direction |= IOACCEL2_DIR_NO_DATA;
5000 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5001 cmd->sc_data_direction);
5006 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
5007 cp->direction |= IOACCEL2_DIR_NO_DATA;
5010 /* Set encryption parameters, if necessary */
5011 set_encrypt_ioaccel2(h, c, cp);
5013 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
5014 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5015 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
5017 cp->data_len = cpu_to_le32(total_len);
5018 cp->err_ptr = cpu_to_le64(c->busaddr +
5019 offsetof(struct io_accel2_cmd, error_data));
5020 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5022 /* fill in sg elements */
5023 if (use_sg > h->ioaccel_maxsg) {
5025 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5026 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5027 atomic_dec(&phys_disk->ioaccel_cmds_out);
5028 scsi_dma_unmap(cmd);
5032 cp->sg_count = (u8) use_sg;
5034 if (phys_disk->in_reset) {
5035 cmd->result = DID_RESET << 16;
5039 enqueue_cmd_and_start_io(h, c);
5044 * Queue a command to the correct I/O accelerator path.
5046 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5047 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5048 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5050 if (!c->scsi_cmd->device)
5053 if (!c->scsi_cmd->device->hostdata)
5056 if (phys_disk->in_reset)
5059 /* Try to honor the device's queue depth */
5060 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5061 phys_disk->queue_depth) {
5062 atomic_dec(&phys_disk->ioaccel_cmds_out);
5063 return IO_ACCEL_INELIGIBLE;
5065 if (h->transMethod & CFGTBL_Trans_io_accel1)
5066 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5067 cdb, cdb_len, scsi3addr,
5070 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5071 cdb, cdb_len, scsi3addr,
5075 static void raid_map_helper(struct raid_map_data *map,
5076 int offload_to_mirror, u32 *map_index, u32 *current_group)
5078 if (offload_to_mirror == 0) {
5079 /* use physical disk in the first mirrored group. */
5080 *map_index %= le16_to_cpu(map->data_disks_per_row);
5084 /* determine mirror group that *map_index indicates */
5085 *current_group = *map_index /
5086 le16_to_cpu(map->data_disks_per_row);
5087 if (offload_to_mirror == *current_group)
5089 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5090 /* select map index from next group */
5091 *map_index += le16_to_cpu(map->data_disks_per_row);
5094 /* select map index from first group */
5095 *map_index %= le16_to_cpu(map->data_disks_per_row);
5098 } while (offload_to_mirror != *current_group);
5102 * Attempt to perform offload RAID mapping for a logical volume I/O.
5104 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5105 struct CommandList *c)
5107 struct scsi_cmnd *cmd = c->scsi_cmd;
5108 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5109 struct raid_map_data *map = &dev->raid_map;
5110 struct raid_map_disk_data *dd = &map->data[0];
5113 u64 first_block, last_block;
5116 u64 first_row, last_row;
5117 u32 first_row_offset, last_row_offset;
5118 u32 first_column, last_column;
5119 u64 r0_first_row, r0_last_row;
5120 u32 r5or6_blocks_per_row;
5121 u64 r5or6_first_row, r5or6_last_row;
5122 u32 r5or6_first_row_offset, r5or6_last_row_offset;
5123 u32 r5or6_first_column, r5or6_last_column;
5124 u32 total_disks_per_row;
5126 u32 first_group, last_group, current_group;
5134 #if BITS_PER_LONG == 32
5137 int offload_to_mirror;
5145 /* check for valid opcode, get LBA and block count */
5146 switch (cmd->cmnd[0]) {
5151 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5152 (cmd->cmnd[2] << 8) |
5154 block_cnt = cmd->cmnd[4];
5163 (((u64) cmd->cmnd[2]) << 24) |
5164 (((u64) cmd->cmnd[3]) << 16) |
5165 (((u64) cmd->cmnd[4]) << 8) |
5168 (((u32) cmd->cmnd[7]) << 8) |
5176 (((u64) cmd->cmnd[2]) << 24) |
5177 (((u64) cmd->cmnd[3]) << 16) |
5178 (((u64) cmd->cmnd[4]) << 8) |
5181 (((u32) cmd->cmnd[6]) << 24) |
5182 (((u32) cmd->cmnd[7]) << 16) |
5183 (((u32) cmd->cmnd[8]) << 8) |
5191 (((u64) cmd->cmnd[2]) << 56) |
5192 (((u64) cmd->cmnd[3]) << 48) |
5193 (((u64) cmd->cmnd[4]) << 40) |
5194 (((u64) cmd->cmnd[5]) << 32) |
5195 (((u64) cmd->cmnd[6]) << 24) |
5196 (((u64) cmd->cmnd[7]) << 16) |
5197 (((u64) cmd->cmnd[8]) << 8) |
5200 (((u32) cmd->cmnd[10]) << 24) |
5201 (((u32) cmd->cmnd[11]) << 16) |
5202 (((u32) cmd->cmnd[12]) << 8) |
5206 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5208 last_block = first_block + block_cnt - 1;
5210 /* check for write to non-RAID-0 */
5211 if (is_write && dev->raid_level != 0)
5212 return IO_ACCEL_INELIGIBLE;
5214 /* check for invalid block or wraparound */
5215 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5216 last_block < first_block)
5217 return IO_ACCEL_INELIGIBLE;
5219 /* calculate stripe information for the request */
5220 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5221 le16_to_cpu(map->strip_size);
5222 strip_size = le16_to_cpu(map->strip_size);
5223 #if BITS_PER_LONG == 32
5224 tmpdiv = first_block;
5225 (void) do_div(tmpdiv, blocks_per_row);
5227 tmpdiv = last_block;
5228 (void) do_div(tmpdiv, blocks_per_row);
5230 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5231 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5232 tmpdiv = first_row_offset;
5233 (void) do_div(tmpdiv, strip_size);
5234 first_column = tmpdiv;
5235 tmpdiv = last_row_offset;
5236 (void) do_div(tmpdiv, strip_size);
5237 last_column = tmpdiv;
5239 first_row = first_block / blocks_per_row;
5240 last_row = last_block / blocks_per_row;
5241 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5242 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5243 first_column = first_row_offset / strip_size;
5244 last_column = last_row_offset / strip_size;
5247 /* if this isn't a single row/column then give to the controller */
5248 if ((first_row != last_row) || (first_column != last_column))
5249 return IO_ACCEL_INELIGIBLE;
5251 /* proceeding with driver mapping */
5252 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5253 le16_to_cpu(map->metadata_disks_per_row);
5254 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5255 le16_to_cpu(map->row_cnt);
5256 map_index = (map_row * total_disks_per_row) + first_column;
5258 switch (dev->raid_level) {
5260 break; /* nothing special to do */
5262 /* Handles load balance across RAID 1 members.
5263 * (2-drive R1 and R10 with even # of drives.)
5264 * Appropriate for SSDs, not optimal for HDDs
5265 * Ensure we have the correct raid_map.
5267 if (le16_to_cpu(map->layout_map_count) != 2) {
5268 hpsa_turn_off_ioaccel_for_device(dev);
5269 return IO_ACCEL_INELIGIBLE;
5271 if (dev->offload_to_mirror)
5272 map_index += le16_to_cpu(map->data_disks_per_row);
5273 dev->offload_to_mirror = !dev->offload_to_mirror;
5276 /* Handles N-way mirrors (R1-ADM)
5277 * and R10 with # of drives divisible by 3.)
5278 * Ensure we have the correct raid_map.
5280 if (le16_to_cpu(map->layout_map_count) != 3) {
5281 hpsa_turn_off_ioaccel_for_device(dev);
5282 return IO_ACCEL_INELIGIBLE;
5285 offload_to_mirror = dev->offload_to_mirror;
5286 raid_map_helper(map, offload_to_mirror,
5287 &map_index, ¤t_group);
5288 /* set mirror group to use next time */
5290 (offload_to_mirror >=
5291 le16_to_cpu(map->layout_map_count) - 1)
5292 ? 0 : offload_to_mirror + 1;
5293 dev->offload_to_mirror = offload_to_mirror;
5294 /* Avoid direct use of dev->offload_to_mirror within this
5295 * function since multiple threads might simultaneously
5296 * increment it beyond the range of dev->layout_map_count -1.
5301 if (le16_to_cpu(map->layout_map_count) <= 1)
5304 /* Verify first and last block are in same RAID group */
5305 r5or6_blocks_per_row =
5306 le16_to_cpu(map->strip_size) *
5307 le16_to_cpu(map->data_disks_per_row);
5308 if (r5or6_blocks_per_row == 0) {
5309 hpsa_turn_off_ioaccel_for_device(dev);
5310 return IO_ACCEL_INELIGIBLE;
5312 stripesize = r5or6_blocks_per_row *
5313 le16_to_cpu(map->layout_map_count);
5314 #if BITS_PER_LONG == 32
5315 tmpdiv = first_block;
5316 first_group = do_div(tmpdiv, stripesize);
5317 tmpdiv = first_group;
5318 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5319 first_group = tmpdiv;
5320 tmpdiv = last_block;
5321 last_group = do_div(tmpdiv, stripesize);
5322 tmpdiv = last_group;
5323 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5324 last_group = tmpdiv;
5326 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5327 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5329 if (first_group != last_group)
5330 return IO_ACCEL_INELIGIBLE;
5332 /* Verify request is in a single row of RAID 5/6 */
5333 #if BITS_PER_LONG == 32
5334 tmpdiv = first_block;
5335 (void) do_div(tmpdiv, stripesize);
5336 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5337 tmpdiv = last_block;
5338 (void) do_div(tmpdiv, stripesize);
5339 r5or6_last_row = r0_last_row = tmpdiv;
5341 first_row = r5or6_first_row = r0_first_row =
5342 first_block / stripesize;
5343 r5or6_last_row = r0_last_row = last_block / stripesize;
5345 if (r5or6_first_row != r5or6_last_row)
5346 return IO_ACCEL_INELIGIBLE;
5349 /* Verify request is in a single column */
5350 #if BITS_PER_LONG == 32
5351 tmpdiv = first_block;
5352 first_row_offset = do_div(tmpdiv, stripesize);
5353 tmpdiv = first_row_offset;
5354 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5355 r5or6_first_row_offset = first_row_offset;
5356 tmpdiv = last_block;
5357 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5358 tmpdiv = r5or6_last_row_offset;
5359 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5360 tmpdiv = r5or6_first_row_offset;
5361 (void) do_div(tmpdiv, map->strip_size);
5362 first_column = r5or6_first_column = tmpdiv;
5363 tmpdiv = r5or6_last_row_offset;
5364 (void) do_div(tmpdiv, map->strip_size);
5365 r5or6_last_column = tmpdiv;
5367 first_row_offset = r5or6_first_row_offset =
5368 (u32)((first_block % stripesize) %
5369 r5or6_blocks_per_row);
5371 r5or6_last_row_offset =
5372 (u32)((last_block % stripesize) %
5373 r5or6_blocks_per_row);
5375 first_column = r5or6_first_column =
5376 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5378 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5380 if (r5or6_first_column != r5or6_last_column)
5381 return IO_ACCEL_INELIGIBLE;
5383 /* Request is eligible */
5384 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5385 le16_to_cpu(map->row_cnt);
5387 map_index = (first_group *
5388 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5389 (map_row * total_disks_per_row) + first_column;
5392 return IO_ACCEL_INELIGIBLE;
5395 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5396 return IO_ACCEL_INELIGIBLE;
5398 c->phys_disk = dev->phys_disk[map_index];
5400 return IO_ACCEL_INELIGIBLE;
5402 disk_handle = dd[map_index].ioaccel_handle;
5403 disk_block = le64_to_cpu(map->disk_starting_blk) +
5404 first_row * le16_to_cpu(map->strip_size) +
5405 (first_row_offset - first_column *
5406 le16_to_cpu(map->strip_size));
5407 disk_block_cnt = block_cnt;
5409 /* handle differing logical/physical block sizes */
5410 if (map->phys_blk_shift) {
5411 disk_block <<= map->phys_blk_shift;
5412 disk_block_cnt <<= map->phys_blk_shift;
5414 BUG_ON(disk_block_cnt > 0xffff);
5416 /* build the new CDB for the physical disk I/O */
5417 if (disk_block > 0xffffffff) {
5418 cdb[0] = is_write ? WRITE_16 : READ_16;
5420 cdb[2] = (u8) (disk_block >> 56);
5421 cdb[3] = (u8) (disk_block >> 48);
5422 cdb[4] = (u8) (disk_block >> 40);
5423 cdb[5] = (u8) (disk_block >> 32);
5424 cdb[6] = (u8) (disk_block >> 24);
5425 cdb[7] = (u8) (disk_block >> 16);
5426 cdb[8] = (u8) (disk_block >> 8);
5427 cdb[9] = (u8) (disk_block);
5428 cdb[10] = (u8) (disk_block_cnt >> 24);
5429 cdb[11] = (u8) (disk_block_cnt >> 16);
5430 cdb[12] = (u8) (disk_block_cnt >> 8);
5431 cdb[13] = (u8) (disk_block_cnt);
5436 cdb[0] = is_write ? WRITE_10 : READ_10;
5438 cdb[2] = (u8) (disk_block >> 24);
5439 cdb[3] = (u8) (disk_block >> 16);
5440 cdb[4] = (u8) (disk_block >> 8);
5441 cdb[5] = (u8) (disk_block);
5443 cdb[7] = (u8) (disk_block_cnt >> 8);
5444 cdb[8] = (u8) (disk_block_cnt);
5448 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5450 dev->phys_disk[map_index]);
5454 * Submit commands down the "normal" RAID stack path
5455 * All callers to hpsa_ciss_submit must check lockup_detected
5456 * beforehand, before (opt.) and after calling cmd_alloc
5458 static int hpsa_ciss_submit(struct ctlr_info *h,
5459 struct CommandList *c, struct scsi_cmnd *cmd,
5460 struct hpsa_scsi_dev_t *dev)
5462 cmd->host_scribble = (unsigned char *) c;
5463 c->cmd_type = CMD_SCSI;
5465 c->Header.ReplyQueue = 0; /* unused in simple mode */
5466 memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5467 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5469 /* Fill in the request block... */
5471 c->Request.Timeout = 0;
5472 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5473 c->Request.CDBLen = cmd->cmd_len;
5474 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5475 switch (cmd->sc_data_direction) {
5477 c->Request.type_attr_dir =
5478 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5480 case DMA_FROM_DEVICE:
5481 c->Request.type_attr_dir =
5482 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5485 c->Request.type_attr_dir =
5486 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5488 case DMA_BIDIRECTIONAL:
5489 /* This can happen if a buggy application does a scsi passthru
5490 * and sets both inlen and outlen to non-zero. ( see
5491 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5494 c->Request.type_attr_dir =
5495 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5496 /* This is technically wrong, and hpsa controllers should
5497 * reject it with CMD_INVALID, which is the most correct
5498 * response, but non-fibre backends appear to let it
5499 * slide by, and give the same results as if this field
5500 * were set correctly. Either way is acceptable for
5501 * our purposes here.
5507 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5508 cmd->sc_data_direction);
5513 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5514 hpsa_cmd_resolve_and_free(h, c);
5515 return SCSI_MLQUEUE_HOST_BUSY;
5518 if (dev->in_reset) {
5519 hpsa_cmd_resolve_and_free(h, c);
5520 return SCSI_MLQUEUE_HOST_BUSY;
5525 enqueue_cmd_and_start_io(h, c);
5526 /* the cmd'll come back via intr handler in complete_scsi_command() */
5530 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5531 struct CommandList *c)
5533 dma_addr_t cmd_dma_handle, err_dma_handle;
5535 /* Zero out all of commandlist except the last field, refcount */
5536 memset(c, 0, offsetof(struct CommandList, refcount));
5537 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5538 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5539 c->err_info = h->errinfo_pool + index;
5540 memset(c->err_info, 0, sizeof(*c->err_info));
5541 err_dma_handle = h->errinfo_pool_dhandle
5542 + index * sizeof(*c->err_info);
5543 c->cmdindex = index;
5544 c->busaddr = (u32) cmd_dma_handle;
5545 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5546 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5548 c->scsi_cmd = SCSI_CMD_IDLE;
5551 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5555 for (i = 0; i < h->nr_cmds; i++) {
5556 struct CommandList *c = h->cmd_pool + i;
5558 hpsa_cmd_init(h, i, c);
5559 atomic_set(&c->refcount, 0);
5563 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5564 struct CommandList *c)
5566 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5568 BUG_ON(c->cmdindex != index);
5570 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5571 memset(c->err_info, 0, sizeof(*c->err_info));
5572 c->busaddr = (u32) cmd_dma_handle;
5575 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5576 struct CommandList *c, struct scsi_cmnd *cmd,
5579 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5580 int rc = IO_ACCEL_INELIGIBLE;
5583 return SCSI_MLQUEUE_HOST_BUSY;
5586 return SCSI_MLQUEUE_HOST_BUSY;
5588 if (hpsa_simple_mode)
5589 return IO_ACCEL_INELIGIBLE;
5591 cmd->host_scribble = (unsigned char *) c;
5593 if (dev->offload_enabled) {
5594 hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5595 c->cmd_type = CMD_SCSI;
5598 if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5599 c->retry_pending = true;
5600 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5601 if (rc < 0) /* scsi_dma_map failed. */
5602 rc = SCSI_MLQUEUE_HOST_BUSY;
5603 } else if (dev->hba_ioaccel_enabled) {
5604 hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5605 c->cmd_type = CMD_SCSI;
5608 if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5609 c->retry_pending = true;
5610 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5611 if (rc < 0) /* scsi_dma_map failed. */
5612 rc = SCSI_MLQUEUE_HOST_BUSY;
5617 static void hpsa_command_resubmit_worker(struct work_struct *work)
5619 struct scsi_cmnd *cmd;
5620 struct hpsa_scsi_dev_t *dev;
5621 struct CommandList *c = container_of(work, struct CommandList, work);
5624 dev = cmd->device->hostdata;
5626 cmd->result = DID_NO_CONNECT << 16;
5627 return hpsa_cmd_free_and_done(c->h, c, cmd);
5630 if (dev->in_reset) {
5631 cmd->result = DID_RESET << 16;
5632 return hpsa_cmd_free_and_done(c->h, c, cmd);
5635 if (c->cmd_type == CMD_IOACCEL2) {
5636 struct ctlr_info *h = c->h;
5637 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5640 if (c2->error_data.serv_response ==
5641 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5642 /* Resubmit with the retry_pending flag set. */
5643 rc = hpsa_ioaccel_submit(h, c, cmd, true);
5646 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5648 * If we get here, it means dma mapping failed.
5649 * Try again via scsi mid layer, which will
5650 * then get SCSI_MLQUEUE_HOST_BUSY.
5652 cmd->result = DID_IMM_RETRY << 16;
5653 return hpsa_cmd_free_and_done(h, c, cmd);
5655 /* else, fall thru and resubmit down CISS path */
5658 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5660 * Here we have not come in though queue_command, so we
5661 * can set the retry_pending flag to true for a driver initiated
5662 * retry attempt (I.E. not a SML retry).
5663 * I.E. We are submitting a driver initiated retry.
5664 * Note: hpsa_ciss_submit does not zero out the command fields like
5665 * ioaccel submit does.
5667 c->retry_pending = true;
5668 if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5670 * If we get here, it means dma mapping failed. Try
5671 * again via scsi mid layer, which will then get
5672 * SCSI_MLQUEUE_HOST_BUSY.
5674 * hpsa_ciss_submit will have already freed c
5675 * if it encountered a dma mapping failure.
5677 cmd->result = DID_IMM_RETRY << 16;
5682 /* Running in struct Scsi_Host->host_lock less mode */
5683 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5685 struct ctlr_info *h;
5686 struct hpsa_scsi_dev_t *dev;
5687 struct CommandList *c;
5690 /* Get the ptr to our adapter structure out of cmd->host. */
5691 h = sdev_to_hba(cmd->device);
5693 BUG_ON(scsi_cmd_to_rq(cmd)->tag < 0);
5695 dev = cmd->device->hostdata;
5697 cmd->result = DID_NO_CONNECT << 16;
5703 cmd->result = DID_NO_CONNECT << 16;
5708 if (unlikely(lockup_detected(h))) {
5709 cmd->result = DID_NO_CONNECT << 16;
5715 return SCSI_MLQUEUE_DEVICE_BUSY;
5717 c = cmd_tagged_alloc(h, cmd);
5719 return SCSI_MLQUEUE_DEVICE_BUSY;
5722 * This is necessary because the SML doesn't zero out this field during
5728 * Call alternate submit routine for I/O accelerated commands.
5729 * Retries always go down the normal I/O path.
5730 * Note: If cmd->retries is non-zero, then this is a SML
5731 * initiated retry and not a driver initiated retry.
5732 * This command has been obtained from cmd_tagged_alloc
5733 * and is therefore a brand-new command.
5735 if (likely(cmd->retries == 0 &&
5736 !blk_rq_is_passthrough(scsi_cmd_to_rq(cmd)) &&
5737 h->acciopath_status)) {
5738 /* Submit with the retry_pending flag unset. */
5739 rc = hpsa_ioaccel_submit(h, c, cmd, false);
5742 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5743 hpsa_cmd_resolve_and_free(h, c);
5744 return SCSI_MLQUEUE_HOST_BUSY;
5747 return hpsa_ciss_submit(h, c, cmd, dev);
5750 static void hpsa_scan_complete(struct ctlr_info *h)
5752 unsigned long flags;
5754 spin_lock_irqsave(&h->scan_lock, flags);
5755 h->scan_finished = 1;
5756 wake_up(&h->scan_wait_queue);
5757 spin_unlock_irqrestore(&h->scan_lock, flags);
5760 static void hpsa_scan_start(struct Scsi_Host *sh)
5762 struct ctlr_info *h = shost_to_hba(sh);
5763 unsigned long flags;
5766 * Don't let rescans be initiated on a controller known to be locked
5767 * up. If the controller locks up *during* a rescan, that thread is
5768 * probably hosed, but at least we can prevent new rescan threads from
5769 * piling up on a locked up controller.
5771 if (unlikely(lockup_detected(h)))
5772 return hpsa_scan_complete(h);
5775 * If a scan is already waiting to run, no need to add another
5777 spin_lock_irqsave(&h->scan_lock, flags);
5778 if (h->scan_waiting) {
5779 spin_unlock_irqrestore(&h->scan_lock, flags);
5783 spin_unlock_irqrestore(&h->scan_lock, flags);
5785 /* wait until any scan already in progress is finished. */
5787 spin_lock_irqsave(&h->scan_lock, flags);
5788 if (h->scan_finished)
5790 h->scan_waiting = 1;
5791 spin_unlock_irqrestore(&h->scan_lock, flags);
5792 wait_event(h->scan_wait_queue, h->scan_finished);
5793 /* Note: We don't need to worry about a race between this
5794 * thread and driver unload because the midlayer will
5795 * have incremented the reference count, so unload won't
5796 * happen if we're in here.
5799 h->scan_finished = 0; /* mark scan as in progress */
5800 h->scan_waiting = 0;
5801 spin_unlock_irqrestore(&h->scan_lock, flags);
5803 if (unlikely(lockup_detected(h)))
5804 return hpsa_scan_complete(h);
5807 * Do the scan after a reset completion
5809 spin_lock_irqsave(&h->reset_lock, flags);
5810 if (h->reset_in_progress) {
5811 h->drv_req_rescan = 1;
5812 spin_unlock_irqrestore(&h->reset_lock, flags);
5813 hpsa_scan_complete(h);
5816 spin_unlock_irqrestore(&h->reset_lock, flags);
5818 hpsa_update_scsi_devices(h);
5820 hpsa_scan_complete(h);
5823 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5825 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5832 else if (qdepth > logical_drive->queue_depth)
5833 qdepth = logical_drive->queue_depth;
5835 return scsi_change_queue_depth(sdev, qdepth);
5838 static int hpsa_scan_finished(struct Scsi_Host *sh,
5839 unsigned long elapsed_time)
5841 struct ctlr_info *h = shost_to_hba(sh);
5842 unsigned long flags;
5845 spin_lock_irqsave(&h->scan_lock, flags);
5846 finished = h->scan_finished;
5847 spin_unlock_irqrestore(&h->scan_lock, flags);
5851 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5853 struct Scsi_Host *sh;
5855 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5857 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5864 sh->max_channel = 3;
5865 sh->max_cmd_len = MAX_COMMAND_SIZE;
5866 sh->max_lun = HPSA_MAX_LUN;
5867 sh->max_id = HPSA_MAX_LUN;
5868 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5869 sh->cmd_per_lun = sh->can_queue;
5870 sh->sg_tablesize = h->maxsgentries;
5871 sh->transportt = hpsa_sas_transport_template;
5872 sh->hostdata[0] = (unsigned long) h;
5873 sh->irq = pci_irq_vector(h->pdev, 0);
5874 sh->unique_id = sh->irq;
5880 static int hpsa_scsi_add_host(struct ctlr_info *h)
5884 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5886 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5889 scsi_scan_host(h->scsi_host);
5894 * The block layer has already gone to the trouble of picking out a unique,
5895 * small-integer tag for this request. We use an offset from that value as
5896 * an index to select our command block. (The offset allows us to reserve the
5897 * low-numbered entries for our own uses.)
5899 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5901 int idx = scsi_cmd_to_rq(scmd)->tag;
5906 /* Offset to leave space for internal cmds. */
5907 return idx += HPSA_NRESERVED_CMDS;
5911 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5912 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5914 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5915 struct CommandList *c, unsigned char lunaddr[],
5920 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5921 (void) fill_cmd(c, TEST_UNIT_READY, h,
5922 NULL, 0, 0, lunaddr, TYPE_CMD);
5923 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5926 /* no unmap needed here because no data xfer. */
5928 /* Check if the unit is already ready. */
5929 if (c->err_info->CommandStatus == CMD_SUCCESS)
5933 * The first command sent after reset will receive "unit attention" to
5934 * indicate that the LUN has been reset...this is actually what we're
5935 * looking for (but, success is good too).
5937 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5938 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5939 (c->err_info->SenseInfo[2] == NO_SENSE ||
5940 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5947 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5948 * returns zero when the unit is ready, and non-zero when giving up.
5950 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5951 struct CommandList *c,
5952 unsigned char lunaddr[], int reply_queue)
5956 int waittime = 1; /* seconds */
5958 /* Send test unit ready until device ready, or give up. */
5959 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5962 * Wait for a bit. do this first, because if we send
5963 * the TUR right away, the reset will just abort it.
5965 msleep(1000 * waittime);
5967 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5971 /* Increase wait time with each try, up to a point. */
5972 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5975 dev_warn(&h->pdev->dev,
5976 "waiting %d secs for device to become ready.\n",
5983 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5984 unsigned char lunaddr[],
5991 struct CommandList *c;
5996 * If no specific reply queue was requested, then send the TUR
5997 * repeatedly, requesting a reply on each reply queue; otherwise execute
5998 * the loop exactly once using only the specified queue.
6000 if (reply_queue == DEFAULT_REPLY_QUEUE) {
6002 last_queue = h->nreply_queues - 1;
6004 first_queue = reply_queue;
6005 last_queue = reply_queue;
6008 for (rq = first_queue; rq <= last_queue; rq++) {
6009 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
6015 dev_warn(&h->pdev->dev, "giving up on device.\n");
6017 dev_warn(&h->pdev->dev, "device is ready.\n");
6023 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
6024 * complaining. Doing a host- or bus-reset can't do anything good here.
6026 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
6030 struct ctlr_info *h;
6031 struct hpsa_scsi_dev_t *dev = NULL;
6034 unsigned long flags;
6036 /* find the controller to which the command to be aborted was sent */
6037 h = sdev_to_hba(scsicmd->device);
6038 if (h == NULL) /* paranoia */
6041 spin_lock_irqsave(&h->reset_lock, flags);
6042 h->reset_in_progress = 1;
6043 spin_unlock_irqrestore(&h->reset_lock, flags);
6045 if (lockup_detected(h)) {
6047 goto return_reset_status;
6050 dev = scsicmd->device->hostdata;
6052 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6054 goto return_reset_status;
6057 if (dev->devtype == TYPE_ENCLOSURE) {
6059 goto return_reset_status;
6062 /* if controller locked up, we can guarantee command won't complete */
6063 if (lockup_detected(h)) {
6064 snprintf(msg, sizeof(msg),
6065 "cmd %d RESET FAILED, lockup detected",
6066 hpsa_get_cmd_index(scsicmd));
6067 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6069 goto return_reset_status;
6072 /* this reset request might be the result of a lockup; check */
6073 if (detect_controller_lockup(h)) {
6074 snprintf(msg, sizeof(msg),
6075 "cmd %d RESET FAILED, new lockup detected",
6076 hpsa_get_cmd_index(scsicmd));
6077 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6079 goto return_reset_status;
6082 /* Do not attempt on controller */
6083 if (is_hba_lunid(dev->scsi3addr)) {
6085 goto return_reset_status;
6088 if (is_logical_dev_addr_mode(dev->scsi3addr))
6089 reset_type = HPSA_DEVICE_RESET_MSG;
6091 reset_type = HPSA_PHYS_TARGET_RESET;
6093 sprintf(msg, "resetting %s",
6094 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6095 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6098 * wait to see if any commands will complete before sending reset
6100 dev->in_reset = true; /* block any new cmds from OS for this device */
6101 for (i = 0; i < 10; i++) {
6102 if (atomic_read(&dev->commands_outstanding) > 0)
6108 /* send a reset to the SCSI LUN which the command was sent to */
6109 rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6115 sprintf(msg, "reset %s %s",
6116 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6117 rc == SUCCESS ? "completed successfully" : "failed");
6118 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6120 return_reset_status:
6121 spin_lock_irqsave(&h->reset_lock, flags);
6122 h->reset_in_progress = 0;
6124 dev->in_reset = false;
6125 spin_unlock_irqrestore(&h->reset_lock, flags);
6130 * For operations with an associated SCSI command, a command block is allocated
6131 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6132 * block request tag as an index into a table of entries. cmd_tagged_free() is
6133 * the complement, although cmd_free() may be called instead.
6134 * This function is only called for new requests from queue_command.
6136 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6137 struct scsi_cmnd *scmd)
6139 int idx = hpsa_get_cmd_index(scmd);
6140 struct CommandList *c = h->cmd_pool + idx;
6142 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6143 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6144 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6145 /* The index value comes from the block layer, so if it's out of
6146 * bounds, it's probably not our bug.
6151 if (unlikely(!hpsa_is_cmd_idle(c))) {
6153 * We expect that the SCSI layer will hand us a unique tag
6154 * value. Thus, there should never be a collision here between
6155 * two requests...because if the selected command isn't idle
6156 * then someone is going to be very disappointed.
6158 if (idx != h->last_collision_tag) { /* Print once per tag */
6159 dev_warn(&h->pdev->dev,
6160 "%s: tag collision (tag=%d)\n", __func__, idx);
6162 scsi_print_command(scmd);
6163 h->last_collision_tag = idx;
6168 atomic_inc(&c->refcount);
6169 hpsa_cmd_partial_init(h, idx, c);
6172 * This is a new command obtained from queue_command so
6173 * there have not been any driver initiated retry attempts.
6175 c->retry_pending = false;
6180 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6183 * Release our reference to the block. We don't need to do anything
6184 * else to free it, because it is accessed by index.
6186 (void)atomic_dec(&c->refcount);
6190 * For operations that cannot sleep, a command block is allocated at init,
6191 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6192 * which ones are free or in use. Lock must be held when calling this.
6193 * cmd_free() is the complement.
6194 * This function never gives up and returns NULL. If it hangs,
6195 * another thread must call cmd_free() to free some tags.
6198 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6200 struct CommandList *c;
6205 * There is some *extremely* small but non-zero chance that that
6206 * multiple threads could get in here, and one thread could
6207 * be scanning through the list of bits looking for a free
6208 * one, but the free ones are always behind him, and other
6209 * threads sneak in behind him and eat them before he can
6210 * get to them, so that while there is always a free one, a
6211 * very unlucky thread might be starved anyway, never able to
6212 * beat the other threads. In reality, this happens so
6213 * infrequently as to be indistinguishable from never.
6215 * Note that we start allocating commands before the SCSI host structure
6216 * is initialized. Since the search starts at bit zero, this
6217 * all works, since we have at least one command structure available;
6218 * however, it means that the structures with the low indexes have to be
6219 * reserved for driver-initiated requests, while requests from the block
6220 * layer will use the higher indexes.
6224 i = find_next_zero_bit(h->cmd_pool_bits,
6225 HPSA_NRESERVED_CMDS,
6227 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6231 c = h->cmd_pool + i;
6232 refcount = atomic_inc_return(&c->refcount);
6233 if (unlikely(refcount > 1)) {
6234 cmd_free(h, c); /* already in use */
6235 offset = (i + 1) % HPSA_NRESERVED_CMDS;
6238 set_bit(i & (BITS_PER_LONG - 1),
6239 h->cmd_pool_bits + (i / BITS_PER_LONG));
6240 break; /* it's ours now. */
6242 hpsa_cmd_partial_init(h, i, c);
6246 * cmd_alloc is for "internal" commands and they are never
6249 c->retry_pending = false;
6255 * This is the complementary operation to cmd_alloc(). Note, however, in some
6256 * corner cases it may also be used to free blocks allocated by
6257 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6258 * the clear-bit is harmless.
6260 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6262 if (atomic_dec_and_test(&c->refcount)) {
6265 i = c - h->cmd_pool;
6266 clear_bit(i & (BITS_PER_LONG - 1),
6267 h->cmd_pool_bits + (i / BITS_PER_LONG));
6271 #ifdef CONFIG_COMPAT
6273 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6276 struct ctlr_info *h = sdev_to_hba(dev);
6277 IOCTL32_Command_struct __user *arg32 = arg;
6278 IOCTL_Command_struct arg64;
6285 memset(&arg64, 0, sizeof(arg64));
6286 if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
6288 if (get_user(cp, &arg32->buf))
6290 arg64.buf = compat_ptr(cp);
6292 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6294 err = hpsa_passthru_ioctl(h, &arg64);
6295 atomic_inc(&h->passthru_cmds_avail);
6298 if (copy_to_user(&arg32->error_info, &arg64.error_info,
6299 sizeof(arg32->error_info)))
6304 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6305 unsigned int cmd, void __user *arg)
6307 struct ctlr_info *h = sdev_to_hba(dev);
6308 BIG_IOCTL32_Command_struct __user *arg32 = arg;
6309 BIG_IOCTL_Command_struct arg64;
6315 memset(&arg64, 0, sizeof(arg64));
6316 if (copy_from_user(&arg64, arg32,
6317 offsetof(BIG_IOCTL32_Command_struct, buf)))
6319 if (get_user(cp, &arg32->buf))
6321 arg64.buf = compat_ptr(cp);
6323 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6325 err = hpsa_big_passthru_ioctl(h, &arg64);
6326 atomic_inc(&h->passthru_cmds_avail);
6329 if (copy_to_user(&arg32->error_info, &arg64.error_info,
6330 sizeof(arg32->error_info)))
6335 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6339 case CCISS_GETPCIINFO:
6340 case CCISS_GETINTINFO:
6341 case CCISS_SETINTINFO:
6342 case CCISS_GETNODENAME:
6343 case CCISS_SETNODENAME:
6344 case CCISS_GETHEARTBEAT:
6345 case CCISS_GETBUSTYPES:
6346 case CCISS_GETFIRMVER:
6347 case CCISS_GETDRIVVER:
6348 case CCISS_REVALIDVOLS:
6349 case CCISS_DEREGDISK:
6350 case CCISS_REGNEWDISK:
6352 case CCISS_RESCANDISK:
6353 case CCISS_GETLUNINFO:
6354 return hpsa_ioctl(dev, cmd, arg);
6356 case CCISS_PASSTHRU32:
6357 return hpsa_ioctl32_passthru(dev, cmd, arg);
6358 case CCISS_BIG_PASSTHRU32:
6359 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6362 return -ENOIOCTLCMD;
6367 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6369 struct hpsa_pci_info pciinfo;
6373 pciinfo.domain = pci_domain_nr(h->pdev->bus);
6374 pciinfo.bus = h->pdev->bus->number;
6375 pciinfo.dev_fn = h->pdev->devfn;
6376 pciinfo.board_id = h->board_id;
6377 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6382 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6384 DriverVer_type DriverVer;
6385 unsigned char vmaj, vmin, vsubmin;
6388 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6389 &vmaj, &vmin, &vsubmin);
6391 dev_info(&h->pdev->dev, "driver version string '%s' "
6392 "unrecognized.", HPSA_DRIVER_VERSION);
6397 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6400 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6405 static int hpsa_passthru_ioctl(struct ctlr_info *h,
6406 IOCTL_Command_struct *iocommand)
6408 struct CommandList *c;
6413 if (!capable(CAP_SYS_RAWIO))
6415 if ((iocommand->buf_size < 1) &&
6416 (iocommand->Request.Type.Direction != XFER_NONE)) {
6419 if (iocommand->buf_size > 0) {
6420 buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
6423 if (iocommand->Request.Type.Direction & XFER_WRITE) {
6424 /* Copy the data into the buffer we created */
6425 if (copy_from_user(buff, iocommand->buf,
6426 iocommand->buf_size)) {
6431 memset(buff, 0, iocommand->buf_size);
6436 /* Fill in the command type */
6437 c->cmd_type = CMD_IOCTL_PEND;
6438 c->scsi_cmd = SCSI_CMD_BUSY;
6439 /* Fill in Command Header */
6440 c->Header.ReplyQueue = 0; /* unused in simple mode */
6441 if (iocommand->buf_size > 0) { /* buffer to fill */
6442 c->Header.SGList = 1;
6443 c->Header.SGTotal = cpu_to_le16(1);
6444 } else { /* no buffers to fill */
6445 c->Header.SGList = 0;
6446 c->Header.SGTotal = cpu_to_le16(0);
6448 memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
6450 /* Fill in Request block */
6451 memcpy(&c->Request, &iocommand->Request,
6452 sizeof(c->Request));
6454 /* Fill in the scatter gather information */
6455 if (iocommand->buf_size > 0) {
6456 temp64 = dma_map_single(&h->pdev->dev, buff,
6457 iocommand->buf_size, DMA_BIDIRECTIONAL);
6458 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6459 c->SG[0].Addr = cpu_to_le64(0);
6460 c->SG[0].Len = cpu_to_le32(0);
6464 c->SG[0].Addr = cpu_to_le64(temp64);
6465 c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
6466 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6468 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6470 if (iocommand->buf_size > 0)
6471 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6472 check_ioctl_unit_attention(h, c);
6478 /* Copy the error information out */
6479 memcpy(&iocommand->error_info, c->err_info,
6480 sizeof(iocommand->error_info));
6481 if ((iocommand->Request.Type.Direction & XFER_READ) &&
6482 iocommand->buf_size > 0) {
6483 /* Copy the data out of the buffer we created */
6484 if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
6496 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
6497 BIG_IOCTL_Command_struct *ioc)
6499 struct CommandList *c;
6500 unsigned char **buff = NULL;
6501 int *buff_size = NULL;
6507 BYTE __user *data_ptr;
6509 if (!capable(CAP_SYS_RAWIO))
6512 if ((ioc->buf_size < 1) &&
6513 (ioc->Request.Type.Direction != XFER_NONE))
6515 /* Check kmalloc limits using all SGs */
6516 if (ioc->malloc_size > MAX_KMALLOC_SIZE)
6518 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
6520 buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6525 buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6530 left = ioc->buf_size;
6531 data_ptr = ioc->buf;
6533 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6534 buff_size[sg_used] = sz;
6535 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6536 if (buff[sg_used] == NULL) {
6540 if (ioc->Request.Type.Direction & XFER_WRITE) {
6541 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6546 memset(buff[sg_used], 0, sz);
6553 c->cmd_type = CMD_IOCTL_PEND;
6554 c->scsi_cmd = SCSI_CMD_BUSY;
6555 c->Header.ReplyQueue = 0;
6556 c->Header.SGList = (u8) sg_used;
6557 c->Header.SGTotal = cpu_to_le16(sg_used);
6558 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6559 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6560 if (ioc->buf_size > 0) {
6562 for (i = 0; i < sg_used; i++) {
6563 temp64 = dma_map_single(&h->pdev->dev, buff[i],
6564 buff_size[i], DMA_BIDIRECTIONAL);
6565 if (dma_mapping_error(&h->pdev->dev,
6566 (dma_addr_t) temp64)) {
6567 c->SG[i].Addr = cpu_to_le64(0);
6568 c->SG[i].Len = cpu_to_le32(0);
6569 hpsa_pci_unmap(h->pdev, c, i,
6574 c->SG[i].Addr = cpu_to_le64(temp64);
6575 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6576 c->SG[i].Ext = cpu_to_le32(0);
6578 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6580 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6583 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6584 check_ioctl_unit_attention(h, c);
6590 /* Copy the error information out */
6591 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6592 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6595 /* Copy the data out of the buffer we created */
6596 BYTE __user *ptr = ioc->buf;
6597 for (i = 0; i < sg_used; i++) {
6598 if (copy_to_user(ptr, buff[i], buff_size[i])) {
6602 ptr += buff_size[i];
6612 for (i = 0; i < sg_used; i++)
6620 static void check_ioctl_unit_attention(struct ctlr_info *h,
6621 struct CommandList *c)
6623 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6624 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6625 (void) check_for_unit_attention(h, c);
6631 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6634 struct ctlr_info *h = sdev_to_hba(dev);
6638 case CCISS_DEREGDISK:
6639 case CCISS_REGNEWDISK:
6641 hpsa_scan_start(h->scsi_host);
6643 case CCISS_GETPCIINFO:
6644 return hpsa_getpciinfo_ioctl(h, argp);
6645 case CCISS_GETDRIVVER:
6646 return hpsa_getdrivver_ioctl(h, argp);
6647 case CCISS_PASSTHRU: {
6648 IOCTL_Command_struct iocommand;
6652 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6654 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6656 rc = hpsa_passthru_ioctl(h, &iocommand);
6657 atomic_inc(&h->passthru_cmds_avail);
6658 if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
6662 case CCISS_BIG_PASSTHRU: {
6663 BIG_IOCTL_Command_struct ioc;
6666 if (copy_from_user(&ioc, argp, sizeof(ioc)))
6668 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6670 rc = hpsa_big_passthru_ioctl(h, &ioc);
6671 atomic_inc(&h->passthru_cmds_avail);
6672 if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
6681 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6683 struct CommandList *c;
6687 /* fill_cmd can't fail here, no data buffer to map */
6688 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6689 RAID_CTLR_LUNID, TYPE_MSG);
6690 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6692 enqueue_cmd_and_start_io(h, c);
6693 /* Don't wait for completion, the reset won't complete. Don't free
6694 * the command either. This is the last command we will send before
6695 * re-initializing everything, so it doesn't matter and won't leak.
6700 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6701 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6704 enum dma_data_direction dir = DMA_NONE;
6706 c->cmd_type = CMD_IOCTL_PEND;
6707 c->scsi_cmd = SCSI_CMD_BUSY;
6708 c->Header.ReplyQueue = 0;
6709 if (buff != NULL && size > 0) {
6710 c->Header.SGList = 1;
6711 c->Header.SGTotal = cpu_to_le16(1);
6713 c->Header.SGList = 0;
6714 c->Header.SGTotal = cpu_to_le16(0);
6716 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6718 if (cmd_type == TYPE_CMD) {
6721 /* are we trying to read a vital product page */
6722 if (page_code & VPD_PAGE) {
6723 c->Request.CDB[1] = 0x01;
6724 c->Request.CDB[2] = (page_code & 0xff);
6726 c->Request.CDBLen = 6;
6727 c->Request.type_attr_dir =
6728 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6729 c->Request.Timeout = 0;
6730 c->Request.CDB[0] = HPSA_INQUIRY;
6731 c->Request.CDB[4] = size & 0xFF;
6733 case RECEIVE_DIAGNOSTIC:
6734 c->Request.CDBLen = 6;
6735 c->Request.type_attr_dir =
6736 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6737 c->Request.Timeout = 0;
6738 c->Request.CDB[0] = cmd;
6739 c->Request.CDB[1] = 1;
6740 c->Request.CDB[2] = 1;
6741 c->Request.CDB[3] = (size >> 8) & 0xFF;
6742 c->Request.CDB[4] = size & 0xFF;
6744 case HPSA_REPORT_LOG:
6745 case HPSA_REPORT_PHYS:
6746 /* Talking to controller so It's a physical command
6747 mode = 00 target = 0. Nothing to write.
6749 c->Request.CDBLen = 12;
6750 c->Request.type_attr_dir =
6751 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6752 c->Request.Timeout = 0;
6753 c->Request.CDB[0] = cmd;
6754 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6755 c->Request.CDB[7] = (size >> 16) & 0xFF;
6756 c->Request.CDB[8] = (size >> 8) & 0xFF;
6757 c->Request.CDB[9] = size & 0xFF;
6759 case BMIC_SENSE_DIAG_OPTIONS:
6760 c->Request.CDBLen = 16;
6761 c->Request.type_attr_dir =
6762 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6763 c->Request.Timeout = 0;
6764 /* Spec says this should be BMIC_WRITE */
6765 c->Request.CDB[0] = BMIC_READ;
6766 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6768 case BMIC_SET_DIAG_OPTIONS:
6769 c->Request.CDBLen = 16;
6770 c->Request.type_attr_dir =
6771 TYPE_ATTR_DIR(cmd_type,
6772 ATTR_SIMPLE, XFER_WRITE);
6773 c->Request.Timeout = 0;
6774 c->Request.CDB[0] = BMIC_WRITE;
6775 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6777 case HPSA_CACHE_FLUSH:
6778 c->Request.CDBLen = 12;
6779 c->Request.type_attr_dir =
6780 TYPE_ATTR_DIR(cmd_type,
6781 ATTR_SIMPLE, XFER_WRITE);
6782 c->Request.Timeout = 0;
6783 c->Request.CDB[0] = BMIC_WRITE;
6784 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6785 c->Request.CDB[7] = (size >> 8) & 0xFF;
6786 c->Request.CDB[8] = size & 0xFF;
6788 case TEST_UNIT_READY:
6789 c->Request.CDBLen = 6;
6790 c->Request.type_attr_dir =
6791 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6792 c->Request.Timeout = 0;
6794 case HPSA_GET_RAID_MAP:
6795 c->Request.CDBLen = 12;
6796 c->Request.type_attr_dir =
6797 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6798 c->Request.Timeout = 0;
6799 c->Request.CDB[0] = HPSA_CISS_READ;
6800 c->Request.CDB[1] = cmd;
6801 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6802 c->Request.CDB[7] = (size >> 16) & 0xFF;
6803 c->Request.CDB[8] = (size >> 8) & 0xFF;
6804 c->Request.CDB[9] = size & 0xFF;
6806 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6807 c->Request.CDBLen = 10;
6808 c->Request.type_attr_dir =
6809 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6810 c->Request.Timeout = 0;
6811 c->Request.CDB[0] = BMIC_READ;
6812 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6813 c->Request.CDB[7] = (size >> 16) & 0xFF;
6814 c->Request.CDB[8] = (size >> 8) & 0xFF;
6816 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6817 c->Request.CDBLen = 10;
6818 c->Request.type_attr_dir =
6819 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6820 c->Request.Timeout = 0;
6821 c->Request.CDB[0] = BMIC_READ;
6822 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6823 c->Request.CDB[7] = (size >> 16) & 0xFF;
6824 c->Request.CDB[8] = (size >> 8) & 0XFF;
6826 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6827 c->Request.CDBLen = 10;
6828 c->Request.type_attr_dir =
6829 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6830 c->Request.Timeout = 0;
6831 c->Request.CDB[0] = BMIC_READ;
6832 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6833 c->Request.CDB[7] = (size >> 16) & 0xFF;
6834 c->Request.CDB[8] = (size >> 8) & 0XFF;
6836 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6837 c->Request.CDBLen = 10;
6838 c->Request.type_attr_dir =
6839 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6840 c->Request.Timeout = 0;
6841 c->Request.CDB[0] = BMIC_READ;
6842 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6843 c->Request.CDB[7] = (size >> 16) & 0xFF;
6844 c->Request.CDB[8] = (size >> 8) & 0XFF;
6846 case BMIC_IDENTIFY_CONTROLLER:
6847 c->Request.CDBLen = 10;
6848 c->Request.type_attr_dir =
6849 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6850 c->Request.Timeout = 0;
6851 c->Request.CDB[0] = BMIC_READ;
6852 c->Request.CDB[1] = 0;
6853 c->Request.CDB[2] = 0;
6854 c->Request.CDB[3] = 0;
6855 c->Request.CDB[4] = 0;
6856 c->Request.CDB[5] = 0;
6857 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6858 c->Request.CDB[7] = (size >> 16) & 0xFF;
6859 c->Request.CDB[8] = (size >> 8) & 0XFF;
6860 c->Request.CDB[9] = 0;
6863 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6866 } else if (cmd_type == TYPE_MSG) {
6869 case HPSA_PHYS_TARGET_RESET:
6870 c->Request.CDBLen = 16;
6871 c->Request.type_attr_dir =
6872 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6873 c->Request.Timeout = 0; /* Don't time out */
6874 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6875 c->Request.CDB[0] = HPSA_RESET;
6876 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6877 /* Physical target reset needs no control bytes 4-7*/
6878 c->Request.CDB[4] = 0x00;
6879 c->Request.CDB[5] = 0x00;
6880 c->Request.CDB[6] = 0x00;
6881 c->Request.CDB[7] = 0x00;
6883 case HPSA_DEVICE_RESET_MSG:
6884 c->Request.CDBLen = 16;
6885 c->Request.type_attr_dir =
6886 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6887 c->Request.Timeout = 0; /* Don't time out */
6888 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6889 c->Request.CDB[0] = cmd;
6890 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6891 /* If bytes 4-7 are zero, it means reset the */
6893 c->Request.CDB[4] = 0x00;
6894 c->Request.CDB[5] = 0x00;
6895 c->Request.CDB[6] = 0x00;
6896 c->Request.CDB[7] = 0x00;
6899 dev_warn(&h->pdev->dev, "unknown message type %d\n",
6904 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6908 switch (GET_DIR(c->Request.type_attr_dir)) {
6910 dir = DMA_FROM_DEVICE;
6913 dir = DMA_TO_DEVICE;
6919 dir = DMA_BIDIRECTIONAL;
6921 if (hpsa_map_one(h->pdev, c, buff, size, dir))
6927 * Map (physical) PCI mem into (virtual) kernel space
6929 static void __iomem *remap_pci_mem(ulong base, ulong size)
6931 ulong page_base = ((ulong) base) & PAGE_MASK;
6932 ulong page_offs = ((ulong) base) - page_base;
6933 void __iomem *page_remapped = ioremap(page_base,
6936 return page_remapped ? (page_remapped + page_offs) : NULL;
6939 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6941 return h->access.command_completed(h, q);
6944 static inline bool interrupt_pending(struct ctlr_info *h)
6946 return h->access.intr_pending(h);
6949 static inline long interrupt_not_for_us(struct ctlr_info *h)
6951 return (h->access.intr_pending(h) == 0) ||
6952 (h->interrupts_enabled == 0);
6955 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6958 if (unlikely(tag_index >= h->nr_cmds)) {
6959 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6965 static inline void finish_cmd(struct CommandList *c)
6967 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6968 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6969 || c->cmd_type == CMD_IOACCEL2))
6970 complete_scsi_command(c);
6971 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6972 complete(c->waiting);
6975 /* process completion of an indexed ("direct lookup") command */
6976 static inline void process_indexed_cmd(struct ctlr_info *h,
6980 struct CommandList *c;
6982 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6983 if (!bad_tag(h, tag_index, raw_tag)) {
6984 c = h->cmd_pool + tag_index;
6989 /* Some controllers, like p400, will give us one interrupt
6990 * after a soft reset, even if we turned interrupts off.
6991 * Only need to check for this in the hpsa_xxx_discard_completions
6994 static int ignore_bogus_interrupt(struct ctlr_info *h)
6996 if (likely(!reset_devices))
6999 if (likely(h->interrupts_enabled))
7002 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7003 "(known firmware bug.) Ignoring.\n");
7009 * Convert &h->q[x] (passed to interrupt handlers) back to h.
7010 * Relies on (h-q[x] == x) being true for x such that
7011 * 0 <= x < MAX_REPLY_QUEUES.
7013 static struct ctlr_info *queue_to_hba(u8 *queue)
7015 return container_of((queue - *queue), struct ctlr_info, q[0]);
7018 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7020 struct ctlr_info *h = queue_to_hba(queue);
7021 u8 q = *(u8 *) queue;
7024 if (ignore_bogus_interrupt(h))
7027 if (interrupt_not_for_us(h))
7029 h->last_intr_timestamp = get_jiffies_64();
7030 while (interrupt_pending(h)) {
7031 raw_tag = get_next_completion(h, q);
7032 while (raw_tag != FIFO_EMPTY)
7033 raw_tag = next_command(h, q);
7038 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7040 struct ctlr_info *h = queue_to_hba(queue);
7042 u8 q = *(u8 *) queue;
7044 if (ignore_bogus_interrupt(h))
7047 h->last_intr_timestamp = get_jiffies_64();
7048 raw_tag = get_next_completion(h, q);
7049 while (raw_tag != FIFO_EMPTY)
7050 raw_tag = next_command(h, q);
7054 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7056 struct ctlr_info *h = queue_to_hba((u8 *) queue);
7058 u8 q = *(u8 *) queue;
7060 if (interrupt_not_for_us(h))
7062 h->last_intr_timestamp = get_jiffies_64();
7063 while (interrupt_pending(h)) {
7064 raw_tag = get_next_completion(h, q);
7065 while (raw_tag != FIFO_EMPTY) {
7066 process_indexed_cmd(h, raw_tag);
7067 raw_tag = next_command(h, q);
7073 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7075 struct ctlr_info *h = queue_to_hba(queue);
7077 u8 q = *(u8 *) queue;
7079 h->last_intr_timestamp = get_jiffies_64();
7080 raw_tag = get_next_completion(h, q);
7081 while (raw_tag != FIFO_EMPTY) {
7082 process_indexed_cmd(h, raw_tag);
7083 raw_tag = next_command(h, q);
7088 /* Send a message CDB to the firmware. Careful, this only works
7089 * in simple mode, not performant mode due to the tag lookup.
7090 * We only ever use this immediately after a controller reset.
7092 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7096 struct CommandListHeader CommandHeader;
7097 struct RequestBlock Request;
7098 struct ErrDescriptor ErrorDescriptor;
7100 struct Command *cmd;
7101 static const size_t cmd_sz = sizeof(*cmd) +
7102 sizeof(cmd->ErrorDescriptor);
7106 void __iomem *vaddr;
7109 vaddr = pci_ioremap_bar(pdev, 0);
7113 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7114 * CCISS commands, so they must be allocated from the lower 4GiB of
7117 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7123 cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7129 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7130 * although there's no guarantee, we assume that the address is at
7131 * least 4-byte aligned (most likely, it's page-aligned).
7133 paddr32 = cpu_to_le32(paddr64);
7135 cmd->CommandHeader.ReplyQueue = 0;
7136 cmd->CommandHeader.SGList = 0;
7137 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7138 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7139 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7141 cmd->Request.CDBLen = 16;
7142 cmd->Request.type_attr_dir =
7143 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7144 cmd->Request.Timeout = 0; /* Don't time out */
7145 cmd->Request.CDB[0] = opcode;
7146 cmd->Request.CDB[1] = type;
7147 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7148 cmd->ErrorDescriptor.Addr =
7149 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7150 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7152 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7154 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7155 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7156 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7158 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7163 /* we leak the DMA buffer here ... no choice since the controller could
7164 * still complete the command.
7166 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7167 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7172 dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7174 if (tag & HPSA_ERROR_BIT) {
7175 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7180 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7185 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7187 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7188 void __iomem *vaddr, u32 use_doorbell)
7192 /* For everything after the P600, the PCI power state method
7193 * of resetting the controller doesn't work, so we have this
7194 * other way using the doorbell register.
7196 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7197 writel(use_doorbell, vaddr + SA5_DOORBELL);
7199 /* PMC hardware guys tell us we need a 10 second delay after
7200 * doorbell reset and before any attempt to talk to the board
7201 * at all to ensure that this actually works and doesn't fall
7202 * over in some weird corner cases.
7205 } else { /* Try to do it the PCI power state way */
7207 /* Quoting from the Open CISS Specification: "The Power
7208 * Management Control/Status Register (CSR) controls the power
7209 * state of the device. The normal operating state is D0,
7210 * CSR=00h. The software off state is D3, CSR=03h. To reset
7211 * the controller, place the interface device in D3 then to D0,
7212 * this causes a secondary PCI reset which will reset the
7217 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7219 /* enter the D3hot power management state */
7220 rc = pci_set_power_state(pdev, PCI_D3hot);
7226 /* enter the D0 power management state */
7227 rc = pci_set_power_state(pdev, PCI_D0);
7232 * The P600 requires a small delay when changing states.
7233 * Otherwise we may think the board did not reset and we bail.
7234 * This for kdump only and is particular to the P600.
7241 static void init_driver_version(char *driver_version, int len)
7243 memset(driver_version, 0, len);
7244 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7247 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7249 char *driver_version;
7250 int i, size = sizeof(cfgtable->driver_version);
7252 driver_version = kmalloc(size, GFP_KERNEL);
7253 if (!driver_version)
7256 init_driver_version(driver_version, size);
7257 for (i = 0; i < size; i++)
7258 writeb(driver_version[i], &cfgtable->driver_version[i]);
7259 kfree(driver_version);
7263 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7264 unsigned char *driver_ver)
7268 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7269 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7272 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7275 char *driver_ver, *old_driver_ver;
7276 int rc, size = sizeof(cfgtable->driver_version);
7278 old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7279 if (!old_driver_ver)
7281 driver_ver = old_driver_ver + size;
7283 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7284 * should have been changed, otherwise we know the reset failed.
7286 init_driver_version(old_driver_ver, size);
7287 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7288 rc = !memcmp(driver_ver, old_driver_ver, size);
7289 kfree(old_driver_ver);
7292 /* This does a hard reset of the controller using PCI power management
7293 * states or the using the doorbell register.
7295 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7299 u64 cfg_base_addr_index;
7300 void __iomem *vaddr;
7301 unsigned long paddr;
7302 u32 misc_fw_support;
7304 struct CfgTable __iomem *cfgtable;
7306 u16 command_register;
7308 /* For controllers as old as the P600, this is very nearly
7311 * pci_save_state(pci_dev);
7312 * pci_set_power_state(pci_dev, PCI_D3hot);
7313 * pci_set_power_state(pci_dev, PCI_D0);
7314 * pci_restore_state(pci_dev);
7316 * For controllers newer than the P600, the pci power state
7317 * method of resetting doesn't work so we have another way
7318 * using the doorbell register.
7321 if (!ctlr_is_resettable(board_id)) {
7322 dev_warn(&pdev->dev, "Controller not resettable\n");
7326 /* if controller is soft- but not hard resettable... */
7327 if (!ctlr_is_hard_resettable(board_id))
7328 return -ENOTSUPP; /* try soft reset later. */
7330 /* Save the PCI command register */
7331 pci_read_config_word(pdev, 4, &command_register);
7332 pci_save_state(pdev);
7334 /* find the first memory BAR, so we can find the cfg table */
7335 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7338 vaddr = remap_pci_mem(paddr, 0x250);
7342 /* find cfgtable in order to check if reset via doorbell is supported */
7343 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7344 &cfg_base_addr_index, &cfg_offset);
7347 cfgtable = remap_pci_mem(pci_resource_start(pdev,
7348 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7353 rc = write_driver_ver_to_cfgtable(cfgtable);
7355 goto unmap_cfgtable;
7357 /* If reset via doorbell register is supported, use that.
7358 * There are two such methods. Favor the newest method.
7360 misc_fw_support = readl(&cfgtable->misc_fw_support);
7361 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7363 use_doorbell = DOORBELL_CTLR_RESET2;
7365 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7367 dev_warn(&pdev->dev,
7368 "Soft reset not supported. Firmware update is required.\n");
7369 rc = -ENOTSUPP; /* try soft reset */
7370 goto unmap_cfgtable;
7374 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7376 goto unmap_cfgtable;
7378 pci_restore_state(pdev);
7379 pci_write_config_word(pdev, 4, command_register);
7381 /* Some devices (notably the HP Smart Array 5i Controller)
7382 need a little pause here */
7383 msleep(HPSA_POST_RESET_PAUSE_MSECS);
7385 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7387 dev_warn(&pdev->dev,
7388 "Failed waiting for board to become ready after hard reset\n");
7389 goto unmap_cfgtable;
7392 rc = controller_reset_failed(vaddr);
7394 goto unmap_cfgtable;
7396 dev_warn(&pdev->dev, "Unable to successfully reset "
7397 "controller. Will try soft reset.\n");
7400 dev_info(&pdev->dev, "board ready after hard reset.\n");
7412 * We cannot read the structure directly, for portability we must use
7414 * This is for debug only.
7416 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7422 dev_info(dev, "Controller Configuration information\n");
7423 dev_info(dev, "------------------------------------\n");
7424 for (i = 0; i < 4; i++)
7425 temp_name[i] = readb(&(tb->Signature[i]));
7426 temp_name[4] = '\0';
7427 dev_info(dev, " Signature = %s\n", temp_name);
7428 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
7429 dev_info(dev, " Transport methods supported = 0x%x\n",
7430 readl(&(tb->TransportSupport)));
7431 dev_info(dev, " Transport methods active = 0x%x\n",
7432 readl(&(tb->TransportActive)));
7433 dev_info(dev, " Requested transport Method = 0x%x\n",
7434 readl(&(tb->HostWrite.TransportRequest)));
7435 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
7436 readl(&(tb->HostWrite.CoalIntDelay)));
7437 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
7438 readl(&(tb->HostWrite.CoalIntCount)));
7439 dev_info(dev, " Max outstanding commands = %d\n",
7440 readl(&(tb->CmdsOutMax)));
7441 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7442 for (i = 0; i < 16; i++)
7443 temp_name[i] = readb(&(tb->ServerName[i]));
7444 temp_name[16] = '\0';
7445 dev_info(dev, " Server Name = %s\n", temp_name);
7446 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
7447 readl(&(tb->HeartBeat)));
7448 #endif /* HPSA_DEBUG */
7451 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7453 int i, offset, mem_type, bar_type;
7455 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7458 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7459 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7460 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7463 mem_type = pci_resource_flags(pdev, i) &
7464 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7466 case PCI_BASE_ADDRESS_MEM_TYPE_32:
7467 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7468 offset += 4; /* 32 bit */
7470 case PCI_BASE_ADDRESS_MEM_TYPE_64:
7473 default: /* reserved in PCI 2.2 */
7474 dev_warn(&pdev->dev,
7475 "base address is invalid\n");
7479 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7485 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7487 pci_free_irq_vectors(h->pdev);
7488 h->msix_vectors = 0;
7491 static void hpsa_setup_reply_map(struct ctlr_info *h)
7493 const struct cpumask *mask;
7494 unsigned int queue, cpu;
7496 for (queue = 0; queue < h->msix_vectors; queue++) {
7497 mask = pci_irq_get_affinity(h->pdev, queue);
7501 for_each_cpu(cpu, mask)
7502 h->reply_map[cpu] = queue;
7507 for_each_possible_cpu(cpu)
7508 h->reply_map[cpu] = 0;
7511 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7512 * controllers that are capable. If not, we use legacy INTx mode.
7514 static int hpsa_interrupt_mode(struct ctlr_info *h)
7516 unsigned int flags = PCI_IRQ_LEGACY;
7519 /* Some boards advertise MSI but don't really support it */
7520 switch (h->board_id) {
7527 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7528 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7530 h->msix_vectors = ret;
7534 flags |= PCI_IRQ_MSI;
7538 ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7544 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7548 u32 subsystem_vendor_id, subsystem_device_id;
7550 subsystem_vendor_id = pdev->subsystem_vendor;
7551 subsystem_device_id = pdev->subsystem_device;
7552 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7553 subsystem_vendor_id;
7556 *legacy_board = false;
7557 for (i = 0; i < ARRAY_SIZE(products); i++)
7558 if (*board_id == products[i].board_id) {
7559 if (products[i].access != &SA5A_access &&
7560 products[i].access != &SA5B_access)
7562 dev_warn(&pdev->dev,
7563 "legacy board ID: 0x%08x\n",
7566 *legacy_board = true;
7570 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7572 *legacy_board = true;
7573 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7576 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7577 unsigned long *memory_bar)
7581 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7582 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7583 /* addressing mode bits already removed */
7584 *memory_bar = pci_resource_start(pdev, i);
7585 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7589 dev_warn(&pdev->dev, "no memory BAR found\n");
7593 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7599 iterations = HPSA_BOARD_READY_ITERATIONS;
7601 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7603 for (i = 0; i < iterations; i++) {
7604 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7605 if (wait_for_ready) {
7606 if (scratchpad == HPSA_FIRMWARE_READY)
7609 if (scratchpad != HPSA_FIRMWARE_READY)
7612 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7614 dev_warn(&pdev->dev, "board not ready, timed out.\n");
7618 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7619 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7622 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7623 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7624 *cfg_base_addr &= (u32) 0x0000ffff;
7625 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7626 if (*cfg_base_addr_index == -1) {
7627 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7633 static void hpsa_free_cfgtables(struct ctlr_info *h)
7635 if (h->transtable) {
7636 iounmap(h->transtable);
7637 h->transtable = NULL;
7640 iounmap(h->cfgtable);
7645 /* Find and map CISS config table and transfer table
7646 + * several items must be unmapped (freed) later
7648 static int hpsa_find_cfgtables(struct ctlr_info *h)
7652 u64 cfg_base_addr_index;
7656 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7657 &cfg_base_addr_index, &cfg_offset);
7660 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7661 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7663 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7666 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7669 /* Find performant mode table. */
7670 trans_offset = readl(&h->cfgtable->TransMethodOffset);
7671 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7672 cfg_base_addr_index)+cfg_offset+trans_offset,
7673 sizeof(*h->transtable));
7674 if (!h->transtable) {
7675 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7676 hpsa_free_cfgtables(h);
7682 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7684 #define MIN_MAX_COMMANDS 16
7685 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7687 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7689 /* Limit commands in memory limited kdump scenario. */
7690 if (reset_devices && h->max_commands > 32)
7691 h->max_commands = 32;
7693 if (h->max_commands < MIN_MAX_COMMANDS) {
7694 dev_warn(&h->pdev->dev,
7695 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7698 h->max_commands = MIN_MAX_COMMANDS;
7702 /* If the controller reports that the total max sg entries is greater than 512,
7703 * then we know that chained SG blocks work. (Original smart arrays did not
7704 * support chained SG blocks and would return zero for max sg entries.)
7706 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7708 return h->maxsgentries > 512;
7711 /* Interrogate the hardware for some limits:
7712 * max commands, max SG elements without chaining, and with chaining,
7713 * SG chain block size, etc.
7715 static void hpsa_find_board_params(struct ctlr_info *h)
7717 hpsa_get_max_perf_mode_cmds(h);
7718 h->nr_cmds = h->max_commands;
7719 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7720 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7721 if (hpsa_supports_chained_sg_blocks(h)) {
7722 /* Limit in-command s/g elements to 32 save dma'able memory. */
7723 h->max_cmd_sg_entries = 32;
7724 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7725 h->maxsgentries--; /* save one for chain pointer */
7728 * Original smart arrays supported at most 31 s/g entries
7729 * embedded inline in the command (trying to use more
7730 * would lock up the controller)
7732 h->max_cmd_sg_entries = 31;
7733 h->maxsgentries = 31; /* default to traditional values */
7737 /* Find out what task management functions are supported and cache */
7738 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7739 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7740 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7741 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7742 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7743 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7744 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7747 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7749 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7750 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7756 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7760 driver_support = readl(&(h->cfgtable->driver_support));
7761 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7763 driver_support |= ENABLE_SCSI_PREFETCH;
7765 driver_support |= ENABLE_UNIT_ATTN;
7766 writel(driver_support, &(h->cfgtable->driver_support));
7769 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7770 * in a prefetch beyond physical memory.
7772 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7776 if (h->board_id != 0x3225103C)
7778 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7779 dma_prefetch |= 0x8000;
7780 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7783 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7787 unsigned long flags;
7788 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7789 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7790 spin_lock_irqsave(&h->lock, flags);
7791 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7792 spin_unlock_irqrestore(&h->lock, flags);
7793 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7795 /* delay and try again */
7796 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7803 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7807 unsigned long flags;
7809 /* under certain very rare conditions, this can take awhile.
7810 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7811 * as we enter this code.)
7813 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7814 if (h->remove_in_progress)
7816 spin_lock_irqsave(&h->lock, flags);
7817 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7818 spin_unlock_irqrestore(&h->lock, flags);
7819 if (!(doorbell_value & CFGTBL_ChangeReq))
7821 /* delay and try again */
7822 msleep(MODE_CHANGE_WAIT_INTERVAL);
7829 /* return -ENODEV or other reason on error, 0 on success */
7830 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7834 trans_support = readl(&(h->cfgtable->TransportSupport));
7835 if (!(trans_support & SIMPLE_MODE))
7838 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7840 /* Update the field, and then ring the doorbell */
7841 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7842 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7843 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7844 if (hpsa_wait_for_mode_change_ack(h))
7846 print_cfg_table(&h->pdev->dev, h->cfgtable);
7847 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7849 h->transMethod = CFGTBL_Trans_Simple;
7852 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7856 /* free items allocated or mapped by hpsa_pci_init */
7857 static void hpsa_free_pci_init(struct ctlr_info *h)
7859 hpsa_free_cfgtables(h); /* pci_init 4 */
7860 iounmap(h->vaddr); /* pci_init 3 */
7862 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
7864 * call pci_disable_device before pci_release_regions per
7865 * Documentation/driver-api/pci/pci.rst
7867 pci_disable_device(h->pdev); /* pci_init 1 */
7868 pci_release_regions(h->pdev); /* pci_init 2 */
7871 /* several items must be freed later */
7872 static int hpsa_pci_init(struct ctlr_info *h)
7874 int prod_index, err;
7877 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7880 h->product_name = products[prod_index].product_name;
7881 h->access = *(products[prod_index].access);
7882 h->legacy_board = legacy_board;
7883 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7884 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7886 err = pci_enable_device(h->pdev);
7888 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7889 pci_disable_device(h->pdev);
7893 err = pci_request_regions(h->pdev, HPSA);
7895 dev_err(&h->pdev->dev,
7896 "failed to obtain PCI resources\n");
7897 pci_disable_device(h->pdev);
7901 pci_set_master(h->pdev);
7903 err = hpsa_interrupt_mode(h);
7907 /* setup mapping between CPU and reply queue */
7908 hpsa_setup_reply_map(h);
7910 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7912 goto clean2; /* intmode+region, pci */
7913 h->vaddr = remap_pci_mem(h->paddr, 0x250);
7915 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7917 goto clean2; /* intmode+region, pci */
7919 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7921 goto clean3; /* vaddr, intmode+region, pci */
7922 err = hpsa_find_cfgtables(h);
7924 goto clean3; /* vaddr, intmode+region, pci */
7925 hpsa_find_board_params(h);
7927 if (!hpsa_CISS_signature_present(h)) {
7929 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7931 hpsa_set_driver_support_bits(h);
7932 hpsa_p600_dma_prefetch_quirk(h);
7933 err = hpsa_enter_simple_mode(h);
7935 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7938 clean4: /* cfgtables, vaddr, intmode+region, pci */
7939 hpsa_free_cfgtables(h);
7940 clean3: /* vaddr, intmode+region, pci */
7943 clean2: /* intmode+region, pci */
7944 hpsa_disable_interrupt_mode(h);
7947 * call pci_disable_device before pci_release_regions per
7948 * Documentation/driver-api/pci/pci.rst
7950 pci_disable_device(h->pdev);
7951 pci_release_regions(h->pdev);
7955 static void hpsa_hba_inquiry(struct ctlr_info *h)
7959 #define HBA_INQUIRY_BYTE_COUNT 64
7960 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7961 if (!h->hba_inquiry_data)
7963 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7964 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7966 kfree(h->hba_inquiry_data);
7967 h->hba_inquiry_data = NULL;
7971 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7974 void __iomem *vaddr;
7979 /* kdump kernel is loading, we don't know in which state is
7980 * the pci interface. The dev->enable_cnt is equal zero
7981 * so we call enable+disable, wait a while and switch it on.
7983 rc = pci_enable_device(pdev);
7985 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7988 pci_disable_device(pdev);
7989 msleep(260); /* a randomly chosen number */
7990 rc = pci_enable_device(pdev);
7992 dev_warn(&pdev->dev, "failed to enable device.\n");
7996 pci_set_master(pdev);
7998 vaddr = pci_ioremap_bar(pdev, 0);
7999 if (vaddr == NULL) {
8003 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8006 /* Reset the controller with a PCI power-cycle or via doorbell */
8007 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8009 /* -ENOTSUPP here means we cannot reset the controller
8010 * but it's already (and still) up and running in
8011 * "performant mode". Or, it might be 640x, which can't reset
8012 * due to concerns about shared bbwc between 6402/6404 pair.
8017 /* Now try to get the controller to respond to a no-op */
8018 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8019 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8020 if (hpsa_noop(pdev) == 0)
8023 dev_warn(&pdev->dev, "no-op failed%s\n",
8024 (i < 11 ? "; re-trying" : ""));
8029 pci_disable_device(pdev);
8033 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8035 kfree(h->cmd_pool_bits);
8036 h->cmd_pool_bits = NULL;
8038 dma_free_coherent(&h->pdev->dev,
8039 h->nr_cmds * sizeof(struct CommandList),
8041 h->cmd_pool_dhandle);
8043 h->cmd_pool_dhandle = 0;
8045 if (h->errinfo_pool) {
8046 dma_free_coherent(&h->pdev->dev,
8047 h->nr_cmds * sizeof(struct ErrorInfo),
8049 h->errinfo_pool_dhandle);
8050 h->errinfo_pool = NULL;
8051 h->errinfo_pool_dhandle = 0;
8055 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8057 h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8058 sizeof(unsigned long),
8060 h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8061 h->nr_cmds * sizeof(*h->cmd_pool),
8062 &h->cmd_pool_dhandle, GFP_KERNEL);
8063 h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8064 h->nr_cmds * sizeof(*h->errinfo_pool),
8065 &h->errinfo_pool_dhandle, GFP_KERNEL);
8066 if ((h->cmd_pool_bits == NULL)
8067 || (h->cmd_pool == NULL)
8068 || (h->errinfo_pool == NULL)) {
8069 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8072 hpsa_preinitialize_commands(h);
8075 hpsa_free_cmd_pool(h);
8079 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8080 static void hpsa_free_irqs(struct ctlr_info *h)
8085 if (hpsa_simple_mode)
8086 irq_vector = h->intr_mode;
8088 if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8089 /* Single reply queue, only one irq to free */
8090 free_irq(pci_irq_vector(h->pdev, irq_vector),
8091 &h->q[h->intr_mode]);
8092 h->q[h->intr_mode] = 0;
8096 for (i = 0; i < h->msix_vectors; i++) {
8097 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8100 for (; i < MAX_REPLY_QUEUES; i++)
8104 /* returns 0 on success; cleans up and returns -Enn on error */
8105 static int hpsa_request_irqs(struct ctlr_info *h,
8106 irqreturn_t (*msixhandler)(int, void *),
8107 irqreturn_t (*intxhandler)(int, void *))
8112 if (hpsa_simple_mode)
8113 irq_vector = h->intr_mode;
8116 * initialize h->q[x] = x so that interrupt handlers know which
8119 for (i = 0; i < MAX_REPLY_QUEUES; i++)
8122 if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8123 /* If performant mode and MSI-X, use multiple reply queues */
8124 for (i = 0; i < h->msix_vectors; i++) {
8125 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8126 rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8132 dev_err(&h->pdev->dev,
8133 "failed to get irq %d for %s\n",
8134 pci_irq_vector(h->pdev, i), h->devname);
8135 for (j = 0; j < i; j++) {
8136 free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8139 for (; j < MAX_REPLY_QUEUES; j++)
8145 /* Use single reply pool */
8146 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8147 sprintf(h->intrname[0], "%s-msi%s", h->devname,
8148 h->msix_vectors ? "x" : "");
8149 rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8152 &h->q[h->intr_mode]);
8154 sprintf(h->intrname[h->intr_mode],
8155 "%s-intx", h->devname);
8156 rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8157 intxhandler, IRQF_SHARED,
8159 &h->q[h->intr_mode]);
8163 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8164 pci_irq_vector(h->pdev, irq_vector), h->devname);
8171 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8174 hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8176 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8177 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8179 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8183 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8184 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8186 dev_warn(&h->pdev->dev, "Board failed to become ready "
8187 "after soft reset.\n");
8194 static void hpsa_free_reply_queues(struct ctlr_info *h)
8198 for (i = 0; i < h->nreply_queues; i++) {
8199 if (!h->reply_queue[i].head)
8201 dma_free_coherent(&h->pdev->dev,
8202 h->reply_queue_size,
8203 h->reply_queue[i].head,
8204 h->reply_queue[i].busaddr);
8205 h->reply_queue[i].head = NULL;
8206 h->reply_queue[i].busaddr = 0;
8208 h->reply_queue_size = 0;
8211 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8213 hpsa_free_performant_mode(h); /* init_one 7 */
8214 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8215 hpsa_free_cmd_pool(h); /* init_one 5 */
8216 hpsa_free_irqs(h); /* init_one 4 */
8217 scsi_host_put(h->scsi_host); /* init_one 3 */
8218 h->scsi_host = NULL; /* init_one 3 */
8219 hpsa_free_pci_init(h); /* init_one 2_5 */
8220 free_percpu(h->lockup_detected); /* init_one 2 */
8221 h->lockup_detected = NULL; /* init_one 2 */
8222 if (h->resubmit_wq) {
8223 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
8224 h->resubmit_wq = NULL;
8226 if (h->rescan_ctlr_wq) {
8227 destroy_workqueue(h->rescan_ctlr_wq);
8228 h->rescan_ctlr_wq = NULL;
8230 if (h->monitor_ctlr_wq) {
8231 destroy_workqueue(h->monitor_ctlr_wq);
8232 h->monitor_ctlr_wq = NULL;
8235 kfree(h); /* init_one 1 */
8238 /* Called when controller lockup detected. */
8239 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8242 struct CommandList *c;
8245 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8246 for (i = 0; i < h->nr_cmds; i++) {
8247 c = h->cmd_pool + i;
8248 refcount = atomic_inc_return(&c->refcount);
8250 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8252 atomic_dec(&h->commands_outstanding);
8257 dev_warn(&h->pdev->dev,
8258 "failed %d commands in fail_all\n", failcount);
8261 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8265 for_each_online_cpu(cpu) {
8266 u32 *lockup_detected;
8267 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8268 *lockup_detected = value;
8270 wmb(); /* be sure the per-cpu variables are out to memory */
8273 static void controller_lockup_detected(struct ctlr_info *h)
8275 unsigned long flags;
8276 u32 lockup_detected;
8278 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8279 spin_lock_irqsave(&h->lock, flags);
8280 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8281 if (!lockup_detected) {
8282 /* no heartbeat, but controller gave us a zero. */
8283 dev_warn(&h->pdev->dev,
8284 "lockup detected after %d but scratchpad register is zero\n",
8285 h->heartbeat_sample_interval / HZ);
8286 lockup_detected = 0xffffffff;
8288 set_lockup_detected_for_all_cpus(h, lockup_detected);
8289 spin_unlock_irqrestore(&h->lock, flags);
8290 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8291 lockup_detected, h->heartbeat_sample_interval / HZ);
8292 if (lockup_detected == 0xffff0000) {
8293 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8294 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8296 pci_disable_device(h->pdev);
8297 fail_all_outstanding_cmds(h);
8300 static int detect_controller_lockup(struct ctlr_info *h)
8304 unsigned long flags;
8306 now = get_jiffies_64();
8307 /* If we've received an interrupt recently, we're ok. */
8308 if (time_after64(h->last_intr_timestamp +
8309 (h->heartbeat_sample_interval), now))
8313 * If we've already checked the heartbeat recently, we're ok.
8314 * This could happen if someone sends us a signal. We
8315 * otherwise don't care about signals in this thread.
8317 if (time_after64(h->last_heartbeat_timestamp +
8318 (h->heartbeat_sample_interval), now))
8321 /* If heartbeat has not changed since we last looked, we're not ok. */
8322 spin_lock_irqsave(&h->lock, flags);
8323 heartbeat = readl(&h->cfgtable->HeartBeat);
8324 spin_unlock_irqrestore(&h->lock, flags);
8325 if (h->last_heartbeat == heartbeat) {
8326 controller_lockup_detected(h);
8331 h->last_heartbeat = heartbeat;
8332 h->last_heartbeat_timestamp = now;
8337 * Set ioaccel status for all ioaccel volumes.
8339 * Called from monitor controller worker (hpsa_event_monitor_worker)
8341 * A Volume (or Volumes that comprise an Array set) may be undergoing a
8342 * transformation, so we will be turning off ioaccel for all volumes that
8343 * make up the Array.
8345 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8351 struct hpsa_scsi_dev_t *device;
8356 buf = kmalloc(64, GFP_KERNEL);
8361 * Run through current device list used during I/O requests.
8363 for (i = 0; i < h->ndevices; i++) {
8364 int offload_to_be_enabled = 0;
8365 int offload_config = 0;
8371 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8372 HPSA_VPD_LV_IOACCEL_STATUS))
8377 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8378 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8383 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8386 * Check if offload is still configured on
8389 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8391 * If offload is configured on, check to see if ioaccel
8392 * needs to be enabled.
8395 offload_to_be_enabled =
8396 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8399 * If ioaccel is to be re-enabled, re-enable later during the
8400 * scan operation so the driver can get a fresh raidmap
8401 * before turning ioaccel back on.
8403 if (offload_to_be_enabled)
8407 * Immediately turn off ioaccel for any volume the
8408 * controller tells us to. Some of the reasons could be:
8409 * transformation - change to the LVs of an Array.
8410 * degraded volume - component failure
8412 hpsa_turn_off_ioaccel_for_device(device);
8418 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8422 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8425 /* Ask the controller to clear the events we're handling. */
8426 if ((h->transMethod & (CFGTBL_Trans_io_accel1
8427 | CFGTBL_Trans_io_accel2)) &&
8428 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8429 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8431 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8432 event_type = "state change";
8433 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8434 event_type = "configuration change";
8435 /* Stop sending new RAID offload reqs via the IO accelerator */
8436 scsi_block_requests(h->scsi_host);
8437 hpsa_set_ioaccel_status(h);
8438 hpsa_drain_accel_commands(h);
8439 /* Set 'accelerator path config change' bit */
8440 dev_warn(&h->pdev->dev,
8441 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8442 h->events, event_type);
8443 writel(h->events, &(h->cfgtable->clear_event_notify));
8444 /* Set the "clear event notify field update" bit 6 */
8445 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8446 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8447 hpsa_wait_for_clear_event_notify_ack(h);
8448 scsi_unblock_requests(h->scsi_host);
8450 /* Acknowledge controller notification events. */
8451 writel(h->events, &(h->cfgtable->clear_event_notify));
8452 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8453 hpsa_wait_for_clear_event_notify_ack(h);
8458 /* Check a register on the controller to see if there are configuration
8459 * changes (added/changed/removed logical drives, etc.) which mean that
8460 * we should rescan the controller for devices.
8461 * Also check flag for driver-initiated rescan.
8463 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8465 if (h->drv_req_rescan) {
8466 h->drv_req_rescan = 0;
8470 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8473 h->events = readl(&(h->cfgtable->event_notify));
8474 return h->events & RESCAN_REQUIRED_EVENT_BITS;
8478 * Check if any of the offline devices have become ready
8480 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8482 unsigned long flags;
8483 struct offline_device_entry *d;
8484 struct list_head *this, *tmp;
8486 spin_lock_irqsave(&h->offline_device_lock, flags);
8487 list_for_each_safe(this, tmp, &h->offline_device_list) {
8488 d = list_entry(this, struct offline_device_entry,
8490 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8491 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8492 spin_lock_irqsave(&h->offline_device_lock, flags);
8493 list_del(&d->offline_list);
8494 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8497 spin_lock_irqsave(&h->offline_device_lock, flags);
8499 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8503 static int hpsa_luns_changed(struct ctlr_info *h)
8505 int rc = 1; /* assume there are changes */
8506 struct ReportLUNdata *logdev = NULL;
8508 /* if we can't find out if lun data has changed,
8509 * assume that it has.
8512 if (!h->lastlogicals)
8515 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8519 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8520 dev_warn(&h->pdev->dev,
8521 "report luns failed, can't track lun changes.\n");
8524 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8525 dev_info(&h->pdev->dev,
8526 "Lun changes detected.\n");
8527 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8530 rc = 0; /* no changes detected. */
8536 static void hpsa_perform_rescan(struct ctlr_info *h)
8538 struct Scsi_Host *sh = NULL;
8539 unsigned long flags;
8542 * Do the scan after the reset
8544 spin_lock_irqsave(&h->reset_lock, flags);
8545 if (h->reset_in_progress) {
8546 h->drv_req_rescan = 1;
8547 spin_unlock_irqrestore(&h->reset_lock, flags);
8550 spin_unlock_irqrestore(&h->reset_lock, flags);
8552 sh = scsi_host_get(h->scsi_host);
8554 hpsa_scan_start(sh);
8556 h->drv_req_rescan = 0;
8561 * watch for controller events
8563 static void hpsa_event_monitor_worker(struct work_struct *work)
8565 struct ctlr_info *h = container_of(to_delayed_work(work),
8566 struct ctlr_info, event_monitor_work);
8567 unsigned long flags;
8569 spin_lock_irqsave(&h->lock, flags);
8570 if (h->remove_in_progress) {
8571 spin_unlock_irqrestore(&h->lock, flags);
8574 spin_unlock_irqrestore(&h->lock, flags);
8576 if (hpsa_ctlr_needs_rescan(h)) {
8577 hpsa_ack_ctlr_events(h);
8578 hpsa_perform_rescan(h);
8581 spin_lock_irqsave(&h->lock, flags);
8582 if (!h->remove_in_progress)
8583 queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8584 HPSA_EVENT_MONITOR_INTERVAL);
8585 spin_unlock_irqrestore(&h->lock, flags);
8588 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8590 unsigned long flags;
8591 struct ctlr_info *h = container_of(to_delayed_work(work),
8592 struct ctlr_info, rescan_ctlr_work);
8594 spin_lock_irqsave(&h->lock, flags);
8595 if (h->remove_in_progress) {
8596 spin_unlock_irqrestore(&h->lock, flags);
8599 spin_unlock_irqrestore(&h->lock, flags);
8601 if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8602 hpsa_perform_rescan(h);
8603 } else if (h->discovery_polling) {
8604 if (hpsa_luns_changed(h)) {
8605 dev_info(&h->pdev->dev,
8606 "driver discovery polling rescan.\n");
8607 hpsa_perform_rescan(h);
8610 spin_lock_irqsave(&h->lock, flags);
8611 if (!h->remove_in_progress)
8612 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8613 h->heartbeat_sample_interval);
8614 spin_unlock_irqrestore(&h->lock, flags);
8617 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8619 unsigned long flags;
8620 struct ctlr_info *h = container_of(to_delayed_work(work),
8621 struct ctlr_info, monitor_ctlr_work);
8623 detect_controller_lockup(h);
8624 if (lockup_detected(h))
8627 spin_lock_irqsave(&h->lock, flags);
8628 if (!h->remove_in_progress)
8629 queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8630 h->heartbeat_sample_interval);
8631 spin_unlock_irqrestore(&h->lock, flags);
8634 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8637 struct workqueue_struct *wq = NULL;
8639 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8641 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8646 static void hpda_free_ctlr_info(struct ctlr_info *h)
8648 kfree(h->reply_map);
8652 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8654 struct ctlr_info *h;
8656 h = kzalloc(sizeof(*h), GFP_KERNEL);
8660 h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8661 if (!h->reply_map) {
8668 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8671 struct ctlr_info *h;
8672 int try_soft_reset = 0;
8673 unsigned long flags;
8676 if (number_of_controllers == 0)
8677 printk(KERN_INFO DRIVER_NAME "\n");
8679 rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8681 dev_warn(&pdev->dev, "Board ID not found\n");
8685 rc = hpsa_init_reset_devices(pdev, board_id);
8687 if (rc != -ENOTSUPP)
8689 /* If the reset fails in a particular way (it has no way to do
8690 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8691 * a soft reset once we get the controller configured up to the
8692 * point that it can accept a command.
8698 reinit_after_soft_reset:
8700 /* Command structures must be aligned on a 32-byte boundary because
8701 * the 5 lower bits of the address are used by the hardware. and by
8702 * the driver. See comments in hpsa.h for more info.
8704 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8705 h = hpda_alloc_ctlr_info();
8707 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8713 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8714 INIT_LIST_HEAD(&h->offline_device_list);
8715 spin_lock_init(&h->lock);
8716 spin_lock_init(&h->offline_device_lock);
8717 spin_lock_init(&h->scan_lock);
8718 spin_lock_init(&h->reset_lock);
8719 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8721 /* Allocate and clear per-cpu variable lockup_detected */
8722 h->lockup_detected = alloc_percpu(u32);
8723 if (!h->lockup_detected) {
8724 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8726 goto clean1; /* aer/h */
8728 set_lockup_detected_for_all_cpus(h, 0);
8730 rc = hpsa_pci_init(h);
8732 goto clean2; /* lu, aer/h */
8734 /* relies on h-> settings made by hpsa_pci_init, including
8735 * interrupt_mode h->intr */
8736 rc = hpsa_scsi_host_alloc(h);
8738 goto clean2_5; /* pci, lu, aer/h */
8740 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8741 h->ctlr = number_of_controllers;
8742 number_of_controllers++;
8744 /* configure PCI DMA stuff */
8745 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8747 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8749 dev_err(&pdev->dev, "no suitable DMA available\n");
8750 goto clean3; /* shost, pci, lu, aer/h */
8754 /* make sure the board interrupts are off */
8755 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8757 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8759 goto clean3; /* shost, pci, lu, aer/h */
8760 rc = hpsa_alloc_cmd_pool(h);
8762 goto clean4; /* irq, shost, pci, lu, aer/h */
8763 rc = hpsa_alloc_sg_chain_blocks(h);
8765 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
8766 init_waitqueue_head(&h->scan_wait_queue);
8767 init_waitqueue_head(&h->event_sync_wait_queue);
8768 mutex_init(&h->reset_mutex);
8769 h->scan_finished = 1; /* no scan currently in progress */
8770 h->scan_waiting = 0;
8772 pci_set_drvdata(pdev, h);
8775 spin_lock_init(&h->devlock);
8776 rc = hpsa_put_ctlr_into_performant_mode(h);
8778 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8780 /* create the resubmit workqueue */
8781 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8782 if (!h->rescan_ctlr_wq) {
8787 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8788 if (!h->resubmit_wq) {
8790 goto clean7; /* aer/h */
8793 h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8794 if (!h->monitor_ctlr_wq) {
8800 * At this point, the controller is ready to take commands.
8801 * Now, if reset_devices and the hard reset didn't work, try
8802 * the soft reset and see if that works.
8804 if (try_soft_reset) {
8806 /* This is kind of gross. We may or may not get a completion
8807 * from the soft reset command, and if we do, then the value
8808 * from the fifo may or may not be valid. So, we wait 10 secs
8809 * after the reset throwing away any completions we get during
8810 * that time. Unregister the interrupt handler and register
8811 * fake ones to scoop up any residual completions.
8813 spin_lock_irqsave(&h->lock, flags);
8814 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8815 spin_unlock_irqrestore(&h->lock, flags);
8817 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8818 hpsa_intx_discard_completions);
8820 dev_warn(&h->pdev->dev,
8821 "Failed to request_irq after soft reset.\n");
8823 * cannot goto clean7 or free_irqs will be called
8824 * again. Instead, do its work
8826 hpsa_free_performant_mode(h); /* clean7 */
8827 hpsa_free_sg_chain_blocks(h); /* clean6 */
8828 hpsa_free_cmd_pool(h); /* clean5 */
8830 * skip hpsa_free_irqs(h) clean4 since that
8831 * was just called before request_irqs failed
8836 rc = hpsa_kdump_soft_reset(h);
8838 /* Neither hard nor soft reset worked, we're hosed. */
8841 dev_info(&h->pdev->dev, "Board READY.\n");
8842 dev_info(&h->pdev->dev,
8843 "Waiting for stale completions to drain.\n");
8844 h->access.set_intr_mask(h, HPSA_INTR_ON);
8846 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8848 rc = controller_reset_failed(h->cfgtable);
8850 dev_info(&h->pdev->dev,
8851 "Soft reset appears to have failed.\n");
8853 /* since the controller's reset, we have to go back and re-init
8854 * everything. Easiest to just forget what we've done and do it
8857 hpsa_undo_allocations_after_kdump_soft_reset(h);
8860 /* don't goto clean, we already unallocated */
8863 goto reinit_after_soft_reset;
8866 /* Enable Accelerated IO path at driver layer */
8867 h->acciopath_status = 1;
8868 /* Disable discovery polling.*/
8869 h->discovery_polling = 0;
8872 /* Turn the interrupts on so we can service requests */
8873 h->access.set_intr_mask(h, HPSA_INTR_ON);
8875 hpsa_hba_inquiry(h);
8877 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8878 if (!h->lastlogicals)
8879 dev_info(&h->pdev->dev,
8880 "Can't track change to report lun data\n");
8882 /* hook into SCSI subsystem */
8883 rc = hpsa_scsi_add_host(h);
8885 goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8887 /* Monitor the controller for firmware lockups */
8888 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8889 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8890 schedule_delayed_work(&h->monitor_ctlr_work,
8891 h->heartbeat_sample_interval);
8892 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8893 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8894 h->heartbeat_sample_interval);
8895 INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8896 schedule_delayed_work(&h->event_monitor_work,
8897 HPSA_EVENT_MONITOR_INTERVAL);
8900 clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8901 kfree(h->lastlogicals);
8902 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8903 hpsa_free_performant_mode(h);
8904 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8905 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8906 hpsa_free_sg_chain_blocks(h);
8907 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8908 hpsa_free_cmd_pool(h);
8909 clean4: /* irq, shost, pci, lu, aer/h */
8911 clean3: /* shost, pci, lu, aer/h */
8912 scsi_host_put(h->scsi_host);
8913 h->scsi_host = NULL;
8914 clean2_5: /* pci, lu, aer/h */
8915 hpsa_free_pci_init(h);
8916 clean2: /* lu, aer/h */
8917 if (h->lockup_detected) {
8918 free_percpu(h->lockup_detected);
8919 h->lockup_detected = NULL;
8921 clean1: /* wq/aer/h */
8922 if (h->resubmit_wq) {
8923 destroy_workqueue(h->resubmit_wq);
8924 h->resubmit_wq = NULL;
8926 if (h->rescan_ctlr_wq) {
8927 destroy_workqueue(h->rescan_ctlr_wq);
8928 h->rescan_ctlr_wq = NULL;
8930 if (h->monitor_ctlr_wq) {
8931 destroy_workqueue(h->monitor_ctlr_wq);
8932 h->monitor_ctlr_wq = NULL;
8938 static void hpsa_flush_cache(struct ctlr_info *h)
8941 struct CommandList *c;
8944 if (unlikely(lockup_detected(h)))
8946 flush_buf = kzalloc(4, GFP_KERNEL);
8952 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8953 RAID_CTLR_LUNID, TYPE_CMD)) {
8956 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8960 if (c->err_info->CommandStatus != 0)
8962 dev_warn(&h->pdev->dev,
8963 "error flushing cache on controller\n");
8968 /* Make controller gather fresh report lun data each time we
8969 * send down a report luns request
8971 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8974 struct CommandList *c;
8977 /* Don't bother trying to set diag options if locked up */
8978 if (unlikely(h->lockup_detected))
8981 options = kzalloc(sizeof(*options), GFP_KERNEL);
8987 /* first, get the current diag options settings */
8988 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8989 RAID_CTLR_LUNID, TYPE_CMD))
8992 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8994 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8997 /* Now, set the bit for disabling the RLD caching */
8998 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
9000 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
9001 RAID_CTLR_LUNID, TYPE_CMD))
9004 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
9006 if ((rc != 0) || (c->err_info->CommandStatus != 0))
9009 /* Now verify that it got set: */
9010 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9011 RAID_CTLR_LUNID, TYPE_CMD))
9014 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
9016 if ((rc != 0) || (c->err_info->CommandStatus != 0))
9019 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9023 dev_err(&h->pdev->dev,
9024 "Error: failed to disable report lun data caching.\n");
9030 static void __hpsa_shutdown(struct pci_dev *pdev)
9032 struct ctlr_info *h;
9034 h = pci_get_drvdata(pdev);
9035 /* Turn board interrupts off and send the flush cache command
9036 * sendcmd will turn off interrupt, and send the flush...
9037 * To write all data in the battery backed cache to disks
9039 hpsa_flush_cache(h);
9040 h->access.set_intr_mask(h, HPSA_INTR_OFF);
9041 hpsa_free_irqs(h); /* init_one 4 */
9042 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
9045 static void hpsa_shutdown(struct pci_dev *pdev)
9047 __hpsa_shutdown(pdev);
9048 pci_disable_device(pdev);
9051 static void hpsa_free_device_info(struct ctlr_info *h)
9055 for (i = 0; i < h->ndevices; i++) {
9061 static void hpsa_remove_one(struct pci_dev *pdev)
9063 struct ctlr_info *h;
9064 unsigned long flags;
9066 if (pci_get_drvdata(pdev) == NULL) {
9067 dev_err(&pdev->dev, "unable to remove device\n");
9070 h = pci_get_drvdata(pdev);
9072 /* Get rid of any controller monitoring work items */
9073 spin_lock_irqsave(&h->lock, flags);
9074 h->remove_in_progress = 1;
9075 spin_unlock_irqrestore(&h->lock, flags);
9076 cancel_delayed_work_sync(&h->monitor_ctlr_work);
9077 cancel_delayed_work_sync(&h->rescan_ctlr_work);
9078 cancel_delayed_work_sync(&h->event_monitor_work);
9079 destroy_workqueue(h->rescan_ctlr_wq);
9080 destroy_workqueue(h->resubmit_wq);
9081 destroy_workqueue(h->monitor_ctlr_wq);
9083 hpsa_delete_sas_host(h);
9086 * Call before disabling interrupts.
9087 * scsi_remove_host can trigger I/O operations especially
9088 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9089 * operations which cannot complete and will hang the system.
9092 scsi_remove_host(h->scsi_host); /* init_one 8 */
9093 /* includes hpsa_free_irqs - init_one 4 */
9094 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9095 __hpsa_shutdown(pdev);
9097 hpsa_free_device_info(h); /* scan */
9099 kfree(h->hba_inquiry_data); /* init_one 10 */
9100 h->hba_inquiry_data = NULL; /* init_one 10 */
9101 hpsa_free_ioaccel2_sg_chain_blocks(h);
9102 hpsa_free_performant_mode(h); /* init_one 7 */
9103 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
9104 hpsa_free_cmd_pool(h); /* init_one 5 */
9105 kfree(h->lastlogicals);
9107 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9109 scsi_host_put(h->scsi_host); /* init_one 3 */
9110 h->scsi_host = NULL; /* init_one 3 */
9112 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9113 hpsa_free_pci_init(h); /* init_one 2.5 */
9115 free_percpu(h->lockup_detected); /* init_one 2 */
9116 h->lockup_detected = NULL; /* init_one 2 */
9117 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
9119 hpda_free_ctlr_info(h); /* init_one 1 */
9122 static int __maybe_unused hpsa_suspend(
9123 __attribute__((unused)) struct device *dev)
9128 static int __maybe_unused hpsa_resume
9129 (__attribute__((unused)) struct device *dev)
9134 static SIMPLE_DEV_PM_OPS(hpsa_pm_ops, hpsa_suspend, hpsa_resume);
9136 static struct pci_driver hpsa_pci_driver = {
9138 .probe = hpsa_init_one,
9139 .remove = hpsa_remove_one,
9140 .id_table = hpsa_pci_device_id, /* id_table */
9141 .shutdown = hpsa_shutdown,
9142 .driver.pm = &hpsa_pm_ops,
9145 /* Fill in bucket_map[], given nsgs (the max number of
9146 * scatter gather elements supported) and bucket[],
9147 * which is an array of 8 integers. The bucket[] array
9148 * contains 8 different DMA transfer sizes (in 16
9149 * byte increments) which the controller uses to fetch
9150 * commands. This function fills in bucket_map[], which
9151 * maps a given number of scatter gather elements to one of
9152 * the 8 DMA transfer sizes. The point of it is to allow the
9153 * controller to only do as much DMA as needed to fetch the
9154 * command, with the DMA transfer size encoded in the lower
9155 * bits of the command address.
9157 static void calc_bucket_map(int bucket[], int num_buckets,
9158 int nsgs, int min_blocks, u32 *bucket_map)
9162 /* Note, bucket_map must have nsgs+1 entries. */
9163 for (i = 0; i <= nsgs; i++) {
9164 /* Compute size of a command with i SG entries */
9165 size = i + min_blocks;
9166 b = num_buckets; /* Assume the biggest bucket */
9167 /* Find the bucket that is just big enough */
9168 for (j = 0; j < num_buckets; j++) {
9169 if (bucket[j] >= size) {
9174 /* for a command with i SG entries, use bucket b. */
9180 * return -ENODEV on err, 0 on success (or no action)
9181 * allocates numerous items that must be freed later
9183 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9186 unsigned long register_value;
9187 unsigned long transMethod = CFGTBL_Trans_Performant |
9188 (trans_support & CFGTBL_Trans_use_short_tags) |
9189 CFGTBL_Trans_enable_directed_msix |
9190 (trans_support & (CFGTBL_Trans_io_accel1 |
9191 CFGTBL_Trans_io_accel2));
9192 struct access_method access = SA5_performant_access;
9194 /* This is a bit complicated. There are 8 registers on
9195 * the controller which we write to to tell it 8 different
9196 * sizes of commands which there may be. It's a way of
9197 * reducing the DMA done to fetch each command. Encoded into
9198 * each command's tag are 3 bits which communicate to the controller
9199 * which of the eight sizes that command fits within. The size of
9200 * each command depends on how many scatter gather entries there are.
9201 * Each SG entry requires 16 bytes. The eight registers are programmed
9202 * with the number of 16-byte blocks a command of that size requires.
9203 * The smallest command possible requires 5 such 16 byte blocks.
9204 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9205 * blocks. Note, this only extends to the SG entries contained
9206 * within the command block, and does not extend to chained blocks
9207 * of SG elements. bft[] contains the eight values we write to
9208 * the registers. They are not evenly distributed, but have more
9209 * sizes for small commands, and fewer sizes for larger commands.
9211 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9212 #define MIN_IOACCEL2_BFT_ENTRY 5
9213 #define HPSA_IOACCEL2_HEADER_SZ 4
9214 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9215 13, 14, 15, 16, 17, 18, 19,
9216 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9217 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9218 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9219 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9220 16 * MIN_IOACCEL2_BFT_ENTRY);
9221 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9222 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9223 /* 5 = 1 s/g entry or 4k
9224 * 6 = 2 s/g entry or 8k
9225 * 8 = 4 s/g entry or 16k
9226 * 10 = 6 s/g entry or 24k
9229 /* If the controller supports either ioaccel method then
9230 * we can also use the RAID stack submit path that does not
9231 * perform the superfluous readl() after each command submission.
9233 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9234 access = SA5_performant_access_no_read;
9236 /* Controller spec: zero out this buffer. */
9237 for (i = 0; i < h->nreply_queues; i++)
9238 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9240 bft[7] = SG_ENTRIES_IN_CMD + 4;
9241 calc_bucket_map(bft, ARRAY_SIZE(bft),
9242 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9243 for (i = 0; i < 8; i++)
9244 writel(bft[i], &h->transtable->BlockFetch[i]);
9246 /* size of controller ring buffer */
9247 writel(h->max_commands, &h->transtable->RepQSize);
9248 writel(h->nreply_queues, &h->transtable->RepQCount);
9249 writel(0, &h->transtable->RepQCtrAddrLow32);
9250 writel(0, &h->transtable->RepQCtrAddrHigh32);
9252 for (i = 0; i < h->nreply_queues; i++) {
9253 writel(0, &h->transtable->RepQAddr[i].upper);
9254 writel(h->reply_queue[i].busaddr,
9255 &h->transtable->RepQAddr[i].lower);
9258 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9259 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9261 * enable outbound interrupt coalescing in accelerator mode;
9263 if (trans_support & CFGTBL_Trans_io_accel1) {
9264 access = SA5_ioaccel_mode1_access;
9265 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9266 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9268 if (trans_support & CFGTBL_Trans_io_accel2)
9269 access = SA5_ioaccel_mode2_access;
9270 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9271 if (hpsa_wait_for_mode_change_ack(h)) {
9272 dev_err(&h->pdev->dev,
9273 "performant mode problem - doorbell timeout\n");
9276 register_value = readl(&(h->cfgtable->TransportActive));
9277 if (!(register_value & CFGTBL_Trans_Performant)) {
9278 dev_err(&h->pdev->dev,
9279 "performant mode problem - transport not active\n");
9282 /* Change the access methods to the performant access methods */
9284 h->transMethod = transMethod;
9286 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9287 (trans_support & CFGTBL_Trans_io_accel2)))
9290 if (trans_support & CFGTBL_Trans_io_accel1) {
9291 /* Set up I/O accelerator mode */
9292 for (i = 0; i < h->nreply_queues; i++) {
9293 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9294 h->reply_queue[i].current_entry =
9295 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9297 bft[7] = h->ioaccel_maxsg + 8;
9298 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9299 h->ioaccel1_blockFetchTable);
9301 /* initialize all reply queue entries to unused */
9302 for (i = 0; i < h->nreply_queues; i++)
9303 memset(h->reply_queue[i].head,
9304 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9305 h->reply_queue_size);
9307 /* set all the constant fields in the accelerator command
9308 * frames once at init time to save CPU cycles later.
9310 for (i = 0; i < h->nr_cmds; i++) {
9311 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9313 cp->function = IOACCEL1_FUNCTION_SCSIIO;
9314 cp->err_info = (u32) (h->errinfo_pool_dhandle +
9315 (i * sizeof(struct ErrorInfo)));
9316 cp->err_info_len = sizeof(struct ErrorInfo);
9317 cp->sgl_offset = IOACCEL1_SGLOFFSET;
9318 cp->host_context_flags =
9319 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9320 cp->timeout_sec = 0;
9323 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9325 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9326 (i * sizeof(struct io_accel1_cmd)));
9328 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9329 u64 cfg_offset, cfg_base_addr_index;
9330 u32 bft2_offset, cfg_base_addr;
9332 hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9333 &cfg_base_addr_index, &cfg_offset);
9334 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9335 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9336 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9337 4, h->ioaccel2_blockFetchTable);
9338 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9339 BUILD_BUG_ON(offsetof(struct CfgTable,
9340 io_accel_request_size_offset) != 0xb8);
9341 h->ioaccel2_bft2_regs =
9342 remap_pci_mem(pci_resource_start(h->pdev,
9343 cfg_base_addr_index) +
9344 cfg_offset + bft2_offset,
9346 sizeof(*h->ioaccel2_bft2_regs));
9347 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9348 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9350 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9351 if (hpsa_wait_for_mode_change_ack(h)) {
9352 dev_err(&h->pdev->dev,
9353 "performant mode problem - enabling ioaccel mode\n");
9359 /* Free ioaccel1 mode command blocks and block fetch table */
9360 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9362 if (h->ioaccel_cmd_pool) {
9363 dma_free_coherent(&h->pdev->dev,
9364 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9365 h->ioaccel_cmd_pool,
9366 h->ioaccel_cmd_pool_dhandle);
9367 h->ioaccel_cmd_pool = NULL;
9368 h->ioaccel_cmd_pool_dhandle = 0;
9370 kfree(h->ioaccel1_blockFetchTable);
9371 h->ioaccel1_blockFetchTable = NULL;
9374 /* Allocate ioaccel1 mode command blocks and block fetch table */
9375 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9378 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9379 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9380 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9382 /* Command structures must be aligned on a 128-byte boundary
9383 * because the 7 lower bits of the address are used by the
9386 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9387 IOACCEL1_COMMANDLIST_ALIGNMENT);
9388 h->ioaccel_cmd_pool =
9389 dma_alloc_coherent(&h->pdev->dev,
9390 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9391 &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9393 h->ioaccel1_blockFetchTable =
9394 kmalloc(((h->ioaccel_maxsg + 1) *
9395 sizeof(u32)), GFP_KERNEL);
9397 if ((h->ioaccel_cmd_pool == NULL) ||
9398 (h->ioaccel1_blockFetchTable == NULL))
9401 memset(h->ioaccel_cmd_pool, 0,
9402 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9406 hpsa_free_ioaccel1_cmd_and_bft(h);
9410 /* Free ioaccel2 mode command blocks and block fetch table */
9411 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9413 hpsa_free_ioaccel2_sg_chain_blocks(h);
9415 if (h->ioaccel2_cmd_pool) {
9416 dma_free_coherent(&h->pdev->dev,
9417 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9418 h->ioaccel2_cmd_pool,
9419 h->ioaccel2_cmd_pool_dhandle);
9420 h->ioaccel2_cmd_pool = NULL;
9421 h->ioaccel2_cmd_pool_dhandle = 0;
9423 kfree(h->ioaccel2_blockFetchTable);
9424 h->ioaccel2_blockFetchTable = NULL;
9427 /* Allocate ioaccel2 mode command blocks and block fetch table */
9428 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9432 /* Allocate ioaccel2 mode command blocks and block fetch table */
9435 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9436 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9437 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9439 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9440 IOACCEL2_COMMANDLIST_ALIGNMENT);
9441 h->ioaccel2_cmd_pool =
9442 dma_alloc_coherent(&h->pdev->dev,
9443 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9444 &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9446 h->ioaccel2_blockFetchTable =
9447 kmalloc(((h->ioaccel_maxsg + 1) *
9448 sizeof(u32)), GFP_KERNEL);
9450 if ((h->ioaccel2_cmd_pool == NULL) ||
9451 (h->ioaccel2_blockFetchTable == NULL)) {
9456 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9460 memset(h->ioaccel2_cmd_pool, 0,
9461 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9465 hpsa_free_ioaccel2_cmd_and_bft(h);
9469 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9470 static void hpsa_free_performant_mode(struct ctlr_info *h)
9472 kfree(h->blockFetchTable);
9473 h->blockFetchTable = NULL;
9474 hpsa_free_reply_queues(h);
9475 hpsa_free_ioaccel1_cmd_and_bft(h);
9476 hpsa_free_ioaccel2_cmd_and_bft(h);
9479 /* return -ENODEV on error, 0 on success (or no action)
9480 * allocates numerous items that must be freed later
9482 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9485 unsigned long transMethod = CFGTBL_Trans_Performant |
9486 CFGTBL_Trans_use_short_tags;
9489 if (hpsa_simple_mode)
9492 trans_support = readl(&(h->cfgtable->TransportSupport));
9493 if (!(trans_support & PERFORMANT_MODE))
9496 /* Check for I/O accelerator mode support */
9497 if (trans_support & CFGTBL_Trans_io_accel1) {
9498 transMethod |= CFGTBL_Trans_io_accel1 |
9499 CFGTBL_Trans_enable_directed_msix;
9500 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9503 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9504 transMethod |= CFGTBL_Trans_io_accel2 |
9505 CFGTBL_Trans_enable_directed_msix;
9506 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9511 h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9512 hpsa_get_max_perf_mode_cmds(h);
9513 /* Performant mode ring buffer and supporting data structures */
9514 h->reply_queue_size = h->max_commands * sizeof(u64);
9516 for (i = 0; i < h->nreply_queues; i++) {
9517 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9518 h->reply_queue_size,
9519 &h->reply_queue[i].busaddr,
9521 if (!h->reply_queue[i].head) {
9523 goto clean1; /* rq, ioaccel */
9525 h->reply_queue[i].size = h->max_commands;
9526 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
9527 h->reply_queue[i].current_entry = 0;
9530 /* Need a block fetch table for performant mode */
9531 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9532 sizeof(u32)), GFP_KERNEL);
9533 if (!h->blockFetchTable) {
9535 goto clean1; /* rq, ioaccel */
9538 rc = hpsa_enter_performant_mode(h, trans_support);
9540 goto clean2; /* bft, rq, ioaccel */
9543 clean2: /* bft, rq, ioaccel */
9544 kfree(h->blockFetchTable);
9545 h->blockFetchTable = NULL;
9546 clean1: /* rq, ioaccel */
9547 hpsa_free_reply_queues(h);
9548 hpsa_free_ioaccel1_cmd_and_bft(h);
9549 hpsa_free_ioaccel2_cmd_and_bft(h);
9553 static int is_accelerated_cmd(struct CommandList *c)
9555 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9558 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9560 struct CommandList *c = NULL;
9561 int i, accel_cmds_out;
9564 do { /* wait for all outstanding ioaccel commands to drain out */
9566 for (i = 0; i < h->nr_cmds; i++) {
9567 c = h->cmd_pool + i;
9568 refcount = atomic_inc_return(&c->refcount);
9569 if (refcount > 1) /* Command is allocated */
9570 accel_cmds_out += is_accelerated_cmd(c);
9573 if (accel_cmds_out <= 0)
9579 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9580 struct hpsa_sas_port *hpsa_sas_port)
9582 struct hpsa_sas_phy *hpsa_sas_phy;
9583 struct sas_phy *phy;
9585 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9589 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9590 hpsa_sas_port->next_phy_index);
9592 kfree(hpsa_sas_phy);
9596 hpsa_sas_port->next_phy_index++;
9597 hpsa_sas_phy->phy = phy;
9598 hpsa_sas_phy->parent_port = hpsa_sas_port;
9600 return hpsa_sas_phy;
9603 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9605 struct sas_phy *phy = hpsa_sas_phy->phy;
9607 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9608 if (hpsa_sas_phy->added_to_port)
9609 list_del(&hpsa_sas_phy->phy_list_entry);
9610 sas_phy_delete(phy);
9611 kfree(hpsa_sas_phy);
9614 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9617 struct hpsa_sas_port *hpsa_sas_port;
9618 struct sas_phy *phy;
9619 struct sas_identify *identify;
9621 hpsa_sas_port = hpsa_sas_phy->parent_port;
9622 phy = hpsa_sas_phy->phy;
9624 identify = &phy->identify;
9625 memset(identify, 0, sizeof(*identify));
9626 identify->sas_address = hpsa_sas_port->sas_address;
9627 identify->device_type = SAS_END_DEVICE;
9628 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9629 identify->target_port_protocols = SAS_PROTOCOL_STP;
9630 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9631 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9632 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9633 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9634 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9636 rc = sas_phy_add(hpsa_sas_phy->phy);
9640 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9641 list_add_tail(&hpsa_sas_phy->phy_list_entry,
9642 &hpsa_sas_port->phy_list_head);
9643 hpsa_sas_phy->added_to_port = true;
9649 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9650 struct sas_rphy *rphy)
9652 struct sas_identify *identify;
9654 identify = &rphy->identify;
9655 identify->sas_address = hpsa_sas_port->sas_address;
9656 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9657 identify->target_port_protocols = SAS_PROTOCOL_STP;
9659 return sas_rphy_add(rphy);
9662 static struct hpsa_sas_port
9663 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9667 struct hpsa_sas_port *hpsa_sas_port;
9668 struct sas_port *port;
9670 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9674 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9675 hpsa_sas_port->parent_node = hpsa_sas_node;
9677 port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9679 goto free_hpsa_port;
9681 rc = sas_port_add(port);
9685 hpsa_sas_port->port = port;
9686 hpsa_sas_port->sas_address = sas_address;
9687 list_add_tail(&hpsa_sas_port->port_list_entry,
9688 &hpsa_sas_node->port_list_head);
9690 return hpsa_sas_port;
9693 sas_port_free(port);
9695 kfree(hpsa_sas_port);
9700 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9702 struct hpsa_sas_phy *hpsa_sas_phy;
9703 struct hpsa_sas_phy *next;
9705 list_for_each_entry_safe(hpsa_sas_phy, next,
9706 &hpsa_sas_port->phy_list_head, phy_list_entry)
9707 hpsa_free_sas_phy(hpsa_sas_phy);
9709 sas_port_delete(hpsa_sas_port->port);
9710 list_del(&hpsa_sas_port->port_list_entry);
9711 kfree(hpsa_sas_port);
9714 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9716 struct hpsa_sas_node *hpsa_sas_node;
9718 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9719 if (hpsa_sas_node) {
9720 hpsa_sas_node->parent_dev = parent_dev;
9721 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9724 return hpsa_sas_node;
9727 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9729 struct hpsa_sas_port *hpsa_sas_port;
9730 struct hpsa_sas_port *next;
9735 list_for_each_entry_safe(hpsa_sas_port, next,
9736 &hpsa_sas_node->port_list_head, port_list_entry)
9737 hpsa_free_sas_port(hpsa_sas_port);
9739 kfree(hpsa_sas_node);
9742 static struct hpsa_scsi_dev_t
9743 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9744 struct sas_rphy *rphy)
9747 struct hpsa_scsi_dev_t *device;
9749 for (i = 0; i < h->ndevices; i++) {
9751 if (!device->sas_port)
9753 if (device->sas_port->rphy == rphy)
9760 static int hpsa_add_sas_host(struct ctlr_info *h)
9763 struct device *parent_dev;
9764 struct hpsa_sas_node *hpsa_sas_node;
9765 struct hpsa_sas_port *hpsa_sas_port;
9766 struct hpsa_sas_phy *hpsa_sas_phy;
9768 parent_dev = &h->scsi_host->shost_dev;
9770 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9774 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9775 if (!hpsa_sas_port) {
9780 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9781 if (!hpsa_sas_phy) {
9786 rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9790 h->sas_host = hpsa_sas_node;
9795 hpsa_free_sas_phy(hpsa_sas_phy);
9797 hpsa_free_sas_port(hpsa_sas_port);
9799 hpsa_free_sas_node(hpsa_sas_node);
9804 static void hpsa_delete_sas_host(struct ctlr_info *h)
9806 hpsa_free_sas_node(h->sas_host);
9809 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9810 struct hpsa_scsi_dev_t *device)
9813 struct hpsa_sas_port *hpsa_sas_port;
9814 struct sas_rphy *rphy;
9816 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9820 rphy = sas_end_device_alloc(hpsa_sas_port->port);
9826 hpsa_sas_port->rphy = rphy;
9827 device->sas_port = hpsa_sas_port;
9829 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9836 hpsa_free_sas_port(hpsa_sas_port);
9837 device->sas_port = NULL;
9842 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9844 if (device->sas_port) {
9845 hpsa_free_sas_port(device->sas_port);
9846 device->sas_port = NULL;
9851 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9857 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9859 struct Scsi_Host *shost = phy_to_shost(rphy);
9860 struct ctlr_info *h;
9861 struct hpsa_scsi_dev_t *sd;
9866 h = shost_to_hba(shost);
9871 sd = hpsa_find_device_by_sas_rphy(h, rphy);
9875 *identifier = sd->eli;
9881 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9887 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9893 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9899 hpsa_sas_phy_setup(struct sas_phy *phy)
9905 hpsa_sas_phy_release(struct sas_phy *phy)
9910 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9915 static struct sas_function_template hpsa_sas_transport_functions = {
9916 .get_linkerrors = hpsa_sas_get_linkerrors,
9917 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9918 .get_bay_identifier = hpsa_sas_get_bay_identifier,
9919 .phy_reset = hpsa_sas_phy_reset,
9920 .phy_enable = hpsa_sas_phy_enable,
9921 .phy_setup = hpsa_sas_phy_setup,
9922 .phy_release = hpsa_sas_phy_release,
9923 .set_phy_speed = hpsa_sas_phy_speed,
9927 * This is it. Register the PCI driver information for the cards we control
9928 * the OS will call our registered routines when it finds one of our cards.
9930 static int __init hpsa_init(void)
9934 hpsa_sas_transport_template =
9935 sas_attach_transport(&hpsa_sas_transport_functions);
9936 if (!hpsa_sas_transport_template)
9939 rc = pci_register_driver(&hpsa_pci_driver);
9942 sas_release_transport(hpsa_sas_transport_template);
9947 static void __exit hpsa_cleanup(void)
9949 pci_unregister_driver(&hpsa_pci_driver);
9950 sas_release_transport(hpsa_sas_transport_template);
9953 static void __attribute__((unused)) verify_offsets(void)
9955 #define VERIFY_OFFSET(member, offset) \
9956 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9958 VERIFY_OFFSET(structure_size, 0);
9959 VERIFY_OFFSET(volume_blk_size, 4);
9960 VERIFY_OFFSET(volume_blk_cnt, 8);
9961 VERIFY_OFFSET(phys_blk_shift, 16);
9962 VERIFY_OFFSET(parity_rotation_shift, 17);
9963 VERIFY_OFFSET(strip_size, 18);
9964 VERIFY_OFFSET(disk_starting_blk, 20);
9965 VERIFY_OFFSET(disk_blk_cnt, 28);
9966 VERIFY_OFFSET(data_disks_per_row, 36);
9967 VERIFY_OFFSET(metadata_disks_per_row, 38);
9968 VERIFY_OFFSET(row_cnt, 40);
9969 VERIFY_OFFSET(layout_map_count, 42);
9970 VERIFY_OFFSET(flags, 44);
9971 VERIFY_OFFSET(dekindex, 46);
9972 /* VERIFY_OFFSET(reserved, 48 */
9973 VERIFY_OFFSET(data, 64);
9975 #undef VERIFY_OFFSET
9977 #define VERIFY_OFFSET(member, offset) \
9978 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9980 VERIFY_OFFSET(IU_type, 0);
9981 VERIFY_OFFSET(direction, 1);
9982 VERIFY_OFFSET(reply_queue, 2);
9983 /* VERIFY_OFFSET(reserved1, 3); */
9984 VERIFY_OFFSET(scsi_nexus, 4);
9985 VERIFY_OFFSET(Tag, 8);
9986 VERIFY_OFFSET(cdb, 16);
9987 VERIFY_OFFSET(cciss_lun, 32);
9988 VERIFY_OFFSET(data_len, 40);
9989 VERIFY_OFFSET(cmd_priority_task_attr, 44);
9990 VERIFY_OFFSET(sg_count, 45);
9991 /* VERIFY_OFFSET(reserved3 */
9992 VERIFY_OFFSET(err_ptr, 48);
9993 VERIFY_OFFSET(err_len, 56);
9994 /* VERIFY_OFFSET(reserved4 */
9995 VERIFY_OFFSET(sg, 64);
9997 #undef VERIFY_OFFSET
9999 #define VERIFY_OFFSET(member, offset) \
10000 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
10002 VERIFY_OFFSET(dev_handle, 0x00);
10003 VERIFY_OFFSET(reserved1, 0x02);
10004 VERIFY_OFFSET(function, 0x03);
10005 VERIFY_OFFSET(reserved2, 0x04);
10006 VERIFY_OFFSET(err_info, 0x0C);
10007 VERIFY_OFFSET(reserved3, 0x10);
10008 VERIFY_OFFSET(err_info_len, 0x12);
10009 VERIFY_OFFSET(reserved4, 0x13);
10010 VERIFY_OFFSET(sgl_offset, 0x14);
10011 VERIFY_OFFSET(reserved5, 0x15);
10012 VERIFY_OFFSET(transfer_len, 0x1C);
10013 VERIFY_OFFSET(reserved6, 0x20);
10014 VERIFY_OFFSET(io_flags, 0x24);
10015 VERIFY_OFFSET(reserved7, 0x26);
10016 VERIFY_OFFSET(LUN, 0x34);
10017 VERIFY_OFFSET(control, 0x3C);
10018 VERIFY_OFFSET(CDB, 0x40);
10019 VERIFY_OFFSET(reserved8, 0x50);
10020 VERIFY_OFFSET(host_context_flags, 0x60);
10021 VERIFY_OFFSET(timeout_sec, 0x62);
10022 VERIFY_OFFSET(ReplyQueue, 0x64);
10023 VERIFY_OFFSET(reserved9, 0x65);
10024 VERIFY_OFFSET(tag, 0x68);
10025 VERIFY_OFFSET(host_addr, 0x70);
10026 VERIFY_OFFSET(CISS_LUN, 0x78);
10027 VERIFY_OFFSET(SG, 0x78 + 8);
10028 #undef VERIFY_OFFSET
10031 module_init(hpsa_init);
10032 module_exit(hpsa_cleanup);