1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1992 Rick Sladkey
7 * Changes Copyright (C) 1994 by Florian La Roche
8 * - Do not copy data too often around in the kernel.
9 * - In nfs_file_read the return value of kmalloc wasn't checked.
10 * - Put in a better version of read look-ahead buffering. Original idea
13 * Expire cache on write to a file by Wai S Kok (Oct 1994).
15 * Total rewrite of read side for new NFS buffer cache.. Linus.
17 * nfs regular file handling functions
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/kernel.h>
23 #include <linux/errno.h>
24 #include <linux/fcntl.h>
25 #include <linux/stat.h>
26 #include <linux/nfs_fs.h>
27 #include <linux/nfs_mount.h>
29 #include <linux/pagemap.h>
30 #include <linux/gfp.h>
31 #include <linux/swap.h>
33 #include <linux/uaccess.h>
35 #include "delegation.h"
43 #define NFSDBG_FACILITY NFSDBG_FILE
45 static const struct vm_operations_struct nfs_file_vm_ops;
47 /* Hack for future NFS swap support */
49 # define IS_SWAPFILE(inode) (0)
52 int nfs_check_flags(int flags)
54 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
59 EXPORT_SYMBOL_GPL(nfs_check_flags);
65 nfs_file_open(struct inode *inode, struct file *filp)
69 dprintk("NFS: open file(%pD2)\n", filp);
71 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
72 res = nfs_check_flags(filp->f_flags);
76 res = nfs_open(inode, filp);
81 nfs_file_release(struct inode *inode, struct file *filp)
83 dprintk("NFS: release(%pD2)\n", filp);
85 nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
86 nfs_file_clear_open_context(filp);
89 EXPORT_SYMBOL_GPL(nfs_file_release);
92 * nfs_revalidate_size - Revalidate the file size
93 * @inode: pointer to inode struct
94 * @filp: pointer to struct file
96 * Revalidates the file length. This is basically a wrapper around
97 * nfs_revalidate_inode() that takes into account the fact that we may
98 * have cached writes (in which case we don't care about the server's
99 * idea of what the file length is), or O_DIRECT (in which case we
100 * shouldn't trust the cache).
102 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
104 struct nfs_server *server = NFS_SERVER(inode);
106 if (filp->f_flags & O_DIRECT)
108 if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE))
112 return __nfs_revalidate_inode(server, inode);
115 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
117 dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
118 filp, offset, whence);
121 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
122 * the cached file length
124 if (whence != SEEK_SET && whence != SEEK_CUR) {
125 struct inode *inode = filp->f_mapping->host;
127 int retval = nfs_revalidate_file_size(inode, filp);
129 return (loff_t)retval;
132 return generic_file_llseek(filp, offset, whence);
134 EXPORT_SYMBOL_GPL(nfs_file_llseek);
137 * Flush all dirty pages, and check for write errors.
140 nfs_file_flush(struct file *file, fl_owner_t id)
142 struct inode *inode = file_inode(file);
144 dprintk("NFS: flush(%pD2)\n", file);
146 nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
147 if ((file->f_mode & FMODE_WRITE) == 0)
150 /* Flush writes to the server and return any errors */
151 return nfs_wb_all(inode);
155 nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
157 struct inode *inode = file_inode(iocb->ki_filp);
160 if (iocb->ki_flags & IOCB_DIRECT)
161 return nfs_file_direct_read(iocb, to);
163 dprintk("NFS: read(%pD2, %zu@%lu)\n",
165 iov_iter_count(to), (unsigned long) iocb->ki_pos);
167 nfs_start_io_read(inode);
168 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
170 result = generic_file_read_iter(iocb, to);
172 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
174 nfs_end_io_read(inode);
177 EXPORT_SYMBOL_GPL(nfs_file_read);
180 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
182 struct inode *inode = file_inode(file);
185 dprintk("NFS: mmap(%pD2)\n", file);
187 /* Note: generic_file_mmap() returns ENOSYS on nommu systems
188 * so we call that before revalidating the mapping
190 status = generic_file_mmap(file, vma);
192 vma->vm_ops = &nfs_file_vm_ops;
193 status = nfs_revalidate_mapping(inode, file->f_mapping);
197 EXPORT_SYMBOL_GPL(nfs_file_mmap);
200 * Flush any dirty pages for this process, and check for write errors.
201 * The return status from this call provides a reliable indication of
202 * whether any write errors occurred for this process.
205 nfs_file_fsync_commit(struct file *file, int datasync)
207 struct inode *inode = file_inode(file);
210 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
212 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
213 ret = nfs_commit_inode(inode, FLUSH_SYNC);
216 return file_check_and_advance_wb_err(file);
220 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
222 struct nfs_open_context *ctx = nfs_file_open_context(file);
223 struct inode *inode = file_inode(file);
226 trace_nfs_fsync_enter(inode);
229 ret = file_write_and_wait_range(file, start, end);
232 ret = nfs_file_fsync_commit(file, datasync);
235 ret = pnfs_sync_inode(inode, !!datasync);
238 if (!test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags))
241 * If nfs_file_fsync_commit detected a server reboot, then
242 * resend all dirty pages that might have been covered by
243 * the NFS_CONTEXT_RESEND_WRITES flag
249 trace_nfs_fsync_exit(inode, ret);
252 EXPORT_SYMBOL_GPL(nfs_file_fsync);
255 * Decide whether a read/modify/write cycle may be more efficient
256 * then a modify/write/read cycle when writing to a page in the
259 * Some pNFS layout drivers can only read/write at a certain block
260 * granularity like all block devices and therefore we must perform
261 * read/modify/write whenever a page hasn't read yet and the data
262 * to be written there is not aligned to a block boundary and/or
263 * smaller than the block size.
265 * The modify/write/read cycle may occur if a page is read before
266 * being completely filled by the writer. In this situation, the
267 * page must be completely written to stable storage on the server
268 * before it can be refilled by reading in the page from the server.
269 * This can lead to expensive, small, FILE_SYNC mode writes being
272 * It may be more efficient to read the page first if the file is
273 * open for reading in addition to writing, the page is not marked
274 * as Uptodate, it is not dirty or waiting to be committed,
275 * indicating that it was previously allocated and then modified,
276 * that there were valid bytes of data in that range of the file,
277 * and that the new data won't completely replace the old data in
278 * that range of the file.
280 static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len)
282 unsigned int pglen = nfs_page_length(page);
283 unsigned int offset = pos & (PAGE_SIZE - 1);
284 unsigned int end = offset + len;
286 return !pglen || (end >= pglen && !offset);
289 static bool nfs_want_read_modify_write(struct file *file, struct page *page,
290 loff_t pos, unsigned int len)
293 * Up-to-date pages, those with ongoing or full-page write
294 * don't need read/modify/write
296 if (PageUptodate(page) || PagePrivate(page) ||
297 nfs_full_page_write(page, pos, len))
300 if (pnfs_ld_read_whole_page(file->f_mapping->host))
302 /* Open for reading too? */
303 if (file->f_mode & FMODE_READ)
309 * This does the "real" work of the write. We must allocate and lock the
310 * page to be sent back to the generic routine, which then copies the
311 * data from user space.
313 * If the writer ends up delaying the write, the writer needs to
314 * increment the page use counts until he is done with the page.
316 static int nfs_write_begin(struct file *file, struct address_space *mapping,
317 loff_t pos, unsigned len, unsigned flags,
318 struct page **pagep, void **fsdata)
321 pgoff_t index = pos >> PAGE_SHIFT;
325 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
326 file, mapping->host->i_ino, len, (long long) pos);
329 page = grab_cache_page_write_begin(mapping, index, flags);
334 ret = nfs_flush_incompatible(file, page);
338 } else if (!once_thru &&
339 nfs_want_read_modify_write(file, page, pos, len)) {
341 ret = nfs_readpage(file, page);
349 static int nfs_write_end(struct file *file, struct address_space *mapping,
350 loff_t pos, unsigned len, unsigned copied,
351 struct page *page, void *fsdata)
353 unsigned offset = pos & (PAGE_SIZE - 1);
354 struct nfs_open_context *ctx = nfs_file_open_context(file);
357 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
358 file, mapping->host->i_ino, len, (long long) pos);
361 * Zero any uninitialised parts of the page, and then mark the page
362 * as up to date if it turns out that we're extending the file.
364 if (!PageUptodate(page)) {
365 unsigned pglen = nfs_page_length(page);
366 unsigned end = offset + copied;
369 zero_user_segments(page, 0, offset,
371 SetPageUptodate(page);
372 } else if (end >= pglen) {
373 zero_user_segment(page, end, PAGE_SIZE);
375 SetPageUptodate(page);
377 zero_user_segment(page, pglen, PAGE_SIZE);
380 status = nfs_updatepage(file, page, offset, copied);
387 NFS_I(mapping->host)->write_io += copied;
389 if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
390 status = nfs_wb_all(mapping->host);
399 * Partially or wholly invalidate a page
400 * - Release the private state associated with a page if undergoing complete
402 * - Called if either PG_private or PG_fscache is set on the page
403 * - Caller holds page lock
405 static void nfs_invalidate_page(struct page *page, unsigned int offset,
408 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
409 page, offset, length);
411 if (offset != 0 || length < PAGE_SIZE)
413 /* Cancel any unstarted writes on this page */
414 nfs_wb_page_cancel(page_file_mapping(page)->host, page);
416 nfs_fscache_invalidate_page(page, page->mapping->host);
420 * Attempt to release the private state associated with a page
421 * - Called if either PG_private or PG_fscache is set on the page
422 * - Caller holds page lock
423 * - Return true (may release page) or false (may not)
425 static int nfs_release_page(struct page *page, gfp_t gfp)
427 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
429 /* If PagePrivate() is set, then the page is not freeable */
430 if (PagePrivate(page))
432 return nfs_fscache_release_page(page, gfp);
435 static void nfs_check_dirty_writeback(struct page *page,
436 bool *dirty, bool *writeback)
438 struct nfs_inode *nfsi;
439 struct address_space *mapping = page_file_mapping(page);
441 if (!mapping || PageSwapCache(page))
445 * Check if an unstable page is currently being committed and
446 * if so, have the VM treat it as if the page is under writeback
447 * so it will not block due to pages that will shortly be freeable.
449 nfsi = NFS_I(mapping->host);
450 if (atomic_read(&nfsi->commit_info.rpcs_out)) {
456 * If PagePrivate() is set, then the page is not freeable and as the
457 * inode is not being committed, it's not going to be cleaned in the
458 * near future so treat it as dirty
460 if (PagePrivate(page))
465 * Attempt to clear the private state associated with a page when an error
466 * occurs that requires the cached contents of an inode to be written back or
468 * - Called if either PG_private or fscache is set on the page
469 * - Caller holds page lock
470 * - Return 0 if successful, -error otherwise
472 static int nfs_launder_page(struct page *page)
474 struct inode *inode = page_file_mapping(page)->host;
475 struct nfs_inode *nfsi = NFS_I(inode);
477 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
478 inode->i_ino, (long long)page_offset(page));
480 nfs_fscache_wait_on_page_write(nfsi, page);
481 return nfs_wb_page(inode, page);
484 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
487 unsigned long blocks;
489 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
490 struct inode *inode = file->f_mapping->host;
492 spin_lock(&inode->i_lock);
493 blocks = inode->i_blocks;
494 isize = inode->i_size;
495 spin_unlock(&inode->i_lock);
496 if (blocks*512 < isize) {
497 pr_warn("swap activate: swapfile has holes\n");
503 return rpc_clnt_swap_activate(clnt);
506 static void nfs_swap_deactivate(struct file *file)
508 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
510 rpc_clnt_swap_deactivate(clnt);
513 const struct address_space_operations nfs_file_aops = {
514 .readpage = nfs_readpage,
515 .readpages = nfs_readpages,
516 .set_page_dirty = __set_page_dirty_nobuffers,
517 .writepage = nfs_writepage,
518 .writepages = nfs_writepages,
519 .write_begin = nfs_write_begin,
520 .write_end = nfs_write_end,
521 .invalidatepage = nfs_invalidate_page,
522 .releasepage = nfs_release_page,
523 .direct_IO = nfs_direct_IO,
524 #ifdef CONFIG_MIGRATION
525 .migratepage = nfs_migrate_page,
527 .launder_page = nfs_launder_page,
528 .is_dirty_writeback = nfs_check_dirty_writeback,
529 .error_remove_page = generic_error_remove_page,
530 .swap_activate = nfs_swap_activate,
531 .swap_deactivate = nfs_swap_deactivate,
535 * Notification that a PTE pointing to an NFS page is about to be made
536 * writable, implying that someone is about to modify the page through a
537 * shared-writable mapping
539 static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
541 struct page *page = vmf->page;
542 struct file *filp = vmf->vma->vm_file;
543 struct inode *inode = file_inode(filp);
545 vm_fault_t ret = VM_FAULT_NOPAGE;
546 struct address_space *mapping;
548 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
549 filp, filp->f_mapping->host->i_ino,
550 (long long)page_offset(page));
552 sb_start_pagefault(inode->i_sb);
554 /* make sure the cache has finished storing the page */
555 nfs_fscache_wait_on_page_write(NFS_I(inode), page);
557 wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
558 nfs_wait_bit_killable, TASK_KILLABLE);
561 mapping = page_file_mapping(page);
562 if (mapping != inode->i_mapping)
565 wait_on_page_writeback(page);
567 pagelen = nfs_page_length(page);
571 ret = VM_FAULT_LOCKED;
572 if (nfs_flush_incompatible(filp, page) == 0 &&
573 nfs_updatepage(filp, page, 0, pagelen) == 0)
576 ret = VM_FAULT_SIGBUS;
580 sb_end_pagefault(inode->i_sb);
584 static const struct vm_operations_struct nfs_file_vm_ops = {
585 .fault = filemap_fault,
586 .map_pages = filemap_map_pages,
587 .page_mkwrite = nfs_vm_page_mkwrite,
590 static int nfs_need_check_write(struct file *filp, struct inode *inode)
592 struct nfs_open_context *ctx;
594 ctx = nfs_file_open_context(filp);
595 if (nfs_ctx_key_to_expire(ctx, inode))
600 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
602 struct file *file = iocb->ki_filp;
603 struct inode *inode = file_inode(file);
604 unsigned long written = 0;
607 result = nfs_key_timeout_notify(file, inode);
611 if (iocb->ki_flags & IOCB_DIRECT)
612 return nfs_file_direct_write(iocb, from);
614 dprintk("NFS: write(%pD2, %zu@%Ld)\n",
615 file, iov_iter_count(from), (long long) iocb->ki_pos);
617 if (IS_SWAPFILE(inode))
620 * O_APPEND implies that we must revalidate the file length.
622 if (iocb->ki_flags & IOCB_APPEND) {
623 result = nfs_revalidate_file_size(inode, file);
627 if (iocb->ki_pos > i_size_read(inode))
628 nfs_revalidate_mapping(inode, file->f_mapping);
630 nfs_start_io_write(inode);
631 result = generic_write_checks(iocb, from);
633 current->backing_dev_info = inode_to_bdi(inode);
634 result = generic_perform_write(file, from, iocb->ki_pos);
635 current->backing_dev_info = NULL;
637 nfs_end_io_write(inode);
642 iocb->ki_pos += written;
643 result = generic_write_sync(iocb, written);
647 /* Return error values */
648 if (nfs_need_check_write(file, inode)) {
649 int err = nfs_wb_all(inode);
653 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
658 printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
661 EXPORT_SYMBOL_GPL(nfs_file_write);
664 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
666 struct inode *inode = filp->f_mapping->host;
668 unsigned int saved_type = fl->fl_type;
670 /* Try local locking first */
671 posix_test_lock(filp, fl);
672 if (fl->fl_type != F_UNLCK) {
673 /* found a conflict */
676 fl->fl_type = saved_type;
678 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
684 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
688 fl->fl_type = F_UNLCK;
693 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
695 struct inode *inode = filp->f_mapping->host;
696 struct nfs_lock_context *l_ctx;
700 * Flush all pending writes before doing anything
705 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
706 if (!IS_ERR(l_ctx)) {
707 status = nfs_iocounter_wait(l_ctx);
708 nfs_put_lock_context(l_ctx);
709 /* NOTE: special case
710 * If we're signalled while cleaning up locks on process exit, we
711 * still need to complete the unlock.
713 if (status < 0 && !(fl->fl_flags & FL_CLOSE))
718 * Use local locking if mounted with "-onolock" or with appropriate
722 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
724 status = locks_lock_file_wait(filp, fl);
729 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
731 struct inode *inode = filp->f_mapping->host;
735 * Flush all pending writes before doing anything
738 status = nfs_sync_mapping(filp->f_mapping);
743 * Use local locking if mounted with "-onolock" or with appropriate
747 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
749 status = locks_lock_file_wait(filp, fl);
754 * Invalidate cache to prevent missing any changes. If
755 * the file is mapped, clear the page cache as well so
756 * those mappings will be loaded.
758 * This makes locking act as a cache coherency point.
760 nfs_sync_mapping(filp->f_mapping);
761 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
762 nfs_zap_caches(inode);
763 if (mapping_mapped(filp->f_mapping))
764 nfs_revalidate_mapping(inode, filp->f_mapping);
771 * Lock a (portion of) a file
773 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
775 struct inode *inode = filp->f_mapping->host;
779 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
780 filp, fl->fl_type, fl->fl_flags,
781 (long long)fl->fl_start, (long long)fl->fl_end);
783 nfs_inc_stats(inode, NFSIOS_VFSLOCK);
785 /* No mandatory locks over NFS */
786 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
789 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
792 if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
793 ret = NFS_PROTO(inode)->lock_check_bounds(fl);
799 ret = do_getlk(filp, cmd, fl, is_local);
800 else if (fl->fl_type == F_UNLCK)
801 ret = do_unlk(filp, cmd, fl, is_local);
803 ret = do_setlk(filp, cmd, fl, is_local);
807 EXPORT_SYMBOL_GPL(nfs_lock);
810 * Lock a (portion of) a file
812 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
814 struct inode *inode = filp->f_mapping->host;
817 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
818 filp, fl->fl_type, fl->fl_flags);
820 if (!(fl->fl_flags & FL_FLOCK))
824 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
825 * any standard. In principle we might be able to support LOCK_MAND
826 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
827 * NFS code is not set up for it.
829 if (fl->fl_type & LOCK_MAND)
832 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
835 /* We're simulating flock() locks using posix locks on the server */
836 if (fl->fl_type == F_UNLCK)
837 return do_unlk(filp, cmd, fl, is_local);
838 return do_setlk(filp, cmd, fl, is_local);
840 EXPORT_SYMBOL_GPL(nfs_flock);
842 const struct file_operations nfs_file_operations = {
843 .llseek = nfs_file_llseek,
844 .read_iter = nfs_file_read,
845 .write_iter = nfs_file_write,
846 .mmap = nfs_file_mmap,
847 .open = nfs_file_open,
848 .flush = nfs_file_flush,
849 .release = nfs_file_release,
850 .fsync = nfs_file_fsync,
853 .splice_read = generic_file_splice_read,
854 .splice_write = iter_file_splice_write,
855 .check_flags = nfs_check_flags,
856 .setlease = simple_nosetlease,
858 EXPORT_SYMBOL_GPL(nfs_file_operations);