2 * Routines having to do with the 'struct sk_buff' memory handlers.
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
46 #include <linux/interrupt.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/sctp.h>
53 #include <linux/netdevice.h>
54 #ifdef CONFIG_NET_CLS_ACT
55 #include <net/pkt_sched.h>
57 #include <linux/string.h>
58 #include <linux/skbuff.h>
59 #include <linux/splice.h>
60 #include <linux/cache.h>
61 #include <linux/rtnetlink.h>
62 #include <linux/init.h>
63 #include <linux/scatterlist.h>
64 #include <linux/errqueue.h>
65 #include <linux/prefetch.h>
66 #include <linux/if_vlan.h>
68 #include <net/protocol.h>
71 #include <net/checksum.h>
72 #include <net/ip6_checksum.h>
75 #include <asm/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
81 struct kmem_cache *skbuff_head_cache __read_mostly;
82 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
83 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
84 EXPORT_SYMBOL(sysctl_max_skb_frags);
87 * skb_panic - private function for out-of-line support
91 * @msg: skb_over_panic or skb_under_panic
93 * Out-of-line support for skb_put() and skb_push().
94 * Called via the wrapper skb_over_panic() or skb_under_panic().
95 * Keep out of line to prevent kernel bloat.
96 * __builtin_return_address is not used because it is not always reliable.
98 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
101 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
102 msg, addr, skb->len, sz, skb->head, skb->data,
103 (unsigned long)skb->tail, (unsigned long)skb->end,
104 skb->dev ? skb->dev->name : "<NULL>");
108 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
110 skb_panic(skb, sz, addr, __func__);
113 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
115 skb_panic(skb, sz, addr, __func__);
119 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
120 * the caller if emergency pfmemalloc reserves are being used. If it is and
121 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
122 * may be used. Otherwise, the packet data may be discarded until enough
125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
126 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
128 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
129 unsigned long ip, bool *pfmemalloc)
132 bool ret_pfmemalloc = false;
135 * Try a regular allocation, when that fails and we're not entitled
136 * to the reserves, fail.
138 obj = kmalloc_node_track_caller(size,
139 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
141 if (obj || !(gfp_pfmemalloc_allowed(flags)))
144 /* Try again but now we are using pfmemalloc reserves */
145 ret_pfmemalloc = true;
146 obj = kmalloc_node_track_caller(size, flags, node);
150 *pfmemalloc = ret_pfmemalloc;
155 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
156 * 'private' fields and also do memory statistics to find all the
161 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
166 skb = kmem_cache_alloc_node(skbuff_head_cache,
167 gfp_mask & ~__GFP_DMA, node);
172 * Only clear those fields we need to clear, not those that we will
173 * actually initialise below. Hence, don't put any more fields after
174 * the tail pointer in struct sk_buff!
176 memset(skb, 0, offsetof(struct sk_buff, tail));
178 skb->truesize = sizeof(struct sk_buff);
179 atomic_set(&skb->users, 1);
181 skb->mac_header = (typeof(skb->mac_header))~0U;
187 * __alloc_skb - allocate a network buffer
188 * @size: size to allocate
189 * @gfp_mask: allocation mask
190 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
191 * instead of head cache and allocate a cloned (child) skb.
192 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
193 * allocations in case the data is required for writeback
194 * @node: numa node to allocate memory on
196 * Allocate a new &sk_buff. The returned buffer has no headroom and a
197 * tail room of at least size bytes. The object has a reference count
198 * of one. The return is the buffer. On a failure the return is %NULL.
200 * Buffers may only be allocated from interrupts using a @gfp_mask of
203 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
206 struct kmem_cache *cache;
207 struct skb_shared_info *shinfo;
212 cache = (flags & SKB_ALLOC_FCLONE)
213 ? skbuff_fclone_cache : skbuff_head_cache;
215 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
216 gfp_mask |= __GFP_MEMALLOC;
219 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
224 /* We do our best to align skb_shared_info on a separate cache
225 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
226 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
227 * Both skb->head and skb_shared_info are cache line aligned.
229 size = SKB_DATA_ALIGN(size);
230 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
231 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
234 /* kmalloc(size) might give us more room than requested.
235 * Put skb_shared_info exactly at the end of allocated zone,
236 * to allow max possible filling before reallocation.
238 size = SKB_WITH_OVERHEAD(ksize(data));
239 prefetchw(data + size);
242 * Only clear those fields we need to clear, not those that we will
243 * actually initialise below. Hence, don't put any more fields after
244 * the tail pointer in struct sk_buff!
246 memset(skb, 0, offsetof(struct sk_buff, tail));
247 /* Account for allocated memory : skb + skb->head */
248 skb->truesize = SKB_TRUESIZE(size);
249 skb->pfmemalloc = pfmemalloc;
250 atomic_set(&skb->users, 1);
253 skb_reset_tail_pointer(skb);
254 skb->end = skb->tail + size;
255 skb->mac_header = (typeof(skb->mac_header))~0U;
256 skb->transport_header = (typeof(skb->transport_header))~0U;
258 /* make sure we initialize shinfo sequentially */
259 shinfo = skb_shinfo(skb);
260 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
261 atomic_set(&shinfo->dataref, 1);
262 kmemcheck_annotate_variable(shinfo->destructor_arg);
264 if (flags & SKB_ALLOC_FCLONE) {
265 struct sk_buff_fclones *fclones;
267 fclones = container_of(skb, struct sk_buff_fclones, skb1);
269 kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
270 skb->fclone = SKB_FCLONE_ORIG;
271 atomic_set(&fclones->fclone_ref, 1);
273 fclones->skb2.fclone = SKB_FCLONE_CLONE;
274 fclones->skb2.pfmemalloc = pfmemalloc;
279 kmem_cache_free(cache, skb);
283 EXPORT_SYMBOL(__alloc_skb);
286 * __build_skb - build a network buffer
287 * @data: data buffer provided by caller
288 * @frag_size: size of data, or 0 if head was kmalloced
290 * Allocate a new &sk_buff. Caller provides space holding head and
291 * skb_shared_info. @data must have been allocated by kmalloc() only if
292 * @frag_size is 0, otherwise data should come from the page allocator
294 * The return is the new skb buffer.
295 * On a failure the return is %NULL, and @data is not freed.
297 * Before IO, driver allocates only data buffer where NIC put incoming frame
298 * Driver should add room at head (NET_SKB_PAD) and
299 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
300 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
301 * before giving packet to stack.
302 * RX rings only contains data buffers, not full skbs.
304 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
306 struct skb_shared_info *shinfo;
308 unsigned int size = frag_size ? : ksize(data);
310 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
314 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
316 memset(skb, 0, offsetof(struct sk_buff, tail));
317 skb->truesize = SKB_TRUESIZE(size);
318 atomic_set(&skb->users, 1);
321 skb_reset_tail_pointer(skb);
322 skb->end = skb->tail + size;
323 skb->mac_header = (typeof(skb->mac_header))~0U;
324 skb->transport_header = (typeof(skb->transport_header))~0U;
326 /* make sure we initialize shinfo sequentially */
327 shinfo = skb_shinfo(skb);
328 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
329 atomic_set(&shinfo->dataref, 1);
330 kmemcheck_annotate_variable(shinfo->destructor_arg);
335 /* build_skb() is wrapper over __build_skb(), that specifically
336 * takes care of skb->head and skb->pfmemalloc
337 * This means that if @frag_size is not zero, then @data must be backed
338 * by a page fragment, not kmalloc() or vmalloc()
340 struct sk_buff *build_skb(void *data, unsigned int frag_size)
342 struct sk_buff *skb = __build_skb(data, frag_size);
344 if (skb && frag_size) {
346 if (page_is_pfmemalloc(virt_to_head_page(data)))
351 EXPORT_SYMBOL(build_skb);
353 #define NAPI_SKB_CACHE_SIZE 64
355 struct napi_alloc_cache {
356 struct page_frag_cache page;
358 void *skb_cache[NAPI_SKB_CACHE_SIZE];
361 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
362 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
364 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
366 struct page_frag_cache *nc;
370 local_irq_save(flags);
371 nc = this_cpu_ptr(&netdev_alloc_cache);
372 data = __alloc_page_frag(nc, fragsz, gfp_mask);
373 local_irq_restore(flags);
378 * netdev_alloc_frag - allocate a page fragment
379 * @fragsz: fragment size
381 * Allocates a frag from a page for receive buffer.
382 * Uses GFP_ATOMIC allocations.
384 void *netdev_alloc_frag(unsigned int fragsz)
386 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
388 EXPORT_SYMBOL(netdev_alloc_frag);
390 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
392 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
394 return __alloc_page_frag(&nc->page, fragsz, gfp_mask);
397 void *napi_alloc_frag(unsigned int fragsz)
399 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
401 EXPORT_SYMBOL(napi_alloc_frag);
404 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
405 * @dev: network device to receive on
406 * @len: length to allocate
407 * @gfp_mask: get_free_pages mask, passed to alloc_skb
409 * Allocate a new &sk_buff and assign it a usage count of one. The
410 * buffer has NET_SKB_PAD headroom built in. Users should allocate
411 * the headroom they think they need without accounting for the
412 * built in space. The built in space is used for optimisations.
414 * %NULL is returned if there is no free memory.
416 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
419 struct page_frag_cache *nc;
427 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
428 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
429 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
435 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
436 len = SKB_DATA_ALIGN(len);
438 if (sk_memalloc_socks())
439 gfp_mask |= __GFP_MEMALLOC;
441 local_irq_save(flags);
443 nc = this_cpu_ptr(&netdev_alloc_cache);
444 data = __alloc_page_frag(nc, len, gfp_mask);
445 pfmemalloc = nc->pfmemalloc;
447 local_irq_restore(flags);
452 skb = __build_skb(data, len);
453 if (unlikely(!skb)) {
458 /* use OR instead of assignment to avoid clearing of bits in mask */
464 skb_reserve(skb, NET_SKB_PAD);
470 EXPORT_SYMBOL(__netdev_alloc_skb);
473 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
474 * @napi: napi instance this buffer was allocated for
475 * @len: length to allocate
476 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
478 * Allocate a new sk_buff for use in NAPI receive. This buffer will
479 * attempt to allocate the head from a special reserved region used
480 * only for NAPI Rx allocation. By doing this we can save several
481 * CPU cycles by avoiding having to disable and re-enable IRQs.
483 * %NULL is returned if there is no free memory.
485 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
488 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
492 len += NET_SKB_PAD + NET_IP_ALIGN;
494 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
495 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
496 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
502 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
503 len = SKB_DATA_ALIGN(len);
505 if (sk_memalloc_socks())
506 gfp_mask |= __GFP_MEMALLOC;
508 data = __alloc_page_frag(&nc->page, len, gfp_mask);
512 skb = __build_skb(data, len);
513 if (unlikely(!skb)) {
518 /* use OR instead of assignment to avoid clearing of bits in mask */
519 if (nc->page.pfmemalloc)
524 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
525 skb->dev = napi->dev;
530 EXPORT_SYMBOL(__napi_alloc_skb);
532 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
533 int size, unsigned int truesize)
535 skb_fill_page_desc(skb, i, page, off, size);
537 skb->data_len += size;
538 skb->truesize += truesize;
540 EXPORT_SYMBOL(skb_add_rx_frag);
542 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
543 unsigned int truesize)
545 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
547 skb_frag_size_add(frag, size);
549 skb->data_len += size;
550 skb->truesize += truesize;
552 EXPORT_SYMBOL(skb_coalesce_rx_frag);
554 static void skb_drop_list(struct sk_buff **listp)
556 kfree_skb_list(*listp);
560 static inline void skb_drop_fraglist(struct sk_buff *skb)
562 skb_drop_list(&skb_shinfo(skb)->frag_list);
565 static void skb_clone_fraglist(struct sk_buff *skb)
567 struct sk_buff *list;
569 skb_walk_frags(skb, list)
573 static void skb_free_head(struct sk_buff *skb)
575 unsigned char *head = skb->head;
583 static void skb_release_data(struct sk_buff *skb)
585 struct skb_shared_info *shinfo = skb_shinfo(skb);
589 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
593 for (i = 0; i < shinfo->nr_frags; i++)
594 __skb_frag_unref(&shinfo->frags[i]);
597 * If skb buf is from userspace, we need to notify the caller
598 * the lower device DMA has done;
600 if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
601 struct ubuf_info *uarg;
603 uarg = shinfo->destructor_arg;
605 uarg->callback(uarg, true);
608 if (shinfo->frag_list)
609 kfree_skb_list(shinfo->frag_list);
615 * Free an skbuff by memory without cleaning the state.
617 static void kfree_skbmem(struct sk_buff *skb)
619 struct sk_buff_fclones *fclones;
621 switch (skb->fclone) {
622 case SKB_FCLONE_UNAVAILABLE:
623 kmem_cache_free(skbuff_head_cache, skb);
626 case SKB_FCLONE_ORIG:
627 fclones = container_of(skb, struct sk_buff_fclones, skb1);
629 /* We usually free the clone (TX completion) before original skb
630 * This test would have no chance to be true for the clone,
631 * while here, branch prediction will be good.
633 if (atomic_read(&fclones->fclone_ref) == 1)
637 default: /* SKB_FCLONE_CLONE */
638 fclones = container_of(skb, struct sk_buff_fclones, skb2);
641 if (!atomic_dec_and_test(&fclones->fclone_ref))
644 kmem_cache_free(skbuff_fclone_cache, fclones);
647 static void skb_release_head_state(struct sk_buff *skb)
651 secpath_put(skb->sp);
653 if (skb->destructor) {
655 skb->destructor(skb);
657 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
658 nf_conntrack_put(skb->nfct);
660 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
661 nf_bridge_put(skb->nf_bridge);
665 /* Free everything but the sk_buff shell. */
666 static void skb_release_all(struct sk_buff *skb)
668 skb_release_head_state(skb);
669 if (likely(skb->head))
670 skb_release_data(skb);
674 * __kfree_skb - private function
677 * Free an sk_buff. Release anything attached to the buffer.
678 * Clean the state. This is an internal helper function. Users should
679 * always call kfree_skb
682 void __kfree_skb(struct sk_buff *skb)
684 skb_release_all(skb);
687 EXPORT_SYMBOL(__kfree_skb);
690 * kfree_skb - free an sk_buff
691 * @skb: buffer to free
693 * Drop a reference to the buffer and free it if the usage count has
696 void kfree_skb(struct sk_buff *skb)
700 if (likely(atomic_read(&skb->users) == 1))
702 else if (likely(!atomic_dec_and_test(&skb->users)))
704 trace_kfree_skb(skb, __builtin_return_address(0));
707 EXPORT_SYMBOL(kfree_skb);
709 void kfree_skb_list(struct sk_buff *segs)
712 struct sk_buff *next = segs->next;
718 EXPORT_SYMBOL(kfree_skb_list);
721 * skb_tx_error - report an sk_buff xmit error
722 * @skb: buffer that triggered an error
724 * Report xmit error if a device callback is tracking this skb.
725 * skb must be freed afterwards.
727 void skb_tx_error(struct sk_buff *skb)
729 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
730 struct ubuf_info *uarg;
732 uarg = skb_shinfo(skb)->destructor_arg;
734 uarg->callback(uarg, false);
735 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
738 EXPORT_SYMBOL(skb_tx_error);
741 * consume_skb - free an skbuff
742 * @skb: buffer to free
744 * Drop a ref to the buffer and free it if the usage count has hit zero
745 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
746 * is being dropped after a failure and notes that
748 void consume_skb(struct sk_buff *skb)
752 if (likely(atomic_read(&skb->users) == 1))
754 else if (likely(!atomic_dec_and_test(&skb->users)))
756 trace_consume_skb(skb);
759 EXPORT_SYMBOL(consume_skb);
761 void __kfree_skb_flush(void)
763 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
765 /* flush skb_cache if containing objects */
767 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
773 static inline void _kfree_skb_defer(struct sk_buff *skb)
775 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
777 /* drop skb->head and call any destructors for packet */
778 skb_release_all(skb);
780 /* record skb to CPU local list */
781 nc->skb_cache[nc->skb_count++] = skb;
784 /* SLUB writes into objects when freeing */
788 /* flush skb_cache if it is filled */
789 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
790 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
795 void __kfree_skb_defer(struct sk_buff *skb)
797 _kfree_skb_defer(skb);
800 void napi_consume_skb(struct sk_buff *skb, int budget)
805 /* Zero budget indicate non-NAPI context called us, like netpoll */
806 if (unlikely(!budget)) {
807 dev_consume_skb_any(skb);
811 if (likely(atomic_read(&skb->users) == 1))
813 else if (likely(!atomic_dec_and_test(&skb->users)))
815 /* if reaching here SKB is ready to free */
816 trace_consume_skb(skb);
818 /* if SKB is a clone, don't handle this case */
819 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
824 _kfree_skb_defer(skb);
826 EXPORT_SYMBOL(napi_consume_skb);
828 /* Make sure a field is enclosed inside headers_start/headers_end section */
829 #define CHECK_SKB_FIELD(field) \
830 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
831 offsetof(struct sk_buff, headers_start)); \
832 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
833 offsetof(struct sk_buff, headers_end)); \
835 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
837 new->tstamp = old->tstamp;
838 /* We do not copy old->sk */
840 memcpy(new->cb, old->cb, sizeof(old->cb));
841 skb_dst_copy(new, old);
843 new->sp = secpath_get(old->sp);
845 __nf_copy(new, old, false);
847 /* Note : this field could be in headers_start/headers_end section
848 * It is not yet because we do not want to have a 16 bit hole
850 new->queue_mapping = old->queue_mapping;
852 memcpy(&new->headers_start, &old->headers_start,
853 offsetof(struct sk_buff, headers_end) -
854 offsetof(struct sk_buff, headers_start));
855 CHECK_SKB_FIELD(protocol);
856 CHECK_SKB_FIELD(csum);
857 CHECK_SKB_FIELD(hash);
858 CHECK_SKB_FIELD(priority);
859 CHECK_SKB_FIELD(skb_iif);
860 CHECK_SKB_FIELD(vlan_proto);
861 CHECK_SKB_FIELD(vlan_tci);
862 CHECK_SKB_FIELD(transport_header);
863 CHECK_SKB_FIELD(network_header);
864 CHECK_SKB_FIELD(mac_header);
865 CHECK_SKB_FIELD(inner_protocol);
866 CHECK_SKB_FIELD(inner_transport_header);
867 CHECK_SKB_FIELD(inner_network_header);
868 CHECK_SKB_FIELD(inner_mac_header);
869 CHECK_SKB_FIELD(mark);
870 #ifdef CONFIG_NETWORK_SECMARK
871 CHECK_SKB_FIELD(secmark);
873 #ifdef CONFIG_NET_RX_BUSY_POLL
874 CHECK_SKB_FIELD(napi_id);
877 CHECK_SKB_FIELD(sender_cpu);
879 #ifdef CONFIG_NET_SCHED
880 CHECK_SKB_FIELD(tc_index);
881 #ifdef CONFIG_NET_CLS_ACT
882 CHECK_SKB_FIELD(tc_verd);
889 * You should not add any new code to this function. Add it to
890 * __copy_skb_header above instead.
892 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
894 #define C(x) n->x = skb->x
896 n->next = n->prev = NULL;
898 __copy_skb_header(n, skb);
903 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
906 n->destructor = NULL;
913 atomic_set(&n->users, 1);
915 atomic_inc(&(skb_shinfo(skb)->dataref));
923 * skb_morph - morph one skb into another
924 * @dst: the skb to receive the contents
925 * @src: the skb to supply the contents
927 * This is identical to skb_clone except that the target skb is
928 * supplied by the user.
930 * The target skb is returned upon exit.
932 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
934 skb_release_all(dst);
935 return __skb_clone(dst, src);
937 EXPORT_SYMBOL_GPL(skb_morph);
940 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
941 * @skb: the skb to modify
942 * @gfp_mask: allocation priority
944 * This must be called on SKBTX_DEV_ZEROCOPY skb.
945 * It will copy all frags into kernel and drop the reference
946 * to userspace pages.
948 * If this function is called from an interrupt gfp_mask() must be
951 * Returns 0 on success or a negative error code on failure
952 * to allocate kernel memory to copy to.
954 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
957 int num_frags = skb_shinfo(skb)->nr_frags;
958 struct page *page, *head = NULL;
959 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
961 for (i = 0; i < num_frags; i++) {
963 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
965 page = alloc_page(gfp_mask);
968 struct page *next = (struct page *)page_private(head);
974 vaddr = kmap_atomic(skb_frag_page(f));
975 memcpy(page_address(page),
976 vaddr + f->page_offset, skb_frag_size(f));
977 kunmap_atomic(vaddr);
978 set_page_private(page, (unsigned long)head);
982 /* skb frags release userspace buffers */
983 for (i = 0; i < num_frags; i++)
984 skb_frag_unref(skb, i);
986 uarg->callback(uarg, false);
988 /* skb frags point to kernel buffers */
989 for (i = num_frags - 1; i >= 0; i--) {
990 __skb_fill_page_desc(skb, i, head, 0,
991 skb_shinfo(skb)->frags[i].size);
992 head = (struct page *)page_private(head);
995 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
998 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1001 * skb_clone - duplicate an sk_buff
1002 * @skb: buffer to clone
1003 * @gfp_mask: allocation priority
1005 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1006 * copies share the same packet data but not structure. The new
1007 * buffer has a reference count of 1. If the allocation fails the
1008 * function returns %NULL otherwise the new buffer is returned.
1010 * If this function is called from an interrupt gfp_mask() must be
1014 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1016 struct sk_buff_fclones *fclones = container_of(skb,
1017 struct sk_buff_fclones,
1021 if (skb_orphan_frags(skb, gfp_mask))
1024 if (skb->fclone == SKB_FCLONE_ORIG &&
1025 atomic_read(&fclones->fclone_ref) == 1) {
1027 atomic_set(&fclones->fclone_ref, 2);
1029 if (skb_pfmemalloc(skb))
1030 gfp_mask |= __GFP_MEMALLOC;
1032 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1036 kmemcheck_annotate_bitfield(n, flags1);
1037 n->fclone = SKB_FCLONE_UNAVAILABLE;
1040 return __skb_clone(n, skb);
1042 EXPORT_SYMBOL(skb_clone);
1044 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1046 /* Only adjust this if it actually is csum_start rather than csum */
1047 if (skb->ip_summed == CHECKSUM_PARTIAL)
1048 skb->csum_start += off;
1049 /* {transport,network,mac}_header and tail are relative to skb->head */
1050 skb->transport_header += off;
1051 skb->network_header += off;
1052 if (skb_mac_header_was_set(skb))
1053 skb->mac_header += off;
1054 skb->inner_transport_header += off;
1055 skb->inner_network_header += off;
1056 skb->inner_mac_header += off;
1059 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1061 __copy_skb_header(new, old);
1063 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1064 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1065 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1068 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1070 if (skb_pfmemalloc(skb))
1071 return SKB_ALLOC_RX;
1076 * skb_copy - create private copy of an sk_buff
1077 * @skb: buffer to copy
1078 * @gfp_mask: allocation priority
1080 * Make a copy of both an &sk_buff and its data. This is used when the
1081 * caller wishes to modify the data and needs a private copy of the
1082 * data to alter. Returns %NULL on failure or the pointer to the buffer
1083 * on success. The returned buffer has a reference count of 1.
1085 * As by-product this function converts non-linear &sk_buff to linear
1086 * one, so that &sk_buff becomes completely private and caller is allowed
1087 * to modify all the data of returned buffer. This means that this
1088 * function is not recommended for use in circumstances when only
1089 * header is going to be modified. Use pskb_copy() instead.
1092 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1094 int headerlen = skb_headroom(skb);
1095 unsigned int size = skb_end_offset(skb) + skb->data_len;
1096 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1097 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1102 /* Set the data pointer */
1103 skb_reserve(n, headerlen);
1104 /* Set the tail pointer and length */
1105 skb_put(n, skb->len);
1107 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1110 copy_skb_header(n, skb);
1113 EXPORT_SYMBOL(skb_copy);
1116 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1117 * @skb: buffer to copy
1118 * @headroom: headroom of new skb
1119 * @gfp_mask: allocation priority
1120 * @fclone: if true allocate the copy of the skb from the fclone
1121 * cache instead of the head cache; it is recommended to set this
1122 * to true for the cases where the copy will likely be cloned
1124 * Make a copy of both an &sk_buff and part of its data, located
1125 * in header. Fragmented data remain shared. This is used when
1126 * the caller wishes to modify only header of &sk_buff and needs
1127 * private copy of the header to alter. Returns %NULL on failure
1128 * or the pointer to the buffer on success.
1129 * The returned buffer has a reference count of 1.
1132 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1133 gfp_t gfp_mask, bool fclone)
1135 unsigned int size = skb_headlen(skb) + headroom;
1136 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1137 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1142 /* Set the data pointer */
1143 skb_reserve(n, headroom);
1144 /* Set the tail pointer and length */
1145 skb_put(n, skb_headlen(skb));
1146 /* Copy the bytes */
1147 skb_copy_from_linear_data(skb, n->data, n->len);
1149 n->truesize += skb->data_len;
1150 n->data_len = skb->data_len;
1153 if (skb_shinfo(skb)->nr_frags) {
1156 if (skb_orphan_frags(skb, gfp_mask)) {
1161 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1162 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1163 skb_frag_ref(skb, i);
1165 skb_shinfo(n)->nr_frags = i;
1168 if (skb_has_frag_list(skb)) {
1169 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1170 skb_clone_fraglist(n);
1173 copy_skb_header(n, skb);
1177 EXPORT_SYMBOL(__pskb_copy_fclone);
1180 * pskb_expand_head - reallocate header of &sk_buff
1181 * @skb: buffer to reallocate
1182 * @nhead: room to add at head
1183 * @ntail: room to add at tail
1184 * @gfp_mask: allocation priority
1186 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1187 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1188 * reference count of 1. Returns zero in the case of success or error,
1189 * if expansion failed. In the last case, &sk_buff is not changed.
1191 * All the pointers pointing into skb header may change and must be
1192 * reloaded after call to this function.
1195 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1200 int size = nhead + skb_end_offset(skb) + ntail;
1205 if (skb_shared(skb))
1208 size = SKB_DATA_ALIGN(size);
1210 if (skb_pfmemalloc(skb))
1211 gfp_mask |= __GFP_MEMALLOC;
1212 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1213 gfp_mask, NUMA_NO_NODE, NULL);
1216 size = SKB_WITH_OVERHEAD(ksize(data));
1218 /* Copy only real data... and, alas, header. This should be
1219 * optimized for the cases when header is void.
1221 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1223 memcpy((struct skb_shared_info *)(data + size),
1225 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1228 * if shinfo is shared we must drop the old head gracefully, but if it
1229 * is not we can just drop the old head and let the existing refcount
1230 * be since all we did is relocate the values
1232 if (skb_cloned(skb)) {
1233 /* copy this zero copy skb frags */
1234 if (skb_orphan_frags(skb, gfp_mask))
1236 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1237 skb_frag_ref(skb, i);
1239 if (skb_has_frag_list(skb))
1240 skb_clone_fraglist(skb);
1242 skb_release_data(skb);
1246 off = (data + nhead) - skb->head;
1251 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1255 skb->end = skb->head + size;
1258 skb_headers_offset_update(skb, nhead);
1262 atomic_set(&skb_shinfo(skb)->dataref, 1);
1270 EXPORT_SYMBOL(pskb_expand_head);
1272 /* Make private copy of skb with writable head and some headroom */
1274 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1276 struct sk_buff *skb2;
1277 int delta = headroom - skb_headroom(skb);
1280 skb2 = pskb_copy(skb, GFP_ATOMIC);
1282 skb2 = skb_clone(skb, GFP_ATOMIC);
1283 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1291 EXPORT_SYMBOL(skb_realloc_headroom);
1294 * skb_copy_expand - copy and expand sk_buff
1295 * @skb: buffer to copy
1296 * @newheadroom: new free bytes at head
1297 * @newtailroom: new free bytes at tail
1298 * @gfp_mask: allocation priority
1300 * Make a copy of both an &sk_buff and its data and while doing so
1301 * allocate additional space.
1303 * This is used when the caller wishes to modify the data and needs a
1304 * private copy of the data to alter as well as more space for new fields.
1305 * Returns %NULL on failure or the pointer to the buffer
1306 * on success. The returned buffer has a reference count of 1.
1308 * You must pass %GFP_ATOMIC as the allocation priority if this function
1309 * is called from an interrupt.
1311 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1312 int newheadroom, int newtailroom,
1316 * Allocate the copy buffer
1318 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1319 gfp_mask, skb_alloc_rx_flag(skb),
1321 int oldheadroom = skb_headroom(skb);
1322 int head_copy_len, head_copy_off;
1327 skb_reserve(n, newheadroom);
1329 /* Set the tail pointer and length */
1330 skb_put(n, skb->len);
1332 head_copy_len = oldheadroom;
1334 if (newheadroom <= head_copy_len)
1335 head_copy_len = newheadroom;
1337 head_copy_off = newheadroom - head_copy_len;
1339 /* Copy the linear header and data. */
1340 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1341 skb->len + head_copy_len))
1344 copy_skb_header(n, skb);
1346 skb_headers_offset_update(n, newheadroom - oldheadroom);
1350 EXPORT_SYMBOL(skb_copy_expand);
1353 * skb_pad - zero pad the tail of an skb
1354 * @skb: buffer to pad
1355 * @pad: space to pad
1357 * Ensure that a buffer is followed by a padding area that is zero
1358 * filled. Used by network drivers which may DMA or transfer data
1359 * beyond the buffer end onto the wire.
1361 * May return error in out of memory cases. The skb is freed on error.
1364 int skb_pad(struct sk_buff *skb, int pad)
1369 /* If the skbuff is non linear tailroom is always zero.. */
1370 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1371 memset(skb->data+skb->len, 0, pad);
1375 ntail = skb->data_len + pad - (skb->end - skb->tail);
1376 if (likely(skb_cloned(skb) || ntail > 0)) {
1377 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1382 /* FIXME: The use of this function with non-linear skb's really needs
1385 err = skb_linearize(skb);
1389 memset(skb->data + skb->len, 0, pad);
1396 EXPORT_SYMBOL(skb_pad);
1399 * pskb_put - add data to the tail of a potentially fragmented buffer
1400 * @skb: start of the buffer to use
1401 * @tail: tail fragment of the buffer to use
1402 * @len: amount of data to add
1404 * This function extends the used data area of the potentially
1405 * fragmented buffer. @tail must be the last fragment of @skb -- or
1406 * @skb itself. If this would exceed the total buffer size the kernel
1407 * will panic. A pointer to the first byte of the extra data is
1411 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1414 skb->data_len += len;
1417 return skb_put(tail, len);
1419 EXPORT_SYMBOL_GPL(pskb_put);
1422 * skb_put - add data to a buffer
1423 * @skb: buffer to use
1424 * @len: amount of data to add
1426 * This function extends the used data area of the buffer. If this would
1427 * exceed the total buffer size the kernel will panic. A pointer to the
1428 * first byte of the extra data is returned.
1430 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1432 unsigned char *tmp = skb_tail_pointer(skb);
1433 SKB_LINEAR_ASSERT(skb);
1436 if (unlikely(skb->tail > skb->end))
1437 skb_over_panic(skb, len, __builtin_return_address(0));
1440 EXPORT_SYMBOL(skb_put);
1443 * skb_push - add data to the start of a buffer
1444 * @skb: buffer to use
1445 * @len: amount of data to add
1447 * This function extends the used data area of the buffer at the buffer
1448 * start. If this would exceed the total buffer headroom the kernel will
1449 * panic. A pointer to the first byte of the extra data is returned.
1451 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1455 if (unlikely(skb->data<skb->head))
1456 skb_under_panic(skb, len, __builtin_return_address(0));
1459 EXPORT_SYMBOL(skb_push);
1462 * skb_pull - remove data from the start of a buffer
1463 * @skb: buffer to use
1464 * @len: amount of data to remove
1466 * This function removes data from the start of a buffer, returning
1467 * the memory to the headroom. A pointer to the next data in the buffer
1468 * is returned. Once the data has been pulled future pushes will overwrite
1471 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1473 return skb_pull_inline(skb, len);
1475 EXPORT_SYMBOL(skb_pull);
1478 * skb_trim - remove end from a buffer
1479 * @skb: buffer to alter
1482 * Cut the length of a buffer down by removing data from the tail. If
1483 * the buffer is already under the length specified it is not modified.
1484 * The skb must be linear.
1486 void skb_trim(struct sk_buff *skb, unsigned int len)
1489 __skb_trim(skb, len);
1491 EXPORT_SYMBOL(skb_trim);
1493 /* Trims skb to length len. It can change skb pointers.
1496 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1498 struct sk_buff **fragp;
1499 struct sk_buff *frag;
1500 int offset = skb_headlen(skb);
1501 int nfrags = skb_shinfo(skb)->nr_frags;
1505 if (skb_cloned(skb) &&
1506 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1513 for (; i < nfrags; i++) {
1514 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1521 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1524 skb_shinfo(skb)->nr_frags = i;
1526 for (; i < nfrags; i++)
1527 skb_frag_unref(skb, i);
1529 if (skb_has_frag_list(skb))
1530 skb_drop_fraglist(skb);
1534 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1535 fragp = &frag->next) {
1536 int end = offset + frag->len;
1538 if (skb_shared(frag)) {
1539 struct sk_buff *nfrag;
1541 nfrag = skb_clone(frag, GFP_ATOMIC);
1542 if (unlikely(!nfrag))
1545 nfrag->next = frag->next;
1557 unlikely((err = pskb_trim(frag, len - offset))))
1561 skb_drop_list(&frag->next);
1566 if (len > skb_headlen(skb)) {
1567 skb->data_len -= skb->len - len;
1572 skb_set_tail_pointer(skb, len);
1577 EXPORT_SYMBOL(___pskb_trim);
1580 * __pskb_pull_tail - advance tail of skb header
1581 * @skb: buffer to reallocate
1582 * @delta: number of bytes to advance tail
1584 * The function makes a sense only on a fragmented &sk_buff,
1585 * it expands header moving its tail forward and copying necessary
1586 * data from fragmented part.
1588 * &sk_buff MUST have reference count of 1.
1590 * Returns %NULL (and &sk_buff does not change) if pull failed
1591 * or value of new tail of skb in the case of success.
1593 * All the pointers pointing into skb header may change and must be
1594 * reloaded after call to this function.
1597 /* Moves tail of skb head forward, copying data from fragmented part,
1598 * when it is necessary.
1599 * 1. It may fail due to malloc failure.
1600 * 2. It may change skb pointers.
1602 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1604 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1606 /* If skb has not enough free space at tail, get new one
1607 * plus 128 bytes for future expansions. If we have enough
1608 * room at tail, reallocate without expansion only if skb is cloned.
1610 int i, k, eat = (skb->tail + delta) - skb->end;
1612 if (eat > 0 || skb_cloned(skb)) {
1613 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1618 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1621 /* Optimization: no fragments, no reasons to preestimate
1622 * size of pulled pages. Superb.
1624 if (!skb_has_frag_list(skb))
1627 /* Estimate size of pulled pages. */
1629 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1630 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1637 /* If we need update frag list, we are in troubles.
1638 * Certainly, it possible to add an offset to skb data,
1639 * but taking into account that pulling is expected to
1640 * be very rare operation, it is worth to fight against
1641 * further bloating skb head and crucify ourselves here instead.
1642 * Pure masohism, indeed. 8)8)
1645 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1646 struct sk_buff *clone = NULL;
1647 struct sk_buff *insp = NULL;
1652 if (list->len <= eat) {
1653 /* Eaten as whole. */
1658 /* Eaten partially. */
1660 if (skb_shared(list)) {
1661 /* Sucks! We need to fork list. :-( */
1662 clone = skb_clone(list, GFP_ATOMIC);
1668 /* This may be pulled without
1672 if (!pskb_pull(list, eat)) {
1680 /* Free pulled out fragments. */
1681 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1682 skb_shinfo(skb)->frag_list = list->next;
1685 /* And insert new clone at head. */
1688 skb_shinfo(skb)->frag_list = clone;
1691 /* Success! Now we may commit changes to skb data. */
1696 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1697 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1700 skb_frag_unref(skb, i);
1703 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1705 skb_shinfo(skb)->frags[k].page_offset += eat;
1706 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1712 skb_shinfo(skb)->nr_frags = k;
1715 skb->data_len -= delta;
1717 return skb_tail_pointer(skb);
1719 EXPORT_SYMBOL(__pskb_pull_tail);
1722 * skb_copy_bits - copy bits from skb to kernel buffer
1724 * @offset: offset in source
1725 * @to: destination buffer
1726 * @len: number of bytes to copy
1728 * Copy the specified number of bytes from the source skb to the
1729 * destination buffer.
1732 * If its prototype is ever changed,
1733 * check arch/{*}/net/{*}.S files,
1734 * since it is called from BPF assembly code.
1736 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1738 int start = skb_headlen(skb);
1739 struct sk_buff *frag_iter;
1742 if (offset > (int)skb->len - len)
1746 if ((copy = start - offset) > 0) {
1749 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1750 if ((len -= copy) == 0)
1756 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1758 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1760 WARN_ON(start > offset + len);
1762 end = start + skb_frag_size(f);
1763 if ((copy = end - offset) > 0) {
1769 vaddr = kmap_atomic(skb_frag_page(f));
1771 vaddr + f->page_offset + offset - start,
1773 kunmap_atomic(vaddr);
1775 if ((len -= copy) == 0)
1783 skb_walk_frags(skb, frag_iter) {
1786 WARN_ON(start > offset + len);
1788 end = start + frag_iter->len;
1789 if ((copy = end - offset) > 0) {
1792 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1794 if ((len -= copy) == 0)
1808 EXPORT_SYMBOL(skb_copy_bits);
1811 * Callback from splice_to_pipe(), if we need to release some pages
1812 * at the end of the spd in case we error'ed out in filling the pipe.
1814 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1816 put_page(spd->pages[i]);
1819 static struct page *linear_to_page(struct page *page, unsigned int *len,
1820 unsigned int *offset,
1823 struct page_frag *pfrag = sk_page_frag(sk);
1825 if (!sk_page_frag_refill(sk, pfrag))
1828 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1830 memcpy(page_address(pfrag->page) + pfrag->offset,
1831 page_address(page) + *offset, *len);
1832 *offset = pfrag->offset;
1833 pfrag->offset += *len;
1838 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1840 unsigned int offset)
1842 return spd->nr_pages &&
1843 spd->pages[spd->nr_pages - 1] == page &&
1844 (spd->partial[spd->nr_pages - 1].offset +
1845 spd->partial[spd->nr_pages - 1].len == offset);
1849 * Fill page/offset/length into spd, if it can hold more pages.
1851 static bool spd_fill_page(struct splice_pipe_desc *spd,
1852 struct pipe_inode_info *pipe, struct page *page,
1853 unsigned int *len, unsigned int offset,
1857 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1861 page = linear_to_page(page, len, &offset, sk);
1865 if (spd_can_coalesce(spd, page, offset)) {
1866 spd->partial[spd->nr_pages - 1].len += *len;
1870 spd->pages[spd->nr_pages] = page;
1871 spd->partial[spd->nr_pages].len = *len;
1872 spd->partial[spd->nr_pages].offset = offset;
1878 static bool __splice_segment(struct page *page, unsigned int poff,
1879 unsigned int plen, unsigned int *off,
1881 struct splice_pipe_desc *spd, bool linear,
1883 struct pipe_inode_info *pipe)
1888 /* skip this segment if already processed */
1894 /* ignore any bits we already processed */
1900 unsigned int flen = min(*len, plen);
1902 if (spd_fill_page(spd, pipe, page, &flen, poff,
1908 } while (*len && plen);
1914 * Map linear and fragment data from the skb to spd. It reports true if the
1915 * pipe is full or if we already spliced the requested length.
1917 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1918 unsigned int *offset, unsigned int *len,
1919 struct splice_pipe_desc *spd, struct sock *sk)
1922 struct sk_buff *iter;
1924 /* map the linear part :
1925 * If skb->head_frag is set, this 'linear' part is backed by a
1926 * fragment, and if the head is not shared with any clones then
1927 * we can avoid a copy since we own the head portion of this page.
1929 if (__splice_segment(virt_to_page(skb->data),
1930 (unsigned long) skb->data & (PAGE_SIZE - 1),
1933 skb_head_is_locked(skb),
1938 * then map the fragments
1940 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1941 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1943 if (__splice_segment(skb_frag_page(f),
1944 f->page_offset, skb_frag_size(f),
1945 offset, len, spd, false, sk, pipe))
1949 skb_walk_frags(skb, iter) {
1950 if (*offset >= iter->len) {
1951 *offset -= iter->len;
1954 /* __skb_splice_bits() only fails if the output has no room
1955 * left, so no point in going over the frag_list for the error
1958 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
1965 ssize_t skb_socket_splice(struct sock *sk,
1966 struct pipe_inode_info *pipe,
1967 struct splice_pipe_desc *spd)
1971 /* Drop the socket lock, otherwise we have reverse
1972 * locking dependencies between sk_lock and i_mutex
1973 * here as compared to sendfile(). We enter here
1974 * with the socket lock held, and splice_to_pipe() will
1975 * grab the pipe inode lock. For sendfile() emulation,
1976 * we call into ->sendpage() with the i_mutex lock held
1977 * and networking will grab the socket lock.
1980 ret = splice_to_pipe(pipe, spd);
1987 * Map data from the skb to a pipe. Should handle both the linear part,
1988 * the fragments, and the frag list.
1990 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1991 struct pipe_inode_info *pipe, unsigned int tlen,
1993 ssize_t (*splice_cb)(struct sock *,
1994 struct pipe_inode_info *,
1995 struct splice_pipe_desc *))
1997 struct partial_page partial[MAX_SKB_FRAGS];
1998 struct page *pages[MAX_SKB_FRAGS];
1999 struct splice_pipe_desc spd = {
2002 .nr_pages_max = MAX_SKB_FRAGS,
2004 .ops = &nosteal_pipe_buf_ops,
2005 .spd_release = sock_spd_release,
2009 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2012 ret = splice_cb(sk, pipe, &spd);
2016 EXPORT_SYMBOL_GPL(skb_splice_bits);
2019 * skb_store_bits - store bits from kernel buffer to skb
2020 * @skb: destination buffer
2021 * @offset: offset in destination
2022 * @from: source buffer
2023 * @len: number of bytes to copy
2025 * Copy the specified number of bytes from the source buffer to the
2026 * destination skb. This function handles all the messy bits of
2027 * traversing fragment lists and such.
2030 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2032 int start = skb_headlen(skb);
2033 struct sk_buff *frag_iter;
2036 if (offset > (int)skb->len - len)
2039 if ((copy = start - offset) > 0) {
2042 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2043 if ((len -= copy) == 0)
2049 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2050 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2053 WARN_ON(start > offset + len);
2055 end = start + skb_frag_size(frag);
2056 if ((copy = end - offset) > 0) {
2062 vaddr = kmap_atomic(skb_frag_page(frag));
2063 memcpy(vaddr + frag->page_offset + offset - start,
2065 kunmap_atomic(vaddr);
2067 if ((len -= copy) == 0)
2075 skb_walk_frags(skb, frag_iter) {
2078 WARN_ON(start > offset + len);
2080 end = start + frag_iter->len;
2081 if ((copy = end - offset) > 0) {
2084 if (skb_store_bits(frag_iter, offset - start,
2087 if ((len -= copy) == 0)
2100 EXPORT_SYMBOL(skb_store_bits);
2102 /* Checksum skb data. */
2103 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2104 __wsum csum, const struct skb_checksum_ops *ops)
2106 int start = skb_headlen(skb);
2107 int i, copy = start - offset;
2108 struct sk_buff *frag_iter;
2111 /* Checksum header. */
2115 csum = ops->update(skb->data + offset, copy, csum);
2116 if ((len -= copy) == 0)
2122 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2124 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2126 WARN_ON(start > offset + len);
2128 end = start + skb_frag_size(frag);
2129 if ((copy = end - offset) > 0) {
2135 vaddr = kmap_atomic(skb_frag_page(frag));
2136 csum2 = ops->update(vaddr + frag->page_offset +
2137 offset - start, copy, 0);
2138 kunmap_atomic(vaddr);
2139 csum = ops->combine(csum, csum2, pos, copy);
2148 skb_walk_frags(skb, frag_iter) {
2151 WARN_ON(start > offset + len);
2153 end = start + frag_iter->len;
2154 if ((copy = end - offset) > 0) {
2158 csum2 = __skb_checksum(frag_iter, offset - start,
2160 csum = ops->combine(csum, csum2, pos, copy);
2161 if ((len -= copy) == 0)
2172 EXPORT_SYMBOL(__skb_checksum);
2174 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2175 int len, __wsum csum)
2177 const struct skb_checksum_ops ops = {
2178 .update = csum_partial_ext,
2179 .combine = csum_block_add_ext,
2182 return __skb_checksum(skb, offset, len, csum, &ops);
2184 EXPORT_SYMBOL(skb_checksum);
2186 /* Both of above in one bottle. */
2188 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2189 u8 *to, int len, __wsum csum)
2191 int start = skb_headlen(skb);
2192 int i, copy = start - offset;
2193 struct sk_buff *frag_iter;
2200 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2202 if ((len -= copy) == 0)
2209 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2212 WARN_ON(start > offset + len);
2214 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2215 if ((copy = end - offset) > 0) {
2218 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2222 vaddr = kmap_atomic(skb_frag_page(frag));
2223 csum2 = csum_partial_copy_nocheck(vaddr +
2227 kunmap_atomic(vaddr);
2228 csum = csum_block_add(csum, csum2, pos);
2238 skb_walk_frags(skb, frag_iter) {
2242 WARN_ON(start > offset + len);
2244 end = start + frag_iter->len;
2245 if ((copy = end - offset) > 0) {
2248 csum2 = skb_copy_and_csum_bits(frag_iter,
2251 csum = csum_block_add(csum, csum2, pos);
2252 if ((len -= copy) == 0)
2263 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2266 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2267 * @from: source buffer
2269 * Calculates the amount of linear headroom needed in the 'to' skb passed
2270 * into skb_zerocopy().
2273 skb_zerocopy_headlen(const struct sk_buff *from)
2275 unsigned int hlen = 0;
2277 if (!from->head_frag ||
2278 skb_headlen(from) < L1_CACHE_BYTES ||
2279 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2280 hlen = skb_headlen(from);
2282 if (skb_has_frag_list(from))
2287 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2290 * skb_zerocopy - Zero copy skb to skb
2291 * @to: destination buffer
2292 * @from: source buffer
2293 * @len: number of bytes to copy from source buffer
2294 * @hlen: size of linear headroom in destination buffer
2296 * Copies up to `len` bytes from `from` to `to` by creating references
2297 * to the frags in the source buffer.
2299 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2300 * headroom in the `to` buffer.
2303 * 0: everything is OK
2304 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2305 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2308 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2311 int plen = 0; /* length of skb->head fragment */
2314 unsigned int offset;
2316 BUG_ON(!from->head_frag && !hlen);
2318 /* dont bother with small payloads */
2319 if (len <= skb_tailroom(to))
2320 return skb_copy_bits(from, 0, skb_put(to, len), len);
2323 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2328 plen = min_t(int, skb_headlen(from), len);
2330 page = virt_to_head_page(from->head);
2331 offset = from->data - (unsigned char *)page_address(page);
2332 __skb_fill_page_desc(to, 0, page, offset, plen);
2339 to->truesize += len + plen;
2340 to->len += len + plen;
2341 to->data_len += len + plen;
2343 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2348 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2351 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2352 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2353 len -= skb_shinfo(to)->frags[j].size;
2354 skb_frag_ref(to, j);
2357 skb_shinfo(to)->nr_frags = j;
2361 EXPORT_SYMBOL_GPL(skb_zerocopy);
2363 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2368 if (skb->ip_summed == CHECKSUM_PARTIAL)
2369 csstart = skb_checksum_start_offset(skb);
2371 csstart = skb_headlen(skb);
2373 BUG_ON(csstart > skb_headlen(skb));
2375 skb_copy_from_linear_data(skb, to, csstart);
2378 if (csstart != skb->len)
2379 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2380 skb->len - csstart, 0);
2382 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2383 long csstuff = csstart + skb->csum_offset;
2385 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2388 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2391 * skb_dequeue - remove from the head of the queue
2392 * @list: list to dequeue from
2394 * Remove the head of the list. The list lock is taken so the function
2395 * may be used safely with other locking list functions. The head item is
2396 * returned or %NULL if the list is empty.
2399 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2401 unsigned long flags;
2402 struct sk_buff *result;
2404 spin_lock_irqsave(&list->lock, flags);
2405 result = __skb_dequeue(list);
2406 spin_unlock_irqrestore(&list->lock, flags);
2409 EXPORT_SYMBOL(skb_dequeue);
2412 * skb_dequeue_tail - remove from the tail of the queue
2413 * @list: list to dequeue from
2415 * Remove the tail of the list. The list lock is taken so the function
2416 * may be used safely with other locking list functions. The tail item is
2417 * returned or %NULL if the list is empty.
2419 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2421 unsigned long flags;
2422 struct sk_buff *result;
2424 spin_lock_irqsave(&list->lock, flags);
2425 result = __skb_dequeue_tail(list);
2426 spin_unlock_irqrestore(&list->lock, flags);
2429 EXPORT_SYMBOL(skb_dequeue_tail);
2432 * skb_queue_purge - empty a list
2433 * @list: list to empty
2435 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2436 * the list and one reference dropped. This function takes the list
2437 * lock and is atomic with respect to other list locking functions.
2439 void skb_queue_purge(struct sk_buff_head *list)
2441 struct sk_buff *skb;
2442 while ((skb = skb_dequeue(list)) != NULL)
2445 EXPORT_SYMBOL(skb_queue_purge);
2448 * skb_rbtree_purge - empty a skb rbtree
2449 * @root: root of the rbtree to empty
2451 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2452 * the list and one reference dropped. This function does not take
2453 * any lock. Synchronization should be handled by the caller (e.g., TCP
2454 * out-of-order queue is protected by the socket lock).
2456 void skb_rbtree_purge(struct rb_root *root)
2458 struct sk_buff *skb, *next;
2460 rbtree_postorder_for_each_entry_safe(skb, next, root, rbnode)
2467 * skb_queue_head - queue a buffer at the list head
2468 * @list: list to use
2469 * @newsk: buffer to queue
2471 * Queue a buffer at the start of the list. This function takes the
2472 * list lock and can be used safely with other locking &sk_buff functions
2475 * A buffer cannot be placed on two lists at the same time.
2477 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2479 unsigned long flags;
2481 spin_lock_irqsave(&list->lock, flags);
2482 __skb_queue_head(list, newsk);
2483 spin_unlock_irqrestore(&list->lock, flags);
2485 EXPORT_SYMBOL(skb_queue_head);
2488 * skb_queue_tail - queue a buffer at the list tail
2489 * @list: list to use
2490 * @newsk: buffer to queue
2492 * Queue a buffer at the tail of the list. This function takes the
2493 * list lock and can be used safely with other locking &sk_buff functions
2496 * A buffer cannot be placed on two lists at the same time.
2498 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2500 unsigned long flags;
2502 spin_lock_irqsave(&list->lock, flags);
2503 __skb_queue_tail(list, newsk);
2504 spin_unlock_irqrestore(&list->lock, flags);
2506 EXPORT_SYMBOL(skb_queue_tail);
2509 * skb_unlink - remove a buffer from a list
2510 * @skb: buffer to remove
2511 * @list: list to use
2513 * Remove a packet from a list. The list locks are taken and this
2514 * function is atomic with respect to other list locked calls
2516 * You must know what list the SKB is on.
2518 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2520 unsigned long flags;
2522 spin_lock_irqsave(&list->lock, flags);
2523 __skb_unlink(skb, list);
2524 spin_unlock_irqrestore(&list->lock, flags);
2526 EXPORT_SYMBOL(skb_unlink);
2529 * skb_append - append a buffer
2530 * @old: buffer to insert after
2531 * @newsk: buffer to insert
2532 * @list: list to use
2534 * Place a packet after a given packet in a list. The list locks are taken
2535 * and this function is atomic with respect to other list locked calls.
2536 * A buffer cannot be placed on two lists at the same time.
2538 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2540 unsigned long flags;
2542 spin_lock_irqsave(&list->lock, flags);
2543 __skb_queue_after(list, old, newsk);
2544 spin_unlock_irqrestore(&list->lock, flags);
2546 EXPORT_SYMBOL(skb_append);
2549 * skb_insert - insert a buffer
2550 * @old: buffer to insert before
2551 * @newsk: buffer to insert
2552 * @list: list to use
2554 * Place a packet before a given packet in a list. The list locks are
2555 * taken and this function is atomic with respect to other list locked
2558 * A buffer cannot be placed on two lists at the same time.
2560 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2562 unsigned long flags;
2564 spin_lock_irqsave(&list->lock, flags);
2565 __skb_insert(newsk, old->prev, old, list);
2566 spin_unlock_irqrestore(&list->lock, flags);
2568 EXPORT_SYMBOL(skb_insert);
2570 static inline void skb_split_inside_header(struct sk_buff *skb,
2571 struct sk_buff* skb1,
2572 const u32 len, const int pos)
2576 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2578 /* And move data appendix as is. */
2579 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2580 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2582 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2583 skb_shinfo(skb)->nr_frags = 0;
2584 skb1->data_len = skb->data_len;
2585 skb1->len += skb1->data_len;
2588 skb_set_tail_pointer(skb, len);
2591 static inline void skb_split_no_header(struct sk_buff *skb,
2592 struct sk_buff* skb1,
2593 const u32 len, int pos)
2596 const int nfrags = skb_shinfo(skb)->nr_frags;
2598 skb_shinfo(skb)->nr_frags = 0;
2599 skb1->len = skb1->data_len = skb->len - len;
2601 skb->data_len = len - pos;
2603 for (i = 0; i < nfrags; i++) {
2604 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2606 if (pos + size > len) {
2607 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2611 * We have two variants in this case:
2612 * 1. Move all the frag to the second
2613 * part, if it is possible. F.e.
2614 * this approach is mandatory for TUX,
2615 * where splitting is expensive.
2616 * 2. Split is accurately. We make this.
2618 skb_frag_ref(skb, i);
2619 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2620 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2621 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2622 skb_shinfo(skb)->nr_frags++;
2626 skb_shinfo(skb)->nr_frags++;
2629 skb_shinfo(skb1)->nr_frags = k;
2633 * skb_split - Split fragmented skb to two parts at length len.
2634 * @skb: the buffer to split
2635 * @skb1: the buffer to receive the second part
2636 * @len: new length for skb
2638 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2640 int pos = skb_headlen(skb);
2642 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2643 if (len < pos) /* Split line is inside header. */
2644 skb_split_inside_header(skb, skb1, len, pos);
2645 else /* Second chunk has no header, nothing to copy. */
2646 skb_split_no_header(skb, skb1, len, pos);
2648 EXPORT_SYMBOL(skb_split);
2650 /* Shifting from/to a cloned skb is a no-go.
2652 * Caller cannot keep skb_shinfo related pointers past calling here!
2654 static int skb_prepare_for_shift(struct sk_buff *skb)
2656 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2660 * skb_shift - Shifts paged data partially from skb to another
2661 * @tgt: buffer into which tail data gets added
2662 * @skb: buffer from which the paged data comes from
2663 * @shiftlen: shift up to this many bytes
2665 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2666 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2667 * It's up to caller to free skb if everything was shifted.
2669 * If @tgt runs out of frags, the whole operation is aborted.
2671 * Skb cannot include anything else but paged data while tgt is allowed
2672 * to have non-paged data as well.
2674 * TODO: full sized shift could be optimized but that would need
2675 * specialized skb free'er to handle frags without up-to-date nr_frags.
2677 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2679 int from, to, merge, todo;
2680 struct skb_frag_struct *fragfrom, *fragto;
2682 BUG_ON(shiftlen > skb->len);
2683 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2687 to = skb_shinfo(tgt)->nr_frags;
2688 fragfrom = &skb_shinfo(skb)->frags[from];
2690 /* Actual merge is delayed until the point when we know we can
2691 * commit all, so that we don't have to undo partial changes
2694 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2695 fragfrom->page_offset)) {
2700 todo -= skb_frag_size(fragfrom);
2702 if (skb_prepare_for_shift(skb) ||
2703 skb_prepare_for_shift(tgt))
2706 /* All previous frag pointers might be stale! */
2707 fragfrom = &skb_shinfo(skb)->frags[from];
2708 fragto = &skb_shinfo(tgt)->frags[merge];
2710 skb_frag_size_add(fragto, shiftlen);
2711 skb_frag_size_sub(fragfrom, shiftlen);
2712 fragfrom->page_offset += shiftlen;
2720 /* Skip full, not-fitting skb to avoid expensive operations */
2721 if ((shiftlen == skb->len) &&
2722 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2725 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2728 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2729 if (to == MAX_SKB_FRAGS)
2732 fragfrom = &skb_shinfo(skb)->frags[from];
2733 fragto = &skb_shinfo(tgt)->frags[to];
2735 if (todo >= skb_frag_size(fragfrom)) {
2736 *fragto = *fragfrom;
2737 todo -= skb_frag_size(fragfrom);
2742 __skb_frag_ref(fragfrom);
2743 fragto->page = fragfrom->page;
2744 fragto->page_offset = fragfrom->page_offset;
2745 skb_frag_size_set(fragto, todo);
2747 fragfrom->page_offset += todo;
2748 skb_frag_size_sub(fragfrom, todo);
2756 /* Ready to "commit" this state change to tgt */
2757 skb_shinfo(tgt)->nr_frags = to;
2760 fragfrom = &skb_shinfo(skb)->frags[0];
2761 fragto = &skb_shinfo(tgt)->frags[merge];
2763 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2764 __skb_frag_unref(fragfrom);
2767 /* Reposition in the original skb */
2769 while (from < skb_shinfo(skb)->nr_frags)
2770 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2771 skb_shinfo(skb)->nr_frags = to;
2773 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2776 /* Most likely the tgt won't ever need its checksum anymore, skb on
2777 * the other hand might need it if it needs to be resent
2779 tgt->ip_summed = CHECKSUM_PARTIAL;
2780 skb->ip_summed = CHECKSUM_PARTIAL;
2782 /* Yak, is it really working this way? Some helper please? */
2783 skb->len -= shiftlen;
2784 skb->data_len -= shiftlen;
2785 skb->truesize -= shiftlen;
2786 tgt->len += shiftlen;
2787 tgt->data_len += shiftlen;
2788 tgt->truesize += shiftlen;
2794 * skb_prepare_seq_read - Prepare a sequential read of skb data
2795 * @skb: the buffer to read
2796 * @from: lower offset of data to be read
2797 * @to: upper offset of data to be read
2798 * @st: state variable
2800 * Initializes the specified state variable. Must be called before
2801 * invoking skb_seq_read() for the first time.
2803 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2804 unsigned int to, struct skb_seq_state *st)
2806 st->lower_offset = from;
2807 st->upper_offset = to;
2808 st->root_skb = st->cur_skb = skb;
2809 st->frag_idx = st->stepped_offset = 0;
2810 st->frag_data = NULL;
2812 EXPORT_SYMBOL(skb_prepare_seq_read);
2815 * skb_seq_read - Sequentially read skb data
2816 * @consumed: number of bytes consumed by the caller so far
2817 * @data: destination pointer for data to be returned
2818 * @st: state variable
2820 * Reads a block of skb data at @consumed relative to the
2821 * lower offset specified to skb_prepare_seq_read(). Assigns
2822 * the head of the data block to @data and returns the length
2823 * of the block or 0 if the end of the skb data or the upper
2824 * offset has been reached.
2826 * The caller is not required to consume all of the data
2827 * returned, i.e. @consumed is typically set to the number
2828 * of bytes already consumed and the next call to
2829 * skb_seq_read() will return the remaining part of the block.
2831 * Note 1: The size of each block of data returned can be arbitrary,
2832 * this limitation is the cost for zerocopy sequential
2833 * reads of potentially non linear data.
2835 * Note 2: Fragment lists within fragments are not implemented
2836 * at the moment, state->root_skb could be replaced with
2837 * a stack for this purpose.
2839 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2840 struct skb_seq_state *st)
2842 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2845 if (unlikely(abs_offset >= st->upper_offset)) {
2846 if (st->frag_data) {
2847 kunmap_atomic(st->frag_data);
2848 st->frag_data = NULL;
2854 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2856 if (abs_offset < block_limit && !st->frag_data) {
2857 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2858 return block_limit - abs_offset;
2861 if (st->frag_idx == 0 && !st->frag_data)
2862 st->stepped_offset += skb_headlen(st->cur_skb);
2864 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2865 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2866 block_limit = skb_frag_size(frag) + st->stepped_offset;
2868 if (abs_offset < block_limit) {
2870 st->frag_data = kmap_atomic(skb_frag_page(frag));
2872 *data = (u8 *) st->frag_data + frag->page_offset +
2873 (abs_offset - st->stepped_offset);
2875 return block_limit - abs_offset;
2878 if (st->frag_data) {
2879 kunmap_atomic(st->frag_data);
2880 st->frag_data = NULL;
2884 st->stepped_offset += skb_frag_size(frag);
2887 if (st->frag_data) {
2888 kunmap_atomic(st->frag_data);
2889 st->frag_data = NULL;
2892 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2893 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2896 } else if (st->cur_skb->next) {
2897 st->cur_skb = st->cur_skb->next;
2904 EXPORT_SYMBOL(skb_seq_read);
2907 * skb_abort_seq_read - Abort a sequential read of skb data
2908 * @st: state variable
2910 * Must be called if skb_seq_read() was not called until it
2913 void skb_abort_seq_read(struct skb_seq_state *st)
2916 kunmap_atomic(st->frag_data);
2918 EXPORT_SYMBOL(skb_abort_seq_read);
2920 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2922 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2923 struct ts_config *conf,
2924 struct ts_state *state)
2926 return skb_seq_read(offset, text, TS_SKB_CB(state));
2929 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2931 skb_abort_seq_read(TS_SKB_CB(state));
2935 * skb_find_text - Find a text pattern in skb data
2936 * @skb: the buffer to look in
2937 * @from: search offset
2939 * @config: textsearch configuration
2941 * Finds a pattern in the skb data according to the specified
2942 * textsearch configuration. Use textsearch_next() to retrieve
2943 * subsequent occurrences of the pattern. Returns the offset
2944 * to the first occurrence or UINT_MAX if no match was found.
2946 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2947 unsigned int to, struct ts_config *config)
2949 struct ts_state state;
2952 config->get_next_block = skb_ts_get_next_block;
2953 config->finish = skb_ts_finish;
2955 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2957 ret = textsearch_find(config, &state);
2958 return (ret <= to - from ? ret : UINT_MAX);
2960 EXPORT_SYMBOL(skb_find_text);
2963 * skb_append_datato_frags - append the user data to a skb
2964 * @sk: sock structure
2965 * @skb: skb structure to be appended with user data.
2966 * @getfrag: call back function to be used for getting the user data
2967 * @from: pointer to user message iov
2968 * @length: length of the iov message
2970 * Description: This procedure append the user data in the fragment part
2971 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2973 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2974 int (*getfrag)(void *from, char *to, int offset,
2975 int len, int odd, struct sk_buff *skb),
2976 void *from, int length)
2978 int frg_cnt = skb_shinfo(skb)->nr_frags;
2982 struct page_frag *pfrag = ¤t->task_frag;
2985 /* Return error if we don't have space for new frag */
2986 if (frg_cnt >= MAX_SKB_FRAGS)
2989 if (!sk_page_frag_refill(sk, pfrag))
2992 /* copy the user data to page */
2993 copy = min_t(int, length, pfrag->size - pfrag->offset);
2995 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2996 offset, copy, 0, skb);
3000 /* copy was successful so update the size parameters */
3001 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3004 pfrag->offset += copy;
3005 get_page(pfrag->page);
3007 skb->truesize += copy;
3008 atomic_add(copy, &sk->sk_wmem_alloc);
3010 skb->data_len += copy;
3014 } while (length > 0);
3018 EXPORT_SYMBOL(skb_append_datato_frags);
3020 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3021 int offset, size_t size)
3023 int i = skb_shinfo(skb)->nr_frags;
3025 if (skb_can_coalesce(skb, i, page, offset)) {
3026 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3027 } else if (i < MAX_SKB_FRAGS) {
3029 skb_fill_page_desc(skb, i, page, offset, size);
3036 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3039 * skb_pull_rcsum - pull skb and update receive checksum
3040 * @skb: buffer to update
3041 * @len: length of data pulled
3043 * This function performs an skb_pull on the packet and updates
3044 * the CHECKSUM_COMPLETE checksum. It should be used on
3045 * receive path processing instead of skb_pull unless you know
3046 * that the checksum difference is zero (e.g., a valid IP header)
3047 * or you are setting ip_summed to CHECKSUM_NONE.
3049 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3051 unsigned char *data = skb->data;
3053 BUG_ON(len > skb->len);
3054 __skb_pull(skb, len);
3055 skb_postpull_rcsum(skb, data, len);
3058 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3061 * skb_segment - Perform protocol segmentation on skb.
3062 * @head_skb: buffer to segment
3063 * @features: features for the output path (see dev->features)
3065 * This function performs segmentation on the given skb. It returns
3066 * a pointer to the first in a list of new skbs for the segments.
3067 * In case of error it returns ERR_PTR(err).
3069 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3070 netdev_features_t features)
3072 struct sk_buff *segs = NULL;
3073 struct sk_buff *tail = NULL;
3074 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3075 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3076 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3077 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3078 struct sk_buff *frag_skb = head_skb;
3079 unsigned int offset = doffset;
3080 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3081 unsigned int partial_segs = 0;
3082 unsigned int headroom;
3083 unsigned int len = head_skb->len;
3086 int nfrags = skb_shinfo(head_skb)->nr_frags;
3092 __skb_push(head_skb, doffset);
3093 proto = skb_network_protocol(head_skb, &dummy);
3094 if (unlikely(!proto))
3095 return ERR_PTR(-EINVAL);
3097 sg = !!(features & NETIF_F_SG);
3098 csum = !!can_checksum_protocol(features, proto);
3100 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3101 if (!(features & NETIF_F_GSO_PARTIAL)) {
3102 struct sk_buff *iter;
3105 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3108 /* Split the buffer at the frag_list pointer.
3109 * This is based on the assumption that all
3110 * buffers in the chain excluding the last
3111 * containing the same amount of data.
3113 skb_walk_frags(head_skb, iter) {
3114 if (skb_headlen(iter))
3121 /* GSO partial only requires that we trim off any excess that
3122 * doesn't fit into an MSS sized block, so take care of that
3125 partial_segs = len / mss;
3126 if (partial_segs > 1)
3127 mss *= partial_segs;
3133 headroom = skb_headroom(head_skb);
3134 pos = skb_headlen(head_skb);
3137 struct sk_buff *nskb;
3138 skb_frag_t *nskb_frag;
3142 if (unlikely(mss == GSO_BY_FRAGS)) {
3143 len = list_skb->len;
3145 len = head_skb->len - offset;
3150 hsize = skb_headlen(head_skb) - offset;
3153 if (hsize > len || !sg)
3156 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3157 (skb_headlen(list_skb) == len || sg)) {
3158 BUG_ON(skb_headlen(list_skb) > len);
3161 nfrags = skb_shinfo(list_skb)->nr_frags;
3162 frag = skb_shinfo(list_skb)->frags;
3163 frag_skb = list_skb;
3164 pos += skb_headlen(list_skb);
3166 while (pos < offset + len) {
3167 BUG_ON(i >= nfrags);
3169 size = skb_frag_size(frag);
3170 if (pos + size > offset + len)
3178 nskb = skb_clone(list_skb, GFP_ATOMIC);
3179 list_skb = list_skb->next;
3181 if (unlikely(!nskb))
3184 if (unlikely(pskb_trim(nskb, len))) {
3189 hsize = skb_end_offset(nskb);
3190 if (skb_cow_head(nskb, doffset + headroom)) {
3195 nskb->truesize += skb_end_offset(nskb) - hsize;
3196 skb_release_head_state(nskb);
3197 __skb_push(nskb, doffset);
3199 nskb = __alloc_skb(hsize + doffset + headroom,
3200 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3203 if (unlikely(!nskb))
3206 skb_reserve(nskb, headroom);
3207 __skb_put(nskb, doffset);
3216 __copy_skb_header(nskb, head_skb);
3218 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3219 skb_reset_mac_len(nskb);
3221 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3222 nskb->data - tnl_hlen,
3223 doffset + tnl_hlen);
3225 if (nskb->len == len + doffset)
3226 goto perform_csum_check;
3229 if (!nskb->remcsum_offload)
3230 nskb->ip_summed = CHECKSUM_NONE;
3231 SKB_GSO_CB(nskb)->csum =
3232 skb_copy_and_csum_bits(head_skb, offset,
3235 SKB_GSO_CB(nskb)->csum_start =
3236 skb_headroom(nskb) + doffset;
3240 nskb_frag = skb_shinfo(nskb)->frags;
3242 skb_copy_from_linear_data_offset(head_skb, offset,
3243 skb_put(nskb, hsize), hsize);
3245 skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3248 while (pos < offset + len) {
3250 BUG_ON(skb_headlen(list_skb));
3253 nfrags = skb_shinfo(list_skb)->nr_frags;
3254 frag = skb_shinfo(list_skb)->frags;
3255 frag_skb = list_skb;
3259 list_skb = list_skb->next;
3262 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3264 net_warn_ratelimited(
3265 "skb_segment: too many frags: %u %u\n",
3270 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3274 __skb_frag_ref(nskb_frag);
3275 size = skb_frag_size(nskb_frag);
3278 nskb_frag->page_offset += offset - pos;
3279 skb_frag_size_sub(nskb_frag, offset - pos);
3282 skb_shinfo(nskb)->nr_frags++;
3284 if (pos + size <= offset + len) {
3289 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3297 nskb->data_len = len - hsize;
3298 nskb->len += nskb->data_len;
3299 nskb->truesize += nskb->data_len;
3303 if (skb_has_shared_frag(nskb)) {
3304 err = __skb_linearize(nskb);
3308 if (!nskb->remcsum_offload)
3309 nskb->ip_summed = CHECKSUM_NONE;
3310 SKB_GSO_CB(nskb)->csum =
3311 skb_checksum(nskb, doffset,
3312 nskb->len - doffset, 0);
3313 SKB_GSO_CB(nskb)->csum_start =
3314 skb_headroom(nskb) + doffset;
3316 } while ((offset += len) < head_skb->len);
3318 /* Some callers want to get the end of the list.
3319 * Put it in segs->prev to avoid walking the list.
3320 * (see validate_xmit_skb_list() for example)
3325 struct sk_buff *iter;
3326 int type = skb_shinfo(head_skb)->gso_type;
3327 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3329 /* Update type to add partial and then remove dodgy if set */
3330 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3331 type &= ~SKB_GSO_DODGY;
3333 /* Update GSO info and prepare to start updating headers on
3334 * our way back down the stack of protocols.
3336 for (iter = segs; iter; iter = iter->next) {
3337 skb_shinfo(iter)->gso_size = gso_size;
3338 skb_shinfo(iter)->gso_segs = partial_segs;
3339 skb_shinfo(iter)->gso_type = type;
3340 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3343 if (tail->len - doffset <= gso_size)
3344 skb_shinfo(tail)->gso_size = 0;
3345 else if (tail != segs)
3346 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3349 /* Following permits correct backpressure, for protocols
3350 * using skb_set_owner_w().
3351 * Idea is to tranfert ownership from head_skb to last segment.
3353 if (head_skb->destructor == sock_wfree) {
3354 swap(tail->truesize, head_skb->truesize);
3355 swap(tail->destructor, head_skb->destructor);
3356 swap(tail->sk, head_skb->sk);
3361 kfree_skb_list(segs);
3362 return ERR_PTR(err);
3364 EXPORT_SYMBOL_GPL(skb_segment);
3366 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3368 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3369 unsigned int offset = skb_gro_offset(skb);
3370 unsigned int headlen = skb_headlen(skb);
3371 unsigned int len = skb_gro_len(skb);
3372 struct sk_buff *lp, *p = *head;
3373 unsigned int delta_truesize;
3375 if (unlikely(p->len + len >= 65536))
3378 lp = NAPI_GRO_CB(p)->last;
3379 pinfo = skb_shinfo(lp);
3381 if (headlen <= offset) {
3384 int i = skbinfo->nr_frags;
3385 int nr_frags = pinfo->nr_frags + i;
3387 if (nr_frags > MAX_SKB_FRAGS)
3391 pinfo->nr_frags = nr_frags;
3392 skbinfo->nr_frags = 0;
3394 frag = pinfo->frags + nr_frags;
3395 frag2 = skbinfo->frags + i;
3400 frag->page_offset += offset;
3401 skb_frag_size_sub(frag, offset);
3403 /* all fragments truesize : remove (head size + sk_buff) */
3404 delta_truesize = skb->truesize -
3405 SKB_TRUESIZE(skb_end_offset(skb));
3407 skb->truesize -= skb->data_len;
3408 skb->len -= skb->data_len;
3411 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3413 } else if (skb->head_frag) {
3414 int nr_frags = pinfo->nr_frags;
3415 skb_frag_t *frag = pinfo->frags + nr_frags;
3416 struct page *page = virt_to_head_page(skb->head);
3417 unsigned int first_size = headlen - offset;
3418 unsigned int first_offset;
3420 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3423 first_offset = skb->data -
3424 (unsigned char *)page_address(page) +
3427 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3429 frag->page.p = page;
3430 frag->page_offset = first_offset;
3431 skb_frag_size_set(frag, first_size);
3433 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3434 /* We dont need to clear skbinfo->nr_frags here */
3436 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3437 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3442 delta_truesize = skb->truesize;
3443 if (offset > headlen) {
3444 unsigned int eat = offset - headlen;
3446 skbinfo->frags[0].page_offset += eat;
3447 skb_frag_size_sub(&skbinfo->frags[0], eat);
3448 skb->data_len -= eat;
3453 __skb_pull(skb, offset);
3455 if (NAPI_GRO_CB(p)->last == p)
3456 skb_shinfo(p)->frag_list = skb;
3458 NAPI_GRO_CB(p)->last->next = skb;
3459 NAPI_GRO_CB(p)->last = skb;
3460 __skb_header_release(skb);
3464 NAPI_GRO_CB(p)->count++;
3466 p->truesize += delta_truesize;
3469 lp->data_len += len;
3470 lp->truesize += delta_truesize;
3473 NAPI_GRO_CB(skb)->same_flow = 1;
3476 EXPORT_SYMBOL_GPL(skb_gro_receive);
3478 void __init skb_init(void)
3480 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3481 sizeof(struct sk_buff),
3483 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3485 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3486 sizeof(struct sk_buff_fclones),
3488 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3493 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3494 * @skb: Socket buffer containing the buffers to be mapped
3495 * @sg: The scatter-gather list to map into
3496 * @offset: The offset into the buffer's contents to start mapping
3497 * @len: Length of buffer space to be mapped
3499 * Fill the specified scatter-gather list with mappings/pointers into a
3500 * region of the buffer space attached to a socket buffer.
3503 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3505 int start = skb_headlen(skb);
3506 int i, copy = start - offset;
3507 struct sk_buff *frag_iter;
3513 sg_set_buf(sg, skb->data + offset, copy);
3515 if ((len -= copy) == 0)
3520 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3523 WARN_ON(start > offset + len);
3525 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3526 if ((copy = end - offset) > 0) {
3527 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3531 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3532 frag->page_offset+offset-start);
3541 skb_walk_frags(skb, frag_iter) {
3544 WARN_ON(start > offset + len);
3546 end = start + frag_iter->len;
3547 if ((copy = end - offset) > 0) {
3550 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3552 if ((len -= copy) == 0)
3562 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3563 * sglist without mark the sg which contain last skb data as the end.
3564 * So the caller can mannipulate sg list as will when padding new data after
3565 * the first call without calling sg_unmark_end to expend sg list.
3567 * Scenario to use skb_to_sgvec_nomark:
3569 * 2. skb_to_sgvec_nomark(payload1)
3570 * 3. skb_to_sgvec_nomark(payload2)
3572 * This is equivalent to:
3574 * 2. skb_to_sgvec(payload1)
3576 * 4. skb_to_sgvec(payload2)
3578 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3579 * is more preferable.
3581 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3582 int offset, int len)
3584 return __skb_to_sgvec(skb, sg, offset, len);
3586 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3588 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3590 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3592 sg_mark_end(&sg[nsg - 1]);
3596 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3599 * skb_cow_data - Check that a socket buffer's data buffers are writable
3600 * @skb: The socket buffer to check.
3601 * @tailbits: Amount of trailing space to be added
3602 * @trailer: Returned pointer to the skb where the @tailbits space begins
3604 * Make sure that the data buffers attached to a socket buffer are
3605 * writable. If they are not, private copies are made of the data buffers
3606 * and the socket buffer is set to use these instead.
3608 * If @tailbits is given, make sure that there is space to write @tailbits
3609 * bytes of data beyond current end of socket buffer. @trailer will be
3610 * set to point to the skb in which this space begins.
3612 * The number of scatterlist elements required to completely map the
3613 * COW'd and extended socket buffer will be returned.
3615 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3619 struct sk_buff *skb1, **skb_p;
3621 /* If skb is cloned or its head is paged, reallocate
3622 * head pulling out all the pages (pages are considered not writable
3623 * at the moment even if they are anonymous).
3625 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3626 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3629 /* Easy case. Most of packets will go this way. */
3630 if (!skb_has_frag_list(skb)) {
3631 /* A little of trouble, not enough of space for trailer.
3632 * This should not happen, when stack is tuned to generate
3633 * good frames. OK, on miss we reallocate and reserve even more
3634 * space, 128 bytes is fair. */
3636 if (skb_tailroom(skb) < tailbits &&
3637 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3645 /* Misery. We are in troubles, going to mincer fragments... */
3648 skb_p = &skb_shinfo(skb)->frag_list;
3651 while ((skb1 = *skb_p) != NULL) {
3654 /* The fragment is partially pulled by someone,
3655 * this can happen on input. Copy it and everything
3658 if (skb_shared(skb1))
3661 /* If the skb is the last, worry about trailer. */
3663 if (skb1->next == NULL && tailbits) {
3664 if (skb_shinfo(skb1)->nr_frags ||
3665 skb_has_frag_list(skb1) ||
3666 skb_tailroom(skb1) < tailbits)
3667 ntail = tailbits + 128;
3673 skb_shinfo(skb1)->nr_frags ||
3674 skb_has_frag_list(skb1)) {
3675 struct sk_buff *skb2;
3677 /* Fuck, we are miserable poor guys... */
3679 skb2 = skb_copy(skb1, GFP_ATOMIC);
3681 skb2 = skb_copy_expand(skb1,
3685 if (unlikely(skb2 == NULL))
3689 skb_set_owner_w(skb2, skb1->sk);
3691 /* Looking around. Are we still alive?
3692 * OK, link new skb, drop old one */
3694 skb2->next = skb1->next;
3701 skb_p = &skb1->next;
3706 EXPORT_SYMBOL_GPL(skb_cow_data);
3708 static void sock_rmem_free(struct sk_buff *skb)
3710 struct sock *sk = skb->sk;
3712 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3716 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3718 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3720 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3721 (unsigned int)sk->sk_rcvbuf)
3726 skb->destructor = sock_rmem_free;
3727 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3729 /* before exiting rcu section, make sure dst is refcounted */
3732 skb_queue_tail(&sk->sk_error_queue, skb);
3733 if (!sock_flag(sk, SOCK_DEAD))
3734 sk->sk_data_ready(sk);
3737 EXPORT_SYMBOL(sock_queue_err_skb);
3739 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3741 struct sk_buff_head *q = &sk->sk_error_queue;
3742 struct sk_buff *skb, *skb_next;
3743 unsigned long flags;
3746 spin_lock_irqsave(&q->lock, flags);
3747 skb = __skb_dequeue(q);
3748 if (skb && (skb_next = skb_peek(q)))
3749 err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3750 spin_unlock_irqrestore(&q->lock, flags);
3754 sk->sk_error_report(sk);
3758 EXPORT_SYMBOL(sock_dequeue_err_skb);
3761 * skb_clone_sk - create clone of skb, and take reference to socket
3762 * @skb: the skb to clone
3764 * This function creates a clone of a buffer that holds a reference on
3765 * sk_refcnt. Buffers created via this function are meant to be
3766 * returned using sock_queue_err_skb, or free via kfree_skb.
3768 * When passing buffers allocated with this function to sock_queue_err_skb
3769 * it is necessary to wrap the call with sock_hold/sock_put in order to
3770 * prevent the socket from being released prior to being enqueued on
3771 * the sk_error_queue.
3773 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3775 struct sock *sk = skb->sk;
3776 struct sk_buff *clone;
3778 if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3781 clone = skb_clone(skb, GFP_ATOMIC);
3788 clone->destructor = sock_efree;
3792 EXPORT_SYMBOL(skb_clone_sk);
3794 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3798 struct sock_exterr_skb *serr;
3801 serr = SKB_EXT_ERR(skb);
3802 memset(serr, 0, sizeof(*serr));
3803 serr->ee.ee_errno = ENOMSG;
3804 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3805 serr->ee.ee_info = tstype;
3806 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3807 serr->ee.ee_data = skb_shinfo(skb)->tskey;
3808 if (sk->sk_protocol == IPPROTO_TCP &&
3809 sk->sk_type == SOCK_STREAM)
3810 serr->ee.ee_data -= sk->sk_tskey;
3813 err = sock_queue_err_skb(sk, skb);
3819 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3823 if (likely(sysctl_tstamp_allow_data || tsonly))
3826 read_lock_bh(&sk->sk_callback_lock);
3827 ret = sk->sk_socket && sk->sk_socket->file &&
3828 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3829 read_unlock_bh(&sk->sk_callback_lock);
3833 void skb_complete_tx_timestamp(struct sk_buff *skb,
3834 struct skb_shared_hwtstamps *hwtstamps)
3836 struct sock *sk = skb->sk;
3838 if (!skb_may_tx_timestamp(sk, false))
3841 /* take a reference to prevent skb_orphan() from freeing the socket */
3844 *skb_hwtstamps(skb) = *hwtstamps;
3845 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3849 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3851 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3852 struct skb_shared_hwtstamps *hwtstamps,
3853 struct sock *sk, int tstype)
3855 struct sk_buff *skb;
3861 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3862 if (!skb_may_tx_timestamp(sk, tsonly))
3866 skb = alloc_skb(0, GFP_ATOMIC);
3868 skb = skb_clone(orig_skb, GFP_ATOMIC);
3873 skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3874 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3878 *skb_hwtstamps(skb) = *hwtstamps;
3880 skb->tstamp = ktime_get_real();
3882 __skb_complete_tx_timestamp(skb, sk, tstype);
3884 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3886 void skb_tstamp_tx(struct sk_buff *orig_skb,
3887 struct skb_shared_hwtstamps *hwtstamps)
3889 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3892 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3894 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3896 struct sock *sk = skb->sk;
3897 struct sock_exterr_skb *serr;
3900 skb->wifi_acked_valid = 1;
3901 skb->wifi_acked = acked;
3903 serr = SKB_EXT_ERR(skb);
3904 memset(serr, 0, sizeof(*serr));
3905 serr->ee.ee_errno = ENOMSG;
3906 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3908 /* take a reference to prevent skb_orphan() from freeing the socket */
3911 err = sock_queue_err_skb(sk, skb);
3917 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3920 * skb_partial_csum_set - set up and verify partial csum values for packet
3921 * @skb: the skb to set
3922 * @start: the number of bytes after skb->data to start checksumming.
3923 * @off: the offset from start to place the checksum.
3925 * For untrusted partially-checksummed packets, we need to make sure the values
3926 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3928 * This function checks and sets those values and skb->ip_summed: if this
3929 * returns false you should drop the packet.
3931 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3933 if (unlikely(start > skb_headlen(skb)) ||
3934 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3935 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3936 start, off, skb_headlen(skb));
3939 skb->ip_summed = CHECKSUM_PARTIAL;
3940 skb->csum_start = skb_headroom(skb) + start;
3941 skb->csum_offset = off;
3942 skb_set_transport_header(skb, start);
3945 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3947 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3950 if (skb_headlen(skb) >= len)
3953 /* If we need to pullup then pullup to the max, so we
3954 * won't need to do it again.
3959 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3962 if (skb_headlen(skb) < len)
3968 #define MAX_TCP_HDR_LEN (15 * 4)
3970 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3971 typeof(IPPROTO_IP) proto,
3978 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3979 off + MAX_TCP_HDR_LEN);
3980 if (!err && !skb_partial_csum_set(skb, off,
3981 offsetof(struct tcphdr,
3984 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3987 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3988 off + sizeof(struct udphdr));
3989 if (!err && !skb_partial_csum_set(skb, off,
3990 offsetof(struct udphdr,
3993 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3996 return ERR_PTR(-EPROTO);
3999 /* This value should be large enough to cover a tagged ethernet header plus
4000 * maximally sized IP and TCP or UDP headers.
4002 #define MAX_IP_HDR_LEN 128
4004 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4013 err = skb_maybe_pull_tail(skb,
4014 sizeof(struct iphdr),
4019 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4022 off = ip_hdrlen(skb);
4029 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4031 return PTR_ERR(csum);
4034 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4037 ip_hdr(skb)->protocol, 0);
4044 /* This value should be large enough to cover a tagged ethernet header plus
4045 * an IPv6 header, all options, and a maximal TCP or UDP header.
4047 #define MAX_IPV6_HDR_LEN 256
4049 #define OPT_HDR(type, skb, off) \
4050 (type *)(skb_network_header(skb) + (off))
4052 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4065 off = sizeof(struct ipv6hdr);
4067 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4071 nexthdr = ipv6_hdr(skb)->nexthdr;
4073 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4074 while (off <= len && !done) {
4076 case IPPROTO_DSTOPTS:
4077 case IPPROTO_HOPOPTS:
4078 case IPPROTO_ROUTING: {
4079 struct ipv6_opt_hdr *hp;
4081 err = skb_maybe_pull_tail(skb,
4083 sizeof(struct ipv6_opt_hdr),
4088 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4089 nexthdr = hp->nexthdr;
4090 off += ipv6_optlen(hp);
4094 struct ip_auth_hdr *hp;
4096 err = skb_maybe_pull_tail(skb,
4098 sizeof(struct ip_auth_hdr),
4103 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4104 nexthdr = hp->nexthdr;
4105 off += ipv6_authlen(hp);
4108 case IPPROTO_FRAGMENT: {
4109 struct frag_hdr *hp;
4111 err = skb_maybe_pull_tail(skb,
4113 sizeof(struct frag_hdr),
4118 hp = OPT_HDR(struct frag_hdr, skb, off);
4120 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4123 nexthdr = hp->nexthdr;
4124 off += sizeof(struct frag_hdr);
4135 if (!done || fragment)
4138 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4140 return PTR_ERR(csum);
4143 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4144 &ipv6_hdr(skb)->daddr,
4145 skb->len - off, nexthdr, 0);
4153 * skb_checksum_setup - set up partial checksum offset
4154 * @skb: the skb to set up
4155 * @recalculate: if true the pseudo-header checksum will be recalculated
4157 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4161 switch (skb->protocol) {
4162 case htons(ETH_P_IP):
4163 err = skb_checksum_setup_ipv4(skb, recalculate);
4166 case htons(ETH_P_IPV6):
4167 err = skb_checksum_setup_ipv6(skb, recalculate);
4177 EXPORT_SYMBOL(skb_checksum_setup);
4180 * skb_checksum_maybe_trim - maybe trims the given skb
4181 * @skb: the skb to check
4182 * @transport_len: the data length beyond the network header
4184 * Checks whether the given skb has data beyond the given transport length.
4185 * If so, returns a cloned skb trimmed to this transport length.
4186 * Otherwise returns the provided skb. Returns NULL in error cases
4187 * (e.g. transport_len exceeds skb length or out-of-memory).
4189 * Caller needs to set the skb transport header and free any returned skb if it
4190 * differs from the provided skb.
4192 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4193 unsigned int transport_len)
4195 struct sk_buff *skb_chk;
4196 unsigned int len = skb_transport_offset(skb) + transport_len;
4201 else if (skb->len == len)
4204 skb_chk = skb_clone(skb, GFP_ATOMIC);
4208 ret = pskb_trim_rcsum(skb_chk, len);
4218 * skb_checksum_trimmed - validate checksum of an skb
4219 * @skb: the skb to check
4220 * @transport_len: the data length beyond the network header
4221 * @skb_chkf: checksum function to use
4223 * Applies the given checksum function skb_chkf to the provided skb.
4224 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4226 * If the skb has data beyond the given transport length, then a
4227 * trimmed & cloned skb is checked and returned.
4229 * Caller needs to set the skb transport header and free any returned skb if it
4230 * differs from the provided skb.
4232 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4233 unsigned int transport_len,
4234 __sum16(*skb_chkf)(struct sk_buff *skb))
4236 struct sk_buff *skb_chk;
4237 unsigned int offset = skb_transport_offset(skb);
4240 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4244 if (!pskb_may_pull(skb_chk, offset))
4247 skb_pull_rcsum(skb_chk, offset);
4248 ret = skb_chkf(skb_chk);
4249 skb_push_rcsum(skb_chk, offset);
4257 if (skb_chk && skb_chk != skb)
4263 EXPORT_SYMBOL(skb_checksum_trimmed);
4265 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4267 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4270 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4272 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4275 skb_release_head_state(skb);
4276 kmem_cache_free(skbuff_head_cache, skb);
4281 EXPORT_SYMBOL(kfree_skb_partial);
4284 * skb_try_coalesce - try to merge skb to prior one
4286 * @from: buffer to add
4287 * @fragstolen: pointer to boolean
4288 * @delta_truesize: how much more was allocated than was requested
4290 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4291 bool *fragstolen, int *delta_truesize)
4293 int i, delta, len = from->len;
4295 *fragstolen = false;
4300 if (len <= skb_tailroom(to)) {
4302 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4303 *delta_truesize = 0;
4307 if (skb_has_frag_list(to) || skb_has_frag_list(from))
4310 if (skb_headlen(from) != 0) {
4312 unsigned int offset;
4314 if (skb_shinfo(to)->nr_frags +
4315 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4318 if (skb_head_is_locked(from))
4321 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4323 page = virt_to_head_page(from->head);
4324 offset = from->data - (unsigned char *)page_address(page);
4326 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4327 page, offset, skb_headlen(from));
4330 if (skb_shinfo(to)->nr_frags +
4331 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4334 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4337 WARN_ON_ONCE(delta < len);
4339 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4340 skb_shinfo(from)->frags,
4341 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4342 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4344 if (!skb_cloned(from))
4345 skb_shinfo(from)->nr_frags = 0;
4347 /* if the skb is not cloned this does nothing
4348 * since we set nr_frags to 0.
4350 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4351 skb_frag_ref(from, i);
4353 to->truesize += delta;
4355 to->data_len += len;
4357 *delta_truesize = delta;
4360 EXPORT_SYMBOL(skb_try_coalesce);
4363 * skb_scrub_packet - scrub an skb
4365 * @skb: buffer to clean
4366 * @xnet: packet is crossing netns
4368 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4369 * into/from a tunnel. Some information have to be cleared during these
4371 * skb_scrub_packet can also be used to clean a skb before injecting it in
4372 * another namespace (@xnet == true). We have to clear all information in the
4373 * skb that could impact namespace isolation.
4375 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4377 skb->tstamp.tv64 = 0;
4378 skb->pkt_type = PACKET_HOST;
4384 nf_reset_trace(skb);
4392 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4395 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4399 * skb_gso_transport_seglen is used to determine the real size of the
4400 * individual segments, including Layer4 headers (TCP/UDP).
4402 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4404 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4406 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4407 unsigned int thlen = 0;
4409 if (skb->encapsulation) {
4410 thlen = skb_inner_transport_header(skb) -
4411 skb_transport_header(skb);
4413 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4414 thlen += inner_tcp_hdrlen(skb);
4415 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4416 thlen = tcp_hdrlen(skb);
4417 } else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
4418 thlen = sizeof(struct sctphdr);
4420 /* UFO sets gso_size to the size of the fragmentation
4421 * payload, i.e. the size of the L4 (UDP) header is already
4424 return thlen + shinfo->gso_size;
4426 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4429 * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4432 * @mtu: MTU to validate against
4434 * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
4437 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu)
4439 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4440 const struct sk_buff *iter;
4443 hlen = skb_gso_network_seglen(skb);
4445 if (shinfo->gso_size != GSO_BY_FRAGS)
4448 /* Undo this so we can re-use header sizes */
4449 hlen -= GSO_BY_FRAGS;
4451 skb_walk_frags(skb, iter) {
4452 if (hlen + skb_headlen(iter) > mtu)
4458 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu);
4460 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4462 if (skb_cow(skb, skb_headroom(skb)) < 0) {
4467 memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4469 skb->mac_header += VLAN_HLEN;
4473 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4475 struct vlan_hdr *vhdr;
4478 if (unlikely(skb_vlan_tag_present(skb))) {
4479 /* vlan_tci is already set-up so leave this for another time */
4483 skb = skb_share_check(skb, GFP_ATOMIC);
4487 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4490 vhdr = (struct vlan_hdr *)skb->data;
4491 vlan_tci = ntohs(vhdr->h_vlan_TCI);
4492 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4494 skb_pull_rcsum(skb, VLAN_HLEN);
4495 vlan_set_encap_proto(skb, vhdr);
4497 skb = skb_reorder_vlan_header(skb);
4501 skb_reset_network_header(skb);
4502 skb_reset_transport_header(skb);
4503 skb_reset_mac_len(skb);
4511 EXPORT_SYMBOL(skb_vlan_untag);
4513 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4515 if (!pskb_may_pull(skb, write_len))
4518 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4521 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4523 EXPORT_SYMBOL(skb_ensure_writable);
4525 /* remove VLAN header from packet and update csum accordingly.
4526 * expects a non skb_vlan_tag_present skb with a vlan tag payload
4528 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4530 struct vlan_hdr *vhdr;
4531 unsigned int offset = skb->data - skb_mac_header(skb);
4534 __skb_push(skb, offset);
4535 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4539 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4541 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4542 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
4544 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4545 __skb_pull(skb, VLAN_HLEN);
4547 vlan_set_encap_proto(skb, vhdr);
4548 skb->mac_header += VLAN_HLEN;
4550 if (skb_network_offset(skb) < ETH_HLEN)
4551 skb_set_network_header(skb, ETH_HLEN);
4553 skb_reset_mac_len(skb);
4555 __skb_pull(skb, offset);
4559 EXPORT_SYMBOL(__skb_vlan_pop);
4561 int skb_vlan_pop(struct sk_buff *skb)
4567 if (likely(skb_vlan_tag_present(skb))) {
4570 if (unlikely(skb->protocol != htons(ETH_P_8021Q) &&
4571 skb->protocol != htons(ETH_P_8021AD)))
4574 err = __skb_vlan_pop(skb, &vlan_tci);
4578 /* move next vlan tag to hw accel tag */
4579 if (likely(skb->protocol != htons(ETH_P_8021Q) &&
4580 skb->protocol != htons(ETH_P_8021AD)))
4583 vlan_proto = skb->protocol;
4584 err = __skb_vlan_pop(skb, &vlan_tci);
4588 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4591 EXPORT_SYMBOL(skb_vlan_pop);
4593 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4595 if (skb_vlan_tag_present(skb)) {
4596 unsigned int offset = skb->data - skb_mac_header(skb);
4599 /* __vlan_insert_tag expect skb->data pointing to mac header.
4600 * So change skb->data before calling it and change back to
4601 * original position later
4603 __skb_push(skb, offset);
4604 err = __vlan_insert_tag(skb, skb->vlan_proto,
4605 skb_vlan_tag_get(skb));
4607 __skb_pull(skb, offset);
4611 skb->protocol = skb->vlan_proto;
4612 skb->mac_len += VLAN_HLEN;
4614 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4615 __skb_pull(skb, offset);
4617 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4620 EXPORT_SYMBOL(skb_vlan_push);
4623 * alloc_skb_with_frags - allocate skb with page frags
4625 * @header_len: size of linear part
4626 * @data_len: needed length in frags
4627 * @max_page_order: max page order desired.
4628 * @errcode: pointer to error code if any
4629 * @gfp_mask: allocation mask
4631 * This can be used to allocate a paged skb, given a maximal order for frags.
4633 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4634 unsigned long data_len,
4639 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4640 unsigned long chunk;
4641 struct sk_buff *skb;
4646 *errcode = -EMSGSIZE;
4647 /* Note this test could be relaxed, if we succeed to allocate
4648 * high order pages...
4650 if (npages > MAX_SKB_FRAGS)
4653 gfp_head = gfp_mask;
4654 if (gfp_head & __GFP_DIRECT_RECLAIM)
4655 gfp_head |= __GFP_REPEAT;
4657 *errcode = -ENOBUFS;
4658 skb = alloc_skb(header_len, gfp_head);
4662 skb->truesize += npages << PAGE_SHIFT;
4664 for (i = 0; npages > 0; i++) {
4665 int order = max_page_order;
4668 if (npages >= 1 << order) {
4669 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4676 /* Do not retry other high order allocations */
4682 page = alloc_page(gfp_mask);
4686 chunk = min_t(unsigned long, data_len,
4687 PAGE_SIZE << order);
4688 skb_fill_page_desc(skb, i, page, 0, chunk);
4690 npages -= 1 << order;
4698 EXPORT_SYMBOL(alloc_skb_with_frags);
4700 /* carve out the first off bytes from skb when off < headlen */
4701 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
4702 const int headlen, gfp_t gfp_mask)
4705 int size = skb_end_offset(skb);
4706 int new_hlen = headlen - off;
4709 size = SKB_DATA_ALIGN(size);
4711 if (skb_pfmemalloc(skb))
4712 gfp_mask |= __GFP_MEMALLOC;
4713 data = kmalloc_reserve(size +
4714 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4715 gfp_mask, NUMA_NO_NODE, NULL);
4719 size = SKB_WITH_OVERHEAD(ksize(data));
4721 /* Copy real data, and all frags */
4722 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
4725 memcpy((struct skb_shared_info *)(data + size),
4727 offsetof(struct skb_shared_info,
4728 frags[skb_shinfo(skb)->nr_frags]));
4729 if (skb_cloned(skb)) {
4730 /* drop the old head gracefully */
4731 if (skb_orphan_frags(skb, gfp_mask)) {
4735 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4736 skb_frag_ref(skb, i);
4737 if (skb_has_frag_list(skb))
4738 skb_clone_fraglist(skb);
4739 skb_release_data(skb);
4741 /* we can reuse existing recount- all we did was
4750 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4753 skb->end = skb->head + size;
4755 skb_set_tail_pointer(skb, skb_headlen(skb));
4756 skb_headers_offset_update(skb, 0);
4760 atomic_set(&skb_shinfo(skb)->dataref, 1);
4765 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
4767 /* carve out the first eat bytes from skb's frag_list. May recurse into
4770 static int pskb_carve_frag_list(struct sk_buff *skb,
4771 struct skb_shared_info *shinfo, int eat,
4774 struct sk_buff *list = shinfo->frag_list;
4775 struct sk_buff *clone = NULL;
4776 struct sk_buff *insp = NULL;
4780 pr_err("Not enough bytes to eat. Want %d\n", eat);
4783 if (list->len <= eat) {
4784 /* Eaten as whole. */
4789 /* Eaten partially. */
4790 if (skb_shared(list)) {
4791 clone = skb_clone(list, gfp_mask);
4797 /* This may be pulled without problems. */
4800 if (pskb_carve(list, eat, gfp_mask) < 0) {
4808 /* Free pulled out fragments. */
4809 while ((list = shinfo->frag_list) != insp) {
4810 shinfo->frag_list = list->next;
4813 /* And insert new clone at head. */
4816 shinfo->frag_list = clone;
4821 /* carve off first len bytes from skb. Split line (off) is in the
4822 * non-linear part of skb
4824 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
4825 int pos, gfp_t gfp_mask)
4828 int size = skb_end_offset(skb);
4830 const int nfrags = skb_shinfo(skb)->nr_frags;
4831 struct skb_shared_info *shinfo;
4833 size = SKB_DATA_ALIGN(size);
4835 if (skb_pfmemalloc(skb))
4836 gfp_mask |= __GFP_MEMALLOC;
4837 data = kmalloc_reserve(size +
4838 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4839 gfp_mask, NUMA_NO_NODE, NULL);
4843 size = SKB_WITH_OVERHEAD(ksize(data));
4845 memcpy((struct skb_shared_info *)(data + size),
4846 skb_shinfo(skb), offsetof(struct skb_shared_info,
4847 frags[skb_shinfo(skb)->nr_frags]));
4848 if (skb_orphan_frags(skb, gfp_mask)) {
4852 shinfo = (struct skb_shared_info *)(data + size);
4853 for (i = 0; i < nfrags; i++) {
4854 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4856 if (pos + fsize > off) {
4857 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
4861 * We have two variants in this case:
4862 * 1. Move all the frag to the second
4863 * part, if it is possible. F.e.
4864 * this approach is mandatory for TUX,
4865 * where splitting is expensive.
4866 * 2. Split is accurately. We make this.
4868 shinfo->frags[0].page_offset += off - pos;
4869 skb_frag_size_sub(&shinfo->frags[0], off - pos);
4871 skb_frag_ref(skb, i);
4876 shinfo->nr_frags = k;
4877 if (skb_has_frag_list(skb))
4878 skb_clone_fraglist(skb);
4881 /* split line is in frag list */
4882 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
4884 skb_release_data(skb);
4889 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4892 skb->end = skb->head + size;
4894 skb_reset_tail_pointer(skb);
4895 skb_headers_offset_update(skb, 0);
4900 skb->data_len = skb->len;
4901 atomic_set(&skb_shinfo(skb)->dataref, 1);
4905 /* remove len bytes from the beginning of the skb */
4906 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
4908 int headlen = skb_headlen(skb);
4911 return pskb_carve_inside_header(skb, len, headlen, gfp);
4913 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
4916 /* Extract to_copy bytes starting at off from skb, and return this in
4919 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
4920 int to_copy, gfp_t gfp)
4922 struct sk_buff *clone = skb_clone(skb, gfp);
4927 if (pskb_carve(clone, off, gfp) < 0 ||
4928 pskb_trim(clone, to_copy)) {
4934 EXPORT_SYMBOL(pskb_extract);