]> Git Repo - linux.git/blob - fs/xfs/libxfs/xfs_btree.c
ACPI: PM: s2idle: Check fixed wakeup events in acpi_s2idle_wake()
[linux.git] / fs / xfs / libxfs / xfs_btree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_errortag.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_alloc.h"
22 #include "xfs_log.h"
23
24 /*
25  * Cursor allocation zone.
26  */
27 kmem_zone_t     *xfs_btree_cur_zone;
28
29 /*
30  * Btree magic numbers.
31  */
32 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
33         { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
34           XFS_FIBT_MAGIC, 0 },
35         { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
36           XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
37           XFS_REFC_CRC_MAGIC }
38 };
39
40 uint32_t
41 xfs_btree_magic(
42         int                     crc,
43         xfs_btnum_t             btnum)
44 {
45         uint32_t                magic = xfs_magics[crc][btnum];
46
47         /* Ensure we asked for crc for crc-only magics. */
48         ASSERT(magic != 0);
49         return magic;
50 }
51
52 /*
53  * Check a long btree block header.  Return the address of the failing check,
54  * or NULL if everything is ok.
55  */
56 xfs_failaddr_t
57 __xfs_btree_check_lblock(
58         struct xfs_btree_cur    *cur,
59         struct xfs_btree_block  *block,
60         int                     level,
61         struct xfs_buf          *bp)
62 {
63         struct xfs_mount        *mp = cur->bc_mp;
64         xfs_btnum_t             btnum = cur->bc_btnum;
65         int                     crc = xfs_sb_version_hascrc(&mp->m_sb);
66
67         if (crc) {
68                 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
69                         return __this_address;
70                 if (block->bb_u.l.bb_blkno !=
71                     cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
72                         return __this_address;
73                 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
74                         return __this_address;
75         }
76
77         if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
78                 return __this_address;
79         if (be16_to_cpu(block->bb_level) != level)
80                 return __this_address;
81         if (be16_to_cpu(block->bb_numrecs) >
82             cur->bc_ops->get_maxrecs(cur, level))
83                 return __this_address;
84         if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
85             !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
86                         level + 1))
87                 return __this_address;
88         if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
89             !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
90                         level + 1))
91                 return __this_address;
92
93         return NULL;
94 }
95
96 /* Check a long btree block header. */
97 static int
98 xfs_btree_check_lblock(
99         struct xfs_btree_cur    *cur,
100         struct xfs_btree_block  *block,
101         int                     level,
102         struct xfs_buf          *bp)
103 {
104         struct xfs_mount        *mp = cur->bc_mp;
105         xfs_failaddr_t          fa;
106
107         fa = __xfs_btree_check_lblock(cur, block, level, bp);
108         if (XFS_IS_CORRUPT(mp, fa != NULL) ||
109             XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
110                 if (bp)
111                         trace_xfs_btree_corrupt(bp, _RET_IP_);
112                 return -EFSCORRUPTED;
113         }
114         return 0;
115 }
116
117 /*
118  * Check a short btree block header.  Return the address of the failing check,
119  * or NULL if everything is ok.
120  */
121 xfs_failaddr_t
122 __xfs_btree_check_sblock(
123         struct xfs_btree_cur    *cur,
124         struct xfs_btree_block  *block,
125         int                     level,
126         struct xfs_buf          *bp)
127 {
128         struct xfs_mount        *mp = cur->bc_mp;
129         xfs_btnum_t             btnum = cur->bc_btnum;
130         int                     crc = xfs_sb_version_hascrc(&mp->m_sb);
131
132         if (crc) {
133                 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
134                         return __this_address;
135                 if (block->bb_u.s.bb_blkno !=
136                     cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
137                         return __this_address;
138         }
139
140         if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
141                 return __this_address;
142         if (be16_to_cpu(block->bb_level) != level)
143                 return __this_address;
144         if (be16_to_cpu(block->bb_numrecs) >
145             cur->bc_ops->get_maxrecs(cur, level))
146                 return __this_address;
147         if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
148             !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
149                         level + 1))
150                 return __this_address;
151         if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
152             !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
153                         level + 1))
154                 return __this_address;
155
156         return NULL;
157 }
158
159 /* Check a short btree block header. */
160 STATIC int
161 xfs_btree_check_sblock(
162         struct xfs_btree_cur    *cur,
163         struct xfs_btree_block  *block,
164         int                     level,
165         struct xfs_buf          *bp)
166 {
167         struct xfs_mount        *mp = cur->bc_mp;
168         xfs_failaddr_t          fa;
169
170         fa = __xfs_btree_check_sblock(cur, block, level, bp);
171         if (XFS_IS_CORRUPT(mp, fa != NULL) ||
172             XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
173                 if (bp)
174                         trace_xfs_btree_corrupt(bp, _RET_IP_);
175                 return -EFSCORRUPTED;
176         }
177         return 0;
178 }
179
180 /*
181  * Debug routine: check that block header is ok.
182  */
183 int
184 xfs_btree_check_block(
185         struct xfs_btree_cur    *cur,   /* btree cursor */
186         struct xfs_btree_block  *block, /* generic btree block pointer */
187         int                     level,  /* level of the btree block */
188         struct xfs_buf          *bp)    /* buffer containing block, if any */
189 {
190         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
191                 return xfs_btree_check_lblock(cur, block, level, bp);
192         else
193                 return xfs_btree_check_sblock(cur, block, level, bp);
194 }
195
196 /* Check that this long pointer is valid and points within the fs. */
197 bool
198 xfs_btree_check_lptr(
199         struct xfs_btree_cur    *cur,
200         xfs_fsblock_t           fsbno,
201         int                     level)
202 {
203         if (level <= 0)
204                 return false;
205         return xfs_verify_fsbno(cur->bc_mp, fsbno);
206 }
207
208 /* Check that this short pointer is valid and points within the AG. */
209 bool
210 xfs_btree_check_sptr(
211         struct xfs_btree_cur    *cur,
212         xfs_agblock_t           agbno,
213         int                     level)
214 {
215         if (level <= 0)
216                 return false;
217         return xfs_verify_agbno(cur->bc_mp, cur->bc_private.a.agno, agbno);
218 }
219
220 /*
221  * Check that a given (indexed) btree pointer at a certain level of a
222  * btree is valid and doesn't point past where it should.
223  */
224 static int
225 xfs_btree_check_ptr(
226         struct xfs_btree_cur    *cur,
227         union xfs_btree_ptr     *ptr,
228         int                     index,
229         int                     level)
230 {
231         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
232                 if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
233                                 level))
234                         return 0;
235                 xfs_err(cur->bc_mp,
236 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
237                                 cur->bc_private.b.ip->i_ino,
238                                 cur->bc_private.b.whichfork, cur->bc_btnum,
239                                 level, index);
240         } else {
241                 if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
242                                 level))
243                         return 0;
244                 xfs_err(cur->bc_mp,
245 "AG %u: Corrupt btree %d pointer at level %d index %d.",
246                                 cur->bc_private.a.agno, cur->bc_btnum,
247                                 level, index);
248         }
249
250         return -EFSCORRUPTED;
251 }
252
253 #ifdef DEBUG
254 # define xfs_btree_debug_check_ptr      xfs_btree_check_ptr
255 #else
256 # define xfs_btree_debug_check_ptr(...) (0)
257 #endif
258
259 /*
260  * Calculate CRC on the whole btree block and stuff it into the
261  * long-form btree header.
262  *
263  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
264  * it into the buffer so recovery knows what the last modification was that made
265  * it to disk.
266  */
267 void
268 xfs_btree_lblock_calc_crc(
269         struct xfs_buf          *bp)
270 {
271         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
272         struct xfs_buf_log_item *bip = bp->b_log_item;
273
274         if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
275                 return;
276         if (bip)
277                 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
278         xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
279 }
280
281 bool
282 xfs_btree_lblock_verify_crc(
283         struct xfs_buf          *bp)
284 {
285         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
286         struct xfs_mount        *mp = bp->b_mount;
287
288         if (xfs_sb_version_hascrc(&mp->m_sb)) {
289                 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
290                         return false;
291                 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
292         }
293
294         return true;
295 }
296
297 /*
298  * Calculate CRC on the whole btree block and stuff it into the
299  * short-form btree header.
300  *
301  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
302  * it into the buffer so recovery knows what the last modification was that made
303  * it to disk.
304  */
305 void
306 xfs_btree_sblock_calc_crc(
307         struct xfs_buf          *bp)
308 {
309         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
310         struct xfs_buf_log_item *bip = bp->b_log_item;
311
312         if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
313                 return;
314         if (bip)
315                 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
316         xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
317 }
318
319 bool
320 xfs_btree_sblock_verify_crc(
321         struct xfs_buf          *bp)
322 {
323         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
324         struct xfs_mount        *mp = bp->b_mount;
325
326         if (xfs_sb_version_hascrc(&mp->m_sb)) {
327                 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
328                         return false;
329                 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
330         }
331
332         return true;
333 }
334
335 static int
336 xfs_btree_free_block(
337         struct xfs_btree_cur    *cur,
338         struct xfs_buf          *bp)
339 {
340         int                     error;
341
342         error = cur->bc_ops->free_block(cur, bp);
343         if (!error) {
344                 xfs_trans_binval(cur->bc_tp, bp);
345                 XFS_BTREE_STATS_INC(cur, free);
346         }
347         return error;
348 }
349
350 /*
351  * Delete the btree cursor.
352  */
353 void
354 xfs_btree_del_cursor(
355         xfs_btree_cur_t *cur,           /* btree cursor */
356         int             error)          /* del because of error */
357 {
358         int             i;              /* btree level */
359
360         /*
361          * Clear the buffer pointers, and release the buffers.
362          * If we're doing this in the face of an error, we
363          * need to make sure to inspect all of the entries
364          * in the bc_bufs array for buffers to be unlocked.
365          * This is because some of the btree code works from
366          * level n down to 0, and if we get an error along
367          * the way we won't have initialized all the entries
368          * down to 0.
369          */
370         for (i = 0; i < cur->bc_nlevels; i++) {
371                 if (cur->bc_bufs[i])
372                         xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
373                 else if (!error)
374                         break;
375         }
376         /*
377          * Can't free a bmap cursor without having dealt with the
378          * allocated indirect blocks' accounting.
379          */
380         ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
381                cur->bc_private.b.allocated == 0);
382         /*
383          * Free the cursor.
384          */
385         kmem_cache_free(xfs_btree_cur_zone, cur);
386 }
387
388 /*
389  * Duplicate the btree cursor.
390  * Allocate a new one, copy the record, re-get the buffers.
391  */
392 int                                     /* error */
393 xfs_btree_dup_cursor(
394         xfs_btree_cur_t *cur,           /* input cursor */
395         xfs_btree_cur_t **ncur)         /* output cursor */
396 {
397         xfs_buf_t       *bp;            /* btree block's buffer pointer */
398         int             error;          /* error return value */
399         int             i;              /* level number of btree block */
400         xfs_mount_t     *mp;            /* mount structure for filesystem */
401         xfs_btree_cur_t *new;           /* new cursor value */
402         xfs_trans_t     *tp;            /* transaction pointer, can be NULL */
403
404         tp = cur->bc_tp;
405         mp = cur->bc_mp;
406
407         /*
408          * Allocate a new cursor like the old one.
409          */
410         new = cur->bc_ops->dup_cursor(cur);
411
412         /*
413          * Copy the record currently in the cursor.
414          */
415         new->bc_rec = cur->bc_rec;
416
417         /*
418          * For each level current, re-get the buffer and copy the ptr value.
419          */
420         for (i = 0; i < new->bc_nlevels; i++) {
421                 new->bc_ptrs[i] = cur->bc_ptrs[i];
422                 new->bc_ra[i] = cur->bc_ra[i];
423                 bp = cur->bc_bufs[i];
424                 if (bp) {
425                         error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
426                                                    XFS_BUF_ADDR(bp), mp->m_bsize,
427                                                    0, &bp,
428                                                    cur->bc_ops->buf_ops);
429                         if (error) {
430                                 xfs_btree_del_cursor(new, error);
431                                 *ncur = NULL;
432                                 return error;
433                         }
434                 }
435                 new->bc_bufs[i] = bp;
436         }
437         *ncur = new;
438         return 0;
439 }
440
441 /*
442  * XFS btree block layout and addressing:
443  *
444  * There are two types of blocks in the btree: leaf and non-leaf blocks.
445  *
446  * The leaf record start with a header then followed by records containing
447  * the values.  A non-leaf block also starts with the same header, and
448  * then first contains lookup keys followed by an equal number of pointers
449  * to the btree blocks at the previous level.
450  *
451  *              +--------+-------+-------+-------+-------+-------+-------+
452  * Leaf:        | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
453  *              +--------+-------+-------+-------+-------+-------+-------+
454  *
455  *              +--------+-------+-------+-------+-------+-------+-------+
456  * Non-Leaf:    | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
457  *              +--------+-------+-------+-------+-------+-------+-------+
458  *
459  * The header is called struct xfs_btree_block for reasons better left unknown
460  * and comes in different versions for short (32bit) and long (64bit) block
461  * pointers.  The record and key structures are defined by the btree instances
462  * and opaque to the btree core.  The block pointers are simple disk endian
463  * integers, available in a short (32bit) and long (64bit) variant.
464  *
465  * The helpers below calculate the offset of a given record, key or pointer
466  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
467  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
468  * inside the btree block is done using indices starting at one, not zero!
469  *
470  * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
471  * overlapping intervals.  In such a tree, records are still sorted lowest to
472  * highest and indexed by the smallest key value that refers to the record.
473  * However, nodes are different: each pointer has two associated keys -- one
474  * indexing the lowest key available in the block(s) below (the same behavior
475  * as the key in a regular btree) and another indexing the highest key
476  * available in the block(s) below.  Because records are /not/ sorted by the
477  * highest key, all leaf block updates require us to compute the highest key
478  * that matches any record in the leaf and to recursively update the high keys
479  * in the nodes going further up in the tree, if necessary.  Nodes look like
480  * this:
481  *
482  *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
483  * Non-Leaf:    | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
484  *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
485  *
486  * To perform an interval query on an overlapped tree, perform the usual
487  * depth-first search and use the low and high keys to decide if we can skip
488  * that particular node.  If a leaf node is reached, return the records that
489  * intersect the interval.  Note that an interval query may return numerous
490  * entries.  For a non-overlapped tree, simply search for the record associated
491  * with the lowest key and iterate forward until a non-matching record is
492  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
493  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
494  * more detail.
495  *
496  * Why do we care about overlapping intervals?  Let's say you have a bunch of
497  * reverse mapping records on a reflink filesystem:
498  *
499  * 1: +- file A startblock B offset C length D -----------+
500  * 2:      +- file E startblock F offset G length H --------------+
501  * 3:      +- file I startblock F offset J length K --+
502  * 4:                                                        +- file L... --+
503  *
504  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
505  * we'd simply increment the length of record 1.  But how do we find the record
506  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
507  * record 3 because the keys are ordered first by startblock.  An interval
508  * query would return records 1 and 2 because they both overlap (B+D-1), and
509  * from that we can pick out record 1 as the appropriate left neighbor.
510  *
511  * In the non-overlapped case you can do a LE lookup and decrement the cursor
512  * because a record's interval must end before the next record.
513  */
514
515 /*
516  * Return size of the btree block header for this btree instance.
517  */
518 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
519 {
520         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
521                 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
522                         return XFS_BTREE_LBLOCK_CRC_LEN;
523                 return XFS_BTREE_LBLOCK_LEN;
524         }
525         if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
526                 return XFS_BTREE_SBLOCK_CRC_LEN;
527         return XFS_BTREE_SBLOCK_LEN;
528 }
529
530 /*
531  * Return size of btree block pointers for this btree instance.
532  */
533 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
534 {
535         return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
536                 sizeof(__be64) : sizeof(__be32);
537 }
538
539 /*
540  * Calculate offset of the n-th record in a btree block.
541  */
542 STATIC size_t
543 xfs_btree_rec_offset(
544         struct xfs_btree_cur    *cur,
545         int                     n)
546 {
547         return xfs_btree_block_len(cur) +
548                 (n - 1) * cur->bc_ops->rec_len;
549 }
550
551 /*
552  * Calculate offset of the n-th key in a btree block.
553  */
554 STATIC size_t
555 xfs_btree_key_offset(
556         struct xfs_btree_cur    *cur,
557         int                     n)
558 {
559         return xfs_btree_block_len(cur) +
560                 (n - 1) * cur->bc_ops->key_len;
561 }
562
563 /*
564  * Calculate offset of the n-th high key in a btree block.
565  */
566 STATIC size_t
567 xfs_btree_high_key_offset(
568         struct xfs_btree_cur    *cur,
569         int                     n)
570 {
571         return xfs_btree_block_len(cur) +
572                 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
573 }
574
575 /*
576  * Calculate offset of the n-th block pointer in a btree block.
577  */
578 STATIC size_t
579 xfs_btree_ptr_offset(
580         struct xfs_btree_cur    *cur,
581         int                     n,
582         int                     level)
583 {
584         return xfs_btree_block_len(cur) +
585                 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
586                 (n - 1) * xfs_btree_ptr_len(cur);
587 }
588
589 /*
590  * Return a pointer to the n-th record in the btree block.
591  */
592 union xfs_btree_rec *
593 xfs_btree_rec_addr(
594         struct xfs_btree_cur    *cur,
595         int                     n,
596         struct xfs_btree_block  *block)
597 {
598         return (union xfs_btree_rec *)
599                 ((char *)block + xfs_btree_rec_offset(cur, n));
600 }
601
602 /*
603  * Return a pointer to the n-th key in the btree block.
604  */
605 union xfs_btree_key *
606 xfs_btree_key_addr(
607         struct xfs_btree_cur    *cur,
608         int                     n,
609         struct xfs_btree_block  *block)
610 {
611         return (union xfs_btree_key *)
612                 ((char *)block + xfs_btree_key_offset(cur, n));
613 }
614
615 /*
616  * Return a pointer to the n-th high key in the btree block.
617  */
618 union xfs_btree_key *
619 xfs_btree_high_key_addr(
620         struct xfs_btree_cur    *cur,
621         int                     n,
622         struct xfs_btree_block  *block)
623 {
624         return (union xfs_btree_key *)
625                 ((char *)block + xfs_btree_high_key_offset(cur, n));
626 }
627
628 /*
629  * Return a pointer to the n-th block pointer in the btree block.
630  */
631 union xfs_btree_ptr *
632 xfs_btree_ptr_addr(
633         struct xfs_btree_cur    *cur,
634         int                     n,
635         struct xfs_btree_block  *block)
636 {
637         int                     level = xfs_btree_get_level(block);
638
639         ASSERT(block->bb_level != 0);
640
641         return (union xfs_btree_ptr *)
642                 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
643 }
644
645 /*
646  * Get the root block which is stored in the inode.
647  *
648  * For now this btree implementation assumes the btree root is always
649  * stored in the if_broot field of an inode fork.
650  */
651 STATIC struct xfs_btree_block *
652 xfs_btree_get_iroot(
653         struct xfs_btree_cur    *cur)
654 {
655         struct xfs_ifork        *ifp;
656
657         ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
658         return (struct xfs_btree_block *)ifp->if_broot;
659 }
660
661 /*
662  * Retrieve the block pointer from the cursor at the given level.
663  * This may be an inode btree root or from a buffer.
664  */
665 struct xfs_btree_block *                /* generic btree block pointer */
666 xfs_btree_get_block(
667         struct xfs_btree_cur    *cur,   /* btree cursor */
668         int                     level,  /* level in btree */
669         struct xfs_buf          **bpp)  /* buffer containing the block */
670 {
671         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
672             (level == cur->bc_nlevels - 1)) {
673                 *bpp = NULL;
674                 return xfs_btree_get_iroot(cur);
675         }
676
677         *bpp = cur->bc_bufs[level];
678         return XFS_BUF_TO_BLOCK(*bpp);
679 }
680
681 /*
682  * Change the cursor to point to the first record at the given level.
683  * Other levels are unaffected.
684  */
685 STATIC int                              /* success=1, failure=0 */
686 xfs_btree_firstrec(
687         xfs_btree_cur_t         *cur,   /* btree cursor */
688         int                     level)  /* level to change */
689 {
690         struct xfs_btree_block  *block; /* generic btree block pointer */
691         xfs_buf_t               *bp;    /* buffer containing block */
692
693         /*
694          * Get the block pointer for this level.
695          */
696         block = xfs_btree_get_block(cur, level, &bp);
697         if (xfs_btree_check_block(cur, block, level, bp))
698                 return 0;
699         /*
700          * It's empty, there is no such record.
701          */
702         if (!block->bb_numrecs)
703                 return 0;
704         /*
705          * Set the ptr value to 1, that's the first record/key.
706          */
707         cur->bc_ptrs[level] = 1;
708         return 1;
709 }
710
711 /*
712  * Change the cursor to point to the last record in the current block
713  * at the given level.  Other levels are unaffected.
714  */
715 STATIC int                              /* success=1, failure=0 */
716 xfs_btree_lastrec(
717         xfs_btree_cur_t         *cur,   /* btree cursor */
718         int                     level)  /* level to change */
719 {
720         struct xfs_btree_block  *block; /* generic btree block pointer */
721         xfs_buf_t               *bp;    /* buffer containing block */
722
723         /*
724          * Get the block pointer for this level.
725          */
726         block = xfs_btree_get_block(cur, level, &bp);
727         if (xfs_btree_check_block(cur, block, level, bp))
728                 return 0;
729         /*
730          * It's empty, there is no such record.
731          */
732         if (!block->bb_numrecs)
733                 return 0;
734         /*
735          * Set the ptr value to numrecs, that's the last record/key.
736          */
737         cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
738         return 1;
739 }
740
741 /*
742  * Compute first and last byte offsets for the fields given.
743  * Interprets the offsets table, which contains struct field offsets.
744  */
745 void
746 xfs_btree_offsets(
747         int64_t         fields,         /* bitmask of fields */
748         const short     *offsets,       /* table of field offsets */
749         int             nbits,          /* number of bits to inspect */
750         int             *first,         /* output: first byte offset */
751         int             *last)          /* output: last byte offset */
752 {
753         int             i;              /* current bit number */
754         int64_t         imask;          /* mask for current bit number */
755
756         ASSERT(fields != 0);
757         /*
758          * Find the lowest bit, so the first byte offset.
759          */
760         for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
761                 if (imask & fields) {
762                         *first = offsets[i];
763                         break;
764                 }
765         }
766         /*
767          * Find the highest bit, so the last byte offset.
768          */
769         for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
770                 if (imask & fields) {
771                         *last = offsets[i + 1] - 1;
772                         break;
773                 }
774         }
775 }
776
777 /*
778  * Get a buffer for the block, return it read in.
779  * Long-form addressing.
780  */
781 int
782 xfs_btree_read_bufl(
783         struct xfs_mount        *mp,            /* file system mount point */
784         struct xfs_trans        *tp,            /* transaction pointer */
785         xfs_fsblock_t           fsbno,          /* file system block number */
786         struct xfs_buf          **bpp,          /* buffer for fsbno */
787         int                     refval,         /* ref count value for buffer */
788         const struct xfs_buf_ops *ops)
789 {
790         struct xfs_buf          *bp;            /* return value */
791         xfs_daddr_t             d;              /* real disk block address */
792         int                     error;
793
794         if (!xfs_verify_fsbno(mp, fsbno))
795                 return -EFSCORRUPTED;
796         d = XFS_FSB_TO_DADDR(mp, fsbno);
797         error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
798                                    mp->m_bsize, 0, &bp, ops);
799         if (error)
800                 return error;
801         if (bp)
802                 xfs_buf_set_ref(bp, refval);
803         *bpp = bp;
804         return 0;
805 }
806
807 /*
808  * Read-ahead the block, don't wait for it, don't return a buffer.
809  * Long-form addressing.
810  */
811 /* ARGSUSED */
812 void
813 xfs_btree_reada_bufl(
814         struct xfs_mount        *mp,            /* file system mount point */
815         xfs_fsblock_t           fsbno,          /* file system block number */
816         xfs_extlen_t            count,          /* count of filesystem blocks */
817         const struct xfs_buf_ops *ops)
818 {
819         xfs_daddr_t             d;
820
821         ASSERT(fsbno != NULLFSBLOCK);
822         d = XFS_FSB_TO_DADDR(mp, fsbno);
823         xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
824 }
825
826 /*
827  * Read-ahead the block, don't wait for it, don't return a buffer.
828  * Short-form addressing.
829  */
830 /* ARGSUSED */
831 void
832 xfs_btree_reada_bufs(
833         struct xfs_mount        *mp,            /* file system mount point */
834         xfs_agnumber_t          agno,           /* allocation group number */
835         xfs_agblock_t           agbno,          /* allocation group block number */
836         xfs_extlen_t            count,          /* count of filesystem blocks */
837         const struct xfs_buf_ops *ops)
838 {
839         xfs_daddr_t             d;
840
841         ASSERT(agno != NULLAGNUMBER);
842         ASSERT(agbno != NULLAGBLOCK);
843         d = XFS_AGB_TO_DADDR(mp, agno, agbno);
844         xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
845 }
846
847 STATIC int
848 xfs_btree_readahead_lblock(
849         struct xfs_btree_cur    *cur,
850         int                     lr,
851         struct xfs_btree_block  *block)
852 {
853         int                     rval = 0;
854         xfs_fsblock_t           left = be64_to_cpu(block->bb_u.l.bb_leftsib);
855         xfs_fsblock_t           right = be64_to_cpu(block->bb_u.l.bb_rightsib);
856
857         if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
858                 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
859                                      cur->bc_ops->buf_ops);
860                 rval++;
861         }
862
863         if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
864                 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
865                                      cur->bc_ops->buf_ops);
866                 rval++;
867         }
868
869         return rval;
870 }
871
872 STATIC int
873 xfs_btree_readahead_sblock(
874         struct xfs_btree_cur    *cur,
875         int                     lr,
876         struct xfs_btree_block *block)
877 {
878         int                     rval = 0;
879         xfs_agblock_t           left = be32_to_cpu(block->bb_u.s.bb_leftsib);
880         xfs_agblock_t           right = be32_to_cpu(block->bb_u.s.bb_rightsib);
881
882
883         if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
884                 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
885                                      left, 1, cur->bc_ops->buf_ops);
886                 rval++;
887         }
888
889         if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
890                 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
891                                      right, 1, cur->bc_ops->buf_ops);
892                 rval++;
893         }
894
895         return rval;
896 }
897
898 /*
899  * Read-ahead btree blocks, at the given level.
900  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
901  */
902 STATIC int
903 xfs_btree_readahead(
904         struct xfs_btree_cur    *cur,           /* btree cursor */
905         int                     lev,            /* level in btree */
906         int                     lr)             /* left/right bits */
907 {
908         struct xfs_btree_block  *block;
909
910         /*
911          * No readahead needed if we are at the root level and the
912          * btree root is stored in the inode.
913          */
914         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
915             (lev == cur->bc_nlevels - 1))
916                 return 0;
917
918         if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
919                 return 0;
920
921         cur->bc_ra[lev] |= lr;
922         block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
923
924         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
925                 return xfs_btree_readahead_lblock(cur, lr, block);
926         return xfs_btree_readahead_sblock(cur, lr, block);
927 }
928
929 STATIC int
930 xfs_btree_ptr_to_daddr(
931         struct xfs_btree_cur    *cur,
932         union xfs_btree_ptr     *ptr,
933         xfs_daddr_t             *daddr)
934 {
935         xfs_fsblock_t           fsbno;
936         xfs_agblock_t           agbno;
937         int                     error;
938
939         error = xfs_btree_check_ptr(cur, ptr, 0, 1);
940         if (error)
941                 return error;
942
943         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
944                 fsbno = be64_to_cpu(ptr->l);
945                 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
946         } else {
947                 agbno = be32_to_cpu(ptr->s);
948                 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
949                                 agbno);
950         }
951
952         return 0;
953 }
954
955 /*
956  * Readahead @count btree blocks at the given @ptr location.
957  *
958  * We don't need to care about long or short form btrees here as we have a
959  * method of converting the ptr directly to a daddr available to us.
960  */
961 STATIC void
962 xfs_btree_readahead_ptr(
963         struct xfs_btree_cur    *cur,
964         union xfs_btree_ptr     *ptr,
965         xfs_extlen_t            count)
966 {
967         xfs_daddr_t             daddr;
968
969         if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
970                 return;
971         xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
972                           cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
973 }
974
975 /*
976  * Set the buffer for level "lev" in the cursor to bp, releasing
977  * any previous buffer.
978  */
979 STATIC void
980 xfs_btree_setbuf(
981         xfs_btree_cur_t         *cur,   /* btree cursor */
982         int                     lev,    /* level in btree */
983         xfs_buf_t               *bp)    /* new buffer to set */
984 {
985         struct xfs_btree_block  *b;     /* btree block */
986
987         if (cur->bc_bufs[lev])
988                 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
989         cur->bc_bufs[lev] = bp;
990         cur->bc_ra[lev] = 0;
991
992         b = XFS_BUF_TO_BLOCK(bp);
993         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
994                 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
995                         cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
996                 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
997                         cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
998         } else {
999                 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1000                         cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1001                 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1002                         cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1003         }
1004 }
1005
1006 bool
1007 xfs_btree_ptr_is_null(
1008         struct xfs_btree_cur    *cur,
1009         union xfs_btree_ptr     *ptr)
1010 {
1011         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1012                 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1013         else
1014                 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1015 }
1016
1017 STATIC void
1018 xfs_btree_set_ptr_null(
1019         struct xfs_btree_cur    *cur,
1020         union xfs_btree_ptr     *ptr)
1021 {
1022         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1023                 ptr->l = cpu_to_be64(NULLFSBLOCK);
1024         else
1025                 ptr->s = cpu_to_be32(NULLAGBLOCK);
1026 }
1027
1028 /*
1029  * Get/set/init sibling pointers
1030  */
1031 void
1032 xfs_btree_get_sibling(
1033         struct xfs_btree_cur    *cur,
1034         struct xfs_btree_block  *block,
1035         union xfs_btree_ptr     *ptr,
1036         int                     lr)
1037 {
1038         ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1039
1040         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1041                 if (lr == XFS_BB_RIGHTSIB)
1042                         ptr->l = block->bb_u.l.bb_rightsib;
1043                 else
1044                         ptr->l = block->bb_u.l.bb_leftsib;
1045         } else {
1046                 if (lr == XFS_BB_RIGHTSIB)
1047                         ptr->s = block->bb_u.s.bb_rightsib;
1048                 else
1049                         ptr->s = block->bb_u.s.bb_leftsib;
1050         }
1051 }
1052
1053 STATIC void
1054 xfs_btree_set_sibling(
1055         struct xfs_btree_cur    *cur,
1056         struct xfs_btree_block  *block,
1057         union xfs_btree_ptr     *ptr,
1058         int                     lr)
1059 {
1060         ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1061
1062         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1063                 if (lr == XFS_BB_RIGHTSIB)
1064                         block->bb_u.l.bb_rightsib = ptr->l;
1065                 else
1066                         block->bb_u.l.bb_leftsib = ptr->l;
1067         } else {
1068                 if (lr == XFS_BB_RIGHTSIB)
1069                         block->bb_u.s.bb_rightsib = ptr->s;
1070                 else
1071                         block->bb_u.s.bb_leftsib = ptr->s;
1072         }
1073 }
1074
1075 void
1076 xfs_btree_init_block_int(
1077         struct xfs_mount        *mp,
1078         struct xfs_btree_block  *buf,
1079         xfs_daddr_t             blkno,
1080         xfs_btnum_t             btnum,
1081         __u16                   level,
1082         __u16                   numrecs,
1083         __u64                   owner,
1084         unsigned int            flags)
1085 {
1086         int                     crc = xfs_sb_version_hascrc(&mp->m_sb);
1087         __u32                   magic = xfs_btree_magic(crc, btnum);
1088
1089         buf->bb_magic = cpu_to_be32(magic);
1090         buf->bb_level = cpu_to_be16(level);
1091         buf->bb_numrecs = cpu_to_be16(numrecs);
1092
1093         if (flags & XFS_BTREE_LONG_PTRS) {
1094                 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1095                 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1096                 if (crc) {
1097                         buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1098                         buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1099                         uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1100                         buf->bb_u.l.bb_pad = 0;
1101                         buf->bb_u.l.bb_lsn = 0;
1102                 }
1103         } else {
1104                 /* owner is a 32 bit value on short blocks */
1105                 __u32 __owner = (__u32)owner;
1106
1107                 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1108                 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1109                 if (crc) {
1110                         buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1111                         buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1112                         uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1113                         buf->bb_u.s.bb_lsn = 0;
1114                 }
1115         }
1116 }
1117
1118 void
1119 xfs_btree_init_block(
1120         struct xfs_mount *mp,
1121         struct xfs_buf  *bp,
1122         xfs_btnum_t     btnum,
1123         __u16           level,
1124         __u16           numrecs,
1125         __u64           owner)
1126 {
1127         xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1128                                  btnum, level, numrecs, owner, 0);
1129 }
1130
1131 STATIC void
1132 xfs_btree_init_block_cur(
1133         struct xfs_btree_cur    *cur,
1134         struct xfs_buf          *bp,
1135         int                     level,
1136         int                     numrecs)
1137 {
1138         __u64                   owner;
1139
1140         /*
1141          * we can pull the owner from the cursor right now as the different
1142          * owners align directly with the pointer size of the btree. This may
1143          * change in future, but is safe for current users of the generic btree
1144          * code.
1145          */
1146         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1147                 owner = cur->bc_private.b.ip->i_ino;
1148         else
1149                 owner = cur->bc_private.a.agno;
1150
1151         xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1152                                  cur->bc_btnum, level, numrecs,
1153                                  owner, cur->bc_flags);
1154 }
1155
1156 /*
1157  * Return true if ptr is the last record in the btree and
1158  * we need to track updates to this record.  The decision
1159  * will be further refined in the update_lastrec method.
1160  */
1161 STATIC int
1162 xfs_btree_is_lastrec(
1163         struct xfs_btree_cur    *cur,
1164         struct xfs_btree_block  *block,
1165         int                     level)
1166 {
1167         union xfs_btree_ptr     ptr;
1168
1169         if (level > 0)
1170                 return 0;
1171         if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1172                 return 0;
1173
1174         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1175         if (!xfs_btree_ptr_is_null(cur, &ptr))
1176                 return 0;
1177         return 1;
1178 }
1179
1180 STATIC void
1181 xfs_btree_buf_to_ptr(
1182         struct xfs_btree_cur    *cur,
1183         struct xfs_buf          *bp,
1184         union xfs_btree_ptr     *ptr)
1185 {
1186         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1187                 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1188                                         XFS_BUF_ADDR(bp)));
1189         else {
1190                 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1191                                         XFS_BUF_ADDR(bp)));
1192         }
1193 }
1194
1195 STATIC void
1196 xfs_btree_set_refs(
1197         struct xfs_btree_cur    *cur,
1198         struct xfs_buf          *bp)
1199 {
1200         switch (cur->bc_btnum) {
1201         case XFS_BTNUM_BNO:
1202         case XFS_BTNUM_CNT:
1203                 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1204                 break;
1205         case XFS_BTNUM_INO:
1206         case XFS_BTNUM_FINO:
1207                 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1208                 break;
1209         case XFS_BTNUM_BMAP:
1210                 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1211                 break;
1212         case XFS_BTNUM_RMAP:
1213                 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1214                 break;
1215         case XFS_BTNUM_REFC:
1216                 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1217                 break;
1218         default:
1219                 ASSERT(0);
1220         }
1221 }
1222
1223 STATIC int
1224 xfs_btree_get_buf_block(
1225         struct xfs_btree_cur    *cur,
1226         union xfs_btree_ptr     *ptr,
1227         struct xfs_btree_block  **block,
1228         struct xfs_buf          **bpp)
1229 {
1230         struct xfs_mount        *mp = cur->bc_mp;
1231         xfs_daddr_t             d;
1232         int                     error;
1233
1234         error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1235         if (error)
1236                 return error;
1237         error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1238                         0, bpp);
1239         if (error)
1240                 return error;
1241
1242         (*bpp)->b_ops = cur->bc_ops->buf_ops;
1243         *block = XFS_BUF_TO_BLOCK(*bpp);
1244         return 0;
1245 }
1246
1247 /*
1248  * Read in the buffer at the given ptr and return the buffer and
1249  * the block pointer within the buffer.
1250  */
1251 STATIC int
1252 xfs_btree_read_buf_block(
1253         struct xfs_btree_cur    *cur,
1254         union xfs_btree_ptr     *ptr,
1255         int                     flags,
1256         struct xfs_btree_block  **block,
1257         struct xfs_buf          **bpp)
1258 {
1259         struct xfs_mount        *mp = cur->bc_mp;
1260         xfs_daddr_t             d;
1261         int                     error;
1262
1263         /* need to sort out how callers deal with failures first */
1264         ASSERT(!(flags & XBF_TRYLOCK));
1265
1266         error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1267         if (error)
1268                 return error;
1269         error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1270                                    mp->m_bsize, flags, bpp,
1271                                    cur->bc_ops->buf_ops);
1272         if (error)
1273                 return error;
1274
1275         xfs_btree_set_refs(cur, *bpp);
1276         *block = XFS_BUF_TO_BLOCK(*bpp);
1277         return 0;
1278 }
1279
1280 /*
1281  * Copy keys from one btree block to another.
1282  */
1283 STATIC void
1284 xfs_btree_copy_keys(
1285         struct xfs_btree_cur    *cur,
1286         union xfs_btree_key     *dst_key,
1287         union xfs_btree_key     *src_key,
1288         int                     numkeys)
1289 {
1290         ASSERT(numkeys >= 0);
1291         memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1292 }
1293
1294 /*
1295  * Copy records from one btree block to another.
1296  */
1297 STATIC void
1298 xfs_btree_copy_recs(
1299         struct xfs_btree_cur    *cur,
1300         union xfs_btree_rec     *dst_rec,
1301         union xfs_btree_rec     *src_rec,
1302         int                     numrecs)
1303 {
1304         ASSERT(numrecs >= 0);
1305         memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1306 }
1307
1308 /*
1309  * Copy block pointers from one btree block to another.
1310  */
1311 STATIC void
1312 xfs_btree_copy_ptrs(
1313         struct xfs_btree_cur    *cur,
1314         union xfs_btree_ptr     *dst_ptr,
1315         union xfs_btree_ptr     *src_ptr,
1316         int                     numptrs)
1317 {
1318         ASSERT(numptrs >= 0);
1319         memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1320 }
1321
1322 /*
1323  * Shift keys one index left/right inside a single btree block.
1324  */
1325 STATIC void
1326 xfs_btree_shift_keys(
1327         struct xfs_btree_cur    *cur,
1328         union xfs_btree_key     *key,
1329         int                     dir,
1330         int                     numkeys)
1331 {
1332         char                    *dst_key;
1333
1334         ASSERT(numkeys >= 0);
1335         ASSERT(dir == 1 || dir == -1);
1336
1337         dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1338         memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1339 }
1340
1341 /*
1342  * Shift records one index left/right inside a single btree block.
1343  */
1344 STATIC void
1345 xfs_btree_shift_recs(
1346         struct xfs_btree_cur    *cur,
1347         union xfs_btree_rec     *rec,
1348         int                     dir,
1349         int                     numrecs)
1350 {
1351         char                    *dst_rec;
1352
1353         ASSERT(numrecs >= 0);
1354         ASSERT(dir == 1 || dir == -1);
1355
1356         dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1357         memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1358 }
1359
1360 /*
1361  * Shift block pointers one index left/right inside a single btree block.
1362  */
1363 STATIC void
1364 xfs_btree_shift_ptrs(
1365         struct xfs_btree_cur    *cur,
1366         union xfs_btree_ptr     *ptr,
1367         int                     dir,
1368         int                     numptrs)
1369 {
1370         char                    *dst_ptr;
1371
1372         ASSERT(numptrs >= 0);
1373         ASSERT(dir == 1 || dir == -1);
1374
1375         dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1376         memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1377 }
1378
1379 /*
1380  * Log key values from the btree block.
1381  */
1382 STATIC void
1383 xfs_btree_log_keys(
1384         struct xfs_btree_cur    *cur,
1385         struct xfs_buf          *bp,
1386         int                     first,
1387         int                     last)
1388 {
1389
1390         if (bp) {
1391                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1392                 xfs_trans_log_buf(cur->bc_tp, bp,
1393                                   xfs_btree_key_offset(cur, first),
1394                                   xfs_btree_key_offset(cur, last + 1) - 1);
1395         } else {
1396                 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1397                                 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1398         }
1399 }
1400
1401 /*
1402  * Log record values from the btree block.
1403  */
1404 void
1405 xfs_btree_log_recs(
1406         struct xfs_btree_cur    *cur,
1407         struct xfs_buf          *bp,
1408         int                     first,
1409         int                     last)
1410 {
1411
1412         xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1413         xfs_trans_log_buf(cur->bc_tp, bp,
1414                           xfs_btree_rec_offset(cur, first),
1415                           xfs_btree_rec_offset(cur, last + 1) - 1);
1416
1417 }
1418
1419 /*
1420  * Log block pointer fields from a btree block (nonleaf).
1421  */
1422 STATIC void
1423 xfs_btree_log_ptrs(
1424         struct xfs_btree_cur    *cur,   /* btree cursor */
1425         struct xfs_buf          *bp,    /* buffer containing btree block */
1426         int                     first,  /* index of first pointer to log */
1427         int                     last)   /* index of last pointer to log */
1428 {
1429
1430         if (bp) {
1431                 struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
1432                 int                     level = xfs_btree_get_level(block);
1433
1434                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1435                 xfs_trans_log_buf(cur->bc_tp, bp,
1436                                 xfs_btree_ptr_offset(cur, first, level),
1437                                 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1438         } else {
1439                 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1440                         xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1441         }
1442
1443 }
1444
1445 /*
1446  * Log fields from a btree block header.
1447  */
1448 void
1449 xfs_btree_log_block(
1450         struct xfs_btree_cur    *cur,   /* btree cursor */
1451         struct xfs_buf          *bp,    /* buffer containing btree block */
1452         int                     fields) /* mask of fields: XFS_BB_... */
1453 {
1454         int                     first;  /* first byte offset logged */
1455         int                     last;   /* last byte offset logged */
1456         static const short      soffsets[] = {  /* table of offsets (short) */
1457                 offsetof(struct xfs_btree_block, bb_magic),
1458                 offsetof(struct xfs_btree_block, bb_level),
1459                 offsetof(struct xfs_btree_block, bb_numrecs),
1460                 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1461                 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1462                 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1463                 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1464                 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1465                 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1466                 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1467                 XFS_BTREE_SBLOCK_CRC_LEN
1468         };
1469         static const short      loffsets[] = {  /* table of offsets (long) */
1470                 offsetof(struct xfs_btree_block, bb_magic),
1471                 offsetof(struct xfs_btree_block, bb_level),
1472                 offsetof(struct xfs_btree_block, bb_numrecs),
1473                 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1474                 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1475                 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1476                 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1477                 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1478                 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1479                 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1480                 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1481                 XFS_BTREE_LBLOCK_CRC_LEN
1482         };
1483
1484         if (bp) {
1485                 int nbits;
1486
1487                 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1488                         /*
1489                          * We don't log the CRC when updating a btree
1490                          * block but instead recreate it during log
1491                          * recovery.  As the log buffers have checksums
1492                          * of their own this is safe and avoids logging a crc
1493                          * update in a lot of places.
1494                          */
1495                         if (fields == XFS_BB_ALL_BITS)
1496                                 fields = XFS_BB_ALL_BITS_CRC;
1497                         nbits = XFS_BB_NUM_BITS_CRC;
1498                 } else {
1499                         nbits = XFS_BB_NUM_BITS;
1500                 }
1501                 xfs_btree_offsets(fields,
1502                                   (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1503                                         loffsets : soffsets,
1504                                   nbits, &first, &last);
1505                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1506                 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1507         } else {
1508                 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1509                         xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1510         }
1511 }
1512
1513 /*
1514  * Increment cursor by one record at the level.
1515  * For nonzero levels the leaf-ward information is untouched.
1516  */
1517 int                                             /* error */
1518 xfs_btree_increment(
1519         struct xfs_btree_cur    *cur,
1520         int                     level,
1521         int                     *stat)          /* success/failure */
1522 {
1523         struct xfs_btree_block  *block;
1524         union xfs_btree_ptr     ptr;
1525         struct xfs_buf          *bp;
1526         int                     error;          /* error return value */
1527         int                     lev;
1528
1529         ASSERT(level < cur->bc_nlevels);
1530
1531         /* Read-ahead to the right at this level. */
1532         xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1533
1534         /* Get a pointer to the btree block. */
1535         block = xfs_btree_get_block(cur, level, &bp);
1536
1537 #ifdef DEBUG
1538         error = xfs_btree_check_block(cur, block, level, bp);
1539         if (error)
1540                 goto error0;
1541 #endif
1542
1543         /* We're done if we remain in the block after the increment. */
1544         if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1545                 goto out1;
1546
1547         /* Fail if we just went off the right edge of the tree. */
1548         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1549         if (xfs_btree_ptr_is_null(cur, &ptr))
1550                 goto out0;
1551
1552         XFS_BTREE_STATS_INC(cur, increment);
1553
1554         /*
1555          * March up the tree incrementing pointers.
1556          * Stop when we don't go off the right edge of a block.
1557          */
1558         for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1559                 block = xfs_btree_get_block(cur, lev, &bp);
1560
1561 #ifdef DEBUG
1562                 error = xfs_btree_check_block(cur, block, lev, bp);
1563                 if (error)
1564                         goto error0;
1565 #endif
1566
1567                 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1568                         break;
1569
1570                 /* Read-ahead the right block for the next loop. */
1571                 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1572         }
1573
1574         /*
1575          * If we went off the root then we are either seriously
1576          * confused or have the tree root in an inode.
1577          */
1578         if (lev == cur->bc_nlevels) {
1579                 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1580                         goto out0;
1581                 ASSERT(0);
1582                 error = -EFSCORRUPTED;
1583                 goto error0;
1584         }
1585         ASSERT(lev < cur->bc_nlevels);
1586
1587         /*
1588          * Now walk back down the tree, fixing up the cursor's buffer
1589          * pointers and key numbers.
1590          */
1591         for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1592                 union xfs_btree_ptr     *ptrp;
1593
1594                 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1595                 --lev;
1596                 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1597                 if (error)
1598                         goto error0;
1599
1600                 xfs_btree_setbuf(cur, lev, bp);
1601                 cur->bc_ptrs[lev] = 1;
1602         }
1603 out1:
1604         *stat = 1;
1605         return 0;
1606
1607 out0:
1608         *stat = 0;
1609         return 0;
1610
1611 error0:
1612         return error;
1613 }
1614
1615 /*
1616  * Decrement cursor by one record at the level.
1617  * For nonzero levels the leaf-ward information is untouched.
1618  */
1619 int                                             /* error */
1620 xfs_btree_decrement(
1621         struct xfs_btree_cur    *cur,
1622         int                     level,
1623         int                     *stat)          /* success/failure */
1624 {
1625         struct xfs_btree_block  *block;
1626         xfs_buf_t               *bp;
1627         int                     error;          /* error return value */
1628         int                     lev;
1629         union xfs_btree_ptr     ptr;
1630
1631         ASSERT(level < cur->bc_nlevels);
1632
1633         /* Read-ahead to the left at this level. */
1634         xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1635
1636         /* We're done if we remain in the block after the decrement. */
1637         if (--cur->bc_ptrs[level] > 0)
1638                 goto out1;
1639
1640         /* Get a pointer to the btree block. */
1641         block = xfs_btree_get_block(cur, level, &bp);
1642
1643 #ifdef DEBUG
1644         error = xfs_btree_check_block(cur, block, level, bp);
1645         if (error)
1646                 goto error0;
1647 #endif
1648
1649         /* Fail if we just went off the left edge of the tree. */
1650         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1651         if (xfs_btree_ptr_is_null(cur, &ptr))
1652                 goto out0;
1653
1654         XFS_BTREE_STATS_INC(cur, decrement);
1655
1656         /*
1657          * March up the tree decrementing pointers.
1658          * Stop when we don't go off the left edge of a block.
1659          */
1660         for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1661                 if (--cur->bc_ptrs[lev] > 0)
1662                         break;
1663                 /* Read-ahead the left block for the next loop. */
1664                 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1665         }
1666
1667         /*
1668          * If we went off the root then we are seriously confused.
1669          * or the root of the tree is in an inode.
1670          */
1671         if (lev == cur->bc_nlevels) {
1672                 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1673                         goto out0;
1674                 ASSERT(0);
1675                 error = -EFSCORRUPTED;
1676                 goto error0;
1677         }
1678         ASSERT(lev < cur->bc_nlevels);
1679
1680         /*
1681          * Now walk back down the tree, fixing up the cursor's buffer
1682          * pointers and key numbers.
1683          */
1684         for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1685                 union xfs_btree_ptr     *ptrp;
1686
1687                 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1688                 --lev;
1689                 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1690                 if (error)
1691                         goto error0;
1692                 xfs_btree_setbuf(cur, lev, bp);
1693                 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1694         }
1695 out1:
1696         *stat = 1;
1697         return 0;
1698
1699 out0:
1700         *stat = 0;
1701         return 0;
1702
1703 error0:
1704         return error;
1705 }
1706
1707 int
1708 xfs_btree_lookup_get_block(
1709         struct xfs_btree_cur    *cur,   /* btree cursor */
1710         int                     level,  /* level in the btree */
1711         union xfs_btree_ptr     *pp,    /* ptr to btree block */
1712         struct xfs_btree_block  **blkp) /* return btree block */
1713 {
1714         struct xfs_buf          *bp;    /* buffer pointer for btree block */
1715         xfs_daddr_t             daddr;
1716         int                     error = 0;
1717
1718         /* special case the root block if in an inode */
1719         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1720             (level == cur->bc_nlevels - 1)) {
1721                 *blkp = xfs_btree_get_iroot(cur);
1722                 return 0;
1723         }
1724
1725         /*
1726          * If the old buffer at this level for the disk address we are
1727          * looking for re-use it.
1728          *
1729          * Otherwise throw it away and get a new one.
1730          */
1731         bp = cur->bc_bufs[level];
1732         error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1733         if (error)
1734                 return error;
1735         if (bp && XFS_BUF_ADDR(bp) == daddr) {
1736                 *blkp = XFS_BUF_TO_BLOCK(bp);
1737                 return 0;
1738         }
1739
1740         error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1741         if (error)
1742                 return error;
1743
1744         /* Check the inode owner since the verifiers don't. */
1745         if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1746             !(cur->bc_private.b.flags & XFS_BTCUR_BPRV_INVALID_OWNER) &&
1747             (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1748             be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1749                         cur->bc_private.b.ip->i_ino)
1750                 goto out_bad;
1751
1752         /* Did we get the level we were looking for? */
1753         if (be16_to_cpu((*blkp)->bb_level) != level)
1754                 goto out_bad;
1755
1756         /* Check that internal nodes have at least one record. */
1757         if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1758                 goto out_bad;
1759
1760         xfs_btree_setbuf(cur, level, bp);
1761         return 0;
1762
1763 out_bad:
1764         *blkp = NULL;
1765         xfs_buf_corruption_error(bp);
1766         xfs_trans_brelse(cur->bc_tp, bp);
1767         return -EFSCORRUPTED;
1768 }
1769
1770 /*
1771  * Get current search key.  For level 0 we don't actually have a key
1772  * structure so we make one up from the record.  For all other levels
1773  * we just return the right key.
1774  */
1775 STATIC union xfs_btree_key *
1776 xfs_lookup_get_search_key(
1777         struct xfs_btree_cur    *cur,
1778         int                     level,
1779         int                     keyno,
1780         struct xfs_btree_block  *block,
1781         union xfs_btree_key     *kp)
1782 {
1783         if (level == 0) {
1784                 cur->bc_ops->init_key_from_rec(kp,
1785                                 xfs_btree_rec_addr(cur, keyno, block));
1786                 return kp;
1787         }
1788
1789         return xfs_btree_key_addr(cur, keyno, block);
1790 }
1791
1792 /*
1793  * Lookup the record.  The cursor is made to point to it, based on dir.
1794  * stat is set to 0 if can't find any such record, 1 for success.
1795  */
1796 int                                     /* error */
1797 xfs_btree_lookup(
1798         struct xfs_btree_cur    *cur,   /* btree cursor */
1799         xfs_lookup_t            dir,    /* <=, ==, or >= */
1800         int                     *stat)  /* success/failure */
1801 {
1802         struct xfs_btree_block  *block; /* current btree block */
1803         int64_t                 diff;   /* difference for the current key */
1804         int                     error;  /* error return value */
1805         int                     keyno;  /* current key number */
1806         int                     level;  /* level in the btree */
1807         union xfs_btree_ptr     *pp;    /* ptr to btree block */
1808         union xfs_btree_ptr     ptr;    /* ptr to btree block */
1809
1810         XFS_BTREE_STATS_INC(cur, lookup);
1811
1812         /* No such thing as a zero-level tree. */
1813         if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
1814                 return -EFSCORRUPTED;
1815
1816         block = NULL;
1817         keyno = 0;
1818
1819         /* initialise start pointer from cursor */
1820         cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1821         pp = &ptr;
1822
1823         /*
1824          * Iterate over each level in the btree, starting at the root.
1825          * For each level above the leaves, find the key we need, based
1826          * on the lookup record, then follow the corresponding block
1827          * pointer down to the next level.
1828          */
1829         for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1830                 /* Get the block we need to do the lookup on. */
1831                 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1832                 if (error)
1833                         goto error0;
1834
1835                 if (diff == 0) {
1836                         /*
1837                          * If we already had a key match at a higher level, we
1838                          * know we need to use the first entry in this block.
1839                          */
1840                         keyno = 1;
1841                 } else {
1842                         /* Otherwise search this block. Do a binary search. */
1843
1844                         int     high;   /* high entry number */
1845                         int     low;    /* low entry number */
1846
1847                         /* Set low and high entry numbers, 1-based. */
1848                         low = 1;
1849                         high = xfs_btree_get_numrecs(block);
1850                         if (!high) {
1851                                 /* Block is empty, must be an empty leaf. */
1852                                 if (level != 0 || cur->bc_nlevels != 1) {
1853                                         XFS_CORRUPTION_ERROR(__func__,
1854                                                         XFS_ERRLEVEL_LOW,
1855                                                         cur->bc_mp, block,
1856                                                         sizeof(*block));
1857                                         return -EFSCORRUPTED;
1858                                 }
1859
1860                                 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1861                                 *stat = 0;
1862                                 return 0;
1863                         }
1864
1865                         /* Binary search the block. */
1866                         while (low <= high) {
1867                                 union xfs_btree_key     key;
1868                                 union xfs_btree_key     *kp;
1869
1870                                 XFS_BTREE_STATS_INC(cur, compare);
1871
1872                                 /* keyno is average of low and high. */
1873                                 keyno = (low + high) >> 1;
1874
1875                                 /* Get current search key */
1876                                 kp = xfs_lookup_get_search_key(cur, level,
1877                                                 keyno, block, &key);
1878
1879                                 /*
1880                                  * Compute difference to get next direction:
1881                                  *  - less than, move right
1882                                  *  - greater than, move left
1883                                  *  - equal, we're done
1884                                  */
1885                                 diff = cur->bc_ops->key_diff(cur, kp);
1886                                 if (diff < 0)
1887                                         low = keyno + 1;
1888                                 else if (diff > 0)
1889                                         high = keyno - 1;
1890                                 else
1891                                         break;
1892                         }
1893                 }
1894
1895                 /*
1896                  * If there are more levels, set up for the next level
1897                  * by getting the block number and filling in the cursor.
1898                  */
1899                 if (level > 0) {
1900                         /*
1901                          * If we moved left, need the previous key number,
1902                          * unless there isn't one.
1903                          */
1904                         if (diff > 0 && --keyno < 1)
1905                                 keyno = 1;
1906                         pp = xfs_btree_ptr_addr(cur, keyno, block);
1907
1908                         error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1909                         if (error)
1910                                 goto error0;
1911
1912                         cur->bc_ptrs[level] = keyno;
1913                 }
1914         }
1915
1916         /* Done with the search. See if we need to adjust the results. */
1917         if (dir != XFS_LOOKUP_LE && diff < 0) {
1918                 keyno++;
1919                 /*
1920                  * If ge search and we went off the end of the block, but it's
1921                  * not the last block, we're in the wrong block.
1922                  */
1923                 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1924                 if (dir == XFS_LOOKUP_GE &&
1925                     keyno > xfs_btree_get_numrecs(block) &&
1926                     !xfs_btree_ptr_is_null(cur, &ptr)) {
1927                         int     i;
1928
1929                         cur->bc_ptrs[0] = keyno;
1930                         error = xfs_btree_increment(cur, 0, &i);
1931                         if (error)
1932                                 goto error0;
1933                         if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1934                                 return -EFSCORRUPTED;
1935                         *stat = 1;
1936                         return 0;
1937                 }
1938         } else if (dir == XFS_LOOKUP_LE && diff > 0)
1939                 keyno--;
1940         cur->bc_ptrs[0] = keyno;
1941
1942         /* Return if we succeeded or not. */
1943         if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1944                 *stat = 0;
1945         else if (dir != XFS_LOOKUP_EQ || diff == 0)
1946                 *stat = 1;
1947         else
1948                 *stat = 0;
1949         return 0;
1950
1951 error0:
1952         return error;
1953 }
1954
1955 /* Find the high key storage area from a regular key. */
1956 union xfs_btree_key *
1957 xfs_btree_high_key_from_key(
1958         struct xfs_btree_cur    *cur,
1959         union xfs_btree_key     *key)
1960 {
1961         ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1962         return (union xfs_btree_key *)((char *)key +
1963                         (cur->bc_ops->key_len / 2));
1964 }
1965
1966 /* Determine the low (and high if overlapped) keys of a leaf block */
1967 STATIC void
1968 xfs_btree_get_leaf_keys(
1969         struct xfs_btree_cur    *cur,
1970         struct xfs_btree_block  *block,
1971         union xfs_btree_key     *key)
1972 {
1973         union xfs_btree_key     max_hkey;
1974         union xfs_btree_key     hkey;
1975         union xfs_btree_rec     *rec;
1976         union xfs_btree_key     *high;
1977         int                     n;
1978
1979         rec = xfs_btree_rec_addr(cur, 1, block);
1980         cur->bc_ops->init_key_from_rec(key, rec);
1981
1982         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
1983
1984                 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
1985                 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
1986                         rec = xfs_btree_rec_addr(cur, n, block);
1987                         cur->bc_ops->init_high_key_from_rec(&hkey, rec);
1988                         if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
1989                                         > 0)
1990                                 max_hkey = hkey;
1991                 }
1992
1993                 high = xfs_btree_high_key_from_key(cur, key);
1994                 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
1995         }
1996 }
1997
1998 /* Determine the low (and high if overlapped) keys of a node block */
1999 STATIC void
2000 xfs_btree_get_node_keys(
2001         struct xfs_btree_cur    *cur,
2002         struct xfs_btree_block  *block,
2003         union xfs_btree_key     *key)
2004 {
2005         union xfs_btree_key     *hkey;
2006         union xfs_btree_key     *max_hkey;
2007         union xfs_btree_key     *high;
2008         int                     n;
2009
2010         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2011                 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2012                                 cur->bc_ops->key_len / 2);
2013
2014                 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2015                 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2016                         hkey = xfs_btree_high_key_addr(cur, n, block);
2017                         if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2018                                 max_hkey = hkey;
2019                 }
2020
2021                 high = xfs_btree_high_key_from_key(cur, key);
2022                 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2023         } else {
2024                 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2025                                 cur->bc_ops->key_len);
2026         }
2027 }
2028
2029 /* Derive the keys for any btree block. */
2030 void
2031 xfs_btree_get_keys(
2032         struct xfs_btree_cur    *cur,
2033         struct xfs_btree_block  *block,
2034         union xfs_btree_key     *key)
2035 {
2036         if (be16_to_cpu(block->bb_level) == 0)
2037                 xfs_btree_get_leaf_keys(cur, block, key);
2038         else
2039                 xfs_btree_get_node_keys(cur, block, key);
2040 }
2041
2042 /*
2043  * Decide if we need to update the parent keys of a btree block.  For
2044  * a standard btree this is only necessary if we're updating the first
2045  * record/key.  For an overlapping btree, we must always update the
2046  * keys because the highest key can be in any of the records or keys
2047  * in the block.
2048  */
2049 static inline bool
2050 xfs_btree_needs_key_update(
2051         struct xfs_btree_cur    *cur,
2052         int                     ptr)
2053 {
2054         return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2055 }
2056
2057 /*
2058  * Update the low and high parent keys of the given level, progressing
2059  * towards the root.  If force_all is false, stop if the keys for a given
2060  * level do not need updating.
2061  */
2062 STATIC int
2063 __xfs_btree_updkeys(
2064         struct xfs_btree_cur    *cur,
2065         int                     level,
2066         struct xfs_btree_block  *block,
2067         struct xfs_buf          *bp0,
2068         bool                    force_all)
2069 {
2070         union xfs_btree_key     key;    /* keys from current level */
2071         union xfs_btree_key     *lkey;  /* keys from the next level up */
2072         union xfs_btree_key     *hkey;
2073         union xfs_btree_key     *nlkey; /* keys from the next level up */
2074         union xfs_btree_key     *nhkey;
2075         struct xfs_buf          *bp;
2076         int                     ptr;
2077
2078         ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2079
2080         /* Exit if there aren't any parent levels to update. */
2081         if (level + 1 >= cur->bc_nlevels)
2082                 return 0;
2083
2084         trace_xfs_btree_updkeys(cur, level, bp0);
2085
2086         lkey = &key;
2087         hkey = xfs_btree_high_key_from_key(cur, lkey);
2088         xfs_btree_get_keys(cur, block, lkey);
2089         for (level++; level < cur->bc_nlevels; level++) {
2090 #ifdef DEBUG
2091                 int             error;
2092 #endif
2093                 block = xfs_btree_get_block(cur, level, &bp);
2094                 trace_xfs_btree_updkeys(cur, level, bp);
2095 #ifdef DEBUG
2096                 error = xfs_btree_check_block(cur, block, level, bp);
2097                 if (error)
2098                         return error;
2099 #endif
2100                 ptr = cur->bc_ptrs[level];
2101                 nlkey = xfs_btree_key_addr(cur, ptr, block);
2102                 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2103                 if (!force_all &&
2104                     !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2105                       cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2106                         break;
2107                 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2108                 xfs_btree_log_keys(cur, bp, ptr, ptr);
2109                 if (level + 1 >= cur->bc_nlevels)
2110                         break;
2111                 xfs_btree_get_node_keys(cur, block, lkey);
2112         }
2113
2114         return 0;
2115 }
2116
2117 /* Update all the keys from some level in cursor back to the root. */
2118 STATIC int
2119 xfs_btree_updkeys_force(
2120         struct xfs_btree_cur    *cur,
2121         int                     level)
2122 {
2123         struct xfs_buf          *bp;
2124         struct xfs_btree_block  *block;
2125
2126         block = xfs_btree_get_block(cur, level, &bp);
2127         return __xfs_btree_updkeys(cur, level, block, bp, true);
2128 }
2129
2130 /*
2131  * Update the parent keys of the given level, progressing towards the root.
2132  */
2133 STATIC int
2134 xfs_btree_update_keys(
2135         struct xfs_btree_cur    *cur,
2136         int                     level)
2137 {
2138         struct xfs_btree_block  *block;
2139         struct xfs_buf          *bp;
2140         union xfs_btree_key     *kp;
2141         union xfs_btree_key     key;
2142         int                     ptr;
2143
2144         ASSERT(level >= 0);
2145
2146         block = xfs_btree_get_block(cur, level, &bp);
2147         if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2148                 return __xfs_btree_updkeys(cur, level, block, bp, false);
2149
2150         /*
2151          * Go up the tree from this level toward the root.
2152          * At each level, update the key value to the value input.
2153          * Stop when we reach a level where the cursor isn't pointing
2154          * at the first entry in the block.
2155          */
2156         xfs_btree_get_keys(cur, block, &key);
2157         for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2158 #ifdef DEBUG
2159                 int             error;
2160 #endif
2161                 block = xfs_btree_get_block(cur, level, &bp);
2162 #ifdef DEBUG
2163                 error = xfs_btree_check_block(cur, block, level, bp);
2164                 if (error)
2165                         return error;
2166 #endif
2167                 ptr = cur->bc_ptrs[level];
2168                 kp = xfs_btree_key_addr(cur, ptr, block);
2169                 xfs_btree_copy_keys(cur, kp, &key, 1);
2170                 xfs_btree_log_keys(cur, bp, ptr, ptr);
2171         }
2172
2173         return 0;
2174 }
2175
2176 /*
2177  * Update the record referred to by cur to the value in the
2178  * given record. This either works (return 0) or gets an
2179  * EFSCORRUPTED error.
2180  */
2181 int
2182 xfs_btree_update(
2183         struct xfs_btree_cur    *cur,
2184         union xfs_btree_rec     *rec)
2185 {
2186         struct xfs_btree_block  *block;
2187         struct xfs_buf          *bp;
2188         int                     error;
2189         int                     ptr;
2190         union xfs_btree_rec     *rp;
2191
2192         /* Pick up the current block. */
2193         block = xfs_btree_get_block(cur, 0, &bp);
2194
2195 #ifdef DEBUG
2196         error = xfs_btree_check_block(cur, block, 0, bp);
2197         if (error)
2198                 goto error0;
2199 #endif
2200         /* Get the address of the rec to be updated. */
2201         ptr = cur->bc_ptrs[0];
2202         rp = xfs_btree_rec_addr(cur, ptr, block);
2203
2204         /* Fill in the new contents and log them. */
2205         xfs_btree_copy_recs(cur, rp, rec, 1);
2206         xfs_btree_log_recs(cur, bp, ptr, ptr);
2207
2208         /*
2209          * If we are tracking the last record in the tree and
2210          * we are at the far right edge of the tree, update it.
2211          */
2212         if (xfs_btree_is_lastrec(cur, block, 0)) {
2213                 cur->bc_ops->update_lastrec(cur, block, rec,
2214                                             ptr, LASTREC_UPDATE);
2215         }
2216
2217         /* Pass new key value up to our parent. */
2218         if (xfs_btree_needs_key_update(cur, ptr)) {
2219                 error = xfs_btree_update_keys(cur, 0);
2220                 if (error)
2221                         goto error0;
2222         }
2223
2224         return 0;
2225
2226 error0:
2227         return error;
2228 }
2229
2230 /*
2231  * Move 1 record left from cur/level if possible.
2232  * Update cur to reflect the new path.
2233  */
2234 STATIC int                                      /* error */
2235 xfs_btree_lshift(
2236         struct xfs_btree_cur    *cur,
2237         int                     level,
2238         int                     *stat)          /* success/failure */
2239 {
2240         struct xfs_buf          *lbp;           /* left buffer pointer */
2241         struct xfs_btree_block  *left;          /* left btree block */
2242         int                     lrecs;          /* left record count */
2243         struct xfs_buf          *rbp;           /* right buffer pointer */
2244         struct xfs_btree_block  *right;         /* right btree block */
2245         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2246         int                     rrecs;          /* right record count */
2247         union xfs_btree_ptr     lptr;           /* left btree pointer */
2248         union xfs_btree_key     *rkp = NULL;    /* right btree key */
2249         union xfs_btree_ptr     *rpp = NULL;    /* right address pointer */
2250         union xfs_btree_rec     *rrp = NULL;    /* right record pointer */
2251         int                     error;          /* error return value */
2252         int                     i;
2253
2254         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2255             level == cur->bc_nlevels - 1)
2256                 goto out0;
2257
2258         /* Set up variables for this block as "right". */
2259         right = xfs_btree_get_block(cur, level, &rbp);
2260
2261 #ifdef DEBUG
2262         error = xfs_btree_check_block(cur, right, level, rbp);
2263         if (error)
2264                 goto error0;
2265 #endif
2266
2267         /* If we've got no left sibling then we can't shift an entry left. */
2268         xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2269         if (xfs_btree_ptr_is_null(cur, &lptr))
2270                 goto out0;
2271
2272         /*
2273          * If the cursor entry is the one that would be moved, don't
2274          * do it... it's too complicated.
2275          */
2276         if (cur->bc_ptrs[level] <= 1)
2277                 goto out0;
2278
2279         /* Set up the left neighbor as "left". */
2280         error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2281         if (error)
2282                 goto error0;
2283
2284         /* If it's full, it can't take another entry. */
2285         lrecs = xfs_btree_get_numrecs(left);
2286         if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2287                 goto out0;
2288
2289         rrecs = xfs_btree_get_numrecs(right);
2290
2291         /*
2292          * We add one entry to the left side and remove one for the right side.
2293          * Account for it here, the changes will be updated on disk and logged
2294          * later.
2295          */
2296         lrecs++;
2297         rrecs--;
2298
2299         XFS_BTREE_STATS_INC(cur, lshift);
2300         XFS_BTREE_STATS_ADD(cur, moves, 1);
2301
2302         /*
2303          * If non-leaf, copy a key and a ptr to the left block.
2304          * Log the changes to the left block.
2305          */
2306         if (level > 0) {
2307                 /* It's a non-leaf.  Move keys and pointers. */
2308                 union xfs_btree_key     *lkp;   /* left btree key */
2309                 union xfs_btree_ptr     *lpp;   /* left address pointer */
2310
2311                 lkp = xfs_btree_key_addr(cur, lrecs, left);
2312                 rkp = xfs_btree_key_addr(cur, 1, right);
2313
2314                 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2315                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2316
2317                 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2318                 if (error)
2319                         goto error0;
2320
2321                 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2322                 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2323
2324                 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2325                 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2326
2327                 ASSERT(cur->bc_ops->keys_inorder(cur,
2328                         xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2329         } else {
2330                 /* It's a leaf.  Move records.  */
2331                 union xfs_btree_rec     *lrp;   /* left record pointer */
2332
2333                 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2334                 rrp = xfs_btree_rec_addr(cur, 1, right);
2335
2336                 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2337                 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2338
2339                 ASSERT(cur->bc_ops->recs_inorder(cur,
2340                         xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2341         }
2342
2343         xfs_btree_set_numrecs(left, lrecs);
2344         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2345
2346         xfs_btree_set_numrecs(right, rrecs);
2347         xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2348
2349         /*
2350          * Slide the contents of right down one entry.
2351          */
2352         XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2353         if (level > 0) {
2354                 /* It's a nonleaf. operate on keys and ptrs */
2355                 for (i = 0; i < rrecs; i++) {
2356                         error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2357                         if (error)
2358                                 goto error0;
2359                 }
2360
2361                 xfs_btree_shift_keys(cur,
2362                                 xfs_btree_key_addr(cur, 2, right),
2363                                 -1, rrecs);
2364                 xfs_btree_shift_ptrs(cur,
2365                                 xfs_btree_ptr_addr(cur, 2, right),
2366                                 -1, rrecs);
2367
2368                 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2369                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2370         } else {
2371                 /* It's a leaf. operate on records */
2372                 xfs_btree_shift_recs(cur,
2373                         xfs_btree_rec_addr(cur, 2, right),
2374                         -1, rrecs);
2375                 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2376         }
2377
2378         /*
2379          * Using a temporary cursor, update the parent key values of the
2380          * block on the left.
2381          */
2382         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2383                 error = xfs_btree_dup_cursor(cur, &tcur);
2384                 if (error)
2385                         goto error0;
2386                 i = xfs_btree_firstrec(tcur, level);
2387                 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2388                         error = -EFSCORRUPTED;
2389                         goto error0;
2390                 }
2391
2392                 error = xfs_btree_decrement(tcur, level, &i);
2393                 if (error)
2394                         goto error1;
2395
2396                 /* Update the parent high keys of the left block, if needed. */
2397                 error = xfs_btree_update_keys(tcur, level);
2398                 if (error)
2399                         goto error1;
2400
2401                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2402         }
2403
2404         /* Update the parent keys of the right block. */
2405         error = xfs_btree_update_keys(cur, level);
2406         if (error)
2407                 goto error0;
2408
2409         /* Slide the cursor value left one. */
2410         cur->bc_ptrs[level]--;
2411
2412         *stat = 1;
2413         return 0;
2414
2415 out0:
2416         *stat = 0;
2417         return 0;
2418
2419 error0:
2420         return error;
2421
2422 error1:
2423         xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2424         return error;
2425 }
2426
2427 /*
2428  * Move 1 record right from cur/level if possible.
2429  * Update cur to reflect the new path.
2430  */
2431 STATIC int                                      /* error */
2432 xfs_btree_rshift(
2433         struct xfs_btree_cur    *cur,
2434         int                     level,
2435         int                     *stat)          /* success/failure */
2436 {
2437         struct xfs_buf          *lbp;           /* left buffer pointer */
2438         struct xfs_btree_block  *left;          /* left btree block */
2439         struct xfs_buf          *rbp;           /* right buffer pointer */
2440         struct xfs_btree_block  *right;         /* right btree block */
2441         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2442         union xfs_btree_ptr     rptr;           /* right block pointer */
2443         union xfs_btree_key     *rkp;           /* right btree key */
2444         int                     rrecs;          /* right record count */
2445         int                     lrecs;          /* left record count */
2446         int                     error;          /* error return value */
2447         int                     i;              /* loop counter */
2448
2449         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2450             (level == cur->bc_nlevels - 1))
2451                 goto out0;
2452
2453         /* Set up variables for this block as "left". */
2454         left = xfs_btree_get_block(cur, level, &lbp);
2455
2456 #ifdef DEBUG
2457         error = xfs_btree_check_block(cur, left, level, lbp);
2458         if (error)
2459                 goto error0;
2460 #endif
2461
2462         /* If we've got no right sibling then we can't shift an entry right. */
2463         xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2464         if (xfs_btree_ptr_is_null(cur, &rptr))
2465                 goto out0;
2466
2467         /*
2468          * If the cursor entry is the one that would be moved, don't
2469          * do it... it's too complicated.
2470          */
2471         lrecs = xfs_btree_get_numrecs(left);
2472         if (cur->bc_ptrs[level] >= lrecs)
2473                 goto out0;
2474
2475         /* Set up the right neighbor as "right". */
2476         error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2477         if (error)
2478                 goto error0;
2479
2480         /* If it's full, it can't take another entry. */
2481         rrecs = xfs_btree_get_numrecs(right);
2482         if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2483                 goto out0;
2484
2485         XFS_BTREE_STATS_INC(cur, rshift);
2486         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2487
2488         /*
2489          * Make a hole at the start of the right neighbor block, then
2490          * copy the last left block entry to the hole.
2491          */
2492         if (level > 0) {
2493                 /* It's a nonleaf. make a hole in the keys and ptrs */
2494                 union xfs_btree_key     *lkp;
2495                 union xfs_btree_ptr     *lpp;
2496                 union xfs_btree_ptr     *rpp;
2497
2498                 lkp = xfs_btree_key_addr(cur, lrecs, left);
2499                 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2500                 rkp = xfs_btree_key_addr(cur, 1, right);
2501                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2502
2503                 for (i = rrecs - 1; i >= 0; i--) {
2504                         error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2505                         if (error)
2506                                 goto error0;
2507                 }
2508
2509                 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2510                 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2511
2512                 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2513                 if (error)
2514                         goto error0;
2515
2516                 /* Now put the new data in, and log it. */
2517                 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2518                 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2519
2520                 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2521                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2522
2523                 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2524                         xfs_btree_key_addr(cur, 2, right)));
2525         } else {
2526                 /* It's a leaf. make a hole in the records */
2527                 union xfs_btree_rec     *lrp;
2528                 union xfs_btree_rec     *rrp;
2529
2530                 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2531                 rrp = xfs_btree_rec_addr(cur, 1, right);
2532
2533                 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2534
2535                 /* Now put the new data in, and log it. */
2536                 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2537                 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2538         }
2539
2540         /*
2541          * Decrement and log left's numrecs, bump and log right's numrecs.
2542          */
2543         xfs_btree_set_numrecs(left, --lrecs);
2544         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2545
2546         xfs_btree_set_numrecs(right, ++rrecs);
2547         xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2548
2549         /*
2550          * Using a temporary cursor, update the parent key values of the
2551          * block on the right.
2552          */
2553         error = xfs_btree_dup_cursor(cur, &tcur);
2554         if (error)
2555                 goto error0;
2556         i = xfs_btree_lastrec(tcur, level);
2557         if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2558                 error = -EFSCORRUPTED;
2559                 goto error0;
2560         }
2561
2562         error = xfs_btree_increment(tcur, level, &i);
2563         if (error)
2564                 goto error1;
2565
2566         /* Update the parent high keys of the left block, if needed. */
2567         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2568                 error = xfs_btree_update_keys(cur, level);
2569                 if (error)
2570                         goto error1;
2571         }
2572
2573         /* Update the parent keys of the right block. */
2574         error = xfs_btree_update_keys(tcur, level);
2575         if (error)
2576                 goto error1;
2577
2578         xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2579
2580         *stat = 1;
2581         return 0;
2582
2583 out0:
2584         *stat = 0;
2585         return 0;
2586
2587 error0:
2588         return error;
2589
2590 error1:
2591         xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2592         return error;
2593 }
2594
2595 /*
2596  * Split cur/level block in half.
2597  * Return new block number and the key to its first
2598  * record (to be inserted into parent).
2599  */
2600 STATIC int                                      /* error */
2601 __xfs_btree_split(
2602         struct xfs_btree_cur    *cur,
2603         int                     level,
2604         union xfs_btree_ptr     *ptrp,
2605         union xfs_btree_key     *key,
2606         struct xfs_btree_cur    **curp,
2607         int                     *stat)          /* success/failure */
2608 {
2609         union xfs_btree_ptr     lptr;           /* left sibling block ptr */
2610         struct xfs_buf          *lbp;           /* left buffer pointer */
2611         struct xfs_btree_block  *left;          /* left btree block */
2612         union xfs_btree_ptr     rptr;           /* right sibling block ptr */
2613         struct xfs_buf          *rbp;           /* right buffer pointer */
2614         struct xfs_btree_block  *right;         /* right btree block */
2615         union xfs_btree_ptr     rrptr;          /* right-right sibling ptr */
2616         struct xfs_buf          *rrbp;          /* right-right buffer pointer */
2617         struct xfs_btree_block  *rrblock;       /* right-right btree block */
2618         int                     lrecs;
2619         int                     rrecs;
2620         int                     src_index;
2621         int                     error;          /* error return value */
2622         int                     i;
2623
2624         XFS_BTREE_STATS_INC(cur, split);
2625
2626         /* Set up left block (current one). */
2627         left = xfs_btree_get_block(cur, level, &lbp);
2628
2629 #ifdef DEBUG
2630         error = xfs_btree_check_block(cur, left, level, lbp);
2631         if (error)
2632                 goto error0;
2633 #endif
2634
2635         xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2636
2637         /* Allocate the new block. If we can't do it, we're toast. Give up. */
2638         error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2639         if (error)
2640                 goto error0;
2641         if (*stat == 0)
2642                 goto out0;
2643         XFS_BTREE_STATS_INC(cur, alloc);
2644
2645         /* Set up the new block as "right". */
2646         error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2647         if (error)
2648                 goto error0;
2649
2650         /* Fill in the btree header for the new right block. */
2651         xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2652
2653         /*
2654          * Split the entries between the old and the new block evenly.
2655          * Make sure that if there's an odd number of entries now, that
2656          * each new block will have the same number of entries.
2657          */
2658         lrecs = xfs_btree_get_numrecs(left);
2659         rrecs = lrecs / 2;
2660         if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2661                 rrecs++;
2662         src_index = (lrecs - rrecs + 1);
2663
2664         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2665
2666         /* Adjust numrecs for the later get_*_keys() calls. */
2667         lrecs -= rrecs;
2668         xfs_btree_set_numrecs(left, lrecs);
2669         xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2670
2671         /*
2672          * Copy btree block entries from the left block over to the
2673          * new block, the right. Update the right block and log the
2674          * changes.
2675          */
2676         if (level > 0) {
2677                 /* It's a non-leaf.  Move keys and pointers. */
2678                 union xfs_btree_key     *lkp;   /* left btree key */
2679                 union xfs_btree_ptr     *lpp;   /* left address pointer */
2680                 union xfs_btree_key     *rkp;   /* right btree key */
2681                 union xfs_btree_ptr     *rpp;   /* right address pointer */
2682
2683                 lkp = xfs_btree_key_addr(cur, src_index, left);
2684                 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2685                 rkp = xfs_btree_key_addr(cur, 1, right);
2686                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2687
2688                 for (i = src_index; i < rrecs; i++) {
2689                         error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2690                         if (error)
2691                                 goto error0;
2692                 }
2693
2694                 /* Copy the keys & pointers to the new block. */
2695                 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2696                 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2697
2698                 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2699                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2700
2701                 /* Stash the keys of the new block for later insertion. */
2702                 xfs_btree_get_node_keys(cur, right, key);
2703         } else {
2704                 /* It's a leaf.  Move records.  */
2705                 union xfs_btree_rec     *lrp;   /* left record pointer */
2706                 union xfs_btree_rec     *rrp;   /* right record pointer */
2707
2708                 lrp = xfs_btree_rec_addr(cur, src_index, left);
2709                 rrp = xfs_btree_rec_addr(cur, 1, right);
2710
2711                 /* Copy records to the new block. */
2712                 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2713                 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2714
2715                 /* Stash the keys of the new block for later insertion. */
2716                 xfs_btree_get_leaf_keys(cur, right, key);
2717         }
2718
2719         /*
2720          * Find the left block number by looking in the buffer.
2721          * Adjust sibling pointers.
2722          */
2723         xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2724         xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2725         xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2726         xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2727
2728         xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2729         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2730
2731         /*
2732          * If there's a block to the new block's right, make that block
2733          * point back to right instead of to left.
2734          */
2735         if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2736                 error = xfs_btree_read_buf_block(cur, &rrptr,
2737                                                         0, &rrblock, &rrbp);
2738                 if (error)
2739                         goto error0;
2740                 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2741                 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2742         }
2743
2744         /* Update the parent high keys of the left block, if needed. */
2745         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2746                 error = xfs_btree_update_keys(cur, level);
2747                 if (error)
2748                         goto error0;
2749         }
2750
2751         /*
2752          * If the cursor is really in the right block, move it there.
2753          * If it's just pointing past the last entry in left, then we'll
2754          * insert there, so don't change anything in that case.
2755          */
2756         if (cur->bc_ptrs[level] > lrecs + 1) {
2757                 xfs_btree_setbuf(cur, level, rbp);
2758                 cur->bc_ptrs[level] -= lrecs;
2759         }
2760         /*
2761          * If there are more levels, we'll need another cursor which refers
2762          * the right block, no matter where this cursor was.
2763          */
2764         if (level + 1 < cur->bc_nlevels) {
2765                 error = xfs_btree_dup_cursor(cur, curp);
2766                 if (error)
2767                         goto error0;
2768                 (*curp)->bc_ptrs[level + 1]++;
2769         }
2770         *ptrp = rptr;
2771         *stat = 1;
2772         return 0;
2773 out0:
2774         *stat = 0;
2775         return 0;
2776
2777 error0:
2778         return error;
2779 }
2780
2781 struct xfs_btree_split_args {
2782         struct xfs_btree_cur    *cur;
2783         int                     level;
2784         union xfs_btree_ptr     *ptrp;
2785         union xfs_btree_key     *key;
2786         struct xfs_btree_cur    **curp;
2787         int                     *stat;          /* success/failure */
2788         int                     result;
2789         bool                    kswapd; /* allocation in kswapd context */
2790         struct completion       *done;
2791         struct work_struct      work;
2792 };
2793
2794 /*
2795  * Stack switching interfaces for allocation
2796  */
2797 static void
2798 xfs_btree_split_worker(
2799         struct work_struct      *work)
2800 {
2801         struct xfs_btree_split_args     *args = container_of(work,
2802                                                 struct xfs_btree_split_args, work);
2803         unsigned long           pflags;
2804         unsigned long           new_pflags = PF_MEMALLOC_NOFS;
2805
2806         /*
2807          * we are in a transaction context here, but may also be doing work
2808          * in kswapd context, and hence we may need to inherit that state
2809          * temporarily to ensure that we don't block waiting for memory reclaim
2810          * in any way.
2811          */
2812         if (args->kswapd)
2813                 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2814
2815         current_set_flags_nested(&pflags, new_pflags);
2816
2817         args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2818                                          args->key, args->curp, args->stat);
2819         complete(args->done);
2820
2821         current_restore_flags_nested(&pflags, new_pflags);
2822 }
2823
2824 /*
2825  * BMBT split requests often come in with little stack to work on. Push
2826  * them off to a worker thread so there is lots of stack to use. For the other
2827  * btree types, just call directly to avoid the context switch overhead here.
2828  */
2829 STATIC int                                      /* error */
2830 xfs_btree_split(
2831         struct xfs_btree_cur    *cur,
2832         int                     level,
2833         union xfs_btree_ptr     *ptrp,
2834         union xfs_btree_key     *key,
2835         struct xfs_btree_cur    **curp,
2836         int                     *stat)          /* success/failure */
2837 {
2838         struct xfs_btree_split_args     args;
2839         DECLARE_COMPLETION_ONSTACK(done);
2840
2841         if (cur->bc_btnum != XFS_BTNUM_BMAP)
2842                 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2843
2844         args.cur = cur;
2845         args.level = level;
2846         args.ptrp = ptrp;
2847         args.key = key;
2848         args.curp = curp;
2849         args.stat = stat;
2850         args.done = &done;
2851         args.kswapd = current_is_kswapd();
2852         INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2853         queue_work(xfs_alloc_wq, &args.work);
2854         wait_for_completion(&done);
2855         destroy_work_on_stack(&args.work);
2856         return args.result;
2857 }
2858
2859
2860 /*
2861  * Copy the old inode root contents into a real block and make the
2862  * broot point to it.
2863  */
2864 int                                             /* error */
2865 xfs_btree_new_iroot(
2866         struct xfs_btree_cur    *cur,           /* btree cursor */
2867         int                     *logflags,      /* logging flags for inode */
2868         int                     *stat)          /* return status - 0 fail */
2869 {
2870         struct xfs_buf          *cbp;           /* buffer for cblock */
2871         struct xfs_btree_block  *block;         /* btree block */
2872         struct xfs_btree_block  *cblock;        /* child btree block */
2873         union xfs_btree_key     *ckp;           /* child key pointer */
2874         union xfs_btree_ptr     *cpp;           /* child ptr pointer */
2875         union xfs_btree_key     *kp;            /* pointer to btree key */
2876         union xfs_btree_ptr     *pp;            /* pointer to block addr */
2877         union xfs_btree_ptr     nptr;           /* new block addr */
2878         int                     level;          /* btree level */
2879         int                     error;          /* error return code */
2880         int                     i;              /* loop counter */
2881
2882         XFS_BTREE_STATS_INC(cur, newroot);
2883
2884         ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2885
2886         level = cur->bc_nlevels - 1;
2887
2888         block = xfs_btree_get_iroot(cur);
2889         pp = xfs_btree_ptr_addr(cur, 1, block);
2890
2891         /* Allocate the new block. If we can't do it, we're toast. Give up. */
2892         error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2893         if (error)
2894                 goto error0;
2895         if (*stat == 0)
2896                 return 0;
2897
2898         XFS_BTREE_STATS_INC(cur, alloc);
2899
2900         /* Copy the root into a real block. */
2901         error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
2902         if (error)
2903                 goto error0;
2904
2905         /*
2906          * we can't just memcpy() the root in for CRC enabled btree blocks.
2907          * In that case have to also ensure the blkno remains correct
2908          */
2909         memcpy(cblock, block, xfs_btree_block_len(cur));
2910         if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2911                 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2912                         cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2913                 else
2914                         cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2915         }
2916
2917         be16_add_cpu(&block->bb_level, 1);
2918         xfs_btree_set_numrecs(block, 1);
2919         cur->bc_nlevels++;
2920         cur->bc_ptrs[level + 1] = 1;
2921
2922         kp = xfs_btree_key_addr(cur, 1, block);
2923         ckp = xfs_btree_key_addr(cur, 1, cblock);
2924         xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2925
2926         cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2927         for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2928                 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
2929                 if (error)
2930                         goto error0;
2931         }
2932
2933         xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2934
2935         error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
2936         if (error)
2937                 goto error0;
2938
2939         xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2940
2941         xfs_iroot_realloc(cur->bc_private.b.ip,
2942                           1 - xfs_btree_get_numrecs(cblock),
2943                           cur->bc_private.b.whichfork);
2944
2945         xfs_btree_setbuf(cur, level, cbp);
2946
2947         /*
2948          * Do all this logging at the end so that
2949          * the root is at the right level.
2950          */
2951         xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
2952         xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2953         xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2954
2955         *logflags |=
2956                 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
2957         *stat = 1;
2958         return 0;
2959 error0:
2960         return error;
2961 }
2962
2963 /*
2964  * Allocate a new root block, fill it in.
2965  */
2966 STATIC int                              /* error */
2967 xfs_btree_new_root(
2968         struct xfs_btree_cur    *cur,   /* btree cursor */
2969         int                     *stat)  /* success/failure */
2970 {
2971         struct xfs_btree_block  *block; /* one half of the old root block */
2972         struct xfs_buf          *bp;    /* buffer containing block */
2973         int                     error;  /* error return value */
2974         struct xfs_buf          *lbp;   /* left buffer pointer */
2975         struct xfs_btree_block  *left;  /* left btree block */
2976         struct xfs_buf          *nbp;   /* new (root) buffer */
2977         struct xfs_btree_block  *new;   /* new (root) btree block */
2978         int                     nptr;   /* new value for key index, 1 or 2 */
2979         struct xfs_buf          *rbp;   /* right buffer pointer */
2980         struct xfs_btree_block  *right; /* right btree block */
2981         union xfs_btree_ptr     rptr;
2982         union xfs_btree_ptr     lptr;
2983
2984         XFS_BTREE_STATS_INC(cur, newroot);
2985
2986         /* initialise our start point from the cursor */
2987         cur->bc_ops->init_ptr_from_cur(cur, &rptr);
2988
2989         /* Allocate the new block. If we can't do it, we're toast. Give up. */
2990         error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
2991         if (error)
2992                 goto error0;
2993         if (*stat == 0)
2994                 goto out0;
2995         XFS_BTREE_STATS_INC(cur, alloc);
2996
2997         /* Set up the new block. */
2998         error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
2999         if (error)
3000                 goto error0;
3001
3002         /* Set the root in the holding structure  increasing the level by 1. */
3003         cur->bc_ops->set_root(cur, &lptr, 1);
3004
3005         /*
3006          * At the previous root level there are now two blocks: the old root,
3007          * and the new block generated when it was split.  We don't know which
3008          * one the cursor is pointing at, so we set up variables "left" and
3009          * "right" for each case.
3010          */
3011         block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3012
3013 #ifdef DEBUG
3014         error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3015         if (error)
3016                 goto error0;
3017 #endif
3018
3019         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3020         if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3021                 /* Our block is left, pick up the right block. */
3022                 lbp = bp;
3023                 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3024                 left = block;
3025                 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3026                 if (error)
3027                         goto error0;
3028                 bp = rbp;
3029                 nptr = 1;
3030         } else {
3031                 /* Our block is right, pick up the left block. */
3032                 rbp = bp;
3033                 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3034                 right = block;
3035                 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3036                 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3037                 if (error)
3038                         goto error0;
3039                 bp = lbp;
3040                 nptr = 2;
3041         }
3042
3043         /* Fill in the new block's btree header and log it. */
3044         xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3045         xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3046         ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3047                         !xfs_btree_ptr_is_null(cur, &rptr));
3048
3049         /* Fill in the key data in the new root. */
3050         if (xfs_btree_get_level(left) > 0) {
3051                 /*
3052                  * Get the keys for the left block's keys and put them directly
3053                  * in the parent block.  Do the same for the right block.
3054                  */
3055                 xfs_btree_get_node_keys(cur, left,
3056                                 xfs_btree_key_addr(cur, 1, new));
3057                 xfs_btree_get_node_keys(cur, right,
3058                                 xfs_btree_key_addr(cur, 2, new));
3059         } else {
3060                 /*
3061                  * Get the keys for the left block's records and put them
3062                  * directly in the parent block.  Do the same for the right
3063                  * block.
3064                  */
3065                 xfs_btree_get_leaf_keys(cur, left,
3066                         xfs_btree_key_addr(cur, 1, new));
3067                 xfs_btree_get_leaf_keys(cur, right,
3068                         xfs_btree_key_addr(cur, 2, new));
3069         }
3070         xfs_btree_log_keys(cur, nbp, 1, 2);
3071
3072         /* Fill in the pointer data in the new root. */
3073         xfs_btree_copy_ptrs(cur,
3074                 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3075         xfs_btree_copy_ptrs(cur,
3076                 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3077         xfs_btree_log_ptrs(cur, nbp, 1, 2);
3078
3079         /* Fix up the cursor. */
3080         xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3081         cur->bc_ptrs[cur->bc_nlevels] = nptr;
3082         cur->bc_nlevels++;
3083         *stat = 1;
3084         return 0;
3085 error0:
3086         return error;
3087 out0:
3088         *stat = 0;
3089         return 0;
3090 }
3091
3092 STATIC int
3093 xfs_btree_make_block_unfull(
3094         struct xfs_btree_cur    *cur,   /* btree cursor */
3095         int                     level,  /* btree level */
3096         int                     numrecs,/* # of recs in block */
3097         int                     *oindex,/* old tree index */
3098         int                     *index, /* new tree index */
3099         union xfs_btree_ptr     *nptr,  /* new btree ptr */
3100         struct xfs_btree_cur    **ncur, /* new btree cursor */
3101         union xfs_btree_key     *key,   /* key of new block */
3102         int                     *stat)
3103 {
3104         int                     error = 0;
3105
3106         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3107             level == cur->bc_nlevels - 1) {
3108                 struct xfs_inode *ip = cur->bc_private.b.ip;
3109
3110                 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3111                         /* A root block that can be made bigger. */
3112                         xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3113                         *stat = 1;
3114                 } else {
3115                         /* A root block that needs replacing */
3116                         int     logflags = 0;
3117
3118                         error = xfs_btree_new_iroot(cur, &logflags, stat);
3119                         if (error || *stat == 0)
3120                                 return error;
3121
3122                         xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3123                 }
3124
3125                 return 0;
3126         }
3127
3128         /* First, try shifting an entry to the right neighbor. */
3129         error = xfs_btree_rshift(cur, level, stat);
3130         if (error || *stat)
3131                 return error;
3132
3133         /* Next, try shifting an entry to the left neighbor. */
3134         error = xfs_btree_lshift(cur, level, stat);
3135         if (error)
3136                 return error;
3137
3138         if (*stat) {
3139                 *oindex = *index = cur->bc_ptrs[level];
3140                 return 0;
3141         }
3142
3143         /*
3144          * Next, try splitting the current block in half.
3145          *
3146          * If this works we have to re-set our variables because we
3147          * could be in a different block now.
3148          */
3149         error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3150         if (error || *stat == 0)
3151                 return error;
3152
3153
3154         *index = cur->bc_ptrs[level];
3155         return 0;
3156 }
3157
3158 /*
3159  * Insert one record/level.  Return information to the caller
3160  * allowing the next level up to proceed if necessary.
3161  */
3162 STATIC int
3163 xfs_btree_insrec(
3164         struct xfs_btree_cur    *cur,   /* btree cursor */
3165         int                     level,  /* level to insert record at */
3166         union xfs_btree_ptr     *ptrp,  /* i/o: block number inserted */
3167         union xfs_btree_rec     *rec,   /* record to insert */
3168         union xfs_btree_key     *key,   /* i/o: block key for ptrp */
3169         struct xfs_btree_cur    **curp, /* output: new cursor replacing cur */
3170         int                     *stat)  /* success/failure */
3171 {
3172         struct xfs_btree_block  *block; /* btree block */
3173         struct xfs_buf          *bp;    /* buffer for block */
3174         union xfs_btree_ptr     nptr;   /* new block ptr */
3175         struct xfs_btree_cur    *ncur;  /* new btree cursor */
3176         union xfs_btree_key     nkey;   /* new block key */
3177         union xfs_btree_key     *lkey;
3178         int                     optr;   /* old key/record index */
3179         int                     ptr;    /* key/record index */
3180         int                     numrecs;/* number of records */
3181         int                     error;  /* error return value */
3182         int                     i;
3183         xfs_daddr_t             old_bn;
3184
3185         ncur = NULL;
3186         lkey = &nkey;
3187
3188         /*
3189          * If we have an external root pointer, and we've made it to the
3190          * root level, allocate a new root block and we're done.
3191          */
3192         if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3193             (level >= cur->bc_nlevels)) {
3194                 error = xfs_btree_new_root(cur, stat);
3195                 xfs_btree_set_ptr_null(cur, ptrp);
3196
3197                 return error;
3198         }
3199
3200         /* If we're off the left edge, return failure. */
3201         ptr = cur->bc_ptrs[level];
3202         if (ptr == 0) {
3203                 *stat = 0;
3204                 return 0;
3205         }
3206
3207         optr = ptr;
3208
3209         XFS_BTREE_STATS_INC(cur, insrec);
3210
3211         /* Get pointers to the btree buffer and block. */
3212         block = xfs_btree_get_block(cur, level, &bp);
3213         old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3214         numrecs = xfs_btree_get_numrecs(block);
3215
3216 #ifdef DEBUG
3217         error = xfs_btree_check_block(cur, block, level, bp);
3218         if (error)
3219                 goto error0;
3220
3221         /* Check that the new entry is being inserted in the right place. */
3222         if (ptr <= numrecs) {
3223                 if (level == 0) {
3224                         ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3225                                 xfs_btree_rec_addr(cur, ptr, block)));
3226                 } else {
3227                         ASSERT(cur->bc_ops->keys_inorder(cur, key,
3228                                 xfs_btree_key_addr(cur, ptr, block)));
3229                 }
3230         }
3231 #endif
3232
3233         /*
3234          * If the block is full, we can't insert the new entry until we
3235          * make the block un-full.
3236          */
3237         xfs_btree_set_ptr_null(cur, &nptr);
3238         if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3239                 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3240                                         &optr, &ptr, &nptr, &ncur, lkey, stat);
3241                 if (error || *stat == 0)
3242                         goto error0;
3243         }
3244
3245         /*
3246          * The current block may have changed if the block was
3247          * previously full and we have just made space in it.
3248          */
3249         block = xfs_btree_get_block(cur, level, &bp);
3250         numrecs = xfs_btree_get_numrecs(block);
3251
3252 #ifdef DEBUG
3253         error = xfs_btree_check_block(cur, block, level, bp);
3254         if (error)
3255                 return error;
3256 #endif
3257
3258         /*
3259          * At this point we know there's room for our new entry in the block
3260          * we're pointing at.
3261          */
3262         XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3263
3264         if (level > 0) {
3265                 /* It's a nonleaf. make a hole in the keys and ptrs */
3266                 union xfs_btree_key     *kp;
3267                 union xfs_btree_ptr     *pp;
3268
3269                 kp = xfs_btree_key_addr(cur, ptr, block);
3270                 pp = xfs_btree_ptr_addr(cur, ptr, block);
3271
3272                 for (i = numrecs - ptr; i >= 0; i--) {
3273                         error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3274                         if (error)
3275                                 return error;
3276                 }
3277
3278                 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3279                 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3280
3281                 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3282                 if (error)
3283                         goto error0;
3284
3285                 /* Now put the new data in, bump numrecs and log it. */
3286                 xfs_btree_copy_keys(cur, kp, key, 1);
3287                 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3288                 numrecs++;
3289                 xfs_btree_set_numrecs(block, numrecs);
3290                 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3291                 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3292 #ifdef DEBUG
3293                 if (ptr < numrecs) {
3294                         ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3295                                 xfs_btree_key_addr(cur, ptr + 1, block)));
3296                 }
3297 #endif
3298         } else {
3299                 /* It's a leaf. make a hole in the records */
3300                 union xfs_btree_rec             *rp;
3301
3302                 rp = xfs_btree_rec_addr(cur, ptr, block);
3303
3304                 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3305
3306                 /* Now put the new data in, bump numrecs and log it. */
3307                 xfs_btree_copy_recs(cur, rp, rec, 1);
3308                 xfs_btree_set_numrecs(block, ++numrecs);
3309                 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3310 #ifdef DEBUG
3311                 if (ptr < numrecs) {
3312                         ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3313                                 xfs_btree_rec_addr(cur, ptr + 1, block)));
3314                 }
3315 #endif
3316         }
3317
3318         /* Log the new number of records in the btree header. */
3319         xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3320
3321         /*
3322          * If we just inserted into a new tree block, we have to
3323          * recalculate nkey here because nkey is out of date.
3324          *
3325          * Otherwise we're just updating an existing block (having shoved
3326          * some records into the new tree block), so use the regular key
3327          * update mechanism.
3328          */
3329         if (bp && bp->b_bn != old_bn) {
3330                 xfs_btree_get_keys(cur, block, lkey);
3331         } else if (xfs_btree_needs_key_update(cur, optr)) {
3332                 error = xfs_btree_update_keys(cur, level);
3333                 if (error)
3334                         goto error0;
3335         }
3336
3337         /*
3338          * If we are tracking the last record in the tree and
3339          * we are at the far right edge of the tree, update it.
3340          */
3341         if (xfs_btree_is_lastrec(cur, block, level)) {
3342                 cur->bc_ops->update_lastrec(cur, block, rec,
3343                                             ptr, LASTREC_INSREC);
3344         }
3345
3346         /*
3347          * Return the new block number, if any.
3348          * If there is one, give back a record value and a cursor too.
3349          */
3350         *ptrp = nptr;
3351         if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3352                 xfs_btree_copy_keys(cur, key, lkey, 1);
3353                 *curp = ncur;
3354         }
3355
3356         *stat = 1;
3357         return 0;
3358
3359 error0:
3360         return error;
3361 }
3362
3363 /*
3364  * Insert the record at the point referenced by cur.
3365  *
3366  * A multi-level split of the tree on insert will invalidate the original
3367  * cursor.  All callers of this function should assume that the cursor is
3368  * no longer valid and revalidate it.
3369  */
3370 int
3371 xfs_btree_insert(
3372         struct xfs_btree_cur    *cur,
3373         int                     *stat)
3374 {
3375         int                     error;  /* error return value */
3376         int                     i;      /* result value, 0 for failure */
3377         int                     level;  /* current level number in btree */
3378         union xfs_btree_ptr     nptr;   /* new block number (split result) */
3379         struct xfs_btree_cur    *ncur;  /* new cursor (split result) */
3380         struct xfs_btree_cur    *pcur;  /* previous level's cursor */
3381         union xfs_btree_key     bkey;   /* key of block to insert */
3382         union xfs_btree_key     *key;
3383         union xfs_btree_rec     rec;    /* record to insert */
3384
3385         level = 0;
3386         ncur = NULL;
3387         pcur = cur;
3388         key = &bkey;
3389
3390         xfs_btree_set_ptr_null(cur, &nptr);
3391
3392         /* Make a key out of the record data to be inserted, and save it. */
3393         cur->bc_ops->init_rec_from_cur(cur, &rec);
3394         cur->bc_ops->init_key_from_rec(key, &rec);
3395
3396         /*
3397          * Loop going up the tree, starting at the leaf level.
3398          * Stop when we don't get a split block, that must mean that
3399          * the insert is finished with this level.
3400          */
3401         do {
3402                 /*
3403                  * Insert nrec/nptr into this level of the tree.
3404                  * Note if we fail, nptr will be null.
3405                  */
3406                 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3407                                 &ncur, &i);
3408                 if (error) {
3409                         if (pcur != cur)
3410                                 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3411                         goto error0;
3412                 }
3413
3414                 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3415                         error = -EFSCORRUPTED;
3416                         goto error0;
3417                 }
3418                 level++;
3419
3420                 /*
3421                  * See if the cursor we just used is trash.
3422                  * Can't trash the caller's cursor, but otherwise we should
3423                  * if ncur is a new cursor or we're about to be done.
3424                  */
3425                 if (pcur != cur &&
3426                     (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3427                         /* Save the state from the cursor before we trash it */
3428                         if (cur->bc_ops->update_cursor)
3429                                 cur->bc_ops->update_cursor(pcur, cur);
3430                         cur->bc_nlevels = pcur->bc_nlevels;
3431                         xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3432                 }
3433                 /* If we got a new cursor, switch to it. */
3434                 if (ncur) {
3435                         pcur = ncur;
3436                         ncur = NULL;
3437                 }
3438         } while (!xfs_btree_ptr_is_null(cur, &nptr));
3439
3440         *stat = i;
3441         return 0;
3442 error0:
3443         return error;
3444 }
3445
3446 /*
3447  * Try to merge a non-leaf block back into the inode root.
3448  *
3449  * Note: the killroot names comes from the fact that we're effectively
3450  * killing the old root block.  But because we can't just delete the
3451  * inode we have to copy the single block it was pointing to into the
3452  * inode.
3453  */
3454 STATIC int
3455 xfs_btree_kill_iroot(
3456         struct xfs_btree_cur    *cur)
3457 {
3458         int                     whichfork = cur->bc_private.b.whichfork;
3459         struct xfs_inode        *ip = cur->bc_private.b.ip;
3460         struct xfs_ifork        *ifp = XFS_IFORK_PTR(ip, whichfork);
3461         struct xfs_btree_block  *block;
3462         struct xfs_btree_block  *cblock;
3463         union xfs_btree_key     *kp;
3464         union xfs_btree_key     *ckp;
3465         union xfs_btree_ptr     *pp;
3466         union xfs_btree_ptr     *cpp;
3467         struct xfs_buf          *cbp;
3468         int                     level;
3469         int                     index;
3470         int                     numrecs;
3471         int                     error;
3472 #ifdef DEBUG
3473         union xfs_btree_ptr     ptr;
3474 #endif
3475         int                     i;
3476
3477         ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3478         ASSERT(cur->bc_nlevels > 1);
3479
3480         /*
3481          * Don't deal with the root block needs to be a leaf case.
3482          * We're just going to turn the thing back into extents anyway.
3483          */
3484         level = cur->bc_nlevels - 1;
3485         if (level == 1)
3486                 goto out0;
3487
3488         /*
3489          * Give up if the root has multiple children.
3490          */
3491         block = xfs_btree_get_iroot(cur);
3492         if (xfs_btree_get_numrecs(block) != 1)
3493                 goto out0;
3494
3495         cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3496         numrecs = xfs_btree_get_numrecs(cblock);
3497
3498         /*
3499          * Only do this if the next level will fit.
3500          * Then the data must be copied up to the inode,
3501          * instead of freeing the root you free the next level.
3502          */
3503         if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3504                 goto out0;
3505
3506         XFS_BTREE_STATS_INC(cur, killroot);
3507
3508 #ifdef DEBUG
3509         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3510         ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3511         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3512         ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3513 #endif
3514
3515         index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3516         if (index) {
3517                 xfs_iroot_realloc(cur->bc_private.b.ip, index,
3518                                   cur->bc_private.b.whichfork);
3519                 block = ifp->if_broot;
3520         }
3521
3522         be16_add_cpu(&block->bb_numrecs, index);
3523         ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3524
3525         kp = xfs_btree_key_addr(cur, 1, block);
3526         ckp = xfs_btree_key_addr(cur, 1, cblock);
3527         xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3528
3529         pp = xfs_btree_ptr_addr(cur, 1, block);
3530         cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3531
3532         for (i = 0; i < numrecs; i++) {
3533                 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3534                 if (error)
3535                         return error;
3536         }
3537
3538         xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3539
3540         error = xfs_btree_free_block(cur, cbp);
3541         if (error)
3542                 return error;
3543
3544         cur->bc_bufs[level - 1] = NULL;
3545         be16_add_cpu(&block->bb_level, -1);
3546         xfs_trans_log_inode(cur->bc_tp, ip,
3547                 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3548         cur->bc_nlevels--;
3549 out0:
3550         return 0;
3551 }
3552
3553 /*
3554  * Kill the current root node, and replace it with it's only child node.
3555  */
3556 STATIC int
3557 xfs_btree_kill_root(
3558         struct xfs_btree_cur    *cur,
3559         struct xfs_buf          *bp,
3560         int                     level,
3561         union xfs_btree_ptr     *newroot)
3562 {
3563         int                     error;
3564
3565         XFS_BTREE_STATS_INC(cur, killroot);
3566
3567         /*
3568          * Update the root pointer, decreasing the level by 1 and then
3569          * free the old root.
3570          */
3571         cur->bc_ops->set_root(cur, newroot, -1);
3572
3573         error = xfs_btree_free_block(cur, bp);
3574         if (error)
3575                 return error;
3576
3577         cur->bc_bufs[level] = NULL;
3578         cur->bc_ra[level] = 0;
3579         cur->bc_nlevels--;
3580
3581         return 0;
3582 }
3583
3584 STATIC int
3585 xfs_btree_dec_cursor(
3586         struct xfs_btree_cur    *cur,
3587         int                     level,
3588         int                     *stat)
3589 {
3590         int                     error;
3591         int                     i;
3592
3593         if (level > 0) {
3594                 error = xfs_btree_decrement(cur, level, &i);
3595                 if (error)
3596                         return error;
3597         }
3598
3599         *stat = 1;
3600         return 0;
3601 }
3602
3603 /*
3604  * Single level of the btree record deletion routine.
3605  * Delete record pointed to by cur/level.
3606  * Remove the record from its block then rebalance the tree.
3607  * Return 0 for error, 1 for done, 2 to go on to the next level.
3608  */
3609 STATIC int                                      /* error */
3610 xfs_btree_delrec(
3611         struct xfs_btree_cur    *cur,           /* btree cursor */
3612         int                     level,          /* level removing record from */
3613         int                     *stat)          /* fail/done/go-on */
3614 {
3615         struct xfs_btree_block  *block;         /* btree block */
3616         union xfs_btree_ptr     cptr;           /* current block ptr */
3617         struct xfs_buf          *bp;            /* buffer for block */
3618         int                     error;          /* error return value */
3619         int                     i;              /* loop counter */
3620         union xfs_btree_ptr     lptr;           /* left sibling block ptr */
3621         struct xfs_buf          *lbp;           /* left buffer pointer */
3622         struct xfs_btree_block  *left;          /* left btree block */
3623         int                     lrecs = 0;      /* left record count */
3624         int                     ptr;            /* key/record index */
3625         union xfs_btree_ptr     rptr;           /* right sibling block ptr */
3626         struct xfs_buf          *rbp;           /* right buffer pointer */
3627         struct xfs_btree_block  *right;         /* right btree block */
3628         struct xfs_btree_block  *rrblock;       /* right-right btree block */
3629         struct xfs_buf          *rrbp;          /* right-right buffer pointer */
3630         int                     rrecs = 0;      /* right record count */
3631         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
3632         int                     numrecs;        /* temporary numrec count */
3633
3634         tcur = NULL;
3635
3636         /* Get the index of the entry being deleted, check for nothing there. */
3637         ptr = cur->bc_ptrs[level];
3638         if (ptr == 0) {
3639                 *stat = 0;
3640                 return 0;
3641         }
3642
3643         /* Get the buffer & block containing the record or key/ptr. */
3644         block = xfs_btree_get_block(cur, level, &bp);
3645         numrecs = xfs_btree_get_numrecs(block);
3646
3647 #ifdef DEBUG
3648         error = xfs_btree_check_block(cur, block, level, bp);
3649         if (error)
3650                 goto error0;
3651 #endif
3652
3653         /* Fail if we're off the end of the block. */
3654         if (ptr > numrecs) {
3655                 *stat = 0;
3656                 return 0;
3657         }
3658
3659         XFS_BTREE_STATS_INC(cur, delrec);
3660         XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3661
3662         /* Excise the entries being deleted. */
3663         if (level > 0) {
3664                 /* It's a nonleaf. operate on keys and ptrs */
3665                 union xfs_btree_key     *lkp;
3666                 union xfs_btree_ptr     *lpp;
3667
3668                 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3669                 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3670
3671                 for (i = 0; i < numrecs - ptr; i++) {
3672                         error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3673                         if (error)
3674                                 goto error0;
3675                 }
3676
3677                 if (ptr < numrecs) {
3678                         xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3679                         xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3680                         xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3681                         xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3682                 }
3683         } else {
3684                 /* It's a leaf. operate on records */
3685                 if (ptr < numrecs) {
3686                         xfs_btree_shift_recs(cur,
3687                                 xfs_btree_rec_addr(cur, ptr + 1, block),
3688                                 -1, numrecs - ptr);
3689                         xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3690                 }
3691         }
3692
3693         /*
3694          * Decrement and log the number of entries in the block.
3695          */
3696         xfs_btree_set_numrecs(block, --numrecs);
3697         xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3698
3699         /*
3700          * If we are tracking the last record in the tree and
3701          * we are at the far right edge of the tree, update it.
3702          */
3703         if (xfs_btree_is_lastrec(cur, block, level)) {
3704                 cur->bc_ops->update_lastrec(cur, block, NULL,
3705                                             ptr, LASTREC_DELREC);
3706         }
3707
3708         /*
3709          * We're at the root level.  First, shrink the root block in-memory.
3710          * Try to get rid of the next level down.  If we can't then there's
3711          * nothing left to do.
3712          */
3713         if (level == cur->bc_nlevels - 1) {
3714                 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3715                         xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3716                                           cur->bc_private.b.whichfork);
3717
3718                         error = xfs_btree_kill_iroot(cur);
3719                         if (error)
3720                                 goto error0;
3721
3722                         error = xfs_btree_dec_cursor(cur, level, stat);
3723                         if (error)
3724                                 goto error0;
3725                         *stat = 1;
3726                         return 0;
3727                 }
3728
3729                 /*
3730                  * If this is the root level, and there's only one entry left,
3731                  * and it's NOT the leaf level, then we can get rid of this
3732                  * level.
3733                  */
3734                 if (numrecs == 1 && level > 0) {
3735                         union xfs_btree_ptr     *pp;
3736                         /*
3737                          * pp is still set to the first pointer in the block.
3738                          * Make it the new root of the btree.
3739                          */
3740                         pp = xfs_btree_ptr_addr(cur, 1, block);
3741                         error = xfs_btree_kill_root(cur, bp, level, pp);
3742                         if (error)
3743                                 goto error0;
3744                 } else if (level > 0) {
3745                         error = xfs_btree_dec_cursor(cur, level, stat);
3746                         if (error)
3747                                 goto error0;
3748                 }
3749                 *stat = 1;
3750                 return 0;
3751         }
3752
3753         /*
3754          * If we deleted the leftmost entry in the block, update the
3755          * key values above us in the tree.
3756          */
3757         if (xfs_btree_needs_key_update(cur, ptr)) {
3758                 error = xfs_btree_update_keys(cur, level);
3759                 if (error)
3760                         goto error0;
3761         }
3762
3763         /*
3764          * If the number of records remaining in the block is at least
3765          * the minimum, we're done.
3766          */
3767         if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3768                 error = xfs_btree_dec_cursor(cur, level, stat);
3769                 if (error)
3770                         goto error0;
3771                 return 0;
3772         }
3773
3774         /*
3775          * Otherwise, we have to move some records around to keep the
3776          * tree balanced.  Look at the left and right sibling blocks to
3777          * see if we can re-balance by moving only one record.
3778          */
3779         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3780         xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3781
3782         if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3783                 /*
3784                  * One child of root, need to get a chance to copy its contents
3785                  * into the root and delete it. Can't go up to next level,
3786                  * there's nothing to delete there.
3787                  */
3788                 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3789                     xfs_btree_ptr_is_null(cur, &lptr) &&
3790                     level == cur->bc_nlevels - 2) {
3791                         error = xfs_btree_kill_iroot(cur);
3792                         if (!error)
3793                                 error = xfs_btree_dec_cursor(cur, level, stat);
3794                         if (error)
3795                                 goto error0;
3796                         return 0;
3797                 }
3798         }
3799
3800         ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3801                !xfs_btree_ptr_is_null(cur, &lptr));
3802
3803         /*
3804          * Duplicate the cursor so our btree manipulations here won't
3805          * disrupt the next level up.
3806          */
3807         error = xfs_btree_dup_cursor(cur, &tcur);
3808         if (error)
3809                 goto error0;
3810
3811         /*
3812          * If there's a right sibling, see if it's ok to shift an entry
3813          * out of it.
3814          */
3815         if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3816                 /*
3817                  * Move the temp cursor to the last entry in the next block.
3818                  * Actually any entry but the first would suffice.
3819                  */
3820                 i = xfs_btree_lastrec(tcur, level);
3821                 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3822                         error = -EFSCORRUPTED;
3823                         goto error0;
3824                 }
3825
3826                 error = xfs_btree_increment(tcur, level, &i);
3827                 if (error)
3828                         goto error0;
3829                 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3830                         error = -EFSCORRUPTED;
3831                         goto error0;
3832                 }
3833
3834                 i = xfs_btree_lastrec(tcur, level);
3835                 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3836                         error = -EFSCORRUPTED;
3837                         goto error0;
3838                 }
3839
3840                 /* Grab a pointer to the block. */
3841                 right = xfs_btree_get_block(tcur, level, &rbp);
3842 #ifdef DEBUG
3843                 error = xfs_btree_check_block(tcur, right, level, rbp);
3844                 if (error)
3845                         goto error0;
3846 #endif
3847                 /* Grab the current block number, for future use. */
3848                 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3849
3850                 /*
3851                  * If right block is full enough so that removing one entry
3852                  * won't make it too empty, and left-shifting an entry out
3853                  * of right to us works, we're done.
3854                  */
3855                 if (xfs_btree_get_numrecs(right) - 1 >=
3856                     cur->bc_ops->get_minrecs(tcur, level)) {
3857                         error = xfs_btree_lshift(tcur, level, &i);
3858                         if (error)
3859                                 goto error0;
3860                         if (i) {
3861                                 ASSERT(xfs_btree_get_numrecs(block) >=
3862                                        cur->bc_ops->get_minrecs(tcur, level));
3863
3864                                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3865                                 tcur = NULL;
3866
3867                                 error = xfs_btree_dec_cursor(cur, level, stat);
3868                                 if (error)
3869                                         goto error0;
3870                                 return 0;
3871                         }
3872                 }
3873
3874                 /*
3875                  * Otherwise, grab the number of records in right for
3876                  * future reference, and fix up the temp cursor to point
3877                  * to our block again (last record).
3878                  */
3879                 rrecs = xfs_btree_get_numrecs(right);
3880                 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3881                         i = xfs_btree_firstrec(tcur, level);
3882                         if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3883                                 error = -EFSCORRUPTED;
3884                                 goto error0;
3885                         }
3886
3887                         error = xfs_btree_decrement(tcur, level, &i);
3888                         if (error)
3889                                 goto error0;
3890                         if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3891                                 error = -EFSCORRUPTED;
3892                                 goto error0;
3893                         }
3894                 }
3895         }
3896
3897         /*
3898          * If there's a left sibling, see if it's ok to shift an entry
3899          * out of it.
3900          */
3901         if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3902                 /*
3903                  * Move the temp cursor to the first entry in the
3904                  * previous block.
3905                  */
3906                 i = xfs_btree_firstrec(tcur, level);
3907                 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3908                         error = -EFSCORRUPTED;
3909                         goto error0;
3910                 }
3911
3912                 error = xfs_btree_decrement(tcur, level, &i);
3913                 if (error)
3914                         goto error0;
3915                 i = xfs_btree_firstrec(tcur, level);
3916                 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3917                         error = -EFSCORRUPTED;
3918                         goto error0;
3919                 }
3920
3921                 /* Grab a pointer to the block. */
3922                 left = xfs_btree_get_block(tcur, level, &lbp);
3923 #ifdef DEBUG
3924                 error = xfs_btree_check_block(cur, left, level, lbp);
3925                 if (error)
3926                         goto error0;
3927 #endif
3928                 /* Grab the current block number, for future use. */
3929                 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3930
3931                 /*
3932                  * If left block is full enough so that removing one entry
3933                  * won't make it too empty, and right-shifting an entry out
3934                  * of left to us works, we're done.
3935                  */
3936                 if (xfs_btree_get_numrecs(left) - 1 >=
3937                     cur->bc_ops->get_minrecs(tcur, level)) {
3938                         error = xfs_btree_rshift(tcur, level, &i);
3939                         if (error)
3940                                 goto error0;
3941                         if (i) {
3942                                 ASSERT(xfs_btree_get_numrecs(block) >=
3943                                        cur->bc_ops->get_minrecs(tcur, level));
3944                                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3945                                 tcur = NULL;
3946                                 if (level == 0)
3947                                         cur->bc_ptrs[0]++;
3948
3949                                 *stat = 1;
3950                                 return 0;
3951                         }
3952                 }
3953
3954                 /*
3955                  * Otherwise, grab the number of records in right for
3956                  * future reference.
3957                  */
3958                 lrecs = xfs_btree_get_numrecs(left);
3959         }
3960
3961         /* Delete the temp cursor, we're done with it. */
3962         xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3963         tcur = NULL;
3964
3965         /* If here, we need to do a join to keep the tree balanced. */
3966         ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
3967
3968         if (!xfs_btree_ptr_is_null(cur, &lptr) &&
3969             lrecs + xfs_btree_get_numrecs(block) <=
3970                         cur->bc_ops->get_maxrecs(cur, level)) {
3971                 /*
3972                  * Set "right" to be the starting block,
3973                  * "left" to be the left neighbor.
3974                  */
3975                 rptr = cptr;
3976                 right = block;
3977                 rbp = bp;
3978                 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3979                 if (error)
3980                         goto error0;
3981
3982         /*
3983          * If that won't work, see if we can join with the right neighbor block.
3984          */
3985         } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
3986                    rrecs + xfs_btree_get_numrecs(block) <=
3987                         cur->bc_ops->get_maxrecs(cur, level)) {
3988                 /*
3989                  * Set "left" to be the starting block,
3990                  * "right" to be the right neighbor.
3991                  */
3992                 lptr = cptr;
3993                 left = block;
3994                 lbp = bp;
3995                 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3996                 if (error)
3997                         goto error0;
3998
3999         /*
4000          * Otherwise, we can't fix the imbalance.
4001          * Just return.  This is probably a logic error, but it's not fatal.
4002          */
4003         } else {
4004                 error = xfs_btree_dec_cursor(cur, level, stat);
4005                 if (error)
4006                         goto error0;
4007                 return 0;
4008         }
4009
4010         rrecs = xfs_btree_get_numrecs(right);
4011         lrecs = xfs_btree_get_numrecs(left);
4012
4013         /*
4014          * We're now going to join "left" and "right" by moving all the stuff
4015          * in "right" to "left" and deleting "right".
4016          */
4017         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4018         if (level > 0) {
4019                 /* It's a non-leaf.  Move keys and pointers. */
4020                 union xfs_btree_key     *lkp;   /* left btree key */
4021                 union xfs_btree_ptr     *lpp;   /* left address pointer */
4022                 union xfs_btree_key     *rkp;   /* right btree key */
4023                 union xfs_btree_ptr     *rpp;   /* right address pointer */
4024
4025                 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4026                 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4027                 rkp = xfs_btree_key_addr(cur, 1, right);
4028                 rpp = xfs_btree_ptr_addr(cur, 1, right);
4029
4030                 for (i = 1; i < rrecs; i++) {
4031                         error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4032                         if (error)
4033                                 goto error0;
4034                 }
4035
4036                 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4037                 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4038
4039                 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4040                 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4041         } else {
4042                 /* It's a leaf.  Move records.  */
4043                 union xfs_btree_rec     *lrp;   /* left record pointer */
4044                 union xfs_btree_rec     *rrp;   /* right record pointer */
4045
4046                 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4047                 rrp = xfs_btree_rec_addr(cur, 1, right);
4048
4049                 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4050                 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4051         }
4052
4053         XFS_BTREE_STATS_INC(cur, join);
4054
4055         /*
4056          * Fix up the number of records and right block pointer in the
4057          * surviving block, and log it.
4058          */
4059         xfs_btree_set_numrecs(left, lrecs + rrecs);
4060         xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4061         xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4062         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4063
4064         /* If there is a right sibling, point it to the remaining block. */
4065         xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4066         if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4067                 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4068                 if (error)
4069                         goto error0;
4070                 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4071                 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4072         }
4073
4074         /* Free the deleted block. */
4075         error = xfs_btree_free_block(cur, rbp);
4076         if (error)
4077                 goto error0;
4078
4079         /*
4080          * If we joined with the left neighbor, set the buffer in the
4081          * cursor to the left block, and fix up the index.
4082          */
4083         if (bp != lbp) {
4084                 cur->bc_bufs[level] = lbp;
4085                 cur->bc_ptrs[level] += lrecs;
4086                 cur->bc_ra[level] = 0;
4087         }
4088         /*
4089          * If we joined with the right neighbor and there's a level above
4090          * us, increment the cursor at that level.
4091          */
4092         else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4093                    (level + 1 < cur->bc_nlevels)) {
4094                 error = xfs_btree_increment(cur, level + 1, &i);
4095                 if (error)
4096                         goto error0;
4097         }
4098
4099         /*
4100          * Readjust the ptr at this level if it's not a leaf, since it's
4101          * still pointing at the deletion point, which makes the cursor
4102          * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4103          * We can't use decrement because it would change the next level up.
4104          */
4105         if (level > 0)
4106                 cur->bc_ptrs[level]--;
4107
4108         /*
4109          * We combined blocks, so we have to update the parent keys if the
4110          * btree supports overlapped intervals.  However, bc_ptrs[level + 1]
4111          * points to the old block so that the caller knows which record to
4112          * delete.  Therefore, the caller must be savvy enough to call updkeys
4113          * for us if we return stat == 2.  The other exit points from this
4114          * function don't require deletions further up the tree, so they can
4115          * call updkeys directly.
4116          */
4117
4118         /* Return value means the next level up has something to do. */
4119         *stat = 2;
4120         return 0;
4121
4122 error0:
4123         if (tcur)
4124                 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4125         return error;
4126 }
4127
4128 /*
4129  * Delete the record pointed to by cur.
4130  * The cursor refers to the place where the record was (could be inserted)
4131  * when the operation returns.
4132  */
4133 int                                     /* error */
4134 xfs_btree_delete(
4135         struct xfs_btree_cur    *cur,
4136         int                     *stat)  /* success/failure */
4137 {
4138         int                     error;  /* error return value */
4139         int                     level;
4140         int                     i;
4141         bool                    joined = false;
4142
4143         /*
4144          * Go up the tree, starting at leaf level.
4145          *
4146          * If 2 is returned then a join was done; go to the next level.
4147          * Otherwise we are done.
4148          */
4149         for (level = 0, i = 2; i == 2; level++) {
4150                 error = xfs_btree_delrec(cur, level, &i);
4151                 if (error)
4152                         goto error0;
4153                 if (i == 2)
4154                         joined = true;
4155         }
4156
4157         /*
4158          * If we combined blocks as part of deleting the record, delrec won't
4159          * have updated the parent high keys so we have to do that here.
4160          */
4161         if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4162                 error = xfs_btree_updkeys_force(cur, 0);
4163                 if (error)
4164                         goto error0;
4165         }
4166
4167         if (i == 0) {
4168                 for (level = 1; level < cur->bc_nlevels; level++) {
4169                         if (cur->bc_ptrs[level] == 0) {
4170                                 error = xfs_btree_decrement(cur, level, &i);
4171                                 if (error)
4172                                         goto error0;
4173                                 break;
4174                         }
4175                 }
4176         }
4177
4178         *stat = i;
4179         return 0;
4180 error0:
4181         return error;
4182 }
4183
4184 /*
4185  * Get the data from the pointed-to record.
4186  */
4187 int                                     /* error */
4188 xfs_btree_get_rec(
4189         struct xfs_btree_cur    *cur,   /* btree cursor */
4190         union xfs_btree_rec     **recp, /* output: btree record */
4191         int                     *stat)  /* output: success/failure */
4192 {
4193         struct xfs_btree_block  *block; /* btree block */
4194         struct xfs_buf          *bp;    /* buffer pointer */
4195         int                     ptr;    /* record number */
4196 #ifdef DEBUG
4197         int                     error;  /* error return value */
4198 #endif
4199
4200         ptr = cur->bc_ptrs[0];
4201         block = xfs_btree_get_block(cur, 0, &bp);
4202
4203 #ifdef DEBUG
4204         error = xfs_btree_check_block(cur, block, 0, bp);
4205         if (error)
4206                 return error;
4207 #endif
4208
4209         /*
4210          * Off the right end or left end, return failure.
4211          */
4212         if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4213                 *stat = 0;
4214                 return 0;
4215         }
4216
4217         /*
4218          * Point to the record and extract its data.
4219          */
4220         *recp = xfs_btree_rec_addr(cur, ptr, block);
4221         *stat = 1;
4222         return 0;
4223 }
4224
4225 /* Visit a block in a btree. */
4226 STATIC int
4227 xfs_btree_visit_block(
4228         struct xfs_btree_cur            *cur,
4229         int                             level,
4230         xfs_btree_visit_blocks_fn       fn,
4231         void                            *data)
4232 {
4233         struct xfs_btree_block          *block;
4234         struct xfs_buf                  *bp;
4235         union xfs_btree_ptr             rptr;
4236         int                             error;
4237
4238         /* do right sibling readahead */
4239         xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4240         block = xfs_btree_get_block(cur, level, &bp);
4241
4242         /* process the block */
4243         error = fn(cur, level, data);
4244         if (error)
4245                 return error;
4246
4247         /* now read rh sibling block for next iteration */
4248         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4249         if (xfs_btree_ptr_is_null(cur, &rptr))
4250                 return -ENOENT;
4251
4252         return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4253 }
4254
4255
4256 /* Visit every block in a btree. */
4257 int
4258 xfs_btree_visit_blocks(
4259         struct xfs_btree_cur            *cur,
4260         xfs_btree_visit_blocks_fn       fn,
4261         unsigned int                    flags,
4262         void                            *data)
4263 {
4264         union xfs_btree_ptr             lptr;
4265         int                             level;
4266         struct xfs_btree_block          *block = NULL;
4267         int                             error = 0;
4268
4269         cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4270
4271         /* for each level */
4272         for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4273                 /* grab the left hand block */
4274                 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4275                 if (error)
4276                         return error;
4277
4278                 /* readahead the left most block for the next level down */
4279                 if (level > 0) {
4280                         union xfs_btree_ptr     *ptr;
4281
4282                         ptr = xfs_btree_ptr_addr(cur, 1, block);
4283                         xfs_btree_readahead_ptr(cur, ptr, 1);
4284
4285                         /* save for the next iteration of the loop */
4286                         xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4287
4288                         if (!(flags & XFS_BTREE_VISIT_LEAVES))
4289                                 continue;
4290                 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4291                         continue;
4292                 }
4293
4294                 /* for each buffer in the level */
4295                 do {
4296                         error = xfs_btree_visit_block(cur, level, fn, data);
4297                 } while (!error);
4298
4299                 if (error != -ENOENT)
4300                         return error;
4301         }
4302
4303         return 0;
4304 }
4305
4306 /*
4307  * Change the owner of a btree.
4308  *
4309  * The mechanism we use here is ordered buffer logging. Because we don't know
4310  * how many buffers were are going to need to modify, we don't really want to
4311  * have to make transaction reservations for the worst case of every buffer in a
4312  * full size btree as that may be more space that we can fit in the log....
4313  *
4314  * We do the btree walk in the most optimal manner possible - we have sibling
4315  * pointers so we can just walk all the blocks on each level from left to right
4316  * in a single pass, and then move to the next level and do the same. We can
4317  * also do readahead on the sibling pointers to get IO moving more quickly,
4318  * though for slow disks this is unlikely to make much difference to performance
4319  * as the amount of CPU work we have to do before moving to the next block is
4320  * relatively small.
4321  *
4322  * For each btree block that we load, modify the owner appropriately, set the
4323  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4324  * we mark the region we change dirty so that if the buffer is relogged in
4325  * a subsequent transaction the changes we make here as an ordered buffer are
4326  * correctly relogged in that transaction.  If we are in recovery context, then
4327  * just queue the modified buffer as delayed write buffer so the transaction
4328  * recovery completion writes the changes to disk.
4329  */
4330 struct xfs_btree_block_change_owner_info {
4331         uint64_t                new_owner;
4332         struct list_head        *buffer_list;
4333 };
4334
4335 static int
4336 xfs_btree_block_change_owner(
4337         struct xfs_btree_cur    *cur,
4338         int                     level,
4339         void                    *data)
4340 {
4341         struct xfs_btree_block_change_owner_info        *bbcoi = data;
4342         struct xfs_btree_block  *block;
4343         struct xfs_buf          *bp;
4344
4345         /* modify the owner */
4346         block = xfs_btree_get_block(cur, level, &bp);
4347         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4348                 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4349                         return 0;
4350                 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4351         } else {
4352                 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4353                         return 0;
4354                 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4355         }
4356
4357         /*
4358          * If the block is a root block hosted in an inode, we might not have a
4359          * buffer pointer here and we shouldn't attempt to log the change as the
4360          * information is already held in the inode and discarded when the root
4361          * block is formatted into the on-disk inode fork. We still change it,
4362          * though, so everything is consistent in memory.
4363          */
4364         if (!bp) {
4365                 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4366                 ASSERT(level == cur->bc_nlevels - 1);
4367                 return 0;
4368         }
4369
4370         if (cur->bc_tp) {
4371                 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4372                         xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4373                         return -EAGAIN;
4374                 }
4375         } else {
4376                 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4377         }
4378
4379         return 0;
4380 }
4381
4382 int
4383 xfs_btree_change_owner(
4384         struct xfs_btree_cur    *cur,
4385         uint64_t                new_owner,
4386         struct list_head        *buffer_list)
4387 {
4388         struct xfs_btree_block_change_owner_info        bbcoi;
4389
4390         bbcoi.new_owner = new_owner;
4391         bbcoi.buffer_list = buffer_list;
4392
4393         return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4394                         XFS_BTREE_VISIT_ALL, &bbcoi);
4395 }
4396
4397 /* Verify the v5 fields of a long-format btree block. */
4398 xfs_failaddr_t
4399 xfs_btree_lblock_v5hdr_verify(
4400         struct xfs_buf          *bp,
4401         uint64_t                owner)
4402 {
4403         struct xfs_mount        *mp = bp->b_mount;
4404         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4405
4406         if (!xfs_sb_version_hascrc(&mp->m_sb))
4407                 return __this_address;
4408         if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4409                 return __this_address;
4410         if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn))
4411                 return __this_address;
4412         if (owner != XFS_RMAP_OWN_UNKNOWN &&
4413             be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4414                 return __this_address;
4415         return NULL;
4416 }
4417
4418 /* Verify a long-format btree block. */
4419 xfs_failaddr_t
4420 xfs_btree_lblock_verify(
4421         struct xfs_buf          *bp,
4422         unsigned int            max_recs)
4423 {
4424         struct xfs_mount        *mp = bp->b_mount;
4425         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4426
4427         /* numrecs verification */
4428         if (be16_to_cpu(block->bb_numrecs) > max_recs)
4429                 return __this_address;
4430
4431         /* sibling pointer verification */
4432         if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4433             !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
4434                 return __this_address;
4435         if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4436             !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
4437                 return __this_address;
4438
4439         return NULL;
4440 }
4441
4442 /**
4443  * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4444  *                                    btree block
4445  *
4446  * @bp: buffer containing the btree block
4447  */
4448 xfs_failaddr_t
4449 xfs_btree_sblock_v5hdr_verify(
4450         struct xfs_buf          *bp)
4451 {
4452         struct xfs_mount        *mp = bp->b_mount;
4453         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4454         struct xfs_perag        *pag = bp->b_pag;
4455
4456         if (!xfs_sb_version_hascrc(&mp->m_sb))
4457                 return __this_address;
4458         if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4459                 return __this_address;
4460         if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4461                 return __this_address;
4462         if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4463                 return __this_address;
4464         return NULL;
4465 }
4466
4467 /**
4468  * xfs_btree_sblock_verify() -- verify a short-format btree block
4469  *
4470  * @bp: buffer containing the btree block
4471  * @max_recs: maximum records allowed in this btree node
4472  */
4473 xfs_failaddr_t
4474 xfs_btree_sblock_verify(
4475         struct xfs_buf          *bp,
4476         unsigned int            max_recs)
4477 {
4478         struct xfs_mount        *mp = bp->b_mount;
4479         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4480         xfs_agblock_t           agno;
4481
4482         /* numrecs verification */
4483         if (be16_to_cpu(block->bb_numrecs) > max_recs)
4484                 return __this_address;
4485
4486         /* sibling pointer verification */
4487         agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
4488         if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4489             !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
4490                 return __this_address;
4491         if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4492             !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
4493                 return __this_address;
4494
4495         return NULL;
4496 }
4497
4498 /*
4499  * Calculate the number of btree levels needed to store a given number of
4500  * records in a short-format btree.
4501  */
4502 uint
4503 xfs_btree_compute_maxlevels(
4504         uint                    *limits,
4505         unsigned long           len)
4506 {
4507         uint                    level;
4508         unsigned long           maxblocks;
4509
4510         maxblocks = (len + limits[0] - 1) / limits[0];
4511         for (level = 1; maxblocks > 1; level++)
4512                 maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4513         return level;
4514 }
4515
4516 /*
4517  * Query a regular btree for all records overlapping a given interval.
4518  * Start with a LE lookup of the key of low_rec and return all records
4519  * until we find a record with a key greater than the key of high_rec.
4520  */
4521 STATIC int
4522 xfs_btree_simple_query_range(
4523         struct xfs_btree_cur            *cur,
4524         union xfs_btree_key             *low_key,
4525         union xfs_btree_key             *high_key,
4526         xfs_btree_query_range_fn        fn,
4527         void                            *priv)
4528 {
4529         union xfs_btree_rec             *recp;
4530         union xfs_btree_key             rec_key;
4531         int64_t                         diff;
4532         int                             stat;
4533         bool                            firstrec = true;
4534         int                             error;
4535
4536         ASSERT(cur->bc_ops->init_high_key_from_rec);
4537         ASSERT(cur->bc_ops->diff_two_keys);
4538
4539         /*
4540          * Find the leftmost record.  The btree cursor must be set
4541          * to the low record used to generate low_key.
4542          */
4543         stat = 0;
4544         error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4545         if (error)
4546                 goto out;
4547
4548         /* Nothing?  See if there's anything to the right. */
4549         if (!stat) {
4550                 error = xfs_btree_increment(cur, 0, &stat);
4551                 if (error)
4552                         goto out;
4553         }
4554
4555         while (stat) {
4556                 /* Find the record. */
4557                 error = xfs_btree_get_rec(cur, &recp, &stat);
4558                 if (error || !stat)
4559                         break;
4560
4561                 /* Skip if high_key(rec) < low_key. */
4562                 if (firstrec) {
4563                         cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4564                         firstrec = false;
4565                         diff = cur->bc_ops->diff_two_keys(cur, low_key,
4566                                         &rec_key);
4567                         if (diff > 0)
4568                                 goto advloop;
4569                 }
4570
4571                 /* Stop if high_key < low_key(rec). */
4572                 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4573                 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4574                 if (diff > 0)
4575                         break;
4576
4577                 /* Callback */
4578                 error = fn(cur, recp, priv);
4579                 if (error)
4580                         break;
4581
4582 advloop:
4583                 /* Move on to the next record. */
4584                 error = xfs_btree_increment(cur, 0, &stat);
4585                 if (error)
4586                         break;
4587         }
4588
4589 out:
4590         return error;
4591 }
4592
4593 /*
4594  * Query an overlapped interval btree for all records overlapping a given
4595  * interval.  This function roughly follows the algorithm given in
4596  * "Interval Trees" of _Introduction to Algorithms_, which is section
4597  * 14.3 in the 2nd and 3rd editions.
4598  *
4599  * First, generate keys for the low and high records passed in.
4600  *
4601  * For any leaf node, generate the high and low keys for the record.
4602  * If the record keys overlap with the query low/high keys, pass the
4603  * record to the function iterator.
4604  *
4605  * For any internal node, compare the low and high keys of each
4606  * pointer against the query low/high keys.  If there's an overlap,
4607  * follow the pointer.
4608  *
4609  * As an optimization, we stop scanning a block when we find a low key
4610  * that is greater than the query's high key.
4611  */
4612 STATIC int
4613 xfs_btree_overlapped_query_range(
4614         struct xfs_btree_cur            *cur,
4615         union xfs_btree_key             *low_key,
4616         union xfs_btree_key             *high_key,
4617         xfs_btree_query_range_fn        fn,
4618         void                            *priv)
4619 {
4620         union xfs_btree_ptr             ptr;
4621         union xfs_btree_ptr             *pp;
4622         union xfs_btree_key             rec_key;
4623         union xfs_btree_key             rec_hkey;
4624         union xfs_btree_key             *lkp;
4625         union xfs_btree_key             *hkp;
4626         union xfs_btree_rec             *recp;
4627         struct xfs_btree_block          *block;
4628         int64_t                         ldiff;
4629         int64_t                         hdiff;
4630         int                             level;
4631         struct xfs_buf                  *bp;
4632         int                             i;
4633         int                             error;
4634
4635         /* Load the root of the btree. */
4636         level = cur->bc_nlevels - 1;
4637         cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4638         error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4639         if (error)
4640                 return error;
4641         xfs_btree_get_block(cur, level, &bp);
4642         trace_xfs_btree_overlapped_query_range(cur, level, bp);
4643 #ifdef DEBUG
4644         error = xfs_btree_check_block(cur, block, level, bp);
4645         if (error)
4646                 goto out;
4647 #endif
4648         cur->bc_ptrs[level] = 1;
4649
4650         while (level < cur->bc_nlevels) {
4651                 block = xfs_btree_get_block(cur, level, &bp);
4652
4653                 /* End of node, pop back towards the root. */
4654                 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4655 pop_up:
4656                         if (level < cur->bc_nlevels - 1)
4657                                 cur->bc_ptrs[level + 1]++;
4658                         level++;
4659                         continue;
4660                 }
4661
4662                 if (level == 0) {
4663                         /* Handle a leaf node. */
4664                         recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4665
4666                         cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4667                         ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4668                                         low_key);
4669
4670                         cur->bc_ops->init_key_from_rec(&rec_key, recp);
4671                         hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4672                                         &rec_key);
4673
4674                         /*
4675                          * If (record's high key >= query's low key) and
4676                          *    (query's high key >= record's low key), then
4677                          * this record overlaps the query range; callback.
4678                          */
4679                         if (ldiff >= 0 && hdiff >= 0) {
4680                                 error = fn(cur, recp, priv);
4681                                 if (error)
4682                                         break;
4683                         } else if (hdiff < 0) {
4684                                 /* Record is larger than high key; pop. */
4685                                 goto pop_up;
4686                         }
4687                         cur->bc_ptrs[level]++;
4688                         continue;
4689                 }
4690
4691                 /* Handle an internal node. */
4692                 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4693                 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4694                 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4695
4696                 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4697                 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4698
4699                 /*
4700                  * If (pointer's high key >= query's low key) and
4701                  *    (query's high key >= pointer's low key), then
4702                  * this record overlaps the query range; follow pointer.
4703                  */
4704                 if (ldiff >= 0 && hdiff >= 0) {
4705                         level--;
4706                         error = xfs_btree_lookup_get_block(cur, level, pp,
4707                                         &block);
4708                         if (error)
4709                                 goto out;
4710                         xfs_btree_get_block(cur, level, &bp);
4711                         trace_xfs_btree_overlapped_query_range(cur, level, bp);
4712 #ifdef DEBUG
4713                         error = xfs_btree_check_block(cur, block, level, bp);
4714                         if (error)
4715                                 goto out;
4716 #endif
4717                         cur->bc_ptrs[level] = 1;
4718                         continue;
4719                 } else if (hdiff < 0) {
4720                         /* The low key is larger than the upper range; pop. */
4721                         goto pop_up;
4722                 }
4723                 cur->bc_ptrs[level]++;
4724         }
4725
4726 out:
4727         /*
4728          * If we don't end this function with the cursor pointing at a record
4729          * block, a subsequent non-error cursor deletion will not release
4730          * node-level buffers, causing a buffer leak.  This is quite possible
4731          * with a zero-results range query, so release the buffers if we
4732          * failed to return any results.
4733          */
4734         if (cur->bc_bufs[0] == NULL) {
4735                 for (i = 0; i < cur->bc_nlevels; i++) {
4736                         if (cur->bc_bufs[i]) {
4737                                 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4738                                 cur->bc_bufs[i] = NULL;
4739                                 cur->bc_ptrs[i] = 0;
4740                                 cur->bc_ra[i] = 0;
4741                         }
4742                 }
4743         }
4744
4745         return error;
4746 }
4747
4748 /*
4749  * Query a btree for all records overlapping a given interval of keys.  The
4750  * supplied function will be called with each record found; return one of the
4751  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4752  * code.  This function returns -ECANCELED, zero, or a negative error code.
4753  */
4754 int
4755 xfs_btree_query_range(
4756         struct xfs_btree_cur            *cur,
4757         union xfs_btree_irec            *low_rec,
4758         union xfs_btree_irec            *high_rec,
4759         xfs_btree_query_range_fn        fn,
4760         void                            *priv)
4761 {
4762         union xfs_btree_rec             rec;
4763         union xfs_btree_key             low_key;
4764         union xfs_btree_key             high_key;
4765
4766         /* Find the keys of both ends of the interval. */
4767         cur->bc_rec = *high_rec;
4768         cur->bc_ops->init_rec_from_cur(cur, &rec);
4769         cur->bc_ops->init_key_from_rec(&high_key, &rec);
4770
4771         cur->bc_rec = *low_rec;
4772         cur->bc_ops->init_rec_from_cur(cur, &rec);
4773         cur->bc_ops->init_key_from_rec(&low_key, &rec);
4774
4775         /* Enforce low key < high key. */
4776         if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4777                 return -EINVAL;
4778
4779         if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4780                 return xfs_btree_simple_query_range(cur, &low_key,
4781                                 &high_key, fn, priv);
4782         return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4783                         fn, priv);
4784 }
4785
4786 /* Query a btree for all records. */
4787 int
4788 xfs_btree_query_all(
4789         struct xfs_btree_cur            *cur,
4790         xfs_btree_query_range_fn        fn,
4791         void                            *priv)
4792 {
4793         union xfs_btree_key             low_key;
4794         union xfs_btree_key             high_key;
4795
4796         memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4797         memset(&low_key, 0, sizeof(low_key));
4798         memset(&high_key, 0xFF, sizeof(high_key));
4799
4800         return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4801 }
4802
4803 /*
4804  * Calculate the number of blocks needed to store a given number of records
4805  * in a short-format (per-AG metadata) btree.
4806  */
4807 unsigned long long
4808 xfs_btree_calc_size(
4809         uint                    *limits,
4810         unsigned long long      len)
4811 {
4812         int                     level;
4813         int                     maxrecs;
4814         unsigned long long      rval;
4815
4816         maxrecs = limits[0];
4817         for (level = 0, rval = 0; len > 1; level++) {
4818                 len += maxrecs - 1;
4819                 do_div(len, maxrecs);
4820                 maxrecs = limits[1];
4821                 rval += len;
4822         }
4823         return rval;
4824 }
4825
4826 static int
4827 xfs_btree_count_blocks_helper(
4828         struct xfs_btree_cur    *cur,
4829         int                     level,
4830         void                    *data)
4831 {
4832         xfs_extlen_t            *blocks = data;
4833         (*blocks)++;
4834
4835         return 0;
4836 }
4837
4838 /* Count the blocks in a btree and return the result in *blocks. */
4839 int
4840 xfs_btree_count_blocks(
4841         struct xfs_btree_cur    *cur,
4842         xfs_extlen_t            *blocks)
4843 {
4844         *blocks = 0;
4845         return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4846                         XFS_BTREE_VISIT_ALL, blocks);
4847 }
4848
4849 /* Compare two btree pointers. */
4850 int64_t
4851 xfs_btree_diff_two_ptrs(
4852         struct xfs_btree_cur            *cur,
4853         const union xfs_btree_ptr       *a,
4854         const union xfs_btree_ptr       *b)
4855 {
4856         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4857                 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4858         return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4859 }
4860
4861 /* If there's an extent, we're done. */
4862 STATIC int
4863 xfs_btree_has_record_helper(
4864         struct xfs_btree_cur            *cur,
4865         union xfs_btree_rec             *rec,
4866         void                            *priv)
4867 {
4868         return -ECANCELED;
4869 }
4870
4871 /* Is there a record covering a given range of keys? */
4872 int
4873 xfs_btree_has_record(
4874         struct xfs_btree_cur    *cur,
4875         union xfs_btree_irec    *low,
4876         union xfs_btree_irec    *high,
4877         bool                    *exists)
4878 {
4879         int                     error;
4880
4881         error = xfs_btree_query_range(cur, low, high,
4882                         &xfs_btree_has_record_helper, NULL);
4883         if (error == -ECANCELED) {
4884                 *exists = true;
4885                 return 0;
4886         }
4887         *exists = false;
4888         return error;
4889 }
4890
4891 /* Are there more records in this btree? */
4892 bool
4893 xfs_btree_has_more_records(
4894         struct xfs_btree_cur    *cur)
4895 {
4896         struct xfs_btree_block  *block;
4897         struct xfs_buf          *bp;
4898
4899         block = xfs_btree_get_block(cur, 0, &bp);
4900
4901         /* There are still records in this block. */
4902         if (cur->bc_ptrs[0] < xfs_btree_get_numrecs(block))
4903                 return true;
4904
4905         /* There are more record blocks. */
4906         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4907                 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
4908         else
4909                 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
4910 }
This page took 0.32622 seconds and 4 git commands to generate.